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Abstract Optimization to identify the global minimum ener-
gy conformation sequence in in silico enzyme design is com-
putationally non-deterministic polynomial-time (NP)-hard,
with the search time growing exponentially as the number of
design sites increases. This drawback forces the modeling of
protein-ligand systems to adopt discrete amino acid rotamers
and ligand conformers, as well as continuum solvent treatment
of the environment; however, such compromises produce
large numbers of false positives in sequence selection. In this
report, cephalosporin acylase, which catalyzes the hydrolytic
reaction of cephalosporin C to 7-aminocephalosporanic acid,
was used to investigate the dynamic features of active-site-
transition-state complex structures using molecular dynamics
(MD) simulations to potentially eliminate false positives. The
molecular docking between cephalosporin C and wild type
acylase N176 and its eight mutants showed that the rate-
limiting step in the hydrolytic reaction of cephalosporin C is
the acylation process. MD simulations of the active-site-
transition-state complex structures of the acylation processes
for N176 and its eight mutants showed that the geometrical
constraints between catalytic residues and small molecule
transition states are always well maintained during the 20 ns
simulation for mutants with higher activities, and more hydro-
gen bonds between binding residues and functional groups of
the ligand side chain in the active pocket are formed for
mutants with higher activities. The conformations of the li-
gand transition states were changed greatly after the simula-
tion. This indicates that the hydrogen bond network between

the ligand and protein could be improved to enhance the
activity of cephalosporin C acylase in subsequent design.
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Introduction

Green process development is becoming an increasingly cen-
tral theme in the chemical manufacturing industry because of
the associated negative impact this industry has on the envi-
ronment. Here, enzymes play a critical role, and are being
applied as industrial catalysts to develop environmentally
benign processes that can replace high pollutant processes—
the latter usually catalyzed by chemical catalysts in organic
solvents [1]. However, the availability of suitable enzymes
directly amenable to non-natural substrates is limited. One of
the overwhelming advantages of enzymes compared with
chemical catalysts is their exceptional selectivity, such as
chemo-, region- and stereoselectivity. Unfortunately, an ac-
companying disadvantage that comes with these merits is the
extreme difficulty of engineering subtle changes in the active
site of an enzyme to accommodate different substrates [2]. To
overcome such drawbacks, directed evolution as an empirical
approach has been used with significant success during the
last two decades [3]. An alternative to this technology is a
structure-based computational enzyme design approach. This
method can lead to the cost-effective, rapid design of a new
enzyme with the aid of high-performance computing and
advanced molecular modeling. Pauling proposed that en-
zymes work by stabilizing the transition state of the target
reaction relative to its ground state [4]. Therefore the enzyme
design concept can be taken as a special molecular recognition
problem as we can identify just the transition state of the rate-
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limiting step of the reaction and search for an amino acid
sequence that folds spontaneously into the target structure,
and that binds the transition state tightly and specifically.
However, de novo design of the protein fold is not a routine
approach. The three most striking in silico enzyme designs,
i.e., artificial enzymes for Kemp elimination [5], the retro-
aldol reaction [6] and the stereo-selective Diels-Alder reaction
[7], were all created based on the selection of a suitable
scaffold from a scaffold library, which could hold the theoret-
ical active site described by the catalytic geometrical con-
straints between the catalytic residues and the transition state
of the target reaction.

The success of automatic design of artificial enzymes has
inspired a body of research on why they work and how they
can be improved, because the highest catalytic efficiency of
the de novo designed enzymes is still well below those of
natural enzymes. Here, we take the Kemp eliminase design as
an example. Alexandrova et al. [8] used mixed quantum and
molecular mechanics (QM/MM) tools to study four active
designs for Kemp elimination [5], i.e., KE07/1thf,
KE10/1a53, KE15/1thf and KE16/1thf. This study failed to
obtain a correlation between computed activation barriers and
the activation barriers derived from experiments, and the trend
of their calculated barriers was found to be opposite to the
values derived from experiments. Frushicheva et al. [9] used
an empirical valence bond method to correctly reproduce the
overall catalytic effect of the designed Kemp eliminases.
Based on their calculation of the activation barrier they could
suggest mutations that reduced overall catalysis, but they
encountered difficulties in improving the activities of Kemp
eliminases. This observation clearly illustrates that it is
extraordinarily challenging to create an accurate
preorganized active site environment that discriminates
between the transition and ground states effectively.
Kiss et al. [10] concluded that full enzyme QM/MM
calculations are inadequate to differentiate between ac-
tive and inactive designs, but the implementation of
molecular dynamics (MD) simulations may be able to
eliminate effectively the false-positives. Privett et al.
[11] combined the computational protein design method
with MD simulations to develop an iterative approach,
which led to the development of the most catalytically
efficient computationally designed enzyme, i.e., HG3/1gor,
for Kemp elimination. Starting from HG3/1gor, Blomberg
et al. [12] evolved an artificial enzyme, i.e., HG3.17, that
accelerated the Kemp elimination 6×108 fold, and its catalytic
efficiency kcat/Km reached 2.3×105, which is comparable with
that of highly optimized natural enzymes such as
triosephosphate isomerase. The crystal structure of the
HG3.17-inhibitor (6-nitrobenzotriazole) complex showed that
the evolved Kemp eliminase resembles the idealized active
site targeted by design; however, a computational approach
alone did not find such a design.

In all available computational enzyme design programs,
searching of sequence space remains a bottleneck for current
combinatorial optimization algorithms [13]. Therefore, dis-
crete amino acid side-chain rotamers and ligand placement
schemes are always used, which restricts the side-chain func-
tional groups that can adopt the high-precision conformations
necessary for high catalytic efficiency. In addition, the protein
scaffold is always assumed to be rigid in order to mitigate
computational complexity. An additional source of inaccuracy
for enzyme design comes from the simplified electrostatic
interaction models, which struggle to handle correctly the
long-range effects of electrostatics. All these shortcomings
can be accounted for by MD simulations where explicit water
molecule models are applied. In this research, the wild-type
and eight mutants of a cephalosporin C acylase, i.e., N176,
which catalyzes the hydrolytic reaction of cephalosporin C to
7-aminocephalosporanic acid (7-ACA), were used to investi-
gate whether or not the dynamic features identified by the MD
simulations could evaluate active designs with different activ-
ities, in order to facilitate the discovery of further mutations
that lead to higher catalytic efficiency.

Materials and methods

Calculation of the active-site-transition-state complex

The hydrolytic reaction of cephalosporin C (CPC) shown in
Fig. 1 is catalyzed by cephalosporin acylase (CA), which
converts CPC into 7-amino cephalosporanic acid (7-ACA)
and D-α-aminoadipate under very low activity as the primary
substrate of the cephalosporin acylase from Pseudomonas sp.
N176 is glutaryl-7-aminocephalosporanic acid (GL-7-ACA).
The structure of the enzyme active-site-transition-state com-
plex was obtained by the PROtein Design Algorithmic
(PRODA) [14–16] package, where the three-dimensional
(3D) scaffold structure of cephalosporin acylase was taken
(PDB ID: 4HSR) without further minimization. The structure
of CPC was modeled based on the crystal structure of GL-7-
ACA (PDB ID: 1JVZ) [17], and its transition state structure
was generated according to the placing rules shown in
Supporting Information Table S1 based on the tetrahedral
intermediate assumption. The catalytic geometrical relation-
ships between catalytic residues and transition state small
molecules are presented in Fig. 2, where the four catalytic
residues are SerB1, HisB23, HisB70 and AsnB242. CA be-
longs to the N-terminal nucleophile amidohydrolase super-
family and shares the same catalytic mechanism as penicillin
G acylase [18], in which the hydroxyl group of the N-terminal
serine of the B-chain, i.e., SerB1, is the nucleophilic group.
The design scheme for scaffold 4HSR is presented in
Supporting Information Table S2. The total number of
rotamers for all design sites was 97,942, where the number
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of small molecule rotamer library was 2,110, and the compu-
tational complexity reached 6.27×1080 for optimal rotamer
selection. The active-site-transition-state complexes were cal-
culated by PRODA for the wild-type and eight mutants, i.e.,
M1(HisB57Asn), M2(HisB57Phe), M3(HisB57Ser),
M4(HisB57Thr), M5(HisB70Ser), M6(HisB70Tyr),
M7(HisB57Ser, HisB70Ser) and M8(HisB57Ser, HisB70Ser,
MetA165Ser). The experimental kinetic parameters, i.e., Vmax

and KM, for wild-type and all eight mutants are given by
Pollegioni et al. [19] and Golden et al. [20]. The eight mutants
were selected because their mutation sites are in direct inter-
action range with the substrate and the activities of these
mutants are different from that of wild type N176, the specific
positions of the mutation sites are shown in supporting infor-
mation Fig. S5.

Molecular dynamics simulation of active-site-transition-state
complex

The dynamic behaviors of the active-site-transition-state com-
plex for N176 and its eight mutants were investigated by MD
simulations, which were implemented by running
GROMACS 4.5.5 [21] using the GROMOS 96 force field
on a computer-cluster with 208 cores. The topologies of N176

and its eight mutants were generated by GROMACS auto-
matically. While the topologies of the small molecule, i.e.,
CPC, were prepared using the online PRODRG sever [22],
and the atom types and bond parameters of CPC were built to
be consistent with the definitions of the GROMOS 96 force
field. However, the settings of the charge groups and group
charges of CPC generated by PRODRG are different from
those of the same functional groups present in the
GROMOS96 43A1 parameter library. To overcome this dis-
crepancy, the charge groups and group charges of CPC were
modified to be consistent with those in the GROMOS 96
parameter library, which are shown in Fig. S1 [23]. The
calculated protein-TS complex structure was immersed in a
dodecahedral box whose size was determined by setting the
distance between the solute and box to be 10 Å, and the box
was filled by the addition of up to 23,000 explicit water
molecules represented by a simple point charge model.
Subsequently, the whole system was neutralized by ex-
plicit counter ions.

The MD simulation process was initiated by a systematic
energy minimization (EM) for all atoms in the system. A
solvent equilibrium process was then run, which was com-
posed of seven rounds of position-restrained (PR) simulations
prior to the system being subjected to MD simulations under
constant pressure and temperature periodic-boundary condi-
tions. Specifically, the EM was conducted using the steepest
descent minimization algorithm to reduce excessively large
forces between atoms to adjust the randomly generated
starting configurations of water molecules and counter ions.
The PR simulations were run in a six-step (NVT1–NVT6)
heating process at 50, 100, 150, 200, 250 and 300 K, under
constant volume periodic boundary conditions, and each NVT
step was conducted for 50 ps with a time-step of 1 fs. This was
followed by an equilibrium process (named NPT step) at
constant temperature 300 K and constant pressure 1 bar for
2 ns with a time-step of 2 fs, to avoid drastic rearrangements of
the protein-TS complex structure caused by not fully equili-
brated solvent [10], where heavy atoms of the protein-TS
complex were harmonically restrained to their starting posi-
tions. The temperature was controlled using a modified
Berendsen thermostat with velocity rescaling (v-rescale)
[24], and the pressure was maintained by Parrinello-Rahman
coupling [25] in the NPT step. In both PR and MD simula-
tions, the LINCS algorithm [26] was used to impose con-
straints on bonds and angles of the protein-TS complex, and

Fig. 1 Reaction scheme
catalyzed by N176. CPC
Cephalosporin C, CA
cephalosporin acylase, 7-ACA 7-
aminocephalosporanic acid

Fig. 2 Catalytic geometrical constraints for reaction catalyzed by CA.
Dashed lines Five catalytical hydrogen bonds ( HB1–HB5)
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the Particle-Mesh-Ewald [27, 28] method was used to model
long-range electrostatic effects, while the differential equa-
tions of motion were integrated by a leap-frog algorithm
[29]. A 20 ns MD simulation was run for each system. In
the MD simulations, geometries and velocities were saved
every 1,000 steps (1 ps, step size = 1 fs), which generated a
total of 20,000 frames for each run. Post-simulation data
extraction and analysis were performed using the GROMACS
analyzing tools, and DiscoveryStudio2.1 was used to observe
geometries visually.

Molecular docking between enzyme and substrate

The molecular docking process of substrate CPC into the
active site of CA was implemented using the LigandFit pro-
tocol in DiscoveryStudio2.1, which is a fast and accurate
docking tool based on shape comparison between ligand and
the active site. All candidate site regions for docking were
found by a cavity detection algorithm in LigandFit and the site
region in the vicinity of the catalytic residues, i.e., SerB1,
HisB23, HisB70 and AsnB242, and the key binding residues,
i.e., ArgB24, TyrB32, HisB57 and HisB178, were selected as
the initial site for docking. This site was further edited by
contracting and expanding using the tools of LigandFit and a
final manual modification. In the docking process the
Dreiding force field was used to calculate the energy grid
where the Gasteiger charging method was employed for de-
termining charges on the protein and the ligand. Diverse CPC
conformations were randomly generated using a Monte Carlo
algorithm based on the flexible torsion angles of CPC. After
initial alignment of the ligand in the active site the rigid body
pose was minimized by running up to 1,000 SD iterations and
BFGS iterations until the energy of the conformation reached
a local minimum. Several rounds of docking were always run
for each mutant of CA and each round generated 20 poses.
Before the poses were saved clustering analysis was per-
formed with a 1.0-Å RMS threshold. After docking the pose
was further minimized using Smart Minimizer as the optimi-
zation tool with 0.001 gradient tolerance and CHARMm as
the force field. Finally, the produced poses were filtered using
three geometric criteria: (1) the distance between the OG atom
of SerB1 and the C15 atom of CPC should be no more than
3.1 Å, which is the sum of van der Waals radius of atom O
(1.4 Å) and that of atom C (1.7 Å) [30]. (2) The side chain of
CPC should lie in the interior, which means that the distances
between the side chain of CPC and the key binding residues,
i.e., ArgB24, TyrB32, HisB57 and HisB178, should be less
than that between the cepham ring and those residues. (3) The
distance between the O16 atom of CPC and the N atom of
HisB70 should be less than 4.2 Å, which is the upper limit of
the distance between donor and acceptor for a weak hydrogen
bond [31]. The filtered poses were evaluated using consensus
scoring based on seven scoring functions, i.e., LigScore1,

LigScore2, PLP1, PLP2, Jain, PMF, and DOCK SCORE,
and the favorable pose was identified as the one with the top
consensus score among all filtered poses. The binding energy
between CPC and the enzyme active site was scored based on
the output pose using LigScore2 [32], which is an empirical
scoring function that estimates the free energy of binding. The
LigScore2 function contains three contributions that describe
the van der Waals interaction, the electrostatic attraction be-
tween ligand and protein, and the desolvation penalty attrib-
uted to the binding of polar ligand atoms to the protein and
vice versa. The scored binding energy was then converted
into the dissociation constant (Ks) of the enzyme–sub-
strate complex.

Results and discussion

Molecular docking results between enzyme N176
and substrate CPC

The enzyme–substrate complex structures between CPC and
N176, as well as its eight mutants were obtained by LigandFit,
and the calculated Ks values between the enzyme and sub-
strate based on the binding energy, which were scored by
LigScore2, and the experimentally measured kinetic parame-
ter Km are shown in Fig. 3. The specific data are presented in
the Supporting Information Table S3. Figure 3 shows that
most of the calculatedKs values are consistent with the kinetic

Fig. 3 Plot of experimental Km against calculated Ks for wild type N176
and its eight mutants with CPC as the substrate. WT(wild type N176),
M1(HisB57Asn), M2(HisB57Phe), M3(HisB57Ser), M4(HisB57Thr),
M5(HisB70Ser), M6(HisB70Tyr), M7(HisB57Ser, HisB70Ser), and
M8(HisB57Ser, HisB70Ser, MetA165Ser)
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parameter Km. According to the kinetic mechanism of the
serine protease reaction [33], the acylation process is always
the rate-limiting step for amide hydrolysis when compared
with the deacylation process, this implies k3 >>k2, as that
shown in Fig. 12 of Hedstrom [33]. The CA fromN176 and its
mutants are poor catalysts of the CPC hydrolytic reaction.
This indicates that the kinetics of CPC hydrolysis is
reaction-controlled instead of diffusion-controlled, which im-
plies k−1 >>k2. Therefore, the Michaelis-Menten parameter
Km can be approximated using the dissociation constant Ks

between CPC and N176 or its mutants, respectively, and this
approximation further implies that the kinetics of N176 and its
mutants abide by the catalytic mechanism of serine proteases
and that the acylation process is the rate-limiting step for the
CPC hydrolytic reaction. This conclusion showed that de-
creasing activation energy of the acylation process significant-
ly promotes the catalytic efficiency of CPC acylase. It should
be noted that the calculated Ks of M5 deviated from the
experimental Km greatly, this was led by the defects of the
scoring function LigScore for the binding energy between the
protein and ligand. The binding pose between CPC and active
site of M5 is shown in Fig. S2, and this figure implies that no
hydrogen bond is formed between atom ND1 of HisB57 and
atom O1 of CPC since the donor-hydrogen-acceptor angle is
acute. But the distance between donor and acceptor is 2.82 Å;
therefore, this hydrogen bond was mistakenly included in the
scoring function due to the surface descriptor calculation
method used by LigandFit. Moreover, the positive amino
group of CPC is oriented towards the positive guanidine group
of ArgB24 and the distance between N15 atom of CPC and
the NH1 atom of ArgB24 is only 4.39 Å. Such an arrangement
would produce strong long-range electrostatic repulsions
physically. But, the long-range electrostatic interaction cannot
be considered in the scoring function of LigandFit due to the
surface descriptor calculation method. As a result, these two
miscalculations led to a lower calculated Ks value for M5.

Structure validation of the MD simulations

The specific MD protocols introduced in Materials and
methods , such as the choice of force field, settings of the
force field parameters and the water molecule models, were
tested by the structural differences before and after simula-
tions. The MD simulations were carried out on the crystal
structures of N176 (PDB ID: 4HSR) in the absence of the
ligand. The overlay of the N176 structure after a 20 ns MD
simulation and that of the crystal is presented in Fig. 4, and the
geometries of the active site residues were maintained
throughout the 20 ns MD simulation. The backbone geome-
tries show a root-mean-standard deviation (RMSD) from
those of the crystal structure of 1.16 Å, whereas the side chain
RMSD was 2.03 Å. It should be noted that SerB1 is the N-
terminal residue of the B-Chain and AsnB242 lies on a loop,

and that these two residues deviate largely from their crystal
positions shown in Fig. 4. The RMSD of the backbone geom-
etries of the active site regardless of these two flexible residues
reduces greatly, and is ≈ 0.57 Å; however, the RMSD of the
side chain geometries does not change very much. Therefore,
we can say that the MD simulations can recover the crystal
structure of N176 and will behave equally well on the active-
site-TS complex structure calculated by PRODA. Moreover,
prolonged, i.e., 40 ns, MD simulations were run for the active-
site-TS complex structures of wild-type N176 and its double
mutant M7; the RMSD figures of main chains and side chains
are shown in supporting information Fig. S3. These figures
imply that the simulation is stable at 20 ns.

MD simulation results for hydrogen bonds within the catalytic
sites

Transition-state theory states that enzymes accelerate reac-
tions because they reduce the activation free energies of the
corresponding reactions by stabilizing the transition state of
the reacting system. The transition state or the tetrahedral
intermediate of CPC at the active site of CA is stabilized by
a covalent bond formed between the OG atom of SerB1 and
the C15 atom of CPC, as well as five hydrogen bonds. The
backbone N atom of HisB70 and the side chain atom ND2 of
AsnB242 comprise the oxyanion hole of the partial positive
charge that activates the carbonyl of the amide and stabilizes
the negatively charged O16 atom of CPC; two hydrogen
bonds hold the O16 atom of CPC between these two nitrogen
atoms. The third hydrogen bond formed between the N atom

Fig. 4 Overlay of representative molecular dynamics (MD) geometry
and crystal structure for wild type N176. Grey Carbon atoms in crystal
structure, brown carbon atoms in MD geometry. Atoms: Red Oxygen,
cyan nitrogen, white hydrogen
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of HisB23 and the OG atom of SerB1 is maintained during the
reaction path, which helps in accurately positioning the latter
atom for nucleophilic attack. The other two hydrogen bonds
are formed between the N atom of SerB1 and the ND1 atom of
HisB23 and the OD1 atom of AsnB242. These two hydrogen
bonds facilitate the terminal amino group to abstract the
proton from the hydroxyl group of SerB1 and enhance its
ability for nucleophilic attack. The category criteria for cali-
brating the hydrogen bonds quantitatively were adopted from
[31], and the specific parameters are presented in Fig. 5.
Table 1 shows that at least three out of the five hydrogen
bonds at catalytic sites are maintained through the 20 ns MD
simulation, although some hydrogen bonds lie in the “weak”
categories. These results are consistent with the conclusion
given by Kiss et al. [10] that MD simulations are robust
enough to distinguish between active and inactive designs,
because all eight CA mutants and the wild-type show appre-
ciable activities towards CPC hydrolysis. Although we cannot
discriminate mutants with higher activities from those with
lower activities just from the number of hydrogen bonds
maintained through 20 nsMD simulation, mutants with higher
activities always have more hydrogen bonds, which lie in the
categories of “strong” and “moderate”. Figure 5 shows the
angle versus distance scatter plots of five hydrogen bonds at
catalytic sites for the wild-type CA and M7(HisB57Ser,
HisB70Ser) mutant, and the latter shows the highest catalytic
efficiency among all mutants, which is four times higher than
that of the wild-type. Figure 5a–e states that only a hydrogen
bond between ND2 atom of AsnB242 and O16 atom of CPC
lies in the moderate category of bond strength, and its densely
populated clusters of data points peak at 1.64 Å and 169.8°.
Meanwhile, the other four hydrogen bonds either lie mainly in
the weak categories of hydrogen bond strength, i.e., for hy-
drogen bonds between the N atom of HisB70 and the O16
atom of CPC, the N atom of HisB23 and the OG atom of
SerB1, the OD1 atom of AsnB242 and the N atom of SerB1,
respectively, or they have been lost completely during the
simulation time, i.e., for the hydrogen bond between the
ND1 atom of HisB23 and the N atom of SerB1. For the mutant
M7(HisB57Ser, HisB70Ser) shown in Fig. 5f–j, all hydrogen
bonds lie in the moderate categories of hydrogen bonding
strength and their densely populated data points peak at fa-
vorable distances and nearly linear angles, except for the one
between the ND1 atom of HisB23 and the N atom of SerB1,
which was partly lost during the simulation time. The two
mutations, i.e., HisB57Ser and HisB70Ser, of M7 are both
substitutions of large polar amino acids with smaller polar
amino acids; therefore the active pocket of N176 is expanded
to accommodate the larger substrate, i.e., CPC compared with
its natural substrate GL-7-ACA. The well maintained hydro-
gen bonds formed between the transition state of CPC and the
active site of M7 stabilize the tetrahedral intermediate and
reduce the activation free energies of the CPC hydrolytic

reaction. In fact, two single mutation mutants, i.e.,
M3(HisB57Ser) and M5(HisB70Ser), both have promoted
catalytic efficiencies compared with that of wild-type N176.
According to the data of Vmax and Km for wild-type, M3, M5
and M7 presented by Pollegioni et al. [19], we found that the
single mutation HisB70Ser increased Vmax from 0.7 to 2.2, but
also increased Km from 11 to 24.4. These changes imply that
the single mutation HisB70Ser facilitated transition state sta-
bilization, but jeopardized the binding between the CPC sub-
strate and the active site. In contrast, the single mutation
HisB57Ser promoted its catalytic efficiency by improving
binding between the CPC substrate and the active site, while
not destroying the binding between the CPC transition state
and the active site. It should be noted that the double mutation,
i.e., HisB57Ser and HisB70Ser, is synergistic, because the
kinetic parameter Vmax was promoted more than the Vmax

values determined by both single mutations and the Km was
just increased to less than the average of the Km of both single
mutations.

MD simulation results for hydrogen bonds at the binding sites

The side chain of CPC is polar and buried inside the
active pocket of N176, therefore an effective hydrogen
bonding network should be formed between CPC and the
polar or charged residues at binding sites in order to
compensate for the desolvation free energy penalty for
burying the polar groups. Such requirements have been
confirmed by our former statistical analysis for a series of
complex structures of enzymes or receptors with their
ligands [34, 35]. The polar binding residues in the vicinity
of functional groups of the CPC side chain are ArgB24,
TyrB32, HisB57 and HisB178, and up to ten hydrogen
bonds could be formed between the functional groups of
these polar residues and the carboxyl and amino groups of
CPC. Therefore, the average number of hydrogen bonds
formed between them during the MD simulation time is a
reliable measure with which to judge the binding between
the CPC transition state and the active site of CA, and the
hydrogen bonding numbers for wild type N176 and its
eight mutants with CPC are presented in Table 2. More-
over, the relationship between the average number of
hydrogen bonds of each mutant and its catalytic efficiency
is illustrated in Fig. 6, which is plotted as a quadrantal

�Fig 5a–j Angle versus distance scatter plots for hydrogen bonds at
catalytic sites. a–e Hydrogen bonds in wild type N176, f–j hydrogen
bonds in mutant M7(HisB57Ser, HisB70Ser). Data points are from
20 ns MD simulation, and the angle and distance distributions are
projected onto the axes. The hydrogen bond categories and the
explicit description of each hydrogen bond are outlined in the inset
of each figure. The green points show the distance and angle of
hydrogen bonds designed by PRODA
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diagram with the wild-type as the origin. Figure 6 shows
that mutants M7, M8 and M5, which lie in the first
quadrant and have higher catalytic efficiencies than that

of the wild type N176, formed more hydrogen bonds than
those of other mutants Moreover, mutants M6 and M4
lying in the third quadrant show less catalytic efficiencies
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and fewer hydrogen bonds when compared with that of
the wild type protein. A representative snapshot of the
MD frames for wild type N176 is shown in Fig. 7a, where
only three hydrogen bonds were formed between the polar
functional groups of CPC and the neighboring binding
residues. Three hydrogen bonds are formed between the
imidazole groups of HisB57 and HisB178 with the car-
boxyl group of the CPC side chain, and no hydrogen
bonds were observed for the guanidine group of ArgB24,
the hydroxyl group of TyrB32 and the amino group of the
CPC side chain. These polar groups, which are buried
inside the active pocket of N176, contribute to a signifi-
cant desolvation free energy penalty for the active-site-
CPC-TS complex and result in higher activation energy
for the target reaction. Such a poor hydrogen bonding
network comes from the larger volume of CPC than that
of GL-7-ACA, which is the natural substrate of N176.

Therefore, mutations that save space to accommodate
CPC and bridge enough hydrogen bonds with the carbox-
yl and amino groups of CPC will promote the catalytic
efficiency of CA towards CPC. Such mutations are em-
bodied in mutant M7, where the binding residue HisB57
was mutated to Ser, and the hydrogen bonding network
between polar residues of M7 and the CPC side chain is
reflected in the representative geometry of the MD frames
shown in Fig. 7b. Five hydrogen bonds were formed
between the carboxyl group of the CPC side chain and
the polar groups of the binding residues, i.e., the imidaz-
ole group of HisB178, the hydroxyl groups of TyrB32 and
SerB57 and the guanidine group of ArgB24. Only the
amino group of the CPC side chain does not form any
hydrogen bonds, which presents opportunities for further
improvement of the catalytic efficiency of N176-based
mutants towards CPC hydrolysis.

Fig. 5 (continued)
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MD simulation results for structural integrity of the active site

The RMSD values of the backbone and side chain geom-
etries of the active sites after the 20 ns MD simulations
and those in the PRODA design for wild type N176 and
its eight mutants are shown in Table 2, where the back-
bone and side chain geometries always show RMSD
values of ≈ 1.0 and 2.0 Å, respectively. Moreover, the
main-chain and side-chain RMSD figures for wild type
N176 and its eight mutants in 20 ns MD simulations are

also provided in the supporting information (Fig. S4) to
show the trend of the simulation process. Only mutant M6
deviates largely from the wild-type and other mutants
with backbone and side chain geometries that give RMSD
values of 1.70 and 2.41 Å, respectively. These values state
that the designed structures of the active sites were always
maintained during the simulation time. This implies that
PRODA has found the global minimum, or the near

Table 1 Peak values of hydrogen bond distances and angles in 20 ns MD simulations for wild type N176 and its eight mutants

Mutantsa HB1b HB2 HB3 HB4 HB5 Vmax/Km

dc θd d θ d θ d θ d θ

WT 3.06 113.9 1.64 169.8 3.17 82.7 5.52 119.8 2.73 136.1 0.06

M1 1.7 172.6 1.66 168.2 2.04 159.5 2.51 116.4 1.94 140.6 0.05

M2 1.75 170.4 1.68 167.6 2.75 114.5 4.4 146 1.93 142.9 0.01

M3 1.77 168 1.73 165 2.4 145.8 2.87 116.6 2.58 104.5 0.1

M4 1.79 166.6 1.69 162.8 2.77 122.6 4.16 147.8 2 140.9 0.04

M5 2.51 68.4 2.77 120.2 3.07 88.9 1.95 158.3 2.56 109.9 0.09

M6 4.42 138.5 1.66 167.6 2.79 95.4 4.25 137.6 2.9 116.6 0.04

M7 1.76 172.1 1.76 163.2 1.78 166.9 4.05 128 1.87 161.2 0.24

M8 1.82 166.6 1.74 162.9 1.84 162 2.16 111.1 1.88 151.1 0.15

aWT for wild typeN176, andM1(HisB57Asn), M2(HisB57Phe),M3(HisB57Ser), M4(HisB57Thr), M5(HisB70Ser),M6(HisB70Tyr), M7(HisB57Ser,
HisB70Ser), and M8(HisB57Ser, HisB70Ser, MetA165Ser)
b The descriptions of hydrogen bonds from HB1 to HB5 are shown in Fig. 2
c Distance of the hydrogen bond (Ångstroms)
d Angle of the hydrogen bond (degrees)

Table 2 MD simulation results for wild type N176 and its eight mutants

Mutantsa HB number b RMSD-BB/Å RMSD-SC/Å Vmax/Km
c

WT 3.7 1.00 2.11 0.06

M1 4.4 0.89 1.73 0.05

M2 3.9 1.15 1.87 0.01

M3 3.0 1.03 2.10 0.1

M4 2.8 1.16 1.91 0.04

M5 4.4 1.16 1.89 0.09

M6 3.4 1.70 2.41 0.04

M7 4.8 1.00 1.77 0.24

M8 4.1 0.83 1.39 0.15

aWT for wild type N176, and M1(HisB57Asn), M2(HisB57Phe),
M3(HisB57Ser), M4(HisB57Thr), M5(HisB70Ser), M6(HisB70Tyr),
M7(HisB57Ser, HisB70Ser), and M8(HisB57Ser, HisB70Ser,
MetA165Ser)
b Average number of the hydrogen bonds at the binding sites generated
from 20,000 frames for each 20 ns MD simulation
c The units of Vmax and Km are U/mg and mM, respectively.

Fig. 6 The quadrant plot of catalytic efficiency Vmax/Km against the
average hydrogen bond number for wild type N176 and its eight mutants,
whereWT is given as the origin point marked with a red star, and the four
quadrants are divided by dashed lines
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global minimum, on the potential free energy landscape
for each sequence. However, it is difficult to distinguish
mutants with high activities from those with low activities
only by examining RMSD values. The structural super-
imposition of the designed geometries by PRODA and
those after the 20 ns MD simulation for M7 is shown in
Fig. 8. Although the binding residues in the active pocket
did not move away from their geometries calculated by
the PRODA design, the conformation of the CPC side
chain has changed greatly. In fact, the carboxyl group of
the CPC side chain is orientated in the opposite direction
of the designed conformation. This orientation gives rise
to a hydrogen bond between the amino group of the CPC
side chain and its O16 atom, as well the carboxyl group of
the CPC side chain forming a stronger hydrogen bond
network. In fact, such a conformation change has been
observed in the 20 ns MD simulation for the wild type
N176 and all other mutants besides M7. The reason is that
the electrostatic environment of the N176 active pocket
has evolved to accommodate the side chain of GL-7-
ACA, which has just one negatively charged group, i.e.,
the carboxyl group, therefore the binding residues of
N176 are always positively charged, such as ArgB24, or
suitable for forming hydrogen bonds with the carboxyl
group of GL-7-ACA, such as TyrB32, HisB57 and
HisB178. In contrast, such an electrostatic environment
does not accommodate the side chain of CPC as well,
because the CPC side chain not only has the negatively
charged group, i.e., the carboxyl group, but also the
positively charged group, i.e., the amino group. Although
the mutation HisB57Ser has created enough space to
accommodate CPC, the electrostatic dispersion arising
from ArgB24 and HisB178 has pushed the amino group
of CPC to move close to the O16 atom of CPC and the

OG atom of SerB1 to form hydrogen bonds, which are
shown in Fig. 8. It should be noted that the O16 atom is
negatively charged in the transition state. Therefore, fur-
ther mutations that improve the electrostatic environment
of the CPC side chain might promote the catalytic efficien-
cy of CA towards CPC hydrolysis. The electrostatic attrac-
tion between the amino group and the O16 atom of CPC
belongs to a long-range coulombic interaction that was not
well characterized in the free energy model of PRODA.
This implies that the MD simulation could be used to
complement the PRODA design to reflect the dynamic
behaviors of the computationally designed enzymes.

Fig. 7a,b Hydrogen bonds between functional groups of the CPC side
chain and the binding residues of CA in representative MD geometry. a
Wild type N176, b M7(HisB57Ser, HisB70Ser). Green dashed lines

Hydrogen bonds (distances in Å). Atoms: red oxygen atoms, cyan nitro-
gen, grey carbon, white hydrogen

Fig. 8 Overlay of MD geometry in last frame and the structure designed
by PRODA for M7(HisB57Ser, HisB70Ser). Grey Carbon atoms in
designed structure, brown carbon atoms in MD geometry. Green dashed
lines hydrogen bonds (distances in Å). Atoms: red oxygen, cyan nitrogen,
grey carbon, white hydrogen
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Conclusions

Active designs of cephalosporin C acylase were analyzed
using MD simulations starting from the active-site-
transition-state complex structures of its catalyzed reaction.
The enzyme-substrate complex structures between substrate
cephalosporin C and the active site of the enzymes were
obtained using a molecular docking program, i.e., LigandFit,
and the docking results showed that the kinetic parameter Km

can be approximated by the dissociation constant between the
substrate cephalosporin C and acylase. This implies that the
rate-limiting step of the hydrolytic reaction of cephalosporin C
to 7-aminocephalosporanic acid is the acylation process. The
active-site-transition-state structures of the acylation process
were calculated using our computational enzyme design pro-
gram PRODA, i.e., the PROtein Design Algorithmic package,
and their dynamic trajectories were obtained using the MD
simulation program GROMACS with the GROMOS 96 force
field. The dynamics simulations results of the wild type
acylase N176 and its eight mutants with the cephalosporin C
transition state showed that the key catalytic geometrical
constraints between the catalytic residues and transition state
for all designs were maintained well during the 20 ns simula-
tion, but hydrogen bonding networks at the binding sites were
different for designs with different catalytic efficiencies. More
hydrogen bonds were formed between the binding residues
and the functional groups of cephalosporin C in the active
pocket for mutants with higher activities. For all mutants, the
starting calculated conformations of small molecule transition
states were changed greatly following completion of the dy-
namics simulation. These observations imply that novel de-
signs of acylase with higher catalytic efficiencies towards
cephalosporin C hydrolysis could be potentially discovered
by inserting mutations that improve the hydrogen bonding
networks in the active pocket to stabilize the transition states,
thereby reducing the activation barrier.
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