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Preface 
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currently published or in preparation. Chapter 1 contains an adapted version of the open access 

publication, L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine, 

belonging to the MDPI Metabolites special issue Mitochondrial Metabolism and Bioenergetics. 

Chapter 2 represents the open access publication, A Multivariate Metabolomics Method for 

Estimating Platelet Mitochondrial Oxygen Consumption Rates in Patients with Sepsis, from the 

MDPI Metabolites journal section Endocrinology and Clinical Metabolic Research. Chapter 3 

represents a manuscript draft that is under preparation with the title, Metabolic Disruptions that 

Precede Organ Dysfunction in an Early Sepsis Mouse Model Persist in Patients with Sepsis and 

Septic Shock. 
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Abstract 

 
Sepsis is a collection of clinical signs and symptoms that is described by life-threatening 

organ dysfunction inflicted by the body’s own response to infection. The pathophysiological 

origins of organ dysfunction are not well understood, but mitochondrial metabolic dysfunction 

has been implicated as an influential factor. Serum lactate levels, a metabolite biomarker, are 

currently used to evaluate metabolism in patients with sepsis. Although lactate is clinically useful 

in many patients, overreliance on this single metabolite obfuscates the many disturbed metabolic 

pathways that likely influence the progression of sepsis-induced organ dysfunction. The carnitine 

pool represents a family of metabolites that are well-established markers of disturbed 

mitochondrial fatty acid oxidation. Recently, our group and others have identified elevations in 

acetyl-L-carnitine (C2) as the acylcarnitine with the most robust associations with sepsis-induced 

organ dysfunction, mortality, infection, and inflammation. The focus of the dissertation was to 

establish connections between C2 and various markers of mitochondrial dysfunction to 

mechanistically credential C2 as a candidate biomarker by expanding the metabolic 

interpretation of the signal in sepsis.  

Developing multiple linear regression models with stepwise forward-backward variable 

selection, I identified metabolite signatures that were significantly associated with platelet 

derived mitochondrial oxygen consumption rates. One of the models included a negative 

association between whole blood C2 concentrations and baseline mitochondrial oxygen 

consumption rate, indicating that elevated C2 in the blood could represent lower mitochondrial 

function. 



 xiv 

Leveraging serum baseline concentration data from patients with septic shock, I 

identified a relationship between mortality and measurements of C2 and individual intermediates 

of the tricarboxylic acid (TCA) cycle, a key step in energy production via oxidative 

phosphorylation. I used multiple linear regression models to determine that septic shock non-

survivors at 28-days and 1-year had a stronger relationship between C2 and malate, when 

compared to survivors.  

I also employed a mouse model of sepsis in conjunction with data from human sepsis and 

septic shock cohorts to characterize the tandem progression of sepsis-induced organ dysfunction 

and metabolic disturbances that present throughout sepsis. In the sepsis mouse model, I observed 

whole blood measurements of L-carnitine (LC) and the C2/LC ratio were decreased and 

increased, respectively, in the septic animals compared to the controls. This finding suggests that 

measuring carnitine metabolism has diagnostic value as an early predictor of sepsis. Analysis of 

the human cohorts revealed perturbations in the carnitine pool (LC, C2, C2/LC) were present and 

positively associated with various assessments of organ dysfunction. I also discovered perturbed 

metabolic pathways in the kidneys and livers of the septic animals that precede widespread, 

clinically detectable organ dysfunction and damage. Many of these organ metabolite signatures 

were correlated to changes in the whole blood C2/LC ratio, suggesting the whole blood C2/LC 

ratio reflects a broad range of metabolic abnormalities at the organ level. Additionally, several of 

the sepsis-induced organ metabolic disturbances in the animals were detected and associated 

with organ dysfunction in the human cohorts, including histidine, malate, alanine, glutamate, 

aspartate, lactate, and glutamine. These findings provide a mechanistic link between the 

metabolic response with the onset and progression of sepsis-induced organ dysfunction.   



 xv 

Overall, various markers of mitochondrial metabolic dysfunction were found to have 

profound connections to blood measurements of C2. This work provided evidence to support the 

use of C2 as a candidate biomarker for the comprehensive assessment of metabolism in patients 

with sepsis.  
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Chapter 1 Introduction  

1.1 L-Carnitine and Acylcarnitines: Mitochondrial Biomarkers for Precision Medicine 

1.1.1 Introduction 

Mitochondria are widely investigated targets across different fields of biomarker 

discovery due to their expansive regulatory functions, which produce a vast range of molecules 

in response to disease and/or cellular dysfunction (1-6). Many metabolites are closely tied to 

components of mitochondrial function, but herein L-carnitine (LC) and the acylcarnitines (ACs) 

will be discussed for their untapped potential to serve as biomarkers for illness and drug 

response, including adverse drug reactions (ADRs). 

The carnitine pool, comprised of LC and the acylated derivatives (ACs), is recognized for 

facilitating fatty acid β-oxidation (FAO) in mitochondria and peroxisomes (7, 8). The carnitine 

pool represents a group of mitochondrial derived metabolites, the blood concentrations of which 

generally reflect disorders of long-chain FAO, also known as the inborn errors of metabolism (9-

11). The Health Resources & Services Administration of the U.S. Department of Health and 

Human Services recommends that neonatal screening includes tests for inborn errors of 

metabolism such as LC uptake or transport defects, medium-chain acyl-CoA dehydrogenase 

deficiency, long-chain L-3 hydroxyacyl-CoA dehydrogenase deficiency, very long-chain acyl-

CoA deficiency, and trifunctional protein deficiency (12). LC and AC levels are not routinely 

measured outside of this neonatal screening. Consequently, the utility of LC and ACs as 

metabolic biomarkers has predominately centered around the implications of this screening and 
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the significant clinical impact of found defects, which have been extensively reviewed elsewhere 

(13, 14).  

Recent advances in analytical methods coupled with the advancement of the science of 

metabolomics has brought LC and the acylated esters into the spotlight of biomarker discovery 

and research. Metabolomics is a systems biology science focusing on endogenous small 

molecules (<1500 Da) in a single biological sample, and pharmacometabolomics is the specific 

application regarding the metabolic response to drugs (15-17). Targeted measurements of free 

LC and the differing chain length ACs in the blood have revealed metabolic perturbations in 

patients across a variety of diseases and have been linked to drug toxicities. These findings bring 

new insights into the metabolic mechanisms that underlie certain diseases and ADRs. This 

knowledge may lead to the discovery of novel drug targets and influence therapeutic decision 

making. 

1.1.2 Carnitine, Acylcarnitines, and Mitochondrial Bioenergetics 

Primary Role: The Carnitine Shuttle 

Mitochondria produce the majority of the primary energy currency, adenosine 

triphosphate (ATP), for the body through various oxidation pathways (18). Of note, glycolysis 

and FAO are complex processes that involve a series of enzymatic reactions and translocation of 

intermediate products. LC participates in a shuttle system to import long-chain fatty acids into 

the mitochondria for subsequent FAO, as shown in Figure 1-1 (7, 9, 19). 
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Figure 1-1 The Carnitine Shuttle. 
The figure highlights the major components of the carnitine shuttle system that is required to import long-chain fatty 
acids (LCFA) into the mitochondria for oxidation. LCFA are converted to acyl-CoA via acyl-CoA synthase. Then 
the enzyme, carnitine palmitoyltransferase 1 (CPT1) produces acylcarnitines from acyl-CoA and free carnitine. 
Carnitine-acylcarnitine carrier (CAC; SLC25A20 gene) moves acylcarnitine across the inner mitochondrial 
membrane (IMM) as carnitine is exported out. CPT2 converts the acylcarnitine back into acyl-CoA and free 
carnitine. Acyl-CoA is then available for β-oxidation that produces 1 molecule of acetyl-CoA per cycle of oxidation, 
which enters the tricarboxylic acid (TCA) cycle. The cycle provides the necessary electron donors for the electron 
transport chain (ETC), thus powering oxidative phosphorylation 

Endogenous Carnitine Homeostasis 

LC is a small, polar molecule de novo synthesized from two amino acids, lysine and 

methionine, but, in humans, is largely acquired by dietary intake of animal products such as red 

meats, dairy, poultry, and fish (7, 8). The carnitine pool mostly resides in the skeletal muscle, but 

is also found in the blood, liver, kidney, brain, and heart (7). The plasma and tissues 

concentrations are heavily conserved, which allows for the detection of small perturbations. The 

normal plasma levels consists of 83% LC and 17% ACs, with acetylcarnitine (C2) representing 
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75% of the ACs (7). The compounds are highly regulated through reabsorption (98%) in the 

renal tubules and distribution in the tissues via the sodium dependent organic cation/carnitine 

transporter (OCTN) family (7, 8).  

Historically, blood concentrations of LC and ACs are reported to distinguish groups 

within a study. For example, they are often compared between control and experimental arms, 

reported as changes from baseline, or as a ratio between the summed value of all measured ACs 

(or individual ACs) to free LC. Since LC is much higher in abundance relative to the ACs, an 

AC/LC ratio in the blood exceeding 0.4 is thought to represent disturbed mitochondrial 

metabolism (7). Additionally, ratios of ACs and other metabolites, such as free fatty acids, have 

also been used to assess different metabolic pathways (20-23).  

Due to the tight regulation of the carnitine pool, perturbations in carnitine metabolism can 

also be identified through a quantitative, targeted analytical approach. Measurement of blood 

concentrations of specific ACs and LC may reveal the untapped potential of pinpointing 

disturbed metabolic pathways, which may help elucidate mechanisms that are affected by certain 

diseases and drugs.  

Metabolic Pathways of Acylcarnitine Production 

The total body carnitine pool is comprised of LC, short-chain (C2-C5), medium-chain 

(C6-C12), and long-chain (C14-C20) ACs (7, 24). The conventional abbreviation for ACs is 

shown as C followed by the chain length number, the number of saturated bonds after the colon, 

DC indicates a dicarboxylic acid, and an OH represents a hydroxyl group (e.g., C16:1-OH, 16 

carbons with 1 double bond and a hydroxyl attached to the acyl group).  

Notably, the short-chain ACs are derived from alternative energy sources, the branched 

chain amino acids (BCAAs; leucine, isoleucine, and valine) (25). During times of protein 
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catabolism, the BCAAs concentrations can increase, prompting utilization of LC. Specifically, 

propionylcarnitine (C3), C4-dicarboxylcarnitine (C4-DC), isovalerylcarnitine (C5) are produced 

during increased metabolism of leucine, isoleucine, and valine (25-27). Peroxisomes have also 

been implicated in the production of varying chain length ACs including C2, C3, C6, and C8 (10, 

28-31). The peroxisomes oxidize very-long chain fatty acids (>C22) and branched chain fatty 

acids that are incompatible with mitochondrial enzymes (32). Peroxisomes utilize the carnitine 

shuttle to transport the end-products (acetyl-CoA, propionyl-CoA, and medium-chain acyl-CoA) 

into the mitochondria for complete oxidation via the TCA cycle (7, 33). Peroxisomal β-oxidation 

is mostly involved with fatty acid biosynthesis, whereas, mitochondrial β-oxidation is directed 

toward energy production (32). Due to this functional distinction, mitochondrial β-oxidation 

likely produces the majority of the medium- and long-chain ACs measured in the plasma (27, 32, 

34, 35). Medium- and long-chain ACs are produced when fatty acid supply exceeds demand 

and/or the capacity of mitochondrial β-oxidation and the TCA cycle enzymes (23). 

Ultimately, the mitochondria remain the primary machinery that regulate the oxidation 

pathways of fatty acids, glucose, and BCAAs. Incomplete fatty acid oxidation, and disruptions to 

glycolysis and BCAA metabolism can be assessed by measuring blood concentrations of LC and 

various ACs. Targeted measurements of the carnitine pool may unveil mechanistic insights that 

open new avenues of translational research, allowing clinicians to connect disturbances in 

mitochondrial metabolism to clinical phenotypes and outcomes. 

1.1.3 Disease-induced Alterations to Carnitine Metabolism 

Disruption in mitochondrial metabolic function is attributable to a number of diseases. 

This has raised interest in the measurement of blood levels of LC and ACs to further understand 

how changes in mitochondrial macronutrient metabolism inform disease manifestation, 
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progression, and severity. Herein we address recent findings that demonstrate how disrupted 

carnitine metabolism informs the phenotypes of several major diseases, potentially elucidating 

mechanistic pathways that could provide pharmacodynamic targets.  

Diabetes Mellitus 

Patients with diabetes have underlying disruptions in carbohydrate and lipid metabolism 

that present as elevated blood glucose levels due to impaired insulin sensitivity or production 

(35). The metabolic interplay between insulin-dependent glucose metabolism and FAO are major 

areas of interest in diabetes research. The pathogenesis of insulin resistance and diabetes have 

been linked to intramitochondrial disturbances, specifically involving incomplete or reduced 

FAO and lipotoxicity (27, 36). Prevailing theories suggest incomplete FAO causes lipids (long-

chain ACs, acyl-CoA, ceramide, diacylglycerol) to accumulate in the cytosol leading to 

disruption and inhibition of insulin signaling (27, 35, 37). It remains unclear whether the short-

chain ACs reflect or inflict insulin resistance in diabetic patients (27). However, it is clear that 

C2 is involved with the regulation of metabolic flexibility, since LC utilization and C2 

production are important for maintaining glucose homeostasis (23). Unchecked lipid oxidation 

can stifle the response to insulin and hinder the switch from lipid to glucose metabolism 

following a carbohydrate meal, which is likely amplified in patients with impaired insulin 

sensitivity. The associated increase in C2 production helps regulate this transition by reducing 

acetyl-CoA concentrations, thus allowing glucose oxidation to progress. Then, increases in 

malonyl-CoA concentrations ultimately suppress FAO through CPT1 inhibition, completing the 

switch from fat to glucose oxidation.  

Numerous studies have reported disruptions in the carnitine pool with differential impact 

on levels of long- and short-chain ACs (27, 36). Type II diabetes (T2D) patients with 
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complications (e.g., retinopathy, hyperlipidemia, neuropathy) had 25% lower serum LC levels 

than diabetic patients without complications (38). Impaired insulin-dependent uptake of LC is a 

possible explanation, however, increased production of other ACs may also reduce the levels of 

LC in diabetic patients (27). The results of this study also highlight how measurement and 

interpretation of specific ACs profiles can inform of specific disruptions in metabolism. For 

example, positive correlations between hemoglobin A1c (HbA1c), a clinical parameter of 

glucose control, with plasma C2 and various short- and medium-chain ACs have been reported 

in T2D (22, 39). A positive relationship between C2 and HbA1c suggests that patients with 

worse glucose control (higher HbA1) are unable to maintain glucose homeostasis despite 

implementation of the C2 salvage pathway. The relationship between HbA1c with the short- and 

medium- chain ACs indicates a global metabolic dysfunction disrupting glucose, BCAA, and 

fatty acid metabolism. Plasma LC, BCAA-derived short-chain (C3, C4, C4-DC, C5), and 

medium-chain (C6, C8, C10:1), and long-chain (C14:1, C16, C18, C18:1) ACs were all 

significantly increased in T2D patients compared to lean, non-diabetic individuals after an 

overnight fast (22). The widespread disruption to the whole carnitine pool after an overnight fast 

emphasizes the inability of T2D patients to switch between fuel sources compared to healthy 

individuals. Another study that compared insulin resistant obese subjects and healthy lean 

subjects showed significantly increased concentrations of C3, C5, C6, and C8:1 in the insulin 

resistant group (40). The disruption in short-chain ACs suggests diabetes and insulin resistance 

also impacts metabolism of BCAAs, which is a growing area of study in diabetes research (41).  

Patients with insulin resistance and diabetes often present with perturbed long-chain ACs. 

The most plausible mechanism that contributes to this is intracellular inhibition/disruption of 

long-chain fatty acids on insulin signaling (27, 35). A prospective study published by the 
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American Diabetes Association found that plasma levels of long-chain ACs were the most 

predictive of the ACs for the development of T2D (36). Patients with gestational diabetes and 

newly diagnosed T2D had increased levels of serum medium-chain ACs with fewer differences 

in long-chain ACs levels (42). The authors speculated that this finding indicates mitochondrial 

dysfunction is minimal in the early stages of T2D. Moreover, patients in the early stages of 

diabetes development are able to complete more cycles of FAO leading to medium-chain AC 

production, compared to long-term diabetic patients who succumb to FAO dysfunction (fewer 

cycles), and as a result produce more long-chain ACs. 

These examples illustrate that measurements of LC and its derivatives can inform about 

the different components of mitochondrial metabolic function in diabetic patients. Associations 

between HbA1c and increased C2 or other ACs are indicative of global metabolic dysfunction 

that extends beyond hyperglycemia. Long-chain ACs seem to be the most predictive of the 

development of T2D, however, the medium-chain esters may also be helpful in identifying early 

or transient diabetes in patients. Different scenarios of LC and AC concentrations likely reflect 

distinct metabolic dysfunction in this population, which opens the door for new targeted 

therapeutic interventions or prognostic tests. Interestingly, there are a growing number of studies 

that show supplementation with LC improves glucose homeostasis through stimulation of the C2 

salvage pathway that invokes metabolic flexibility (23, 43, 44). Albeit larger studies are 

necessary to validate and strengthen the biomarker potential and the therapeutic benefits of 

targeting these pathways before translation into clinical practice is attainable. 

Cancer 

Reprogrammed metabolism, a hallmark characteristic of cancer, provides the necessary 

conditions for growth in substrate dependent environments (45). The Warburg effect, which 
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favors glycolysis, leads to an upregulation in the compensatory pathways to fuel the TCA cycle, 

specifically, increased oxidation of BCAAs and fatty acids (46). Considering these adaptations, 

the carnitine pool is uniquely positioned to reflect the changes that occur during cancer 

development and progression. Targeted measurement of LC and ACs may afford new 

opportunities in cancer diagnosis, prognosis, and even new pharmacological targets. Herein we 

discuss the forms of cancer for which there is evidence of disrupted carnitine metabolism. 

Hepatocellular carcinoma (HCC) is primarily caused by chronic inflammation and liver 

damage stemming from various insults such as hepatitis B, hepatitis C, and nonalcoholic fatty 

liver disease (NAFLD) (47). The liver is a major regulator of energy metabolism and the primary 

location of LC biosynthesis (47, 48). In cases of severe liver damage, such as HCC, there are 

reports of impaired FAO leading to elevated ACs in the blood (47, 49). Several studies have 

reported similar findings about the ability of serum concentrations of LC, short-chain, medium-

chain, and long-chain ACs to differentiate patients with HCC from those with liver disease or 

healthy controls. The authors observed increased LC, decreased short- and medium-chain ACs, 

and increased long-chain ACs (49-52). Differences in the AC response to disease can inform the 

metabolic landscape without the need for an invasive measurement such as a liver biopsy. The 

distinct pattern of decreased short- and medium-chain esters with increased long-chain ACs 

indicates the disruption is likely early in FAO. The increase in LC could represent a number of 

metabolic impairments such as a reduced uptake of LC or cell death leading to an intracellular 

LC contribution to the blood level. Based on the available studies, measured carnitines may offer 

a diagnostic tool to distinguish HCC patients from healthy subjects or those with other liver 

diseases.  
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Irregularities in AC concentrations have been identified in other cancers as well. A 

metabolomics analysis conducted using the plasma of breast cancer patients with matched 

controls found an association between C2 and the risk of breast cancer (53). It logically follows 

that cancer presenting in different tissues would have differing effects on carnitine metabolism. 

The signal in breast cancer patients pointing to C2 as the lone AC suggests the malignant tissue 

invokes the metabolic flexibility pathway as it switches between glucose and fat utilization. 

Another metabolomics study aimed to discriminate colorectal adenoma, colorectal cancer, and 

healthy subjects (54). The authors found that serum ACs spanning the whole spectrum from 

short-chain to long-chain as consistently differentiated between the patient groups. The findings 

suggest that ACs may have value as early detection biomarkers of colorectal adenoma and 

colorectal cancer. Yet another metabolomics analysis in serum concluded differences in carnitine 

metabolism between papillary thyroid cancer and benign nodules (55). Yao et al observed 

increased serum concentrations of medium- and long-chain ACs in the cancer cohort compared 

to the benign group. In line with previous conclusions, the increase in medium- and long-chain 

ACs suggests that patients are in an early to mid-stage of cancer development. This type of 

inferencing, if further studied and properly validated, could add new criteria to the staging of 

cancers, which could significantly influence therapeutic decision making. 

The prolific metabolic switching observed in various cancers emphasizes the crucial role 

metabolic flexibility plays in this disease, which is reflected in the blood LC and AC profile (56). 

The diversity of cancer is vast, manifesting in different tissues through various mechanisms, yet 

current evidence suggests that differential concentrations of ACs may have diagnostic value for 

certain forms. By measuring the carnitine pool, clinicians and researchers can identify pathways 

that are exploited by cancer cells, which could lead to new biomarkers or druggable targets. 
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Heart Failure 

Due to the advancements in cardiovascular treatments and increased life span of the 

aging population, a paradoxical increase in patients with heart failure is occurring (57, 58). In 

these patients, dysfunctional myocardial tissue has known energy disruptions and shortcomings 

that include decreased ATP and phosphocreatine, as well as, abnormalities in FAO (57). 

Considering this disruption, the carnitine profile represents measurable metabolites in the blood 

that directly reflect the metabolic derangement present in the failing heart (59). Additionally, the 

healthy heart primarily uses FAO for energy, but showcases metabolic flexibility by utilizing 

glucose, lactate, ketone bodies, and amino acids, further supporting the utility of the carnitine 

pool in understanding the metabolic consequences of heart failure. 

A recently published study reported that plasma long-chain ACs were significantly 

elevated in patients with heart failure compared to controls (60). Furthermore, the elevated AC 

signal (C16, C18:2, C18:1, C16:1-OH/C14:1-DC, C20:4) increased linearly with decreasing left 

ventricular ejection fraction, which is a defining clinical characteristic of heart failure. The signal 

enabled the authors to distinguish between the two heart failure phenotypes since the long-chain 

ACs were higher in those with reduced ejection fraction (HFrEF) compared to the subjects with 

preserved ejection fractions (HFpEF). The phenotypic distinction suggests the ACs have 

potential utility in supporting the current heart failure classification as an objective measure of 

heart failure staging but would need further replication and validation. A more clinically guided 

study by Ahmed et al identified several groups of plasma ACs that were associated with defined 

clinical outcomes (61). Groups of mostly medium- and long-chain ACs were found to be 

associated with all-cause mortality or all-cause hospitalization, when adjusted for known 

predictors of each outcome. However, only the long-chain AC group (C16, C18:2, C18:1, C18, 
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C20:4) was associated with lower peak VO2 (a negative clinical characteristic of heart failure), 

cardiovascular death/hospitalization, and heart failure exacerbation. Furthermore, the individual 

levels of C16, C18:1, and C18:2 were significantly higher in patients with end-stage heart failure 

prior to left ventricular assist device implantation and decreased with improved circulatory 

support. The findings of this study suggest long-chain ACs have clinical utility in assessing 

disease severity in the heart failure population. After validation in larger cohorts, clinicians could 

eventually personalize therapy based on a given patient’s AC profile. A metabolomic analysis 

conducted by Ruiz et al found that plasma LC and numerous ACs differentiated between a 

healthy control group and patients with heart failure (62). The heart failure patients had higher 

levels of LC and various chain-length ACs (C2, C4, C6, C8, C10, C12, C14, C16, C18, C18:1, 

C18:2) than in the control group, when adjusted for sex, age, renal function, and insulin 

resistance. Additionally, C2 and the medium-chain ACs were positively associated with NT-

ProBNP, a clinical marker of disease severity, suggesting that the increase in metabolite 

concentrations were indicative of worsening disease. Interestingly, the researchers stratified the 

heart failure group by diabetes status and found C2 to be increased in the diabetic subgroup. The 

full range of ACs reflect the widespread disruption to FAO, as well as BCAA and glucose 

oxidation that occurs in heart failure. However, the C2 distinction by diabetes status likely 

reflects that patients with heart failure have more disruptions in FAO than glucose metabolism. 

This is further supported by other studies predominantly showing the long-chain ACs as the 

differentiating ACs in heart failure. 

Of all the ACs, the long-chain ACs seem to be the most associated with heart failure 

clinical outcomes. They also may play a physiological role in exacerbating the disease 

progression. The known biological effects of long-chain ACs suggest a possible mechanism of 
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inflicting cellular damage through promoting skeletal muscle inflammation, reactive oxygen 

species (ROS) production, cellular stress, and insulin resistance (60). More research in this area 

is warranted to strengthen the prognostic usefulness of long-chain ACs and to further elucidate 

the perturbed mitochondrial pathways as potential therapeutic targets. 

Sepsis and Septic Shock 

Despite the United States spending over an estimated $41 billion on sepsis care, it 

continues to be a leading cause of mortality with rates rising above 40% in those identified with 

septic shock (63, 64). In 2016, characterization of the syndrome was reevaluated to develop a 

consensus definition that more accurately reflected the advancements in our pathobiological 

understanding (64). Broadly, sepsis is “a life-threatening organ dysfunction caused by a 

dysregulated host response to an infection” (64). Septic shock is the more severe form that 

includes persistent hypotension and elevated lactate concentrations (64). Sepsis is acknowledged 

to be a syndrome rather than a specific illness due to the limited comprehension of the 

pathobiology, interpatient heterogeneity, and lack of a gold standard diagnostic test (64). The last 

30 decades of research have uncovered more biological pathways (cardiovascular, hormonal, 

neuronal, metabolic, bioenergetic) are perturbed by sepsis than simply the immune response, as 

previously thought (64). The metabolic component is increasingly recognized as one of the 

potential causes of sepsis-induced organ dysfunction, a driving factor of mortality rates in this 

population (15, 65-67). Maintaining normal carnitine homeostasis is vital for mounting an 

immune response, especially in the case of a severe infection such as sepsis (68). The connection 

between the carnitine pool and sepsis via the immune system and metabolism makes targeted 

analysis of these compounds a valuable pursuit. 
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Several studies have observed a range of sepsis-induced disruptions in carnitine 

metabolism between survivors and non-survivors of sepsis and septic shock (69-73). A 

comprehensive study by Langley et al found the short- and medium-chain AC plasma profiles to 

be the most pronounced between sepsis survivors and non-survivors at 28 days (69). The ACs 

(C2, C5, C6, C8, C10) were significantly increased in the non-survivors even after adjusting for 

renal function. Absence of the long-chain ACs from these findings point to a similar conclusion 

found in some of the diabetes studies. Increased short- and medium-chain esters may reflect 

newly developed FAO dysfunction, meaning that β-oxidation cycles successfully shortened the 

long-chain fatty acids before eventual disruption. These findings were further corroborated by 

another study that reported disruptions in the short- and medium-chain plasma AC profiles of 

sepsis patients (70). The authors noted increased levels of various short- and medium-chain ACs 

were associated with markers of hepatic and renal function and infection/inflammation. 

However, only C2 was associated with all of these indices and 28-day mortality. The distinction 

separating C2 from the other ACs in this study poses an interesting hypothesis. The higher 

plasma C2 levels in the non-survivors compared to the survivors might be due to the 

unsuccessful switch between nutrient sources leading to the overproduction of C2 in an attempt 

to achieve metabolic flexibility. The ability or inability to switch between fuel sources during the 

high metabolic demands of sepsis could influence the immune response to the infection, organ 

dysfunction, and ultimately, survival. Puskarich et al. found distinct LC and AC serum profiles in 

septic shock patients between 28-day survivors and non-survivors at baseline and following 

supplementation with intravenous LC (71). This finding suggests that increased concentrations of 

LC, C2, C3, and C8 at baseline are predictive for sepsis mortality. This conclusion also 

corroborates the findings of the previously mentioned sepsis studies that showed sepsis-induced 
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perturbations in the short- and medium-chain ACs. Interestingly, the researchers also 

hypothesized that the use of LC supplementation provoked a latent phenotype in the 

metabolome, including the carnitine pool, that informed the response to the therapeutic 

intervention (17). Furthermore, a pharmacometabolomics analysis of a clinical trial using 

intravenous LC in patients with septic shock reports that baseline C2 concentrations are 

predictive of a mortality benefit from the treatment (74). 

Indeed, the carnitine pool profile is informative of the metabolic derangement that 

presents during sepsis. The short- and medium- chain ACs appear to be the more prominently 

disturbed esters in this disease state. The presence of the short-chain ACs could indicate greater 

oxidation of the BCAA, whereas the medium-chain compounds may reflect disturbed 

peroxisomal FAO or partially impaired mitochondrial FAO. Regardless, targeted measurements 

of the carnitine pool offer insights into the metabolic derangement of sepsis that provide 

opportunities to develop new pharmacologic interventions and prognostic biomarkers. 

1.2 Sepsis is a Metabolic Syndrome 

1.2.1 Metabolic Derangement  

The development of sepsis presents with a global metabolic derangement that 

encompasses a wide range of metabolic pathways. Metabolomics approaches can be used to 

identify specific targeted sets of metabolites like the carnitine pool or using an untargeted 

platform capturing a broad range of compounds (15). Researchers can use either approach to 

discern metabolic signatures that can yield patient phenotypes that may be useful for prognosis 

and diagnosis. Numerous studies on patients with sepsis have found metabolite signals in various 

biospecimens that are differentiating between survivors and non-survivors, sepsis and healthy 

controls, and early vs late onset sepsis in neonates (17, 69-72, 75). After the differentiating 
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metabolites are identified, the directionality of the concentrations and the metabolic pathways 

involved aid in the interpretation of the results. Metabolic pathways such as amino acid 

metabolism, mitochondrial FAO, TCA cycle, and the pentose phosphate pathway have all been 

shown to be perturbed in patients with sepsis (15). Associations between sepsis-induced organ 

dysfunction and various metabolite groups, such as the carnitine pool and amino acid 

metabolites, have been reported (70, 76). Establishing connections between the disturbed 

metabolic pathways and clinically relevant outcomes is critical to facilitate the translation of 

metabolites to validated biomarkers. Viewing sepsis from a metabolic perspective affords the 

opportunity for early identification of prognostic phenotypes and sheds light on metabolic 

mechanisms that could serve as potential drug targets for new therapies. 

1.2.2 Metabolic Pathobiology of Sepsis-induced Organ Dysfunction 

The full extent of the mechanisms leading to sepsis-induced organ dysfunction are 

incompletely understood. However, the past few decades of research have shed light on the 

complex interplay between the initial infectious insult and the metabolic consequences that 

follow. Broadly, the early pro-inflammatory response coincides with a hierarchical reallocation 

of energy consumption through a preferential use of glycolysis over oxidative phosphorylation 

and the downregulation of non-essential cellular pathways (77-79). This metabolic restructuring 

is thought to be an adaptive response to limit or prevent apoptotic tissue damage from occurring 

due to an uncontrolled energy imbalance (79). As a result, the downregulation of oxidative 

phosphorylation and high energy non-essential pathways is at least partially responsible for the 

early reduced organ function observed in sepsis (77). The inability to switch from the initial pro-

inflammatory/glycolytic response to the anti-inflammatory/oxidative phosphorylation phase has 

been associated with chronic inflammation and perturbed organ recovery (80). In fact, the failure 
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to restore homeostatic metabolic processes has been linked to the development of persistent 

inflammation, immunosuppression, and catabolism syndrome (81). 

The mitochondria facilitate many of the metabolic processes that are disturbed during 

sepsis progression (66). An estimated 98% of the total body oxygen consumption occurs within 

the mitochondria which is consumed during the production of ATP via oxidative 

phosphorylation (66). Apart from their role as the powerhouse of the cell, they are also involved 

in the production of reactive oxygen species, intracellular calcium regulation, thermoregulation, 

apoptosis, and hormone production (66). Due to the diversity of biological roles, mitochondrial 

function is a broadly used term that can be assessed by measuring different metrics such as 

oxygen consumption rate, mitochondrial membrane potential, and mitochondria-linked 

metabolite concentrations (15, 82, 83). The presence of mitochondrial dysfunction in sepsis has 

been widely characterized in clinical and preclinical studies(15, 64-66, 84). The organelles and 

their DNA are also recognized as Damage-Associated Molecular Patterns that further instigate 

the inflammatory response (78). Overall, mitochondrial dysfunction has been implicated as one 

of the potential causes of sepsis-induced organ dysfunction (66, 67).  

Due to the critical role of oxygen in the production of ATP, inadequate oxygenation of 

tissues was believed to be the main connection between mitochondrial dysfunction and sepsis-

induced organ dysfunction or failure (67). The hypothesis is derived from the known impact of 

systemic inflammation on the cardiovascular system (66). The reported cardiovascular 

dysfunction is heavily influenced by mitochondrial pathways such as oxidative stress, abnormal 

calcium handling, and down regulation of mitochondrial genes (78). Other irregularities like 

coronary microvascular changes, increased vascular permeability, nitrosative stress, and 

disrupted tissue microcirculatory also contribute to organ hypoperfusion and tissue hypoxia (78). 
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This framework has since been undermined by the reports of minimal cell death in the organs 

from sepsis patients, coupled with the observations of increased oxygen tensions in both human 

sepsis and animal models of sepsis (66, 85, 86). Tissue hypoxia may occur in some areas, but it 

is not the sole driver of sepsis-induced organ dysfunction due to the paradoxical lack of cell 

death observed in affected organs.  

1.2.3 Acetyl-L-carnitine as a Sepsis Biomarker 

Lactate is currently the gold standard metabolite biomarker that guides treatment 

regimens and presides in the Sepsis-3 definition of septic shock (64). While it is well supported 

as a prognostic biomarker for mortality and organ failure, the mechanistic understanding is 

misattributed to anaerobic glycolysis due to tissue hypoxia (78, 86). Lactate production does 

occur during anaerobic metabolism; however, it can also be generated from liver dysfunction, 

drug inhibited metabolism, and adrenergic stimulated aerobic glycolysis (78, 87). Lactate serves 

as an important metabolic intermediate that is used to generate glucose through gluconeogenesis 

and contribute to oxidative phosphorylation through a conversion to pyruvate (86). The role as a 

fuel source is particularly important during a high energy demand condition like sepsis. Organ 

specific lactate studies are sparce but there is evidence to suggest that the splanchnic bed 

consumes lactate when the muscles are hypoxic, the brain and heart consume lactate under 

duress, the kidneys convert it to glucose, and both the lungs and skeletal muscle generate lactate 

(86, 88). Garcia-Alvarez et al suggest that elevated lactate levels in sepsis are not a reliable 

marker of tissue hypoxia and more likely evident of a stress induced metabolic adaptation that 

uses accelerated glycolysis to increase lactate stores as an alternative fuel source (86). From a 

clinical perspective, lactate has limited use as a biomarker beyond the first 8 hours of treatment 

and in cases of septic shock (89). Additionally, researchers found that 47% of subjects enrolled 
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in a multinational study of patients with sepsis had normal serum lactate levels (<2 mmol/L) 

during their first day in the ICU, yet mortality rates in this group remained high at 17% (87). 

Overall, lactate levels are a useful biomarker in sepsis, but far from perfect, leaving room for 

new biomarkers to help fill the gaps. 

Adopting the aerobic glycolytic interpretation, increased lactate levels in sepsis may only 

serve to capture a small piece of the full metabolic derangement of sepsis. As previously 

mentioned, carnitine and the acylcarnitines are known markers of mitochondrial dysfunction that 

are primarily produced via mitochondrial FAO (7). Numerous reports have shown impaired 

carnitine metabolism in patients with sepsis and septic shock, with C2 as the most consistently 

associated with mortality, organ failure, and inflammation (69-73). Measurements of the 

carnitine pool may offer a more direct insight into sepsis-associated mitochondrial dysfunction 

than lactate. Since the carnitine pool indicates impaired mitochondrial FAO, it helps represent 

the metabolic blind spot that is not reflected in the glycolytic lactate signal.  

However, the sepsis-induced metabolic mechanisms leading to the production of C2 are 

not specifically characterized. The production of C2 can occur at the end of mitochondrial FAO 

but has the unique capability to act as an acetyl- group sink through conversion of acetyl-CoA 

via carnitine acetyltransferase (CAT) when acetyl-CoA accumulates beyond the ability of the 

TCA cycle to utilize it (90). The main role of carnitine-acylcarnitine carrier (CAC; SLC25A20 

gene) is to transport acylcarnitine molecules into the mitochondrial matrix (see Figure 1-1) but it 

can also move ACs in the opposite direction. Since CAC can transport ACs out of the 

mitochondria, blood concentrations of C2 reflect intracellular levels as well as the regulation of 

acetyl-CoA and free CoA (7, 10, 27). Increased production of C2 represents a critical mechanism 

for buffering the metabolic status between fed (glucose oxidation) and fasted (fat oxidation) 
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states, referred to as metabolic flexibility (23, 91). Acetyl-CoA is a known inhibitor of pyruvate 

dehydrogenase (PDH), a critical enzyme involved in cellular respiration of glucose (7, 90, 92). 

Conversely, LC has been shown to stimulate PDH in human muscle in vivo and in vitro, possibly 

through the reduction of acetyl-CoA (an inhibitor) by converting it to C2, thus supporting 

metabolic flexibility (93, 94). Acetyl-CoA, through conversion to malonyl-CoA, also has the 

capacity to block CPT1 from transporting long chain acylcarnitines for mitochondrial FAO (91). 

In the context of sepsis research, the group identified with negative clinical outcomes typically 

present with elevated levels of C2 and other acylcarnitines. Increased blood concentrations of C2 

suggests that acetyl-CoA accumulation likely occurs, indicating that fat and glucose oxidation 

pathways may also become inhibited in these patients that are desperate to maintain bioenergetic 

homeostasis. Furthermore, if the blood concentrations of C2 are indicative of acetyl-CoA 

accumulation then it suggests that the metabolic pathways generating acetyl-CoA are not the 

main concern but more so the downstream mitochondrial machinery that are failing to utilize this 

critical molecule. Therefore, it is imperative to further interrogate the metabolic implications of 

an elevated C2 by studying the relationship between blood concentrations of C2 with other 

mitochondrial function measurements including mitochondrial oxygen consumption rate 

(mOCR), TCA cycle metabolites, and acetyl-CoA. 

1.3 Innovation 

Herein, the proposed research to further connect the rise in C2 concentrations to 

downstream mitochondrial pathways will include investigating associations with mOCR, TCA 

cycle metabolites, and acetyl-CoA. The following list highlights the innovative approach. 

Novel mitochondrial function measurement: The gold standard for measuring mitochondrial 

function in vivo requires tissue biopsies (95). I will use platelets from humans with sepsis as a 
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“circulating organ” surrogate to assess mitochondrial function, which precludes the need for 

tissue biopsies. This method has been optimized and applied to the sepsis population with 

success (96, 97). 

Mechanistic discovery approach: To my knowledge, the metabolic, organ perturbations that 

precede the rise in serum C2 levels are unknown. This knowledge gap would be financially and 

pragmatically difficult to investigate in a human or large animal model of sepsis. With the 

proposed cecal ligation and puncture (CLP) mouse model of sepsis, I can elucidate sepsis-

induced metabolic disruptions in organs over time. I expect these findings to inform the changes 

in metabolic signals that occur during the development of sepsis-induced multiorgan 

dysfunction/failure. 

Combined measurement of metabolomics and mitochondrial metabolic function: To 

address the broad scope of mitochondrial function, I will combine two approaches to better 

inform mitochondrial energy status in sepsis. There is preliminary evidence to support that 

elevated serum C2 informs sepsis outcomes, but the mechanistic plausibility remains 

understudied. A multifaceted approach investigating likely causes of elevated C2 in sepsis will 

provide a more comprehensive understanding of the candidate biomarker. 

1.4 Long-term goal, Objective, and Central Hypothesis 

The long-term goal is to advance understanding of the metabolic mechanisms that 

underlie sepsis pathogenesis in order to discover biomarker candidates and drug target 

opportunities. The overall objective of this proposal is to advance knowledge of the mechanistic 

relationships between C2 and various mitochondrial function assessments in different models of 

sepsis. The central hypothesis is that blood C2 concentration is associated with organ acetyl-CoA 

levels and mitochondrial function measurements. The rationale for the proposed work is that a 
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metabolic link between organ acetyl-CoA levels, mitochondrial function, and blood C2 

concentrations in sepsis could further the utility of C2 as a biomarker of sepsis mortality and 

identify targets for therapeutics.  

1.5 Specific Aims and Rationales 

1.5.1 Aim 1 

Elucidate the extent of the association between platelet mitochondrial respiration and C2  

I hypothesized that whole blood C2 levels from sepsis patients can inform mitochondrial 

respiration measurements as assessed by linear regression models. Assessing mitochondrial 

function is vital to understanding metabolic status in sepsis patients as it has been linked to 

multiorgan failure, a defining characteristic of sepsis severity (66). Measuring mitochondrial 

oxygen consumption, or respiration, provides a direct approach to quantifying oxidative 

phosphorylation, a major component of metabolism. This measurement is typically performed on 

mitochondria from a muscle biopsy, but these samples are not easily obtained, especially from 

critically ill patients such as those with sepsis. Platelets are uniquely positioned to inform sepsis 

metabolism because they contain mitochondria as well as influence coagulation, innate 

immunity, and may play a role in multiorgan dysfunction (98). Accordingly, recent studies have 

found associations between increased platelet mitochondrial respiration with sepsis mortality and 

organ failure (96, 97). Increased serum C2 has been associated with the same sepsis clinical 

parameters (70, 71). To my knowledge, there have not been any studies connecting 

mitochondrial respiration to C2 levels in the blood collected from sepsis patients. Measured C2 

in the blood has the potential to act as an early distress signal of mitochondrial dysfunction in 

sepsis. The rationale for this aim was that platelets are readily available and can serve as 
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“surrogate organs” for the assessment of mitochondrial function that may be reflected in the C2 

levels from the blood. 

1.5.2 Aim 2 

Identify the differential associations between C2 and TCA cycle metabolite concentrations in 

sepsis survivors and non-survivors.  

I hypothesized that there will be stronger associations between C2 and individual TCA 

cycle metabolites in sepsis non-survivors (28-day) compared with sepsis survivors. 

Characterizing the relationship between C2 and individual TCA cycle metabolites between 

sepsis survivors and non-survivors will aid in understanding the contribution of a disrupted TCA 

cycle makes to sepsis-induced elevations in C2 that are linked to mortality. In health (normal 

physiology), concentrations of TCA cycle metabolites are relatively low and held constant (99). 

However, under high metabolic stress like in sepsis, TCA cycle metabolite concentrations may 

increase due to higher energy demand characterized by increased metabolism of carbon sources 

like lipids, glucose, and amino acids that replenish the cycle intermediates via anaplerotic 

reactions (99, 100). This is illustrated in a paper by Langley et al, that found increased levels of 

C2 and various TCA cycle metabolites (oxaloacetate, α-ketoglutarate) in the blood of sepsis non-

survivors (69). Based on these findings, we expected that the metabolic perturbations brought on 

by sepsis will include a disruption of the TCA cycle. 

1.5.3 Aim 3 

Investigate the temporal relationship between plasma C2 and organ acetyl-CoA concentrations 

using a mouse model of sepsis.  
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I used an established CLP mouse model to acquire longitudinal measurements of organ 

acetyl-CoA and plasma C2. My working hypothesis was that sepsis-induced changes in plasma 

C2 will reflect organ acetyl-CoA over time. Patients are admitted to the hospital at different time 

points along the sepsis disease timeline, which increases the variability of an already highly 

heterogeneous population. Due to this timing, clinicians and researchers likely miss the initial 

start of sepsis, which could contain crucial metabolic information as patients transition from 

health to disease as sepsis progresses. Altered metabolic parameters, such as changes in tissue 

mitochondrial metabolic function and blood levels of C2, have been associated with organ 

function and mortality in sepsis (66, 70). However, certain questions remain unanswered 

regarding the origin and timing of C2 production during sepsis. The objective of this aim was to 

characterize the relationship between concentrations of C2 in the plasma and acetyl-CoA in the 

major organs over the course of sepsis. Serial tissue biopsies are controversial and impractical to 

acquire in critically ill patients so I employed a CLP mouse model of sepsis to attain this 

objective. This model allowed for assessment of whole organ acetyl-CoA with simultaneous 

measures of plasma C2. Use of our recently developed swine model of sepsis would not be cost 

effective to achieve this objective because serial sacrificing of animals for whole organ acetyl-

CoA measurements is required.  
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Chapter 2 A Multivariate Metabolomics Method for Estimating Platelet Mitochondrial 

Oxygen Consumption Rates in Patients with Sepsis 

2.1 Abstract 

Background: Sepsis-induced alterations in mitochondrial function contribute to organ 

dysfunction and mortality. Measuring mitochondrial function in vital organs is neither feasible 

nor practical, highlighting the need for non-invasive approaches. Mitochondrial function may be 

reflected in the concentrations of metabolites found in platelets and whole blood (WB) samples. 

We proposed to use these as alternates to indirectly estimate platelet mitochondrial oxygen 

consumption rate (mOCR) in sepsis patients.  

Methods: We determined the relationships between platelet mOCR and metabolites in both 

platelets and WB as measured by quantitative 1H-NMR metabolomics. The associations were 

identified by building multiple linear regression models with stepwise forward-backward 

variable selection. We considered the models to be significant with an ANOVA test (p-value ≤ 

0.05) and a positive predicted-R2.  

Results: The differences in adjusted-R2 and ANOVA p-values (platelet adj-R2: 0.836 (0.0003), 

0.711 (0.0004) vs WB adj-R2: 0.428 (0.0079)) from the significant models indicate the platelet 

models were more associated with platelet mOCR.  

Conclusions: Our data suggest there are groups of metabolites in WB (leucine, acetylcarnitine) 

and platelets (creatine, ADP, glucose, taurine) that are associated with platelet mOCR. Thus, WB 

and platelet metabolites could be used to estimate platelet mOCR. 
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2.2 Introduction 

Sepsis mortality rates range from 25-30%, and the incidence of sepsis is increasing in the 

aging population. It is of paramount importance to advance clinical approaches for the diagnosis 

and treatment of the disease (1, 2). The global effects of sepsis impact numerous bodily systems 

including the cardiovascular, endocrine, and immune, but recently, there has been growing 

attention paid to the effects of sepsis on metabolism (3, 4). By definition, sepsis is a dysregulated 

host response to a pathogen that leads to life-threatening organ dysfunction (1). The causative 

mechanism underlying organ dysfunction is likely multifaceted, but recent reports suggest 

mitochondrial dysfunction plays a major role (5). Understanding mitochondrial function in sepsis 

represents an opportunity to develop novel and targeted therapeutics, but the assessment of 

mitochondrial function in humans is challenging and not always attainable in critically ill 

patients. As such, new diagnostic approaches to the assessment of mitochondrial dysfunction are 

needed. 

Mitochondrial function is a term that broadly encompasses different aspects such as 

respiration rates, metabolite synthesis, calcium regulation, and membrane potential (6). Some of 

these can be measured using isolated platelets, which offers a potential solution to the problem of 

evaluating mitochondrial function using tissue biopsies in the sepsis population. Altered platelet 

mitochondrial function has been observed in numerous human disease states including type II 

diabetes (7), aging (8), asthma (9), and sepsis (10-16). The results of the sepsis studies generally 

show an increase in mitochondrial activity. Although, this is not a consistent finding, which 

warrants further study on this topic. Critically, platelet mitochondrial respiration, or 

mitochondrial oxygen consumption rates (mOCR), has been found to be associated with sepsis 

clinical parameters such as severity of illness, organ failure, and mortality (11, 12). 
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Metabolomics, the measurement of small molecules (<1500 Daltons), or metabolites, in a single 

biological sample, is another effective approach to study the impact of sepsis on mitochondrial 

function (17). Recently, Chacko et al., showed that the platelet metabolome in healthy subjects is 

functionally integrated with platelet mOCR (18). These advancements suggest the assessment of 

metabolites may provide a reliable surrogate measurement of platelet mitochondrial function in a 

manner more suitable to human clinical trials, thus bridging the translational research gap.  

To our knowledge, the evaluation of the relationship between whole blood (WB) 

metabolomics, platelet metabolomics, and platelet mitochondria bioenergetics has not been 

previously reported. This work is needed to determine the extent of the association between 

platelet mOCR and metabolites identified and quantified in isolated platelets and WB. The 

primary aim of the study was to test the hypothesis that variations in platelet mitochondrial 

function as measured by mOCR are associated with WB and isolated platelet metabolites in 

sepsis patients. As a secondary aim, we sought to detect distinct metabolite signatures between 

whole blood and isolated platelets using quantitative 1H-nuclear magnetic resonance (NMR) 

metabolomics and correlation analysis. Using multiple linear regression (MLR) models, we 

identified groups of metabolites in WB (leucine, acetylcarnitine) and platelets (creatine, ADP, 

glucose, taurine) that are associated with platelet mOCR. 

2.3 Materials and Methods 

2.3.1 Setting  

This was a prospective observational study of patients that were treated with an 

institutional quantitative resuscitation protocol for sepsis in the emergency department of the 

University of Mississippi Medical Center; a separate cohort of subjects were enrolled for the 

purpose of acquiring WB and platelet samples to serve as negative, non-sepsis controls. The 
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protocol was IRB-approved (IRB#2016-0076) at the University of Mississippi Medical Center. 

All patients or their legally authorized representative (sepsis patients) provided written informed 

consent. All methods described apart from the NMR analysis were conducted by the researchers 

at the University of Mississippi Medical Center.  

2.3.2 Participants 

The enrollment period took place from 09/2016-9/2018. Enrollment criteria were the 

following: 1) Suspected or confirmed infection; 2) Any two of four criteria of systemic 

inflammatory response in ED (19); 3) Age ≥ 18; 4) Lactate ≥ 2.0 mmol/L; 5) Enrollment within 

2 hours of initiation of quantitative resuscitation protocol (20). Exclusion criteria were: 1) any 

primary diagnosis other than sepsis; 2) established Do Not Resuscitate status; 3) transferred from 

another hospital with sepsis therapy already initiated; 4) cardiopulmonary resuscitation (chest 

compression or defibrillation) prior to enrollment; 5) patient or legal representative unable to 

understand and sign informed consent.  

Controls patients were eligible if they were admitted to the emergency department and 

had no medical conditions that required chronic administration of medication expected to affect 

platelet function (aspirin, PGY12 inhibitors, etc). Unlike the sepsis cohort, these patients were 

not admitted to the intensive care unit. Controls were attempted to be matched to sepsis patients 

in a 1:1 fashion by sex, race, and age +/- 10 years. Not all patients enrolled had an eligible 

control match enrolled. This control group was chosen to represent an acutely ill cohort of the 

same race, sex, and age as the sepsis cohort so that differences in the group were more likely to 

be attributed to sepsis rather than general acute illness or differences in baseline demographics 

known to impact mitochondrial function (21).  

2.3.3 Collection of Blood Samples 
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After discarding a waste of 3-5 mL, three WB samples (12 mL each) were collected by 

direct venipuncture or from an indwelling line into K2 EDTA-containing Vacutainer tubes (BD 

367863; Becton-Dickinson, Franklin Lakes, NJ USA); each tube was inverted 6 to 8 times to 

ensure distribution of the anti-coagulant. Samples were immediately placed on ice and promptly 

transported to the laboratory. The blood sample for WB metabolomics was aliquoted into screw-

top cryotubes (1mL), flash-frozen in liquid nitrogen and immediately stored (-80°C). An aliquot 

of WB from each subject was shipped frozen on dry ice to the University of Michigan’s NMR 

Metabolomics Laboratory. 

2.3.4 Platelet Isolation for Assessment of Mitochondrial Respiration 

Platelet isolation for measurement of mOCR was performed as previously described with 

minor modifications (12). Briefly, blood (12 mL) was centrifuged (200 x g for 6 min at room 

temperature). The platelet-rich plasma layer was transferred to another tube and centrifuged 

(4500 x g for 5 min at 4°C) to pellet the platelets. The nearly cell-free plasma layer was 

transferred to a new tube, leaving approximately 0.25 mL of plasma in the original tube. This 

remaining plasma was used to resuspend the platelet pellet to produce ultra-rich plasma. Platelets 

in the ultra-rich plasma were counted with an automated cell counter (Cellometer AutoM10; 

Nexcelom Bioscience, Lawrence, MA) and diluted with additional plasma as needed to achieve a 

concentration of ~200 x 106 cells/mL. This cell concentration has previously been shown to be 

optimal for mitochondrial respiration assessment (11). Measurements were performed in the 

patient’s own plasma instead of buffer media consistent with prior work by our group (12), as 

mOCR appear to be influenced by factors in the plasma (22). 

2.3.5 Sample Extraction for Metabolomics 



 39 

Platelets were isolated and counted as described above. In preparation for metabolomics 

assay, resuspended platelets were centrifuged (4500 x g, 5 mins, at 4°C), decanted, and then 

resuspended in 1 mL of methanol (20°C). Cell lysis was achieved by flash freezing samples in 

liquid nitrogen for 30s and allowing them to thaw to room temperature before storage at -80°C. 

Frozen samples were shipped on dry ice to the University of Michigan’s NMR Metabolomics 

Laboratory for analysis, where they were stored at -80°C. Immediately before assay, samples 

underwent a second freeze-thaw cycle by flash freezing in liquid nitrogen and thawing to room 

temperature (23). The researchers at the NMR Metabolomics Laboratory were blinded to the 

experimental arms. 

Platelet pellets were on ice for the duration of the extraction. Samples were transferred to 

5-mL centrifuge tubes and chloroform was added to each resuspended pellet to create a 1:1 

methanol:chloroform solution. An additional 250uL of 1:1 methanol:chloroform was added, then 

1mL DI water, followed by a final 500uL addition of DI water. After each solvent addition, 

samples were vortexed (30s). After the final addition of water, samples were vortexed until they 

were white and opaque. Samples were chilled in ice-water bath (15 min), then centrifuged (1000 

x g, 15 min, at 4°C). After centrifugation, a thin pellet of cellular debris and precipitated protein 

separated the upper aqueous layer of the extracted sample from the lower chloroform layer. The 

aqueous supernatant was removed, lyophilized and resuspended in 50mM phosphate buffer in 

deuterium oxide in preparation for NMR. WB samples were prepared for NMR by 

methanol:chloroform precipitation as previously described (24). 

2.3.6 Platelet Mitochondrial Respiration Measurements 

Mitochondrial oxygen consumption was measured using a high-resolution respirometer 

(Oxygraph O2k; Oroboros Instruments, Innsbruck, Austria) by a technician that was aware of the 
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experimental groups. The device was calibrated, and the data were acquired in accordance with 

the manufacturer’s instructions as previously reported (12). The platelet concentrations in the 

chamber were entered into the manufacturer provided software (DatLab 5.2; Oroboros 

Instruments, Innsbruck, Austria), which allowed for normalization of the results to cell count at 

the end of the experiment.   

As previously described, each mOCR was measured in the following order; Basal, State 

4o, maximum (Max) respiration (12). Briefly, unstimulated platelets provided the resting Basal 

respiration rate of oxidative phosphorylation. Following the baseline measurement, oligomycin 

(3 µL; 4 µg/ mL from 95% HPLC pure oligomycin A) was added to prevent ATP production by 

inhibiting ATP synthase (complex V), representing the oxygen consumed by proton leakage 

across the inner mitochondrial membrane (State 4o). Then, sequential additions (2µL, then 1µL) 

of carbon cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP; 20 mM – yellow) were added 

to measure Max respiration (25). Our Max rate represents the maximum respiration when using 

an intact cell model such as this, however, it does not represent the same maximum rate as 

determined when using isolated mitochondria in the presence of excess substrates (6). It is 

important to note that these measurements included oxygen consumption of the plasma, along 

with other extra-mitochondrial activity. In order to account for these contributions, rotenone (3 

µL) and antimycin A (3 µL) were added at the end of the assay to final concentrations of 0.6 

μmol/L and 1.8 mmol/L, respectively, to measure the residual OCR that is independent of 

mitochondrial oxygen consumption; this value was subtracted from each mOCR measurement. 

The selected respiration rates have been published in previous studies of platelet mitochondrial 

function in sepsis patients (11, 12). These mOCR are measured in intact platelets rather than 

permeabilized cells or isolated mitochondria. This minimizes the cellular disruptions inflicted by 
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the isolation or permeabilization process, a critical step when using reactive clinical samples 

such as platelets from sepsis patients. We suspended the platelets in each patient’s own plasma to 

further replicate the in vivo environment. All chemicals for the platelet mitochondrial 

experiments were purchased from Sigma-Aldrich (St. Louis, MO). 

2.3.7 Quantitative 1-D- 1H-NMR Metabolomics  

At the time of assay, samples were thawed on ice and prepared for NMR analysis as 

previously described (24). Details of NMR acquisition can be found in the Supplementary 

Materials (S4.7.1). NMR spectra were acquired at the University of Michigan BioNMR Core 

Laboratory on a Bruker 18.8 Tesla (800 MHz) NMR spectrometer ascend magnet equipped with 

a 5mm Triple resonance inverse detection TCI cryoprobe and Bruker NEO console, operated by 

TopSpin 4.0.7 software. Details of NMR spectra acquisition, the pulse sequence and spectral 

analysis can be found in the Supplementary Materials (S4.7.1). Resulting metabolomics data 

were scaled to correct for differences in initial sample volume (for WB samples) or cell count 

(isolated platelets) before statistical analysis.  

2.3.8 Data Analysis 

Missing values were imputed using half of the minimum value of each respective 

metabolite concentration. The data were then normalized by natural-log transformation. 

Descriptive statistics were used to summarize patient demographic data. All statistical analyses 

were performed, and all correlation matrices were constructed in RStudio (RStudio Team 2015. 

RStudio: Integrated Development for R. RStudio, Inc., Boston, MA). The primary associations 

were done using each mOCR as the dependent (response, y) variable and the natural-log 

transformed metabolite concentrations as the independent (predictors, x) variables for a MLR 
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model. Each MLR model was built using the stepwise forward-backward variable selection 

method when given the respective metabolites. The metabolites were entered or removed from 

the model based on the default p-values, 0.1 and 0.3, respectively. Adjusted-R2 shows the 

goodness-of-fit of the model to the data and predicted-R2 protects against overfitting the model. 

The R code for the MLR models is provided in the Supplementary Materials (S4.8.1).  

To test significance of the models, ANOVA was used to compare each final model to the 

full model which included all possible metabolites as predictors. Resulting p-values of < 0.05 

were considered significant. MetaboAnalyst 4.0 (https://www.metaboanalyst.ca/) was used to 

conduct a pathway analysis of the metabolites from the final MLR models (26). Pearson’s 

correlation was utilized to test the associations between the platelet and WB metabolites.  

2.4 Results 

2.4.1 Patient Demographics  

Thirty-one patients with sepsis and 14 control subjects were enrolled. Of the 31 sepsis 

subjects, 17 had mOCR matched to WB NMR metabolomics, while 14 had completed mOCR 

matched to platelet NMR metabolomics. Viable metabolomics data were obtained from 9 of the 

control subjects due to technical errors with the cell counter that precluded adjustment of 

metabolite concentrations to platelet count. The patient demographics and clinical parameters of 

the sepsis patients and control subjects are presented in Table 2-1, separated by regression 

analysis group. The sepsis cohort, when grouped by inclusion in WB or platelet regression 

analyses, were moderately ill sepsis patients with median sequential organ failure assessment 

(SOFA) scores of 5 (IQR 3, 9), and 4.5 (IQR 3, 8.5), with 28-day mortality rates of 12% and 7%, 

respectively. 
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Variable 
Sepsis patients Controls 

(n=9) 
Whole blood 

(n=17) 
Platelet (n=14)  

Age (IQR)* 59 (52-67) 57 (50-67) 53 (32-56) 
Race (%)    

White 8 (47) 8 (57) 2 (22) 
African-American 9 (53) 6 (43) 7 (78) 

Ethnicity (%)    
Non-Hispanic 17 (100) 14 (100) 9 (100) 

Hispanic 0 (0) 0 (0) 0 (0) 
Sex (%)    

Male 10 (59) 8 (57) 4 (44) 
Female 7 (41) 6 (43) 5 (56) 

28-day mortality (%) 2 (12) 1 (7) 0 (0) 
BMI kg/m2 (IQR)* 25.6 (23-34) 26.6 (23-33) 31.5 (24-46) 

Preexisting conditions (%)    
Coronary artery disease 2 (12) 2 (14) 0 (0) 
End-stage renal disease 2 (12) 2 (14) 0 (0) 

Chronic obstructive 
pulmonary disease 5 (29) 5 (36) 1 (11) 

Chronic heart failure 0 (0) 0 (0) 1 (11) 
Cirrhosis 1 (6) 0 (0) 0 (0) 

Peripheral vascular disease 1 (6) 1 (7) 0 (0) 
Cerebrovascular accident  1 (6) 2 (14) 0 (0) 

Malignancy 4 (24) 1 (7) 0 (0) 
Vital signs (IQR)*    

Heart rate (beats/min) 102 (86-106) 102 (87-107) 85 (77-88) 
Systolic blood pressure 

(mmHg) 110 (104-119) 110 (98-116) 145 (128-
149) 

Diastolic blood pressure 
(mmHg) 65 (59-72) 64 (59-68) 84 (81-98) 

Baseline laboratory (SD)    
Creatinine (mg/dL) 1.8 (1.3) 1.6 (1.2) n/a 

Platelet count (x1000 
cells/mm3) 205 (148) 182 (100) n/a 

White blood count (x1000 
cells/mm3) 15 (7.8) 15.75 (8.2) n/a 

Disease severity (IQR)*    
SOFA (enrollment) 5 (3-9) 4.5 (3-8.5) n/a 
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Lactate mM (enrollment) 1.8 (1.2-2.1) 2 (1.2-2.1) n/a 
Table 2-1 Patient demographics and clinical parameters 
* Median (interquartile range); n/a = not applicable 

2.4.2 Multiple Linear Regression Models Analysis 

The descriptive statistics for Basal, State 4o, and Max respiration rates of the sepsis 

patients are presented in Table 2-2. We identified 31 WB and 19 platelet metabolites in at least 

70% of samples (the list and concentrations of detected WB and platelet metabolites used for the 

analysis can be found in the excel file of the Supplementary Materials (S2.2.1); the entire data set 

can be found at the NIH Metabolomics Workbench: https://www.metabolomicsworkbench.org/ 

doi: 10.21228/M8FX1M). Additionally, missing values for 12 WB and 13 platelet metabolites 

were imputed with half of the lowest measured concentration value of each respective 

metabolite. A representative NMR spectrum of WB and platelet samples can be found in the 

Supplementary Materials (Figure S1). 

Statistic Basal State 4o Max  
Median 0.0861 0.0191 0.1141 
IQR 0.0626 - 

0.1117 
0.0060 - 
0.0267 

0.1010 - 0.1364 

Table 2-2 Mitochondrial Oxygen Consumption Descriptive Statistics 
IQR= interquartile range; all units are pmol/(sec*106 platelets) 

The results of the MLR models relating metabolite concentrations (independent variable) 

to each mOCR (dependent variable) are presented in Table 2-3. Models using platelet 

metabolites were more highly associated with the platelet mOCR than those from the WB 

metabolites, as shown by the differences in adjusted-R2 and the ANOVA results. Predicted-R2 

values followed the same hierarchy between platelet and WB models, but also revealed that the 

model with State 4o and WB metabolites was overfit, as evidenced by the substantial difference 

between the adjusted-R2 and the negative predicted-R2 (-0.111). Models meeting our criteria of 

significant ANOVA result and a positive predicted-R2 are shown as the top 3 models in Table 2-
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3. The stepwise models demonstrated the best relationship between State 4o and metabolites, a 

weaker relationship between Basal mOCR and metabolites, and no statistically significant 

relationships involving Max respiration. 

Response 
(y) 

Covariates (x) β Coefficient  
(p-value) 

Adj.-
R2  

Pred.- R2 ANOVA 
(p-value) 

State 4o PLT.Creatine -0.009 (0.081) 0.836  0.629 (0.0003)* 
PLT.ADP 0.066 (0.000)* 
PLT.Choline -0.047 (0.000)* 
PLT.Glucose 0.015 (0.026)* 

Basal PLT.ADP 0.141 (0.000)* 0.711  0.608 (0.0004)* 
PLT.Taurine -0.107 (0.000)* 

Basal WB.Leucine 0.084 (0.002)* 0.428  0.308 (0.0079)* 
WB.Acetylcarnitine -0.049 (0.066) 

State 4o WB.Alanine 0.042 (0.060) 0.281  -0.111 (0.039)* 
WB.2.Hydroxybutyrate 0.026 (0.099) 

Max WB.3.Hydroxybutyrate 0.017 (0.049)* 0.236  -0.033 (0.0595) 
WB.AMP 0.032 (0.088) 

Max PLT.Creatine 0.022 (0.080) 0.170  -0.147 (0.0801) 
Table 2-3 Multiple Linear Regression results 
PLT.metabolite = platelet metabolite, WB.metabolite= whole blood metabolite; * indicates p-value ≤ 0.05 

Significant metabolites selected for inclusion in the final model were entered into 

MetaboAnalyst for a pathway analysis. However, due to the small number of significant 

compounds, results were not interpretable. Rather, we reviewed the literature surrounding the 

biological relevance of the metabolites in the context of sepsis. A literature review by Eckerle et 

al., reported statistically significant metabolites that were found to be related to 3 pathways, 

namely, energy metabolism, mitochondrial dysfunction, and platelet activation and/or 

aggregation (Table 2-4) (17). 

Sepsis Pathway Metabolites 
 Whole blood Platelet 

Energy metabolism Leucine Creatine, ADP*, 
Choline*, Glucose* 

Mitochondrial dysfunction Acetylcarnitine n/a 
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Platelet activation/aggregation Taurine ADP*, Choline*, 
Glucose* 

Table 2-4 Selected Metabolites Biological Relevance to Sepsis 
* Metabolites that are related to several sepsis pathways; n/a = not applicable; (17) 

2.4.3 Evaluation of Platelet Isolation and Metabolite Detection Methods 

To evaluate the relationship between platelet and WB metabolites in states of both sepsis 

and non-sepsis critical illness, we created two correlation matrices of platelet metabolites and 

WB metabolites in the sepsis and control subjects, respectively, which are reported in Figure 2-

1. There were several significant correlations present in the sepsis group that were not observed 

in the controls, further emphasizing the metabolic perturbations provoked by the disease. 
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Figure 2-1 Comparing Correlations between Whole Blood and Platelet Metabolites in Septic and Healthy Subjects 
Significant associations were found between whole blood and platelet metabolites. In sepsis patients, (a) several 
whole blood metabolites (creatinine, glutamate, glycine, ornithine, phenylalanine) were significantly and positively 
correlated with at least 12/19 (63%) of the detected platelet metabolites; these are contained within the red box. 
These significant correlations were not present in the (b) control subjects. P-values of < 0.05 were considered 
significant. Matrices were generated in RStudio using Pearson’s correlation coefficient (r) with a scale of -1 to 1. 

2.5 Discussion 

This study provides evidence supporting the use of either platelet or WB metabolites to 

indirectly estimate platelet mOCR in patients with sepsis. As anticipated, platelet metabolites 

more accurately reflect platelet mOCR than WB metabolites, and the metabolite associations 

between the biofluids are more pronounced in sepsis-patients than in controls. Our data illustrate 

that certain WB (leucine, acetylcarnitine) and platelet metabolites (creatine, ADP, glucose, 

taurine) are significantly associated with platelet mOCR as measured by high-resolution 

respirometry. This demonstrates that an informative, non-invasive approach to the assessment of 

mitochondrial function could be employed when it is not feasible to acquire tissue or platelet 

mitochondria for mOCR measurements in real-time, such as in the context of human clinical 

investigations.  

Platelets Whole Blood(a) Platelets Whole Blood(b)
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Groups of WB metabolites showed a significant relationship to the Basal (unstimulated) 

mitochondrial respiration measurement when using a stepwise forward-backward variable 

selection MLR model building method. Stronger statistical models were achieved with platelet 

metabolites as potential predictors (adj-R2: 0.836, 0.711 vs adj-R2: 0.428) with the same model 

building method. This is logical because platelet mitochondria likely contribute substantially to 

the components of the platelet metabolome. Moreover, the difference in model strength might be 

explained by the relatively lower biomass of platelets compared to other tissues. Of note, the 

associations between metabolites with Basal and State 4o respiration differ. This is expected, as 

Basal respiration represents the passive energy production state, while State 4o is a non-

physiologic state, which indirectly measures the leakage of protons across the inner 

mitochondrial membrane. Increased levels of State 4o may represent ROS-associated damage to 

the inner mitochondrial membrane, and increased uncoupling protein leading to reduced energy 

output (25, 27, 28). This suggests it may be possible to use different metabolites (or metabolite 

panels) to probe various mitochondrial processes.  

Three models met the criteria of significant ANOVA results and positive predicted-R2 

values. The metabolites identified via these models appear to have biological significance with 

sepsis and the prespecified goal of the project, namely, development of non-invasive reflections 

of altered mitochondrial function, adding to the clinical relevance of these findings (Table 2-4).   

In regard to specific metabolites and pathways, it is worth noting that both of the platelet 

models included ADP, which highlights the importance of this molecule in sepsis. ADP and 

creatine are both substrates of ATP synthesis, but ADP is also maintained in high concentrations 

within the dense granules of platelets as they utilize the compound to activate aggregation (29-

31). Platelet aggregation is also strongly influenced by choline, which is a precursor to platelet 
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activating factor (32). Sepsis is characterized as a hypercoagulable state, so it is logical that ADP 

and choline are highlighted in this biological and clinical model of sepsis.   

Other metabolic signals were also evident. Glucose metabolism in sepsis has been 

extensively studied. In the context of activated platelets, there is evidence to support increases in 

glucose uptake, glycolysis, lactate, and glycogenolysis (33). Notably, the role of taurine in sepsis 

is unclear; but it is highly concentrated in platelets and reportedly reduces coagulation and 

increases during animal hibernation (34, 35). We find the latter observation interesting, because 

it may play a role in the sepsis hibernation hypothesis, which theorizes downregulated 

mitochondrial respiration acts as defensive strategy to prevent sepsis-induced cell death (36).  

Lastly, acetylcarnitine and leucine have ties to sepsis through mitochondrial dysfunction 

and energy metabolism, respectively. Leucine is a branched chain amino acid, which are used as 

a source of energy during sepsis (37). Recently, Puskarich et al., and Chung et al., both found 

acetylcarnitine to be associated with mortality and organ failure in sepsis (38, 39). These 

findings, in conjunction with ours, further support the previously observed relationship between 

acetylcarnitine, platelet mitochondrial respiration, mortality and organ failure (12). Additional 

studies are needed to identify the mechanisms that underpin the associations, but these biological 

relationships support the utility of a metabolomics approach to estimate platelet mitochondrial 

function.   

Despite the well-characterized metabolic derangement of sepsis, there is a major inability 

to accurately and longitudinally assess mitochondrial function in these patients due to the ethical 

and practical concerns of obtaining muscle/tissue biopsies. As such, there remains a clinical and 

critical need to non-invasively evaluate sepsis-induced changes in mitochondrial function for 

several reasons. First, mitochondrial function has been identified as increasingly important in 
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contributing to multiorgan dysfunction (5, 40). Second, a reliable and practical method could be 

more easily translated into clinical use to identify metabolically impaired phenotypes. There is a 

growing body of literature to support the use of measuring mitochondrial function in peripheral 

blood cells from patients with sepsis (10-16). The clinical significance of platelet mitochondrial 

function is evident in recent reports that show associations between increased respiration with 

mortality and organ failure (11, 12). To our knowledge, this is the first study to relate 

metabolomics data from two distinct biofluids with platelet mitochondrial bioenergetics. These 

results are consistent with other studies using intact platelets isolated from human blood samples. 

The high resolution respirometry used in these studies is generally considered the gold standard 

for measuring mitochondrial oxygen consumption. However, this experimental technique has 

several pitfalls that may prevent its translation into the clinical toolbox. The time sensitive 

method requires skilled technicians to collect fresh blood samples, isolate platelets and execute 

the respirometer protocol without the ability to freeze for later use or reruns. As such, this is not 

a high throughout procedure. Therefore, the purpose of this study was to discover and evaluate 

sets of metabolites that reflect platelet mOCR, potentially bypassing the need for high-resolution 

respirometry in clinical settings. We recognize our hypothesis-generating results only lay the 

groundwork that must be refined and validated in larger cohorts and more generalizable 

populations, but the future directions seem promising.  

The stronger association between the platelet mOCR and platelet metabolome supports 

the secondary goal of evaluating our platelet isolation methods using quantitative 1H-NMR 

spectroscopy. The apparent differences in detected metabolites and significant correlations 

between the platelet and WB metabolomes supports the successful optimization of our platelet 

metabolomics approach. Indeed, the appearance of associations between the WB and platelet 
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metabolomes in the subjects with sepsis emphasizes the prolific metabolic response that sepsis 

provokes. Platelets release metabolites into the blood upon activation, which offers a potential 

mechanistic explanation for this observation (29-31). Albeit, there were fewer control subjects 

than in the sepsis group so this may affect the lack of associations between the platelet and WB 

metabolites in this group.  

We recognize there are several limitations of our study. First and foremost, this is a small, 

single center sample, and the specific metabolites and panels should be viewed skeptically and 

reproduced prior to broader application. Just as important, the associations pursued were 

matched to platelets, which represent a small biomass that may or may not reflect vital organ 

mitochondrial function. Future studies should attempt to make this pathophysiologic link. It is 

worth noting that the maximum respiration models were consistently weaker than those of the 

other two mOCR. The lack of significant relationships with Max respiration and measured 

metabolites is reasonable, as this represents an artificial experimental state of maximum 

respiratory capacity that is not reflected in the body and would not necessarily be expected to be 

related to measured peripheral metabolites. In regards to patient outcomes, we did not reproduce 

the previously reported association between maximum respiratory rate and SOFA score (12), 

although this may reflect our small sample size and relatively low and homogeneous severity of 

illness compared to prior reports. Again, due to a relatively lower severity of illness, we did not 

observe significant differences in respiratory rates and mortality as previously reported (11, 12). 

When building an MLR model with such interrelated variables like metabolites, we considered 

the possibility of collinearity between them. However, this is not of concern as the intention of 

our model was to use metabolite sets to estimate platelet mOCR and not individual metabolites. 

We refrained from interpreting the β Coefficients from the MLR models to avoid over 
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speculation about the relationships between individual metabolites and mitochondrial respiration. 

The ANOVA tested the difference between the selected models and the saturated models that 

includes every measured metabolite for that biofluid. The full model has more predictors than the 

sample size, which puts the test at risk of overfitting. However, the resulting p-values were not 

excessively small, so we do not believe the ANOVA test was overfit. Although, due to the small 

sample size, the test result could have been idiosyncratic to our population, leading to the need 

for external validation. Ideally, we would have compared the models from sepsis patients and 

non-sepsis controls, however, the mOCR data from the controls was considered unusable due to 

technician errors that occurred during experimentation. Albeit, this limitation did not prevent us 

from achieving the goal of the study, which was to determine if metabolomics data are reflective 

of platelet mitochondrial respiration. A follow-up study is necessary to identify potential 

differences and clinical significance between the metabolic associations in sepsis and non-sepsis 

subjects. The cross-sectional design of the study was also a limitation that precluded us from 

evaluating metabolic changes over time. 

2.6 Conclusions 

In conclusion, WB (leucine, acetylcarnitine) and platelet (creatine, ADP, glucose, 

taurine) metabolites have potential use as surrogates for estimating platelet mitochondrial 

function. This strategy, which circumvents the need for tissue sampling and the use of high-

resolution respirometry, could be a viable approach to assess mitochondrial function in patients 

with sepsis. Further studies are warranted to corroborate these findings in a larger, more 

generalizable cohort. 
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2.7 Supplementary Materials 

The following are available online at https://www.mdpi.com/2218-1989/10/4/139/s1; S2.2.1 

WB and platelet metabolites with mOCR data; Figure S1: Representative NMR spectra from 

whole blood and platelet extracts; S4.7.1 Acquisition of Quantitative 1-D-1H-NMR 

Metabolomics Data; S4.8.1 Stepwise forward-backward variable selection model building R 

code. 
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Chapter 3 Investigating the Metabolic Underpinnings of Sepsis-induced Organ 

Dysfunction Using a Mouse Model of Sepsis, and Human Sepsis and Septic Shock Data 

3.1 Stronger Associations between C2 and Individual TCA Cycle Metabolites in Sepsis 

Non-Survivors compared with Sepsis Survivors 

Under a stressful and high energy demanding condition like sepsis, patients may present 

with abnormal TCA cycle metabolite concentrations due to the increased metabolism of carbon 

sources such as lipids, glucose, and amino acids or from modulation of the TCA cycle enzymes 

and anaplerotic pathways (1-4). The acylcarnitines are known to reflect disruptions in β-

oxidation of fatty acids, which is intended to supply acetyl-CoA to the TCA cycle. Due to the 

proximity of acylcarnitine generation to the TCA cycle, I hypothesized that the production of C2 

could reflect an expanded view of mitochondrial dysfunction including both disruptions in FAO 

and the TCA cycle. To add clinical context to this hypothesis, multiple linear regression analysis 

was applied to determine if the metabolic relationships between C2 and the intermediates of the 

TCA cycle were stronger in the septic shock non-survivors compared to the survivors. Positive 

findings from this analysis provided evidence expanding the mechanistic, metabolic 

interpretation of altered C2 levels while demonstrating a distinct signal between non-survivors 

and survivors.  

 The data used for the primary analysis was generated from the phase 1 clinical trial 

studying the therapeutic benefit of supplemental intravenous L-carnitine in patients with septic 

shock (RACE) (5). To avoid the potential effects of the therapy on mortality, I used the baseline 

metabolite concentrations from the placebo group (n=61). The patients included in the analysis 
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had serum metabolites quantified using the acylcarnitine and the Glycolysis/TCA/Nucleotide 

targeted platforms conducted by the Michigan Regional Comprehensive Metabolomics Resource 

Core. The TCA platform quantified citrate/isocitrate, succinate, fumarate, and malate vie ion-pair 

chromatography mass spectrometry. The targeted acylcarnitine platform quantified 8 

acylcarnitine derivatives (LC, C2, C3, C4, C5, C8, C14, C16) and reported 14 others. The 

multiple linear regression models were structured with C2 concentration as the dependent 

variable with independent variables for the TCA cycle intermediate concentrations, binary 

mortality (28-day; 1-year), and an interaction term between the two covariates (Equation 3-1). 

Each of the detected TCA cycle intermediates and mortality terms were substituted into the 

models. The goal was to identify a significant interaction term (p-value ≤ 0.05), which would 

indicate a difference in the metabolic relationship between the non-survivors and survivors. 

    

Equation 3-1. Multiple Linear Regression Model Format 
The metabolite concentrations were natural log transformed and scaled. The mortality variables were dichotomized 
with 0=survivor and 1=non-survivor. TCA= tricarboxylic acid cycle intermediate 
 

The models using malate at 28-days (β3= -0.51; p=0.055), malate at 1-year (β3= -0.54; 

p=0.036), and succinate at 1-year (β3= -0.68; p=0.038) were found to have significant interaction 

terms (Figure 3-1). We added clinical parameters to the significant models to adjust for age, sex, 

BMI, and SOFA, but inclusion of the variables did not impact the interaction terms, so they were 

removed. The slope term, β1, denoting the relationship between malate and C2 was greater in 

magnitude in the non-survivors compared to the survivors at 28-days (-0.528 vs -0.0184), and 1-

year (-0.421 vs 0.118). Therefore, in support of the hypothesis, the relationship between malate 

and C2 was stronger in the septic shock non-survivors compared with the survivors. However, 

β1 indicating the association between succinate and C2 were similar in magnitude between the 

𝐶2 = 𝛽𝑜 + 𝛽1(𝑇𝐶𝐴) + 𝛽2(𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦) + 𝛽3(𝑇𝐶𝐴 ∗ 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦)	



 61 

non-survivors and survivors at 1-year (-0.295 vs 0.379). The significant interaction slope of the 

succinate at 1-year model illustrated a different metabolic relationship based on mortality but did 

not support the hypothesis that the non-survivors’ metabolic relationship is stronger. 

Interestingly, when substituted for C2 as the dependent variable, lactate did not have any 

relationships with the TCA cycle metabolites between the survivors and non-survivors. Overall, 

the findings demonstrate that the relationship between C2 and different TCA cycle intermediates 

are differentiating between mortality groups, suggesting that changes in these key mitochondrial 

metabolites are closely linked to mortality. Thus, the C2 signal in septic shock reflects an 

expanded interpretation of mitochondrial dysfunction including a perturbed TCA cycle. The next 

steps were to validate the results in a less sick sepsis cohort to interrogate the extent to which 

illness severity influences the metabolic relationships. 

  

A B 

C 
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Figure 3-1. Multiple Linear Regression Model Results 
The models with significant interaction slopes included (A) malate at 28-days, (B) malate at 1-year, and (C) 
succinate at 1-year. The regression lines for each mortality group are distinguished by color; red= survivors, 
blue=non-survivors. 

The central biorepository (CBR) at the University of Michigan provided plasma samples 

from ICU patients identified with sepsis (n=134) that did not meet the Sepsis-3 definition for 

septic shock due to a lactate level ≤ 2 mmol/L (6). Table 3-1 compares the median SOFA scores, 

28-day mortality, and 1-year mortality between the CBR and RACE cohorts.  

 

Table 3-1. Comparing SOFA, 28-day, and 1-year mortality between groups 
CBR represents the less sick sepsis cohort, whereas the RACE data are from septic shock patients. 

The plasma samples were analyzed using the same targeted approaches as the RACE 

patient samples (acylcarnitines and Glycolysis/TCA/Nucleotide platforms). Using multiple linear 

regression interaction models, we assessed the relationships among C2 and the TCA cycle 

intermediates between sepsis non-survivors and survivors. However, we were unable to validate 

the same metabolic relationships between C2 and malate or succinate. We also did not find any 

new significant interaction models that were not present in the primary analysis results. These 

findings suggest that sepsis and septic shock represent different stages of metabolic disruption. 

Further exploration is necessary to identify the extent of the metabolic differences between the 

early stages of sepsis through septic shock. Such findings would uncover metabolic mechanisms 

that influence the progression of sepsis-induced organ dysfunction, which may reveal new 

therapeutic targets. 
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Nevertheless, an important connection was identified among the sepsis and septic shock 

cohorts. C2 was positively correlated to organ dysfunction as measured through the SOFA score 

(CBR r=0.42, p<0.00; RACE r=0.44, p<0.00). Consequently, our secondary analysis sought to 

characterize the metabolite signals at the different stages of sepsis, determine how they relate to 

changes in organ dysfunction, and explore the mechanistic origins of the C2 signal we observe in 

patients with sepsis. 

3.2 Metabolic Disruptions that Precede Organ Dysfunction in an Early Sepsis Mouse 

Model Persist in Patients with Sepsis and Septic Shock. 

3.2.1 Introduction 

The Sepsis-3 guidelines include a consensus statement that an unregulated infection leads 

to a cascade of disruptions in bodily systems that result in prolific organ damage, dysfunction, 

and/or failure that ultimately drives the mortality and morbidity in patients (6). Specifically, the 

cardiovascular, neuronal, endothelial, immune, bioenergetic, and metabolic systems are all 

affected during the progression of sepsis-induced organ dysfunction, but the underlying 

mechanisms remain poorly understood (6-8). This poses as a major barrier to identifying and 

developing targeted therapeutics for patients with sepsis (6, 7). 

Despite this lack of knowledge, there have been advancements in the understanding of 

sepsis pathobiology, and metabolism has emerged as a critical component (2, 7, 9, 10). For 

example, lactate, a metabolic product of glycolysis, is codified in the Sepsis-3 guidelines 

definition which has led to its use as a biomarker in treatment algorithms (6, 11). More recently, 

using metabolomics, we and others have identified mitochondrial metabolic signals (e.g., 

acylcarnitines) in the blood that are associated with sepsis severity, organ dysfunction, mortality, 

and persistent critical illness (10, 12-16). These findings have raised our curiosity about the 



 64 

origins and timing of these signals, and the extent to which changes in blood metabolite levels 

reflect organ specific perturbations in metabolism and function. This information is needed for 

moving the sepsis definition to one that is grounded in mechanism.  

Metabolomics is a versatile systems biology approach that measures endogenous 

metabolites in a single biological sample (9, 17). To date, most sepsis metabolomics studies have 

been cross-sectional. However, longitudinal organ-focused studies are needed to characterize the 

chronological progression of sepsis-induced changes in organ metabolism and function. 

Importantly, since metabolic pathways are highly conserved across mammalian species (18), 

metabolism can serve as a “translational bridge” between experimental and clinical sepsis, 

enabling mechanistic studies. Herein, we present two human sepsis cohorts and an experimental 

murine model of sepsis that show mitochondrial metabolic signals in the blood reflect 

disruptions in organ-level metabolism that is a harbinger of organ injury and dysfunction.  

3.2.2 Methods 

Human sepsis and septic shock cohorts 

After obtaining consent, plasma samples from patients in the intensive care unit with 

sepsis were collected through the University of Michigan Central Biorepository (CBR) as a 

secondary research method. Patients were selected based on the criteria that their most recent 

serum lactate measured prior to research sample collection was ≤ 2 mmol/L to exclude patients 

with septic shock. The samples were then sent to the Michigan Regional Comprehensive 

Metabolomics Research Core (MRC2) to be assayed via liquid chromatography mass 

spectrometry (LC-MS) on their targeted platforms, Acylcarnitines and 

Glycolysis/TCA/Nucleotides. The Acylcarnitine platform quantified 8 compounds using internal 

standards (L-carnitine, C2, C3, C4, C5, C8, C14, C16) and provided peak areas for 21 other 



 65 

acylcarnitines. The Glycolysis/TCA/Nucleotides platform quantified 6 compounds using internal 

standards (glucose, lactate, succinate, malate, citrate/isocitrate, adenosine triphosphate) and 

provided peak areas for 50 other compounds.  

The data from patients with septic shock were part of a secondary analysis from a phase 2 

placebo controlled clinical trial (RACE) studying the therapeutic effects of intravenous L-

carnitine (5). Patients were consented and enrolled within 24 hours of septic shock recognition. 

For this analysis, we used the baseline serum samples from patients in the placebo arm that were 

previously assayed by the MRC2 using the same targeted platforms (19). There were minor 

differences in the Glycolysis/TCA/Nucleotides assay due to changes made by the MRC2. 

Specifically, the RACE samples were assayed using ion-pair chromatography mass spectrometry 

and the quantified compounds were citrate/isocitrate, succinate, fumarate, and malate with 29 

other metabolite peak areas provided. Also for the RACE dataset, the Acylcarnitine platform 

provided peak areas for 16 other acylcarnitines, as opposed to the 21 detected in the CBR cohort. 

Due to this difference, we only considered the common metabolites detected (56 total) in both 

data sets for the analyses (Table 3-2). We compared the demographics between the two cohorts 

in Table 3-3. 

Table 3-2 Common metabolites between the sepsis (CBR) and septic shock (RACE) cohorts detected via the 
Acylcarnitines and the Glycolysis/TCA/Nucleotides platforms.  
-.conc indicates an internal standard quantified compound, all others are peak areas. 

LC.conc C2.conc C2.LC C3.conc C4.conc C5.conc C6 C8:1 

C8.conc C10:1 C10 C12:1 C12 C14:1 C14.conc C16:1 

C20:4 C18:2 C20:3 C16.conc C18:1 C20:2 C18 C20:1 

C20:0 
Citrate/
Isocitrate.conc Lactate.conc Malate.conc Succinate.conc Taurine Creatinine Glutamine

Proline Asparagine Citrulline Deoxyuridine Valine Hypoxanthine
Leucine/
Isoleucine Tyrosine

Glutamate Aspartate Phenylalanine Gluconate Tryptophan Pyruvate
Pantothenic 
acid

alpha-
ketoglutarate

Threonine Alanine Histidine Creatine Methionine Xanthine
Hexose 6-
phosphate Fumarate
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Table 3-3. Demographics between sepsis (CBR) and septic shock (RACE) patients. 
‡ sample size differs due to missing data; RACE BMI n=60, RACE lactate n=50, RACE SOFArenal n=59; 
* Denotes the Mann-Whitney test p-value <0.05 

Cecal Ligation and Puncture Mouse Model of Sepsis 

This study followed the guidelines of the Institutional Animal Care and Use Committee 

(IACUC) of the University of Michigan, which approved the animal procedures and animal care 

methods used for this study. Male and female (12-13 weeks) C57BL/6J mice (The Jackson 

Laboratory, Bar Harbor, Maine) included in the study received routine housing as previously 

described for at least 5 days prior to surgery for acclimatization (20). Under isoflurane anesthesia 

(VetOne, Boise, Idaho), the cecal ligation and puncture (CLP) surgery was performed using a 

50% ligation of the cecum with two punctures using a 26-gauge needle as previously described 

to obtain a 50-70% mortality rate (20). At induction, the mice received 1.5 mL of warmed saline 

Variable Sepsis cohort CBR
(n = 134)

Septic Shock cohort RACE
(n = 61) p-value

Demographics 

Age, years (IQR) 59 (49, 69) 61 (48, 71) 0.8
Male, n (%) 83 (62%) 33 (54%)

0.3
Female, n (%) 51 (38%) 28 (46%)

Physiologic variables 

Body mass index (IQR) 29 (24, 35) 27 (22, 35) ‡ 0.1
Laboratory values 

Clinical lactate, mmol/L (IQR) 1.3 (0.9, 1.6) 3.8 (2.7, 6.7) ‡ <0.0001*
Carnitine values

L-carnitine (LC), µM 56.1 (42.6, 94.6) 38.4 (25.6, 59) <0.0001*
Acetylcarnitine (C2), µM 13.3 (8.2, 22.6) 17.3 (11.5, 29.8) 0.006*
C2/LC ratio 0.22 (0.16, 0.36) 0.51 (0.35, 0.74) <0.0001*

Severity of Illness

Total SOFA score (IQR) 4 (3, 7) 9 (7, 11) <0.0001*
SOFArenal (IQR) 1 (0, 4) 1 (1, 2) ‡ 0.9
SOFAliver (IQR) 0 (0, 1) 1 (0, 2) 0.009*

Mortality

28-day, n (%) 37 (28%) 27 (44%) 0.03*
1-year, n (%) 60 (45%) 39 (64%) 0.01*
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containing 0.05 mg/kg buprenorphine subcutaneously with 4 additional doses in 100 µL of 

warmed saline every 12 hours up to 48 hours, depending on the termination time point. Cages 

were randomly assigned to receive the CLP or sham laparotomy in which we did not ligate or 

puncture the cecum. The 6- and 24-hour termination time point groups had 10 CLP and 10 sham 

animals. Due to the anticipated mortality at these time points, we included 2 and 6 extra animals 

in the 30- and 48-hour CLP groups, respectively, to ensure we had a minimum of 10 animals per 

group. The final counts for each time point are shown in Table 3-4. 

 

Table 3-4. Demographic table containing the number of animals per group, time point, and sex distribution. 
N=95 total animals 

Tissue Collection and Processing 

At termination, the mice underwent isoflurane anesthesia for tissue collection via the 

freeze clamp procedure intended to quench the in vivo metabolism, as previously described (21). 

Briefly, laparotomy was performed, and the left renal blood vessels were clamped then the 

kidney was excised and cut longitudinally before being submerged in 10% neutral buffered 

formalin (24895887, Sigma-Aldrich) for 18 hours followed by 70% ethanol until histological 

analysis was performed. The right medial liver lobe received the same collection for histological 

analysis. The right kidney blood vessels were clamped, and the excised tissue was washed in a 

glucose (10 mM) and pyruvate (0.5 mM) solution then simultaneously frozen and flattened using 

liquid nitrogen cooled paddle forceps and stored in cryotubes containing argon. The left liver 

lobe, heart, and lungs were also excised, and freeze clamped. Plasma (1:1 v/v, 100 µL whole 

blood into 100 µL of 3.4 mM EDTA PBS (1X)) samples were collected via the tail snip method 

group T0 hours T6 hours T24 hours T30 hours T48 hours
CLP 10 (5 male; 5 female) 10 (5 male; 5 female) 11 (5 male; 6 female) 14 (7 male; 7 female)

sham 10 (5 male; 5 female) 10 (5 male; 5 female) 10 (5 male; 5 female) 10 (5 male; 5 female)

healthy 10 (5 male; 5 female)
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at termination to be assayed via the VETSCAN VS2 comprehensive diagnostic profile for the 

clinical biomarkers; creatinine (CRE), total bilirubin (TBIL), amylase (AMY), albumin (ALB), 

total protein (TP), blood urea nitrogen (BUN), and alanine transaminase (ALT). Whole blood (30 

µL) was also collected at termination for internal standard quantified measurements of L-

carnitine and acetylcarnitine via LC-MS at the University of Michigan Pharmacokinetic and 

Mass Spectrometry Core. 

 Freeze clamped kidney and liver samples were homogenized and extracted using a 

methanol/chloroform/water extraction solution, as previously described (22). Briefly, 

methanol/chloroform (1:2 v/v, 1mL -20 ºC) was added to homogenization tubes containing steel 

beads with 50-100 mg of the kidney or left liver lobe. Dry ice was added to cool the bead 

homogenizer (Beadbug 6, Benchmark Scientific). The tissues were bead homogenized for 3 

cycles of 20s with 30s rest intervals at 4350 rpm, then cooled at -20 ºC for 2 minutes between 

each run (3 runs total). The tubes containing matched halves of the organs were combined in 5 

mL tubes, placed on ice, and pulse sonicated for 20s (Sonic Dismembrator model 100, Fisher 

Scientific). Samples were added to 15 mL conical tubes containing cold chloroform/HPLC grade 

water (1:1 v/v, 1.6 mL 4 ºC) to the samples, vortexed for 10s, and let rest on ice for 15 minutes 

before centrifugation (13,400 x g, 30 min at 4 ºC). The resulting aqueous fraction was filtered 

(0.2 µm) then lyophilized.  

1H-Nuclear Magnetic Resonance (NMR) Spectroscopy 

Post-lyophilization, samples were resuspended in a 50 mM phosphate buffer in D2O. 

After being resuspended, samples were vortexed to fully resuspend all solids, and then measured 

and transferred to labeled cryotubes using a 1 mL glass serological pipet. If the sample volume 

was less than 500 µL, D2O was added to the sample to bring its volume up to 500 µL. 50 µL of 
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DSS-d6 of known concentration was then added to all samples to act as an internal standard for 

NMR. Samples were then frozen and stored at -80 ºC until time of spectra acquisition. Spectra 

were acquired at the University of Michigan's Biochemical NMR Core Laboratory on a Varian 

(now Agilent, Inc., Santa Clara, CA) 500MHz NMR spectrometer with a VNMRS console 

operated by host software VNMRJ 4.0. Spectra were recorded using 128 scans of a proton-

proton-NOESY pulse sequence (commonly called a METNOESY pulse sequence) (23). Spectra 

were acquired at room temperature (295.45+/-0.3 ºK) using a 5-mm Agilent "One-probe." The 

pulse sequence is as follows: A 1s recovery delay, which includes a 990ms saturation pulse of 

80Hz induced field strength empirically centered on the water resonance, 2 calibrated 90º pulses, 

a mixing time of 100ms, a final 90º pulse, and an acquisition period of 4s. Optimal excitation 

pulse widths were obtained by using an array of pulse lengths as previously described (24). NMR 

spectra were analyzed using Chenomx NMR Suite 8.6 (Chenomx, Inc., Edmonton, AB, Canada). 

Using the software's Processor module, spectra first had their phase shift adjusted, followed by 

the excision of the water peak, followed by manual baseline correction. After spectra were 

processed, the Profiler module of the software was used to identify and quantify compounds 

relative to the internal standard. Compound identity was determined using Chenomx's internal 

compound library of 338 compounds, and a 500mHz compound library from HMDB.ca (25) 

containing 657 compounds.  All samples were profiled by a single researcher who was blinded to 

experimental condition. We detected and profiled 60 metabolites in the kidney samples and 68 

metabolites in the liver samples. Metabolite concentrations (µM) were normalized to BCA assay 

quantified protein concentrations (µg/mL) and stoichiometry was used to obtain final units of 

nmol/g. 
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Data Analysis Methods 

 Demographic data between human cohorts was compared using the Mann-Whitney test 

in Prism 9 (Version 9.1.0, GraphPad Software, LLC.). We used the metabolomics analysis 

platform, MetaboAnalyst 5.0 (https://www.metaboanalyst.ca/), to conduct the partial Spearman’s 

rank correlation (for ordinal data: SOFAtotal, SOFArenal, SOFAliver), partial Pearson’s correlation 

(for continuous data: metabolites, organ biomarkers), 2-way ANOVA analyses, and to impute 

metabolite missing data using 1/5 the minimum concentration per metabolite. The partial 

correlation analyses adjusted for age, sex, body mass index (BMI) in the human cohorts, and 

group, sex, time in the animal analyses, while also correcting for multiple comparisons via False 

Discovery Rates (FDR). We used RStudio (RStudio Team 2015. RStudio: Integrated 

Development for R. RStudio, Inc., Boston, MA) to plot the metabolite concentration over time 

data with subsequent ANOVA Holm’s post-hoc testing and the correlation plots.  

We subtracted the neurological component of the SOFA score because many of the septic 

shock patients were sedated which affects the neurological assessment, as has been done 

previously (13). To be consistent between groups, we removed the neurological score from 

SOFA in both cohorts and refer to the new score as the SOFAtotal. The pathway analysis used 

quantitative enrichment analysis which uses a generalized linear model to estimate the 

association between the metabolite concentrations and the class label (CLP vs sham) (26). The p-

values derived from this analysis are plotted against the pathway topology analysis “pathway 

impact” which represents the importance of a compound within a given metabolic network (26).  

3.2.3 Results 
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Patients with sepsis and septic shock have distinct metabolite signals in the blood that are 

associated with organ dysfunction.  

Using two separate cohorts of patients, one with sepsis (CBR) and one with septic shock 

(RACE), we found that patients with sepsis had more blood metabolites that correlated with 

organ dysfunction (SOFAtotal, SOFArenal, and SOFAliver) than patients with septic shock (Figure 

3-2).  These signals were adjusted for age, sex, and BMI and FDR corrected for multiple 

comparisons. Notably, in sepsis, there were metabolites that were positively and negatively 

correlated with SOFAtotal, SOFArenal, and SOFAliver, whereas in septic shock, there were only 

positive associations. Apart from the correlation between creatinine and SOFArenal, the 

acylcarnitines were the only measured metabolites that correlated with organ dysfunction in the 

septic shock cohort.  

 

Figure 3-2. Partial correlations between energy metabolites in the blood and organ dysfunction variables 
Adjusted for age, sex, and BMI. The partial correlations between (A) SOFA, (B) SOFArenal, (C) SOFAliver, and 
energy metabolites measured in the plasma (CBR) and serum (RACE). Correlations with p<0.05 were included. 
Metabolite names with .conc designate quantified concentrations using internal standards. 

A B

C
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As such, we assessed the relationship between these blood markers of L-carnitine 

metabolism (LC, C2, C2/LC) and SOFAtotal, SOFArenal, and SOFAliver in the sepsis and septic 

shock cohorts (Figures 3-3 and 3-4.) The found associations persisted when adjusted for age, 

sex, and BMI in multiple linear regression analyses (Table 3-5). The correlation of blood L-

carnitine with both SOFArenal, and SOFAliver did not become evident until septic shock and the 

significant correlation with acetylcarnitine (C2) strengthened as sepsis progressed to shock, 

whereas the correlations with the C2/LC ratio diminished as patients entered shock.  In 

aggregate, these findings corroborate previous findings that sepsis-induced metabolic 

perturbations in the blood are associated with organ dysfunction (12, 27, 28); we extended them 

to show that there is a larger and more diverse global metabolic response in early disease (sepsis) 

that is associated with SOFArenal and SOFAliver than there is in late disease (septic shock). As 

sepsis progresses, this shift in metabolism leads to an amplification of L-carnitine-related signals. 

 



 73 

 

Figure 3-3. Scatter plots of LC, C2, C2/LC plasma concentrations and SOFAtotal, SOFArenal, SOFAliver for the sepsis 
cohort (CBR; n=134). 
The Spearman’s rank correlation coefficient (rho) and p-value is shown for each association. The shaded area 
represents the 95% confidence interval around the linear regression best fit line. LC= L-carnitine; 
C2=acetylcarnitine. 
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Figure 3-4. Scatter plots between serum LC, C2, C2/LC and SOFA, SOFArenal, SOFAliver for the septic shock cohort 
(RACE; n=61). 
Spearman’s rank correlation coefficients (rho) with p-values are included. The shaded area represents the 95% 
confidence interval around the linear regression best fit line. LC= L-carnitine; C2=acetylcarnitine. 
 



 75 

 

Table 3-5. Multiple linear regression model results assessing the association between carnitine metabolites and 
various measures of organ dysfunction. 
Adjusted for age, sex, BMI; Metabolites, SOFA variables, and BMI were natural log transformed. 

A mouse model of sepsis captures early metabolic changes in blood, kidney, and liver that 

precede clinically and pathologically detectable organ injury and dysfunction. 

Given the associations between metabolites of L-carnitine metabolism and SOFA score 

in our human cohorts, we first evaluated temporal changes in whole blood levels of LC, C2, and 

C2/LC. There were no changes in L-carnitine metabolism early in the course of polymicrobial 

sepsis (6 h). However, alterations in blood L-carnitine were evident by 24 h (p<0.00) and 

progressively declined (30 h, p<0.00; 48 h, p<0.00) compared with sham animals (Figure 3-5A). 

Similar to observations in the human sepsis data, we found persistent elevations in the blood 

C2/LC ratio in the CLP mice (24 h, p<0.00; 30 h, p<0.00; 48 h, p<0.00) (Figure 3-5C).  

Data Metabolite (y)

Covariate 

(+Age+Sex+BMI) slope (p) adj R2

RACE LC SOFA 0.70 (0.02) 0.09813

RACE LC SOFArenal 0.33 (0.07) 0.05438

RACE LC SOFAliver 0.42 (0.02) 0.09203

RACE C2 SOFA 0.84 (<0.00) 0.1746

RACE C2 SOFArenal 0.62 (<0.00) 0.192

RACE C2 SOFAliver 0.52 (<0.00) 0.1751

RACE C2/LC SOFA 0.15 (0.53) -0.006383

RACE C2/LC SOFArenal 0.29 (0.06) 0.04538

RACE C2/LC SOFAliver 0.10 (0.47) -0.003835

CBR LC SOFA 0.19 (0.05) 0.08131

CBR LC SOFArenal 0.038 (0.62) 0.05575

CBR LC SOFAliver 0.071 (0.47) 0.05779

CBR C2 SOFA 0.59 (<0.00) 0.1586

CBR C2 SOFArenal 0.21 (0.04) 0.03045

CBR C2 SOFAliver 0.38 (<0.00) 0.06847

CBR C2/LC SOFA 0.4 (<0.00) 0.1228

CBR C2/LC SOFArenal 0.17 (0.02) 0.02993

CBR C2/LC SOFAliver 0.31 (<0.00) 0.07596
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Figure 3-5. Whole blood levels of LC, C2, and C2/LC compared between CLP (red) and sham (blue) animals. 
Healthy control median value shown by dashed green line with Holm’s post-hoc test p-values comparing between 
CLP and sham per time point. Data were natural log transformed for statistical analysis and are the mean +/- sd. 

Despite profound metabolic changes to blood carnitine metabolism, plasma 

concentrations of creatinine (CRE) and total bilirubin (TBIL), the components of SOFArenal and 

SOFAliver, respectively, were not distinguishable between CLP and sham groups (Figure 5). 

However, other blood measurements of organ function that are not used in the calculation of the 

SOFA score, such as blood urea nitrogen (BUN), amylase (AMY), total protein (TP), albumin 

(ALB), and alanine aminotransferase (ALT), became elevated but these changes varied over time 

and not all were sustained (Figure 5). Notably, histological evidence of late-stage apoptotic 

kidney injury did not occur until 48 hours but was primarily driven by 3 animals (Figure 6).  

A B

C



 77 

 

Figure 3-6. Organ function biomarkers compared between CLP (red) and Sham (blue) animals. 
Healthy control median value shown by dashed green line with post-hoc p-values included. creatinine (CRE), total 
bilirubin (TBIL), blood urea nitrogen (BUN), amylase (AMY), albumin (ALB), total protein (TP), and alanine 
transaminase (ALT) 

To understand the findings in blood carnitine metabolites and organ function biomarkers, 

we measured renal tissue metabolites and found ones that differentiated CLP, sham, and healthy 

mice using a 2-way ANOVA (Table 3-6). Of note, CLP mice had increased concentrations of 3-
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hydroxybutyrate, creatine, and histidine over time while adenosine, aspartate, and cystine 

decreased compared with control animals (Figure 3-7). As a gauge of carnitine metabolic 

activity, we calculated the organ substrate/product [(acetyl-CoA + L-carnitine)/(acetylcarnitine + 

CoA)] ratio because it is a surrogate of carnitine acetyltransferase (CAT) activity (Figure 3-8). 

This enzyme catalyzes the production of acetylcarnitine and Coenzyme A (CoA) from acetyl-

Coenzyme A and L-carnitine (29). CLP mice had a lower renal CAT activity value compared to 

sham mice at 24 hours (p<0.00), 30 hours (p=0.01), and 48 hours (p<0.00) (Figure 3-8A).  

 

Table 3-6. 2-way ANOVA results of renal metabolites with group, time, and group*time interaction statistics. 
Carnitine acetyltransferase (CAT) = (acetyl-CoA + carnitine)/(acetylcarnitine + CoA) 

KEGG ID metabolite Group 

(F.val)

Group 

(adj.p)

Time 

(F.val)

Time 

(adj.p)

Interaction 

(F.val)

Interaction 

(adj.p)

n/a CAT 69.99 0.00 3.86 0.02 7.74 0.00

C01089 3-Hydroxybutyrate 52.35 0.00 2.98 0.06 10.43 0.00

C00491 Cystine 50.34 0.00 1.89 0.16 2.25 0.18

C00135 Histidine 41.44 0.00 6.74 0.00 3.15 0.09

C00318 Carnitine (LC) 36.59 0.00 3.04 0.05 1.40 0.39

C00300 Creatine 36.92 0.00 2.41 0.10 11.47 0.00

n/a Acetyl-CoA/CoA 33.57 0.00 6.30 0.00 8.24 0.00

C00049 Aspartate 33.60 0.00 0.85 0.49 5.47 0.01

C00212 Adenosine 27.37 0.00 3.77 0.03 2.97 0.11

C00025 Glutamate 25.72 0.00 4.03 0.02 0.77 0.60

C00010 Coenzyme A 23.56 0.00 2.02 0.14 8.74 0.00

C00043 UDP-N-

Acetylglucosamine

21.53 0.00 3.99 0.02 0.41 0.78

C00543 Dimethylamine 19.90 0.00 3.11 0.05 2.30 0.18

C00189 Ethanolamine 18.40 0.00 13.38 0.00 0.47 0.76

n/a N-Acetyllactosamine 17.10 0.00 4.84 0.01 2.27 0.18

C00670 sn-Glycero-3-

phosphocholine

14.77 0.00 1.13 0.38 9.91 0.00

C01879 Pyroglutamate 14.07 0.00 7.67 0.00 3.24 0.09

C00037 Glycine 13.34 0.00 1.61 0.22 0.31 0.84

C06809 N-Acetylcysteine 12.84 0.00 5.19 0.01 4.17 0.03

C00031 Glucose 12.03 0.00 2.97 0.06 1.22 0.41

C00058 Formate 9.98 0.01 1.00 0.42 2.00 0.23

C00123 Leucine 6.96 0.03 4.42 0.02 1.43 0.39

C01380 Ethylene glycol 6.48 0.03 2.73 0.07 0.59 0.68
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Figure 3-7.  Differentiating renal tissue metabolites in the CLP (red) and sham (blue) subjects plotted over time. 
Adjusted ANOVA Holm’s test post-hoc p-values shown per timepoint comparison. The median values for the 
healthy control animals are represented by the dashed green line. Data are nmol/g of protein that were log 
transformed for statistical analysis and are the mean +/- sd. Sample sizes were 10 animals for each group at 6 and 24 
hours, and 11 at 30 hours and 14 at 48 hours. 
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Figure 3-8. Carnitine acetyltransferase substrate and product (A) renal and (B) liver metabolites in the CLP (red) 
and sham (blue) subjects plotted over time. 
Adjusted ANOVA Holm’s post-hoc test for multiple comparisons p-values is shown for each timepoint comparison. 
The median values for the healthy control animals are represented by the dashed green line. Data are nmol/g of 
protein that were log transformed for statistical analysis and are the mean +/- sd. Sample sizes were 10 animals for 
each group at 6 and 24 hours, and 11 at 30 hours and 14 at 48 hours. Carnitine acetyltransferase (CAT) = (acetyl-
CoA + carnitine)/(acetylcarnitine + CoA) 

We applied the same statistical approach to assess changes in liver tissue metabolites 

(Table 3-7). In the liver, CLP mice had elevated levels of 3-hydroxybutyrate, 2-hydroxybutyrate, 

B 

A 
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N,N-Dimethylglycine, cytidine monophosphate, creatine, uridine monophosphate (UMP), 2-

aminobutyrate, and C2 over time (Figure 3-9). CLP mice had a lower liver CAT activity 

compared to sham (6 hours p=0.06; 24 hours p<0.00, 48 hours p=0.03) (Figure 3-8B). The sham 

metabolite levels closely tracked with the median values from healthy control mice.  

 

Table 3-7. 2-way ANOVA results of liver metabolites with group, time, and group*time interaction statistics 
 

 

KEGG ID metabolite Group 
(F.val)

Group 
(raw.p)

Group 
(adj.p)

Time 
(F.val)

Time 
(raw.p)

Time (adj.p)

C01089 3-Hydroxybutyrate 99.24 0.00 0.00 4.11 0.01 0.02
C05984 2-Hydroxybutyrate 96.15 0.00 0.00 8.55 0.00 0.00
C01026 N,N-Dimethylglycine 79.39 0.00 0.00 4.61 0.01 0.01
C00055 Cytidine monophosphate 77.50 0.00 0.00 5.27 0.00 0.00
C00300 Creatine 75.63 0.00 0.00 1.96 0.13 0.16
C00105 UMP 65.60 0.00 0.00 8.28 0.00 0.00
C02356 2-Aminobutyrate 58.38 0.00 0.00 23.47 0.00 0.00
C02571 Acetylcarnitine (C2) 57.08 0.00 0.00 5.36 0.00 0.00
C00051 Glutathione 54.15 0.00 0.00 7.45 0.00 0.00
C00041 Alanine 47.68 0.00 0.00 10.61 0.00 0.00
C00135 Histidine 33.57 0.00 0.00 7.79 0.00 0.00
C00064 Glutamine 31.99 0.00 0.00 9.20 0.00 0.00
C00144 Guanosine monophosphate 29.24 0.00 0.00 2.62 0.06 0.08
C00079 Phenylalanine 27.62 0.00 0.00 0.41 0.75 0.77
C00719 Betaine 26.77 0.00 0.00 7.39 0.00 0.00
C00049 Aspartate 26.42 0.00 0.00 32.32 0.00 0.00
C00042 Succinate 25.92 0.00 0.00 1.37 0.26 0.30
C00588 O-Phosphocholine 25.22 0.00 0.00 8.79 0.00 0.00
C00043 UDP-N-Acetylglucosamine 24.67 0.00 0.00 10.47 0.00 0.00
C00082 Tyrosine 24.52 0.00 0.00 12.70 0.00 0.00
C00543 Dimethylamine 24.23 0.00 0.00 7.73 0.00 0.00
n/a CAT 23.34 0.00 0.00 9.59 0.00 0.00
C00245 Taurine 23.44 0.00 0.00 1.87 0.14 0.17
C00033 Acetate 21.66 0.00 0.00 12.91 0.00 0.00
C06809 N-Acetylcysteine 21.51 0.00 0.00 9.31 0.00 0.00
n/a Acetyl-CoA/CoA 19.30 0.00 0.00 3.96 0.01 0.02
C00847 4-Pyridoxate 18.50 0.00 0.00 7.19 0.00 0.00
C00299 Uridine 15.14 0.00 0.00 5.51 0.00 0.00
C00020 AMP 10.93 0.00 0.00 2.80 0.05 0.06
C00010 Acetyl-Coenzyme A 10.36 0.00 0.00 1.92 0.13 0.16
C00130 IMP 9.71 0.00 0.00 2.29 0.08 0.11
C00052 UDP-galactose 10.25 0.00 0.00 3.11 0.03 0.05
C00137 myo-Inositol 9.14 0.00 0.01 10.14 0.00 0.00
C00029 UDP-glucose 7.98 0.01 0.01 5.92 0.00 0.00
C00711 Malate 7.10 0.01 0.02 16.98 0.00 0.00
C00208 Maltose 6.25 0.01 0.03 4.08 0.01 0.02
C00047 Lysine 5.97 0.02 0.03 5.84 0.00 0.00
C00159 Mannose 5.76 0.02 0.03 5.22 0.00 0.00
C00073 Methionine 5.75 0.02 0.03 0.69 0.56 0.59
C00611 N-Acetyllactosamine 5.40 0.02 0.04 1.25 0.30 0.34
C00152 Asparagine 5.06 0.03 0.05 0.73 0.54 0.58
C01835 Maltotriose 4.97 0.03 0.05 2.47 0.07 0.09
C00077 Ornithine 4.97 0.03 0.05 3.49 0.02 0.03
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Figure 3-9. Differentiating liver metabolites in the CLP (red) and sham (blue) subjects are plotted over time 
Adjusted ANOVA Holm’s test post-hoc p-values shown per timepoint comparison. The median values for the 
healthy control animals are represented by the dashed green line. Data are nmol/g of protein that were log 
transformed for statistical analysis and are the mean +/- sd. Sample sizes were 10 animals for each group at 6 and 24 
hours, and 11 at 30 hours and 14 at 48 hours. 

To better understand the unique metabolic signals perturbed by sepsis in each organ, the 

differentiating metabolite concentrations of the kidneys and liver were used in separate pathway 

analyses. We found that for the 23 differentiating renal tissue metabolites, 27 metabolic 

pathways were significantly different between the CLP and sham animals (Figure 3-10A). The 
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top five pathways based on the impact score were D-glutamine and D-glutamate metabolism; 

alanine, aspartate and glutamate metabolism; glycine, serine and threonine metabolism; histidine 

metabolism; and pantothenate and CoA biosynthesis (Table 3-8). For the 30 differentiating liver 

tissue metabolites, 40 metabolic pathways differentiated CLP and sham animals (Figure 3-10B). 

The top 5 pathways based on pathway impact were phenylalanine, tyrosine and tryptophan 

biosynthesis; taurine and hypotaurine metabolism; phenylalanine metabolism; alanine, aspartate 

and glutamate metabolism; and glutathione metabolism (Table 3-9). 

 

Figure 3-10. Murine metabolic pathway analysis of the differentiating metabolites from the (A) kidney, and (B) liver 
generated by MetaboAnalyst. 
The top 5 pathways based on pathway impact are annotated. Metabolite concentrations from all time points were 
included from both CLP and sham animals. 
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Table 3-8. Metabolic pathway analysis results using differentiating renal metabolites. 

Pathway

Total 

compounds Hits Raw p -LOG10(p) Holm adjust FDR Impact

D-Glutamine and D-glutamate metabolism 6 1 7.03E-06 5.153 9.84E-05 1.27E-05 0.5

Alanine, aspartate and glutamate metabolism 28 3 2.29E-05 4.641 0.0002514 3.63E-05 0.42068

Glycine, serine and threonine metabolism 34 2 1.12E-08 7.9491 2.36E-07 4.34E-08 0.27117

Histidine metabolism 16 3 1.62E-10 9.7913 4.20E-09 2.18E-09 0.22131

Pantothenate and CoA biosynthesis 19 2 3.82E-10 9.4185 9.16E-09 2.24E-09 0.175

Fatty acid degradation 39 1 3.91E-05 4.4074 0.00035225 5.56E-05 0.12404

Arginine biosynthesis 14 2 8.73E-07 6.0591 1.57E-05 2.36E-06 0.11675

Glutathione metabolism 28 3 5.58E-05 4.2533 0.00044646 7.53E-05 0.11548

Glyoxylate and dicarboxylate metabolism 32 3 3.09E-06 5.51 4.94E-05 6.95E-06 0.10582

Arginine and proline metabolism 38 2 8.23E-11 10.085 2.22E-09 2.18E-09 0.09812

Glycerophospholipid metabolism 36 2 9.21E-05 4.0355 0.00064503 0.00011848 0.06138

Primary bile acid biosynthesis 46 1 0.000395 3.4034 0.00237 0.00048478 0.02239

Amino sugar and nucleotide sugar metabolism 37 1 1.89E-05 4.7241 0.0002265 3.19E-05 0.00882

Purine metabolism 66 1 4.24E-06 5.3725 6.36E-05 8.81E-06 0.00117

Glycolysis / Gluconeogenesis 26 1 0.00085597 3.0675 0.0042799 0.0010048 0.00021

Butanoate metabolism 15 2 2.81E-10 9.5517 7.02E-09 2.24E-09 0

beta-Alanine metabolism 21 2 4.14E-10 9.3826 9.53E-09 2.24E-09 0

Cysteine and methionine metabolism 33 1 2.81E-09 8.5507 6.19E-08 1.27E-08 0

Synthesis and degradation of ketone bodies 5 1 1.11E-07 6.9556 2.22E-06 3.74E-07 0

Aminoacyl-tRNA biosynthesis 48 6 3.69E-07 6.4333 7.01E-06 1.11E-06 0

Nicotinate and nicotinamide metabolism 15 1 1.96E-06 5.7087 3.32E-05 4.80E-06 0

Nitrogen metabolism 6 1 7.03E-06 5.153 9.84E-05 1.27E-05 0

Porphyrin and chlorophyll metabolism 30 2 2.72E-05 4.5655 0.00027197 4.08E-05 0

Ether lipid metabolism 20 1 0.0012258 2.9116 0.0049031 0.001379 0

Valine, leucine and isoleucine degradation 40 1 0.016043 1.7947 0.048129 0.01666 0

Valine, leucine and isoleucine biosynthesis 8 1 0.016043 1.7947 0.048129 0.01666 0

Selenocompound metabolism 20 1 0.030504 1.5156 0.048129 0.030504 0
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Table 3-9. Metabolic pathway analysis results using differentiating liver metabolites. 
 

The blood C2/LC ratio is associated with differentiating organ metabolites and organ function 

biomarkers in the sepsis mouse model. 

 Since there were correlations between blood C2/LC ratio and all three SOFA 

measurements (SOFAtotal, SOFArenal and SOFAliver) in the human sepsis cohort (Figure 3-3) and 

this signal was also evident in our mouse model, we identified organ metabolites that were 

Pathway

Total 

compounds Hits Raw p -LOG10(p) Holm adjust FDR Impact

Phenylalanine, tyrosine and tryptophan biosynthesis 4 2 3.54E-08 7.4507 1.13E-06 1.42E-07 1

Taurine and hypotaurine metabolism 8 1 3.58E-06 5.4461 8.23E-05 7.54E-06 0.42857

Phenylalanine metabolism 12 2 3.54E-08 7.4507 1.13E-06 1.42E-07 0.35714

Alanine, aspartate and glutamate metabolism 28 3 1.83E-09 8.7372 6.04E-08 9.16E-09 0.33734

Fatty acid elongation 39 1 0.0031265 2.5049 0.027896 0.0031265 0.25661

Glutathione metabolism 28 2 1.55E-06 5.8107 3.71E-05 3.64E-06 0.25596

Purine metabolism 66 4 4.31E-07 6.3653 1.25E-05 1.31E-06 0.24495

Histidine metabolism 16 2 9.29E-07 6.0318 2.32E-05 2.32E-06 0.22131

Pyruvate metabolism 22 2 4.17E-05 4.38 0.000741 6.67E-05 0.21462

Fatty acid degradation 39 1 0.0031265 2.5049 0.027896 0.0031265 0.18092

Tyrosine metabolism 42 1 0.00049842 3.3024 0.0064795 0.00068748 0.13972

Glycine, serine and threonine metabolism 34 3 1.48E-13 12.83 5.62E-12 1.97E-12 0.11397

Pyrimidine metabolism 39 4 4.15E-11 10.382 1.50E-09 3.32E-10 0.10946

Glycolysis / Gluconeogenesis 26 2 4.17E-05 4.38 0.000741 6.67E-05 0.07075

Citrate cycle (TCA cycle) 20 2 1.15E-07 6.9395 3.45E-06 4.18E-07 0.06941

beta-Alanine metabolism 21 3 6.18E-07 6.209 1.61E-05 1.65E-06 0.05597

Cysteine and methionine metabolism 33 1 2.62E-05 4.5821 0.00049734 4.76E-05 0.04179

Amino sugar and nucleotide sugar metabolism 37 2 0.00015583 3.8074 0.0023374 0.00023974 0.04019

Galactose metabolism 27 1 0.0023227 2.634 0.02555 0.003097 0.03235

Valine, leucine and isoleucine degradation 40 1 0.0031265 2.5049 0.027896 0.0031265 0.02836

Primary bile acid biosynthesis 46 1 3.58E-06 5.4461 8.23E-05 7.54E-06 0.02239

Propanoate metabolism 23 3 1.32E-13 12.881 5.13E-12 1.97E-12 0.01269

Arginine and proline metabolism 38 1 9.73E-11 10.012 3.41E-09 6.49E-10 0.01212

Glycerophospholipid metabolism 36 1 4.12E-05 4.3855 0.000741 6.67E-05 0.00937

Glyoxylate and dicarboxylate metabolism 32 3 4.57E-07 6.3402 1.25E-05 1.31E-06 0.00794

Fatty acid biosynthesis 47 1 0.0031265 2.5049 0.027896 0.0031265 0.00213

Butanoate metabolism 15 3 3.82E-16 15.418 1.53E-14 1.53E-14 0

Synthesis and degradation of ketone bodies 5 2 1.54E-12 11.813 5.70E-11 1.54E-11 0

Aminoacyl-tRNA biosynthesis 48 5 8.48E-10 9.0714 2.88E-08 4.85E-09 0

Arginine biosynthesis 14 2 4.33E-07 6.3634 1.25E-05 1.31E-06 0

D-Glutamine and D-glutamate metabolism 6 1 6.09E-06 5.2153 0.00012792 1.16E-05 0

Nitrogen metabolism 6 1 6.09E-06 5.2153 0.00012792 1.16E-05 0

Vitamin B6 metabolism 9 1 0.00026959 3.5693 0.0037743 0.00039939 0

Ubiquinone and other terpenoid-quinone biosynthesis 9 1 0.00049842 3.3024 0.0064795 0.00068748 0

Nicotinate and nicotinamide metabolism 15 1 0.0027896 2.5545 0.027896 0.0031265 0

Pantothenate and CoA biosynthesis 19 1 0.0027896 2.5545 0.027896 0.0031265 0

Lysine degradation 25 1 0.0031265 2.5049 0.027896 0.0031265 0

Tryptophan metabolism 41 1 0.0031265 2.5049 0.027896 0.0031265 0

Inositol phosphate metabolism 30 1 0.0031265 2.5049 0.027896 0.0031265 0

Terpenoid backbone biosynthesis 18 1 0.0031265 2.5049 0.027896 0.0031265 0
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associated with it (Figure 3-11 and Table 3-10). Many of the metabolites correlated to blood 

C2/LC ratio (11/14 renal; 15/22 liver) were also differentiating between CLP and sham animals, 

highlighting the sepsis-induced metabolic changes in the organs are reflected in the blood 

(Tables 3-6 and 3-7). The top 10 metabolites that correlated with blood C2/LC ratio were 3-

hydroxybutyrate (renal; liver), 2-hydroxybutyrate (liver), creatine (renal; liver), 2-aminobutyrate 

(liver), glucose (renal, liver), maltotriose (liver), and cystine (renal). Likewise, BUN and AMY 

were correlated with the C2/LC ratio, respectively (r= 0.4, p=0.003; r= 0.5, p<0.000), showing a 

connection between blood L-carnitine metabolism and organ dysfunction. Various renal and liver 

metabolites were also found to be correlated with BUN and AMY (Figure 3-12), further 

establishing a connection between organ metabolism and function.  

 

Figure 3-11. Partial correlations between (A) renal and (B) liver metabolites with whole blood C2/LC. 
Correlations were adjusted for group, sex, and time and corrected for multiple comparisons. Correlations with 
p<0.05 were included. Values reported in Table 3-10. 

A B
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Table 3-10. Partial Pearson’s correlations between organ metabolites and whole blood C2/LC. 
Correlations were adjusted for group, sex, and time. 
 

organ metabolite correlation t-stat p-value FDR

kidney

3-Hydroxybutyrate 0.64655 7.9504 5.85E-12 1.90E-10
CAT -0.53161 -5.8878 6.99E-08 1.52E-06

Creatine 0.46061 4.8681 4.92E-06 7.99E-05
Cystine -0.3907 -3.9816 0.00014053 0.0018269
Glucose -0.37886 -3.8402 0.00023127 0.0025054

Coenzyme A 0.35191 3.5269 0.00067048 0.0062259
Alanine -0.31059 -3.0652 0.0028886 0.02347

Ethanolamine -0.3017 -2.9685 0.0038545 0.027838
Aspartate -0.29554 -2.9021 0.0046835 0.028437
Glutamine 0.29076 2.8507 0.0054336 0.028437

Acetyl-CoA/CoA -0.28989 -2.8414 0.0055811 0.028437
Hypotaurine -0.28718 -2.8124 0.0060623 0.028437
Adenosine -0.28684 -2.8088 0.0061249 0.028437

Lysine -0.27077 -2.6387 0.0098429 0.042653

liver

3-Hydroxybutyrate 0.60611 7.189 1.94E-10 7.16E-09
2-Hydroxybutyrate 0.51932 5.733 1.33E-07 3.28E-06

Creatine 0.49595 5.3881 5.77E-07 1.07E-05
2-Aminobutyrate 0.48446 5.2243 1.14E-06 1.69E-05

Maltotriose -0.39125 -4.0107 0.00012572 0.0013342
Glucose -0.39116 -4.0096 0.00012621 0.0013342
Maltose -0.35537 -3.5866 0.00054687 0.0050585

Mannose -0.34112 -3.4235 0.00093642 0.007207
sn-Glycero-3-phosphocholine -0.34006 -3.4114 0.00097391 0.007207

Coenzyme A 0.31179 3.0958 0.0026247 0.016346
Acetyl-Coenzyme A 0.31102 3.0873 0.0026933 0.016346

Lactate -0.30909 -3.0661 0.0028715 0.016346
CAT -0.29854 -2.951 0.0040478 0.021396
UMP 0.28444 2.799 0.0062848 0.031005

Alanine -0.28184 -2.7712 0.0067989 0.031445
N,N-Dimethylglycine 0.27773 2.7274 0.0076886 0.031836

Glutamine 0.27749 2.7249 0.007744 0.031836
Lysine -0.27566 -2.7054 0.0081748 0.031839

Isoleucine -0.26798 -2.6241 0.010223 0.037826
Succinate 0.26555 2.5985 0.010957 0.038612
Tyrosine -0.26372 -2.5793 0.011541 0.03882

NADH -0.2603 -2.5434 0.012705 0.040878
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Figure 3-12. Partial Pearson’s correlations between (A) renal and (B) liver metabolites with plasma organ function 
markers, AMY and BUN.  
Correlations with p<0.05 were included. 

A B
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Several differentiating metabolites of murine sepsis-induced organ dysfunction are correlated 

with sepsis-induced organ dysfunction in humans.  

We assessed the relationships between the common differentiating metabolites of the 

kidneys and liver identified in our mouse model with measures of sepsis-induced organ 

dysfunction in our human cohorts (Table 3-11). Consistent with our initial findings (Figure 3-2), 

the metabolic signals of organ dysfunction were more pronounced in patients with sepsis (CBR). 

Notable, blood levels of histidine, malate, and alanine were positively related to SOFAtotal, 

SOFArenal and SOFAliver scores; glutamate and aspartate were negatively correlated (Figure 3-

13). In patients with septic shock (RACE), histidine, lactate, glutamine, and alanine were 

positively correlated with SOFAtotal, SOFArenal and SOFAliver scores (Figure 3-14). To adjust for 

age, sex, and BMI we conducted multiple linear regressions with the significantly correlated 

metabolites (Table 3-12). 

 

Table 3-11. Common metabolites between the sepsis (CBR) and septic shock (RACE) cohorts and the detected 
compounds in the mouse renal and liver samples. 
*indicates a metabolite not detected in CBR, but was found in the other data sets 

Creatine Histidine Aspartate Lactate
Glutamate Leucine Glutamine Alanine

Succinate Malate Taurine Asparagine

3-hydroxybutyrate*
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Figure 3-13. Spearman’s rank correlations between metabolites and organ dysfunction variables (SOFAtotal, 
SOFArenal, and SOFAliver ) using the septic cohort (CBR n=134). 
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Figure 3-14. Spearman’s rank correlations between metabolites and organ dysfunction variables (SOFAtotal, 
SOFArenal, and SOFAliver) using the septic shock cohort (RACE, n=61) 

 

Data Metabolite (y)
Covariate 
(+Age+Sex+BMI) slope (p) adj R2

RACE histidine SOFA 0.34 (0.06) 0.106
RACE glutamine SOFA 0.41 (0.14) 0.03004
RACE lactate SOFArenal 0.25 (0.05) 0.03089
RACE glutamine SOFArenal 0.34 (0.07) 0.0497
RACE glutamine SOFAliver 0.27 (0.12) 0.03388
RACE alanine SOFAliver 0.35 (0.08) 0.1026
CBR histidine SOFA 0.27 (<0.00) 0.1231
CBR aspartate SOFA -0.17 (<0.00) 0.09326
CBR glutamate SOFA -0.27 (0.01) 0.1136
CBR leucine SOFA -0.14 (0.04) 0.03745
CBR alanine SOFA 0.16 (0.03) 0.04183
CBR succinate SOFA 0.11 (0.12) 0.03369
CBR malate SOFA 0.28 (<0.00) 0.09237
CBR asparagine SOFA 0.15 (0.01) 0.03092
CBR histidine SOFArenal 0.28 (<0.00) 0.2357
CBR alanine SOFArenal 0.12 (0.04) 0.04104
CBR succinate SOFArenal 0.11 (0.04) 0.04588
CBR malate SOFArenal 0.12 (0.04) 0.01695
CBR histidine SOFAliver 0.27 (<0.00) 0.1231
CBR glutamate SOFAliver -0.29 (<0.00) 0.1259
CBR malate SOFAliver 0.28 (<0.00) 0.09237
CBR asparagine SOFAliver 0.12 (0.04) 0.01637
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Table 3-12. Multiple linear regression results of differentiating metabolites in the mouse organs were assessed in 
the human cohorts. 
Adjusted for age, sex, and BMI. All continuous variables were natural log-transformed. 
 

 

Table 3-13. Kidney and liver tissue carnitine environments in healthy mice (12-13 weeks old). 
Data are median values of 10 mice/group; *generated from a Wilcoxon matched pairs signed rank test 
 

 

Figure 3-15. Additional differentiating metabolites from the (A) kidneys and (B) livers in the CLP (red) and sham 
(blue) subjects are plotted over time. 
Adjusted ANOVA Holm’s test post-hoc p-values shown per timepoint comparison. The median values for the 
healthy control animals are represented by the dashed green line. Data are nmol/g of protein that were log 
transformed for statistical analysis and are the mean +/- sd. Sample sizes were 10 animals for each group at 6 and 24 
hours, and 11 at 30 hours and 14 at 48 hours. 

Metabolite/Variable Kidney tissue Liver tissue p-value*
L-Carnitine (LC), nmol/g (IQR) 225.9 (197.5, 334.7) 82.7 (64.8, 107) 0.002
Acetylcarnitine (C2), nmol/g (IQR) 13.3 (9.8, 21.4) 26.7 (14, 35.8) 0.03
C2/LC ratio (IQR) 0.06 (0.05, 0.07) 0.27 (0.15, 0.43) 0.002
CAT activity ([(acetyl-CoA + L-
carnitine)/(acetylcarnitine + CoA)] (IQR)

2.3 (1.9, 2.7) 1.1 (0.8, 1.3) 0.006

A

B
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3.2.4 Discussion 

We demonstrate that patients with sepsis and septic shock have distinct blood carnitine 

metabolite signatures. This was evidenced, in part, by disruption in L-carnitine homeostasis 

(C2/LC ratio ≥ 0.4 (30)) that was present in approximately 20% and 80% of our sepsis and septic 

shock patients, respectively. Acetylcarnitine (C2) correlated with SOFAtotal, SOFArenal and 

SOFAliver in both cohorts. We also found that sepsis patients had evidence of broader 

derangement in energy metabolism than septic shock patients that correlated with organ 

dysfunction (as measured by SOFA score) and this signature for either sepsis or septic shock, did 

not include lactate. Furthermore, the metabolic signatures associated with SOFArenal and 

SOFAliver were unique. To interrogate these findings, we used a mouse model of polymicrobial 

sepsis and found that many of these metabolites are distinguishing features at the organ level 

(kidneys and livers) and do not correlate with the clinically used laboratory values for SOFArenal 

and SOFAliver. These metabolic changes also precede organ-level cellular injury. Collectively, 

our findings implicate organ level metabolic disruptions that occur early in the course of sepsis 

are detectable in the blood prior to clinical evidence of organ injury or dysfunction and persist in 

the later stages of human sepsis and septic shock.  

The current clinical paradigm does not accurately capture sepsis-induced metabolic stress 

of which loss of L-carnitine homeostasis is a key contributor (31). This disruption in 

mitochondrial metabolic function also extends to the tricarboxylic acid (TCA) cycle. We used an 

experimental model to show that sepsis-induced metabolic stress is evident in kidney and liver 

tissue and correlates to the extent of L-carnitine homeostasis loss as measured by the C2/LC ratio 

in the blood; this was not captured by the correlates of SOFArenal (CRE) and SOFAliver (TBIL). 
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This is important because metabolic disruptions were evident in renal and liver tissue early (6 

hours) after CLP surgery (Figures 3-7 and 3-9), suggesting that alterations in metabolic function 

occur during similar timeframe as the immune response (32). These alterations included organ 

level changes in carnitine metabolites and substrates of the CAT enzyme that translated to 

changes in the blood concentrations of L-carnitine (LC), acetylcarnitine (C2) and the C2/LC ratio 

(Figure 3-6). In renal tissue, CAT activity progressively declined in CLP mice (Figure 3-8A) 

which resulted from loss of substrate (L-carnitine and acetyl-CoA. There was an association 

between kidney calculated CAT activity and blood C2/LC ratio. This association was also 

evident for kidney CoA (a product of CAT activity) and blood C2/LC. CAT activity in CLP liver 

tissue was initially lower than sham mice then progressively increased but remained lower than 

the sham CAT activity; liver tissue acetylcarnitine concentration was persistently elevated over 

time (Figure 3-8B). Liver CAT activity was also inversely associated with blood C2/LC ratio. 

Notably, in healthy control mice, the kidney and liver tissue have different L-carnitine 

environments (Table 3-13) which may contribute to these findings suggesting that the liver may 

more readily metabolically adapt to the septic condition to balance the ratio of acetyl-CoA to free 

CoA (29).  

Of the several plasma biomarkers of organ function (BUN, AMY, ALT) that were 

elevated in CLP mice, AMY and BUN, were correlated with blood C2/LC ratio. We also 

established a connection between organ function and metabolism by showing correlations 

between renal and liver metabolites with BUN (renal dysfunction) and AMY (pancreatic and 

renal dysfunction).  Also using the CLP model, others have shown the same directional changes 

to TBIL, BUN, AMY, ALT, TP, and ALB but confirmed the presence of multiple organ 

dysfunction which may be due to their reported modest increases to CRE (33-35). In both liver 
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and renal tissue, polymicrobial sepsis caused alterations in numerous metabolites, many of which 

correlated to blood C2/LC ratio (Figure 3-11). Collectively, at the organ level, they represent 

disturbances in a number of major metabolic pathways and processes (Figure 3-10). For 

example, glutamate, a non-essential amino acid, participates in several pathways in both the liver 

and kidney. It is a key regulator of pathways in the liver such as the urea cycle, gluconeogenesis, 

and amino acid catabolism (36). Decreased plasma levels of glutamate and the 

glutamate/glutamine ratio have been suggested as more specific markers of liver dysfunction and 

as early predictors of mortality in septic shock patients (37). Likewise, we showed decreased 

levels of renal glutamate and the liver glutamate/glutamine ratio in CLP animals (Figure 3-15). 

Aspartate and alanine metabolism was also a reoccurring pathway in both renal and liver 

metabolomes. Aspartate and alanine are part of the anaplerotic reactions that supply 

intermediates to the TCA cycle (38). Renal aspartate, liver aspartate, and liver alanine levels 

were lower in the CLP animals (Figures E-7 and 3-15), suggesting that the critical pathways for 

supplying TCA intermediates were initially adversely impacted by systemic infection. Overall, 

the rate of the metabolic response in the kidneys and liver indicates an early, measurable signal 

that precedes or simultaneously presents with clinical measurements (e.g., BUN) of sepsis-

induced organ dysfunction and the C2/LC ratio in the blood but not the laboratory values 

included in SOFArenal (CRE) or SOFAliver(TBIL). In both organs, some metabolite concentrations 

stabilized or move towards healthy control values which may explain, in part, our finding that 

patients with septic shock had fewer detected metabolic changes in the blood compared with 

patients with sepsis.   

The metabolite profiles detected in the sepsis plasma and septic shock serum reflect many 

of the same disturbances that we observed in the kidneys and livers of the CLP mice. We found 
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that many of these metabolites were associated with SOFAtotal, SOFArenal, and SOFAliver (Figures 

3-13 and 3-14, Table 3-12). However, our data reveal distinct metabolic signatures of sepsis and 

septic shock patients. Sepsis patients had changes in a larger and more diverse group of 

metabolites that were associated with the organ dysfunction variables when compared to patients 

with septic shock (Figure 3-2). We acknowledge that we did not conduct a comprehensive 

metabolomics assay but given the importance of the metabolites we measured to the energy 

economy of the host, we expect greater metabolic derangement in patients with septic shock. 

Furthermore, the Sepsis-3 guidelines imply that septic shock is associated with greater metabolic 

abnormalities than sepsis and that these contribute to mortality (6). However, this is primarily 

based on lactate concentration as a distinguishing feature of sepsis and septic shock. We did not 

find blood lactate as a metabolic signal associated with SOFAtotal, SOFArenal, and SOFAliver, in 

either cohort when corrected for multiple comparisons (Figure 3-2). The clinical utility of lactate 

is well-established (6), but it has recently been recognized as more than a hypoxic waste product 

(39). It has been found to be in the normal range in many septic patients (40) and its 

normalization has a modest impact on mortality (41). Here we show that there is a wealth of 

metabolic information not captured by the lactate signal and the current laboratory measurements 

used to grossly assess organ function via SOFA score calculations in patients with sepsis. The 

distinct metabolic response in sepsis patients may reflect an earlier, broader range of disturbed 

metabolic pathways such as the TCA cycle, glutamate metabolism, aspartate metabolism, and 

branched-chain amino acid metabolism. Although few metabolic resuscitation therapies have 

been attempted for sepsis with limited success (5, 42), our findings suggest that the metabolic 

rescue window may occur early in the course of disease and metabolite stratification could be a 

useful tool to identify eligible patients (43).  
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The metabolic signatures associated with organ dysfunction in patients with septic shock 

are primarily comprised of the short and medium chain acylcarnitines, which reflect incomplete 

oxidation of fatty acids in the mitochondria or peroxisomes (44). The greater representation of 

acylcarnitines in septic shock patients may be explained by a shift towards the use of lipids as a 

fuel source that occurs later in sepsis progression (8). Indeed, septic shock metabolite signatures 

associated with organ dysfunction were dominated by the acylcarnitines, but they were also 

highly associated with SOFAtotal, SOFArenal, and SOFAliver in the sepsis cohort. Considering that 

our group and others have shown L-carnitine, acetylcarnitine (C2), and the other acylcarnitines 

are robust markers of organ dysfunction, mortality, inflammation, and infection in sepsis (10, 12, 

13, 19), they may capture important metabolic information that is missed by lactate.  

We acknowledge that there are limitations to our study. Our human cohorts were 

intended to represent the temporal stages of sepsis, but we were not able to combine the data 

from the two cohorts. This is because the metabolomics data were generated on two separate 

occasions and in two different types of biofluid, plasma for sepsis and serum for septic shock, 

that could influence the metabolite profiles (45). As such, it was more appropriate for these data 

to be analyzed separately. We also were limited to cross-sectional data. Moving forward, and 

given the value of temporal metabolomics data, it will be important to validate our findings in a 

larger mixed cohort of sepsis and septic shock patients using time series measurements. We also 

recognize the limitations of the CLP model and the use of a single sepsis model in our work. A 

limitation of the CLP model arises from the various model parameters such as needle gauge and 

cecum ligation length, but we had one person perform the surgeries using previously published 

methodology (20). Despite these limitations, our findings introduce the concept that metabolic 

dysfunction occurs early in the course of sepsis, at the organ level and each end organ may have 
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unique metabolic adaption to the septic insult that ultimately contributes to a blood level signal. 

Future studies using large animal models could aid in pinpointing specific pathways for 

metabolic rescue and advance understanding of the metabolic defects that direct organ 

dysfunction. 

In summary, we found that sepsis-induced organ dysfunction and the metabolic response 

are intertwined early in the course of sepsis and these signals change over sepsis progression. 

Understanding these early metabolite signals may hold the key to timely identification, leading to 

the prevention of organ failure, a fundamental goal of the current sepsis and septic shock 

guidelines (6). 
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Chapter 4 Conclusions and Future Directions 

 

The work presented in this dissertation sought to elucidate the metabolic relationships 

between measures of C2 in the blood with various assessments of mitochondrial function to 

mechanistically validate C2 as a candidate biomarker in sepsis. While acknowledging the broad 

range of biological responsibilities performed by the mitochondria, we focused on the energetic 

metabolism component of mitochondrial function. The justification for this was due to the well-

established reputation that C2 and the carnitine pool are representative biomarkers of disrupted 

mitochondrial fatty acid oxidation (1). I also highlighted the extent to which these metabolites 

can inform of the metabolic status in various clinical conditions, with an emphasis on sepsis and 

septic shock. Since mitochondrial dysfunction is one of the proposed mechanisms contributing to 

sepsis-induced organ dysfunction or failure (2, 3), it was imperative to establish a connection 

between measured C2 in the blood and mitochondrial dysfunction in the context of sepsis.  

Measuring mitochondrial oxygen consumption rates (mOCR) is considered the gold 

standard for assessing mitochondrial function due to the direct connection to energy production 

in the form of ATP (4). The method itself is technically challenging and cost prohibitive in many 

settings. Both limitations are barriers preventing the direct measurement of mOCR in patients. 

Furthermore, it would be difficult to routinely acquire tissue biopsies from a critically ill patient 

population such as those with sepsis or septic shock. The use of platelets as a “circulating organ” 

circumvents the challenges with obtaining tissue biopsies but does not overcome the technical 

and financial barriers (5, 6). A more clinically translatable solution to assess mitochondrial 
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function is possible by establishing a relationship between metabolite signals in the blood and 

mOCR in platelets, which has been suggested as a more complete method for assessing 

mitochondrial function (7). We illustrated the feasibility of this approach using a stepwise 

forward-backward variable selection method to generate multiple linear regression models using 

the mOCR data and NMR metabolomics data from either platelets or whole blood. The whole 

blood metabolite model with a positive predicted-R2 and a significant ANOVA p-value included 

acetylcarnitine and leucine as covariates associated with basal mOCR. Indeed, acetylcarnitine 

was shown to be associated with the unstimulated measurement of mOCR. The β-coefficient of 

the acetylcarnitine term was negative which implies that the metabolite concentration was 

inversely related to mitochondrial function at baseline. Lower baseline mOCR represents the 

downregulation of the anti-inflammatory/oxidative phosphorylation response that was discussed 

in Chapter 1. The inability to restore this homeostatic metabolic process is associated with 

negative outcomes in sepsis (8, 9). We showed higher levels of acetylcarnitine in the blood are 

related to this negative metabolic state. Thus, measurements of acetylcarnitine in the blood could 

serve as a biomarker of downregulated mitochondrial oxidative phosphorylation and the 

subsequent poor clinical consequences. Thus, it is possible to assess mitochondrial function by 

measuring acetylcarnitine rather than measuring mOCR directly. Measurement of metabolites in 

the routinely drawn blood samples affords a more clinically translatable method to assess 

mitochondrial health in patients with sepsis. Although quantifying metabolites is not without 

technical drawbacks, the widespread implementation of the metabolite biomarker serum lactate 

illustrates it is not a major limitation.  

To further credential C2 as a biomarker reflecting comprehensive metabolism, I sought to 

identify relationships between C2 with intermediates of the TCA cycle and to explore the 
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potential origins of the blood C2 signal by investigating its relationship to changes in organ 

metabolites, specifically, acetyl-CoA. I found that the relationship between C2 and the TCA 

cycle intermediate, malate, was stronger in the septic shock non-survivors when compared to the 

survivors, suggesting that disruptions in this critical metabolic pathway is closely linked to 

mortality and is reflected in changes in blood C2. Indeed, our data show support that C2 reflects 

a broader mitochondrial dysfunction interpretation, encompassing not just disruptions in fatty 

acid oxidation, but also the TCA cycle. The subsequent analysis using a less sick sepsis cohort 

did not show a similar mortality driven relationship between those metabolites, suggesting that 

the different metabolic response between sepsis and septic shock is driven by severity of illness 

and not mortality. The differing relationships observed between the blood measurements of L-

carnitine (LC), C2, and the C2/LC ratio with measures of organ dysfunction further corroborate 

that severity of illness is reflected by distinct metabolite profiles. This finding led to the 

utilization of a sepsis mouse model to further elucidate the associations between blood carnitine 

metabolism with changes in organ function and metabolism.  

Briefly, conditions of high stress and high energetic demands provoke an adaptive 

metabolic response to conserve highly valued acetyl- groups by combining acetyl-CoA with LC 

to produce C2 and free CoA, which is facilitated by carnitine acetyltransferase (CAT) (10). By 

measuring the ratio of the substrates to the products [(acetyl-CoA + L-carnitine)/(acetylcarnitine 

+ CoA)] of this adaptive pathway, I was able to evaluate how sepsis-induced changes in the 

organ CAT enzyme activity of the septic mice are reflected in disrupted carnitine metabolism in 

the blood. Compared to the sham controls, the septic mice had decreased blood concentrations of 

LC and increased levels of the C2/LC ratio. The independent components of the CAT activity 

ratio varied between the kidney and liver tissues, but notably, the liver C2 concentrations were 
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elevated in the septic animals compared to the sham controls. Furthermore, the CAT activity 

measurement was lower in both the kidney and liver tissues, meaning a shift in production of C2 

and free CoA. The data suggest that the kidney and liver cells upregulated this adaptive 

metabolic pathway as a response to sepsis. The sepsis mouse model was intended to capture the 

beginning of sepsis which allowed us to observe the production of C2 in the organs but was too 

early to see the transition into the blood. The model also enabled the chronological 

characterization of sepsis-induced changes in organ metabolism and organ dysfunction through 

the plasma measurements of clinical biomarkers and histopathological staining. Importantly, I 

observed robust sepsis-induced disruptions in kidney and liver metabolism that preceded 

widespread and clinically detectable organ injury and dysfunction. The profound disruptions in 

organ metabolism were also reflected by changes in the blood measurements of the C2/LC ratio. 

Not only does this finding strengthen the biomarker potential of blood carnitine metabolism, but 

it also shows the close connection between organ metabolism and sepsis-induced organ 

dysfunction at the start of sepsis. These findings provide the foundational pathophysiological 

knowledge that could lead to new therapeutic targets intended to prevent or mitigate sepsis-

induced organ dysfunction, the primary driver of mortality in patients with sepsis. 

The identified association between whole blood C2 and platelet mOCR established that 

measurements of C2 in the blood have the potential to serve as a surrogate measure of 

mitochondrial energetic dysfunction. Research highlighting the importance of mitochondrial 

dysfunction in the progression of sepsis-induced organ dysfunction is growing but has not 

translated into clinical practice applications yet (2, 11). The current clinical paradigm relies on 

the measurement of one metabolite biomarker, lactate, to represent the whole metabolic 

derangement inflicted by sepsis (12), but this likely does not capture the full picture. There is an 



 107 

abundance of literature highlighting the breadth of sepsis-induced disruptions to the metabolism 

(13-15), many of which have consistently identified C2 as a predictor of organ dysfunction and 

mortality (16, 17). Future studies are necessary to validate these findings in larger and more 

diverse cohorts but also to understand what changes could be made in the care of sepsis patients 

based on the knowledge gained from using C2 as a surrogate measure of mitochondrial 

dysfunction. One possible action is through the use of metabolic resuscitation strategies. 

Although few have been successful in the improvement of outcomes, using metabolic 

stratification has been shown as a viable method to identify patients that would derive a benefit 

from such a therapeutic intervention (18-20). Utilizing metabolic stratification in pre-clinical 

models could improve the success of translating therapies between animal and human sepsis, 

which has been attempted in other disease states (21). Additionally, employing a pre-clinical 

mouse model of early sepsis revealed key insights in the tandem development and progression of 

sepsis-mediated changes in organ metabolism and function. While other researchers have 

reported disruptions in organ metabolism (22, 23) and function (24), we made longitudinal 

observations tracking the chronological progression of both. Like all animal models, the findings 

require rigorous validation before the successful translation into human studies. It would also be 

insightful to explore the metabolic changes of other major organs such as the heart and lungs, 

extend the model timepoints to align with human sepsis and septic shock more closely, and study 

targeted metabolic therapies using the model. In aggregate, the data presented provide evidence 

to support the use of C2 as a candidate biomarker for the comprehensive assessment of 

metabolism in patients with sepsis.  
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