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Abstract 

 
This work combines a range of techniques in the field of computational biology to 

address both longstanding and more recent questions of plant biology, and contributes additional 

tools when the current options are insufficient. 

First, comparative modeling and de novo protein structure prediction were used to 

generate full structures of Arabidopsis Cellulose Synthase A (CESA) and Cellulose Synthase-

Like D (CSLD) proteins. Comparison of these structures showed a novel feature in CSLD 

proteins that we have named CSLD specific loops (DSLs), and that CESAs are capable of 

forming N-terminal stalk structures while CSLDs are not. Despite these differences, we show 

that CSLDs should form trimeric interfaces similar to CESAs given the positioning of these 

differences and extensive structural conservation otherwise. 

Then, this N-terminal difference was fully elucidated by developing a method for 

building coiled-coil structures from low-resolution structures, even without coordinates. This 

method produced two candidate structures with vastly different interfaces, which allows for a 

future experimental study to determine which is more likely.  

Next, we provide some evidence that CESAs form into trimers. Using coarse-grain 

molecular dynamics (MD) simulations of different numbers of CESA proteins in a plant 

membrane environment, we show that assemblies of greater than three proteins are energetically 

unfavorable by an order of magnitude. We also show that a crystal structure used as evidence for 

dimers is only possible because it excludes crucial structures, and that a full dimer in the 
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captured arrangement would introduce steric clashes both between proteins and between proteins 

and the membrane. 

In a different plant growth system, we present a novel temperature-sensitive mutant 

protein that inhibits root hair growth only at elevated temperatures. Using comparative modeling, 

docking analyses, and MD studies we show that the mutation does not lead to loss of 

characterized binding sites, so some other mechanism must be responsible for the temperature-

dependent loss of activity. 

Finally, we present two programs to assist in the processing of data. Inspired by 

LobeFinder (InLoFi) quantifies the lobes of plant cells from confocal microscopy images, 

performing faster and more consistently than manual analysis. The Autocorrelator plug-in for 

HOOMD-blue introduces a Logger function that performs on-the-fly autocorrelation, 

dramatically reducing file storage needs and speeding up performance by eliminating these file-

writing operations. 

In total, this work adds insight to a richly complex body of experimental evidence, and 

develops methods and tools for further investigation of these complex systems. 
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Chapter 1 Introduction 

Decades of effort and development of analytical techniques have given us a wealth of 

biological information: billions of sequenced genes, a hundred thousand solved structures, and 

volumes of experimental insights awaiting theories to knit them together into a rich narrative. 

Due to the complex, multi-dimensional nature of many of these processes, open questions in the 

field still seem disparate, and in need of analysis that considers its full context. Answering any 

single question requires a litany of experimental and computational techniques, and slowly 

builds towards a body of knowledge that better enables solving the next question, until such a 

point that the complete toolset offers a path forward for any problem. Computational modeling, 

in the form of comparative modeling, de novo structure prediction, molecular dynamics, and 

others, has an essential role to play in this progress. Computational methods have the potential to 

perform in hours what would take months of benchtop experiments with living organisms, 

providing valuable screening to pare down complex designs that can only be properly studied in 

vivo, while also offering molecular level insight for those questions that can be narrowed down 

to single proteins and simple systems. In this work, we use a myriad of different approaches, 

developing additional tools as necessary, to fully utilize the breadth of information available to 

assemble, from so many pieces, answers to new and longstanding questions in the field of plant 

biology. 

1.1 Plant Cell Growth 
Plants’ synthesis of carbohydrates, especially cellulose, is vital for the flow of energy and 

materials into Earth’s ecosystems. The scientific community has only a cursory understanding of 
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this essential process, and further comprehension would allow for the rational design of plant 

structures with custom properties for direct use as materials, or for eased utilization as a 

renewable carbon source, among other possibilities. In plants, cellulose is produced by Cellulose 

Synthase A (CESA) proteins that assemble first into lobes of unknown composition and then into 

hexameric Cellulose Synthesis Complexes (CSCs) that each produce a single cellulose 

microfibril, woven from 18-24 glucan strands produced by individual CESAs. These microfibrils 

are then coated by xylans and crosslinked by additional hemicelluloses such as lignin and pectin 

to form the cellular walls[1]. 

 

Figure 1.1. Simplified representation of the cell wall synthesis process. 

In (A), Rosette Complexes/Cellulose Synthesis Complexes (CSCs) are trafficked to the plasma membrane alongside 
hemicelluloses and pectins. The CSC’s then produce glucan chains that assemble into cellulose microfibrils. (B) shows one 
possible structure of the CSC: a hexamer of subunits, with each subunit consisting of six CESA proteins. 

 

The ability to study this complex, interwoven biological system is limited, as many 

CESA mutants or knockouts result in dead organisms[2]–[4]. For this reason, our study of CESA 

proteins is complemented by study of the structurally similar Cellulose Synthase-Like Family D 

(CSLD) protein, whose knockout mutants result in non-lethal phenotypes such as the loss of root 
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hair growth or other tip growth mechanisms. These two protein families are so similar in fact, 

that a significant portion of chapter 2 is dedicated to characterizing their limited structural 

differences, and hypothesizing how these distinctions manifest as differing membrane 

localization and propensity to self-assemble. In chapter 3, we even go so far as to study a 

receptor protein whose mutation has a cascading effect that eventually disrupts root hair growth, 

specifically at elevated temperatures. This is the nature of studying these biological 

environments, and the relative freedom of computational methods allow for the interrogation of 

specific systems that are otherwise inaccessible. 

The computational study of these systems has recently been enabled by a pair of 

developments. The first is the publication of a CESA protein in a trimeric complex at atomistic 

resolution. This serves as the basis for comparative models of CESA and related proteins, such 

as CSLDs, in other organisms, and also serves as an essential data point for machine learning 

based predictive tools such as AlphaFold[5]. This infusion of data has allowed for long 

established computational tools, when strung together and interpreted in the context of decades 

of experimental insight, to provide new progress on these longstanding questions. 

 

1.2 Objective and Outline 
The primary aim of this thesis is to address longstanding questions in the field of plant 

biology by uniting domain knowledge, novel structural information, and an array of 

computational tools to isolate and interrogate impactful details of prohibitively complex 

biological systems. 

In chapter 2,  we address the questions of CSC formation and the difference between the 

enzymatically interchangeable CESA and CSLD proteins. These insights are made possible by a 

combination of comparative modeling, de novo protein structure prediction, molecular dynamics 
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simulation, and several specific tools dealing with sequence alignment and coiled-coil prediction 

and modeling. A particular combination of these tools offer general applicability, particularly 

utilizing an increasingly available dataset in the form of low resolution cryogenic-electron 

microscopy (cryo-EM) structures, so is formalized for wider use. Although the included coarse-

grain molecular dynamics is limited in its scope and interpretability, it represents an important 

first step in assessing what further systems can be effectively studied with this method. 

In chapter 3, we discover and study a single mutant protein with a profound effect: a 

temperature-sensitive change in a growth signaling pathway, desensitization towards a signaling 

ligand, and altered accumulation of reactive oxygen species (ROS). Using a wide combination of 

techniques, this time experimental and computational in nature, we investigate the full effect of 

this mutation and potential mechanisms that it can offer a gateway into, as well as potential 

mechanisms for broadly affecting single amino acid change. Using comparative modeling, 

docking, and molecular dynamics simulations, we do not achieve a complete understanding of 

the mechanism, but are able to narrow down the possibilities for future study. 

Finally, in chapter 4, we present additional tools developed for specific applications, but 

that hold the potential to grow to complement the computational arrays used in either of the 

previous chapter, or to be of use in more disparate fields. Inspired by LobeFinder (InLoFi) is a 

tool that iterates on an existing one to directly quantify images of lobed plant cells in a way that 

is faster and more consistent than manual segmentation. The Autocorrelator plug-in for 

HOOMD-blue provides on-the-fly analysis that dramatically reduces the simulation time and 

storage requirements for a specific polymer system, but is written in such a way as to easily be 

adapted for other properties in different systems that may benefit from this feature. Both tools are 
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developed with resilient testing so they can be extended by us or others as additional uses 

become clear. 
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Chapter 2 Comparative Modeling & De Novo Structure Predictions Reveal Extensive 

Conservation and Key Differences in Arabidopsis CESA and CSLD Proteins  

Disclosure: Reprinted from Adams, A, Mayes, H.B., and Nielsen, E. Comparative Modeling 

& De Novo structure predictions reveal extensive conservation and key differences 

in Arabidopsis CESA and CSLD proteins. In preparation 

2.1 Abstract  

In plants, biopolymers are manufactured in a range of contexts by a variety of protein 

families. It has been shown that cellulose synthase (CESA) proteins and cellulose synthase-like 

D subfamily (CSLD) proteins are catalytically interchangeable, both encoding 

glycosyltransferases that synthesize β-1,4-linked glycan chains, the backbone of plant cellulose 

fibrils[6], [7]. Given this identical chemical activity, an open question remains as to the structural 

differences driving the differing localization of these proteins. Here, we use comparative 

modeling, de novo structure prediction and computational simulation to reveal key differences 

between CESA and CSLD proteins, while demonstrating a propensity for both to form trimeric 

assemblies. To better characterize one such difference, we develop a method for the generation 

of coiled-coil structures based on low resolution surface models, and used it to produce two 

candidate structures for this vital region. 

2.2 Introduction 
Cellulose is the most abundant biopolymer on Earth, but its manufacture is still not fully 

understood. Crystalline cellulose, which comprises the cell walls of plants, is composed of 

tightly bundled β-1,4-linked glycan chains produced by protein super-assemblies called 
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Cellulose Synthesis Complexes (CSCs)[8], [9]. Each CSC is an assembly of six lobes, with each 

lobe comprised by a number of Cellulose Synthase family A (CESA) proteins. It is still an open 

question as to the composition of each lobe, both in terms of number of proteins as well as 

identity of those proteins among the 10 isoforms[10]. Each protein is a catalytically active 

glycosyltransferase synthesizing β-1,4-linked glycan chains, which subsequently assemble into 

cell wall cellulose. The publication of a plant CESA8 protein in a homo-trimeric arrangement 

provided novel structural details as well as additional evidence for trimeric lobes[11]. This model 

enabled structural comparison of CESA and related proteins through traditional comparative 

modelling methods, as well as eventually through protein structure prediction tools such as 

AlphaFold[5], [12]. In addition to CESAs, this superfamily of related proteins includes six 

Cellulose Synthase-Like (CSL) clades: CSLA, CSLB, CSLC, CSLD, CSLE, and CSLG[13], 

[14]. Of these, CSLD shows the highest degree of sequence similarity and overall domain 

organization, and has been shown to be catalytically interchangeable in chimeric studies[6], [7], 

[15].  

In this work, we utilize newly available structural data to determine key differences 

between and within CESA and CSLD protein families in the model plant Arabidopsis thaliana. 

To fully characterize a difference in the N-terminal, we present a methodology for developing 

candidate coiled-coil structures based on low-resolution structural data that produces a pair of 

structures that fit a putative model in the absence of published coordinates. Finally, we provide 

additional evidence for CESA trimeric lobes through a molecular dynamics (MD) study, as well 

as examination of a putative dimeric crystal structure. 

2.3 Methods 

2.3.1 Coarse-grain simulations 
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All coarse-grain simulations were prepared with CHARMM-GUI and simulations were 

performed using GROMACS[16]–[20]. All lipid models and parameters used in this study 

follow the MARTINI v2.0 lipids[21], [22]. The system was energy minimized and subjected to a 

set of serial equilibration runs in which the protein backbone positions were restrained. A Verlet 

cut-off scheme with a buffer tolerance of 0.005 kJ mol−1 ns−1 was used. A cut-off of 1.1 nm 

was used for calculating both the electrostatic and van der Waals interaction terms; both 

interactions were smoothly shifted beyond the cut- off using the potential-shift-Verlet algorithm. 

Coulomb interactions were calculated using the reaction-field algorithm implemented in 

GROMACS. A velocity rescale thermostat with a coupling constant of 1.0 ps was used to 

maintain the temperature at 303 K. A Parrinello−Rahman barostat with the semi-isotropic 

scheme was used to maintain 1 bar pressure with 12.0 ps coupling constant. The CG simulations 

were performed using a 20 fs time step, and the trajectory snapshot was saved at the 100 ps 

interval for the first 1 μs, then at the 0.5 ns interval for the duration. The simulation times 

reported here are actual simulation times and are not corrected for the faster dynamics attributed 

to the smooth potentials of the MARTINI force field[23]. Simulations were run for 18 μs for the 

largest system and 26 μs for the 2 smaller systems. For every microsecond, the average system-

wide electrostatic and non-bonded interactions were calculated using gmx energy, including an 

estimated standard error of the mean. The energies of the corresponding membrane-only systems 

were subtracted from the energy of each protein system to yield the protein-specific 

contributions to the system energy. From there, each energy was divided by the number of 

proteins to obtain a per-protein energy, and then the monomer Coulombic and Lennard-Jones 

energies were set to zero to serve as a reference. The operation is summarized in SI Eq A.1.1. 

Uncertainty was calculated for the total operation, summarized in SI Eq A.1.2. 
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2.3.2 Atomistic simulations 
CHARMM-GUI[16] NAMD and Gromacs inputs[17], [24] and martini maker [18], [19] 

All atomistic MD systems were prepared with CHARMM-GUI, and performed using NAMD 

2.13[16], [17], [25]. The CHARMM36 force field, including the φ/ψ cross-term map (CMAP) 

correction for the proteins was used for all the simulations[26]–[28]. Water molecules were 

described with the TIP3P model[29]. The protein was energy-minimized in solution for 10000 

steps using a conjugate gradient algorithm[30]. Simulations were carried out using a 2 fs 

timestep at 303K constant temperature using Langevin dynamics with a damping coefficient γ of 

1 ps−1. NAMD was developed by the Theoretical and Computational Biophysics Group in the 

Beckman Institute for Advanced Science and Technology at the University of Illinois at Urbana-

Champaign. 

2.4 Results 

2.4.1 Resolved Secondary Structure of CESA is conserved across families 
The sequences of multiple CESA isoforms across multiple species have long been 

available, and allow us to assess sequence conservation within and between CESA families, in 

various organisms. The recently published cryo-EM structure of isolated PttCESA8[11], allows 

for the comparative modeling of different CESA isoforms from different organisms. We were 

curious how PttCESA8 compared to analogous structures in the model plant Arabidopsis in the 

form of CESA proteins, as well as related structures in the form of Arabidopsis CSLD proteins, 

so we generated homology models of AtCESA isoforms 1-9 and AtCSLD isoforms 1-5 using the 

online SWISS-MODEL workspace[12]. Using PttCESA8 as a basis, we generated models from 

approximately residue 250 to 1050, which includes all structures except the N and C termini, for 

which the PttCESA8 model contained insufficient information. These models were aligned based 
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on the highly conserved transmembrane regions and resulted in the overlap of other secondary 

structural elements. 

Excepting the previously characterized hypervariable region, the class-specific region 

(CSR), all structures within families were highly conserved, with sequence analysis 

corroborating complete overlap of the transmembrane, catalytic, and plant-conserved regions of 

Arabidopsis CESAs and CSLDs with the published PttCESA8 (SI Fig. 1). Two representative 

structures in CESA1 and CSLD3 are shown in Figure 2.1 (c) and (d). The PttCESA8 model, as 

well as all CESA and CSLD models, include a sequentially non-conserved, intrinsically 

disordered class-specific region on the periphery of trimeric structure. This region varies both 

between and within protein families. This high degree of structural conservation makes it likely 

that these proteins also form trimeric structures since the PCR and TM interfaces are conserved, 

while also possessing variable regions that may explain the non-redundancy of the CESA 

isoforms. 
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Figure 2.1. Structure of representative CESA and CSLD sequences. 

Secondary structure schematics for (A) AtCESA1 (Arabidopsis thaliana CEllulose Synthase A1) and (B) AtCSLD3 (Arabidopsis 
thaliana CEllulose Synthase-Like D3) with TM helices in blue, PCRs in orange, CSR in green, DSLs in pink, and unmodeled N-
terminal features in grey. The soluble catalytic region is indicated in black. (C) CESA1 crystal structure colored as in panel A. 
(D) CSLD3 homology model with DSLs labeled. 
 

Finally, all AtCSLD protein sequences include two short (26 or 36 amino acids long) 

intrinsically disordered insertions that vary within the CSLD family. These insertions are 

peripherally located, and are not predicted to occlude the trimeric interfaces (Appendix A.3). 

Instead, they may present alternative surfaces to accessory proteins or otherwise affect the 

differential localization of the CESA and CSLD proteins.  

2.4.2 Putative Stalk Structure Differentiates CESA and CSLD 
Another structural difference between the CESA and CSLD families, and a key feature of 

the structure published by Purushotham et al., is the putative stalk structure formed by 

trimerization of the N-termini[11]. The structure was identified as a trimeric coiled-coil, with an 

unresolved loop stretching towards the atomistically resolved structure and volumes matching 
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ions coordinated around the base which presumably represents the zinc-fingers. The primary 

features of the structure have been reproduced in Fig 2.2 Using RaptorX de novo protein 

structure prediction, we tested whether or not the CESA and CSLD sequences were predicted to 

form the secondary structural elements necessary for the assembly of this structure[31]–[33]. We 

determined that all of the CESA proteins, both Arabidopsis and PttCESA8, were predicted to 

form both the RING finger structure and an alpha helical segment of requisite length, while the 

CSLD proteins were predicted to form only the RING finger. These predictions were 

corroborated by structures published as part of the AlphaFold database[5], [34]. The inability to 

form an N-terminal stalk structure, alongside the additional flexible linkers, represent the limited 

structural differences between the CESA and CSLD families in Arabidopsis. 
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Figure 2.2. Predicted structural conservation across all Arabidopsis CESA and CSLD proteins. 

All N-terminal (grey) structures, were predicted by RaptorX, and all remaining structures were predicted based on comparative 
models built using SWISS-Model. All structural publications were later corroborated with the AlphaFold database. 
 

2.4.3 Generation of a putative stalk structure 
Due to the novelty of this stalk structure compared with previous models of CESA based 

on BCSA or other analogs, we attempted to generate an atomistic structure as a starting point for 

isolation studies. Although a refined structure of the stalk is unavailable, it is clear from the cryo-

EM volume and predicted protein structure that the N-termini form a trimeric coiled-coil. Coiled-

coils have seven viable conformations, so we constructed all possible arrangements of the 

predicted alpha helical sequence using CCBuilder2, and used the built-in energy minimization to 
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optimize each structure[35], [36]. We then ran triplicates of 10 ns simulations for each of these 

coiled-coils in a 50 Å water box with 0.8 mM of CaCl starting with the optimized structures from 

CCbuilder[37]. Based on work by Pineiro et al., we expected this timescale to be sufficient to 

gauge the stability of the coiled-coil structures[38]. A schematic of the procedure is shown in 

Appendix A.4. The result was the swift dissociation of 5 of the seven registers, with only register 

B and F remaining as trimeric structures in any replicas. All three simulations of register B 

maintained a trimeric coiled-coil, while only a single register F simulation showed a stable 

structure. The stable F register successfully buries a trio of hydrophobic tryptophan residues in 

the core of the coiled-coil structure compared to the starting structure, shown in Figure 2.3. 

 

Figure 2.3. The F register is only stable after a rearrangement of tryptophan residues, while the B register requires 
only minor rearrangement. 

(A) shows the initial configuration for the F register predicted by CCbuilder2. (B) shows the final configuration in the only 
stable replica. This register is stabilized by burying these hydrophobic residues. Conversely, (C) shows the initial 
configuration of the B register, which only minorly rearranges to the final position shown in (D). This register is 

stabilized by extensive polar interactions. 
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For each of these stable registers, we generated a trimeric coiled-coil and aligned the full 

N-terminal structure predicted by RaptorX with respect to the coiled-coil segment. The RaptorX 

structure predicts the flexible linker connecting the coiled-coil and RING finger domains as fully 

relaxed, which places the zinc-finger domains far from the base of the structure where they are 

seen in the published space-filling volume. To reproduce the cryo-EM surface volume, the RING 

fingers were manually repositioned at the base of the coiled-coil, introducing non-physical 

arrangements into the connecting loops. To relax the structure, we performed an MD simulation, 

restraining the helical structures for the first 10 ns held while the loops were free to rearrange, 

and the following 30 ns were completely unbiased for the full structure to seek an energy 

minimized state.. After 30 ns the structure was assessed to be equilibrated based on the 

interhelical distances of the coiled-coil, and the RMSD values of the RING finger domains. 

2.4.4 Structural Evaluation of a Putative Stalk Structure 
Coiled-coil structures tend to be stabilized by internal pairs of hydrophobic residues, 

typically Leucine and Valine[39]. In contrast, the N-termini of the CESA proteins are low in 

these motifs, which may rationalize why coiled-coil predictors like Marcoil do not predict that 

these segments will form coiled-coil structures[40], [41]. However, some coils, especially 

engineered ones, can also be facilitated by lysine interactions, which the CESA8 N-terminal has 

in abundance, and can be seen interacting with aspartic and glutamic acid residues to stabilize 

register B (Figure 2.3)[38]. We also see, in the single equilibration run of register F that remains 

structurally stable, a triad of tryptophan residues are forced together compared to the model 

predicted by CC builder. Based on our proposed structure, mutating these residues might disrupt 

stalk formation and provide insight towards its possible function in contributing to either 

trimerization of CESAs or subsequent assembly into rosette terminal complexes. 
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2.4.5 Cellulose Synthases Assemble into Trimers or Smaller 
To investigate the long time scale stability of PttCESA8 polymers, coarse-grained (CG) 

models of the CESA8 monomers were constructed on the basis of the MARTINI v2.2p force 

field using CHARMM-GUI. Systems with identical numbers of lipids, free ions, and water 

molecules were generated containing 0,1, 2, 3, 4, and 6 copies of PttCESA8. For the initial 

coordinates, systems with three or fewer proteins were started from the homo-trimeric crystal 

structure (accession code: 6wlb), selecting the corresponding number of proteins. For systems 

with four or six proteins, the proteins were arranged with the hydrophobic 7th transmembrane 

helix oriented towards a neighboring protein as we assessed this was a crucial element of a stable 

structure. The protein assemblies were then embedded in a CG lipid membrane composed of 

45% CHOL (cholesterol), 29% POPE (1-Palmitoyl-2-Oleoyl-sn-Glycero-3-

Phosphoethanolamine), and 26% POPC (1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine)[42],  along with MARTINI water and the appropriate number of counter ions 

for the 0.8 mM CaCl concentration[37]. For each number of proteins, three systems of different 

sizes were constructed to monitor the size effects. The systems sizes were: 1304 lipids and 

28,125 water molecules, 3104 lipids and 66,948 water molecules, and 5000 lipids and 107,841 

water molecules, according to the lipid ratios. The resulting energies are shown in Table 2.1. 

Table 2.1. Per protein energies, each relative to the monomeric system for their system size. 

Relative energy per 

protein (kJ/mol) 

Monomer Dimer Trimer Tetramer Hexamer 

Small System 0 ± 119 -38 ± 79 -15 ± 76 8900 ± 72 8820 ± 48 

Medium System 0 ± 164 -189 ± 92 -284 ± 90 8705 ± 76 8726 ± 54 

Large System 0 ± 206 -202 ± 111 -168 ± 94 8741 ± 62 8674 ± 52 
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From these values, it is clear that assembling more than three CESA proteins into a single 

assembly imposes a severe enthalpic penalty, which would eventually drive the complex towards 

smaller sub-assemblies. Despite this severe difference, the assemblies did not spontaneously 

decompose over the course of tens of microseconds. There were rearrangements in the 

assemblies, notably the tetrameric system closed an initial hole within the assembly over the 

course of the simulation, yet either the timescale was insufficient, or the smoothing of the 

Martini forcefield removed any local minima that might have been accessed to escape the 

extensive protein-protein interactions felt in the assembly. Furthermore, we are unable to 

confidently distinguish an enthalpic preference between monomer, dimer, and trimer assemblies. 

There is no evidence for monomeric instances of CESA proteins, so this is surely a shortcoming 

of the method. We attribute this inability to the lack of entropic measurements in our 

measurements that may be responsible for driving small numbers of  proteins together. 

 

2.4.6 Refuting of a Dimeric Crystal Structure 

Given the inconclusiveness of our MD study, trimers and dimers remain the primary candidates 

for CSC lobe composition. Recently, Qiao et al. put forth their crystal structure (accession 

code:7ck3) as evidence for a potential dimeric intermediate, or final dimeric structure in the 

CESA assembly process[43]. However, while this data does helpfully update the structure of the 

CESA cytosolic region to atomistic resolution, it does not present a viable dimeric structure. 

Only a specific cytoplasmic segment has been expressed, which permits the two halves to 

interact in a specific way to form this structure. Homology modelling of the full structure using 

the SWISS-Model suite with PttCESA8 as the target shows this dimeric assembly by necessarily 

placing the transmembrane region of one protein and the cytoplasmic portion of the other within 
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the membrane no matter how they are arranged, shown in Figure 2.4. Examining further reveals 

considerable steric interference when the full structures are included (Appendix A.5). 

 

Figure 2.4. Comparison of membrane-integrated full dimeric crystal structure with PttCESA8 trimeric structure. 

 (A) shows the PttCESA8 monomeric structure with membrane region in blue. (B) Shows the crystallized fraction in red, with the 
unexpressed transmembrane region in blue and cytosolic region in tan. (C)-(D) show the full CESA trimer integrated into the 
membrane from the front and the side. (E)-(F) similarly show the dimeric crystal structure from the front and the side. It is clear 
that the crystal structure interface does not allow for the resulting dimer to successfully integrate into a membrane. 
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2.5 Discussion 
In land plants, the CESA superfamily of proteins is responsible for synthesizing various 

cell wall polysaccharides. Of these, CESA and CSLD proteins are the most similar, and have 

been shown to be catalytically interchangeable in chimeric studies [6], [7]. In this study, we used 

comparative modeling to formalize the structural conservation between these protein families, 

and to determine key differences that may lead to the difference in localization. The first 

difference is a pair of insertions that we have called cellulose synthase-like D specific loops: 

DSL1 and DSL2. These insertions are a conserved feature in a wide range of plant CSLDs, 

though are variable within each protein family. Within Arabidopsis, these loops do not preclude 

the formation of trimeric lobes based on the PttCESA8 trimeric structure (Appendix A.3). It is 

unlikely that the DSL regions prevent the further assembly of lobes into CSC complexes, as a 

CESA6 chimera with the CSLD3 catalytic domain, including the DSL regions, was able to 

rescue a cesa6 mutant[7]. Instead, they present additional surface-accessible area that may be 

involved in trafficking of the proteins.. 

The second structural difference between CESA and CSLD proteins is the ability to form 

an N-terminal trimeric coiled-coil. The PttCESA8 structure showed this novel feature, and only 

CESA proteins were predicted to form alpha helical segments capable of assembling this so-

called stalk structure. CSLD proteins are not currently believed to form into larger CSC 

complexes, which may implicate the stalk structure in mediating its assembly. This structure may 

serve an additional role in localization of each protein, as the CESA6 and CSLD3 chimeras 

containing their native N-termini still localized to the correct environment. The mechanism for 

either of these functions is unclear, but of immense interest. 

In order to better study potential N-termini structures, we presented a methodology to 

estimate the structure from low-resolution structures, including a visual representation despite 
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the lack of complete coordinates. Coiled-coils are one of the simplest and most widespread 

motifs in nature, consisting of two or more α-helices wound around each other in one of seven 

viable arrangements [35]. This simplicity allows us to combine a series of tools to predict the 

sequence responsible for forming the coiled-coil, generate all candidate structures, and evaluate 

them computationally[5], [25], [36], [40], [41]. The resulting stable structures can quantitatively 

compared to available coordinates, or qualitatively compared when only a visual is available, as 

is the case in this study. The relevance of this procedure is likely to increase alongside the rising 

adoption of cryo-EM and resulting boost in published structures [44]. For this study specifically, 

the methodology yielded two candidate structures for the PttCESA8 stalk structure. Without 

published coordinates, it was difficult to narrow down beyond these two stable structures. Each 

demonstrates unique interfaces that present clear targets for mutagenic studies to determine the 

true in vivo register.  

Neither the difference in stalk structure nor the DSLs prevent the CSLDs from assuming 

the same polymer configuration as the CESAs, so we performed a coarse-grain MD study to 

quantify the most energetically favorable arrangement. Increasing evidence indicates trimeric 

lobes, but it is still an open question lacking a definite answer[11], [45]. Our methods were 

unable to distinguish between trimeric structures and smaller, likely due to the exclusion of 

entropy from the calculations, which would have required more rigorous and slow-to-converge 

sampling methods. We were able to quantify an order of magnitude difference between the 

enthalpies of trimeric and smaller systems, and tetrameric and hexameric systems. The slow 

kinetics of these systems, even at a coarse-grain resolution, prevented the energetically favorable 

dissolution of these assemblies over the course of our simulations. While these specific systems 
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should not require further study, it inform the potential study of full CSC complexes using 

similar procedures. 
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Chapter 3 A Temperature Sensitive FERONIA Mutant Allele that Alters Root Hair 

Growth 

3.1 Chapter Introduction 

In this chapter, we present a single-mutant protein with a profound resulting phenotype. 

My contribution to this work is in modeling and displaying the FERONIA structure (Figure 3.1), 

which showed the unintuitive finding that although a set of disaccharide coordinating residues 

are conserved compared to malectin, the overall structure is rearranged in such a way as to 

separate these conserved residues and bury them in surface inaccessible regions, abolishing the 

binding site. The manuscript has been revised to highlight these specific contributions, and the 

published paper contains additional details on experimental results and discussion.  

Disclosure: “Reprinted (adapted) with permission from Kim, D, Yang, J., Gu, F., Park, S, 

Combs, J, Adams, A, Mayes, H.B., Jeon, S.J. Bahk, J.D., and Nielsen, E. A temperature 

sensitive FERONIA mutant allele that alters root hair growth. Plant Physiology, 185, 2, 405-423 

(2021). Copyright American Society of Plant Biologists 2020.” 

3.2 Abstract 
In plants, root hairs undergo a highly-polarized form of cell expansion called tip-growth, 

in which cell wall deposition is restricted to the root hair apex. In order to identify essential 

cellular components that might have been missed in earlier genetic screens, we identified 

conditional temperature sensitive (ts) root hair mutants by ethyl methanesulfonate mutagenesis in 

Arabidopsis thaliana. Here, we describe one of these mutants: feronia-temperature sensitive (fer-

ts). Mutant fer-ts seedlings were unaffected at normal temperatures (20˚C), but failed to form 
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root hairs at elevated temperatures (30˚C). Map based-cloning and whole-genome sequencing 

revealed that fer-ts resulted from a G41S substitution in the extracellular domain of FERONIA 

(FER). Molecular modeling and sequence comparison with other Catharanthus roseus receptor-

like kinase 1L (CrRLK1L) receptor family members revealed that the mutated glycine in fer-ts is 

highly conserved, but is not located within the recently characterized RALF23 and LORELI-

LIKE-GLYCOPROTEIN 2 (LLG2) binding domains, perhaps suggesting that fer-ts phenotypes 

may not be directly due to loss of binding to RALF1 peptides.  

3.3 Introduction 
In land plants, root hairs are cellular protuberances resulting from the polarized outgrowth 

of specialized root epidermal cells, known as trichoblasts[46]. Root hair development can be 

divided into three phases: cell specification, initiation of bulge formation, and polarized tip 

growth[47]. Recently, a number of receptor-like kinases (RLKs) have been identified that are 

involved in cellular growth regulation, including the cell elongation associated with root hair tip 

growth[48]–[50]. In particular, CrRLK1L subfamily proteins, which includes FERONIA 

(FER)[51], ERELUS (ERE)[52], [53], THESEUS1 (THE1)[54], and ANXUR1/2[55], have been 

implicated in cell wall sensing associated with a variety of cellular events such as female fertility, 

cell elongation, root-hair development, mechano-sensing, and responses to hormones and 

pathogens[50], [56], [57]. 

The CrRLK1L subfamily is named after the first member functionally characterized in 

Catharanthus roseus cell cultures[58], and Arabidopsis, contains 17 CrRLK1L subfamily 

members[59]. The majority of CrRLK1L receptor-like kinase proteins are predicted 

serine/threonine kinases with a single transmembrane domain between an N-terminal extracellular 

domain containing two tandem domains with limited homology to the carbohydrate-binding 
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domain of animal malectin proteins, and a C-terminal cytoplasmic kinase domain[57], [60]. FER 

was initially identified in the regulation of female control of fertility[51], and is highly expressed 

in the synergid cells of the female gametophyte and in a variety of vegetative tissues, but not in 

the male gametophyte[61], [62]. 

In addition to its important roles during fertilization, FER has also been shown to regulate 

aspects of root hair elongation[63], [64], calcium signaling during mechanical stimulation of 

roots[65], and cell wall responses to both abiotic and biotic stress[50], [51], [65]–[69]. FER was 

shown to bind to a ROP guanidine exchange factor 1 (ROPGEF1) that activates ROP GTPase 

signaling during root hair tip-growth in Arabidopsis[63]. FER, and other members of the 

CrRLK1L receptor family, have been proposed to bind to secreted rapid alkalinization factor 

(RALF) peptide ligands[52], with RALF1 binding the FER extracellular domain to suppress cell 

elongation of the primary root[52]. RALF34 binds to THE1 during regulation of lateral root 

initiation[70], and RALF23 binding to FER negatively regulates plant immune responses[71]. FER 

was shown to associate with a glycosylphosphatidylinositol (GPI)-anchored co-receptor, 

LORELEI (LRE)[72], and a crystal structure of the FER extracellular domain bound to a LRE-like 

protein (LLG2), and RALF23 shows that LLG2 and RALF23 peptides associate with the second 

malectin-like domain[73].  

Although RALF peptide binding occurs in several CrRLK1L receptor-like kinases, it 

remains unclear whether this is the only ligand recognized by this class of receptor-like kinases. 

While RALF peptides appear to only bind the second of two malectin-like domains in the FER 

extracellular domain, both these domains appear to associate with pectin polysaccharides[74]. 

We have identified a new temperature-sensitive mutation (fer-ts) in a highly conserved glycine 

residue (G41S) present in the extracellular domain of the FER receptor kinase, as well as other 
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members of the CrRLK1L receptor-like kinase family and mammalian malectin sequences. The 

fer-ts mutant exhibited rapid cessation of root hair tip-growth within one minute upon transferal 

to elevated (30oC) growth temperatures. This rapid cessation of root hair tip growth was also 

observed when fer-4 null mutants were transformed with a fluorescently-tagged version of the 

temperature-sensitive FER(G41S)-EYFP fusion protein. FER(G41S)-EYFP was still present in 

the plasma membrane in root hairs that had ceased tip-growth, indicating that the primary defect 

of this mutant is due to failure to properly transmit extracellular signals at elevated temperatures. 

These findings provide a powerful new tool for dissecting how FERONIA, and potentially other 

CrRLK1L receptor-like kinases, function during plant growth and development. 

3.4 Results 

3.4.1 The G41S mutation in fer-ts is a highly conserved glycine residue in CrRLK1L 
subfamily proteins 

The G41S substitution of the fer-ts mutant rapidly inactivated FER function during root 

hair growth at elevated temperatures. In addition, a similar G37D mutation is responsible for 

inactivation of THE1, another member of the CrRLK1L family[54], and multiple sequence 

alignment analysis with other Arabidopsis CrRLK1L family members as well as animal malectin 

sequences showed that the G41 residue of FERONIA is absolutely conserved in these malectins 

and malectin-like 1 (ML1) domains (Figure 3.1a). Interestingly, based on structural studies of 

animal malectin proteins, five key residues (Y67, Y89, Y116, F117, D186; Figure 3.1b, red 

residues) were found to form contacts with a bound disaccharide ligand, nigerose, in the active 

site as determined by structural analysis of the X. laevis malectin protein[60], [75]. In this 

malectin structure these surface exposed residues extend from the malectin fold forming the 

nigerose binding pocket, with the conserved glycine (G40) located at the bottom of this structural 

region (Figure 3.1b). While several of the tyrosine and phenylalanine residues shown to be 
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important for interaction with carbohydrates in animal malectin proteins are maintained in plant 

malectin-like domains (e.g. FERONIA Y88, Y114, F115, D197) (Figure 3.1a), these are not 

surface exposed in the ML1 domain of the recently described FER crystal structure (Figure 3.1c, 

in green) with its co-receptor LLG2 (Figure 3.1c, in blue) and a RALF23 ligand (Figure 3.1c, in 

magenta)[73]. It is however, notable that in this structure the invariant glycine (G41; Figure 3.1c, 

red residue) of the FER ML1 domain is not located within or nearby the RALF23 and LLG2 

binding surfaces in the ML2 domain[73]. 
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Figure 3.1. Localization of the highly conserved glycine mutation in fer-ts in A. thaliana FERONIA:RALF23:LLG2 
and X. laevis malectin structures. 

(a) Several residues important for binding carbohydrate ligands are conserved in plant CrRLK1L receptor kinase family 
members.  Sequences analyzed include animal Malectin (X. laevis and H. sapiens) FERONIA and other well-characterized 
CrRLK1L homologs in A. thaliana (ANXUR1; ANX1, ANXUR1; ANX2, HERCULES1; HERK1 and THESEUS1; THE1). Putative 
N-terminal signal peptides are indicated as black dashed lines, and malectin and CrRLK1L ML1 domains by solid lines, 
respectively. The highly conserved G41 of FER is marked by arrowhead. Black boxes indicate fully conserved residues; shaded 
boxes indicate similar and partially conserved residues. Conserved residues that have been shown to participate in binding 
nigerose in the X.laevis malectin structure are marked by asterisks. Sequence alignment analysis was performed by CLUSTAL 
Omega program (http://www.ebi.ac.uk/Tools/msa/clustalo/) and displayed by using BOXSHADE software 
(www.ch.embnet.org/software/BOX_form.html). (b) Crystal structure of the X. laevis malectin protein (PDB ID: 2K46) with 
binding pocket aromatic residues and the highly conserved glycine residue based on sequence similarity to FER shown in red. (c) 
Crystal structure of FER protein (green) in complex with RALF23 ligand (magenta) and GPI-anchored protein LLG2 (blue) 
(PDB ID: 6A5E). No analogous binding pocket is observed on the ML1 domain, as all conserved aromatic residues (red) are 
buried within the protein. Both (b and c) were generated using PyMol (DeLano Scientific). 

3.4.2 Pectin is not predicted to bind near the G41S mutation site 
In addition to RALF23, which is bound at the distant site, FER is also known to interact 

with pectin[74]. To determine if a pectin site was nearby to the mutation site, I performed a 

ligand docking study with Rosetta[76]–[78]. I assessed pectin-binding proteins in the protein 
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databank and found three protein surfaces involved in binding: beta sheet surfaces, beta sheet 

clefts, and alpha helix clefts[79]–[81]. Within the FERONIA structure, the only beta sheet 

surfaces and clefts are on ML2, far from the mutation site. However, this is an alpha helical cleft 

directly adjacent to the mutant residue. I simplified pectin as a trisaccharide and generated 100 

decoys docking pectin into the putative binding cleft. The result was an energetic score 

comparable with docking the pectin to any other surface of the protein, suggesting that pectin 

does not bind to nearby sites so is unlikely to be directly affected by this mutation. 

3.4.3 Molecular dynamics studies show no temperature-dependent rearrangement  
To determine whether a temperature dependent rearrangement occurred in the mutant 

FER, I used NAMD to simulate triplicate copies of the wild-type (WT) protein at 20oC and 30oC, 

and the mutant protein at 20oC and 30oC. Each protein was solvated and run for 30 ns. The final 

10 ns of each system was used to calculate a root-mean squared fluctuation (RMSF) for each 

residue, and the relative change in RMSF with temperature was compared between the WT and 

mutant proteins. The result was internal variation in each system that exceeded the measured 

differences between the systems, making it unlikely that a significant rearrangement occurs 

spontaneously with a rise in temperature. 

3.5 Discussion 
In eukaryotes, receptor like kinases (RLKs) have been implicated to play an important role 

in many crucial eukaryotic cellular processes, such as cell cycle progression, cell signaling, 

embryogenesis, abiotic and biotic stress responses[48], [49], [82]. In this study, we isolated and 

identified a temperature-sensitive root hair elongation mutant, which we have determined is a new 

mutant FER allele that we have called fer-ts. The fer-ts mutant displays normal overall growth 

characteristics at normal temperature (20˚C), but root hair initiation and elongation are specifically 
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and rapidly inhibited within one minute upon transfer of these plants to elevated temperature 

(30˚C). We have shown that the fer-ts mutant is the result of a substitution mutation in which a 

highly conserved glycine residue in the FER extracellular domain is changed to serine (G41S). 

FERONIA is a member of the CrRLK1L subfamily of receptor-like kinases (RLKs) in Arabidopsis 

and the mutated glycine residue (G41S) is highly conserved in multiple members of the CrRLK1L 

family of receptor proteins as well as in animal malectin proteins.  

FER has been implicated in a variety of plant processes, including roles in root hair tip 

growth as well as crucial plant processes, such as pollen tube reception, hypocotyl elongation, 

regulation of ABA signaling and controlling seed size[61], [63], [83]–[85]. In many of these 

processes, FER signaling appears to regulate ROS production. In constitutive fer mutants, ROS 

levels are reduced, and FER overexpression results in increased ROS levels. The observation that 

the fer-ts mutant also displays reduced ROS levels only at elevated temperatures suggests that this 

mutation affects FER signaling in a similar fashion as other fer mutants, perhaps providing a 

powerful tool for elucidation of downstream signaling events associated with FER function, and 

indicating that at least one important downstream effect of FER signal transduction is regulation 

of ROS production. This was elegantly explained by the discovery that FER recruits ROPGEFs, 

which in turn activate ROP GTPases, leading to the stimulation of RHD2 NADPH oxidase 

dependent ROS production[63]. Therefore, FER mediated regulation of ROS production is likely 

important and tightly controlled for many cellular functions. 

Based on sequence comparison, the extracellular domains of members of the CrRLK1L 

subfamily of plant RLK proteins were predicted to share some structural similarity to the 

mammalian malectin protein[60]. Malectin was first identified and characterized in X. laevis as a 

carbohydrate binding protein in the endoplasmic reticulum where it plays an important role in the 
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early steps of protein N-glycosylation for biogenesis of glycoproteins[60]. Based on NMR 

structure analysis, there are five key residues in the malectin domain (Y67, Y89, Y116, F117, 

D186) that are located in a pocket-shaped structure, and these aromatic residues and the aspartate 

mediate interactions with the glucose residues of maltose and nigerose di-saccharide ligands[60]. 

In plants, malectin-like domains are mainly found in CrRLK1L subfamily and these display low 

overall sequence identity with animal malectins[86].  In FER, two malectin-like domains, ML1 

and ML2, are found as a tandem-repeat in the extracellular domain. Interestingly, several key 

residues found in the ligand-binding pocket of the animal malectin structure are maintained in the 

malectin-like domains of FER and other plant CrRLK1L family members[60].  However, the 

discovery that members of a family of small secreted peptides, RALFs, rather than cell wall 

polysaccharides or oligosaccharides, serve as important ligands for FER and other CrRLK1L 

family receptors[52], [70], [71], [87] might indicate that these extracellular domains may interact 

with ligands in a manner distinct from their animal counterparts. Indeed the recent structural 

characterization of ANX1/2 extracellular domains[88] and the FER extracellular domain in 

complex with RALF23 and the FER co-receptor, LLG2[73] has shown that the RALF23 binding 

domain and interaction with LLG2 occurs primarily with the ML2 domain, and that conserved 

tyrosine and phenylalanine residues in CrRLK1L malectin folds in these structures appear to be 

buried within the ML1 fold, and therefore likely unavailable to interact with cell wall 

carbohydrates in a manner similar to animal malectins. 

On the other hand, analysis of the animal and plant malectin domains, reveals an additional 

invariant glycine residue, that is present in all animal and plant malectin sequences, and which is 

also found in close proximity to pocket-shape ligand-binding cleft determined in the structure of 

the animal malectin protein. This invariant glycine is replaced with a serine (G41S) in the fer-ts 
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mutation described in this paper. The highly conserved nature of this glycine residue, and the rapid 

elimination of FER signaling at elevated temperatures, suggests a critical role for the FER ML1 

domain in ligand binding or transduction of a ligand-binding signal in members of the CrRLK1L 

family of receptor-like kinases. Indeed, mutation of an analogous glycine residue to aspartic acid 

(G37D) in the extracellular domain of THESEUS in the the1-1 mutant also results in a loss of 

function mutation in this RLK[54]. The the1-1 mutation also results in its insensitivity to its 

specific RALF ligand, RALF34 in vivo[70]. However, RALF34 was still found to bind the 

extracellular domain of the1-1 containing the G37D mutation in vitro, suggesting that mutation of 

this glycine residue did not directly impact RALF34 binding[70]. Similarly, the response of fer-ts 

mutant to treatment with RALF1 peptide was dramatically reduced under elevated temperature 

conditions. Precisely how the G41S fer-ts mutation, which is not found within the RALF23 peptide 

binding surface in the FER ML2 domain, would directly block RALF peptide perception and 

signaling is unclear, although it should be noted that the timescales of root growth analysis (>6 

hrs) are significantly longer and therefore the increased protein turnover of fer-ts receptors may 

play a role not observed in the rapid cessation of tip-growth in root hairs (<1 min).   

Additionally, the rapid cessation of tip-growth in fer-ts root hairs occurs even in the 

absence of added RALF1 peptide, perhaps indicating non-RALF peptide mediated signaling by 

FER receptor proteins. The recent discovery of links between FER signaling and pectin dynamics 

during salt stress[74], [89] and fertilization events[90] may provide insight into potential non-

RALF peptide mediated signaling by FER and related CrRLK1L family proteins. During salt 

stress, FER appears to sense cell wall softening and both FER ML1 and FER ML2 domains were 

shown to directly interact with pectin in vitro[74]. More recently, FER function was shown to be 

required in order to maintain de-esterified pectin levels in the filiform apparatus during pollination 
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and fertilization events[90]. In addition, other CrRLK1L receptor kinases, such as ERU[53] and 

THE1[70] also appear to regulate aspects of pectin methyl esterification and cell wall integrity 

sensing, respectively. Whether the G41S mutation in fer-ts, or other analogous mutations of this 

invariant glycine residue in other CrRLK1L receptors affect the ability of these receptors to interact 

with or regulate pectin dynamics in plant cell walls is an intriguing possibility that warrants future 

investigation.  
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Chapter 4 Computational Tool Development 

4.1 Chapter Introduction 
Modern scientific workflows have access to vast quantities of data and computing power. 

Processing and interpreting this data can require a massive human endeavor, to the point of 

becoming completely untenable in some contexts. In this work, we will describe the 

development of two novel tools: a lobe detecting python program called InLoFi, and an On-the-

fly Autocorrelation plug-in for the molecular dynamics software HOOMD-blue. 

4.2 InLoFi: A reformed tool for quantification of lobed cells 

Disclosure: The introduction of this chapter includes excerpts from Yang, J, Sahu, A, 

Gu, F., Adams, A, Mayes, H.B., and Nielsen, E. “Functional Relations of CSLD2, CSLD3, and 

CSLD5 Proteins during Cell Wall Synthesis.” In preparation 

4.2.1 Introduction 

Plant cells are embedded within a load-bearing extracellular matrix, the cell wall. To 

change the size and shape of plant cells during growth and development, new cell wall material 

must be properly delivered and incorporated into existing cell walls during cell expansion. Two 

major mechanisms that control changes in plant cell shape are called diffuse growth and tip 

growth[91]. During diffuse growth, the primary load-bearing components of cell wall, cellulose 

microfibrils, are synthesized directly at the plasma membranes by large integral membrane 

protein complexes called cellulose synthase complexes (CSCs), comprised of multiple catalytic 

subunits encoded by CESA (Cellulose Synthase) proteins[8], [9]. The new cellulose microfibrils 

are deposited and integrated in ordered arrays along the entire expanding faces of the cells, 
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which are often transversely oriented to the major axis of cell expansion[92]. On the other hand, 

during tip growth, new cell wall material is selectively delivered and deposited by polarized 

secretion only at restricted plasma membrane domains within the cell, resulting in a highly 

polarized cellular expansion[93]. 

Interestingly, in csld3 mutants, where the CSLD3 protein is not expressed, tip growth 

root hair is abolished, with root hair precursor cells undergoing cell rupture upon transition to 

tip-restricted elongation, resulting in a hairless phenotype in csld3 mutants[94]. To further study 

the extent of this mutation, we examined the morphology of cotyledon pavement cells, which are 

characterized by interlocking lobed cells. The lobes of these cells form and extend through tip 

growth mechanisms, so may be altered by the loss of associated proteins. We used propidium 

iodide to stain the cotyledon cell walls, and imaged them with fluorescence microscopy (Figure 

4.1). The cell boundary coordinates were manually recorded as a region of interest (ROI) file for 

quantification of the cells. 
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Figure 4.1. Fluorescence microscopy images of cotyledon pavement cells. 

(A) shows wild-type cells, (B)-(D) show csld single mutants and (E)-(G) show csld double mutants. 

Manually segmenting the cell coordinates into a ‘core’ and lobes is a time-intensive 

process involving numerous subjective judgements. The current automated solution, LobeFinder, 

is an open-source and freely available MatLab program that determines global properties of a 

cell, and the distance between cell points and a refined convex hull (Figure 4.2)[95]. The result is 

a non-unique, inverted form of the cell that markedly improves upon previous automated 

methods of identifying the number of lobes.  

 

Figure 4.2. Visualization of LobeFinder output, adapated from[95] 
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However, individual lobe parameters, such as the area and height, cannot be determined from 

this construction, yet are of interest for comparing the change in directional growth resulting 

from knockout studies, such as the csld mutations. Thus, we present Inspired by LobeFinder 

(InLoFi), a program based on LobeFinder that directly quantifies lobe dimensions, freely 

available at https://github.com/xadams/Inspired-by-LobeFinder-InLoFi-. 

4.2.2 Software Design 
The InLoFi algorithm was developed to reproduce a base set of images with the lobes 

manually identified. The primary challenge is correctly determining the neck of each lobe: the 

pair of points along the cell perimeter that bound the lobe. Following this, various lobe 

dimensions can be trivially calculated. To determine these lobe necks, InLoFi takes cell 

boundary coordinates, manually identified from microscope images, and performs the following 

steps: 

1. Use Shapely to determine the convex hull of the cell, and calculate the distance 

between each cell perimeter point and the hull[96]. 

2. Identify local maxima exceeding a set value. These will serve as the starting 

points for the lobe necks. 

3. For each side lobe, check that the neck point can connect to more than 50% of the 

points within the lobe without crossing cell boundaries. If it cannot, move the to 

the next point and repeat. 

4. With all of the lobes finalized, measure each area and discount any below a 

specific threshold. This has been shown to eliminate systematic errors between 

manual segmentation and automated scripts[97]. 
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5. Quantify the lobe dimensions, currently including neck width, lobe height, lobe 

width, and lobe to cell area. 

A graphical representation of the steps is shown in Figure 4.3. 

 

Figure 4.3. Schematic of InLoFi work flow. 

In addition to the base functionality, InLoFi includes usability features including the 

option to append to existing files with redundant files automatically removed, as well as 

resiliency towards failures within individual files of the full submission, with helpful error 

messages. We developed a collection of unit tests that test basic functionality, as well as proper 

output based on a range of different valid inputs. No quantitative test of the output is currently in 

place, as it will not perfectly match any manually measured lobe quantities. However, manual 

inspection of the output files identify close agreement with manual segmentation in excess of 

90% of cases.  
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4.2.3 Conclusions and Future Work 
In this work, we present a novel program inspired by an existing tool, whose output could 

not be achieved by simply reprocessing the existing tool. It allows for high-throughput processing 

of manually identified lobed cell boundary coordinates with consistency and a high degree of 

accuracy compared to manual segmentation. Performance could be improved by adding additional 

features present in the original program, specifically resampling of coordinates and refinement of 

the convex hull. Introduction of these features should be straightforward, as they are based on the 

existing algorithm, and should increase accuracy by removing artifacts from manual identification 

of the cell boundary and improving the starting points of the lobe necks. 

Following these implementations, more of the internal values can be made available to the 

user. Currently the user only specifies the input and output files, but parameters such as the lobe 

cutoff size and percentage of the lobe that must connect within the cell boundaries to the neck 

could be made accessible for a user to optimize to their specific systems. A final, lofty goal, would 

be to integrate an ImageJ script to automatically select the cell boundaries from an image, making 

the entire process quick and free of human subjectivity. 

4.3 On-the-Fly Autocorrelation as a HOOMD-blue plug-in 

Disclosure: This section includes material adapted from a final project report submitted for 

NERS 590: Methods and Practice of Scientific Computing, completed in collaboration with 

Alyssa Travitz Ph.D. 

Alyssa was responsible for the original idea to implement the Likhtman Autocorrelator in 

HOOMD-blue, the function calling the algorithm that implements it, and the validation testing. I 

was responsible for unit tests regarding functionality, the general form of the unit tests, and the 

developer guide. We both were equally responsible for design of the Correlator class, its 

implementation in Python and C++, and the user documentation. 
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4.3.1 Introduction 
Molecular dynamics (MD) is an N-body simulation method for studying systems of 

particles, often atoms or molecules. Pairwise interactions are defined between all particles in the 

system, and after forces between all neighboring particles are solved that that be integrated into 

Newton's equations of motions to dynamically evolve particle positions and velocities at each 

time step[98]. There are many Molecular Dynamics software packages, each with their 

respective strengths and shortcomings. In this project, we will be working with the software 

package HOOMD-blue (HOOMD), developed by the Glotzer Group here at the University of 

Michigan[99]. Our primary motivation for contributing to HOOMD is that we are able to work 

closely and in person with the lead developer, though HOOMD offers other advantages including 

powerful GPU acceleration and a python wrapper that makes scripting simulations flexible, 

capable, and accessible to much of the scientific community.  HOOMD-blue is a general purpose 

particle simulation software, in that it also can perform hard particle Monte Carlo and dissipative 

particle dynamics, in addition to classical molecular dynamics. HOOMD is modular by design 

which facilitates extending its capabilities.   

MD software can readily access system or per-particle data, such as volume, temperature, 

pressure (as a tensor), or particle velocities at each time step during a simulation. To access 

dynamic properties of the simulation, such as the complex modulus or diffusion coefficients, we 

can process the system data with time correlation functions (here on referred to as correlation 

functions)[100]. Correlation functions rely on the fluctuation-dissipation theorem, which states 

that a system's response to spontaneous fluctuations within a system is equivalent to its response 

to small applied force. We take advantage of the fluctuation dissipation theorem and use 

correlation functions to compute relaxation and transport properties of physical systems. For 
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example, we can autocorrelate the off-axis stress values to calculate the stress relaxation modulus 

of a system, or autocorrelate particle velocities to determine the related diffusion coefficients. 

The general form of an autocorrelation function, or a correlation of a property with itself 

over a delay, is:	 

 
R(t) =

∑ (𝑌 − 𝑌*)(𝑌!"# − 𝑌)$%#
!&'

∑ (𝑌! − 𝑌*)($
!&'

 (4.1) 

where t is the time point for which the autocorrelation is being calculated, Y is the value of a 

given property at time i, τ is the lag time between measurements, and N is the total number of 

timesteps. 

Calculating correlation functions can require significant compute time and memory, 

especially if per-particle calculations are necessary. A large part of this overhead is the time and 

memory required to write all data points to an output file, reading the data into a correlator, then 

writing an equally large data file containing the correlated values. In 2010, the Likhtman group 

proposed an algorithm that uses block averaging and a multiple-tau correlation method to 

produce highly efficient and accurate calculations[100]. As data is correlated, the correlated 

values at short time scales accumulate redundant data which can be represented accurately as the 

average of a given time block. Ramirez and coworkers demonstrate that their algorithm 

maintains accuracy through the block averaging, and that the final amount of raw data produced 

is greatly reduced. They also use a multiple-tau method, which controls the ratio between the 

averaging time and the lag time of the correlator. Parameters m and p are user defined as a way 

of controlling relative error, the smaller the ratio m/p is, the smaller the relative error. The 

recommended values (and default values in our implementation) are m = 2 and p = 16. This is 

crucial for calculations spanning very long time scales to reduce the memory and minimize error. 
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The general structure of the multiple-tau algorithm is as follows, but more detail is available in 

their  paper. 

• User-defined parameters: m, p , and S 

• Dij: array to store data (S+1 by p) 

• Cij: array to store correlation results (S+1 by p) 

• Nij: counter array for calculating averages (S+1 by p) 

• Ai: accumulator (S+1) 

• Mi: counter (S+1) 

At each simulation time step, a new data value ω is sent to correlator level I, and the following 

algorithm takes place: 

1. ω is stored at the first position of D, and all other data values are pushed up one value 

2. The correlation array is updated as Cij = Cij + Di0Dij and the correlation counter is 

incremented Nij = Nij + 1 (for maximum efficiency, this calculation iterates of j=0…p-1 

at level 0 and j=p/m…p-1 for all other values) 

3. ω is added to the accumulator as Ai = Ai+ω, and the counter is incremented as Mi = Mi+1 

When Mi = m, Ai/m is sent to the next level, (i+1), and Ai and Mi are reset to 0. 

The Likhtman group provides their code as a standalone C++ package (hereon referred to 

as the Likhtman correlator) that can be used as a post-processing method. However, the 

algorithm is intended to be used during run time as an on the fly method to avoid the large 

memory and requirements of writing each data point into an external file, then reading the data 

into the correlator. Our ultimate goal is to bring this efficiency to the HOOMD-blue software 

package. 

4.3.2 Software Design 
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Our design decisions while developing this plug-in were motivated by our conversations with 

HOOMD's lead developer, Joshua Anderson, Ph.D., and our own experiences as HOOMD users. 

The ultimate goal is to develop a plug-in correlator that is simple and customizable. For 

simplicity, the only required arguments are the quantities to be correlated and the period at which 

to send values to the correlator; all other arguments are optional and set to default values if no 

argument is passed. A powerful tool within HOOMD is the ability to use a callback function, 

which allows the user to define a lamba function that is evaluated at every time step. We defined 

the "quantities" argument as a HOOMD vector string, which allows the user to pass callback 

functions to the correlator in the same way they would pass to a standard HOOMD logger. To 

implement this, the C++  Correlator class inherits from the Logger class. However, the 

Correlator directly inherits from the Analyzer class in Python, since Logger is not an HOOMD-

defined Python class.  This gives us all necessary functionalities because Logger inherits directly 

from Analyzer, so all inherited methods are preserved. 

 

Figure 4.4 Schematic of HOOMD-blue plug-in architecture. 

Solid boxes indicate external code (HOOMD main code or the Likhtman Correlator), dashed boxes represent our plug-in. Lines 
represent inheritance, from top down. Arrows represent communication between components. 
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We integrated the Likhtman correlator into the architecture of HOOMD-blue, evaluated 

its accuracy and computational performance, and developed both user documentation and a 

developer guide. The plug-in is open-source and freely available on GitHub 

(https://github.com/atravitz/correlator-hoomd-plugin), along with instructions for installing and 

running the plug-in. Figure 4.4 is a simplified diagram of HOOMD-blue's architecture and 

depicts how the plug-in is integrated into each level of the software. HOOMD is considerably 

larger and more complex than we were able to diagram, so we only show the relevant pieces of 

code that our plug-in directly inherits from or communicates with. HOOMD is a multi-language 

software package. The user interfaces with HOOMD entirely through Python calls within a 

script, but the back-end is written entirely in C++. HOOMD uses pybind to communicate 

between the Python and C++ levels. For this level of implementation, we provided the user with 

high-level options (file name, quantities to correlate, correlation and logging frequencies) but 

hard-coded the recommended algorithm parameters (m, p, S) into the C++ code. 

Part of the inherent advantage of the Likhtman correlator is its separate functions for 

correlating and evaluating. During the correlating stage, no values are being actively written to a 

file, which saves overhead. The evaulate() call then iterates over the current data and writes it to 

a file. This means that the current state of the correlator can be written to a file at any given time 

step. This flexible output method is useful but must be used carefully. Dumping the data at every 

time step would defeat the purpose of the on-the-fly method, but writing the data exclusively at 

the end of the run can be risky for very long simulations that may experience instabilities or 

exceed walltime. Therefore, by default we set the correlator to write the data at the end of the 

simulation, but also created the "eval\_period" parameter. The "eval\_period" allows the user to 

specify how frequently the correlator data is written to a file. This is recommended to be only a 
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few times throughout the simulation, as a sort of "safety," or to allow the user to check in on the 

progress of their simulation in real time.  

We also realize that it may be of interest to evaluate the correlator at specific points in a 

simulation, such as after volume or temperature are changed in connection with equilibration or 

other processes. To address this, users can call correlate.evaluate() at a specific line in their 

HOOMD code. The evaluate method is entirely independent from the primary correlator, but 

both methods access the same instance of LikhtmanCorrelator. This highlights the importance of 

our decision to define the instance of LikhtmanCorrelator as a class attribute, so that both 

methods can access the correlator. 

4.3.3 Testing and Validation 
We designed regression and unit tests to verify the functionality and efficacy of the plug-

in as we continued to develop it. We test basic functionality such as proper initialization and 

output as simple unit tests. TestValues performs a short simulation and compares Correlator 

plug-in data to a verified post-processing workflow with the same data.  Best-practice 

frameworks such as removing output from routine testing and use of variables are employed to 

assist with altering or expanding unit-testing as further functionality is added. 

The performance of the Likhtman algorithm is well studied in[100], which demonstrates 

that it is more accurate and efficient when compared with a standard single-tau correlator. 

Therefore, the purpose of our performance testing is not to demonstrate the performance of the 

algorithm, but to demonstrate accurate implementation and quantitatively compare the efficiency 

of the correlator plug-in with the correlator used as a post-processing method. The motivation for 

conducting this performance test is to ensure that our implementation is efficient in its method of 
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communicating the simulation values to the correlator. It is possible, if the plug-in is poorly 

designed, that the on the fly method would be slower than the post-process method. 

We chose a bead-spring network as our testing system because it is computationally 

inexpensive and we are familiar with its stress relaxation behavior from previous research.  The 

network is composed of spheres connected by dumbbell springs, as seen in Figure 4.5b.  The xy 

component of the pressure tensor matrix is the correlated property. All units are left as reduced 

units, since there is no physical relevance to the system and it is used simply for validation 

purposes. 
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Figure 4.4.4 (a) Autocorrelation of xy component of pressure implemented on the fly and as a post-processing 
method. 

All units are reduced units. Both simulations were equilibrated for 1x105 time steps, then data was sent to the correlator every 10 
time steps for 1 x 107 time steps. (b) Visualization of the simulation initial configuration. Large spheres are initialized on a face 
centered cubic lattice and connected with nearest neighbors by harmonic spring dumbbells[101], [102]. 

4.3.4 Testing and Validation 
The same bead-spring network system used to validate the plug-in was also used for 

performance testing.  The plug-in was tested by equilibrating the system, initializing the 

correlator, running for the given number of time steps, then evaluating the correlator. The post-

processed correlation was tested by equilibrating the system, initializing a logger (a HOOMD 

method), then running for the given number of time steps. The raw data from the logger was then 

formatted as a Likhtman correlator input script and passed to the Likhtman correlator. The 

results of this study, Figure 4.6, show that the plug-in is consistently more efficient than the post-

processed implementation.  Note that in unit testing validation both cases were run in a single 

simulation, but to assess the performance of the methods we ran the cases as entirely separate 

simulations. 
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Table 4.4.1: Run Time Analysis of On the Fly and Post-Processed Data 

# time steps on the fly (sec) post-process (sec) seconds per time-step 
1.00E+06 151 161 1.50E-05 
5.00E+06 669 772 206E-05 
1.00E+07 1330 1572 2.42E-05 
5.00E+07 6497 8933 4.87E-05 
1.00E+08 13446 15785 2.34E-05 
  average 2.64E-05 

 

 
Figure 4.4.5 Performance data for post-processed and plug-in data. 

Number of time steps refers to the number of time steps after 1x105 equilibration run. Shaded regions represent 95% confidence 
interval. 
 

It is important to note that quantifying this improved efficiency as a percent speed 

increase would be arbitrary, as the reduced time is only a function time steps at which data is 

written. Instead, we present the decrease in time per time step as a metric for understanding the 

relative speeds. This is a rough calculation, but gives the order of magnitude of time that using 

the correlator as a plug-in offers as a speed up. It is common for simulations to run for 1x108 to 

1x109 time steps, occasionally more. This translates to a time savings of 45 minutes to 7.5 hours 
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for a single property to be calculated. For simulations where per-particle properties must be 

calculated, this time savings scales with the number of particles which is often on the order of 

1x108.  

The improved speed is only part of the advantage of the on the fly implementation. To 

use the correlator as a post-processing method, we must write every time step (or every period) 

to a file, then parse that file into input file for the correlator. This can result in data files that are 

several gigabytes for very long time scales. Just as with the run time, if we must calculate per-

particle values, this amount of memory can difficult to store and manage. The autocorrelation 

output files are only on the order of kilobytes, essentially eliminating the memory storage burden 

of the correlator. 

4.3.5 Conclusions and Future Work 
In this work, we produced a functioning autocorrelation plug-in. It includes additional 

generalizable features such as the evaluate() function and period logging for backup. Currently, 

we have only tested on individual CPUs, and have not attempted running on GPUs or in parallel. 

Incorporating GPU compatibility should be a relatively straightforward process of adding in 

CUDA capabilities through flags in the plug-in. Achieving a correlator that works with a 

simulation running in parallel should also be straightforward as the entire plugin is lightweight 

and could be performed on a singular node without performance losses. The last high priority 

feature is restartable jobs. The framework is there in the periodic logging capabilities, but the 

process of reading in the multi-tau arrays to initialize the Liktman correlator is non-trivial and 

was not a priority to develop. 

Another area of improvement is adding more user-defined parameters. For example, the 

Likhtman correlator allows for m, p, and S parameters to be defined as a means of tuning error 
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and efficiency. These would be simple to add into our plug-in, but would require additional unit 

testing. Other helpful plug-in arguments might be file parameters such as headers and delimiters 

to make plotting and processing the correlated data simpler for the user.  It would also be 

beneficial to the user to include helpful error messages and warnings, which will be developed 

based on experiences with using the plug-in. Although Likhtman's mutiple-tau correlator is 

favorable for our research, some HOOMD users might prefer a linear correlator. In the future, we 

can add a linear correlation algorithm into the same plug-in.  
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Chapter 5 Conclusions, Limitations, and Future Work 

5.1 Research Summary 
In this work, we present discoveries at the intersection of decades of experimental 

insight, novel information and a breadth of methods. 

In Chapter 2, use a variety of methods to elucidate a novel structure. The publication of a 

single structure provides a foothold for sequence analysis, de novo structure prediction, 

comparative modelling, and molecular dynamics studies to work in concert towards insights 

regarding the structure itself, as well as homologous proteins in a different organism. We are 

able to address questions regarding structure, assembly, and key differences between largely 

interchangeable protein families. 

In Chapter 3, we once again employ a swathe of experimental and computational 

techniques to discover and interrogate the mechanism of a novel mutant: Feronia temperature-

sensitive. This single mutant demonstrates several interesting effects: a loss of root-hair growth 

at elevated temperatures, an insensitivity to the RALF1 ligand, and accumulation of reactive 

oxygen species. While the direct mechanism of these effects could not be explained, several 

hypotheses were investigated, narrowing the scope of future studies. More broadly, this mutant 

serves as a valuable tool for investigation of any of the pathways that it is involved with. 

In Chapter 4, we present multiple computational tools developed to better leverage 

known information. InLoFi allows for the processing of microscopy images of lobed cells in a 

way that is tenable and consistent compared to manual segmentation, and more descriptive of 

individual lobes than the alternative automated method. The Autocorrelator plug-in in HOOMD-

blue implements a known algorithm that dramatically reduces the computation time and storage 

requirements vs comparable post-processing methods, while allowing access to the scalability 

and powerful scripting capabilities of HOOMD-blue. Both of these tools are narrow in scope, but 
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were deliberately developed to be flexible and resilient so they can tuned as workflows change, 

or adapted for entirely new purposes.  

5.2 Limitations and Future Work 
While the above work demonstrates novel insights and approaches for these biological 

problems, many obstacles remain for their generalizability and conclusiveness. 

Chiefly, biological systems are extremely heterogeneous and complex. Nearly a dozen 

accessory proteins have been implicated in assembling, trafficking, or regulating the CSC during 

cellulose production, miring the ability of computational studies to make tight, conclusive 

arguments[103]. More frequently, dynamics studies are targeted at specific hypotheses, as was 

done in Chapter 3. However, given the disparity in time, effort, and expense between 

computation and the study of live organisms, any narrowing of the possibility space is still of 

tremendous value.  

The multi-dimensional nature of these systems made it difficult to establish satisfying 

controls of known or suspected facts within the plant biology community. Where we strived to 

quantitatively confirm that trimeric assemblies were the most energetically favorable and then 

utilize the lens of molecular dynamics to elucidate why, we instead struggled to differentiate 

between trimeric and monomeric systems when there is no belief that monomeric systems are 

viable. This further endangers our future efforts to computationally distinguish between 

homomeric and heteromeric complexes of CESA and CSLD proteins, as the differences in these 

systems are more subtle than between systems with entirely different numbers of proteins. Most 

likely, contributions due to entropy account for the differences, but these are computationally 

expensive to reliably determine, particularly given the coarse-grained and heterogenous nature of 

the membrane and larger system. 
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Despite this, computational studies can still inform and drive the experimental work that 

will more decisively drive the field forward. Specifically, molecular scale insights into the 

architecture of the CESA lobes and the putative stalk structure allow for the design of cross-

linking experiments that can verify the interfaces predicted by these models. In the case of the 

stalk structure, determination of the primary stabilizing interfaces shows where to disrupt these 

bonds to confirm the proposed structure. 

The methodology to narrow down candidate coiled-coil structures is a smaller system that 

equilibrates on a much shorter timescale[38]. This means that it would be much more capable of 

addressing a question such as the preference for homomeric or heteromeric trimers by rapidly 

testing the relative stabilities of various trimeric coiled-coil candidate stalk structures. Similarly, 

another candidate system for study is the dynamic assembly of glucan chains into a cellulose 

microfibril. This system will be on the scale of the coiled-coil systems, and will provide crucial 

information towards the grand question of whether CSCs are natively stable, or are driven 

together by the forces of crystallizing cellulose. 
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Appendix 

Supplementary Information for: Comparative Modeling & De Novo structure predictions reveal 
extensive conservation and key differences in Arabidopsis CESA and CSLD proteins 
 

A.1 Equations 

A.1.1 Calculation of Relative Per-Protein Energies 
 
Rmemb = reference energy of membrane and solvent 
En =  raw energy of the system with number of proteins N 
Rmonomer = reference energy of monomer with counterions = E1 – Rmemb 
ΔEn = energy relative to the monomer 

𝛥𝐸$ =
𝐸$ − 𝑅)*)+

𝑁 − 𝑅),-,)*. 

 

A.1.2 Propagation of Uncertainty of Relative Per-Protein Energies 

𝛥𝜎$ = 3𝜎$( + 𝜎)*)+( + 𝑁𝜎'( + 𝑁𝜎)*)+(  

 

A.2 Sequence Alignments 
All sequences were aligned with ClustalW (https://www.genome.jp/tools-bin/clustalw) and 
visualized with ESPript (https://espript.ibcp.fr)[104]. 
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A.2.1 RING finger Sequence Alignment 

 
Figure A.1. RING finger regions within the N-terminal demonstrate sequence variation but conserved structures. 

(A) shows the alignment of AtCESA and AtCSLD proteins in the vicinity of the predicted RING finger domain. (B) shows a 
representative RING finger domain with cysteine residues shown in licorice representation and Zn2+ ions as spheres. 

A.2.2 P-CR Sequence Alignment 

 
Figure A.2. P-CR structure is well conserved across protein families. 

(A) shows the alignment of AtCESA and AtCSLD proteins in the vicinity of the P-CR domain. (B) shows a representative P-CR 
domain in cartoon representation. 
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A.2.3 CSR Sequence Alignment 

 
Figure A.3. CSRs are intrinsically disordered and highly variable within and across protein families. 

 
A.3 CESA/CSLD Trimer Comparison 

 
Figure A.4. DSL regions of AtCSLDs do not disrupt trimeric interfaces. 

(A)  shows a surface representation of a representative CESA trimer: CESA6. (B) shows an 
analogous CSLD trimer: CSLD3, with the DSL regions shown in red. 



 

 56 

 
A.4 Schematic for Generating Candidate Structures from Low Resolution Structures 
 

 
Figure A.5. Schematic of Coiled-coil candidate structure work flow. 

A.5 Steric Clashes in a Full Putative Dimeric Structure 

 
Figure A.6 Consideration of the full CESA structure for a putative dimeric structure introduces extensive steric 

clashes (red). The members of the dimer are shown in blue and cyan. 
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