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ABSTRACT

Generally, social determinants or social factors have been studied in the context of non-
communicable diseases yet there is a critical need to elucidate the mechanisms behind social and
environmental factors which affect communicable disease spread in different spatio-temporal and
geographic contexts with the explicit purpose of informing policy, intervention and study design.
Social determinants of health frameworks are useful for infectious diseases but lack the ability to
translate said mechanisms onto processes that are specific to pathogen spread such as environmen-
tally mediated, vector-borne and direct transmission, transmission cycles and exposure routes in
a meaningful way. The focus of most transmission models which investigate social factors, have
been within long-term infections and far fewer studies exist of social factors which drive acute
infections such as influenza and enteric disease. Given the nature of health inequities within the
SARS-CoV-2 pandemic recently, there has been a renewed call for social variables to be incor-
porated into the study of infectious disease to generate a coherent framework. What is lacking
then is an overarching framework which can account for the unique ways social and environmental
factors impact systems of pathogenic spread across long-term and acute infections. The overarch-
ing goal of my research is to elucidate the mechanisms behind social and environmental factors
which affect pathogen spread in different spatio-temporal and geographic contexts to inform pol-
icy, intervention and study design to inform such a framework. Each aim within this thesis delves
into the heterogeneity of social and environmental mechanisms over time and across space. The
first paper emphasizes the role of changing social mechanisms over time to examine COVID-19
disparities. The second utilizes space as a dimension of variability and seeks to identify clusters
of infectious disease outcomes across two time periods. The third adds more complexity and asks
how social context and spatial context interact to increase infectious disease risk. Each of my pa-
pers also delves into the heterogeneity of social mechanisms across different geographic contexts.
My second paper looks at social mechanisms at the marco level within the low-middle income
country of India, my first paper looks at meso-level mechanisms in the state of Michigan within
the United States and the last paper looks at micro-level mechanisms within six communities in the
northwestern region of Ecuador. Overall, the exploration of social mechanisms over time, spatial
mechanisms over time and the interaction of social and spatial mechanisms across different geo-

graphic contexts advances the concept of a socially and environmentally informed framework for
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infectious disease systems.
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CHAPTER 1

Introduction

1.1 What are the social determinants of infectious disease risk?

Historically, the social determinants of health have been studied primarily with respect to Non-
Communicable Diseases (NCDs) (Figure 1.1), with comparatively little theoretical work focused
on the social patterning of infection outcomes. Nonetheless, infectious diseases are the leading
cause of death in low-income countries, with lower respiratory infections and diarrheal disease
topping the list [5]. In middle and high income countries, infectious disease continues to concen-
trate in lower resourced and vulnerable populations. The most common and accepted framework
for understanding infectious disease transmission is that of the dynamic Susceptible Infected Re-
covered (SIR) model and its variants. There is a long history of work on the social determinants of
certain infectious diseases within a dynamic framework such as with Sexually Transmitted Infec-
tions (STIs) and HIV/AIDS in particular [6-9], Tuberculosis (TB) [2, 10—12] and diarrheal diseases
[13, 14] such as cholera [15, 16]. What is lacking is a well articulated framework for the social de-
terminants of infectious disease which translates the great advances over the past several decades,
within the study of social determinants for NCDs [17], into the context of infection outcomes.
Given the nature of health inequities within the SARS-CoV-2 pandemic recently, there has been a
renewed call for social variables to be incorporated into the study of infectious disease to generate
a coherent framework [18-20]. In this dissertation, I pursue three research questions which seek
to advance our understanding of social factors in dynamic systems of infectious disease. In this in-
troduction I share two frameworks, related to COVID-19 and enteric disease respectively, to serve

as a basis for the research questions I pursue in Aims 1-3.
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1.1.1 Aim 1: Have the determinants of SARS-CoV-2 mortality disparity
changed over the course of the COVID-19 pandemic?

As of early 2023, SARS-CoV-2 infections have resulted in 761 million cases and 6.9 million deaths
since the beginning of the global pandemic [21]. Social factors have come to the fore as important
predictors of morbidity and mortality. The role of social factors in the spread of SARS-CoV-2
over time in 2020 in the state of Michigan within the United States (US) is pursued in Aim 1.
Primarily, we identify that privileged groups are able to practice Non-Pharmaceutical Interven-
tion (NPI)s early in the pandemic and therefore only experience high incidence once the clinical
management of COVID-19 has greatly improved. If Black residents of Michigan were afforded
the same privilege, 35 % of deaths within this group could have been avoided. In developing
this research question, it was important to have a working framework for how structural racism
could function within the spread of SARS-CoV-2. The advanced understanding of social factors in
disease transmission models within TB [2] research were helpful in generating a similar working
framework for SARS-CoV-2 (Figure 1.2). Parameters from Dr. Marisa Eisenberg’s mathematical
model for COVID-19 in Michigan [3] provided a skeleton for the dynamics portion of the frame-
work. The various elements of the framework (organized in Table 1.1) are based on an informal
literature review of structural racism, socio-economic status and COVID-19 conducted in 2021.

This conceptualization served as the basis for the research questions pursued in Aim 1 (Chapter 3).

1.1.2 Aims 2: Identifying population-level trends for public health planning

Collecting infectious disease surveillance data in low-middle income countries (LMICs) can be
especially difficult given resource constraints, yet high levels of morbidity and mortality are con-
centrated within the large proportion of impoverished population within such countries. While,
population-level data is difficult to collect, most data sets utilize cluster sampling processes to
estimate infectious disease parameters within a nation or state but often these estimates lack the
granularity to make decisions at the local level. Census data allows us to study population-level
processes without such estimation and modeling. The difficulty of census data although is the
limited set of questions most governments ask of their populations. One set of questions which
give us insight into infectious disease processes are those related to disability. Disability, espe-
cially in LMICs are often driven by infectious disease processes and details related to the type of
disability provide insight into which pathogens might be affecting large portions of the population.
In this paper we utilize a socially and environmentally informed framework of infectious disease
to advance a way of analysing infectious disease data in resource constrained settings. We apply
spatial analysis approaches to census data on disability across two data collection waves to iden-

tify clusters of certain disability types, such as hearing and sight impairment, which are related to
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Figure 1.2: Adaptation of Pedrazzoli et al. 2017 [2] to the SARS-CoV-2 pandemic utilizing pa-
rameters from Dr. Marisa Eisenberg’s [3] mathematical model for COVID-19 in Michigan. This
framework illustrates the upstream, downstream and transmission dynamics from a social determi-
nants perspective. The factors within this framework are based on a literature review of structural
racism, socio-economic factors and Coronavirus Disease 2019 (COVID-19) in 2021.



Type Determinant

- Racism within social, economic and political systems
- Migration, community patterns and travel

- Economic, social and environmental policies

- Health system access

- Food system access

- Employment policies

- Transportation system access

- Poverty/low socio-economic status

- Active cases in immediate community

Downstream - Cases at place of employment or commuting locations
Environmental - Tobacco smoke, air pollution

- Crowding in household

- Pre-existing conditions

Upstream

Downstream o .
. - Social distancing
Behavioral .
- Mask wearing
- Age
Downstream £
Genetic - Sex
- Genetic factors leading to co-morbid conditions
Transmission - Impaired immune defense
Recovery - High level contact with infectious droplets
Dynamics - Access to healthcare (including testing)

Table 1.1: Types of social determinants within a structural racism framework for COVID-19. This
list was generated after a literature review of publications on COVID-19 and social determinants
in 2021.



congenital and post-natal diseases. The identification of statistically significant clusters allow us

to inform targeted prevention and programming in low-resource settings.

1.1.3 Aims 3: Addressing key measurement issues in the social determinants

of acute infection risk

Respiratory illness and diarrheal disease are the top two leading causes of death among children
worldwide [1]. Enteric disease and respiratory illness is primarily thought to be caused by envi-
ronmental and social factors [4, 22-25]. An examination of the role of social factors—as measured
by geographic and social network variables—in the spread of enteric disease is pursued in Aim 2.
We ask the question of whether spatial density (household geographic closeness) and social den-
sity (number of contacts) interact to create multiplicative and/or additive interaction. This research
helps bring together the environmental, behavioral and social factors related to disease spread and
seeks to advance a more coherent understanding of their interplay at the individual level.

To characterize the social context of enteric disease spread (as an example) we conducted an
informal literature search in PubMed of MeSH terms to determine published articles on “socioeco-
nomic factors” and “dysentery” and located 121 results. None of these articles had mathematical
models and all of them used empirical data to draw conclusions about socioeconomic factors and
their relationship to various outcomes related to diarrheal disease. From a synthesis of this liter-
ature we were able to generate a list of factors which were used in regression models (they are
highlighted in Table 1.2 below). For example, the role of community social connectivity [23],
poverty in the U.S [26, 27] and governmental revenue [28] seem to be associated with enteric
disease outcomes.

We conceptualize how the social determinants of enteric disease could inform dynamic models
by generating a working framework, see Figure 1.3. This framework is adapted from Pedrazzoli et
al. 2017 and water sanitation and hygiene (WaSH) factors highlighted in Einsenberg et al. 2006.
This framework is not meant to be comprehensive but rather illustrates that social determinants
could plausibly play a role in disease transmission dynamics. It highlights the complex interplay
between social, behavioral and environmental factors which may cause diarrheal disease in a child
or adult. Overall this conceptual model illustrates dynamics which could be taken into account
when considering a mathematical model of diarrheal disease which includes social factors. This
framework also highlights which factors may be relevant for empirical studies of enteric disease
and social determinants or Randomized Control Trials (RCTs) of WaSH. This conceptualization

served as the basis for the research questions pursued in Aim 2 (Chapter 5)).



Type Determinant

- Economic, social and environmental policy which disadvantages the poor
- Globalization causing unfair labor practices

- Migration patterns for employment

- Health system access

Upstream . .
p - Human and social capital
- Community social connectivity
- Transportation system access
- Poverty/low socio-economic status
- High levels of environmental pathogens
Downstream . . .
. - Active cases in community
Environmental . : o
- Community hygiene and sanitation
- Inappropriate health seekin
Downstream PPIOP eexing . .
. - Within household sanitation and hygiene behavior
Behavioral .
- Breastfeeding
. - Impaired immune defense
Transmission . o .
- High level contact with infectious droplets
Recovery
. - Management of symptoms
Dynamics

- Access to healthcare

Table 1.2: Types of social determinants within an enteric disease framework with social determi-
nants of health. This list was generated after a literature review of publications on enteric disease
and social determinants in 2021.
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Figure 1.3: This framework is an adaption of Pedrazzoli et al. 2017 [2] to the enteric disease
context with some factors from Eisenberge et al. 2006 [4]. This framework illustrates the upstream,
downstream and transmission dynamics from a social determinants perspective. The parameters
for this framework are based on a literature review of socio-economic factors and enteric diseases
outcomes in 2021.



1.2 Conclusion

In conclusion, social determinants of infectious disease are complex and specific to a disease con-
text. Further, they are defined by the particular social, economic, political and historical realities
of a population under study. It has become clear although—especially after the SARS-CoV-2
pandemic—that social factors are not merely relegated to traditionally social infectious diseases
but rather play a vital role in our understanding of transmission dynamics for many, if not all,
communicable disease. Yet, the lack of an overarching framework for social determinants of in-
fectious disease makes it challenging to synthesize literature around this topic. Conceptualizing
social determinants of health within a disease-specific dynamic framework is therefore helpful in
the formation of research questions. Though various forms of data have been introduced in the
recent past to help answer questions around social factors and infectious disease, including de-
tailed demographic data, mobility data and geographic surveillance, conceptual models of how
social factors affect disease dynamics can prevent the inappropriate use of such data to advance
purely behavioral and cultural explanation of infectious disease disparities without the considera-
tion of structural and economic factors [20, 29]. In the following aims, I attempt to answer several

questions using these frameworks as the basis for data analysis and research question formation.



CHAPTER 2

Specific Aims

2.1 Introduction

The COVID-19 pandemic has underscored the urgent need to better understand how social pro-
cesses interact with the biology of infectious disease transmission to create the patterns of infec-
tion and mortality we see in the world. Although social and economic factors are understood to
impact (either positively or negatively) infection risk, the mechanisms by which these occur are
under-studied and therefore fail to properly inform randomized trial design, policy and program-
ming. My proposed dissertation is organized into three projects, outlined below. Each project
is focused on elucidating the mechanisms behind social factors which affect pathogen spread in

different social and geographic contexts.

2.2 Aim 1: Timing of infection was a key driver of race/ethnic
disparities in COVID-19 mortality during the pre-vaccine

period

Introduction Disparities in COVID-19 mortality rates are driven by inequalities in group-specific
incidence rates (IRs) and case fatality rates (CFRs), and their interaction. For emerging infections,
such as SARS-CoV-2, group-specific IRs and CFRs change on different timescales, and inequities
in these measures may reflect different social and medical mechanisms. To be useful tools for
public health surveillance and policy, analyses of changing mortality rate disparities must indepen-
dently address changes in IRs and CFRs. However, this is rarely done.

Objective In this analysis, we examine the separate contributions of disparities in the timing of
infection - reflecting differential participation in essential work and other infection risk factors - and

declining CFRs over time on mortality disparities by race/ethnicity in the U.S. state of Michigan.
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Methods We used detailed case data to decompose race/ethnic group-specific mortality rates
into their age-specific incidence and CFR components during each of three periods from March-
December 2020.

Results We used these estimates in a counterfactual simulation model to estimate that 35%
(95% Credible Interval (Crl)=30%-40%) of Black resident deaths could have been prevented if
Black Michigan residents were infected at the same pace as White residents, resulting in a 67%
(95% Credible Interval (Crl)=61%-72%) reduction in the mortality rate gap between Black and
White Michigan residents during 2020.

Conclusion These results clearly illustrate why differential power to ‘wait out’ infection during
an infectious disease emergency — a function of structural racism - is a key, underappreciated,

driver of inequality in disease and death from emerging infections.

2.3 Aim 2: Spatio-temporal patterns of Disability in India:
2001-2011

Introduction Eighty percent of individuals with disability (IWD) live in the global South, and
India has one of the largest concentrations. The need to understand the spatial distribution of dis-
ability in a low- and middle-income country (LMIC) is twofold: (1) to identify potential sources of
environmental, social, and economic causes of disease, and (2) to characterize the socio-economic
and medical needs of IWD to inform treatment, programming, and policy. Objective Identify
spatial clustering of disability in India, as well as change in these patterns over the period from
2011-2011.

Methods We used the 2001 and 2011 Population Census of India and apply population weights
at the district-level to compare across years. Local indicators of spatial autocorrelation with cor-
rection for multiple testing allow for the identification of high prevalence clusters throughout the
country for each of the five categories of disability: speech, sight, hearing, mental (cognitive), and
movement (physical).

Results All types of disability are experienced heterogeneously across space in terms of both
current and increasing prevalence. We observed particularly large and growing clusters of speech
impairment in western-central India, and movement disability in eastern-central India.

Discussion Given the rapid urbanization and industrialization at the local level, temporal
changes in spatial patterns of disability at the district level should inform disability policy both
nationally and regionally in LMICs. We illustrate that there are noteworthy changes over time in
terms of where high prevalence disability clusters are located in India both for disability overall

and across specific types of disability.
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Conclusion The spatial heterogeneity of current and increasing disability prevalence in India
illustrates the need for further research into the identification of such large clusters of specific
disability types in other LMICs. Country-level identification of local clusters could help prioritize
funding and shape the agenda of disability research, programming, and policy at the national and

regional levels.

2.4 Aim 3: Do sociality and spatiality interact? Characteriz-
ing the joint impact of spatial proximity and social network
connectivity on diarrheal disease risks and intervention ef-

ficacy

Introduction Diseases that are spread from person-to-person and via environmental intermediaries
(such as enteric diseases) induce a shared geographic risk space between contacts. Within(LMICs,
especially those with lower population densities, distance remains a relevant measure of changing
environmental context.

Data/Methods Our analysis utilizes recently collected data from a long-standing sociometric
study of enteric disease outcomes in western Ecuador. Using both a contact network and core-
discussion network, we generate a metric of combined social and spatial density which we denote
as contact density. This measure serves as an interaction term of social and spatial density and
allows us to capture the additional infection risk when both exposures are present.

Results Social density and spatial density predict enteric disease outcomes and display inter-
action on the multiplicative and additive scales. These variables display effect modification by
community social structure (low density versus high density networks).

Discussion Our analysis illustrates that, in relative risk terms, individuals who live in dense
neighborhoods with their social contacts are at highest risk for disease low density social network
communities (peripheral communities). In absolute risk terms, our analysis shows that efforts to
reduce the effects of spatial density on enteric outcomes will see the most benefit among individuals
with fewer social contacts.

Conclusion Social and spatial environments interact to create risk and advancing our under-
standing of this interaction could lead us to improvements in the form of enteric disease morbidity

and mortality.
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CHAPTER 3

Timing of Infection was a Key Driver of Race/ethnic
Disparities in COVID-19 Mortality During the

Pre-vaccine Period

3.1 Introduction

A core principle of social epidemiology has been realized in the emergence of SARS-CoV-2 in the
United States and around the world. Transmission of a virus that is agnostic about who it might
infect has nevertheless been powerfully shaped by the social circumstances it travels within, re-
sulting in robust social inequalities in morbidity and mortality [30-32]. Lying beneath this general
principle is a more specific puzzle: exactly how did this social shaping of pandemic morbidity
and mortality occur [32]. In this analysis we show that disparities in SARS-CoV-2 outcomes can
only be properly understood as the confluence of two critical factors: 1) when in the epidemic
members of marginalized populations were at the greatest risk of infection and, 2) how likely were
individuals belonging to these groups to die when these infections occurred?

We use detailed individual-level incidence and mortality data from the state of Michigan to es-
timate age- and race/ethnic group-specific per-capita COVID-19 incidence and case-fatality rates1
over three critical periods during 2020. The core proposition of this analysis is that gaps in mor-
tality between race/ethnic groups during the pre-vaccination period of the COVID-19 pandemic
were driven by differences in infection risk early in the pandemic, when life-saving knowledge
was sparse and population-wide case-fatality rates were high. These differences in exposure re-
flect inequalities in social power often [33], though by no means exclusively [29], reflected along
lines of race and ethnicity.

Michigan has a large and diverse population and is among the most racially segregated and
economically unequal states in the U.S. [34] Michigan also implemented one of the strongest non-
pharmaceutical intervention (NPI) policies early in the pandemic, reaching an Oxford Stringency
Index (OSI) score of 50, second only in the U.S. to Delaware [35]. It also had a nearly seven-
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fold disparity in all-cause excess mortality for Blacks vs. White in 2020, the largest recorded in
the U.S [36]. This combination of a comprehensive approach to limiting community spread in a
context characterized by stark race/ethnic inequality make Michigan an ideal context in which to
investigate the mechanisms by which structural racism contributes to unequal outcomes even under
a ‘best case’ scenario of public health response.

Most analyses of racial/ethnic disparities in COVID-19 mortality have been cross-sectional,
focusing on a single period in which policy and medical responses to SARS-CoV-2 infection re-
mained relatively consistent [37] or cumulative infection and death from March 2020 onward [38].
They often draw on the differential role of inequity within stages of susceptibility, exposure and
recovery [39, 40]. Some of these analyses show that large racial and socioeconomic disparities in
COVID-19 mortality observed in the U.S. are attributable to differential rates of infection, while
inequity in case-fatality rates (CFRs) stemming from comorbidities, such as obesity or heart dis-
ease and differential access to care, played an important but less pivotal role [37, 41, 42]. These
findings ran counter to early scientific and media speculation that inequities in mortality were
likely attributable to disparities in comorbidities and care that increased the risk of death following
SARS-CoV-2 infection [43].

Longitudinal analyses have shed some light on the dynamics of inequity over the course of the
pandemic: Van Dyke et al. [44] analyzed national data covering the period from Summer 2020 to
Winter 2021. They determined that the declining relative risk for young minoritized populations
(<25 years), compared to same-aged White populations, primarily reflected growth in the rate
of infection and death among White populations rather than sharp decreases among minoritized
populations. This suggests that shrinking disparities throughout 2020 resulted from worsening
pandemic conditions rather than reflecting positive policy outcomes. Aschmann et al. [45] recently
analyzed all-cause mortality by racial-ethnic group over the past four years and observed that
Indigenous groups continue to experience levels of disparity higher than their pre-pandemic levels.
Their findings highlight the importance of longitudinal analyses when examining and identifying
disparities caused by systems of exposure or structural causes [46].

In this paper, we add to the understanding of the dynamics of inequity in infection and mortality
by examining changes in incidence and mortality across three periods during the pre-vaccine phase
of the COVID-19 pandemic in 2020. These represent distinct phases of the early pandemic and the
policy response to COVID-19 in Michigan:

Period 1: Emergence of SARS-CoV-2 and the most-restrictive lockdown interval (March—June
2020) with an OSI of 73 out of 100. This period includes sparse personal protective equipment
(PPE), low supply of ventilators and pulse oximeters, minimal medical knowledge about treatment
protocols and marginalized groups more likely to be in essential work categories — meat packing,

grocery etc. [47-49] The pandemic hit marginalized communities hard without protection against
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death, while other non-marginalized communities benefited from stay-at-home orders for most
office-based workplaces [48—52]. For example, an analysis of essential frontline workers in Census
data and a US Department of Labor dataset called the Occupational Information Network revealed
that over 70% of male workers from one of the following minoritized groups: Latino, Black, Native
American, and Pacific Islander were considered frontline [51].

Period 2: Summer of moderately eased contact restrictions accompanied by a suite of NPIs
including indoor mask mandates and social distancing policies [53] reflecting a 27% decrease in the
OSI measure. This period included incidence spread to other non-marginalized groups, protective
gear becoming more available, medical knowledge growing and ventilator supply increased to
prevent death in all groups.

Period 3: Further easing of restrictions in the fall (September—December 2020) reflecting a
further 21% decrease in the OSI measure. This period includes the availability of the first FDA
approved antiviral drug Veklury (remdesivir) for widespread use [54], lifting of nearly all stay-at-
home orders for most office-based workplaces, widespread high community transmission within
all groups, increased availability of PPE to the general population along with limited vaccination
roll-out to high-risk populations beginning in December 2020.

Our goals in this analysis are twofold: 1) characterize disparities in incidence and mortality
during each of these periods and 2) estimate the impact of each period on overall patterns of
mortality inequality throughout the period from March-December 2020.

Incidence and mortality data. SARS-CoV-2 infection and mortality data were obtained from
the Michigan Disease Surveillance System (MDSS) maintained by the Michigan Department of
Health and Human Services (MDHHS). The current analysis includes all probable and polymerase
chain reaction (PCR)-confirmed SARS-CoV-2 cases recorded in MDSS from March 8-December
31, 2020. Probable cases were determined using the Michigan State and Local Public Health
COVID-19 Standard Operating Procedures [55]. Deaths were attributed when COVID-19 was
the primary or secondary cause of death on an individual’s death certificate. Further information
about these data can be found in [37]. For all cases, we obtained the date of case identification,
age, sex, and racial/ethnic category. This dataset consists of 508,648 probable and PCR-confirmed
COVID-19 cases and 13,078 COVID-19 deaths. We binned case data into 10-year age groups,
with individuals 80+ in one group. Race of cases was categorized to match census population
groups including Black/African American, Asian/Pacific Islander, Native American, White, and
Other (this comprised the census category of “Other” and those who identified as two or more
racial/ethnic categories). In Michigan, race (e.g. African-American, Caucasian) and ethnicity (e.g.
Latino) were classified separately, like the US Census approach to data collection. In this analysis
Latino ethnicity was categorized as any race with Latino ethnicity, therefore this group includes

Black/African American Latinos, White Latinos, etc. and those individuals were not included in
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their primary race category. Our race and ethnicity groups are therefore mutually exclusive. Please
see Appendix Table A.2 for the distribution of races within Latino ethnicity. Therefore, we use
the term race/ethnicity to indicate that we are observing differences in terms of race categories and
the Latino ethnicity category. We obtained statewide estimates of population size stratified by age,
sex, and race/ethnicity using data from the 2018 American Community Survey (ACS) [56].

When comparing risks, we used the White population as the reference group and look at con-
trasts for each of the racial-ethnic categories identified above for which Census population data
were available. Although Michigan has a large Arab-American population, we were unable to in-
clude this group in our analyses, the U.S. Census does not recognize Arab populations as a separate

race/ethnicity and they are categorized as White [57].

3.2 Methodology

SARS-CoV-2 infection and mortality data were obtained from the Michigan Disease Surveil-
lance System (MDSS)) maintained by the Michigan Department of Health and Human Services
(MDHHS). The current analysis includes all COVID-19 cases recorded in MDSS from March
8-December 31, 2020. For all cases, we obtained the date of case identification, age, sex and
racial/ethnic category. This data-set consists of 508,648 probable and Polymerase Chain Reac-
tion (PCR)-confirmed COVID-19 cases and 13,078 deaths attributed to COVID-19. Probable cases
were determined using the Michigan State and Local Public Health COVID-19 Standard Operating
Procedures. [58]

We binned case data into 10-year age groups, with individuals 80+ in a single group.
Race/ethnicity of cases was categorized to match census population data for groups includ-
ing Black/African American, Latino, Asian or Pacific Islander, Native American, White, and
Other (this comprised the census category of “Other” and those who identified as two or more
racial/ethnic categories). We utilized 2018 American Community Survey (ACS) data from IPUMS
[56] to determine demographic counts based on age, sex and race/ethnicity in Michigan. For fur-
ther details on racial/ethnic categorization.

Our statistical analysis is focused on estimating age- and race/ethnic group-specific incidence
rate (IR)s (denoted as \) and corresponding case fatality ratio (CFR)s (denoted by p), which are the
composite parts of mortality rates (pA). Taking this two-step approach allows us to dis-aggregate
the relative contribution of the risk of infection versus the risk of death following infection to the
period-specific mortality rate for each group.

Incidence Rates For each time period (1)), we estimated per-capita rates of COVID-19 in each
age (7), sex (y) and racial/ethnic category (k), using a Poisson regression model with a population

offset term, log(n;;i,), where n;j, is the size of population in each ijk group within the 2018 ACS
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data-set. The model included several interaction terms to obtain the full spectrum of potential
heterogeneity in the outcome data including agex sex, sexx race and race x age. The observed
number of cases in each group are y;;; and the per-capita IR in each bin is denoted by \;;;,. We
utilized a direct standardization [59] approach to generate age- and sex-adjusted marginal results
in addition to age-specific IRs. This model included a weakly-informative log-Gaussian prior
distribution with a mean of zero and standard deviation of 0.1.

Case-fatality Ratios We used a binomial regression model to estimate age-specific CFRs for
each group in each time period. Our modeled outcome was the number of deaths (z;;;) as a function
of the total number of cases (y;51) in each age, sex and racial/ethnic stratum, with the CFR for each
group denoted as p;;i. Therefore, 2, ~ Binomial(yijk, pijk)-

Standardization We present raw and standardized IRs and CFRs in our results to highlight both
the aggregate burden of illness and death and to facilitate comparison between groups. IRs were
age- and sex-standardized J. Zelner et al. (2020) to reflect group-specific IRs under a scenario of
uniform age- and sex distributions across all race/ethnic groups. Standardized CFRs were weighted
to present a measure in which the proportion of cases contributed by each racial/ethnic group
during 2020 was held constant across time periods to facilitate comparison across epidemic phases
[60].

Alternate Infection Timeline Declines in incidence and mortality disparities over time have
been presented as indications of progress in addressing causes of disparate infection outcomes dur-
ing the COVID-19 pandemic [53]. While a narrowing of these gaps may reflect short-term success
in reducing inequity, it is critical that we not confuse these changes with substantive improvements
to the long-term, structural determinants of infection inequality [20]. During the COVID-19 pan-
demic, the ability to avoid, or at least delay, infection may have been a function of race/ethnic and
socioeconomic privilege, e.g. through the ability to work from home for a sustained period of time.
Findings from studies which observed disparity patterns in the first ten weeks of the pandemic
highlight this point. Low-income counties experienced much higher rates of infection in the first
few weeks of the pandemic compared to high-income counties throughout the US [61]. By April
2020, this relationship had inverted, and wealthier counties began experiencing higher incidence
than poor counties. This change coupled with declining CFR across the board over time may
conceal an underappreciated dimension of COVID-19 disparity that reflects structural inequalities
related to occupational inequality and residential segregation [29, 62, 63].

To assess whether and how much the privilege of waiting to acquire infection later in the pan-
demic affected disparities in mortality, we developed a counterfactual analysis in which the pacing
of infection of White residents was applied to all other racial/ethnic groups while maintaining the
overall volume and age/sex distribution of cases. We calculated the difference in the expected num-

ber of deaths (y) in each race/ethnic group (7) in the data versus under a counterfactual scenario
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(1), within a period (1), to estimate the proportion of deaths that could have been averted in each

race/ethnic group ((;) if all individuals experienced the same infection timeline, as follows:

Z?:I yéjk
Z;ll Yijk

Software Bayesian regression analyses were completed in R 4.0.5 using the rstanarm pack-

G=1-

age [64], and the tidybayes package [65] for post-processing of model results [65]. The analysis
pipeline was made reproducible using Snakemake [66].

Sensitivity to Missing Data Dropping cases with missing race/ethnicity information, as we did
in this analysis, may result in biased estimates if rates of missingness vary across racial-ethnic
categories [67]. The need for a sensitivity analysis was informed by a recent analysis of COVID-
19 case data that indicated that rates of missing race/ethnicity were in fact higher among African
Americans as compared to Whites in early 2020 [68]. To assess the risk that this bias could have
impacted both the quantitative and qualitative conclusions of our analysis, we conducted extensive
sensitivity analyses. Specifically, we generated numerous synthetic datasets in which race/ethnicity
data were dropped for African-Americans and Whites under 1) a baseline scenario of equal like-
lihood of missingness for both groups (Odds ratio [OR] = 1) as well as scenarios of 2) moderate
(OR=2) and 3) extreme (OR=3) differences in missingness for African-Americans as compared
to Whites. We also varied the baseline rate of missingness by race/ethnicity to ensure that the
impact of these group-specific rates of missingness was robust across different levels of overall
missingness. The results of this analysis show that neither the qualitative conclusions nor quanti-
tative results of our analysis are likely to be strongly impacted by non-differential missingness of
race/ethnicity data. For additional explanations and figures, please see the Supplement Section II:
Sensitivity Analysis (A.6-A.10).

3.3 Results

The MDSS dataset included 68,413, 64,377 and 375,858 probable and PCR-confirmed cases in the
first, second and third periods of 2020, respectively. In addition, 6,415, 874 and 5,789 deaths were
recorded during the first, second and third period, respectively. Across all three periods, 59,514
cases and 3,173 deaths were among those who identified as African-American or Black, 28,350
cases and 376 deaths were among those identified as Latino, 1,819 cases and 38 deaths were among
those identified as Native American or Alaskan Native, 7,392 cases and 134 deaths were among
those identified as Asian or Pacific Islander, 291,247 cases and 8,386 deaths were among those
identified as White and 20,051 cases and 265 deaths were individuals identified as belonging to

any other racial/ethnic group.

18



This corresponds to unstandardized race/ethnic group-specific COVID-19 mortality rates of
233/100K for Black residents, 75/100K for Latino residents, 82/100K for Native American or
Alaskan Native residents, 44/100K for Asian or Pacific Islander residents, 112/100K for White
residents and 103/100K for individuals identified as belonging to any other racial/ethnic group.
The case fatality rate (CFR) for all SARS-CoV-2 cases reported in Michigan during 2020 was 3

There were 100,275 cases and 706 deaths which did not have an identified racial/ethnic group,
which were dropped from subsequent analyses (see Figures A.6-A.10 and Table S11). Cases with
missing racial/ethnic group identification varied across periods with 9,564 in the first period, 7,639
in the second period and 83,072 in the third period. This reflects an unstandardized population
incidence rate of SARS-CoV-2 infection for all groups during the first period, 232/100K, 217/100K
in the second period and 1,277/100K 1in the third period.

Change in incidence disparities over time. During the first period, age- and sex-standardized
analyses show that Black and Latino residents experienced 5.0 (95% Crl = 4.9, 5.1) times and
3.5 (95% Crl = 3.4, 3.6) times the incidence of Whites, respectively (Figure A.1). The values are
characterized as incidence rate ratios (IRRs) where the incidence rate of the “exposed” group (in
this case those exposed to racism) is compared to that of the “unexposed” group. By the second
and third period, most of these differences in incidence were at or near zero.

However, the narrowing of IRRs does not reflect a monotonic decline in incidence. In fact,
there is a clear temporal shift in age- and sex-standardized incidence within Black residents from
1,789/100K (95% Crl: 1,764-1,812) in the first period to 497/100K (95% Crl: 486-509) in the
second period before rebounding to 2,334/100K (95% Crl: 2,308-2,359) in the last period (Figure
2). A closer look at age-specific incidence in Period 3 among Black residents reveals that there
was a marked increase in infection among working age persons—as high as 2,929/100K (95%
Crl: 2,849-3,010) among 40-50-year-olds and 3,827/100K (95% Crl: 3,733-3,925) cases among
those 30-40-years-old. In contrast, Latino residents experienced a lower age- and sex-standardized
incidence of 1,261/100K (95% CrI: 1,223-1,301) that remained relatively constant during the first
two time periods, before increasing to 4,085/100K (95% Crl: 4,016-4,157) in the last period.
This dramatic increase was not isolated to working-age groups for Latino residents. White and
Asian or Islander resident incidence on the other hand was minimal in the first and second period
(see Supplement Figure A.1 for age-specific incidence rates in all racial-ethnic categories). White
residents experienced incidence levels closer to their Black counterparts during the last period for
an age- and sex-standardized rate of 2,946 cases per 100,000 people (95% Crl: 2,934-2,958)

Change in case-fatality rates over time. Age-specific case-fatality rates (CFRs) for all
racial/ethnic groups fell sharply after an initial period of high SARS-CoV-2 case-fatality for all
groups in the first period (Figure A.3). For example, 50-60-year-old Black residents experienced
CFRs of 7.8% (95% Crl = 7.0%-8.7%) in the first period, which decreased to 2.0% (95% Crl =
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1.23%-3.0%) and 1.23% (95% Crl = 0.92%-1.58%) in the second and third period, respectively
(Figure A.4).

Disparities in the risk of death from COVID-19, as measured by case-fatality risk ratios
(CFRRs) were small but did change over time (Figure A.2). For example, Black residents ex-
perienced CFRs 1.5, (95% Crl = 1.3-1.8), 1.3 (95% Crl = 1.3-1.4), and 1.5 (95% CrI = 1.3-1.6)
times higher than their White counterparts in the first, second and third periods, respectively. How-
ever, marked age-specific case-fatality disparities by race/ethnicity were observed across all peri-
ods among those 30 and older (see Supplement Figure A.4). For Latino residents, change over
time in CFRRs relative to Whites was more dramatic (Figure A.2).

Impact of infection timing on race/ethnic group-specific mortality. The infection trajectory
for Black and Latino Michigan residents was different from that of White populations, with these
differences in timing most pronounced between Black and White residents (Figure 4). 36.7% of
cases among Black residents occurred during the first period, 11.3% in the second period and
52.1% in the third period. By contrast, only 9.6% of cases among Whites occurred during the first
period, 13.9% in the second period, with the large majority of 76.5% occurring in the third period
when CFRs were at their lowest level.

In our counterfactual simulation analysis, we found that 35% (95% Crl= 30%-40%) of all Black
resident deaths could have been avoided under a scenario in which Black residents experienced
infection at the same pace as Whites. This corresponds to a 67% (95% Crl=61%-73%) reduction
in the difference in per-capita mortality rates between Black and White residents in 2020. Our
results also suggest that a portion of Latino deaths (9%; 95% Crl= -5%-21%) could have been
prevented as well, although the posterior Crl span the null value of 0. See Supplement Figure A.5
for a more detailed illustration of changes in underlying rates under the observed and counterfactual
scenarios.

Sensitivity Analysis. Our sensitivity analysis showed that IRR and CFR estimates were robust
to differential rates of missing observations by race/ethnicity. Please see the Sensitivity to Missing
Data Analysis section in the Data Materials Section and Section II of the Appendix for additional

information.

3.4 Discussion

Our results indicate that although the ratio of COVID-19 incidence for non-White compared to
White populations declined precipitously over the course of 2020, a narrow focus on such within-
pandemic improvements may mask deeper structural issues that will re-emerge in future epi-
demics. Our finding that the timing of infection strongly influenced the risk of death and mag-

nitude of disparity between Black and White Michiganders during 2020 highlights a critical but
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Figure 3.1: Incidence and mortality rate of COVID-19 by race/ethnicity among Michigan residents
by month in 2020. The left-side y-axis is on a scale from zero to 1.75 for the cases per 100K (in
black). The right-side y-axis is on a scale from zero to 0.25 for the deaths per 100K (in gray). The
x-axis shows the month of the year 2020.
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Figure 3.2: Age-specific incidence of COVID-19 by race/ethnicity among Michigan residents
over three periods during 2020. Each panel represents age-specific incidence of COVID-19 by
race/ethnic group (rows) for each of three time periods during the first year of the SARS-CoV-
2 pandemic (columns). Dashed lines in each panel represent the age-standardized incidence of
SARS-CoV-2 infection for each race/ethnic group during each time period . The vertical lines
around the points indicate the width of the 95% posterior credible interval (Crl) of the age-specific
incidence rate.

22



March-june July-September October-December

>de|g

Incidence Rate Ratio

ouneq

[0,10) ' [20.30)  [40.50)  [60,70)  >=80 [0,10)  [20,30) [40,50) [60,70) >=80 [0,10) = [20,30) [40,50) [60.70) >=80
Age

Figure 3.3: Age-specific incidence rate ratios (IRRs) of COVID-19 infection for Black and Latino
residents compared to White residents of Michigan over three periods in 2020. Each panel repre-
sents age-specific IRR of COVID-19 by race/ethnic group (rows) as compared to Whites, for each
of three time periods during the first year of the SARS-CoV-2 pandemic (columns). The dashed
line in each panel represents the age-standardized IRR for each race/ethnic group during each time
period during 2020. Dotted lines indicates an IRR of one and is provided as a reference for as-
sessing the magnitude of risk disparity between each race/ethnic group and White residents during
each time period. Vertical lines around each point indicate the width of the 95% posterior credible
interval (Crl) of the age-specific IRR.
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Figure 3.4: (Left) Proportion of deaths that could potentially have been averted if minoritized res-
idents experienced the same pacing of infection as White Michigan residents during 2020. (Right)
Proportion of disparity as measured by the mortality rate difference that could potentially have
been averted if moinoritized residents experienced the same pacing of infection as White residents
during the pre-vaccine period. The vertical lines around the points indicate the width of the 95%
posterior credible interval (Crl).
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under-recognized potential mechanism of socioeconomic and racial inequality in the COVID-19
pandemic: White Michigan residents appear to have been more likely than Black residents to be
able to marshal the resources necessary to delay exposure until the first period of greatest uncer-
tainty and highest mortality risk from SARS-CoV-2 was over. Differentials in economic and social
power, reflected for example by the large proportion of minoritized residents as compared to White
residents who work in frontline and often precarious jobs and the dynamics of racial residential
segregation, may explain these differentials in the ability to ‘wait out’ infection [48-52, 62].

In this analysis, we drew upon a detailed administrative dataset that included information on
the timing, age, and race/ethnicity of cases. However, it is important to highlight some potential
limitations when interpreting these results: First, a portion of cases were missing information on
race/ethnicity (see Table S11), which resulted in their removal from our final dataset. However, our
sensitivity analysis indicated that our IRR and CFR estimates are robust to even large differences
in the probability of missing race/ethnicity for cases among Black residents as compared to their
White counterparts.

If there were systematic differences in the frailty of individuals (regardless of racial/ethnic
group) who died in the first vs. second and third periods, our counterfactual analysis might overes-
timate the impact of infection pacing on inequalities in mortality. However, the use of age-specific
comparisons using narrow age bands should mitigate this risk and facilitate a comparison between
groups as a function of time. Our findings also echo findings from the national level which il-
lustrated that the differences between White and African-American case fatality were minimal
throughout the first period of our analysis [42]. Nonetheless, our counterfactual analysis should be
interpreted as a thought experiment to quantify the potential life lost to inequity in infection timing
rather than a definitive estimate of this disparity.

When interpreting our results, it is important to consider that, as compared to other states,
Michigan’s NPI policies were comprehensive, implemented rapidly, and were sustained over sev-
eral months. It is possible that the net impact of this approach was to increase mortality inequity
above where it would have been otherwise: Since work-from-home and other contact-limiting NPIs
were disproportionately accessible to upper-class, professional workers than blue-collar, service-
sector workers, such policies may have widened race/ethnic and socioeconomic gaps in infection
while they reduced population-level incidence. Conversely, they may have decreased this inequity
relative to what it would have been under more lax policies by providing legal and regulatory
protections to employees.

Nonetheless, we believe that the overarching insight of our analysis — pre-vaccine race/ethnic
disparities in COVID-19 mortality were driven by differential timing of infection rather than dif-
ferences in age-specific case fatality by race/ethnicity — is likely to apply across state and local

contexts, regardless of the extent of their NPI policies. For example, reports from CDC and other
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sources from this period echo our findings that case-fatality rates fell dramatically and rapidly
during Spring 2020 for all race-ethnic groups and that the temporal differences in these risks are
considerably larger than between-group differences within any period [37, 44, 69].

Geographic, socioeconomic, and race/ethnic differences in rates of SARS-CoV-2 testing and
case reporting may also have impacted our results, as our dataset reflects only probable and PCR-
confirmed cases. During 2020, the availability of COVID-19 testing varied over time with limited
testing available in the first part of 2020 and much wider availability towards the end of the year.
The high overall case-fatality rates we observed in the first period could potentially reflect the
impact of a large number of unobserved positive cases which did not result in death [70, 71]. How-
ever, case-fatality was documented to have fallen dramatically nationwide throughout 2020 [71] as
a result of improvements in the clinical management of SARS-CoV-2 infection. Geographic and
race/ethnic group specific differences in case-ascertainment could also bias our results. However,
analyses of testing access by race/ethnicity and social conditions across three major cities in 2020
suggested that per-capita testing in areas characterized by high social deprivation was not mean-
ingfully different from wealthier areas nor those with more minoritized populations compared to
White populations [72].

Finally, analyzing race/ethnic disparities in isolation, as we did due to a lack of information
on individual SES and other modifiable risk factors, limits the ability to understand the differen-
tial contributions of wealth and income inequalities versus structural and interpersonal racism on
observed COVID-19 outcomes [29]. For example, Kamis et al. [73] showed that the intensity of
the relationship between household crowding and COVID-19 mortality risk within U.S. counties
strengthened during Summer 2020, suggesting that despite a narrowing of some race/ethnic gaps
in reported rates of infection and mortality, overarching socioeconomic disparities may have in fact
widened during this period. Increasing our understanding of the role played by the socioeconomic
factors that put people at-risk-of-risk can only be done if such information is routinely collected by
public health and medical information systems. Further, our analyses includes Latino ethnicity as
a primary group, but there is great heterogeneity within this category by race [74]. In our analysis
we analyzed Latino ethnicity as a mutually exclusive category from other races (if Latino ethnic-
ity was indicated for an individual they were included in this category regardless of their race).
Nonetheless, future analyses could observe trends within Latino ethnicity given our inability to do
so adequately due to small case numbers within this group.

While frameworks of social equity and infectious disease preparedness are strengthening [39,
40], our analysis illustrates the centrality of a socio-structural and historical approach to questions
of health equity in infectious disease [29, 32, 46, 75]. Our finding that differential rates of infection
over time rather than differences in age-specific case-fatality rates drove disparities suggests that

the fundamental causes of inequity have not been addressed: In the early days of the pandemic, it
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was the working poor and non-White populations who were disproportionately exposed while more
privileged groups were able to wait out the period of highest case-fatality. Our results highlight
why it is crucial to not mistake within-pandemic narrowing of disparities for progress against the
underlying causes of inequality in mortality from SARS-CoV-2 which are likely to re-emerge in
future epidemics and pandemics. To understand why, a simple thought experiment is instructive:
If these inequities are downstream effects of racial capitalism, i.e. a system that extracts material
benefits from those racialized as non-White for the benefit of those considered to be White [76],
can we expect they will not reappear when the next highly virulent and highly-infectious pathogen
emerges?

The stakes associated with these types of analytic choices, which are routinely made in the
analysis of infection inequity, are high and fall hardest on the most vulnerable: They shape not
only our understanding of the causes of inequity in infection mortality but also the universe of
policy mechanisms we perceive as capable to address them. For example, analyses of cumulative
disparities in COVID-19 incidence and mortality which collapsed the three time periods across
2020 in which infection and mortality risks as well as policy responses were in flux, e.g.[62, 63],
may lead us to the conclusion that race/ethnic inequities in COVID-19 mortality were attributable
to group-specific differences in the risk of death upon infection, i.e. the case-fatality ratio, and
thus reflecting some characteristic of minoritized individuals, i1.e. pre-existing poor health, limited
access to care, that could not have been addressed quickly enough to prevent these outcomes.

By contrast, our results suggest that race/ethnic differentials in case-fatality throughout 2020
reflect in large part the impact of infection timing on case-fatality. This finding suggests that
increased equity in protection from infection, in the form of short-to-medium term income, in-
creased workplace and employments protections for essential workers, and housing support, were
accessible policy levers that could have dramatically reduced these differentials. Preventing these
outcomes in the future necessitates both more proactive disease surveillance to detect inequity in
infection as it emerges, as well as social welfare and workplace policies that could prevent these
inequitable exposures in the first instance.

There is no evidence that the structural inequities which set the table for the disparities in death
from COVID-19 documented here have lessened since early 2020 [77]. In fact, it is likely that the
social and economic inequities which made minoritized communities more vulnerable to SARS-
CoV-2 infection in the earliest days of this pandemic have been exacerbated by its effects [78, 79].
Our results suggest that addressing these inequities using every social and public health policy
lever at our disposal must be a key focus of both the response to the ongoing COVID-19 pandemic

and our preparedness for the future.
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CHAPTER 4

Spatio-temporal Patterns of Disability in India:
2001-2011

4.1 Introduction

Globally, 1 billion people—15% of the world’s population—live with at least one form of disability,
and 80% of these individuals live in the global South, otherwise known as low- and middle-income
countries (LMICs) throughout the world [80]. A vast majority of these disabilities are highly pre-
ventable. In a recent study, which analyzed the burden of disease among the world’s poorest billion
people utilizing the Global Burden of Disease framework, it was established that 65% of disability-
adjusted life years were attributable to communicable, maternal, neonatal, and nutritional diseases
[81]. Further, postnatal disease is the leading cause of disability in children, 95% of which are in
LMICs [82]. Declines in postnatal disease mortality have led to more morbidity in the past three
decades than ever before [82]. Poverty is highly correlated with disability status [83, 84] and con-
tributes to increased burden within LMICs. The causal factors underlying the disability, such as
economic deprivation, environmental contaminant exposure, and infectious disease, are typically
distributed heterogeneously across spatial areas [85, 86].

In LMICs, childhood vaccination rates are low [87]. For example in India childhood vaccina-
tion rates are currently around 63% but have been lower in past decades [87, 88]. This type of
environment is conducive to high rates of communicable disease within children acquired both
congenitally and post-natally [89]. When these infections are left untreated they can lead to life-
long disability (see Table 4.1 for list of infections which lead to specific types of disability). Con-
genitally, infections such as toxoplasmosis, cytomegalovirus, and varicella infections can lead to
microcephaly, hydrocephaly, growth retardation and blindness [89]. Further, congenital syphilis
can lead to deafness and cognitive impairment. In terms of early childhood infections malaria and
helminthic diseases after repeated exposures leads to growth impairment and cognitive impairment
and 15 to 20 percent of childhood meningitis survivors are left with deafness and cognitive impair-

ments [89]. Japanese Viral Encephalitis can lead to cognitive and motor disabilities and measles
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can lead to encephalitis causing cognitive impairment. Polio destroys motor neurons and leads to
irreversible paralysis and although it is now eradicated in India, the impact of this illness is visi-
ble in adult populations. Lastly, trachoma infections are an example of an illness that can lead to
blindness.

Characterizing the spatial distribution of disability within India and other large, geographically
heterogeneous countries, provides several advantages: First, these methods are useful for identify-
ing hotspots of disability that could be the result of spatially localized infectious, environmental,
social and economic causes of disease. Second, understanding both the extent of spatial clus-
tering of disability and socio-economic and medical issues underlying this clustering is essential
for appropriately targeting screening, treatment, and policy. With regard to the former, targeted
prevention campaigns have benefited from hotspot detection [90]. Concerning the latter, the unad-
dressed needs of people with disability—such as those related to school attendance, unemployment,
etc.—are often overlooked when generating socio-economic policy [91]. Further, it has been found
that education and wealth are inversely related to levels of disability and infectious disease lead-
ing to increased economic inequality in both high- and low-income countries due to increasing
disability prevalence [92]. It has been proposed that low resource settings produce environments
conducive to poor health outcomes and therefore high disability levels lead to low employment
rates and therefore a further exacerbation of poverty. This leads to a type of poverty trap phe-
nomenon within a subgroup of those with particularly severe health outcomes [93].

Increasingly, national censuses are collecting information on disability, facilitating evidence-
based decision-making around disability policy based on the likely impact both at a regional and
population level [94]. Estimates of spatial patterns of total and type specific disability prevalence
and incidence are increasingly needed to plan future policy [95].

A lack of information on how disability is spatially distributed throughout LMICs, such as India,
makes it challenging to funnel resources and research to achieve a targeted approach. Further, the
lack of appropriate methodology for identifying concentrations of disability—for example with the
use of prevalence maps—can paint an inaccurate picture of where disability is concentrated. It is
important to look for disability hot spots at the local level (within states) using spatial analysis
techniques that can guide targeted programs. Lastly, given the diversity of disability types, it
becomes incredibly important to disaggregate by impairment to see where particular environmental
and social causes are concentrated and would benefit from further investigation.

India has one of the largest populations of individuals with disability (individual with disabil-
ities (IWD)) in the world [96]. The percentage of IWD went from 2.1% (21.9 million) in 2001
to 2.21% (26.8 million) in 2011. Previous work on disability across time in India showed spatial
heterogeneity of total disability across districts in 2011 [97], and the existence of differences in

disability experience across states [98]. Based on the 1991 and 2001 Census data, a Disability
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Table 4.1: Congential and post-natal infections which lead to life-long disability outcomes

Disability Type
Type of Infection Cognitive Visual Sight Hearing Movement Mental
Congenital Toxoplasmosis X X X
Cytomegalovirus (CMV) X X X
Varicella X X X
Congenital syphilis X X
Post-Natal Malaria X X
Helminthic X X
Meningitis X X
Japanese Viral Encephalitis X X
Measles X
Poliomyelitis X
Trachoma

Index was calculated for 26 states in India showing differences across states [99].

Nevertheless, little is known about the extent to which specific classes of disability vary over
space and time. Since the causes and consequences of different types of disability are quite vari-
able, it is important to examine them both individually and collectively. For example, sight and
hearing impairments are most commonly associated with infectious causes [96] but looking at
the prevalence of these disability types in the aggregate at the state-level would not reveal poten-
tial causes of such disability types (which mainly occur at the local level). Further, studies have
not compared district-level change over time to determine clusters of districts with heterogeneous
increases or decreases. Lastly, the focus on state-level disability prevalence hampers the identifi-
cation of environmental and social causes of disability that cross state boundaries.

In this paper, we take a spatio-temporal approach to identify spatial clusters of disability over
time in India in 2001 and 2011, and the change from 2001 to 2011 at the district level. We use
Indian Census data from 2001 and 2011 at the district level and analyze disability prevalence
measures. We conduct spatial analysis to statistically quantify the level of spatial clustering of
disability, and to identify significant clusters of high and low disability (by type) as well as changes

in disability prevalence over time and across space.

4.2 Materials and Methods

Census data on disability prevalence give a unique population-wide perspective on a financially
burdensome and programmatically challenging problem. Since the data are not sampled, but rather
a complete enumeration, spatial analyses of Census data provide a comprehensive picture of spatial

concentrations of high and low disability prevalence. Further, the collection of data at two-time
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intervals, ten years apart, allowed us to examine changes in prevalence over time—after accounting

for adjustments in district boundaries between the two censuses.

4.2.1 2001 and 2011 Indian Census

We used the 2001 and 2011 Population Census, which for the first time in 2001 included multiple
questions on disability. According to the Census of India’s methodology section, each person
was asked if he/she suffered from a physical or mental disability in each of five categories (see
Table B.2 in Appendix): speech, sight, hearing, mental (cognitive), or movement (physical). If a
person suffered from two or more types of disabilities only one was recorded, and it was left to
the respondent to decide which one they wanted to be classified into. Persons with a temporary
cognitive or locomotor inability (due to acute medical conditions) on the date of enumeration were
not considered as disabled. In the 2011 Census, there were some changes to the classification of
disability, mainly two measures of mental (cognitive disability) were asked: mental retardation and

mental illness, and an additional question was added to classify people with multiple disabilities.

4.2.2 Analysis Approaches

Disability data were aggregated to the district level, which is the first-level of administrative units
within an Indian state. The average geographic size of a district is 1,313 square miles with an
average of 1.1 million people. There were 593 districts in 2001 and 640 districts in 2011 within
the 28 states and seven union territories of India. These data were spatially joined with a bound-
ary map of Indian administrative units (retrieved from Harvard GeoSpatial Library, Cambridge,
Massachusetts). Data were projected using Kalianpur 1975 India Zone IIb. Data joining, projec-
tion, and mapping were done in R version 4.1.2 [100], using the sf [101] and tmap [102]packages.
To account for the changes in districts’ boundaries between the 2001 and 2011 Census, we used
population density weighting (See Appendix subsection ”Additional Methodology”). Forty seven
districts were added between the 2001 and the 2011 Census, and seven of them originated from

two or more districts.

4.2.3 Measures of Disease

Variables of interest were all summarized at the district level for census years 2001 and 2011:
(1) proportion of IWD in the population; (ii) proportion of IWD with speech impairment; (iii)
proportion of IWD with seeing impairment; (iv) proportion of IWD with hearing impairment (vii)
proportion of IWD with cognitive impairment (collapsed values for mental illness and retardation

in 2011 Census) and (viii) proportion IWD with physical impairment. We did not include a separate
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category of multiple disabilities because it was not recorded in the 2001 Census. In addition to
individual years of disability prevalence, we were interested in the changes in prevalence between
2001 and 2011. We generated a rate difference measure to determine the change in prevalence by

comparing the proportion of IWD in the population (at the district level) in 2011 and 2001.

4.2.4 Spatial Analysis

We mapped the prevalence of disability in each district and stratified it by type of disability in 2001
and 2011. We also mapped the change in the prevalence of disability between 2001 and 2011. To
assess whether the prevalence of disability and change over time were clustered in space we used
the local Moran’s I indicator of spatial association (LISA) with 9999 permutations [103]. Clusters
were identified using a k-nearest neighbors contiguity neighborhood definition, with k=4 and row
standardization where the rows in the weights matrix were standardized to equal one allowing for
different models to be readily compared. All islands were removed from the analysis. Results
were corrected for multiple testing utilizing the false discovery rate (FDR) approach [104]. Data
analysis, mapping, spatial analysis, and FDR correction were done in R version 4.1.2 [100] using
the sf [101] and tmap [102] packages. All script was made reproducible with Snakemake software
[66].

4.3 Results

The average prevalence of IWD at the district level in 2001 was 2,286 per 100,000 and 2,201 per
100,000 in 2011. In 2001, the highest mean percentage of disability types at the district level
was sight (47.5%), followed by movement (27.6%) and cognitive disability (10.1%). Hearing and
speech accounted for about 7-8% of IWD each. Twenty-seven percent of IWD resided in urban
areas (with some districts not having any IWD residing in urban areas and others having all IWD
in urbanized areas).

Figure 4.1 (c) illustrates the change in the pattern of disability prevalence (percentage of the
total population with disability) across districts in India from 2001 to 2011. There was a decrease
in the prevalence of disability within districts in the state of Arunachal Pradesh in the far east of
India, with most districts reporting 3.1-4.7% of the population as IWDs in 2001, and every district
having less than 3.1% IWD in 2011. Another decrease occurred in the south of the country in the
state of Tamil Nadu, where nearly all districts in 2011 were lower than 2% prevalence of disability.
Increases were observed in the states of Jammu and Kashmir and in the center of the country in
states such as Maharashtra, Telangana, and Andhra Pradesh from 2001 to 2011.

Regarding spatial clusters of IWD, we found that, in 2011, high prevalence districts of disability
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were clustered, even after correcting for multiple testing (Figure 4.2(b)) Some specific disability
types had more spatially extensive or large area clusters of high prevalence in 2001 and 2011 such
as speech impairment in mid-western India (See Appendix Figure B.1c and B.2c). There were also
clusters of different disability types in the same area such as with sight and hearing impairment in
eastern India in 2001, intellectual disability and mental impairment in 2011 in the state of Kerala
and increasing clusters of speech and sight impairment between 2011 and 2001 in southwestern In-
dia (see Appendix Figures B.1, B.2 and B.3). Interestingly, although some low prevalence clusters
of disability were identified in 2011 in eastern India (and smaller clusters in the south and western
India) nearly no low prevalence clusters were identified for specific disability types in 2011. In
other words, when you analyze the disability types individually, we do not see patterns of clusters
emerge but analyzed together—several clusters of low prevalence can be identified. Figure 4.3
illustrates that several districts experienced high prevalence clustering in more than one type of
disability (with darker shades indicating more than one type of high prevalence disability cluster
in that district). In 2011 southeastern India shows the darkest colors, illustrating that these districts
had several high prevalence disability type clusters in one district.

Temporal changes in disability prevalence in India from 2001-2011 were spatially heteroge-
neous. Increases in disability (from 2001 to 2011) were clustered in central India, while declines
were clustered in areas of southern and eastern, and western India (Figure 4.2c). Larger (spa-
tially more extensive area) clusters of increasing disability (positive change) were observed within
specific disability types: speech impairment and sight impairment in mid-western India (See Ap-
pendix Figure 4.3a and c). Smaller clusters of decreasing disability prevalence (negative change)
over time were observed for mental impairment in central and eastern India and movement dis-
ability in south central India (See Appendix Figure 4.3e and d). Figure 4.3c shows districts with
increases in disability prevalence in one or more disability types (with darker shades indicating
increasingly more types of disability). When observing increasing prevalence clusters (positive
change) of disability across each disability type (see Figure 4.3c), as expected from the individual
maps in Appendix Figure B.3, the districts are concentrated in the southeastern and central parts
of the country. When looking at specific types of disability we see that sight impairment, whic is
known to be related to trachoma, toxoplasmosis, cytomegalovirus and varicella, is clustered in par-
ticular regions of India which are somewhat similar to those of all-type disability clusters. Further,
clusters of increasing prevalence in hearing impairment, which is related to congenital syphilis and
meningitis, are different from all-type disability clusters and very different from sight impairment

clusters.
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4.4 Discussion

In this paper, we sought to identify clustering of district-level rates of overall and type-specific
disability in India in 2001 and 2011, as well as the change between the two time periods using
local indicators of spatial autocorrelation. We set out to understand the overlap between specific
types of disability in terms of where they clustered by generating maps of every disability type in
2001 and 2011. We then compared change in disability prevalence (positive change or negative
change) from 2001 to 2011 to learn about clusters of increasing and decreasing prevalence. We
corrected for multiple testing to ensure an accurate representation of significant values. Complete
enumeration of disability in India with the 2001 and 2011 Census allowed for the detection of clus-
ters of high and low disease prevalence throughout the country. Our findings show that disability
prevalence from 2001 to 2011 at the district level is highest in the southern center of India and
increasing prevalence clusters (positive change) are also concentrated in this area. When looking
across specific disability types from 2001 to 2011, western India shows the most spatially exten-
sive clusters of increasing prevalence (positive change) for both speech and hearing disability. .
Spatially clustered increases in specific types of disability over ten years should send an alert to
researchers and governments to further investigate the causes of these changes.

The 2006 United Nations Convention on the Rights of Persons with Disability currently has 164
countries that are signatories indicating a willingness on their part to protect IWD citizens in their
countries. LMICs make up a large share of the signatories. In India, as a response to the signing of
the Convention in 2007, the Rights of Persons with Disabilities Act was enacted in 2016 outlining
some of the strongest legal protections for this group in its history. The 2016 Act along with two
other Acts in Indian law specifies each disability type’s protections and outlines benefits for these
groups. For example, currently, anyone between the ages of 6-18 with a disability is provided ac-
cess to free education. The collection of data in Census records is an important step many LMICs
have taken to systematically account for these groups, especially when enumerated by specific
disability type. The identification of spatial clusters of IWD prevalence can and should become
standard practice to target policy. For example, several states, with alarming clusters of increas-
ing disability prevalence (positive change) for specific types of disability (see Supplement Figure
B.3(a), (c) and (d)—including Andhra Pradesh, Maharashtra and the Union territories of Jammy
and and Kashmir, Ladakh, Dadra and Nagar Hael and Haman and Diu—have not yet submitted
their detailed rules under the Rights of Persons with Disability Act, 2016 [105]. In contrast states
that have set up special courts—including Assam, Kerala, Rajasthan and Madhya Pradesh—which
were mandated under the Rights of Persons with Disability Act, 2016, have no change or at times
decreasing prevalence (negative change) of disability from 2001 to 2011 (see Supplement Figure

B.3(a-e)). Although the Act came into accordance after the collection of this data, it illustrates the
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willingness (or the lack thereof) on the part of each state to uphold the rights and protect the well-
being of persons with disabilities [105]. Beyond protecting those with disability, there is a need for
prevention through the identification of environmental and social causes of disability. The Right to
Health is another human right, which many LMICs are signatories to under the Convention of the
Economic, Social and Cultural Rights. Article 14 of the Convention outlines the importance of na-
tional and regional governments to improve disability-adjusted life years (DALYs) in their nations.
The identification of spatial patterns of disability, especially those most affected by environmental
causes such as hearing and sight, over time, can highlight areas of concern in the country which
require further investigation. For example, some states with high levels of poverty also include
clusters of increasing disability prevalence (positive change) from 2001 to 2011 including Bihar
and Odisha. Therefore the above stated factors makeup a complex interplay of social, political
and economic realities—for instance the state of Madhya Pradesh did excel in their willingness to
enact the Rights of Persons with Disability Act, 2016, but they house the country’s largest tribal
populations and the fourth poorest state, and this is reflected in the band of increasing movement
disability clusters in the middle of the state [106].

This analysis utilizes a complete enumeration of disability in India at the district level, making
it ideal for spatial analysis and interpretation. Nonetheless, several limitations may be consid-
ered. First, the Indian Census in 2001 and 2011 likely missed some people with disability due to
a lack of reporting or awareness on the part of families given the self-reported nature of Census
data collection. This may be particularly true for mental illness and would likely lead to under-
counting for some disability types. The National Sample Survey Organization, an independent
non-governmental research organization, estimates a 20% larger proportion of the Indian popula-
tion as having a disability, compared to the Census of India in 2001 [107], while other nationally
representative household surveys indicate the Census disability rate was 25.2% higher [98]. It has
been stated that these variable sources of disability statistics capture distinct aspects of disability
and lead to disparate estimates. For this analysis, we feel that whether disability was overcounted or
undercounted in the Census of India, it is likely not deferentially biased across regions. Therefore,
the estimates of clustering patterns are likely held. Second, it is challenging to know how and why
certain disability types cluster in the way they do in the absence of detailed policy, public health,
and environmental data from the local level. The Indian Census includes some socio-economic
variables at the district level but publically available data are stratified by disability status. Al-
though this is outside the scope of this paper, future work in this area may seek to identify spatial
regions where certain disability policies were enforced, environmental hazards were present or
specific diseases proliferated. Third, this analysis utilizes non-age standardized prevalence rates of
disability (for those over 15) at the district level and it is possible that the age structure both at the
district level and nationally could have changed over time. Such age-standardization is not possi-
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ble with publicly available Census records because age is not stratified by disability status nor is
disability status stratified by age categories. Given that age standardization of disability prevalence
at the district level is not possible with Census data, this is a limitation that should be considered

in the interpretation of maps.

4.5 Conclusion

Clusters of disability are observed in districts in India in 2002 and 2011. Considering disabil-
ity types, some areas have high concentrations of one or more types. Over 10 years, clustering
emerged, persisted, or expanded. Our results point to the need for policymakers to consider target-
ing disability programs and policy both locally and by type of disability.
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CHAPTER 5

Do Sociality and Spatiality Interact? Characterizing
the Joint Impact of Spatial Proximity and Social
Network Connectivity on Acute Infectious Disease

Risks and Intervention Efficacy

5.1 Introduction

Despite declines in child mortality over the last decade, global enteric disease and respiratory ill-
ness incidence remains high [5]. Respiratory illnesses and enteric infections are still the first and
second, respectively, largest contributors to global under-five childhood mortality [108]. Specif-
ically, enteric disease and respiratory infections can be spread both via person-to-person contact
and environmental intermediaries including water and fomites. According to the World Health
Organization, of the 1.6 billion diarrheal cases over half a million children pass away every year
and for those that survive it is the leading cause of malnutrition (and subsequently stunting and
wasting) in children under 5 [109]. Further, 700,000 children lose their lives due to preventable
respiratory infections. These diseases are concentrated within under resourced communities and
are often a part of cycles of infections within these populations, although they are acute in nature.
Respiratory illnesses and diarrheal disease make up a handful of diseases categorized as “diseases
of poverty” where 90% of the children who pass away from diarrhea live in the worlds poorest
countries [1]. Prevention in the form of improvements in water sanitation and hygiene (WaSH)
are cost-effective and highly protective. They aim to reduce both exposure to pathogens (in the
form of removing pathogens from the environment) and susceptibility from infection (in the form
of improving the nutrition and health of populations most affected by disease)[110].

Until recently, universal availability of improved WaSH at the household level was seen as
the ultimate goal of enteric and respiratory disease management. There is an increasing aware-

ness although that the success of household-based interventions in settings with a high burden of
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enteric disease is dependent on community-level incidence and sanitary infrastructure[111]. In
other words, it appears that the weakness of household-targeted preventative interventions in high-
incidence settings stems from their inability to address community-level environmental, social and
behavioral factors that require conceptualizing household-level risk as a function of embeddedness
in social and spatial networks that connect individuals and households both within and across com-
munities [112]. Disease mitigation efforts require a more advanced understanding of transmission
which includes social and environmental processes together. Community-led and managed latrines
and water systems are increasingly being utilized in LMICs [113, 114]. Such programs and inter-
ventions illustrate that larger socio-political processes can be effected from the bottom-up in small
ways. Some of these efforts have been more successful than others, but what may be required is a
more in-depth understanding of how social and environmental processes interact at the local level.
For example, where are the best places to initiate these interventions to ensure optimal success?
What environmental and social processes work for versus against such interventions?

Social networks exist within geographic space Over the past two decades, great progress has
been made in advancing our understanding of how social networks interact with physical environ-
ments to influence enteric disease spread [115]. A recent systematic review of social networks and
health by Perkins, Subramanian and Christakis in 2015, alerts the field of public health in partic-
ular to the importance of integrating space into network analyses [116] and that such integration
more realistically captures the reality of a disease exposure network. Studies which focus on the
social context of disease spread [23, 26-28] have highlighted the role of social class, geographic
context and social connectivity. Several public health researchers in infectious disease have at-
tempted to bring a socio-spatial perspective into observational studies by collecting information on
both community social networks (contact) and geographic context (GPS coordinates). The three
main sources of data for observational studies within the context of enteric disease are surveys on
individual or household WaSH behaviors, Geographic Information Systems (GIS) data (household
longitude and latitude) and social network (contact) surveys or kinship maps alongside disease data
data. Some analyses of enteric disease have even attempted to disentangle social network process
from spatial ones [22, 25]-which we explore further below.

Relatively few studies have directly examined the relative contributions of spatial and social
networks to the community-wide distribution of enteric disease. Bates et al. [22] examined the
role of social network connectivity and geographic proximity as predictors of enteric disease risk
from 2003-2005 in the same study region as our analysis. Social connectedness was measured via
two types of contact networks: whether individuals regularly spent time together (causal contact)
and if food was shared between households. The findings of this study suggested that the presence
of increased social contacts was correlated with increased enteric disease risk. The analysis in-

dependently analyzed the role of geography on increase network contact and enteric disease risk.
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They found that more geographically dense communities had increased enteric disease risk and a
lowered probability of social network connections.

A paper by Emch et al. 2012 [25] was a village level analysis which utilized kinship-based
networks and variable spatial buffers to look at clustering across different spatial scales over a
twenty year time period. Using a spatial effects-spatial disturbance model they identified that in
the context of Bangladesh, the local environment was most important for propagating cholera and
shigellosis transmission, though the social network had some influence of lesser magnitude. Den-
sity in one’s contact network increased risk to enteric disease. The same research group published
another study which [117] builds on this analysis, using a similar data-set but utilized road net-
works and maternal networks based on household migration. The main finding from this work
was that clustering of incident cases consistently occurred within the space-based road network
and inconsistently clustered within the social network. The last two papers utilize two connectivity
matrices, one for spatial connectivity and another for social connectivity, to determine the relative
contribution of each to disease spread. While both the Bates (2007) and Emch (2012, 2013) papers
look at contact networks, others have demostrated the important of core-dicussion networks as a
protective effect against enteric disease. While these studies did not evalute the role of geography
in enteric disease spread, they illustrate the nuances of how a network could be measured and its
subsequent relationship with enteric disease risk. For example Zelner et al. dentified that increased
connectedness, when measured as meaningful emotional interactions or a core-discussion network
(CDN), is associated with decreased enteric infection risk (utilizing data from 2007), which runs
somewhat counter to the epidemiological intuition that increased connectivity is a driver of risk
[23]. Other studies reinforced these findings and illustrated that core discussion networks and a
contact networks have joint effects [118].

Sociality and spatiality can interact to create increased risk Although the above mentioned
literature sheds light on the relative contribution of social compared to spatial connectivity in en-
teric disease transmission, a measure of their interaction would shed important light on the socio-
spatial way neighborhoods and communities function [119]. The interaction between sociality and
spatiality is a well documented feature of environments within ecology, human interaction within
social movement science and migration patterns within transportation literature [120—122] but it
has yet to be explored within infectious disease epidemiology. Space or spatiality captures geo-
graphic processes within a community at multiple levels. It allows us to approximate the degree
in which individuals share an environment geographically close to them. This measure seeks to
quantify how much individuals share things such as outdoor land, animal husbandary, latrines and
soil which could be contaminated with fecal matter around their household. For example, distance-
based connectivity as a measure implies that one’s geographic proximity to neighbors (regardless

of social interaction) informs disease spread. Building on geographic contexts, we look at an-
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other measure we call social density which captures how individuals chose to interact in space.
For example, social network connectivity (or social density) implies that one’s social proximity
to individuals (regardless of geographic proximity) informs disease spread. Both of these factors,
social density and spatial density, are well characterized risk factors in the spread of infectious
disease, as mentioned above, but their interactive effect has yet to be explored [119]. In other
words, given that social density increases disease and spatial density increases disease, is there
an additional multiplicative and/or additive effect of their interaction which increases risk beyond
each individual risk factor alone?

In this paper we explore the interactive effects of social and spatial density on acute infections.
Our main research question is: Do sociality and spatiality interact to increase disease risk on the

additive and/or multiplicative scale?

5.2 Data and Methods

5.2.1 Data

Our analysis utilizes recently collected data from a long-standing sociometric study of enteric
disease outcomes in western Ecuador. We measure spatial density and social density along with
their interactive effects to observe the the association these exposures have with diarrheal and

respiratory symptoms.

5.2.2 Study Site

A georeferenced census network of enteric disease risk in Canton Eloy Alfaro region of
Ecuador For this analysis, we will utilize data from a long-running observational study of
community-level enteric infection risk in northwestern Ecuador. Within Canton Eloy Alfaro in the
Esmeraldes Province we selected six study sites in the communities of Borbén, Colon Eloy, Mal-
donado, Santo Domino and Santa Maria. The communities vary in population size and distance
to the commercial center of Borbon and are composed of ethnically diverse (Afro-ecuadorian,
Chachi and Mixed-race communities) and indigenous populations. Timbire and Colon Eloy are
geographically close to one another (13 minute car drive based on Google Maps) and are about
45 minutes and 36 minutes southeast of Borbon. Maldonado is about 13 minutes east of Borbon.
Santo Domingo and Santa Maria are more remote communities 4 hours south and 7 hours south-
east of Borbon, respectively. We refer to Borbdn as a city center and the other communities as
peripheral communities. Borbon has a population of around 7,700 individuals according to the

2010 Ecuadorian census and covers a 192.6 square kilometer area. It is considered a rural area
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and has pre-dominantly Afro-Ecuadorian populations (63%), followed by mestizos (21%) and in-
digenous populations (9%). Timbire is a much smaller town with a total population of 1,037 and
92.9% Afro-Ecudorian population. It is spread out over 22.08 square kilometers. Colon Eloy (del
Maria) is similar in population size to Timbire with 1,410 people over 71.72 square kilometers. A
majority of the population is Afro-Ecuadorian (93.3%). Maldonado is slighting larger in popula-
tion size than Timbire and Colon Eloy with 1,703 people across a larger area of land (206.3 square
kilometers). A majority of individuals in this village are mestizo (81.8%). Santo Domingo and
Santa Maria are smaller communities located in remote locations within the region with less than
1,000 people living in either location. For a map of the study region see [4]. The Environmental
Change and Diarrheal Disease (EcoDess) sociometric study includes extensive geo-referenced de-
mographic, household, and social network data for all individuals in the study sites over the age of
12. The study is a part of a larger ongoing study which includes a yearly census of all households
in the study areas. Sociometric survey data have been collected since 2003 over four waves of data
collection, the most recent of which is utilized in this analysis. In this analysis we expected to see
large differences in both the exposure and outcome by study site, especially between the commer-
cial center and the peripheral communities given the much larger population size in Borbon (nearly

four times that of some communities).

5.2.3 Data Collection

The data utilized in this analysis were collected from November 30th 2021 until April 1st 2022.
The survey was given to every household in designated study communities, with the exception of
Borboén. In Borbdn only certain central neighborhoods were included in the study sample. The
survey lasted on average 35.84 minutes and was conducted by pairs of field staff. The study in-
cluded eight field staff in total. The staff were trained in sociometric methods and given tablets
to collect data. The study utilized the ODK open-source Android software to implement study
questions and pre-load information within the tablets. The study tracked various aspects of so-
ciality including 1) social network connectivity (as measured by asking the respondent who they
generally share important matters with and who they generally visited within their community)
2) places the respondents visited recently as well as 3) outcomes related to fever and/or diarrhea.
Census data was collected earlier in 2021 (as well as prior years) and includes demographic in-
formation such as birth date, race, household address, literacy status and household Geographic
Position System (GPS) coordinates. Every individual is assigned a studyID as a unique individual
identifier and household number as a household level unique identifier. For the purposes of this
research, the latitude and longitude of households were projected using SIRGAS 1995 / UTM zone

17S (epsg: 31992) to calculate distances between households accurately in meters. The transfor-
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mation projects the round surface of the earth (in longitude and latitude) and flattens each region

of the globe for precise measurement.

5.2.4 Sample

Figures 4.1-4.3 illustrate how the final datasets were obtained for mapping and modelling ex-
posures and outcomes. Of the potential 7,005 individual included in a census of the six study
communities, 4,346 individuals were interviewed during this survey. Please see the appendix for
differences between the census population and the individuals interviewed in the sociometric sur-
vey (see Appendix Figures C.1, C.2) Several respondents were removed from the data: a) 243
because they did not complete the survey b) one because they stated that they had not resided in
the community for more than three months (and therefore would not be considered within the so-
cial network of the community) and c¢) 45 did not have a recorded GPS coordinate. After exclusions
4,057 individuals remained in the dataset.

For the regression analysis, census data was required. There were several individuals (785)
we could not locate in the census, due to changes in census records in the year between survey
administration and census capture. Another seven individuals were removed because they had
duplicate census records which could not be accurately matched. These individuals were excluded
from the regression analysis sample, leaving a total of 3,265 individuals.

We utilized two networks: a network of people whom the respondent stated they shared impor-
tant matters with (GIM) and those whom the survey respondent generally visited within the village
(PV). Of the 3,265 individuals who completed the sociometric survey, 102 and 24 refused to an-
swer the questions related to their GIM and PV networks, respectively. Further, 926 and 1,348
stated that they did not have someone they generally shared important matters with and visited
regularly. This left 2,235 and 1,891 who provided names of individuals in their respective GIM
and PV networks.

5.2.5 Exposure and Outcome Data

A sociometric survey measures the relationships between actors in a predefined group at a certain
point in time. In sociometric surveys every individual is asked about certain topics within which
they are to name all the people they identify with on that topic. In the general important matters
network, every single person in a village is asked to list the names of people outside their household
whom they share very important matters with. For the people visited network, respondents are
asked "How many families do you regularly visit within this community?’ and then they are to list
those individuals. The nodes of the network then become the connections named and each network

is analyzed separately.
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Figure 5.1: Flow chart of survey respondents in 2022 sociometric survey and final data set.

Primary Exposures The two primary exposure variables in our study are the number of con-
tacts of an individual (social density or degree) and the average distance of an individual’s house-
hold to everyone other household in the community—which we refer to as spatial density. A survey
respondent provides the number of people in both of their networks (GIM and PV). Therefore
there are two degree values for each survey respondent corresponding to a single network. The
average distance of an individual to everyone else in their own community or neighborhood den-
sity variable is calculated by generating pairwise distance matrix and multiplying by an adjacency
matrix corresponding to community membership. We then sum over each individual row to obtain
a vector of values for each survey respondent v;. The values in this vector are then divided by the
number of people within that individual’s community to obtain a within community relative density
measure. Instead of utilizing an arithmetic mean we utilized a harmonic mean for to calculation to
decrease the effect of outliers. This measure is similar to the density measure used in other studies
[22]. The measure quantifies the average distance an individual lives away from others in their
community. Therefore, a high spatial density measure indicates that the respondent lives in a more
dense area, while a low value indicates dispersion.

Outcome At the time of the sociometric survey, questions are also asked about enteric and
respiratory disease symptoms. The main outcome variable in this analysis is a two week recall of

fever and/or diarrhea. At the time of the sociometric survey, each respondent is asked whether they
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have three or more episodes of diarrhea or a fever (generally considered above 100.3F) within the
last two weeks. This measure allows us to capture enteric and other illnesses within a period of
time that is memorable for the respondent.

Covariates A yearly census is conducted in the six study sites where are all members of a
community are asked to share basic demographic information about any individual over the age
12. Many of the identified confounders in our analysis come from the census. The census data
collection took place a year prior to sociometric survey administration. The census information
is combined with the sociometric survey data to produce the final dataset for analysis. The main
known confounders in our model include race (Afro-Ecuadorian, Chachi, Mixed and Other), sex
(Female, Male or Other), age (calculated from birth date) and literacy (whether the individual can
read and/or write). Race is related to social density given variable levels of connectivity by race.
Further, residential segregation by race can be observed within communities. Further, being male,
of older age and literate is related to increased social contact. Acute infections are also variable by
age, race, sex and literacy in our data set. We generate a variable indicating whether the individual
was Afro-Ecuadorian and another variable for Chachi individuals. For sex, a variable was created
for Male versus not Male. Literacy was modeled as either being able to read and write versus other

(read and not write, write and not read, neither read nor write).
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5.2.6 Analysis Methodology

(A) spatial
density: average
distance to
everyone in
community

(B) social density:
number of

contacts in
network

(Y) acute infection
symptoms

Figure 5.2: Directed acyclic graph of proposed causal relationships between variables

The impact of social and spatial density on acute infection risk We first conduct a descriptive
analysis of the differences in risk between the two networks of interest. We also explore differences
in both the exposure and outcome by community, especially given that Borb6n is a much larger
population center compared to the rest of the study sites to determine if stratification by community
was needed. It was determined that stratification was needed after this assessment, therefore two
equations are presented below for each model. Our regression analysis approach seeks to more
directly answer the question: Is there an interaction between spatial and social density? We utilize
a Bayesian logistic mixed-effects modeling approach to observe the relationship between social
and spatial density and disease risk, given a set of known confounders (see Figure 4.4). Equation
4.5 outlines the model for the five peripheral communities, while 4.6 defines the model for the study
site of Borbon. We apply a weakly informative prior to the model with a mean of zero and scale
(standard deviation) of 2.5. We transform the outcome into odds ratios for ease of interpretation.

We utilized the rstanarm package within R.
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Testing for multiplicative interaction between social and spatial density Interactive effects
can amplify or dampen the effects of individual exposures. Interaction refers to the “effect of one
exposure on an outcome to depend in some way on the presence or absence of another exposure”
[119]. It is different from effect modification in that both exposures have an effect on the outcome.
Both spatial density and social density have an established effect on enteric disease outcomes
[22, 23, 118]. Therefore, we seek to understand whether the interaction between social density and

spatial generates an additional effect on enteric disease outcomes.

Yii = (Bo + poj) + f1Xq + B2 Xo+
B3 X142 + BaXy + 5 X5 + B Xo+
Br X7 4+ u; + e

1 = ego, J = community

X, = social density, X, = spatial density G-b
Xj.9 = social density X spatial density, X, = race
X5 = sex, Xg = literacy, X; = age
u; = random intercept at community level
Yi=fo+ 51 X1+ B2 Xo + B3 Xiuat
BuXy + Bs X5 + 6 X6 + Br X7 + +e;

1 = ego, X; = social density, X, = spatial density (5.2)

X142 = social density X spatial density

X, =race, X5 = sex, Xg = literacy, X7 = age

Interaction can be multiplicative and/or additive. Additive interaction in on the risk difference
scale and is sometimes considered to be more relevant from a public health perspective [119]
whereas multiplicative interaction looks at risk ratios or relative risk. Multiplicative interaction
quantifies the additional effect of combined exposures on the risk ratio scale. It provides insight
into the relative risk of disease given an increase in the exposure, but it does not indicate which
subgroup might be best to treat. The multiplicative scale is useful from a policy perspective when
interventions are less concerned about the baseline level of the exposure. In our analysis, the base-
line level of exposure (level of spatial density or social density) may or may not matter, depending
on the type of intervention utilized to mitigate disease. Suppose we wanted to intervene on spa-

tial density (where homes are spread out more for example), additive interaction would provide
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more insight into whether to intervene on those with high or low social contacts. Multiplicative
interaction would not provide this type of information.

In logistic regression models, multiplicative interaction is assessed by adding an ad-
ditional exposure (a product of two exposures). The exponentiated effect estimate
 Tsociadensty X spaia densiy therefore equals ORsocial density X Spatial density/ ( O Rspatial density ORsocial density) Where
and e Tspatial density — ORspatial density- Therefore, e Tsocial density X spatial ensity. ¢ be referred to as the statistical
multiplicative interaction for a logistic model [119]. We can also assess additive interaction with
the equation 5.3 to estimate the RERIpr (see Equation 5.3).

RER]OR = ORSocial density X Spatial density — ORSocial density — ORSpatial density +1 (5 3)

— eTSOCial densily+TSpatial densily‘f’TSocial density X Spatial density ___ eTSocial density __ 6TSpatial density + 1

Overall we utilize various methodologies from spatial epidemiology and social network analysis
to understand the role of spatial and social connectivity on infectious disease outcomes. We bring
to light new techniques which can be used to visualize cases in social-geographic space to better
understand how disease may be spreading and investigate the impact of integrative measures of

social and spatial connectivity on disease outcomes.

5.3 Results

Our study included a final sample of 3,265 individuals within the six study sites (see Table 5.1). A
majority of our sample, 1,692 (51.8%), came from the community of Borbon. Based on our cen-
sused population, 55.7% completed the final sociometric survey. The community-specific response
rates ranged from 50.67% in Maldonado to 64.58% in Colon Eloy.

Disease risk varies by community A total of 213 (6.52%) individuals reported fever and/or
diarrhea in two weeks prior to survey administration (see Table 5.2). The outcome varied by
community ranging from 4.04% of the sample in Timbire to 11.91% of the sample in Colon Eloy.

We observed minimal missingness in the outcome variable (0.06%).
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Table 5.1: Survey Response Rate within Censused Population

Community Name

Completed Survey % Community

Total % Completed

Borbon

Colon Eloy
Timbire
Maldonado
Santo Domingo
Santa Maria
Total

1692
403
297
418
211
244
3265

51.82
12.34
9.10
12.80
6.46
7.47

3056 55.37
624  64.58
541 5490
825  50.67
365 57.81
453  53.86
5864 55.67

Table 5.2: Fever and/or Diarrhea by Community

Community Name No  Yes Missing % No % Yes Y% Missing
Borbon 1617 75 0 95.57 4.43 0.00
Colon Eloy 354 48 87.84 1191 0.25
Maldonado 392 26 O 93.78 6.22 0.00
Santa Maria 214 29 1 87.710 11.89 041
Santo Domingo 188 23 0 89.10 10.90 0.00
Timbire 285 12 O 95.96 4.04 0.00
Total 3050 213 2 9342 6.52 0.06
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Figure 5.3: (left) Borbon (right) Peripheral communities. Mean effect estimate and 90% (thick
line) and 95% (thin line) credible interval of interaction term (Social density X Spatial density
(100m)) in Bayesian (mixed-effects) binomial logit model of fever and/or diarrhea which includes
social density, spatial density (100m) and interaction of both along with confouders of both. Model
for GIM network is in red and model for PV network is in blue. The dashed vertical line indicates
an odds ratio of 1.0 (null).

Our primary exposures of interest follow patterns similar to those identified in previous papers
[22, 23, 118, 123, 124]. Increased social density (degree) was protective against disease in the
GIM network, odds ratio of 1.09 (95% CrI: 0.78, 1.51), but was risk inducing in the PV network,
odds ratio of 0.74 (95% Crl: 0.56, 0.95), in the five peripheral communities. Degree was not a
significant predictor against disease in the GIM network but was significant in the PV network at
the 95% credible interval level. In terms of spatial density in the peripheral communities, the odds
of disease was 1.01 (95% CrI: 1.00, 1.02) in the GIM network and 0.99 (95% CrI: 0.98, 1.00) in the
PV network, neither of which were significant at the 95% credible interval level. In Borbon, a one
unit increase in social density is associated with an odds of 0.70 (95% CrI: 0.34, 1.32) in the GIM
network and 0.92 (95% Crl: 0.42, 1.82) in the PV network. Social density was not significant in
either network with Borbdn. In terms of spatial density, a one unit increase (100m) was associated
with an odds of 1.00 (95% CrlI: 1.0, 1.01) in the GIM network and 1.00 (95% CrI: 1.00, 1.01) in
the PV network. Spatial density did not have a significant effect on disease risk in Borbén within
either network. Given differences of the magnitude and direction of the primary exposures within
the two models, our findings confirm that there is effect modification, for our primary exposures

and outcome, by population size (Borbén versus more remote communities).
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Table 5.3: Bayesian binomial logit model of fever and/or diarrhea of social density, spatial density
and interaction with confounders in Borbén. Bold indicate significance at 95% credible interval
level.

Network Parameter Mean Lower 95% Upper 95%

GIM (Intercept) 0.00  0.00 0.06
Social Density 0.70  0.35 1.29
Spatial Density (100m) 1.33 0.79 2.11
Social Density*Spatial Density 1.05 0.76 1.46
Afro-Ecuadorian Race 2.63 0.87 10.35
Chachi Race 0.00  0.00 6.39
Male 0.66  0.28 1.50
Literacy 431 0.60 80.01
Age 1.02  0.99 1.04

PV (Intercept) 0.01 0.00 0.19
Social Density 0.90 0.39 1.79
Spatial Density (100m) .12 0.58 1.96
Social Density*Spatial Density 1.05  0.76 1.46
Afro-Ecuadorian Race 1.47  0.55 4.47
Chachi Race 0.00  0.00 3.20
Male 0.79 0.32 1.88
Literacy 2.14  0.28 47.73
Age 1.01  0.98 1.04

Social density and spatial density exhibit multiplicative and additive effects on risk We
observed non-significant positive multiplicative interaction in the commercial center of (Borbon)
(ORsocial density X Spatial density = 1.05 (95% CrI 0.76, 1.46) and 1.05 (95% CrI 0.76, 1.46) in the GIM
and PV networks respectively). In the peripheral communities we observed interaction negatively
(ORsocial density X Spatial density = 0.76 (0.52, 1.09) and positively 1.32 (1.05, 1.67)) in the GIM and PV
networks respectively, but only the PV network effect was significant at the 95% credible interval
level. therefore, in Borbon multiplicative interaction of social and spatial density was positive
while in the peripheral communities multiplicative interaction was negative. This means living in
spatially dense areas of the community combined with having a large number of contacts is risk
decreasing in Borbon while it is risk increasing in the peripheral communities. With regard to
additive interaction (or the risk difference in illness for one additional meter in contact density) in
Borbodn, there was positive additive interaction (0.02 (95% Crl: 0.62, -0.94)) in the GIM network
and negative additive interaction in the PV network (0.03 (95% CrI: 0.79, -1.29)). With regard to
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Table 5.4: Bayesian mixed-effects binomial logit model of fever and/or diarrhea of social den-
sity, spatial density and interaction with confounders in peripheral communities. Bold indicate
significance at 95% credible interval level.

Network Parameter Mean Lower 95% Upper 95%

GIM (Intercept) 0.05 0.01 0.35
Social Density 1.09  0.77 1.51
Spatial Density (100m) 1.88  0.71 4.64
Social Density*Spatial Density  0.76 ~ 0.52 1.09
Afro-Ecuadorian Race 1.14  0.33 5.09
Chachi Race 428  0.88 27.94
Male 090 047 1.62
Literacy 0.87  0.37 2.19
Age 1.00  0.99 1.02
Intercept — Colon Eloy 1.54  0.65 4.11
Intercept — Timbire 0.64 0.19 1.57
Intercept — Maldonado 0.62 0.19 1.53
Intercept — Santo Domingo 1.66 0.71 4.74
Intercept — Santa Maria 0.72  0.20 1.88
Sigma 2.05 1.01 27.50

PV (Intercept) 0.18 0.03 1.14
Social Density 0.74  0.55 0.96
Spatial Density (100m) 041 0.16 0.96
Social Density*Spatial Density 1.32  1.05 1.67
Afro-Ecuadorian Race 0.50 0.22 1.22
Chachi Race 1.63 0.44 6.79
Male 0.88  0.51 1.49
Literacy 242 0.86 8.13
Age 1.00  0.98 1.02
Intercept — Colon Eloy 145 0.72 3.33
Intercept — Timbire 0.71  0.27 1.48
Intercept — Maldonado 0.75  0.29 1.57
Intercept — Santo Domingo 1.43 0.68 3.52
Intercept — Santa Maria 0.71 0.21 1.58
Sigma 1.59 1.01 10.13
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additive interaction in the peripheral communities, there was negative additive interaction in the
GIM network (-1.21, (95% CrI: , -0.0347)) and positive additive interaction in the PV network
(1.17, (95% Crl: 1.34, 0.75)).

5.4 Discussion

Social density and spatial density predict enteric disease outcomes and display interaction on the
multiplicative and additive scales. These variables display effect modification by community size
(commercial center versus smaller peripheral communities). Our analysis illustrates that, in relative
risk terms, individuals who live in dense neighborhoods with with a high number of social contacts
are at highest risk for disease in peripheral communities. In absolute risk terms, our analysis shows
that efforts to reduce the effects of spatial density on enteric outcomes will see the most benefit
among individuals with fewer social contacts.

Social density and spatial density have a multiplicative and additive effect on enteric dis-
ease outcomes The integrative influence of social and environmental factors continues to harness
attention within infectious disease literature [125, 126] but few studies provide empirical evidence
of how they interact. Social networks and geographic indicators are necessarily an indicator of un-
derlying processes within a community. They do not identify the processes themselves but rather
provide clues into what could be influencing disease that is not already accounted for. Many of
these processes occur beyond the individual level, making it challenging to quantify and utilize in
models of individual-level enteric disease risk. Our study provides some clues into what those un-
derlying processes could be by attempting to integrate two layers of risk: social density and spatial
density. We identify significant positive multiplicative interaction in the peripheral communities
within a contact network, highlighting the increased risk of those who live in densely populated
areas with a high number of social contacts. Further, we identify positive additive interaction in
the peripheral communities in the PV network illustrating that for interventions that seek to de-
creased crowding and population density for the purpose of mitigating enteric disease, applying
such interventions among those with fewer social contacts may yield more benefit.

Social and environmental factors interact to influence enteric disease outcomes Our find-
ings shed light on the integrative influence of social and environmental factors for the spread of
enteric disease at the individual level. Our analysis illustrates that while social density (degree)
and spatial density (neighborhood density) have independent effects on enteric disease outcomes,
they also have multiplicative and additive effects when interacted together. Previous studies have
demonstrated the independent contribution of both degree and neighborhood density on enteric
disease spread [22, 23, 25, 123], but we illustrate the multiplicative and additive influence of both

factors beyond their individual contributions to enteric disease risk alone.
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5.4.1 Limitations

Our findings represent an important advance in our understanding of the integrative effect of so-
cial and environmental processes for enteric disease risk measured at the individual level, but it is
important to keep in mind several limitations. First, because we were unable to identify and seek
participation from all individuals within the six communities, there is a possibility that our sample
does not represent that of the entire population within these communities. An advantage of this
study is that all individuals within the rural communities and a sizeable proportion in Borbon have
taken the census survey in 2021. Using this demographic information we are able to identify differ-
ences between the sampled population and the wider community. Overall, it seems that our sample
is older and has more schooling than the censused population, but this largely because the survey
was limited to those above the age of 12. We did not observe meaningful differences between the
study population and the censused population, based on available demographic information. We
did although have to leave out several people within the sample who were censused in the last
year, meaning that our sample is limited to those that we were able to identify in the census prior
to 2021. The addition of individuals added into the census after 2021 is possible, but will require
data matching which has yet to occur. We hope that by the time of publication these individuals
will be added to increase the sample size of our study.

Second, although there was extensive oversight and regular meetings with the field team, it is
possible that respondents taking the survey could not have responded truthfully or fully about the
number and names of people that the share general important matters with and/or visit within their
community. The field staff in our study are local members of neighborhoring communities who
have been trained in sociometric methods. Further, this is the fourth wave of the sociometric survey
beginning in 2003. Given the experience of both the field staff and the study team in conducting
this research, it is our hope that such measurement error would be minimized. The study findings
also reflect that of two previous studies conducted using the general important matters network [23,
127]. Third, this study was conducted two years after the SARS-CoV-2 pandemic and field staff
were required to conduct a wellness check prior to interviewing the respondent. Efforts were made
to revisit households that failed the wellness check (reported symptoms of COVID-19), therefore
in the end very few respondents remained who continued to fail the wellness check.

Lastly, our data was collected cross-sectionally and therefore reverse causality is possible.
For example it is possible that sick individuals reported fewer people in their contact and core-
discussion network because they are chronically ill. This extends to distance-based measures as
well, where sick individuals could report visiting and sharing important matters with nearby con-
tacts because of their inability to travel. Our survey questions attempt to prevent this by asking who
the respondent visits often and generally shares important matters with (rather than asking about

their contact with individuals in the past two weeks). Further, we would expect to see a difference

56



in the direction of the relationship between contact density and enteric disease in the PV versus the
GIM network, but this is not the case. It is also unlikely that acute diarrheal disease would change

long term travel patterns or relationships of patients given the nature of the illness being short.

5.4.2 Conclusion

Social and spatial density can be used together to target programming, policy and disease
modeling in semi-urban areas Identification of densely populated areas and high contact individ-
uals, can be used identify locusts of risks and to target interventions which seek to mitigate disease.
Social contact and geographic proximity are two important, well studied, elements of enteric dis-
ease risk [22, 23, 25, 118, 124]. We integrate these measures to illustrate that individuals living
in dense areas who also have a high number of social contacts experience increased disease risk,
especially in remote communities. We also postulated and confirmed that our primary exposures:
social density and spatial density are modified by remoteness and/or community size. Our findings
hold true after accounting for other known demographic confounders. Further research is needed
to determine how social and spatial density interact in other settings, but based on our analysis, it
is important to assess social and spatial density together when assessing environmental and social
aspects of individual risk. Further, policies which target crowding and housing density [128, 129]
many benefit from taking a contact-based approach to risk-mitigation, where groups of contacts are
provided interventions together to improve outcomes. Lastly, disease modelers [90, 130, 131] may
consider how social density and spatial density interact when establishing potential parameters to
assess the effectiveness of hypothetical interventions. Social and spatial environments interact to
create risk and advancing our understanding of this interaction could lead us to improvements in

the form of enteric disease morbidity and mortality.

5.4.3 Future Directions

In this analysis, we explored the interactive effects of social and spatial density on acute infection
risk within a commercial center and five peripheral communities. Looking forward, refinement of
this analysis and several related analyses have been identified to further advance questions related
to the integrative effects of social and spatial density on disease risk. To further strengthen this
analysis, we will draw upon additional census records which are to be added in the Summer of
2023 by data management coordinators so that we may increase our sample size. Additionally, a
of the sample will be needed. Therefore, additional descriptive tables and a re-implementation of
the regression model will be added at that time. This analysis brought to light several other research
questions, which will materialize into separate but related research papers in the near future. First,

a novel measure of contact density was generated after the identification of interactive effects
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between social and spatial density. Contact density is a weighted individual-level social-spatial
density measure which is an average distance to individuals who are identified as contacts within
the GIM and PV networks. Analysis utilizing this measure has advanced but it was determined that
the analysis related to contact density warranted a separate or extended version of this paper with
tangential research questions to those identified in this analysis and therefore is included in the
Appendix (see sections entitled “Contact Density Methodology™”, ”Contact Density Results” and
”Contact Density Discussion”). The analysis related to contact density also included a thorough
mapping of the social and spatial networks in each community (see Appendix) which illustrated the
impact of contact density on disease risk qualitatively. Lastly, to incorporate a temporal component
to questions of social and spatial density on disease risk, the communities of Timbire and Colon
Eloy were analyzed across four waves of data collection to determine the relationship between
spatial and social connectivity in 2007, 2010, 2013 and 2022. The three related analyses will form

a group of complementary papers to be published in the near future.
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CHAPTER 6

Conclusion

In this dissertation we utilize three different types of Infectious Disease (ID) data sets: surveillance,
census and household survey data to elucidate the mechanisms behind the social processes which
drive ID. We drew on frameworks of social disease transmission within traditionally socially medi-
ated infections such as HIV/AIDS and TB and applied them to what have been historically known
as “equal opportunity infectors”: respiratory illness and enteric disease [77, 132]. By generating
and drawing upon a coherent framework of how social and environmental factors lead to disparities
in infectious disease outcomes we were able to analyze heterogeneous social, environmental and
geographic contexts. We illustrate the importance of diverse and creative approaches to the study
of social processes including: the use of policy and behavior-informed periods of transmission
to observe mechanisms related to structural racism in the spread of COVID-19 in Michigan over
time, the identification of geographic clusters of disability prevalence derived from the census of
India and the interplay between increased contact and crowding in the spread of enteric disease in
northwestern Ecuador.

Each paper makes a unique contribution towards to the elucidation of particular elements of
the frameworks outlined at the beginning of this dissertation. Nonetheless, our papers illustrated
the need for further exploration into several more fundamental elements of the framework related
to data sources, data collection and levels of analysis. To gain a cohesive understanding of how
and why IDs spread among socially vulnerable populations these fundamental elements require
attention. Mainly we made observations related to a) the inability of traditional IDs data sources
to answer questions of social processes b) the lack of equity-informed data collection approaches
within ID surveillance and studies and c) the need for historically informed and cross-population

analyses. In this section we explore each of these observations in detail.
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6.1 Infectious disease and social determinants research re-

quires a rethinking of traditional data sources.

The study of social processes (such as racial capitalism, social cohesion, colonialization, construc-
tive resilience, development and patriarchy) and their effects on ID requires creativity about data
sources [76, 133—135]. Cohort studies (and their derivatives) are the most effective way to study
causality within epidemiology. Yet, very few individual-level or household-level cohort studies
of disease transmission collect data on social elements, with the exception of STDs/HIV research
where contact is socially mediated. Often such data is not only difficult to collect, but the social
processes may also have very complicated exposure pathways to the outcome of interest.

Given data constraints, analyses of social factors within ID are limited. Our analysis in Aim
3 which utilizes the EcoDess study provides some insight into social processes over time, but it is
a cross-sectional study and therefore causal inference can be limited. The uniqueness of this data
set, nonetheless, is the collection of social network characteristics alongside ID outcomes, making
it possible to draw inferences about complex social processes like social density, neighborhood
density and contact density as we discuss in Aim 3. In the absence of such data, researchers
often combine aggregated ID surveillance data with census or other national sample data to infer
associations about social processes. In Aim 1 and 2 we utilize census data (from the United States
and India respectively) to gain insight into social processes. For our Aim 1 analysis we were ideally
positioned to obtain race/ethnicity variables within SARS-CoV-2 surveillance data because of a
Federal U.S. government mandate several months into the COVID-19 pandemic after disparities
in race/ethnicity grew to astronomical levels within weeks of the virus entering the population
[136, 137]. Prior to that point, race/ethnicity data was not routinely collected as a part of ID
surveillance throughout the country [138].

Surveillance systems with social data are need for population-level analyses of disparities.
Although it is known that diseases like influenza, tuberculosis and HIV/AIDS have clear racial pat-
terning, the collection of race/ethnicity data has never been mandated within surveillance systems
at the federal level in the US [139, 140]. The debate is not limited to ID research, there has been
resistance to collecting race and ethnicity data within electronic health records and government-
based databases of chronic diseases for decades [141]. Nonetheless, it could be argued that the
collection of race and ethnicity data as a part of surveillance is even more pressing for ID research
given the acute nature of most IDs and the need to act with swiftness in cases of outbreaks and
emerging pathogens. Ultimately, there is a need for more policies, in line with the “Equitable
Data Collection and Disclosure on COVID-19 Act” of 2020, which require the collection of race,
ethnicity, country of origin and occupation data within ID surveillance systems to begin to answer

questions related to social factors in transmission at the population-level [142].
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Household transmission studies are well placed to collect data on neighborhood social
processes. Community and household level social processes such as residential segregation, occu-
pational exposure and social cohesion impact outcomes can be studied in the context of epidemi-
ological survey data. For example, household-based transmission studies of respiratory illnesses
(including various influenza sub-types and RSV) along with hospital-based studies of acquired in-
fections collected across diverse populations with information on income, wealth, race/ethnicity,
occupation and social capital could greatly advance questions of infectious disease disparities. An-
other emerging source of data for ID research, big data—including electronic health records, mobile
phone data, social network data and internet searches—could be leveraged (with caution) to better
understand how social processes impact ID outcomes [143]. This type of data is vast and requires
purposeful contextualization, but it has already shown promise within ID transmission research
generally for the past decade and could be extended to include more social exposures [18, 144].
Overall, there is a need to evaluate what questions traditional ID data sources can and cannot an-
swer and re-imagine them with social context in mind, if we are to advance important questions of

social equity within ID.

6.2 Studies of ID social processes benefit from collaborative

and participatory action research approaches.

Community-based transmission studies are often relegated to the “global South”. This is with
the exception of certain diseases which continue to be endemic in high-income countries such as
influenza, HIV/AIDS and hospital acquired infections—which we discuss extensively above. Many
studies of ID transmission in the global South are funded by institutions and agencies in the global
North. Recent calls for action within the field of global health highlight the need to evaluate the
inherent systems of power these types of relationships reinforce [135, 145-147]. Many call for
more involvement of local academic voices to set research agendas, evaluate processes and share
findings. Researchers in the global South have highlighted the disparity in ID agendas coming
from within versus outside their own countries [148].

ID research requires a justice-oriented approach. The role of traditional medical academic
centers in global health research is prominent and requires deep inquiry into what is and what is
not equitable. A recent publication entitled ”Anti-Racism and Anti-Colonialism Praxis in Global
Health—Reflection and Action for Practitioners in US Academic Medical Centers” brings to light
three central questions for researchers at these institutions to ask themselves and their colleagues:
1) How do I understand the legacies of racism and colonialism in global health? 2) How do I

value different ways of knowing in public health? 3) What are my motivations for global health?
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Inquiries into the nature of the relationship between traditional academic centers in the global
North and populations in the global South may bring to light assumptions such as “’poverty and
resource scarcity as the natural immutable reality” of these communities [135]. These types of
assumptions greatly inform how social factors are studied in the context of IDs and act as a lens
through which such processes are analyzed and reported upon. For example, our own research in
northwestern Ecuador was one of the first to demonstrate how community social cohesion, rather
than symbols of poverty and strife, were and continue to be a protective factor against ID outcomes
[118, 149]. Gaining clarity around the nature of relationships between actors within global health
will greatly inform whether and how social factors gain prominence in the study of ID transmission.

Participatory research can serve as a framework for action towards social equity. The
study of social equity and social processes within ID transmission in the global South requires the
participation of local communities and institutions. The field of participatory action research pro-
vides a framework for how communities can equitably contribute to research agendas, processes
and the dissemination of questions rooted in novel interventions, new policies and changes to so-
cial structures [150]. The approach has been utilized in several studies of disease transmission and
mitigation within LMICs and often includes strong collaboration with local research institutions
[151-157]. The extension of such studies to include social context and social variables is natural
and could further strengthen resulting interventions and policies. One of the challenges of partici-
patory action research studies, for the study of social factors, is their relatively small sample sizes.
Yet such challenges could be overcome with the inclusion of social factors in several studies, which
are then pooled together to understand community or regional processes. In summary, questions
which investigate social processes of ID transmission, anchored in populations of the global South
and/or minoritized populations, will produce more meaningful and actionable advances when the

means by which such data is attained is also thoughtfully examined and justice oriented.

6.3 The analysis of ID social processes requires historical and

cross-population analyses.

In a recent commentary, we draw on the foundational work of Drs. Link, Phelan and Clouston to
illustrate how fundamental social causes (such as racial capitalism, socioeconomic inequity and
discrimination) will continue to play a prominent role in ID outcomes if they are not addressed,
even after intervening on proximal mechanisms such as access to vaccines, testing and pharmaceu-
ticals [32, 75, 158]. To study fundamental causes of ID disparities a wider, more inclusive vision
of our sample is needed [46]. In the paper [159], we argue that ID research requires more than

a “social lens”—it requires a sociological imagination [159]. Utilizing the framework of revered
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sociologist, C.Wright Mills, the paper highlights the need for ID researchers interested in social
inequity to “grasp history and biography and relations between the two within society” (p11).
Researchers are then free to imagine possibilities for the study of social constructs and the like be-
tween societies, nations and points in time. In this way, we remove ourselves from the assumption
of natural and inevitable racial and social differences—so that we can imagine a society without
these constraints.

Studies of fundamental causes of ID transmission can build upon other disciplinary tradi-
tions. Few studies exist which evaluate cross-national and historical changes in social conditions
in relation to ID outcomes. Although cross-national studies of IDs exist, they seldom evaluate
social conditions and context [160-162]. Descriptive analyses of IDs within certain populations
throughout history provide important context on how fundamental social causes impact outcomes
[163—-165]. Researchers have advanced these questions with the limited data sources available
[32, 45], including our own work in Aim 1. Nonetheless, the translation of this research into tradi-
tional epidemiological analyses is lacking. Clouston et al. [75] in his paper ”A Social History of
Disease” provides a framework which elucidates fundamental social causes and how they have a
natural ebb and flow throughout the course of a particular diseases. Frameworks such as these are
useful in the design of studies and the analyses of surveillance data when evaluating fundamental
causes of ID outcomes. The framework provides context and encourages the researcher to deter-
mine whether and how the four stages of inequality should considered: 1) natural mortality (when
marginalized and non-marginalized populations have equitable outcomes) 2) producing inequal-
ity (when unnatural inequalities begin due to fundamental causes) 3) reducing inequality (when
both groups experience gains in health, though marginalized populations experience gains more
quickly) and 4) reduced disease (when inequities return to minimal levels). Overall, there are large
bodies of work within sociology, history and demography which we can draw upon as researchers
of ID social processes to inform our own research questions, processes and approaches.

In conclusion, the pursuit of data-driven approaches for the study of social processes of ID
requires a creative, justice-oriented and sociologically-informed framework. ID transmission is
complex, as is the study of fundamental social causes of disease. A poorly informed framework
could result in analyses which not only incorrectly classify exposure outcome relationships but
also perpetuate the very inequity they seek to eliminate. After the COVID-19 pandemic and the
grave inequities it produced, academic interest in the study of social factors ID transmission is
growing. We, collectively as the next generation of researchers, can only hope to develop a coher-
ent framework within which questions of social equity and ID can be pursued. As we traverse this
new terrain, we should keep in mind that before all else we must set justice before our eyes and

”withhold our selves not therefrom” [166].
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APPENDIX A

Timing of Infection was a Key Driver of Race/ethnic
Disparities in COVID-19 Mortality During the

Pre-vaccine Period

A.1 Additional Figures

March-June July-September October-December
50% ¢
40% A
30% » + o
/I g
20% pry - S
10% P 1. ¢ .-
.-~ — =
0%] ®--0--0-® o--0--0-0--0--9 o--0--0-0-0--0""
o 50%1
T 4094
g 40%
2 30% 1 2 E
® 20%- = o
(] ‘ L,
§ 10% _$ 4« e
0% 0--0--0-0-90"® o--0--0-0-0--0-¥ o--0--0-0-0--9 "
50%
[
40% /
30% ° §
20% » o |?
10% —e o o
e . g
0%i@-e--e-e-0"7 |[e--e-e-e-e-e T = [[e-e-e-e- e eV
[0,10)  [20,30) [40,50) [60,70)  >=80 [0,10)  [20,30)  [40,50)  [60,70)  >=80 [0,10)  [20,30)  [40,50) [60,70)  >=80
Age

Figure A.1: Age-specific SARS-CoV-2 case fatality rates (CFRs) by race/ethnicity for Michigan
residents during three periods of 2020. Each panel represents age-specific CFRs by race/ethnic
group (rows) for each of three time periods during the first year of the COVID-19 pandemic
(columns). Solid lines in each panel represent the crude (unadjusted) race/ethnic group-specific
CFR for all ages. Vertical lines at each point indicate the width of the 95% posterior credible in-
terval (Crl) of the estimated CFR.
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Figure A.2: Modeled race-specific case fatality rate ratio for all ages for Black and Latino residents
as compared to White residents of Michigan over three periods in 2020. This ratio indicates how
much higher or lower the case fatality of a Black or Latino resident was as compared to White
residents during a particular period.
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Figure A.3: Modeled age-specific case fatality rate (as a percentage) by race of Michigan residents
over three periods in 2020. The solid horizontal line represents the race-specific value for all ages
in each time period respectively. The vertical lines around the points indicate credible interval of
the case fatality ratio.
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Figure A.4: Modeled race-specific case fatality rate ratio for ages above 30 for Black and Latino
residents as compared to White residents of Michigan over three periods in 2020. This ratio indi-
cates how much higher or lower the case fatality of a Black or Latino resident was as compared
to White residents during a particular period. The solid vertical lines represent credible interval of
the case fatality risk ratio (or case fatality ratio of ratios).
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Figure A.5: Counterfactual vs. Observed COVID-19 mortality rates by race/ethnicity in Michigan,
2020. The heigh of each bar illustrates the observed mortality rate (white bars) and an estimate of
the group-specific mortality rates that would have resulted if minoritized residents experienced the
same pacing of infection as White Michigan residents (gray bars). Vertical brackets represent the
width of the 95% posterior credible interval (Crl).

A.2 Sensitivity Analysis

Figure A.6 - A.10 present the results of our sensitivity analysis assessing the robustness of our
results to non-differential missingness of race/ethnicity data across race/ethnic groups. Overall,
this analysis shows that our results are robust to the possibility of differential missingness of case
observations by race/ethnicity.

Figures A.6 & A.10 show that differential risks of missing observations by race/ethnicity overall
have small impacts on incidence and incidence rate ratios in the first and second period. These
effects are more pronounced in the third period, but their impact on overall mortality rates is
limited because of the dramatically decreased case-fatality rates during the final two periods as
compared to the first.

Additional sensitivity analysis. Another challenge with surveillance data of large population-
wide epidemics occurs if there is significant mortality within the at-risk population, which may
result in underestimates of cumulative incidence rates in subsequent periods. We conducted addi-
tional sensitivity analyses to determine if the IR, IRR, CFR, or case-fatality rates were robust to
the fact that the population denominators in fact changed over time due to COVID-19 mortality

within each racial/ethnic group. We found that our indicators were robust to such changes.
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Figure A.6: Modeled age-specific cumulative incidence rate per 100K of COVID-19 infection
for White Michigan residents over three periods in 2020. Observed data is shown in grey, and
the counterfactual/simulated data is shown in black. The columns progress in terms of the time
period. The rows progress in terms of the odds of a Black resident case being missing more than a
White resident case. These figures illustrate that as the odds of a missing case being a true Black
resident case compared to a White case increase, White residence incidence decreases. The first
row illustrates the scenario where the odds of a missing case being White or Black is equal.
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Figure A.7: Age-specific cumulative incidence/100K of COVID-19 infection for Black Michigan
residents over three periods in 2020 under three missingness scenarios. The original data (pre-
sented in the main body of the paper) is shown in grey, and the counterfactual/simulated data is
shown in black. The columns progress in terms of the time period. The rows progress in terms of
the odds of a Black resident case being missing more than a White resident case. These figures
illustrate that as the odds of a missing case being a true Black resident case compared to a White
case increase, Black residence incidence increases. The first row illustrates the scenario where the
odds of a missing case being White or Black is equal.
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Figure A.8: Age-specific incidence rate ratios for SARS-CoV-2 infection for Black Michigan resi-
dent as compared to White residents, over three periods in 2020 under three missingness scenarios.
Observed data are shown in grey, and counterfactual/simulated data are shown in black. Each col-
umn represents a separate time period. The odds of a Black resident case being missing relative to
a White increase with each row, with the top illustrating the scenario in which the odds of a missing
case being White or Black is equal. These figures illustrate that as the odds of a missing case being
a true Black resident case compared to a White case increase, the Black residence incidence rate
ratio increases.
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Figure A.9: Modeled race-specific case fatality ratio for all ages for Black and White residents of
Michigan over three periods in 2020. This ratio indicates the percentage of cases which resulted in
mortality for a given period. The original data (presented in the main body of the paper) is shown
in grey, and the counterfactual/simulated data is shown in black. The x-axis progresses in terms
of the time period. The rows progress in terms of the odds of a Black resident case being missing
more than a White resident case
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Figure A.10: Modeled race-specific case fatality risk ratio for all ages for Black residents as com-
pared to White residents of Michigan over three periods in 2020. This ratio indicates how much
higher or lower the case fatality of a Black resident was as compared to White residents during a
particular period. The original data (presented in the main body of the paper) is shown in grey,
and the counterfactual/simulated data is shown in black. The x-axis progresses in terms of the time
period. The rows progress in terms of the odds of a Black resident case being missing more than a

White resident case.

Table A.1: Missing Race/ethnicity Values within Dataset
Period Cases Deaths % Cases of Total % of Deaths of Total
July-September 7639 11 11.87% 1.26%
March-June 9564 153 13.98% 2.39%
October-December 83072 542 22.10% 9.36%
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Table A.2: Races within Latino ethnicity within cases of COVID-19 in 2020 in Michigan

Race Latino % of Total Latino Non-Latino % of Total Non-Latino Total in Each Race
Mixed 5 0.02 30 0.01 35
Asian 94 0.33 7237 1.52 7331
Black 726 2.53 60584 12.71 61310
Other 12963 45.18 19586 4.11 32549
Unknown 1886 6.57 94790 19.89 96676
White 13016 45.37 294368 61.76 307384
Total 28690 100.00 476595 100.00 505285
% Latino of Total 5.68 94.32
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APPENDIX B

Spatio-temporal Patterns of Disability in India:
2001-2011

B.1 Additional Tables

Type of Disability P-Value 2001 2011 Change from 2001 to 2011

Total 0.001 0.515 0.551 0.449
Seeing 0.001 0.353 0.515 0.479
Hearing 0.001 0.370 0.679 0.362
Speech 0.001 0.509 0.732 0.563
Movement 0.001 0.721 0.793 0.615
Mental Retardation 0.001 0.717
Mental Illness 0.001 0.707
Other 0.001 0.440
Multiple 0.001 0.657
Mental 0.001 0.709 0.483

Table B.1: Global Moran’s I of Disability in India across two years along with change
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Type

Definition

Seeing

Speech

Hearing

Movement

Mental

A person who cannot see at all (has no perception of light) or has blurred vision
even with the help of spectacles will be treated as visually disabled and code 1
will be entered under this question. A person with proper vision only in one eye
will also be treated as visually disabled. You may come across a situation where a
person may have blurred vision and had no occasion to test whether her/his eyesight
would improve by using spectacles. Such persons would be treated as visually
disabled.

A person will be recorded as having speech disability, if she/he is “dumb”. Simi-
larly persons whose speech is not understood by a listener of normal comprehen-
sion and hearing, she/he will be considered to having speech disability and code 2
will be entered. This question will not be canvassed for children up to three years
of age. Persons who stammer but whose speech is comprehensible will not be clas-
sified as disabled by speech.

A person who cannot hear at all (deaf) or can hear only loud sounds will be con-
sidered as having hearing disability and in such cases code 3 be entered. A person
who is able to hear, using hearing-aid will not considered as disabled under this
category.

A person who lacks limbs or is unable to use the limbs normally, will be considered
having movement disability and code 4 will be entered here. Absence of a part of
a limb like a finger or a toe will not be considered as disability. However, absence
of all the fingers or toes or a thumb will make a person disabled by movement. If
any part of the body is deformed, the person will also be treated as disabled and
covered under this category. A person who cannot move herself/himself or without
the aid of another person or without the aid of stick, etc., will be treated as disabled
under this category. Similarly, a person would be treated as disabled in movement
if she/he is unable to move or lift or pick up any small article placed near her/him.
A person may not be able to move normally because of problems of joints like
arthritis and has to invariable limp while moving, will also be considered to have
movement disability.

A person who lacks comprehension appropriate to her/his age will be considered as
mentally disabled. This would not mean that if a person is not able to comprehend
her/his studies appropriate to her/his age and is failing to qualify her/his examina-
tion is mentally disabled. Mentally retarded and insane persons would be treated
as mentally disabled. A mentally disabled person may generally depend on her/his
family members for performing daily routine. It should be left to the respondent to
report whether the member of the household is mentally disabled and no tests are
required to be applied by you to judge the member’s disability.

Table B.2: Defintion of Disability in the Indian Census 2001
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B.2 Additional Figures

(c) Speech

(d) Movement Disaﬁility (e) Mental Impairi ents

Figure B.1: Clustering of disability prevalence by type in the 2001 Indian Census at the district
level as measured by the local indicator of spatial autocorrelation (LISA) with correction for multi-
ple testing bias. Light red indicates high-high clustering, light blue indicates low-low cluster, dark
blue indicates low-high clustering and dark red indicators high-low clustering.
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(c) Speech

(h) Multiple i its I»«,,» o

(g) Other Impairmént

Figure B.2: Clustering of disability prevalence by type in the 2011 Indian Census at the district
level as measured by the local indicator of spatial autocorrelation (LISA) with correction for multi-
ple testing bias. Light red indicates high-high clustering, light blue indicates low-low cluster, dark
blue indicates low-high clustering and dark red indicators high-low clustering.
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(b)Hearing Impawrm@n{‘

f \{
(d) Movement Disa;bdity (e) Mental Impairment

Figure B.3: Clustering of change in disability prevalence by type in the 2001 Indian Census com-
pared to the 2011 Indian Census at the district level as measured by the local indicator of spatial
autocorrelation (LISA) with correction for multiple testing bias.

B.3 Additional Methodology

Methodology to Compare 2001 to 2011 Districts Given Boundary Changes The development
of the merged data set required many decisions with regard to weighting. For those districts that
were not carved out into more than one district, we weighted the population based on the square
kilometers (sq km) of the district. We start with those districts that were carved from. We multi-
plied the 2001 population with the sq km of the 2011 new district divided by the sq km of the 2001
district. In most cases, this weighting resulted in a perfect match (where the sq km from the 2001
district equaled the sum of the newly created district and the 2011 district sq km area). There were
although some discrepancies such as for the newly created district Ganderbad from Srinagar and
Shupiyan from Pulwama. In those cases, we utilized the values of the square footage reported and
attributed these to reporting error. If a district was carved out of more than one district then we
used the 2001 population of both districts summed together and then weighted this by the fraction
of the sq km of the new 2011 district and the sum of the sq km of the 2001 districts from which it
was carved. If two districts were carved of the same district (and that district had another district

from which it was carved out of) then we utilized the overlap in the map to determine the square
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km contributed from each old district. If one district was carved out from three districts (and those
districts were not used to make any other districts) then the difference in the values between orig-
inal district population and the weighted district population were taken. There were other cases
when the sq km of the 2011 district was larger than the sq km of the 2001 district. In the example
of Jehanabad in Bihar. Since the difference was 931 and the value was 3968 we assumed that
this was a typo and removed the 9. It seems that some states have more accurate sq km data than
others. For example, Arunachal Pradesh matched up completely. If there were two districts which
were carved out of one district only, then we multiplied the difference in the 2001 population and
the weighted population and multiplied by the fraction of the sq km of the new village and the
difference between the sq km of the district from which it was carved out from (2001 and 2011).
One districts the sq km value was larger in 2011 and there were not an immediate fix possible such
as for Kokrajhar in Assam. In this case we assumed that the district sq km did grow and weighted
accordingly. There were two new districts in Assam for which it would not possible to calculate
the weight, Baksa and Chirang because they were carved out of the same district (and other dis-
tricts also were carved from to create these districts). Therefore, there were two unknowns in the
problem and we could not solve for how many people would have been in this sq km of the district.
In this case we utilized a density weight where we summed all the people from the districts from
which the new district was carved divided by the sq km of the original districts from which it was
carved and obtained person per sq km for each variable which was then multiplied by the sq km of

the new district.
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APPENDIX C

Do Sociality and Spatiality Interact? Characterizing
the Joint Impact of Spatial Proximity and Social
Network Connectivity on Acute Infectious Disease

Risks and Intervention Efficacy

C.1 Additional Figures for Interaction Analysis

C.1.1 Censused Population Comparison to Sample Population
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Figure C.1: Differences between the study population and the censused population in all six com-
munities by age.
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Figure C.2: Differences between the study population and the censused population in all six com-

munities by number of years of schooling.
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C.1.2 Histograms of contact density across two types networks
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Figure C.3: Histogram of harmonic mean distance (meters) from contacts in the people visited
network in Borbon. The vertical line represents the mean (199.4368 meters).
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Figure C.4: Histogram of harmonic mean distance (meters) from contacts in the people visited
network in Borbon. The vertical line represents the mean (211.8205 meters).
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Figure C.5: Histogram of harmonic mean distance (meters) from contacts in the general important
matters network in Colon Eloy, Timbire, Maldonado, Santo Domingo and Santa Maria. The verti-
cal line represents the mean (155.0075 meters).
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Figure C.6: Histogram of harmonic mean distance (meters) from contacts in the people visted
network in Colon Eloy, Timbire, Maldonado, Santo Domingo and Santa Maria. The vertical line
represents the mean (155.3287 meters).
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C.1.3 Additional Model Results for Interaction Model
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Figure C.7: Odds of fever and/or diarrhea in Borbon per one unit increase in the number of individ-
uals in respondents’ network (degree). Results of Bayesian logistic regression with confounders.
Credible intervals at the 95% and 90% level.
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Figure C.8: Odds of fever and/or diarrhea in Colon Eloy, Timbire, Maldonado, Santo Domingo and
Santa Maria per one unit increase in the number of individuals in respondents’ network (degree).
Results of Bayesian mixed effects logistic regression with confounders. Credible intervals at the
95% and 90% level.
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Figure C.9: Odds of fever and/or diarrhea in all communities per one meter increase in distance
(harmonic average) from all other individuals in respondents’ community. Results of Bayesian
mixed effects logistic regression with confounders. Credible intervals at the 95% and 90% level.
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Figure C.10: Odds of fever and/or diarrhea in all communities per one meter increase in distance
(harmonic average) from all other individuals in respondents’ community. Results of Bayesian
mixed effects logistic regression with confounders. Credible intervals at the 95% and 90% level.

C.2 Contact Density Analysis

C.2.1 Contact Density Methodology

In this analysis we explore a novel measure of harmonic mean distance to contacts, which we call
contact density. This measure is adapted from a previous approach from Sarkar et al. [167] called
spatial degree.

To calculate contact density, we first generate adjacency matrices for each of the two networks
in our study, G for the general important matters network and P for the people visited network. This
adjacency matrix includes every ego (survey respondent) within the rows and columns (square ma-
trix). Therefore, the GIM network is represented by a [2,688 X 2,688] matrix and the PV network
by a [2,778 X 2,778] matrix with zeroes down the diagonal and ones whenever the individuals
represented in the row and/or column state connection (the survey respondent states that the in-
dividual is within their network; i.e. an ego-alter pair). This matrix is multipled by a pairwise

distance matrix of similar dimensions. The distance matrices for the GIM and PV networks are
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denoted by H and Q respectively. Therefore we obtain pairwise contact density values with the

following equations (see Equation C.1 and C.2)

(GH;j = gi1f1j + giofoj+ oo+ Ginfuj = Z Girfr (C.D
r=1

[PQlyj = piidij+ piede;+ o+ Pindng = Zpi,rqm‘ (C2)
r=1

To obtain the harmonic mean for each individual respondent, we inverse all the values in the
matrices described in C.1 and C.2 by dividing one by the result of each 75 value within GF and PQ.
We then sum over each individual row (see Equation C.3) to obtain an individual-level measure of

contact density.

V= (Ui)iLZJ — U; = ZI’Z’]‘ (C3)
j=1

We therefore obtain a vector v; where 7 represents an ego and divide this value by the number
of contacts within each th individuals’ network (degree). This measure allows us to quantify the
average distance of a respondents contacts. It combines information on who the respondent consid-
ers as within their network and where those contacts are located. Therefore a high contact density
value indicates that the respondent has social contacts who live in very different physical envi-
ronments from themselves (or outside of their neighborhood or barrio) and a low contact density
value indicates that the respondent has social contacts who share a similar physical environment to
themselves.

To explore whether the geographic distance of one’s social contacts matters we generate maps
to determine the relationship between where in geographic location one’s social contacts are and
risk of disease. We then implement a Bayesian generalized logistic mixed effects model with
a weakly informative prior to determine the association between the harmonic mean distance of
one’s contacts and disease risk for our multi-community analysis and without mixed effects for the
single community analysis.

We first aggregate our social network and illness data to the household level to allow for so-
cial network and geospatial mapping. We then generate the social network from the household
adjacency matrix (matrix of all households which are connected) with illness status within the ver-
tices (household aggregated illness status of each survey respondent) of the network graph using
the igraph package of R. Cases of fever and/or diarrhea at the household level are colored in red.
We visualized each separate community social network using the Kamada Kawai network layout

algorithm which separates large and small clusters of socially connected individuals within the
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network. We then visualize the network using household GPS coordinates (mapping the social
network to geographic space) of the individual nodes (survey respondents). Case households and
those socially connected to case households are visualized by a darker grey edge connection be-
tween nodes. We hope to visually capture any patterning—whether those who are ill have social
contacts who are far way compared to those that are healthy who have contacts who are nearby.
After our exploratory analysis, we hope to better understand how spatial and social factors interact
to affect transmission of enteric disease in all six of our study sites.

In the GIM network there were a total of 6,345 pairs of survey respondents (hereafter referred to
as egos) and individuals they named as someone whom they share important matters with (hereafter
referred to as alters). Please see Appendix Figure C.11 for an illustration of our final sample.
Several of these pairs were removed because the alter was not found in our census file at the time
of the survey. Of those 2,969 alter-pairs removed, 1,040 alters lived in another community outside
of the six study communities and 1,929 resided within our study sites but could not be found in our
census, due to changes in the census membership between the time of survey administration and
census capture or an a name provided by the respondent which differed from that recorded in our
census. Of those 3,376 alters that were found in the census a few did not have GPS coordinates
associated with their household leaving, 2,968 pairs. Several of these pairs were removed because
the ego did not have appropriate residency status (resided in the community for more than three
months), did not complete the survey and/or had missing GPS coordinates did not reside in the
same community, leaving 2,862 ego-alter pairs in the final dataset. For the purposes of mapping,
fever and/or diarrhea data was required of all nodes (potential individuals in the social network).
Therefore, we could only utilize alters who took the sociometric survey, this led to a mapping
sample of 2,375 pairs.

In the PV network there were a total of 5,199 pairs of egos and alters. Please see Appendix
Figure C.11 for an illustration of our final sample. Several of these pairs did not have an alter
with a valid studyID, leaving 3,397 pairs in the dataset. Several alters also were not located in the
census due to changes in membership, leaving 3,063 pairs. Further, eight of these pairs had an
alter without a GPS coordinate associated with their study ID and 55 of these pairs were removed
because the ego: 1) did not live in the community for more than three months, 2) had an incomplete
survey or 3) missing GPS coordinates. This led to a final dataset of 2,990 ego-alter pairs, of which
2,577 were used for mapping purposes because both the ego and alter took the sociometric survey
allowing us to record outcome data for both.

The regression models are detailed in the equations below. The first equation is for model of

peripheral communities and the second equation is for the model of Borbon.
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Figure C.11: Flow chart of individual ego-alter pairs (edges) in 2022 sociometric survey for the
general important matters network and final data set.
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Figure C.12: Flow chart of individual ego-alter pairs (edges) in 2022 sociometric survey for the
people visited network and final data set.
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Yij = (Bo + toj) + f1.X1 + B2 Xo+
B3 X3z + BaXy + Bs X5 + uj + €45

1 = ego,j = community

(C4)
X, = contact density, X, = race
X3 = sex, X, = literacy, X5 = age
u; = random intercept of community
Yi = 0o+ 51 X1 + B Xo + B3 X5+
+54 Xy + B5 X5 + € C5)

1 = ego, X; = contact density, X, = race

X3 = sex, X, = literacy, X5 = age

C.2.2 Contact Density Results

Contact density differs by illness status The average contact density within the GIM and PV
network in Borbon were 199.44 and 211.82 meters, respectively (see histograms in Figures C.3 and
C.4). The average contact density within the GIM and PV network in the more remote communities
were 155.01 and 155.33 meters (see histograms in Figures C.5 and C.6).

In Borbon, the mean contact density of an individual who was not ill in the PV network was
higher compared to those who were ill (242.8 meters (SD 248.1m) vs. 189.5 meters (SD 245.0m))
but this difference was not statistically significant at the p=0.05 level (see Table C.1 and C.3). In
the more remote communities, the mean contact density of an individual who was not ill in the PV
network was lower compared to the those who were will (149.8 meters (SD 194.3.9m) vs. 98.3
meters (SD 93.0m) respectively) and this difference was significant at the p=0.05 level (see Table
C.2 and C.4). The histogram of the ill and not ill group within the PV networks for Borbon and
the more remote communities illustrates the same (see Figure C.14 and C.16).

In Borbon, the mean contact density of an individual who was not ill in the GIM network was
higher compared to those who were ill (245.6 meters (SD 231.1m) vs. 173.3 meters (SD 240.7m)
but this difference was not statistically significant at the p=0.05 level (see Table C.1 and C.3). In
the more remote communities, the mean contact density of an individual who was not ill in the
GIM network was lower compared to the those who were will ((138.4 meters (SD 190.9m) vs.
110.9 meters (SD 141.5m) respectively) but this difference was also not significant at the p=0.05
level (see Table C.2 and C.3). The histogram of the ill and not ill group within the GIM networks
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for Borbon and the more remote communities illustrates the same (see Figure C.13 and C.15).

Table C.1: Summary of contact density (meters) in General Important Matters (GIM) and People
Visited networks in Borbon.

Network Illness Mean Median SD Min Max

GIM No 173.3 740 240.7 1.0 2033.1
Yes 245.6 177.6 231.1 1.0 687.9

PV No 189.5 108.2 245.0 1.0 2033.1
Yes 242.8 123.9 248.1 7.6 9754

Table C.2: Summary of contact density (meters) in General Important Matters (GIM) and People
Visited networks in five remote communities.

Network Illness Mean Median SD Min Max

GIM No 1384 78.8 190.9 1.0 2280.8
Yes 110.9 64.7 1415 1.0 687.2

PV No 149.8 93.1 1943 1.0 23129
Yes 908.3 744 93.0 2.0 4794

Table C.3: T-test of differences in contact density (meters) from contacts in ill versus not ill groups
in General Important Matters (GIM) and People Visited networks in Borbon.

Network Total Mean No Ill Mean Ill Mean T-statistic P-value
GIM -72.37 173.27 245.64 -1.70 0.10
PV -53.21 189.54 242.75 -1.20 0.24

Table C.4: T-test of differences in contact density (meters) from contacts in ill versus not ill groups
in General Important Matters (GIM) and People Visited networks in five rural communities.

Network Total Mean No Ill Mean Ill Mean T-statistic P-value
GIM 27.48 138.41 110.93 1.48 0.14
PV 51.48 149.79 98.31 4.46 0.00

Geo-referenced network structure of communities varies in commercial center versus ad-
jacent communities Overall, the Kamada-Kawai visualization illustrated that the structure of so-

cial networks in Borbon compared to the rest of the communities are different. The social network
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structure of Borbon is characterized by unconnected groups of individual and less social density.
The GIM network for the largest community, Borbon, is illustrated in Figure C.30 of the Appendix.
A large periphery of edges (connections between two individuals referred to as nodes) can be seen
(creating a semi-circle around the central network). This periphery contains many dual and tri-
node groups of edges. This pattern is expressed in the PV network as well but with larger groups
of edges in the periphery (see Figure C.23). The cases of fever and/or diarrhea in the GIM network
of Borbon seem to be concentrated more in the center of the network (where individuals with many
connections lie) compared to the PV network.

The Borbon networks present quite differently from the adjacent communities of Timbire,
Colon Eloy, Maldonado, Santo Domingo and Santa Maria (see Figure C.43 below for the PV
network of Santa Maria and Appendix Figures C.26, C.30, C.34, C.38 and C.42 for the GIM net-
works and C.27, C.31, C.35 and C.39 for the PV networks) where there is more social density. In
the adjacent communities, the pattern of peripheral edges (circle around the central large network
block) is less prevalent, with nearly every node connected to the main central network.

The georeferenced visualizations illustrate the relationship between our exposure of interest,
contact density, and the outcome, cases of fever and/or diarrhea. We identify that there is more dual
clustering (socially and spatially) in the adjacent communities compared to Borbon. In Borbon,
socially connected nodes who are ill (dark grey lines) are dispersed throughout the community (see
Figure C.24 below for the GIM network). In adjacent communities, for example in Santa Maria
(see Figure C.45 for the PV network below and Appendix Figure C.44 for the GIM network) the
geo-reference GIM and PV networks are more concentrated in groups of dark lines connecting
cases in closer proximity. The visualization of social network maps both spatially and aspatially
allowed us to determine the need to stratify the models with Borbon separated from the remain-
ing adjacent communities to account for effect modification [168], this was confirmed by model

results.
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Figure C.13: Histogram of differences in harmonic mean distance (meters) from contacts in group
with and without fever and/or diarrhea in the general important matters network in Borbon. The
vertical line represents the mean within the group.
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Figure C.14: Histogram of differences in harmonic mean distance (meters) from contacts in group
with and without fever and/or diarrhea in the people visited network in Borbon. The vertical line

represents the mean within the group.
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Figure C.15: Histogram of differences in harmonic mean distance (meters) from contacts in group
with and without fever and/or diarrhea in the general important matters network in Colon Eloy,
Timbire, Maldonado, Santo Domingo and Santa Maria. Timeline The vertical line represents the

mean within the group.
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Figure C.16: Histogram of differences in harmonic mean distance (meters)from contacts in group
with and without fever and/or diarrhea in the people visited network in Colon Eloy, Timbire, Mal-
donado, Santo Domingo and Santa Maria. The vertical line represents the mean within the group.
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Figure C.17: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Borbon. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.

101



Figure C.18: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santa Maria. Mapping in social network (people
visited). Red node is a case of diarrhea and/or fever and dark grey edges are connections to those
cases.

102



Figure C.19: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Borbon. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.
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Figure C.20: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santa Maria. Mapping in GPS coordinates of
homes and social network (people visited). Red node is a case of diarrhea and/or fever and dark
grey edges are connections to those cases.
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Figure C.21: (left) Borbon (right) Peripheral communities. Mean effect estimate and 90% (thick
line) and 95% (thin line) credible interval of contact density (per 100m) in Bayesian (mixed-effects)
binomial logit model of fever and/or diarrhea which includes confounders of exposure. Model for
GIM network is in red and model for PV network is in blue. The dashed vertical line indicates an
odds ratio of 1.0 (null).

Contact density plays a role in disease risk and does so differently in commercial center
vs. peripheral communities Similar to our descriptive findings, our model analyses suggests that
contact density is a significant risk factor for illness after accounting for known confounders in the
PV network within peripheral communities (see Figure C.21 right and Table C.6). We report the
results of our model as the mean of parameter distributions along with the 90% and 95% posterior
credible intervals. In the peripheral communities the relationship was negative in both the GIM and
PV networks, while in the more urban area of Borbon, the relationship was positive (See Figure
C.21 left and Table C.5). Therefore, having contacts who are further away (on average) in the
peripheral communities, decreases risk while in Borbon having contacts further away (on average)

increases the risk of disease.

C.2.3 Contact Density Discussion

Contact density is modified by factors related to community structure The geographic location
of one’s social contacts becomes increasing relevant in particular contexts, for example in remote
communities where shared environmental risk factors (like well water use, shared latrines and
small scale husbandry) continue to be a strong driver of infectious disease outcomes. Diseases that
are spread from person-to-person and via environmental intermediaries (a prime example being

enteric diseases) induce a shared geographic risk space between contacts. Further within(LMICs,
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Table C.5: Bayesian binomial logit model of fever and/or diarrhea of contact density with con-
founders in Borbon.

Network Parameter Mean Lower 95% Upper 95%

GIM (Intercept) 0.00 0.00 0.06
Contact Density (100m) 1.09 0.93 1.25
Afro-Ecuadorian Race  2.07 0.76 7.10
Chachi Race 0.00  0.00 6.37
Male 0.60 0.24 1.37
Literacy 3.43 0.48 62.61
Age 1.01 0.99 1.03

PV (Intercept) 0.01 0.00 0.16
Contact Density (100m) 1.07 0.91 1.23
Afro-Ecuadorian Race 1.40 0.55 4.29
Chachi Race 0.00  0.00 4.23
Male 0.76 0.32 1.74
Literacy 1.87 0.24 35.23
Age 1.01 0.99 1.04

especially within settings with lower population densities, distance remains a relevant measure of
changing environmental context. We propose a metric we denote as contact density, which is the
harmonic mean of the spatial distance of an individual to all their social network contacts. This
measure allows us to capture the joint social and spatial nature of infection risk, i.e. that both
proximity and social interaction are important contributors to exposure and infection risk. This
approach allows us to ask whether the geographic distribution of an individual’s social contacts
impacts their specific risk. To what extent are these spatial relationships reflective of person-to-
person contact rather than exposures in the shared environment? We explore integrated social and
spatial case networks in a location with endemic diarrheal disease. We generate maps of enteric
disease cases that compare Euclidean versus social distance. These maps allow us to visualize risk
differences between networks where social contacts are geographically dense versus those where
social contacts are geographically dispersed. We then generate an integrated social and spatial
connectivity metric we call contact density (the harmonic mean distance of one’s contacts) and
evaluate its influence on enteric disease incidence. Does the physical proximity of your contacts
matter in terms of disease risk? We hypothesize that spatio-social connectivity (being physically
close to those that you socially interact with the most) influences enteric disease incidence at the
individual level, even after accounting for measures (similar to previous studies) of physical and
social connectivity independently along with demographic confounders. Our analysis illustrates
that given the variable geo-social network structures of remote compared to more densely popula-

tion communities, contact density is risk inducing within networks in remote areas and protective
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Table C.6: Bayesian mixed-effects binomial logit model of fever and/or diarrhea of contact density
with confounders in peripheral communities.

Network Parameter Mean Lower 95% Upper 95%

GIM (Intercept) 0.08 0.01 0.45
Contact Density (100m) 0.90 0.70 1.10
Afro-Ecuadorian Race 1.05  0.32 4.53
Chachi Race 340 0.73 20.61
Male 091 0.50 1.61
Literacy 0.80 0.34 2.05
Age 1.00  0.98 1.02
Intercept — Colon Eloy 1.48  0.72 3.81
Intercept — Timbire 0.70  0.24 1.53
Intercept — Maldonado 0.68 0.23 1.48
Intercept — Santo Domingo 1.48  0.70 3.86
Intercept — Santa Maria 0.75 0.22 1.75
Sigma 1.72  1.01 12.44

PV (Intercept) 0.11 0.02 0.52
Contact Density (100m) 0.71 0.53 0.93
Afro-Ecuadorian Race 046 0.20 1.09
Chachi Race 1.47 0.42 5.75
Male 091 0.54 1.54
Literacy 238 0.84 8.18
Age 1.00  0.98 1.01
Intercept — Colon Eloy 1.45 0.81 3.18
Intercept — Timbire 0.78 0.33 1.42
Intercept — Maldonado 0.85 0.39 1.61
Intercept — Santo Domingo 1.22  0.65 2.70
Intercept — Santa Maria 0.77  0.27 1.49
Sigma 1.43 1.00 5.24
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in more densely populated areas. In remote areas as contact density (average distance of contacts)
decreases, enteric disease incidence decreases. We postulate that in remote communities contact
density highlights an underlying process of disease clustering in geo-social space. In other words,
living in a densely populated part of the community and having many social contacts are both risk
inducing but experiencing these both together (by having one’s social contacts within close prox-
imity) is significantly more risk inducing than each risk factor alone in peripheral communities.
We hypothesize that the direction of contact density’s effect is negative in peripheral communi-
ties because environmental factors relation to share latrine use, local husbandry and shared well
water may play more a role in these communities compared to commercial centers like Borbon.
Therefore, living in densely populated areas within the community and interacting with neigh-
bors regularly (by visiting them) in those same areas increases one’s risk more so than one of the
aforementioned risk factors. The direction of this relationship is observed in the contact (PV and

core-discussion network alike GIM, reinforcing the findings.
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C.2.4 Contact Density: Additional social network maps across two types of

networks
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Figure C.22: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Borbon. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases. 110
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Figure C.23: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Borbon. Mapping in social network (people
visited). Red node is a case of diarrhea and/or fever and dark grey edges are connections to those

cases.
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Figure C.24: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Borbon. Mapping in GPS coordinates of homes
and social network (general important matters). Red node is a case of diarrhea and/or fever and
dark grey edges are connections to those cases.
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Figure C.25: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Borbon. Mapping in GPS coordinates of homes
and social network (people visited). Red node is a case of diarrhea and/or fever and dark grey
edges are connections to those cases.
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Figure C.26: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Timbire. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.
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Figure C.27: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Timbire. Mapping in social network (people
visited). Red node is a case of diarrhea and/or fever and dark grey edges are connections to those
cases.
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Figure C.28: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Timbire. Mapping in GPS coordinates of homes
and social network (general important matters). Red node is a case of diarrhea and/or fever and
dark grey edges are connections to those cases.
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Figure C.29: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Timbire. Mapping in GPS coordinates of homes
and social network (people visited). Red node is a case of diarrhea and/or fever and dark grey
edges are connections to those cases.
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Figure C.30: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Colon Eloy. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.
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Figure C.31: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Timbire. Mapping in social network (people
visited). Red node is a case of diarrhea and/or fever and dark grey edges are connections to those
cases.
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Figure C.32: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Colon Eloy. Mapping in GPS coordinates of
homes and social network (general important matters). Red node is a case of diarrhea and/or fever

and dark grey edges are connections to those cases.
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metric survey administration in winter of 2022 in Colon Eloy. Mapping in GPS coordinates of
homes and social network (people visited). Red node is a case of diarrhea and/or fever and dark

Figure C.33: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
grey edges are connections to those cases.



Figure C.34: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Maldonado. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.
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Figure C.35: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Maldonado. Mapping in social network (people
visited). Red node is a case of diarrhea and/or fever and dark grey edges are connections to those
cases.
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Figure C.36: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Maldonado. Mapping in GPS coordinates of
homes and social network (general important matters). Red node is a case of diarrhea and/or fever
and dark grey edges are connections to those cases.
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Figure C.37: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Maldonado. Mapping in GPS coordinates of
homes and social network (people visited). Red node is a case of diarrhea and/or fever and dark
grey edges are connections to those cases.
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Figure C.38: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santo Domingo. Mapping in social network
(general important matters). Red node is a case of diarrhea and/or fever and dark grey edges are
connections to those cases.
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Figure C.39: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santo Domingo. Mapping in social network
(people visited). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.
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Figure C.40: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santo Domino. Mapping in GPS coordinates of
homes and social network (general important matters). Red node is a case of diarrhea and/or fever
and dark grey edges are connections to those cases.
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Figure C.41: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santo Domino. Mapping in GPS coordinates of
homes and social network (people visited). Red node is a case of diarrhea and/or fever and dark
grey edges are connections to those cases.
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Figure C.42: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santa Maria. Mapping in social network (general
important matters). Red node is a case of diarrhea and/or fever and dark grey edges are connections
to those cases.

130



Figure C.43: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santa Maria. Mapping in social network (people
visted). Red node is a case of diarrhea and/or fever and dark grey edges are connections to those
cases.
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Figure C.44: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santa Maria. Mapping in GPS coordinates of
homes and social network (general important matters). Red node is a case of diarrhea and/or fever
and dark grey edges are connections to those cases.
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Figure C.45: Cases of diarrhea and/or fever at the household-level in the two weeks prior to socio-
metric survey administration in winter of 2022 in Santa Maria. Mapping in GPS coordinates of
homes and social network (people visited). Red node is a case of diarrhea and/or fever and dark
grey edges are connections to those cases.
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