
Deterministic and Chance-Constrained Real-Time Motion
Planning Using Reachability Analysis

by

Jinsun Liu

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Robotics)

in the University of Michigan
2023

Doctoral Committee:

Associate Professor Ram Vasudevan, Chair
Professor Jessy Grizzle
Associate Professor Necmiye Ozay
Assistant Professor Katherine Skinner

Jinsun Liu

jinsunl@umich.edu

ORCID iD: 0000-0003-2067-4144

© Jinsun Liu 2023

ACKNOWLEDGMENTS

First and foremost, I am deeply grateful to my advisor, Ram Vasudevan, for his guid-
ance and support throughout my PhD journey. When I was a master’s student, I had no
plans of pursuing a PhD, but Ram’s wisdom, enthusiasm, endless ideas and clear explana-
tions convinced me that doing research was fun, so I made the best decision in my time
at Michigan and said yes immediately when Ram asked me if I wanted to pursue for a
PhD on a Monday afternoon in October 2016. His mentorship has significantly shaped my
mind and improved my abilities in all aspects. Together, we have tackled many challenging
problems, and I would not have made it without his continued support and encouragement,
especially during the tough days. I could not have asked for a better mentor - accessible,
humorous, and dedicated. Ram, I keep saying that you are my life changer, and I really
mean it.

Next, I would like to express my gratitude to my fantastic committee for their invaluable
support and guidance. Prof. Jessy Grizzle, it was your question on approximation error
using a simplified model during my qualification exam that sparked the inception of this
thesis. Since then I have been thinking hard to answer the question convincingly, and I
hope this thesis has made it happen. In fact, it was you who invited Ram to give a guest
lecture in your hybrid control class and let me met my future advisor, so I am very luck
to have you as a witness of my whole PhD journey. Prof. Necmiye Ozay, I am sincerely
indebted to you for the training and instruction you provided during my time in your group.
You were the first one who taught me optimization, hybrid systems and zonotopes, and all
these mathematical tools play key roles in this thesis. And Prof. Katherine Skinner, I would
like to thank you for your valuable feedback and detailed suggestions on my proposal and
thesis, which helped me to make the work more complete.

Third, I would like to express my appreciation to my collaborators, Prof. Andrew Lam-
perski, Challen Enninful Adu, Zhenyu Gan, Vishrut Kaushik, Lucas Lymburner, Joshua
Mangelson, Shanker Mohan, Hyongju Park, Hansen Qin, Yifei Shao, Lena Trang and
Pengcheng Zhao for their invaluable work. I had a great experience working with each of
them and cannot stress enough how much I value their support. I want to extend a special
thanks to Prof. Andrew Lamperski for providing me with my first research opportunity and
sparking my interest in tackling challenging problems. I would also give special thanks to

ii

Challen Enninful Adu and Lucas Lymburner. Challen, I cannot be more thankful for your
support and respect during my hardest time for graduation. I look forward to see your fu-
ture accomplishment in your PhD, and I guarantee that I will share all my knowledge with
you. Lucas, my favourite ‘grandson’, this thesis literally could not be finished without you.
You are an incredibly intelligent and talented individual, and I feel so fortunate to have you
in my team.

Fourth, I would like to thank my other friends and colleagues in ROAHM Lab and
FCAV: Cyrus Anderson, Zachary Brei, Fan Bu, Yizhou Chen, Shannon Danforth, Jorge
Vilchis Dominguez, Sidhartha Dey, Parker Ewen, Xun Fu, Patrick Holmes, Seth Isaac-
son, Miracle Kanu-Asiegbu, Shreyas Kousik, Yong Seok Kwon, Hannah Larson, Adam
Li, Zehui Lu, Aohan Mei, S.R. Mamikandasriram, Jon Michaux, Matthew Porter, Daphna
Raz, Elena Shrestha, Nils Smit-Anseeuw, Sean Vaskov, Danial Yan, Ming-yuan Yu, Bohao
Zhang, Junming Zhang, Yiting Zhang, and all others whose names I may have missed. I
am grateful for the stimulating work environment and the knowledge that I have gained
from working with all of you. I cherished the fun times we shared and I hope that our
friendship will continue to last. I want to give special thanks to Fan Bu, Junming Zhang,
and Pengcheng Zhao for all the time we spent together in and out of the lab. Your pres-
ence has brought infinitely joy and fulfillment to my PhD journey, and I value our bond of
brotherhood deeply. I also want to extend my appreciation to Prof. Talia Moore for her
thoughtful discussion on biology and gracious support throughout my PhD.

Fifth, I would like to express my gratitude to many others. Thanks to Jiaxin Li and
Aibo Gong for being close friends and roommates. I am very lucky to always have them
as my backup and share my sorrow and joy. Thanks to Yukai Gong, Ray Zhang, Dan Zhao
and Hao Luo for those interesting poker hours when I needed to escape from work. Thanks
to my friends Yuxin Chen, Shihao Cheng, Zhe Du, Bruce Huang, Bowen Liu, Jiyuan Song,
Jianyang Tang, Zhongda Wang, Yijun Wu, Liang Zhu, Xinping Zuo, who made these years
enjoyable and delightful, and I wish them all the best in their future endeavors. And finally
thanks Lu Gan for her consolation and accompany during my toughest days.

Lastly, I would like to say thank you to my parents Qian Liu and Chun Yang for their
endless love and encouragement. You have always protected me and given me the largest
freedom to chase my dream, even though sometimes I may not know what really I want. It
has been years since we last met due to expired visa and the pandemic, and I really miss
you. Hope what I have achieved can make you proud, and I love you both.

iii

TABLE OF CONTENTS

ACKNOWLEDGMENTS . ii

LIST OF FIGURES . vii

LIST OF TABLES . xi

LIST OF APPENDICES . xii

ABSTRACT . xiii

CHAPTER

1 Introduction . 1

1.1 Reachability-based Trajectory Design . 3
1.2 Contributions and Outlines . 4

2 Real-Time Safe Control for Bipedal Robots . 6

2.1 Introduction . 6
2.2 Preliminaries . 9

2.2.1 RABBIT Model (Anchor) . 9
2.2.2 Simplified Biped Model (Template) 11

2.3 Outputs to Describe Successful Walking 11
2.3.1 Outputs to Describe Successful RABBIT Walking 12
2.3.2 Approximating Outputs Using the SBM 14

2.4 Enforcing N-Step Safe Walking . 16
2.4.1 Forward Reachable Set . 17
2.4.2 N-step Successful Walking and MPC 19

2.5 Results . 20
2.5.1 Simulation . 21
2.5.2 Real-World Experiments . 23

2.6 Conclusion . 24

3 REFINE: Reachability-based Trajectory Design Using Robust Feedback Lin-
earization and Zonotopes . 26

3.1 Introduction . 26
3.2 Preliminaries . 29
3.3 Vehicle Dynamics . 30

3.3.1 Vehicle Model . 30

iv

3.3.2 Low-Speed Vehicle Model . 34
3.4 Trajectory Design and Safety . 36

3.4.1 Trajectory Parameterization . 36
3.4.2 Not-At-Fault . 37
3.4.3 Environment and Sensing . 37

3.5 Controller Design and Hybrid System Vehicle Model 38
3.5.1 Robust Controller . 38
3.5.2 Extracting Wheel Speed and Steering Inputs 41
3.5.3 Augmented State and Hybrid Vehicle Model 41

3.6 Computing and Using the FRS . 43
3.6.1 Offline FRS Computation . 44
3.6.2 Slicing . 46
3.6.3 Accounting for the Vehicle Footprint in the FRS 48

3.7 Online Planning . 51
3.7.1 Nonzero Initial Position . 51
3.7.2 Online Optimization . 51
3.7.3 Representing the Constraint and its Gradient in (Opt) 52
3.7.4 Online Operation . 52

3.8 Extensions . 53
3.8.1 Subdivision of Initial Set and Families of Desired Trajectories . . 53
3.8.2 Satisfaction of Assumption 10 . 54
3.8.3 Generalization to All-Wheel-Drive and Rear-Wheel-Drive 55

3.9 Experiments . 56
3.9.1 Desired Trajectories . 56
3.9.2 Simulation on a FWD Model . 59
3.9.3 Real World Experiments . 64

3.10 Conclusion . 69

4 Real-time Risk-aware Reachability-based Trajectory Design 74

4.1 Introduction . 74
4.2 Preliminaries . 77

4.2.1 Obstacle Uncertainty . 77
4.2.2 Risk-Aware Vehicle Safety . 78
4.2.3 Online Optimization . 79

4.3 Offline Reachability Analysis . 79
4.4 An Implementable Alternative to (Opt-C) 81

4.4.1 Chance Constraint Relaxation . 81
4.4.2 Enhanced Online Optimization . 87
4.4.3 Constraint Gradient . 88
4.4.4 Parallelization . 88

4.5 Extension on Risk Threshold Selection . 89
4.6 Experiments . 92

4.6.1 Evaluation on Tightness and Computational Efficiency 92
4.6.2 Simulation . 94
4.6.3 Analysis on Tightness of Probability Integration 100

v

4.7 Conclusion . 103

5 Conclusion and Future Directions . 105

5.1 Summary of Contributions . 105
5.2 Future Directions . 106

Appendices . 108

BIBLIOGRAPHY . 120

vi

LIST OF FIGURES

2.1 This chapter proposes a method to design gaits that are certified to be tracked
by a full-order robot model (bottom row sub-figures) for N -steps without
falling over. To construct this method, this chapter defines a set of outputs
that are functions of the state of the robot and a chosen gait (middle row sub-
figures). If the outputs associated with a particular gait satisfy a set of inequal-
ity constraints (depicted as the safe region drawn in light gray in the middle
row sub-figures), then the gait is proven to be safely tracked by the legged
system without falling. Due to the high-dimensionality of the robot’s dynam-
ics, forward propagating these outputs via the robot’s dynamics for N -steps
to design a gait that is certified to be tracked safely is intractable. To address
this challenge, this chapter constructs a template model (top row sub-figures)
whose outputs are sufficient to predict the behavior of the anchor’s outputs. In
particular, if all of the points in a bounded neighborhood of the forward reach-
able set of the outputs of the template model remain within the safe region,
then the anchor is certified to behave safely. This chapter illustrates how this
can be incorporated into a MPC framework to design safe gaits in real-time. . . 7

2.2 Illustration of the RABBIT model. Stance leg and swing leg are shown in red
and blue respectively. 9

2.3 An illustration of how the values of the outputs can be used to determine
whether the robot walks safely. To ensure that the robot does not fall back-
wards, one can require that y1(i) ≥ 0 (left column). In particular if y1(i) < 0,
then tMS

i = +∞ which implies that the robot is falling backwards. To ensure
that the robot does not fall forward, one can require that y2(i) ≤ π (right column). 13

2.4 An illustration of the performance of the method proposed in this chapter (top)
and the naı̈ve method (second from top). Note that the rapid change in the de-
sired speed (third from top) results in a gait which cannot be tracked by just
considering a SBM model without successful walking constraints. By ensur-
ing that the outputs satisfy the inequality constraints proposed in Theorem 2
(bottom two sub-figures), the proposed method is able to safely track the syn-
thesized gaits. Note the naı̈ve method violates the y2 constraint proposed in
Theorem 2 on Step 5. 22

2.5 A comparison of speed tracking performance of the proposed method and the
naı̈ve method. Although both methods generate gaits that can be followed by
the RABBIT model without falling over, the tracking error of naı̈ve method is
lower (0.3681) compared to the proposed method (0.3912). 23

vii

2.6 An illustration of proposed method on Cassie. 24
2.7 An illustration of proposed method on Digit. 24

3.1 REFINE first designs a robust controller to track parameterized reference tra-
jectories by feedback linearizing a subset of vehicle states. REFINE then per-
forms offline reachability analysis using a closed-loop full-order vehicle dy-
namics to construct a control-parameterized, zonotope reachable sets (shown
as grey boxes) that over-approximate all possible behaviors of the vehicle
model over the planning horizon. During online planning, REFINE computes
a parameterized controller that can be safely applied to the vehicle by solv-
ing an optimization problem, which selects subsets of pre-computed zonotope
reachable sets that are guaranteed to be collision free. In this figure, subsets
of grey zonotope reachable sets corresponding to the control parameter shown
in green ensures a collision-free path while the other two control parameters
shown magenta might lead to collisions with white obstacles. 28

3.2 Vehicle model with the global frame shown in black and body frame in gray. . 32
3.3 An illustration of 3 successive planning/control iterations. tplan seconds are al-

lotted to compute a planned trajectory. Each plan is of duration tf and consists
of a driving maneuver of duration tm and a contingency braking maneuver.
Diamonds denote the time instances where planning computations begin and
t2 − t1 = t1 − t0 = tm. Filled-in circles denote the instances where feasible
driving maneuvers are initiated. If the planning phase between [t1, t1 + tplan]
is infeasible, the contingency braking maneuver whose feasibility is verified
during the planning phase between [t0, t0 + tplan] is applied. 44

3.4 Rotation of the ego vehicle and its footprint within range πh(Rj). The ego
vehicle with heading equals to the mean value of πh(Rj) is bounded by the
box with solid black boundaries. The range of rotated heading is indicated by
the grey arc. The area the ego vehicle’s footprint sweeps is colored in grey,
and is bounded by box rot(πh(Rj)) with dashed black boundaries. 49

3.5 Examples of udes(t, p) with u0 = 1.0 [m/s], ucri = 0.5[m/s], tm = 1.5[s], adec =
−1.5[m/s2], and pu taking values of 0.6, 1.2 and 2.0 from top to bottom. Note
zero lateral controls are commanded among all 3 examples. 57

3.6 Examples of hdes(t, p) and rdes(t, p) to achieve direction changes with u0 =
1.0[m/s], tm = 1.5[s], hdes

1 = 20
27 , hdes

2 = 27
10 , and py taking values of -0.4, 0.4 and

0.8 from top to bottom. Note pu is set as u0 to maintain the vehicle longitudinal
speed before tm among all 3 examples. 58

3.7 Examples of hdes(t, p) and rdes(t, p) to achieve lane changes with u0 = 1.0[m/s],
tm = 3.0[s], hdes

1 = 20
27 , hdes

2 = 27
10 , and py taking values of -0.4, 0.4 and 0.8 from

top to bottom. Note pu is set as u0 to maintain the vehicle longitudinal speed
before tm among all 3 examples. 59

viii

3.8 An illustration of the performance of REFINE, SOS-RTD, and NMPC on the
same simulated scenario. In this instance REFINE successfully navigates the
ego vehicle through traffic (top three images), SOS-RTD stops the ego vehicle
to avoid collision due to the conservatism of polynomial reachable sets (mid-
dle three images), and NMPC crashes the ego vehicle even though its online
optimization claims that it has found a feasible solution (bottom three images).
In each set of images, the ego vehicle and its trajectory are colored in black.
Zonotope reachable sets for REFINE and polynomial reachable sets for SOS-
RTD are colored in green. Other vehicles are obstacles and are depicted in
white. If an obstacle is moving, then it is plotted at 3 time instances t, t + 0.5
and t + 1 with increasing transparency. Static vehicles are only plotted at time t. 64

3.9 System Identification on longitudinal tire force. A linear model is fit using
data collected within the linear regime [-0.45,0.45] of slip ratio. 67

3.10 System identification on lateral tire forces. Linear models are fit using data
collected within the linear regime [-0.165,0.165] of slip angles. 68

3.11 An illustration of the modeling error along the dynamics of u. Collected ∆u(t)
is bounded by Mu = 1.11 for all time. Whenever u(t) ≤ ucri = 0.5, ∆u(t) is
bounded by bpro

u u(t) + boff
u with bpro

u = 1.2 and boff
u = 0.51. 69

3.12 An illustration of the tracking performance of the Rover with the proposed
controller and identified parameters in Table 3.3. 70

3.13 An illustration of the performance of REFINE during the 6th real-world trial.
The rover was able to navigate itself to the goal in red through randomly
thrown white cardboard cubes as shown in (a). Online planning using zono-
tope reachable sets is illustrated in (b) in which trajectory of the Rover is
shown from gray to black along time, goal is shown in red, and the zonotope
reachable sets at different planning iterations are colored in green. 71

4.1 Illustration of the proposed Risk-RTD framework in an uncertain dynamic en-
vironment for autonomous driving in which the ego vehicle in black tries to
avoid a static obstacle and a moving vehicle shown in white. Transparencies of
the ego vehicle and the moving vehicle increase along time. Given probabilis-
tic descriptions of location and prediction of the moving vehicle, Risk-RTD
limits the risk of collision between the ego vehicle and the moving vehicle
from above by enforcing an upper bound on the over-approximation of the
probabilistic integration over offline-computed zonotope reachable set during
each time interval. 76

ix

4.2 An illustration of chance constraint relaxation. Given arbitrary (i, j) ∈ I × J ,
in (a) the probability of collision between the ego vehicle and the i-th obstacle
during time interval Tj is relaxed as the integration of probability density func-
tion q(⋅ ∣ i, j) over zonotope ξ̄(Rj, z0, p) ⊕<0, Gobs> ⊂ W shown in green.
In (b), ξ̄(Rj, z0, p)⊕<0, Gobs> is over-approximated by a collection of right-
angled triangles colored in white and black depending on if a triangle has
nontrivial intersection with ξ̄(Rj, z0, p) ⊕<0, Gobs> or not. In (c), q(⋅ ∣ i, j)
is approximated from below and above over each right-angled triangle using
Interval Arithmetic. And in (d), the integration of the over-approximation of
q(⋅ ∣ i, j) over each right-angled triangle is computed in closed-form. 82

4.3 This shows the testing results for the risk of collision estimation error between
the each of the comparison methods and the ground truth risk of collision
generated via Monte-Carlo integration. Risk-RTD is able to get a significantly
lower risk estimation error in most scenarios. 94

4.4 Example of a simulated scenario in which Risk-RTD and CCPBA are able to
navigate the ego vehicle (black) to the provided waypoint (black cross) through
a lane change maneuver solved by one planning iteration, while Cantelli MPC
results in a crash. Forward reachable sets are shown in green. Obstacles are
shown in white and are marked by their indices to make them trackable among
different time instances. 97

4.5 Example of a simulated scenario in which Risk-RTD is utilized under various
risk thresholds. Ego vehicle and its trajectory are shown in black, forward
reachable sets are shown in green, and the provided waypoint is shown as the
black cross. Obstacles are shown in white and are marked by their indices to
make them trackable among different time instances. 99

4.6 Example of a simulated scenario in which Risk-RTD successes to achieve a
lane change, but REFINE and SOS-RTD cannot. Probability densities of all
obstacles are visualized in (a), and areas that are used to approximate all prob-
ability densities are visualized as transparent white boxes (b) and (c). 101

A.1 (a) SBM walking from the i-th mid-stance to the (i + 1)-st mid-stance. (b)
SBM at the touch-down moment. 108

A.2 SBM fails to reach the (i + 1)-th mid-stance. 110

x

LIST OF TABLES

3.1 Vehicle specification for simulation. 60
3.2 Summary of performance of various tested techniques on the same 1000 sim-

ulation environments. 72
3.3 Specification of the Rover. 73

4.1 Integration error of Gaussiandistribution compared to Monte-Carlo integration
as the ground truth. 93

4.2 Integration error of multiple exponential families using the proposed method. . 94
4.3 Single planning iteration results using Risk-RTD, CCPBA and Cantelli MPC.

“Other Action” encompasses the trials where each method does not complete
the lane change manuever, but instead executes a speed change maneuver, a di-
rection change maneuver, a safe stop manuever, or just decides to keep driving
in lane. 96

4.4 Single planning iteration results using Risk-RTD under various risk thresholds.
“Other Action” encompasses the trials where each method does not complete
the lane change manuever, but instead executes a speed change maneuver, a
direction change maneuver, or a safe stop manuever. 98

4.5 Statistic of simulation results using Risk-RTD, CCPBA, Cantelli MPC, REFINE
and SOS-RTD. 100

4.6 Tightness of the proposed over-approximation of risk of collision with varying
AreaT /Areaq. Relative error is computed by comparing against the result of
Monte-Carlo integration as the ground truth of chance integration. 103

xi

LIST OF APPENDICES

A Derivation of SBM Dynamics . 108

B Proof of Lemma 21 . 112

C Proof of Theorem 32 . 116

D Proof of Theorem 46 . 118

xii

ABSTRACT

Due to their limited sensing horizon, robots construct trajectories in a receding-horizon
fashion, where a trajectory defined over a finite time horizon is computed while the robot
tracks a previously planned trajectory. This trajectory is constructed by applying an op-
timization or sampling based method wherein collision checking is performed against
obstacles at discrete time instances. Unfortunately this presents an undesirable tradeoff
between real-time performance and safety. Reachability-based Trajectory Design (RTD)
circumvents this tradeoff by leveraging offline pre-computation of parameterized over-
approximations of the robot behavior using Forward Reachable Sets (FRS) thereby achiev-
ing safety and real-time operation.

To accomplish this objective, RTD represents the full order dynamics of the robot using
a reduced-order model, which enables it to apply polynomial-based reachability analysis
offline to the reduced-order model while conservatively bounding the difference between
the two models. The result is a parameterized over-approximation of the full order robot
behavior which can then be used for real-time trajectory design without sacrificing safety.
However, RTD suffers from a pair of shortcomings: first, representing the full order dynam-
ics using a reduced order model can introduce undue conservatism that makes it challenging
to construct safe, dynamic motion; and second, RTD deals with probabilistic models of the
surrounding environment by requiring that any possible behavior (even one with exceed-
ingly small probability) is safe thereby introducing more conservatism. This thesis focuses
on illustrating RTD on a walking robot model and addressing the two issues of RTD.

The first contribution of this thesis generalizes the RTD framework to bipedal robots
for flat ground walking using the idea of templates and anchors, where ‘templates’ are
simplified descriptions of the behavior of the full-order models as ‘anchors’. Reachability
analysis is performed on the template model under the assumption that the difference be-
tween the template and anchor can be bounded. Offline-computed polynomial reachable
sets are then incorporated into a Model Predictive Control framework to select controllers
that result in safe walking on the biped in an online fashion. This method is validated in
simulation on a 5-link planar model and in the real-world on Cassie and Digit.

The second contribution of this thesis improves the RTD framework for autonomous ve-

xiii

hicles by designing a novel robust, partial feedback linearization controller and performing
zonotope-based reachability analysis on the closed-loop system. Because only the full-
order model is involved in the computation of the reachable set, the outer approximation
of the FRS using zonotopes is much tighter than the original polynomial-based RTD ap-
proaches. The proposed method is implemented on a full-size vehicle model in simulation,
and on a 1/10th race car model in real experiments.

The third contribution of this thesis extends the RTD framework to deal with uncer-
tainty. Consider the challenge of performing motion planning where one is given a Proba-
bility Density Function (PDF) description of an obstacle’s state. The problem of bounding
the risk of collision while performing motion planning can be cast as a chance-constrained
program. To address this challenge, this portion of the thesis develops a numerical scheme
that conservatively approximates the integral of a PDF over FRS and its gradient with
respect to a control parameterization. Using this information, one can formulate a chance-
constrained RTD approach to real-time risk-averse motion planning. The proposed method
is evaluated on a full-size vehicle model with uncertain obstacle observations in simulation.

xiv

CHAPTER 1

Introduction

Real-time, safe motion planning is of great interest in robotics because any practical de-
ployment of robots in the real-world must deal with real-time updates regarding the status
of the environment. Because of the limited horizon of sensors deployed on robots, real-time
motion planning algorithm usually operate in a receding-horizon fashion. Although roboti-
cists have made tremendous strides in developing algorithms for receding horizon robot
motion planning, ensuring that these algorithms can operate in real-time in uncertain envi-
ronments while providing meaningful safety guarantees remains challenging because of the
difficulties in robot behavior prediction, robot safety ensuring and real-time performance.
And this is particularly challenging as perception algorithms are imperfect.

The remainder of this section gives an overview of state-of-arts methods to ensure safety
during motion planning. Depending on how perception information is incorporated, mo-
tion planning algorithms can be divided into two categories: deterministic and stochastic.
Deterministic motion planning algorithms either assume the knowledge of the environment
is perfect or conservatively treat all possible area in which a crash might happen as unsafe
region. On the other hand, stochastic methods model perception in a probabilistic fash-
ion while trying to minimize the risk of a crash. We begin by describing several types of
deterministic motion planning algorithms and then summarize how stochastic approaches
balance robot safety with uncertain environments.

To generate safe motion plan in real-time while satisfying the robot dynamics, it is help-
ful to have accurate predictions of robot behavior over the time horizon in which planning is
occurring. Because robot dynamics are typically nonlinear, closed-form solutions of robot
trajectories are usually not computable; thus, planning methods utilize approximations to
the solutions of robot’s equations of motion. For instance, sampling-based planning meth-
ods compute approximate solutions to the robot dynamic model by applying different forms
of discretization to try to construct collision-free paths [46, 60]. Sampling-based method
generate approximate solutions to a robot’s equations of motion by numerically integrating
the robot dynamics or an approximation to them. To account for the inaccurate integration,

1

obstacles are usually buffered by some small amount [25, 59]. However, selecting the cor-
rect amount to buffer by to account exactly for integration error can be challenging. As
a result, most users of such sampling-based motion planning algorithms typically rely on
heuristics to achieve real-time performance.

The idea of discretizing robot dynamics to generate an approximate solution is also
utilized in Nonlinear Model Predictive Control (NMPC). In this instance, collision-free
trajectories are numerically constructed through optimization algorithms that enforce safety
at discrete time instances rather than continuous time intervals [27, 103]. Solving this
optimization problem in real-time for high-dimensional robot models can be challenging
as the required number of decision variables within the optimization problem to construct
accurate representations of the solution to the equations of motion may be large. As a
result, applying NMPC can require that the user make an undesirable trade between real-
time performance and robot safety [125].

To account for inaccuracies that may arise due to following a trajectory generating by
applying NMPC or a sampling-based motion planning algorithm, researchers have pro-
posed the idea of applying robust feedback control algorithms. One particularly popular
approach in recent years utilizes a Control Barrier Function (CBF) to modify a controller
built to track a trajectory in real-time to ensure that the robot stays within a safe set. Be-
cause this can be done by solving a quadratic program, such methods have been success-
fully applied to ensure the safety of pre-computed trajectories for autonomous vehicles
and walking robots [2, 4, 10, 74]. However, this pre-computation can make the CBF-based
method scenario-specific; thus, the performance can be limited in real applications when
environment information is collected at run-time [21, 77, 96].

To address some of these challenges, researchers have proposed to pre-compute over-
approximations to a set of solutions of a robot’s equations of motion, which is called a For-

ward Reachable Set (FRS) [34,56,92,120]. These FRS-es can be represented as level sets of
polynomials or zonotopes and can be constructed offline by applying convex optimization
techniques [67] or linearizing the robot dynamics while accounting for linearization error
and computing the reachable set of a linear system under a disturbance [6]. During on-
line planning, robot safety can then be enforced directly using the offline-computed FRS.
Unfortunately constructing such FRS representations that are overapproximative but not
overly conservative for high dimensional robotic systems can be numerically challenging.

The aforementioned methodologies are deterministic because they each assume perfect
of the environment. However in real applications, it may be impossible to perfectly know
the state of the system being controlled or the state of the surrounding environment. Be-
cause deterministic approaches deal with this challenge by bounding the estimation error

2

and requiring the robot to avoid much more conservative unsafe area, such conservatism
may render the online planning infeasible which can result in a large decline in the per-
formance of the robot [91]. To balance the tradeoff between safety and maneuverability in
uncertain environments, stochastic methods for risk-aware motion planning have been pro-
posed [19, 86]. In this instance, instead of guaranteeing that an obstacle is avoided, these
stochastic methods impose safety by restricting the probability of the risk that an unsafe
event occurs. This is usually done by utilizing chance constraints [112, 121], Conditional
Value-at-Risk (CVaR) constraints [38] or Entropic Value-at-Risk (EVaR) constraints [24].
In particular, a chance constraint directly limits the probability of risk within an online op-
timization problem, while constraints involving CVaR and its tightest upper bound, EVaR,
regulate safety by limiting the expectation of the distance to the safe region by using a
worst-case quantile representation of a distribution. Experiments have shown stochastic
methods can regulate the risk of unsafe performance and maintain a balance between robot
safety and maneuverability [105]. However evaluating chance constraints usually require
strong assumptions on probability distributions that are difficult to meet in real applica-
tion (i.e., assuming the cumulative probability distribution function is available and can be
evaluated at run-time). Meanwhile, CVaR and EVaR constraints potentially make real-time
planning challenging because they require applying sampling techniques or mixed integer
optimization.

1.1 Reachability-based Trajectory Design

The Reachability-based Trajectory Design (RTD) framework [52] is a deterministic plan-
ning strategy for real-time safe motion planning that circumvents the undesirable tradeoff
between real-time performance and safety. As a reachability-based planning method, RTD
achieves safe real-time motion planning by first performing offline reachability analysis on
a reduced-order model of the full-order robot dynamics with the difference between the
two bounded conservatively. At run-time, the parameterized polynomial reachable sets are
optimized over to ensure robot safety. Although RTD has been applied to autonomous
vehicles, drones, and manipulators [43, 51, 106], there are two challenges that restrict the
broad applicability of RTD.

1. Because a simplified model with bounded error is used to bound the potential behav-
ior of the full-order robot model, the introduced conservatism can make it challenging
to construct safe dynamic motions.

2. Because RTD is a deterministic method, it requires that any possible behavior of the

3

robot is safe in uncertain environment.

1.2 Contributions and Outlines

This thesis focuses on illustrating the generality of the RTD framework and addressing its
aforementioned two issues. In particular, this thesis develops a real-time motion planning
in the deterministic and chance-constrained setting. It begins by describing how classical
RTD can be extended to a planar bipedal robot for flat ground walking without falling using
the idea of template and anchor [30] in Chapter 21. This is done by defining a set of outputs
which are functions of the robot state and can be used to determine whether a gait can
be safely tracked. These outputs enable the construction of a simplified (template) model
whose behavior can be used to guarantee the safety of the full-order (anchor) robot model.
Offline polynomial reachable sets are constructed for these outputs using the simplified
model. Such reachable sets are then used online in a Model Predictive Control framework
to achieve safe walking. The method is validated in simulation on a 5-link planar walking
robot model named RABBIT and in the real-world on Cassie and Digit.

Chapter 32 presents a controller-oriented planning strategy named REFINE which ex-
tends the reachability-based approach developed in [52] using Feedback Linearization and
Zonotopes on autonomous vehicles. REFINE drastically improves the tightness of reach-
able set computation by designing a robust partial feedback linearization controller that is
able to deal with model inaccuracy. This controller makes offline reachability analysis over
the closed loop dynamics of the full-order vehicle model possible using zonotopes. Because
the full-order dynamic model is used for reachability analysis, conservatism introduced by
model simplification as in classic RTD or as described in Chapter 2 is explicitly avoided.
During online planning, control synthesis is performed in a receding horizon fashion by
solving optimizations in which zonotope reachable sets are used to check against colli-
sions. Experimental results on a full-size vehicle model and a 1/10th race car robot show
that the proposed REFINE framework drastically improves the tightness of reachable sets
and thereby enables far more maneuverability during online operation.

In Chapter 4, a probabilistic framework named Risk-RTD is provided to achieve real-
time risk-aware motion planning. As the probabilistic extension of the traditional RTD
method [52], Risk-RTD shares the same offline reachability analysis with REFINE and
benefit from the tightness of zonotope reachable sets, but enforces robot safety by bound-
ing the probability of any collision from above as chance constraints at all time during

1This chapter was previously published in ICRA 2020 [62].
2This chapter is under review at TRO [61].

4

online planning. To avoid making strong assumptions on probability estimation of the en-
vironment for chance constraint evaluation as in [105], a closed-form over-approximation
on the probability of a collision is derived given the obstacle estimation satisfying arbitrary
and twice-differentiable probabilistic distribution from an exponential family. Such over-
approximation of collision probability is constructed in a way that ensures the existence
of its analytical derivative which can improve the computation speed of online optimiza-
tion. In addition, the proposed computations of both probability over-approximation and
its derivative are parallelizable. As a result, Risk-RTD is able to perform real-time, chance-
constrained motion planning. The tightness of proposed probability over-approximation
is validated through numerical experiments, and simulation on a full-size vehicle model
shows that the proposed Risk-RTD framework allows the ego vehicle to travel through
crowded traffic more aggressively with a higher success rate when compared with deter-
ministic motion planning methods.

In Chapter 5, the thesis contributions are summarized and potential future directions
are provided.

5

CHAPTER 2

Real-Time Safe Control for Bipedal Robots

2.1 Introduction
1 Legged robots are an ideal system to perform locomotion on unstructured terrains. Un-
fortunately designing controllers for legged systems to operate safely in such situations
has proven challenging. To robustly traverse such environments, an ideal control synthesis
technique for legged robotic systems should satisfy several requirements.

First, since uncertainties and disturbances may appear during operation, any algorithm
for control synthesis should run in real-time. Second, since modeling contact can be chal-
lenging, any control synthesis technique should be able to accommodate model uncertainty.
Third, since the most appropriate controller may be a function of the environment and given
task, a control synthesis algorithm should optimize over as rich a family of control inputs at
run-time as possible. Finally, since falling can be costly both in time and expense, a control
synthesis technique should be able to guarantee the satisfactory behavior of any constructed
controller. As illustrated in Fig. 2.1, this chapter presents an optimization-based algorithm
to design gaits for legged robotic systems while satisfying each of these requirements.

We begin by summarizing related work with an emphasis on techniques that are able to
make guarantees on the safety of the designed controller. For instance, the Zero-Moment
Point approach [109] characterizes the stability of a legged robot with planar feet by defin-
ing the notion of the Zero-Moment Point and requiring that it remains within the robot’s
base of support. Though this requirement can be used to design a controller that can avoid
falling at run-time, the gaits designed by the ZMP approach are static and energetically
expensive [55] [114, Section 10.8].

In contrast, the Hybrid Zero Dynamics approach, which relies upon feedback lineariza-
tion to drive the actuated degrees of freedom of a robot towards a lower dimensional mani-

1This chapter was previously published in 2020 IEEE International Conference on Robotics and Automa-
tion (ICRA) [62].

6

S
im

p
lifi

e
d

m

o
d

e
l

O
u

tp
u

t
sp

a
ce

F
u

ll-
o

rd
e

r
m

o
d

e
l

Safe region

MPC time horizon
Step # 0 1 2 3 0 1 2

MPC time horizon
3

Unsafe region

Simplified model

Full-order model

Forward
reachable set

(a) (b)

Figure 2.1: This chapter proposes a method to design gaits that are certified to be tracked by a full-order
robot model (bottom row sub-figures) for N -steps without falling over. To construct this method, this chapter
defines a set of outputs that are functions of the state of the robot and a chosen gait (middle row sub-figures).
If the outputs associated with a particular gait satisfy a set of inequality constraints (depicted as the safe
region drawn in light gray in the middle row sub-figures), then the gait is proven to be safely tracked by the
legged system without falling. Due to the high-dimensionality of the robot’s dynamics, forward propagating
these outputs via the robot’s dynamics for N -steps to design a gait that is certified to be tracked safely is
intractable. To address this challenge, this chapter constructs a template model (top row sub-figures) whose
outputs are sufficient to predict the behavior of the anchor’s outputs. In particular, if all of the points in a
bounded neighborhood of the forward reachable set of the outputs of the template model remain within the
safe region, then the anchor is certified to behave safely. This chapter illustrates how this can be incorporated
into a MPC framework to design safe gaits in real-time.

fold, is able to synthesize a controller which generates gaits that are more dynamic. Though
this approach can generate safety preserving controllers for legged systems in real-time
in the presence of model uncertainty [9, 45, 73, 75, 76], it is only able to prove that the
gait associated with a synthesized control is locally stable. As a result, it is non-trivial
to switch between multiple constructed controllers while preserving any safety guarantee.
Recent work has extended the ability of the hybrid zero dynamic approach beyond a sin-
gle neighborhood of any synthesized gait [11, 71, 94, 108]. These extensions either assume
full-actuation [11] or ignore the behavior of the legged system off the lower dimensional
manifold [71, 94, 108].

Rather than designing controllers for legged systems, other techniques have focused
on characterizing the limits of safe performance by using Sums-of-Squares (SOS) opti-

7

mization [80]. These approaches use semi-definite programming to identify the limits
of safety in the state space of a system as well as associated controllers for hybrid sys-
tems [85, 93]. These safe sets can take the form of reachable sets [50, 93] or invariant sets

in state space [84, 85, 115]. However, the representation of each of these sets in state space
restricts the size of the problem that can be tackled by these approaches and as a result,
these SOS-based approaches have been primarily applied to reduced models of walking
robots: ranging from spring mass models [127], to inverted pendulum models [50, 101]
and to inverted pendulum models with an offset torso mass [84]. Unfortunately the dif-
ferences between these simple models and real robots makes it challenging to extend the
safety guarantees to more realistic real-world models.

This chapter addresses the shortcomings of prior work by making the following four
contributions. First, in Section 2.3.1, we describe a set of outputs that are functions of
the state of the robot, which can be used to determine whether a particular gait can be
safely tracked by a legged system without falling. In particular, if a particular gait’s outputs
satisfy a set of inequality constraints that we define, then we show that the gait can be
safely tracked by the legged system without falling. To design gaits over N -steps that
do not fall over, one could begin by forward propagating these outputs via the robot’s
dynamics for N -steps. Unfortunately performing this computation can be intractable due
to the high-dimensionality of the robot’s dynamics. To address this challenge, our second
contribution, in Section 2.3.2, leverages the anchor and template framework to construct
a simple model (template) whose outputs are sufficient to predict the behavior of the full
model’s (anchor’s) outputs [30] under the assumption that the modeling error between the
anchor and template can be bounded. Third, in Section 2.4.1, we develop an offline method
to compute a gait parameterized forward reachable set that describes the evolution of the
outputs of the simple model.

Similar to recently developed work on motion planning for ground and aerial vehicles
[40, 51, 52, 66], one can then require that all possible outputs in the forward reachable set
satisfy a family of conditions that we define to ensure that the robot does not fall over during
the N -steps. Finally, in Section 2.4.2, we describe how to incorporate these conditions in
a Model Predictive Control (MPC) framework that are sufficient to ensure N -step walking
safely. Note, to simplify exposition, this chapter focuses on an example implementation
on a 14-dimensional model of the robot RABBIT that is described in Section 2.2. The
remainder of this chapter is organized as follows. Section 2.5 demonstrates the performance
of the proposed approach on walking examples in simulation and on hardware. Section 2.6
concludes the chapter.

8

Robot Model: Recall

83

A 17-dimensional hybrid nonlinear system.

Hard to do multi-step prediction.

We need a simplified model!

Figure 2.2: Illustration of the RABBIT model. Stance leg and swing leg are shown in red and blue respec-
tively.

2.2 Preliminaries

This section introduces the notation, the dynamic model of the RABBIT robot, and a Sim-
plified Biped Model (SBM) that are used throughout the remainder of this paper. The
following notation is adopted in this manuscript. All sets are denoted using calligraphic
capital letters. Let R denote the set of real numbers, and let N+ denote the collection of all
non-negative integers. Give a set A ⊂ Rn for some n ∈ N+, let C1(A) denote the set of all
differentiable continuous functions from A to R whose derivative is continuous and let λA
denote the Lebesgue measure which is supported on A.

2.2.1 RABBIT Model (Anchor)

This chapter considers the walking motion of a planar 5-link model of RABBIT [20] as
shown in Figure 2.2. The walking motion of the RABBIT model consists of alternating
phases of single stance (one leg in contact with the ground) and double stance (both legs in
contact with the ground). While in single stance, the leg in contact with the ground is called
the stance leg, and the non-stance leg is called the swing leg. The double stance phase is
instantaneous. The configuration of the robot at time t is

q(t) ∶= [qh(t), qv(t), q1(t), q2(t), q3(t), q4(t), q5(t)]⊺ ∈ Q ⊂ R7 (2.1)

where (qh(t), qv(t)) are Cartesian position of the robot hip; q1(t) is the torso angle relative
to the upright direction; q2(t) and q4(t) are the hip angles relative to stance and swing leg,
respectively; and q3(t) and q5(t) are the knee angles. The joints (q2, q3, q4, q5) are actuated,

9

and q1 is an underactuated degree of freedom. Let θ(q) ∶= q1+q2+q3/2 denote the stance leg

angle, and let ϕ(q) ∶= q1+q4+q5/2 denote the swing leg angle. We refer to the configuration
when the robot hip is right above the stance foot, i.e. θ = π, as mid-stance. We refer to the
motion between the i-th and (i + 1)-st swing leg foot touch down with the ground as the
i-th step.

Using the method of Lagrange, we can obtain a continuous dynamic model of the robot
during swing phase:

ȧ(t) = f(a(t), u(t)) (2.2)

where a(t) = [q⊺(t), q̇⊺(t)]⊺ ∈ TQ ⊂ R14 denotes the tangent bundle of Q, u(t) ∈ U , U de-
scribes the permitted inputs to the system, and t denotes time. We model the RABBIT as a
hybrid system and describe the instantaneous change using the notation of a guard and a re-

set map. That is, suppose (θ(q(t)), cfoot(q(t))) denotes the stance leg angle and the vertical
position of the swing foot relative to the stance foot, respectively, given a configuration q(t)
at time t. The guard G is {(b, b′) ∈ TQ ∣ π/2 < θ(b) < 3π/2, cfoot(b) = 0 and ċfoot(b, b′) < 0}.
Notice the force of the ground contact imposes a holonomic constraint on stance foot posi-
tion, which enables one to obtain a reset map: [114, Section 3.4.2]:

q̇+(t) =∆(q̇−(t)), (2.3)

where ∆ describes the relationship between the pre-impact and post impact velocities.
More details about the definition and derivation of this hybrid model can be found in [114,
Section 3.4].

To simplify exposition, this chapter at run-time optimizes over a family of reference
gaits that are characterized by their average velocity and step length. These reference gaits
are described by a vector of control parameters P (i) = (p1(i), p2(i)) ∈ P for all i ∈ N,
where p1(i) denotes the average horizontal velocity and p2(i) denotes the step length be-
tween the i-th and (i+ 1)-st mid-stance position. Note P is compact. These reference gaits
are generated by solving a finite family of nonlinear optimization problems using FROST
in which we incorporate p1(i), p2(i), and periodicity as constraints, and minimize the av-
erage torque squared over the gait period [41]. Each of these problems yields a reference
trajectory parameterized by P (i) and interpolation is applied over these generated gaits to
generate a continuum of gaits. Given a control parameter, a control input into the RABBIT
model is generated by tracking the corresponding reference trajectories using a classical
PD controller.

Next, we define a solution to the hybrid model as a pair (I, a), where I = {Ii}Ni=0 is
a hybrid time set with Ii being intervals in R, and a = {ai(⋅)}Ni=0 is a finite sequence of

10

functions with each element ai(⋅) ∶ Ii → TQ satisfying the dynamics (2.2) over Ii where
N ∈ N [64, Definitions 3.3, 3.4, 3.5]. Denote each Ii ∶= [τ+i , τ−i+1] for all i < N . τi corre-
sponds to the time of the transition between (i − 1)-th to i-th step. We let τ−i correspond to
the time just before the transition and and τ+i correspond to the time just after the transition.
Since transitions are assumed to be instantaneous, τi = τ−i = τ+i if all values exist. When a
transition never happens during the i-th step, we denote τ−i−1 = +∞. Note when τi+1 < ∞,
ai(τ−i+1) ∈ G and ai+1(τ+i+1) ∈∆(ai(τ−i+1)).

2.2.2 Simplified Biped Model (Template)

As we show in Section 2.5, performing online optimization with the full RABBIT model
is intractable due to the size of its state space. In contrast, performing online optimiza-
tion with the Simplified Biped Model (SBM) adopted from [116] is tractable. This model
consists of a point-mass M and two mass-less legs each with a constant length l. The con-
figuration of the SBM at time t is described by the stance leg angle, θ̂, and the swing leg
angle, ϕ̂. The guard is the set of configurations when θ̂ + ϕ̂ = 2π. The swing leg swings
immediately to a specified step length. During the swing phase, one can use the method of
Lagrange to describe the evolution of the configuration as a function of the current config-
uration and the input. Subsequent to the instantaneous double stance phase, an impact with
the ground happens with a coefficient of restitution of 0. We denote a hybrid execution of
the SBM as a pair (Î, â) where Î = {Îi}Ni=0 is a hybrid time set with Îi ∶= [τ̂+i , τ̂−i+1] and
â = {âi(⋅)}Ni=0 is a finite sequence of solutions to the SBM’s equations of motion.

2.3 Outputs to Describe Successful Walking

During online optimization, we want to optimize over the space of parameterized inputs
while introducing a constraint to guarantee that the robot does not fall over. This section
first formalizes what it means for the RABBIT model to walk successfully without falling
over. Unfortunately due to the high-dimensionality of the RABBIT model, implementing
this definition directly as a constraint during online optimization is intractable. To address
this problem, Section 2.3.1 defines a set of outputs that are functions of the state of RAB-
BIT and proves that the value of these outputs can determine whether RABBIT is able to
walk successfully. Subsequently in Section 2.3.2 we define a corresponding set of outputs
that are functions of the state of the SBM and illustrate how their values can be used to
determine whether RABBIT is able to walk successfully.

To define successful walking on RABBIT, we begin by defining the time during step i

11

at which mid-stance occurs (i.e., the largest time t at which θ(q(t)) = π during Ii) as

tMS
i ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞, if θ(q(t)) < π ∀t ∈ Ii,
−∞, if θ(q(t)) > π ∀t ∈ Ii,
max{t ∈ Ii ∣ θ(q(t)) = π}, otherwise.

(2.4)

Note if mid-stance is never reached during step i, then the mid-stance time is defined as
plus or minus infinity depending upon if the hip-angle remains less than π or greater than
π during step i, respectively. Using this definition, we formally define successful walking
for the RABBIT model as:

Definition 1. The RABBIT model walks successfully in step i ∈ N if

1. tMS
i ≠ ±∞,

2. π/2 < θ(q(t)) < 3π/2 for all t ∈ Ii, and

3. τ−i+1 < +∞.

To understand this definition, note that the first requirement ensures that mid-stance
is reached, the second requirement ensures that the hip remains above the ground, and
the final requirement ensures that the swing leg actually makes contact with the ground.
Though satisfying this definition ensures that RABBIT takes a step, enforcing this condi-
tion directly during optimization can be cumbersome due to the high dimensionality of the
RABBIT dynamics.

2.3.1 Outputs to Describe Successful RABBIT Walking

This subsection defines a set of discrete outputs that are functions of the state of RABBIT
model and illustrates how they can be used to predict failure. We begin by defining another
time variable t0i :

t0i ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ+i , if θ̇(q(t), q̇(t)) < 0 ∀t ∈ Ii,
τ−i+1, if θ̇(q(t), q̇(t)) > 0 ∀t ∈ Ii,
max{t ∈ Ii ∣ θ̇(q(t), q̇(t)) = 0}, otherwise.

(2.5)

Note t0i is defined to be the last time in Ii when a sign change of θ̇ occurs; when a sign
change does not occur, t0i is defined as an endpoint of Ii associated with the sign of θ̇.

12

(a) (b)

A
n

gu
la

r
V

el
o

ci
ty

A
n

gl
e

0

Timeτ2t1

MS t2

MS τ3

π

Time

0

π

τ2t1

MS t2

MS τ3 t3

0

: θ(t)

: ϕ(t)

: y 2

: θ(t)̇

: θ(t)3
̇ 0

: y 1

Figure 2.3: An illustration of how the values of the outputs can be used to determine whether the robot walks
safely. To ensure that the robot does not fall backwards, one can require that y1(i) ≥ 0 (left column). In
particular if y1(i) < 0, then tMS

i = +∞ which implies that the robot is falling backwards. To ensure that the
robot does not fall forward, one can require that y2(i) ≤ π (right column).

We first define an output, y1 ∶ N→ R that can be used to ensure that tMS
i ≠ +∞:

y1(i) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

θ̇(q(tMS
i), q̇(tMS

i)), if tMS
i ≠ ±∞,

−
√
2g(lst(t0i) − qv(t0i))/lst(t0i), if tMS

i = +∞,

1 if tMS
i = −∞,

(2.6)

where g is gravity and lst(t0i) is the stance leg length at time t0i . Note that y1(i) is the
hip angular velocity when the mid-stance position is reached during the i-th step. When
the mid-stance position is not reached, −y1(i) represents the additional hip angular velocity
needed to reach the mid-stance position. In particular, notice tMS

i ≠ +∞whenever y1(i) ≥ 0
.

Next, we define an output y2 ∶ N→ R that can be used to ensure that tMS
i ≠ −∞:

y2(i) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ(q(τ−i+1)), if τ−i+1 < +∞,

2π, otherwise.
(2.7)

Note, y2(i) is the swing leg angle at touch-down at the end of the i-th step; if touch-down
does not occur, y2(i) is defined as 2π. Recall ϕ(q(τ−i+1)) = θ(q(τ+i+1)), so if y2(i) ≤ π, it

13

then follows from (2.4) and (2.7) that tMS
i+1 ≠ −∞ and τ−i+1 < +∞. Fig. 2.3 illustrates the

behavior of y1 and y2.
We now define our last two outputs y3, y4 ∶ N → R ∪ {−∞,+∞} that can be used to

ensure that the hip stays above the ground:

y3(i) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

inf{θ(q(t)) ∣ t ∈ [tMS
i , tMS

i+1]}, if tMS
i+1 , t

MS
i ∈ R,

−∞, otherwise.
(2.8)

y4(i) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup{θ(q(t)) ∣ t ∈ [tMS
i , tMS

i+1]}, if tMS
i+1 , t

MS
i ∈ R,

+∞, otherwise.
(2.9)

Finally, we let Y ∶= R ×R × (R ∪ {−∞,+∞}) ×R.
The outputs are defined based on the observation that the hip usually has forward speed

(e.g. moving forward, rather than falling backwards) at mid-stance and appears between
thee two legs at touch-down when the RABBIT model walks safely. Specifically, y1 rep-
resents the hip angular velocity at mid-stances and y2 represents the swing leg angle at
touch-downs. y3 and y4 are defined as the maximum and minimum stance leg angles be-
tween adjacent mid-stances, which are used to indicate whether the hip hits the ground.

Using these definitions, we can prove the following theorem that constructs a sufficient
condition to ensure successful walking by RABBIT.

Theorem 2. Suppose that the 0-th step can be successfully completed (i.e. τ+0 and tMS
0

are finite, inf{θ(q(t)) ∣ t ∈ [τ+0 , tMS
0]} > π/2, and sup{θ(q(t)) ∣ t ∈ [τ+0 , tMS

0]} < 3π/2)).

Suppose y1(i) ≥ 0, y2(i) ≤ π, y3(i) > π/2 and y4(i) < 3π/2 for each i ∈ {0,⋯,N}, then the

robot walks successfully at the i-th step for each i ∈ {0,⋯,N}.

Proof. Notice y1(i) ≥ 0⇒ tMS
i ≠ +∞ and y2(i) ≤ π ⇒ tMS

i+1 ≠ −∞ for each i ∈ {1,⋯,N}.
By induction we have tMS

i is finite ∀i ∈ {1,⋯,N}. y2(i) ≤ π < 2π implies that τ−i+1 < +∞.
By using the definitions of y3 and y4, one has that the robot walks successfully in the i-th
step based on Definition 1.

2.3.2 Approximating Outputs Using the SBM

Finding an analytical expression describing the evolution of each of the outputs can be
challenging. Instead we define corresponding outputs

ŷ(i) ∶= (ŷ1(i), ŷ2(i), ŷ3(i), ŷ4(i)) ∈ Y (2.10)

14

for SBM. Importantly, the dynamics of each of these corresponding outputs can be suc-
cinctly described.

As we did for the RABBIT model, consider the following set of definitions for the
SBM:

t̂MS
i ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

+∞, if θ̂(t) < π ∀t ∈ Îi,
−∞, if θ̂(t) > π ∀t ∈ Îi,
max{t ∈ Îi ∣ θ̂(t) = π}, otherwise.

(2.11)

t̂0i ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

τ̂+i , if ˙̂
θ(t) < 0 ∀t ∈ Îi,

τ̂−i+1, if ˙̂
θ(t) > 0 ∀t ∈ Îi,

max{t ∈ Îi ∣ ˙̂θ(t) = 0}, otherwise.

(2.12)

ŷ1(i) ∶=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

˙̂
θ(t̂MS

i), if t̂MS
i ≠ ±∞

−
√
2g(l(1 + cos(θ̂(t̂0i))))/l, if t̂MS

i = +∞
1 if t̂MS

i = −∞,

(2.13)

ŷ2(i) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

ϕ̂(τ̂−i+1), if τ̂−i+1 < +∞,

2π, otherwise.
(2.14)

ŷ3(i) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

inf{θ̂(t) ∣ t ∈ [t̂MS
i , t̂MS

i+1]}, if t̂MS
i+1 , t̂

MS
i ∈ R,

−∞, otherwise.
(2.15)

ŷ4(i) ∶=
⎧⎪⎪⎪⎨⎪⎪⎪⎩

sup{θ̂(t) ∣ t ∈ [t̂MS
i , t̂MS

i+1]}, if t̂MS
i+1 , t̂

MS
i ∈ R,

+∞, otherwise.
(2.16)

The discrete-time dynamics of each of these outputs of SBM can be described by the fol-
lowing difference equations:

ŷ1(i + 1) = fŷ1(ŷ1(i), P (i))
ŷ2(i) = fŷ2(P (i))
ŷ3(i) = fŷ3(ŷ1(i), P (i))
ŷ4(i) = fŷ4(ŷ1(i), P (i))

(2.17)

for each i ∈ N, ŷ(i) ∈ Y , and P (i) ∈ P . Such functions fŷ1 , fŷ2 , fŷ3 and fŷ4 can be generated
using elementary mechanics 2.

2A derivation can be found in appendix.

15

To describe the gap between the discrete signals y and ŷ we make the following as-
sumption:

Assumption 3. For any sequence of control parameters, {P (i)}i∈N , and corresponding

sequences of outputs, {y1(i), y2(i), y3(i), y4(i)}i∈N and {ŷ1(i), ŷ2(i), ŷ3(i), ŷ4(i)}i∈N, gen-

erated by the RABBIT dynamics and (2.17), respectively, there exists bounding functions
B1, B1 ∶ R ×P → R, B2 ∶ P ×R ×P → R, and B3, B4 ∶ R ×P → R satisfying

B1(y1(i), P (i)) ≤ y1(i + 1) − ŷ1(i + 1) ≤ B1(y1(i), P (i)) (2.18)

y2(i) − ŷ2(i) ≤ B2(P (i − 1), y1(i), P (i)) (2.19)

y3(i) − ŷ3(i) ≥ B3(y1(i), P (i)) (2.20)

y4(i) − ŷ4(i) ≤ B4(y1(i), P (i)). (2.21)

In other words, if y1(i) = ŷ1(i), then B1, B1, B2, B3, and B4 bound the maximum pos-
sible difference between (y1(i + 1), y2(i), y3(i), y4(i)) and (ŷ1(i + 1), ŷ2(i), ŷ3(i), ŷ4(i)).
Though we do not describe how to construct these bounding functions here due to space
limitations, one could apply SOS optimization to generate them [95] or bound the dynam-
ics of the system [51]. Note, constructing such a bound precisely using SOS optimization
can be challenging due to the high-dimensionality of the full-order model. However, sev-
eral papers have proposed techniques that have begun to address these scaling challenges
while applying SOS optimization [3, 54, 79, 99]. To simplify further exposition, we define
the following:

B(y1(i), P (i)) ∶= [fŷ1(y1(i), P (i)) +B1(y1(i), P (i)),
fŷ1(y1(i), P (i)) +B1(y1(i), P (i))]

(2.22)

for all (y1(i), P (i)) ∈ R × P . In particular, it follows from (2.18) that for any sequence of
control parameters, {P (i)}i∈N , and corresponding sequences of outputs, {y1(i)}i∈N gener-
ated by the RABBIT dynamics, y1(i + 1) ∈ B(y1(i), P (i)) for all i ∈ N.

2.4 Enforcing N-Step Safe Walking

This section proposes an online MPC framework to design a controller for the RABBIT
model that can ensure successful walking for N -step. In fact, when N = 1 one can directly
apply Theorem 2 and Assumption 3 to generate the following inequality constraints over
y1(i), P (i − 1) and P (i) to guarantee walking successfully from the i-th to the (i + 1)-th

16

mid-stance:

fŷ1(y1(i), P (i)) +B1(y1(i), P (i)) ≥ 0, (2.23)

fŷ2(P (i)) +B2(P (i − 1), y1(i), P (i)) ≤ π, (2.24)

fŷ3(y1(i), P (i)) +B3(y1(i), P (i)) > π/2, (2.25)

fŷ4(y1(i), P (i)) +B4(y1(i), P (i)) < 3π/2. (2.26)

Unfortunately, to construct a similar set of constraints when N > 1, one has to either
compute (y1(i +M), y2(i +M), y3(i +M), y4(i +M)) for each 1 ≤ M ≤ N , which can
be computationally taxing, or one can apply (2.18) recursively to generate an outer approx-
imation to y1(i +M) for each 1 ≤ M ≤ N and then apply the remainder of Assumption
3 to generate an outer approximation to y2(i +M), y3(i +M), and y4(i +M) for each
1 ≤M ≤ N . In the latter instance, one would need the entire set of possible values for the
outputs to satisfy conditions in Theorem 2 from the i-th step to the (i+N)-th step to ensure
N -step safe walking. This requires introducing set inclusion constraints that can be cum-
bersome to enforce at run-time. To address these challenges, Section 2.4.1 describes how
to compute in an offline fashion, an N -step Forward Reachable Set (FRS) that captures all
possible outcomes for the output y1 from a given initial state and set of control parameters
for up to N steps. Subsequently, Section 2.4.2 illustrates how to write down N -step suc-
cessful walking conditions on outputs (y2, y3, y4) and set up an MPC framework to update
gait parameters for RABBIT using nonlinear program with set inclusion constraints.

2.4.1 Forward Reachable Set

Letting Y1 ⊂ R be compact, we define the N -step FRS of the output y1:

Definition 4. The N -step FRS of the output beginning from (y1(i), P (i)) ∈ Y1×P for i ∈ N
and for N ∈ N is defined as

WN(y1(i), P (i)) ∶=
i+N
⋃

n=i+1
{y1(n) ∈ Y1 ∣ ∃P (i + 1), . . . ,

P (n − 1) ∈ P such that ∀j ∈ {i, . . . , i + n − 1},
y1(j + 1) is generated by the RABBIT

dynamics from y1(j) under P (j) } (2.27)

In other words, given a fixed output y1(i) and the current control parameter P (i), the
FRS WN captures all the outputs y1(j) that can be reached within N steps, provided that

17

all subsequent control parameters are contained in a set P . Since WN is the union of all
possible y1 within the next N steps, it follows that:

Lemma 5.
WM(y1(i), P (i)) ⊆WN(y1(i), P (i)) ∀1 ≤M ≤ N (2.28)

As a result of Lemma 5, to predict the behavior of RABBIT system over N steps, it
is unnecessary to compute distinct FRS-es for each of the next N steps. Instead one only
needs to compute a single FRS.

To compute an outer approximation of the FRS, inspired by [39], one can solve the
following infinite-dimensional linear problem over the space of functions:

inf
wN ,v1,⋯,vN ∫Y1×P×Y1

wN(x1, x2, x3)dλY1×P×Y1 (FRSopt)

s.t. v1(x1, x2, x3) ≥ 0, ∀x3 ∈ B(x1, x2)
∀(x1, x2) ∈ Y1 ×P

vζ+1(x1, x2, x4) ≥ vζ(x1, x2, x3), ∀ζ ∈ {1,2,⋯,N − 1}
∀x4 ∈ B(x3, x5)
∀(x1, x2, x5) ∈ Y1 ×P ×P

wN(x1, x2, x3) ≥ 0, ∀(x1, x2, x3) ∈ Y1 ×P × Y1
wN(x1, x2, x3) ≥ vζ(x1, x2, x3) + 1, ∀ζ = 1,2,⋯,N

∀(x1, x2, x3) ∈ Y1 ×P × Y1

where the sets Y1 and P are given, and the infimum is taken over an (N + 1)-tuple of con-
tinuous functions (wN , v1,⋯, vN) ∈ (C1(Y1 ×P × Y1;R))N+1. Note that only the SBM’s
dynamics appear in this program via B(⋅, ⋅).

Next, we prove that the FRS is contained in the 1-superlevel set of all feasible w’s in
(FRSopt):

Lemma 6. Let (wN , v1,⋯, vN) be feasible functions to (FRSopt), then the following con-

dition is true for all (y1(i), P (i)) ∈ Y1 ×P:

WN(y1(i), P (i)) ⊆ {x3 ∈ Y1 ∣ wN(y1(i), P (i), x3) ≥ 1} . (2.29)

Proof. Let (wN , v1,⋯, vN) be feasible functions to the optimization (FRSopt). Substi-
tute an arbitrary y1(i) ∈ Y1 and P (i) ∈ P into x1 and x2, respectively. Suppose µ ∈
WN(y(i), P (i)), then there exists a natural number n ∈ [i + 1, i + N] and a sequence of

18

control parameters P (i + 1),⋯, P (n − 1) ∈ P , such that y1(j + 1) ∈ B(y1(j), P (j)) for all
i ≤ j ≤ n − 1 and µ = y1(n).

We prove the result by induction. Let x3 = y1(i + 1) ∈ B(y1(i), P (i)). It then
follows from the first constraint of (FRSopt) that v1(y1(i), P (i), y1(i + 1)) ≥ 0. Now,
suppose vζ(y1(i), P (i), y1(i + ζ)) ≥ 0 for some 1 < ζ ≤ n − i − 1. In the second con-
straint of (FRSopt), let x3 = y1(i + ζ), x4 = y1(i + ζ + 1) ∈ B(y1(i + ζ), P (i + ζ)), and
x5 = P (i + ζ) ∈ P ′, then vζ+1(y1(i), P (i), y1(i + ζ + 1)) ≥ 0. By induction, we know
vN(y1(i), P (i), y1(n)) ≥ 0. Using the fourth constraint of (FRSopt), let x3 = µ = y1(n),
and we get wN(y1(i), P (i), µ) ≥ 1. Therefore µ ∈ {x3 ∈ Y1 ∣ wN(y1(i), P (i), x3) ≥ 1}.

Though we do not describe it here due to space restrictions, a feasible polynomial so-
lution to (FRSopt) can be computed offline by making compact approximation of Y1 and
applying Sums-of-Squares programming [70, 126].

2.4.2 N-step Successful Walking and MPC

To ensure safe walking through N -steps beginning at step i, we require several set inclu-
sions to be satisfied during online optimization based on Theorem 2. First, we require that
WN(y1(i), P (i)) ⊆ [0,∞), which sufficiently guarantee y1(i) ≥ 0 for each i ≤ N . Since
we cannot compute WN(y1(i), P (i)) exactly, from Lemma 6 we instead can require that
the 1-superlevel set of wN is a subset of [0,∞).

With the help of the FRS, N -step successful walking conditions on (y2, y3, y4) can be
guaranteed in a fashion similar to (2.24), (2.25), (2.26) if

fŷ2(P (i +M)) +B2(P (i +M − 1), y1(i +M), P (i +M)) ≤ π, (2.30)

fŷ3(y1(i +M), P (i +M)) +B3(y1(i +M), P (i +M)) > π/2, (2.31)

fŷ4(y1(i +M), P (i +M)) +B4(y1(i +M), P (i +M)) < 3π/2. (2.32)

hold for all y1(i+M) ∈WM(y1(i), P (i)), 1 ≤M ≤ N . Applying Lemma 5, one can instead
enforce (2.30), (2.31), (2.32) for all y1(i +M) ∈ WN(y1(i), P (i)) to avoid computing
WM(y1(i), P (i)) for each 1 ≤M < N .

We then use a MPC framework to select gait parameter for RABBIT by solving the
following nonlinear program:

19

min
P (i)
⋮

P (i+N−1)

r (y(i), P (i), P (i + 1),⋯, P (i +N − 1)) (OL)

s.t. P (i), P (i + 1),⋯, P (i +N − 1) ∈ P
fŷ2(P (i)) +B2(P (i − 1), y1(i), P (i)) ≤ π
fŷ3(y1(i), P (i)) +B3(y1(i), P (i)) > π/2
fŷ4(y1(i), P (i)) +B4(y1(i), P (i)) < 3π/2
WN(y1(i), P (i)) ⊆ [0,∞)
fŷ2(P (i +M)) +B2(P (i +M − 1), y1(i +M), P (i +M)) ≤ π,

if y1(i +M) ∈WN(y1(i), P (i)), 1 ≤M ≤ N − 1
fŷ3(y1(i +M), P (i +M)) +B3(y1(i +M), P (i +M)) > π/2,

if y1(i +M) ∈WN(y1(i), P (i)), 1 ≤M ≤ N − 1
fŷ4(y1(i +M), P (i +M)) +B4(y1(i +M), P (i +M)) < 3π/2,

if y1(i +M) ∈WN(y1(i), P (i)), 1 ≤M ≤ N − 1

where r ∈ C1(Y × PN ;R) is any user specified cost function. Note that the last four con-
straints in (OL) are set inclusion constraints. These can be difficult to implement these
directly. Howeveer, one can conservatively represent these set inclusion constraints by the
0-super level set of a set of polynomials by using the generalized S-procedure described in
Section 2.6.3 of [16] and SOS optimization [70,126]. Note that this set of polynomial func-
tions to conservatively represent these set inclusion constraints can be generated offline.

Notice that (OL) is solved at the i-th mid-stance and only the optimal P (i) is applied
to the RABBIT and the problem is then solved again for the (i+ 1)-st step. The constraints
of (OL) lead to the following theorem:

Theorem 7. Suppose that RABBIT is at the i-th mid-stance, then tracking the gait pa-

rameters associated with any feasible solution to (OL) ensures that RABBIT can walk

successfully for the next N -steps.

2.5 Results

To illustrate that the proposed method is able to guarantee safe walking performance online,
we test the proposed method in simulation on RABBIT and in the real-world on Cassie and
Digit.

20

2.5.1 Simulation

We evaluate the performance of our method when it is tasked with tracking a randomly
generated speed sequence. In each trial, the RABBIT model is required to track a randomly
generated speed sequence that holds still for the first 4 steps and changes to a different value
starting from the 5th step, i.e. a step function. The speed sequence is restricted to be in a
range [0.2,2]. We repeat this experiment on 300 randomly generated speed sequences. The
space of control parameter is restricted to be P = [0.25,2] × [0.15,0.7] on which the gait
library is generated. The RABBIT model is initialized with the gait whose speed is closest
to the initial value of the desired speed sequence in each trial. The control parameter can
only be updated at the mid-stance of each step. Our MATLAB implementation of the
experiments can be found online 3.

In the proposed method, the cost function of (FRSopt) is set to be the weighted Eu-
clidean norm of the difference between the predicted speeds and the desired speeds within
the next 3 steps. Note N = 3. We compute an outer approximation to the (FRSopt) using
the commercial solver MOSEK on a machine with 144 64-bit 2.40GHz Intel Xeon CPUs
and 1 Terabyte memory. To create the bounding functions that satisfy Assumption 3, we
employ simulation. In particular, we initialized the RABBIT model randomly twenty thou-
sand times and varied the control parameter randomly for 5 steps and observed the output.
We repeated the process with the SBM model using the same control parameter sequence
and calculated the difference of the output between the two models on each of the twenty
thousand trials. Finally, we applied SOS optimization to bound the difference from above
and below to generate the error bounding polynomial that satisfied the conditions in As-
sumption 3.

We compare our method with a naı̈ve method and the direct method using the same
speed tracking sequences. The naı̈ve method uses the SBM model to update gaits in an
MPC framework without enforcing walking successful conditions. The direct method uses
the full-order dynamics of the RABBIT model to design a controller by solving an optimal
control problem via FROST [41].

Fig. 2.4 illustrates the performance of the naı̈ve method and the method proposed in
this chapter on one of the 300 trials. Note in particular that the gait generated by the naı̈ve
method is unable to be followed by the full-order RABBIT model. On the other hand, as
shown in Fig. 2.4, the method proposed in this chapter is able to generate a gait that can
satisfy the safety requirements described in Theorem 2. This results in a controller which
can track the synthesized gait without falling over.

3https://github.com/pczhao/TA_GaitDesign.git

21

https://github.com/pczhao/TA_GaitDesign.git
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
p
c
z
h
a
o
/
T
A
_
G
a
i
t
D
e
s
i
g
n
.
g
i
t

0

1

2

3

S
p
e
e
d
 (

m
/s

)

0

2

4

y
 (

ra
d
/s

)
1

y

 (
ra

d
)

2

2.5

3

3.5

0 5 10 15

Number of steps

Safe region

Safe region

Unsafe region

Unsafe region

Desired

Naїve method

Proposed method

Naїve method

Proposed method

Naїve method

Proposed method

Figure 2.4: An illustration of the performance of the method proposed in this chapter (top) and the naı̈ve
method (second from top). Note that the rapid change in the desired speed (third from top) results in a
gait which cannot be tracked by just considering a SBM model without successful walking constraints. By
ensuring that the outputs satisfy the inequality constraints proposed in Theorem 2 (bottom two sub-figures),
the proposed method is able to safely track the synthesized gaits. Note the naı̈ve method violates the y2
constraint proposed in Theorem 2 on Step 5.

Fig. 2.5 compares the speed tracking performance of another trial, where both methods
generate gaits that can be followed by the RABBIT model. Notice naı̈ve method achieves
a lower speed tracking error of 0.3681 in Euclidean norm, while the proposed method

22

Figure 2.5: A comparison of speed tracking performance of the proposed method and the naı̈ve method.
Although both methods generate gaits that can be followed by the RABBIT model without falling over, the
tracking error of naı̈ve method is lower (0.3681) compared to the proposed method (0.3912).

achieves a slightly higher tracking error of 0.3912. This is because the additional safety
constraints in the MPC prevents rapid transition from a low-speed gait to a high-speed gait,
therefore generating higher costs.

Across all 300 trials the computation time of the naı̈ve method is 0.01 seconds, the
direct method is 93.12 seconds, and the proposed method is 0.11 seconds. Moreover, the
RABBIT model falls 2% of the time with the naı̈ve method, but never falls with the pro-
posed method or the direct method. Therefore the proposed method is able to guarantee
walking performance online. The average speed tracking error (computed in Euclidean
norm) of the naı̈ve method is 0.8719, and the proposed method is 0.9808.

2.5.2 Real-World Experiments

The proposed method is tested in real-world experiments on bipedal robots Cassie and Digit
to achieve no-falling and collision-free walking. Safety of both bipedal robots in the sagittal
plane are enforced using the proposed method, while obstacle avoidance in the horizontal
plan is achieved by using techniques in [52] with a differential drive robot model [68] as
its simplified model.

Because Cassie doesn’t have on-board sensors to detect the environment, we use the
motion capture system to specify the locations of Cassie itself and surrounding white card-
board boxes as obstacles. On the other hand, because Digit comes with a VLP-16 lidar, it
runs A-LOAM as an advanced implementation of LOAM [124] to perform simultaneous
localization and mapping in real-time, thus fully autonomy is achieved. As shown in Fig-
ure 2.6 and 2.7, the proposed method is able to prevent Cassie and Digit from falling while
they are tasked to navigate themselves through obstacles without any collision.

23

Figure 2.6: An illustration of proposed method on Cassie.

Figure 2.7: An illustration of proposed method on Digit.

2.6 Conclusion

This chapter develops a method to generate safety-preserving controllers for full-order
(anchor) models by performing reachability analysis on simpler (template) models while

24

bounding the modeling error. The method is illustrated on a 5-link, 14-dimenstional RAB-
BIT model, and is shown to allow the robot to walk safely while utilizing controllers de-
signed in a real-time fashion. Real-world experiments on Cassie and Digit show the pro-
posed method is able to prevent robots from falling during walking. Though this method
enables real-time motion planning, it still suffers from the same conservatism of using a
simplified model as the original RTD framework. Thus in the next chapter, we aim for
computing tighter forward reachable sets using the full-order robot model.

25

CHAPTER 3

REFINE: Reachability-based Trajectory Design
Using Robust Feedback Linearization and

Zonotopes

3.1 Introduction
1 Autonomous vehicles are expected to operate safely in unknown environments with lim-
ited sensing horizons. Because new sensor information is received while the autonomous
vehicle is moving, it is vital to plan trajectories using a receding-horizon strategy in which
the vehicle plans a new trajectory while executing the trajectory computed in the previous
planning iteration. It is desirable for such motion planning frameworks to satisfy three
properties: First, they should ensure that any computed trajectory is dynamically realizable
by the vehicle. Second, they should operate in real time so that they can react to newly ac-
quired environmental information collected. Finally, they should verify that any computed
trajectory when realized by the vehicle does not give rise to collisions. This paper develops
an algorithm to satisfy these three requirements by designing a robust, partial feedback lin-
earization controller and performing zonotope-based reachability analysis on a full-order
vehicle model.

We begin by summarizing related works on trajectory planning and discuss their poten-
tial abilities to ensure safe performance of the vehicle in real-time. To generate safe motion
plan in real-time while satisfying vehicle dynamics, it is critical to have accurate predictions
of vehicle behavior over the time horizon in which planning is occurring. Because vehi-
cle dynamics are nonlinear, closed-form solutions of vehicle trajectories are incomputable
and approximations to the vehicle dynamics are utilized. For example, sampling-based
methods typically discretize the system dynamic model or state space to explore the envi-
ronment and find a path, which reaches the goal location and is optimal with respect to a

1This chapter is under review at TRO [61].

26

user-specified cost function [46,60]. To model vehicle dynamics during real-time planning,
sampling-based methods apply online numerical integration and buffer obstacles to com-
pensate for numerical integration error [25, 57, 59]. Ensuring that a numerically integrated
trajectory can be dynamically realized and be collision-free can require applying fine time
discretization. This typically results in an undesirable trade-off between these two proper-
ties and real-time operation. Similarly, Nonlinear Model Predictive Control (NMPC) uses
time discretization to generate an approximation of solution to the vehicle dynamics that
is embedded in optimization program to compute a control input that is dynamically re-
alizable while avoiding obstacles [27, 44, 103, 118]. Just as in the case of sampling-based
methods, NMPC also suffers from the undesirable trade-off between safety and real-time
operation.

To avoid this undesirable trade-off, researchers have begun to apply reachability-based
analysis. Traditionally reachability analysis was applied to verify that a pre-computed tra-
jectory could be executed safely [8, 82]. More recent techniques apply offline reachable
set analysis to compute an over-approximation of the Forward Reachable Set (FRS), which
collects all possible behaviors of the vehicle dynamics over a fixed-time horizon. Un-
fortunately computing this FRS is challenging for systems that are nonlinear or high di-
mensional. To address this challenge, these reachability-based techniques have focused on
pre-specifying a set of maneuvers and simplifying the dynamics under consideration. For
instance, the funnel library method [66] computes a finite library of funnels for different
maneuvers and over approximates the FRS of the corresponding maneuver by applying
Sums-of-Squares (SOS) Programming. Computing a rich enough library of maneuvers and
FRS to operate in complex environments can be challenging and result in high memory
consumption. To avoid using a finite number of maneuvers, a more recent method called
Reachability-based Trajectory Design (RTD) was proposed [52] that considers a contin-
uum of trajectories and applies SOS programming to represent the FRS of a dynamical
system as a polynomial level set. This polynomial level set representation can be formu-
lated as functions of time for collision checking [53, 106, 107]. Although such polynomial
approximation of the FRS ensures strict vehicle safety guarantees while maintaining online
computational efficiency, SOS optimization still struggles with high dimensional systems.
As a result, RTD still relies on using a simplified, low-dimensional nonlinear model that
is assumed to bound the behavior of a full-order vehicle model. Unfortunately it is dif-
ficult to ensure that this assumption is satisfied. More troublingly, this assumption can
make the computed FRS overly conservative because the high dimensional properties of
the full-order model are treated as disturbances within the simplified model.

These aforementioned reachability-based approaches still pre-specify a set of trajecto-

27

Control Parameter Space

Control Parameter Space

Figure 3.1: REFINE first designs a robust controller to track parameterized reference trajectories by feedback
linearizing a subset of vehicle states. REFINE then performs offline reachability analysis using a closed-loop
full-order vehicle dynamics to construct a control-parameterized, zonotope reachable sets (shown as grey
boxes) that over-approximate all possible behaviors of the vehicle model over the planning horizon. During
online planning, REFINE computes a parameterized controller that can be safely applied to the vehicle by
solving an optimization problem, which selects subsets of pre-computed zonotope reachable sets that are
guaranteed to be collision free. In this figure, subsets of grey zonotope reachable sets corresponding to the
control parameter shown in green ensures a collision-free path while the other two control parameters shown
magenta might lead to collisions with white obstacles.

ries for the offline reachability analysis. To overcome this issue, recent work has applied a
Hamilton-Jacobi-Bellman based-approach [15] to pose the offline reachability analysis as
a differential game between a full-order model and a simplified planning model [40]. The
reachability analysis computes the tracking error between the full-order and planning mod-
els, and an associated controller to keep the error within the computed bound at run-time.
At run-time, one buffers obstacles by this bound, then ensures that the planning model can
only plan outside of the buffered obstacles. This approach can be too conservative in prac-
tice because the planning model is treated as if it is trying to escape from the high-fidelity
model.

To address the limitations of existing approaches, this paper proposes a real-time,
receding-horizon motion planning algorithm named REchability-based trajectory design
using robust Feedback lInearization and zoNotopEs (REFINE) depicted in Figure 3.1 that
builds on the reachability-based approach developed in [52] by using feedback lineariza-
tion and zonotopes. This papers contributions are three-fold: First, a novel parameterized
robust controller that partially linearizes the vehicle dynamics even in the presence of mod-

28

eling error. Second, a method to perform zonotope-based reachability analysis on a closed-
loop, full-order vehicle dynamics to compute a control-parameterized, over-approximate
Forward Reachable Sets (FRS) that describes the vehicle behavior. Because reachability
analysis is applied to the full-order model, potential conservativeness introduced by us-
ing a simplified model is avoided. Finally, an online planning framework that performs
control synthesis in a receding horizon fashion by solving optimization problems in which
the offline computed FRS approximation is used to check against collisions. This con-
trol synthesis framework applies to All-Wheel, Front-Wheel, or Rear-Wheel-Drive vehicle
models.

The rest of this chapter is organized as follows: Section 3.2 describes necessary pre-
liminaries and Section 3.3 describes the dynamics of Front-Wheel-Drive vehicles. Section
3.4 explains the trajectory design and vehicle safety in considered dynamic environments.
Section 3.5 formulates the robust partial feedback linearization controller. Section 3.6 de-
scribes Reachability-based Trajectory Design and how to perform offline reachability anal-
ysis using zonotopes. Section 3.7 formulates the online planning using an optimization
program, and in Section 3.8 the proposed method is extended to various perspectives in-
cluding All-Wheel-Drive and Rear-Wheel-Drive vehicle models. Section 3.9 describes how
the proposed method is evaluated and compared to other state of the art methods in simu-
lation and in hardware demo on a 1/10th race car model. And Section 3.10 concludes the
chapter.

3.2 Preliminaries

This section defines notations and set representations that are used throughout the remain-
der of this manuscript. Sets and subspaces are typeset using calligraphic font. Subscripts
are primarily used as an index or to describe an particular coordinate of a vector.

Let R, R+ and N denote the spaces of real numbers, real positive numbers, and natural
numbers, respectively. Let 0n1×n2 denote the n1-by-n2 zero matrix. The Minkowski sum
between two sets A and A′ is A ⊕ A′ = {a + a′ ∣ a ∈ A, a′ ∈ A′}. The power set of a
set A is denoted by P (A). Given vectors α,β ∈ Rn, let [α]i denote the i-th element of α,
let sum(α) denote the summation of all elements of α, let ∥α∥ denote the Euclidean norm
of α, let diag(α) denote the diagonal matrix with α on the diagonal, and let int(α,β)
denote the n-dimensional box {γ ∈ Rn ∣ [α]i ≤ [γ]i ≤ [β]i, ∀i = 1, . . . , n}. Given α ∈ Rn

and ϵ > 0, let B(α, ϵ) denote the n-dimensional closed ball with center α and radius ϵ under
the Euclidean norm. Given arbitrary matrix A ∈ Rn1×n2 , let A⊺ be the transpose of A, let
[A]i∶ and [A]∶i denote the i-th row and column of A for any i respectively, and let ∣A∣ be

29

the matrix computed by taking the absolute value of every element in A.
Next, we introduce a subclass of polytopes, called zonotopes, that are used throughout

this work:

Definition 8. A zonotope Z is a subset of Rn defined as

Z = {x ∈ Rn ∣ x = c +
ℓ

∑
k=1

βkgk, βk ∈ [−1,1]} (3.1)

with center c ∈ Rn and ℓ generators g1, . . . , gℓ ∈ Rn. For convenience, we denote Z as

<c, G> where G = [g1, g2, . . . , gℓ] ∈ Rn×ℓ.

Note that an n-dimensional box is a zonotope because

int(α,β) = <1

2
(α + β), 1

2
diag(β − α)>. (3.2)

By definition the Minkowski sum of two arbitrary zonotopes Z1 = <c1, G1> and Z2 =
<c2, G2> is still a zonotope as Z1⊕Z2 = <c1 + c2, [G1,G2]>. Finally, one can define the
multiplication of a matrix A of appropriate size with a zonotope Z = <c, G> as

AZ = {x ∈ Rn ∣ x = Ac +
ℓ

∑
k=1

βkAgk, βk ∈ [−1,1]} . (3.3)

Note in particular that AZ is equal to the zonotope <Ac, AG>.

3.3 Vehicle Dynamics

This section describes the vehicle models that we used in both high-speed and low-speed
scenarios throughout this manuscript for autonomous navigation with safety concerns.

3.3.1 Vehicle Model

The approach described in this chapter can be applied to a front-wheel-drive (FWD),
rear-wheel drive (RWD), or all-wheel drive (AWD) vehicle models. However, to sim-
plify exposition, we focus on how the approach applies to FWD vehicles and describe
how to extend the approach to AWD or RWD vehicles in Section 3.8.3. To simplify ex-
position, we attach a body-fixed coordinate frame in the horizontal plane to the vehicle
as shown in Fig. 3.2. This body frame’s origin is the center of mass of the vehicle,
and its axes are aligned with the longitudinal and lateral directions of the vehicle. Let

30

zhi(t) = [x(t), y(t), h(t), u(t), v(t), r(t)]⊺ ∈ R6 be the states of the vehicle model at time
t, where x(t) and y(t) are the position of vehicle’s center of mass in the world frame, h(t)
is the heading of the vehicle in the world frame, u(t) and v(t) are the longitudinal and
lateral speeds of the vehicle in its body frame, r(t) is the yaw rate of the vehicle center of
mass, and δ(t) is the steering angle of the front tire. To simplify exposition, we assume
vehicle weight is uniformly distributed and ignore the aerodynamic effect while modeling
the flat ground motion of the vehicles by the following dynamics [48, Chapter 10.4]:

żhi(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ẋ(t)
ẏ(t)
ḣ(t)
u̇(t)
v̇(t)
ṙ(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t) cosh(t) − v(t) sinh(t)
u(t) sinh(t) + v(t) cosh(t)

r(t)
1
m
(Fxf(t) + Fxr(t)) + v(t)r(t)

1
m
(Fyf(t) + Fyr(t)) − u(t)r(t)

1
Izz
(lfFyf(t) − lrFyr(t))

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(3.4)

where lf and lr are the distances from center of mass to the front and back of the vehicle,
Izz is the vehicle’s moment of inertia, and m is the vehicle’s mass. Note: lf, lr, Izz and m

are all constants and are assumed to be known. The tire forces along the longitudinal and
lateral directions of the vehicle at time t are Fxi(t) and Fyi(t) respectively, where the ‘i’
subscript can be replaced by ‘f’ for the front wheels or ‘r’ for the rear wheels. Note the
ignored aerodynamic effect is accounted for as dynamics computational error later in this
section.

To describe the tire forces along the longitudinal and lateral directions, we first define
the wheel slip ratio as

λi(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

rwωi(t) − u(t)
u(t) during braking

rwωi(t) − u(t)
rwωi(t)

during acceleration

(3.5)

where the ‘i’ subscript can be replaced as described above by ’f’ for the front wheels or ’r’
for the rear wheels, rw is the wheel radius, ωi(t) is the tire-rotational speed at time t, braking
corresponds to whenever rwωi(t) − u(t) < 0, and acceleration corresponds to whenever

31

Figure 3.2: Vehicle model with the global frame shown in black and body frame in gray.

rwωi(t) − u(t) ≥ 0. Then the longitudinal tire forces [102, Chapter 4] are computed as

Fxf(t) =
mglr
l

µ(λf(t)), (3.6)

Fxr(t) =
mglf
l

µ(λr(t)), (3.7)

where g is the gravitational acceleration constant, l = lf + lr, and µ(λi(t)) gives the surface-
adhesion coefficient and is a function of the surface being driven on [102, Chapter 13.1].
Note that in FWD vehicles, the longitudinal rear wheel tire force has a much simpler ex-
pression:

Remark 9 ([48]). In a FWD vehicle, Fxr(t) = 0 for all t.

For the lateral direction, define slip angles of front and rear tires as

αf(t) = δ(t) −
v(t) + lfr(t)

u(t) , (3.8)

αr(t) = −
v(t) − lrr(t)

u(t) , (3.9)

32

then the lateral tire forces [102, Chapter 4] are real-valued functions of the slip angles:

Fyf(t) = cαf(αf(t)), (3.10)

Fyr(t) = cαr(αr(t)). (3.11)

Note µ, cαf and cαr are all nonlinear functions, but share similar characteristics. In
particular, they behave linearly when the slip ratio and slip angle are close to zero, but
saturate when the magnitudes of the slip ratio and slip angle reach some critical values
of λcri and αcri, respectively, then decrease slowly [102, Chapter 4, Chapter 13]. As we
describe in Section 3.8.2, during trajectory optimization we are able to guarantee that µ, cαf

and cαr operate in the linear regime. As a result, to simplify exposition until we reach
Section 3.8.2, we make the following assumption:

Assumption 10. The absolute values of the the slip ratio and angle are bounded below

their critical values (i.e., ∣λf(t)∣, ∣λr(t)∣ < λcri and ∣αf(t)∣, ∣αr(t)∣ < αcri hold for all time).

Assumption 10 ensures that the longitudinal tire forces can be described as

Fxf(t) =
mglr
l

µ̄λf(t),

Fxr(t) =
mglf
l

µ̄λr(t),
(3.12)

and the lateral tire forces can be described as

Fyf(t) = c̄αfαf(t),
Fyr(t) = c̄αrαr(t),

(3.13)

with constants µ̄, c̄αf, c̄αr ∈ R. Note c̄αf and c̄αr are referred to as cornering stiffnesses.
Note that the steering angle of the front wheel, δ, and the tire rotational speed, ωi, are

the inputs that one is able to control. In particular for an AWD vehicle, both ωf and ωr are
inputs; whereas, in a FWD vehicle only ωf is an input. When we formulate our controller
in Section 3.5 for a FWD vehicle we begin by assuming that we can directly control the
front tire forces, Fxf and Fyf. We then illustrate how to compute δ and ωf when given Fxf

and Fyf. For an AWD vehicle, we describe in Section 3.8.3, how to compute δ, ωf, and ωr.
In fact, as we describe in Section 3.5, our approach to perform control relies upon

estimating the rear tire forces and controlling the front tire forces by applying appropriate
tire speed and steering angle. Unfortunately, in the real-world our state estimation and
models for front and rear tire forces may be inaccurate and aerodynamic-drag force could
also affect vehicle dynamics [102, Section 4.2]. To account for the inaccuracy, we extend

33

the vehicle dynamic model in (3.4) by introducing a time-varying affine modeling error
∆u,∆v,∆r into the dynamics of u, v, and r:

żhi(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

u(t) cosh(t) − v(t) sinh(t)
u(t) sinh(t) + v(t) cosh(t)

r(t)
1
m
(Fxf(t) + Fxr(t)) + v(t)r(t) +∆u(t)

1
m
(Fyf(t) + Fyr(t)) − u(t)r(t) +∆v(t)

1
Izz
(lfFyf(t) − lrFyr(t)) +∆r(t)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.14)

Note, we have abused notation and redefined żhi which was originally defined in (3.4). For
the remainder of this paper, we assume that the dynamics żhi evolves according to (3.14).
To ensure that this definition is well-posed (i.e. their solution exists and is unique) and to
aid in the development of our controller as described in Section 3.5, we make the following
assumption:

Assumption 11. ∆u,∆v,∆r are all square integrable functions and are bounded (i.e.,

there exist real numbers Mu,Mv,Mr ∈ [0,+∞) such that ∥∆u(t)∥∞ ≤ Mu, ∥∆v(t)∥∞ ≤
Mv, ∥∆r(t)∥∞ ≤Mr for all t).

Note in Section 3.9.3.3, we explain how to compute ∆u,∆v,∆r using real-world data.

3.3.2 Low-Speed Vehicle Model

When the vehicle speed lowers below some critical value ucri > 0, the denominator of
the wheel slip ratio (3.5) and tire slip angles (3.8) and (3.9) approach zero which makes
applying the model described in (3.4) intractable. As a result, in this work when u(t) ≤ ucri

the dynamics of a vehicle are modeled using a steady-state cornering model [33, Chapter
6], [14, Chapter 5], [22, Chapter 10]. Note that the critical velocity ucri can be found
according to [49, (5) and (18)].

The steady-state cornering model or low-speed vehicle model is described using four
states, zlo(t) = [x(t), y(t), h(t), u(t)]⊺ ∈ R4 at time t. This model ignores transients on
lateral velocity and yaw rate. Note that the dynamics of x, y, h and u are the same as in the
high speed model (3.14); however, the steady-state corning model describes the yaw rate

34

and lateral speed as

vlo(t) =lrrlo(t) − mlf
c̄αrl

u(t)2rlo(t) (3.15)

rlo(t) = δ(t)u(t)
l +Cusu(t)2

(3.16)

with understeer coefficient
Cus =

m

l
(lr
c̄αf
− lf
c̄αr
) . (3.17)

As a result, żlo satisfies the dynamics of the first four states in (3.4) except with rlo taking
the role of r and vlo taking the role of v.

Notice when u(t) = v(t) = r(t) = 0 and the longitudinal tire forces are zero, u̇(t) could
still be nonzero due to a nonzero ∆u(t). To avoid this issue, we make a tighter assumption
on ∆u(t) without violating Assumption 11:

Assumption 12. For all t such that u(t) ∈ [0, ucri], ∣∆u(t)∣ is bounded from above by a

linear function of u(t) (i.e.,

∣∆u(t)∣ ≤ bpro
u ⋅ u(t) + boff

u , if u(t) ∈ [0, ucri], (3.18)

where bpro
u and boff

u are constants satisfying bpro
u ⋅ ucri + boff

u ≤ Mu). In addition, ∆u(t) = 0 if

u(t) = 0.

As we describe in detail in Section 3.5.3, the high-speed and low-speed models can
be combined together as a hybrid system to describe the behavior of the vehicle across all
longitudinal speeds. In short, when u transitions past the critical speed ucri from above at
time t, the low speed model’s states are initialized as:

zlo(t) = π1∶4(zhi(t)) (3.19)

where π1∶4 ∶ R6 → R4 is the projection operator that projects zhi(t) onto its first four dimen-
sions via the identity relation. If u transitions past the critical speed from below at time t,
the high speed model’s states are initialized as

zhi(t) = [zlo(t)⊺, vlo(t), rlo(t)]⊺. (3.20)

35

3.4 Trajectory Design and Safety

This section describes the space of trajectories that are optimized over at run-time within
REFINE, how this chapter defines safety during motion planning via the notion of not-at-
fault behavior, and what assumptions this chapter makes about the environment surround-
ing the ego-vehicle.

3.4.1 Trajectory Parameterization

Each trajectory plan is specified over a compact time interval. Without loss of generality,
we let this compact time interval have a fixed duration tf. Because REFINE performs
receding-horizon planning, we make the following assumption about the time available to
construct a new plan:

Assumption 13. During each planning iteration starting from time t0, the ego vehicle has

tplan seconds to find a control input. This control input is applied during the time interval

[t0 + tplan, t0 + tplan + tf] where tf ≥ 0 is a user-specified constant. In addition, the state of

the vehicle at time t0 + tplan is known at time t0.

In each planning iteration, REFINE chooses a trajectory to be followed by the ego
vehicle. These trajectories are chosen from a pre-specified continuum of trajectories, with
each uniquely determined by a trajectory parameter p ∈ P . Let P ⊂ Rnp , np ∈ N be a
n-dimensional box int(p, p) where p, p ∈ Rnp indicate the element-wise lower and upper
bounds of p, respectively. We define these desired trajectories as follows:

Definition 14. For each p ∈ P , a desired trajectory is a function for the longitudinal speed,

udes(⋅, p) ∶ [t0 + tplan, t0 + tplan + tf]→ R, a function for the heading, hdes(⋅, p) ∶ [t0 + tplan, t0 +
tplan + tf]→ R, and a function for the yaw rate, rdes(⋅, p) ∶ [t0 + tplan, t0 + tplan + tf]→ R, that

satisfy the following properties.

1. For all p ∈ P , there exists a time instant tm ∈ [t0 + tplan, t0 + tplan + tf) after which

the desired trajectory begins to brake (i.e., ∣udes(t, p)∣, ∣hdes(t, p)∣ and ∣rdes(t, p)∣ are

non-increasing for all t ∈ [tm, t0 + tplan + tf]).

2. The desired trajectory eventually comes to and remains stopped (i.e., there exists a

tstop ∈ [t0 + tplan, t0 + tplan + tf] such that udes(t, p) = hdes(t, p) = rdes(t, p) = 0 for all

t ≥ tstop).

3. udes and hdes are piecewise continuously differentiable [88, Chapter 6, §1.1] with

respect to t and p.

36

4. The time derivative of the heading function is equal to the yaw rate function (i.e.,

rdes(t, p) = ∂
∂th

des(t, p) over all regions that hdes(t, p) is continuously differentiable

with respect to t).

The first two properties ensure that a fail safe contingency braking maneuver is always
available and the latter two properties ensure that the tracking controller described in Sec-
tion 3.5 is well-defined. Note that sometimes we abuse notation and evaluate a desired
trajectory for t > t0 + tplan + tf. In this instance, the value of the desired trajectory is equal
to its value at t0 + tplan + tf.

3.4.2 Not-At-Fault

In dynamic environments, avoiding collision may not always be possible (e.g. a parked car
can be run into). As a result, we instead develop a trajectory synthesis technique which
ensures that the ego vehicle is not-at-fault [91]:

Definition 15. The ego vehicle is not-at-fault if it is stopped, or if it is never in collision

with any obstacles while it is moving.

In other words, the ego vehicle is not responsible for a collision if it has stopped and another
vehicle collides with it. One could use a variant of not-at-fault and require that when the
ego-vehicle comes to a stop it leave enough time for all surrounding vehicles to come
safely to a stop as well. The remainder of the paper can be generalized to accommodate
this variant of not-at-fault; however, in the interest of simplicity we use the aforementioned
definition.

Remark 16. Under Assumption 10, neither longitudinal nor lateral tire forces saturate

(i.e., drifting cannot occur). As a result, if the ego vehicle has zero longitudinal speed, it

also has zero lateral speed and yaw rate. Therefore in Definition 15, the ego vehicle being

stopped is equivalent to its longitudinal speed being 0.

3.4.3 Environment and Sensing

To provide guarantees about vehicle behavior in a receding horizon planning framework
and inspired by [107, Section 3], we define the ego vehicle’s footprint as:

Definition 17. GivenW ⊂ R2 as the world space, the ego vehicle is a rigid body that lies in

a rectangle Oego ∶= int([−0.5L,−0.5W]T , [0.5L,0.5W]T) ⊂W with width W > 0, length

L > 0 at time t = 0. Such Oego is called the footprint of the ego vehicle.

37

In addition, we define the dynamic environment in which the ego vehicle is operating
within as:

Definition 18. An obstacle is a set Oi(t) ⊂W that the ego vehicle cannot intersect with at

time t, where i ∈ I is the index of the obstacle and I contains finitely many elements.

The dependency on t in the definition of an obstacle allows the obstacle to move as t varies.
However if the i-th obstacle is static, then Oi(t) remains constant at all time. Assuming
that the ego vehicle has a maximum speed νego and all obstacles have a maximum speed
νobs for all time, we then make the following assumption on planning and sensing horizon.

Assumption 19. The ego vehicle senses all obstacles within a sensor radius S > (tf+tplan) ⋅
(νego + νobs) + 0.5

√
L2 +W 2 around its center of mass.

Assumption 19 ensures that any obstacle that can cause a collision between times t ∈ [t0 +
tplan, t0 + tplan + tf] can be detected by the vehicle [107, Theorem 15]. Note one could treat
sensor occlusions as a obstacles that travel at the maximum obstacle speed [122, 123].

3.5 Controller Design and Hybrid System Vehicle Model

This section describes the control inputs that we use to follow the desired trajectories and
describes the closed-loop hybrid system vehicle model. Recall that the control inputs to the
vehicle dynamics model are the steering angle of the front wheel, δ, and the tire rotational
speed, ωi. Section 3.5.1 describes how to select front tire forces to follow a desired trajec-
tory and Section 3.5.2 describes how to compute a steering angle and tire rotational speed
input from these computed front tire forces. Section 3.5.3 describes the closed-loop hybrid
system model of the vehicle under the chosen control input. Note that this section focuses
on the FWD vehicle model.

3.5.1 Robust Controller

Because applying reachability analysis to linear systems generates tighter approximations
of the system behavior when compared to nonlinear systems, we propose to develop a feed-
back controller that linearizes the dynamics. Unfortunately, because both the high-speed
and low-speed models introduced in Section 3.3 are under-actuated (i.e., the dimension of
control inputs is smaller than that of system state), our controller is only able to partially
feedback linearize the vehicle dynamics. Such controller is also expected to be robust such
that it can account for computational errors as described in Assumptions 11 and 12.

38

We start by introducing the controller on longitudinal speed whose dynamics appears
in both high-speed and low-speed models. Recall ∥∆u(t)∥∞ ≤ Mu in Assumption 11.
Inspired by the controller developed in [35], we set the longitudinal front tire force to be

Fxf(t) = −mKu(u(t) − udes(t, p)) +mu̇des(t, p)+
−Fxr(t) −mv(t)r(t) +mτu(t, p),

(3.21)

where

τu(t, p) = − (κu(t, p)Mu + ϕu(t, p))eu(t, p), (3.22)

κu(t, p) =κ1,u + κ2,u∫
t

t0
∥u(s) − udes(s, p)∥2ds, (3.23)

ϕu(t, p) =ϕ1,u + ϕ2,u∫
t

t0
∥u(s) − udes(s, p)∥2ds, (3.24)

eu(t, p) =u(t) − udes(t, p), (3.25)

with user-chosen constants κ1,u, κ2,u, ϕ1,u, ϕ2,u ∈ R+. Note in (3.21) we have suppressed
the dependence on p in Fxf(t) for notational convenience. Using (3.21), the closed-loop
dynamics of u become:

u̇(t) = τu(t, p) +∆u(t) + u̇des(t, p)+
−Ku (u(t) − udes(t, p)) .

(3.26)

The same control strategy can be applied to vehicle yaw rate whose dynamics only
appear in the high-speed vehicle model. Let the lateral front tire force be

Fyf(t) = −
IzzKr

lf
(r(t) − rdes(t, p)) + Izz

lf
ṙdes(t, p)+

−IzzKh

lf
(h(t) − h(0) − hdes(t, p)) + lr

lf
Fyr(t) +

Izz

lf
τr(t, p),

(3.27)

39

where

τr(t, p) = − (κr(t, p)Mr + ϕr(t, p))er(t, p) (3.28)

κr(t, p) =κ1,r + κ2,r ∫
t

t0

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

r(s)
h(s)

⎤⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎣

rdes(s, p)
hdes(s, p)

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX

2

ds (3.29)

ϕr(t, p) =ϕ1,r + ϕ2,r ∫
t

t0

XXXXXXXXXXXX

⎡⎢⎢⎢⎢⎣

r(s)
h(s)

⎤⎥⎥⎥⎥⎦
−
⎡⎢⎢⎢⎢⎣

rdes(s, p)
hdes(s, p)

⎤⎥⎥⎥⎥⎦

XXXXXXXXXXXX

2

ds (3.30)

er(t, p) = [Kr Kh]
⎡⎢⎢⎢⎢⎣

r(t) − rdes(t, p)
h(t) − hdes(t, p)

⎤⎥⎥⎥⎥⎦
(3.31)

with user-chosen constants κ1,r, κ2,r, ϕ1,r, ϕ2,r ∈ R+. Note in (3.27) we have again sup-
pressed the dependence on p in Fyf(t) for notational convenience. Using (3.27), the closed-
loop dynamics of r become:

ṙ(t) =τr(t, p) +∆r(t) + ṙdes(t, p)+
−Kr(r(t) − rdes(t, p))+
−Kh(h(t) − hdes(t, p)).

(3.32)

Using (3.27), the closed-loop dynamics of v become:

v̇(t) = 1

m

⎛
⎝
l

lf
Fyr(t) +

Izz

lf
(τr(t, p) + ṙdes(t, p)+

−u(t)r(t) +∆v(t) −Kr(r(t) − rdes(t, p))+

−Kh(h(t) − hdes(t, p)))
⎞
⎠
.

(3.33)

Because udes, rdes, and hdes depend on trajectory parameter p, one can rewrite the closed
loop high-speed and low-speed vehicle models as

żhi(t) = f hi(t, zhi(t), p), (3.34)

żlo(t) = f lo(t, zlo(t), p), (3.35)

where dynamics of x, y and h are stated as the first three dimensions in (3.4), closed-loop
dynamics of u is described in (3.26), and closed-loop dynamics of v and r in the high-
speed model are presented in (3.33) and (3.32). Note that the lateral tire force could be
defined to simplify the dynamics on v instead of r, but the resulting closed loop system

40

may differ. Controlling the yaw rate may be easier in real applications, because r can be
directly measured by an IMU unit.

3.5.2 Extracting Wheel Speed and Steering Inputs

Because we are unable to directly control tire forces, it is vital to compute wheel speed and
steering angle such that the proposed controller described in (3.21) and (3.27) is viable.
Under Assumption 10, wheel speed and steering inputs can be directly computed in closed
form. The wheel speed to realize longitudinal front tire force (3.21) can be derived from
(3.5) and (3.12) as

ωf(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(lFxf(t)
µ̄mglr

+ 1) u(t)
rw

during braking,

u(t)
(1 − lFxf(t)

µ̄mglr
) rw

during acceleration.

(3.36)

Similarly according to (3.8) and (3.13), the steering input

δ(t) = Fyf(t)
c̄αf

+ v(t) + lfr(t)
u(t) (3.37)

achieves the lateral front tire force in (3.27) when u(t) > ucri.
Notice lateral tire forces does not appear in the low-speed dynamics, but one is still

able to control the lateral behavior of the ego vehicle. Based on (3.15) and (3.16), yaw rate
during low-speed motion is directly controlled by steering input δ(t) and lateral velocity
depends on yaw rate. Thus to achieve desired behavior on the lateral direction, one can set
the steering input to be

δ(t) = rdes(t)(l +Cusu(t)2)
u(t) . (3.38)

3.5.3 Augmented State and Hybrid Vehicle Model

To simplify the presentation throughout the remainder of the paper, we define a hybrid sys-
tem model of the vehicle dynamics that switches between the high and low speed vehicle
models when passing through the critical longitudinal velocity. In addition, for computa-
tional reasons that are described in subsequent sections, we augment the initial condition
of the system to the state vector while describing the vehicle dynamics. In particular,
denote z0 = [(zpos

0)⊺, (zvel
0)⊺]⊺ ∈ Z0 ⊂ R6 the initial condition of the ego vehicle where

zpos
0 = [x0, y0, h0]⊺ ∈ R3 gives the value of [x(t), y(t), h(t)]⊺ and zvel

0 = [u0, v0, r0]⊺ ∈ R3

41

gives the value of [u(t), v(t), r(t)]⊺ at time t = 0. Then we augment the initial veloc-
ity condition zvel

0 ∈ R3 of the vehicle model and trajectory parameter p into the vehicle
state vector as zaug(t) = [x(t), y(t), h(t), u(t), v(t), r(t), (zvel

0)⊺, p⊺]⊺ ∈ R9 × P ⊂ R9+np .
Note the last 3 + np states are static with respect to time. As a result, the dynamics of the
augmented vehicle state during high-speed and low-speed scenarios can be written as

żaug(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

⎡⎢⎢⎢⎢⎢⎣

f hi(t, zhi(t), p)
0(3+np)×1

⎤⎥⎥⎥⎥⎥⎦
, if u(t) > ucri,

⎡⎢⎢⎢⎢⎢⎣

f lo(t, zlo(t), p)
0(5+np)×1

⎤⎥⎥⎥⎥⎥⎦
, if u(t) ≤ ucri,

(3.39)

which we refer to as the hybrid vehicle dynamics model. Notice when u(t) ≤ ucri, assigning
zero dynamics to v and r in (3.39) does not affect the evolution of the vehicle’s dynamics
because the lateral speed and yaw rate are directly computed via longitudinal speed as in
(3.15) and (3.16).

Because the vehicle’s dynamics changes depending on u, it is natural to model the
ego vehicle as a hybrid system HS [63, Section 1.2]. The hybrid system has zaug as its
state and consists of a high-speed mode and a low-speed mode with dynamics in (3.39).
Instantaneous transition between the high and low speed models within HS are described
using the notion of a guard and reset map. The guard triggers a transition and is defined as
{zaug(t) ∈ R9 ×P ∣ u(t) = ucri}. Once a transition happens, the reset map maintains the last
3 + np dimensions of zaug(t), but resets the first 6 dimensions of zaug(t) via (3.19) if u(t)
approaches ucri from above and via (3.20) if u(t) approaches ucri from below.

We next prove that for desired trajectory defined as in Definition 14 under the con-
trollers defined in Section 3.5, the vehicle model eventually comes to a stop. To begin
note that experimentally, we observed that the vehicle quickly comes to a stop during brak-
ing once its longitudinal speed becomes u(t) ≤ 0.15[m/s]. Thus we make the following
assumption:

Assumption 20. Suppose u(t) = 0.15 for some t ≥ tstop. Then under the control inputs

(3.21) and (3.27) and while tracking any desired trajectory as in Definition 14, the ego

vehicle takes at most tfstop seconds after tstop to come to a complete stop.

We use this assumption to prove that the vehicle can be brought to a stop within a
specified amount of time in the following lemma whose proof can be found in Appendix
B:

42

Lemma 21. Let Z0 ⊂ R6 be a compact subset of initial conditions for the vehicle dynamic

model and P be a compact set of trajectory parameters. Let ∆u(t) be bounded for all t

as in Assumptions 11 and 12 with constants Mu, bpro
u and boff

u . Let zaug be a solution to the

hybrid vehicle dynamics model (3.39) beginning from z0 ∈ Z0 under trajectory parameter

p ∈ P while applying the control inputs (3.21) and (3.27) to track some desired trajec-

tory satisfying Definition 14. Assume the desired longitudinal speed satisfies the following

properties: udes(0, p) = u(0), udes(t, p) is only discontinuous at time tstop, and udes(t, p)
converges to ucri as t converges to tstop from below. If Ku, κ1,u and ϕ1,u are chosen such

that Mu

κ1,uMu+ϕ1,u
∈ (0.15, ucri] and (boff

u)2
4(κ1,uMu+ϕ1,u−bpro

u) < 0.15
2Ku hold, then for all p ∈ P and

z0 ∈ Z0 satisfying u(0) > 0, there exists tbrake such that u(t) = 0 for all t ≥ tbrake.

Note, the proof of Lemma 21 includes an explicit formula for tbrake in (B.19). This
lemma is crucial because it specifies the length of time over which we should construct
FRS, so that we can verify that not-at-fault behavior can be satisfied based on Definition 15
and Remark 16.

3.6 Computing and Using the FRS

This section describes how REFINE operates at a high-level. It then describes the offline
reachability analysis of the ego vehicle as a state-augmented hybrid system using zonotopes
and illustrates how the ego vehicle’s footprint can be accounted for during reachability
analysis.

REFINE conservatively approximates a control-parameterized FRS of the full-order
vehicle dynamics. The FRS includes all behaviors of the ego vehicle over a finite time
horizon and is mathematically defined in Section 3.6.1. To ensure the FRS is a tight rep-
resentation, REFINE relies on the controller design described in Section 3.5. Because this
controller partially linearizes the dynamics, REFINE relies on a zonotope-based reachable
set representation which behave well for nearly linear systems.

During online planning, REFINE performs control synthesis by solving optimization
problems in a receding horizon fashion, where the optimization problem computes a tra-
jectory parameter to navigate the ego vehicle to a waypoint while behaving in a not-at-fault
manner. As in Assumption 13, each planning iteration in REFINE is allotted tplan > 0

to generate a plan. As depicted in Figure 3.3, if a particular planning iteration begins
at time t0, its goal is to find a control policy by solving an online optimization within
tplan seconds so that the control policy can be applied during [t0 + tplan, t0 + tplan + tf].
Because any trajectory in Definition 14 brings the ego vehicle to a stop, we partition

43

time

Contingency Braking Maneuver
Driving Maneuver

Figure 3.3: An illustration of 3 successive planning/control iterations. tplan seconds are allotted to compute
a planned trajectory. Each plan is of duration tf and consists of a driving maneuver of duration tm and a
contingency braking maneuver. Diamonds denote the time instances where planning computations begin and
t2 − t1 = t1 − t0 = tm. Filled-in circles denote the instances where feasible driving maneuvers are initiated. If
the planning phase between [t1, t1 + tplan] is infeasible, the contingency braking maneuver whose feasibility
is verified during the planning phase between [t0, t0 + tplan] is applied.

[t0 + tplan, t0 + tplan + tf] into [t0 + tplan, t0 + tplan + tm) during which a driving maneuver
is tracked and [t0 + tplan + tm, t0 + tplan + tf] during which a contingency braking maneuver
is activated. Note tm is not necessarily equal to tstop. As a result of Lemma 21, by setting tf

equal to tbrake one can guarantee that the ego vehicle comes to a complete stop by tf.
If the planning iteration at time t0 is feasible (i.e., not-at-fault), then the entire feasible

planned driving maneuver is applied during [t0 + tplan, t0 + tplan + tm). Meanwhile another
planning iteration will start at time t0+ tplan+ tm− tplan = t0+ tm, and the same planning pro-
cedure repeats. However, if the planning iteration starting at time t0 is infeasible, then the
braking maneuver, whose safe behavior was verified in the previous planning iteration, can
be applied starting at t0 + tplan to bring the ego vehicle to a stop in a not-at-fault manner. To
ensure real-time performance, tplan ≤ tm. To simplify notation, we reset time to 0 whenever
a feasible control policy is about to be applied, i.e., t0 + tplan ≡ 0.

3.6.1 Offline FRS Computation

The Forward Reachable Set (FRS) of the ego vehicle is defined as

Fxy([0, tf]) =
⎧⎪⎪⎨⎪⎪⎩
(x, y) ∈W∣∃t ∈ [0, tf], p ∈ P, z0 =

⎡⎢⎢⎢⎢⎣

zpos
0

zvel
0

⎤⎥⎥⎥⎥⎦
∈ Z0 s.t.

⎡⎢⎢⎢⎢⎣

x

y

⎤⎥⎥⎥⎥⎦
= πxy(zaug(t)), zaug is a solution of HS with zaug(0) =

⎡⎢⎢⎢⎢⎢⎢⎣

z0

zvel
0

p

⎤⎥⎥⎥⎥⎥⎥⎦

⎫⎪⎪⎬⎪⎪⎭
,

(3.40)

where πxy ∶ R9+np → R2 is the projection operator that outputs the first two coordinates from
its argument. Fxy([0, tf]) collects all possible behavior of the ego vehicle while following
the dynamics of HS in the xy-plane over time interval [0, tf] for all possible p ∈ P and
initial condition z0 ∈ Z0. Computing Fxy([0, tf]) precisely is numerically challenging
because the ego vehicle is modeled as a hybrid system with nonlinear dynamics, thus we

44

aim to compute an outer-approximation of Fxy([0, tf]) instead.
To outer-approximate Fxy([0, tf]), we start by making the following assumption:

Assumption 22. The initial condition space Z0 = {03×1}×Zvel
0 where Zvel

0 = int(zvel
0 , zvel

0) ⊂
R3 is a 3-dimensional box representing all possible initial velocity conditions zvel

0 of the

ego vehicle.

Because vehicles operate within a bounded range of speeds, this assumption is trivial to
satisfy. Notice in particular that Zvel

0 is a zonotope <cvel
0 , Gvel

0 > where cvel
0 = 1

2(zvel
0 + zvel

0)
and Gvel

0 = 1
2diag(zvel

0 − zvel
0). We assume a zero initial position condition zpos

0 in the first
three dimensions of Z0 for simplicity, and nonzero zpos

0 can be dealt with via coordinate
transformation online as described in Section 3.7.1.

Recall that because P is a compact n-dimensional box, it can also be represented as a
zonotope as <cp, Gp> where cp = 1

2(p+ p) and Gp = 1
2diag(p− p). Then the set of initial

conditions for zaug(0) can be represented as a zonotopeZaug
0 = <czaug , Gzaug> ⊂ Z0×Zvel

0 ×P
where

czaug =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×1
cvel
0

cvel
0

cp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, Gzaug =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

03×3 03×np

Gvel
0 03×np

Gvel
0 03×np

0np×3 Gp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (3.41)

Observe that by construction each row of Gzaug has at most 1 nonzero element. Without loss
of generality, we assume Gvel

0 and Gp has no zero rows. If there was a zero row it would
mean that the corresponding dimension can only take one value and does not need to be
augmented or traced in zaug for reachability analysis.

Next we pick a time step ∆t ∈ R+ such that tf/∆t ∈ N, and partition the time interval
[0, tf] into tf/∆t time segments as Tj = [(j − 1)∆t, j∆t] for each j ∈ J = {1,2,⋯, tf/∆t}.
Finally we use an open-source toolbox CORA [7], which takes HS and the initial condition
space Zaug

0 , to over-approximate the FRS in (3.40) by a collection of zonotopes {Rj}j∈J
over all time intervals where Rj ⊂ R9+np . As a direct application of Theorem 3.3, Proposi-
tion 3.7 and the derivation in Section 3.5.3 in [6], one can conclude the following theorem:

Theorem 23. Let Rj ⊂ R9+np be the zonotopes computed by CORA under the hybrid ve-

hicle dynamics model beginning from Zaug
0 . Let zaug be a solution to hybrid system HS

starting from an initial condition in Zaug
0 . Then zaug(t) ∈Rj for all j ∈ J and t ∈ Tj and

Fxy([0, tf]) ⊂ ⋃
j∈J

πxy(Rj). (3.42)

Notice in (3.42) we have abused notation by extending the domain of πxy to any zonotope

45

Z = <c, G> in R9+np as

πxy(Z) = ⟨
⎡⎢⎢⎢⎢⎣

[c]1
[c]2

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

[G]1∶
[G]2∶

⎤⎥⎥⎥⎥⎦
⟩ . (3.43)

3.6.2 Slicing

The FRS computed in the previous subsection contain the behavior of the hybrid vehicle
dynamics model for all initial conditions belonging to Z0 and P . To use this set during
online optimization, REFINE plugs in the predicted initial velocity of the vehicle dynamics
at time t0+tplan and then optimizes over the space of trajectory parameters. Recall the hybrid
vehicle model is assumed to have zero initial position condition during the computation of
{Rj}j∈J by Assumption 22. This subsection describes how to plug in the initial velocity
into the pre-computed FRS.

We start by describing the following useful property of the zonotopes Rj that make up
the FRS, which follows from Lemma 22 in [43]:

Proposition 24. Let {Rj = <cRj
, GRj

>}j∈J be the set of zonotopes computed by CORA

under the hybrid vehicle dynamics model beginning from Zaug
0 . Then for any j ∈ J , GRj

=
[gRj ,1, gRj ,2, . . . , gRj ,ℓj] has only one generator, gRj ,bk , that has a nonzero element in the

k-th dimension for each k ∈ {7, . . . , (9 + np)}. In particular, bk ≠ bk′ for k ≠ k′.

We refer to the generators with a nonzero element in the k-th dimension for each k ∈
{7, . . . , (9 + np)} as a sliceable generator of Rj in the k-th dimension. In other words,
for each Rj = <cRj

, GRj
>, there are exactly 3 + np nonzero elements in the last 3 + np

rows of GRj
, and none of these nonzero elements appear in the same row or column. By

constructionZaug
0 has exactly 3+np generators, which are each sliceable. Using Proposition

24, one can conclude that Rj has no less than 3 + np generators (i.e., ℓ ≥ 3 + np).
Proposition 24 is useful because it allows us to take a known zvel

0 ∈ Zvel
0 and p ∈ P and

plug them into the computed {Rj}j∈J to generate a slice of the conservative approximation
of the FRS that includes the evolution of the hybrid vehicle dynamics model beginning
from zvel

0 under trajectory parameter p. In particular, one can plug the initial velocity into
the sliceable generators as described in the following definition:

Definition 25. Let {Rj = <cRj
, GRj

>}j∈J be the set of zonotopes computed by CORA

under the hybrid vehicle dynamics model beginning from Zaug
0 where

GRj
= [gRj ,1, gRj ,2, . . . , gRj ,ℓj]. (3.44)

Without loss of generality, assume that the sliceable generators of each Rj are the first

46

3 + np columns of GRj
. In addition, without loss of generality assume that the sliceable

generators are ordered so that the dimension in which the non-zero element appears is

increasing. The slicing operator slice ∶ P (R9+np) ×Zvel
0 ×P → P (R9+np) is defined as

slice(Rj, z
vel
0 , p) = <cslc, [gRj ,(4+np), . . . , gRj ,ℓj]> (3.45)

where

cslc = cRj
+

9

∑
k=7

[zvel
0](k−6) − [cRj

]k
[gRj ,(k−6)]k

gRj ,(k−6) +
9+np

∑
k=10

[p](k−9) − [cRj
]k

[gRj ,(k−6)]k
gRj ,(k−6). (3.46)

Note, that in the interest of avoiding introducing novel notation, we have abused notation
and assumed that the domain of slice is P (R9+np) rather than the space of zonotopes
in P (R9+np). However, throughout this chapter we only plug in zonotopes belonging to
P (R9+np) into the first argument of slice. Using this definition, one can show the fol-
lowing useful property:

Theorem 26. Let {Rj}j∈J be the set of zonotopes computed by CORA under the hybrid

vehicle dynamics model beginning from Zaug
0 and satisfy the statement of Definition 25.

Then for any j ∈ J , z0 = [0,0,0, (zvel
0)⊺]⊺ ∈ Z0, and p ∈ P , slice(Rj, z

vel
0 , p) ⊂ Rj . In

addition, suppose zaug is a solution to HS with initial condition z0 and control parameter

p. Then for each j ∈ J and t ∈ Tj

zaug(t) ∈ slice(Rj, z
vel
0 , p). (3.47)

Proof. Because zvel
0 and p have zero dynamics in HS, the last 3 + np dimensions in Rj

are identical to Zvel
0 × P for all j ∈ J . A direct result of Proposition 24 and Defini-

tion 25 is Zvel
0 × P = <c′j, G′j> where c′j = [[cRj

]7, [cRj
]8, . . . , [cRj

](9+np)]
⊺

and G′j =
diag ([[gRj,1

]7, [gRj,2
]8, . . . , [gRj,(3+np)

](9+np)]) for any j ∈ J .

Because zvel
0 ∈ Zvel

0 and p ∈ P , then
[zvel

0](k−6)−[cRj
]k

[g
Rj ,(k−6)

]k ∈ [−1,1] for all k ∈ {7,8,9}, and
[p]
(k−9)−[cRj

]k
[g
Rj ,(k−6)

]k ∈ [−1,1] for all k ∈ {10,11, . . . , (9 + np)} by Definition 8. slice(R,z
vel
0 , p)

is generated by specifying the coefficients of the first 3 + np generators in Rj via (3.46),
thus slice(Rj, z

vel
0 , p) ⊂Rj .

If a solution of HS has initial velocity zvel
0 and control parameter p, then the last 3 + np

dimensions in zaug are fixed at [(zvel
0)⊺, p⊺]⊺ for all t ∈ Tj because of (3.39). Rj is generated

from CORA, so zaug(t) ∈Rj for all t ∈ Tj by Theorem 23, which proves the result.

47

3.6.3 Accounting for the Vehicle Footprint in the FRS

The conservative representation of the FRS generated by CORA only accounts for the ego
vehicle’s center of mass because HS treats the ego vehicle as a point mass. To ensure
not-at-fault behavior while planning using REFINE, one must account for the footprint of
the ego vehicle, Oego, as in Definition 17.

To do this, define a projection operator πh ∶ {Rj}j∈J → P (R) as

πh(Rj)↦ <[cRj
]3, [GRj

]3∶> (3.48)

where Rj = <cRj
, GRj

> is a zonotope computed by CORA as described in Section 3.6.1.
Then by definition πh(Rj) is a zonotope and it conservatively approximates of the ego
vehicle’s heading during Tj . Moreover, because πh(Rj) is a 1-dimensional zonotope, it
can be rewritten as a 1-dimensional box int(hmid − hrad, hmid + hrad) where hmid = [cRj

]3
and hrad = sum(∣[GRj

]3∶∣). We can then use πh to define a map to account for vehicle
footprint within the FRS:

Definition 27. Let Rj be the zonotope computed by CORA under the hybrid vehicle dy-

namics model beginning from Zaug
0 for arbitrary j ∈ J , and denote πh(Rj) as int(hmid −

hrad, hmid + hrad). Let S ⊂ W be a 2-dimensional box centered at the origin with length√
L2 +W 2 and width L∣ sin(hrad)∣ +W ∣ cos(hrad)∣. Define the rotation map rot ∶ P (R)→

P (W) as

rot(πh(Rj)) =
⎡⎢⎢⎢⎢⎣

cos(hmid) − sin(hmid)
sin(hmid) cos(hmid)

⎤⎥⎥⎥⎥⎦
S. (3.49)

Note that in the interest of simplicity, we have abused notation and assumed that the argu-
ment to rot is any subset of R. In fact, it must always be a 1-dimensional box. In addition
note that rot(πh(Rj)) is a zonotope because the 2-dimenional box S is equivalent to a
2-dimensional zonotope and it is multiplied by a matrix via (3.3).

By applyin geometry, one can verify that by definition S bounds the area that Oego =
int([−0.5L,−0.5W]⊺, [0.5L,0.5W]⊺) travels through while rotating within [−hrad, hrad].
As a result, rot(πh(Rj)) over-approximates the area over which Oego sweeps according
to πh(Rj) as shown in Fig. 3.4. Because S can be represented as a zonotope with 2
generators, one can denote rot(πh(Rj)) as <crot, Grot> ⊂ R2 where Grot ∈ R2×2.
Notice rot(πh(Rj)) in (3.49) is a set inW rather than the higher dimensional space where
Rj exists. We extend rot(πh(Rj)) to R9+np as

ROT(πh(Rj)) ∶= ⟨
⎡⎢⎢⎢⎢⎣

crot

0(7+np)×1

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

Grot

0(7+np)×2

⎤⎥⎥⎥⎥⎦
⟩ . (3.50)

48

Figure 3.4: Rotation of the ego vehicle and its footprint within range πh(Rj). The ego vehicle with heading
equals to the mean value of πh(Rj) is bounded by the box with solid black boundaries. The range of rotated
heading is indicated by the grey arc. The area the ego vehicle’s footprint sweeps is colored in grey, and is
bounded by box rot(πh(Rj)) with dashed black boundaries.

Using this definition, one can extend the FRS to account for the vehicle footprint as in the
following lemma:

Lemma 28. Let {Rj}j∈J be the set of zonotopes computed by CORA under the hybrid

vehicle dynamics model beginning from Zaug
0 . Let zaug be a solution to HS with initial

velocity zvel
0 and control parameter p and let ξ ∶ P (R9+np) × Zvel

0 × P → P (W) be defined

as

ξ(Rj, z
vel
0 , p) = πxy(slice(Rj ⊕ ROT(πh(Rj)), zvel

0 , p)). (3.51)

Then ξ(Rj, z
vel
0 , p) is a zonotope and for all j ∈ J and t ∈ Tj , the vehicle footprint oriented

and centered according to zaug(t) is contained within ξ(Rj, z
vel
0 , p).

Again note that in the interest of simplicity we have abused notation and assumed that the
first argument to ξ is any subset of R9+np . This argument is always a zonotope in R9+np .

Before proving Lemma 28, we prove the following lemma first:

Lemma 29. LetRj be the zonotope computed by CORA under the hybrid vehicle dynamics

model beginning from Zaug
0 for arbitrary j ∈ J . Then for any zvel

0 ∈ Zvel
0 and p ∈ P

slice(Rj ⊕ ROT(πh(Rj)), zvel
0 , p) = ROT(πh(Rj))⊕ slice(Rj, z

vel
0 , p). (3.52)

Proof. Because ROT(πh(Rj)) is independent of zvel
0 and p by definition, Rj shares the

same sliceable generators as Rj ⊕ ROT(πh(Rj)). The slice operator only affects sliceable
generators, thus (3.52) holds.

49

Now we prove Lemma 28:

Proof. By definition slice(Rj, z
vel
0 , p) and ROT(πh(Rj)) are both zonotopes, thus per

(3.52) slice(Rj ⊕ ROT(πh(Rj)), zvel
0 , p) is a zonotope . For simplicity let <c′′, G′′>

denote slice(Rj ⊕ ROT(πh(Rj)), zvel
0 , p), then ξ(Rj, z

vel
0 , p) is a zonotope because

πxy(<c′′, G′′>) = ⟨
⎡⎢⎢⎢⎢⎣

[c′′]1
[c′′]2

⎤⎥⎥⎥⎥⎦
,

⎡⎢⎢⎢⎢⎣

[G′′]1∶
[G′′]2∶

⎤⎥⎥⎥⎥⎦
⟩ . (3.53)

Note πxy(ROT(πh(Rj))) = rot(πh(Rj)), and by using the definition of πxy one can
check that πxy(A1⊕A2) = πxy(A1)⊕πxy(A2) for any zonotopes A1,A2 ⊂ R9+np . Then by
Lemma 29,

ξ(Rj, z
vel
0 , p) = πxy(slice(Rj, z

vel
0 , p))⊕ rot(πh(Rj)). (3.54)

By Theorem 26 for any t ∈ Tj and j ∈ J , zaug(t) ∈ slice(Rj, z
vel
0 , p) ⊂ Rj , then

h(t) ∈ πh(Rj). Because rot(πh(Rj)) by construction outer approximates the area over
which Oego sweeps according to all possible heading of the ego vehicle during Tj , then
ξ(Rj, z

vel
0 , p) contains the vehicle footprint oriented according to πh(Rj) and centered at

πxy(zaug(t)) during Tj .

Remark 30. Other than ξ(Rj, z
vel
0 , p) one can have a tighter embedding of the vehicle

footprint in the FRS as

ξ′(Rj, z
vel
0 , p) ∶= πxy(slice(Rj, z

vel
0 , p))⊕ rot(πh(slice(Rj, z

vel
0 , p))). (3.55)

In other words, instead of rotating the vehicle footprint according to all possible headings

in πh(Rj) as ξ(Rj, z
vel
0 , p) does, ξ′(Rj, z

vel
0 , p) only rotates the vehicle footprint accord-

ing to vehicle’s heading with respect to particular zvel
0 and p. However the rotational

piece in ξ′(Rj, z
vel
0 , p) requires values of zvel

0 and p that are only available online, while

ξ(Rj, z
vel
0 , p) as in (3.51) allows us to compute ROT(πh(Rj)) completely offline. Thus for

computational efficiency in real-time, we use ξ(Rj, z
vel
0 , p) to account for the ego vehicle’s

footprint. Furthermore, ξ results in nearly linear constraints on obstacle avoidance as

shown in Section 3.7.3.

50

3.7 Online Planning

This section begins by taking nonzero initial position condition into account and formu-
lating the optimization for online planning in REFINE to search for a safety guaranteed
control policy in real time. It then explains how to represent each of the constraints of the
online optimization problem in a differentiable fashion, and concludes by describing the
performance of the online planning loop.

Before continuing we make an assumption regarding predictions of surrounding ob-
stacles. Because prediction is not the primary emphasis of this work, we assume that the
future position of any sensed obstacle within the sensor horizon during [t0, t0 + tplan + tf] is
conservatively known at time t0:

Assumption 31. There exists a map ϑ ∶ J ×I → P (W) such that ϑ(j, i) is a zonotope and

∪t∈Tj
Oi(t) ∩ B ((x(t0), y(t0)), S) ⊆ ϑ(j, i). (3.56)

3.7.1 Nonzero Initial Position

Recall that the FRS computed in Section 3.6 is computed offline while assuming that the
initial position of the ego vehicle is zero (i.e., Assumption 22). The zonotope collection
{Rj}j∈J can be understood as a local representation of the FRS in the local frame. This
local frame is oriented at the ego vehicle’s location [x0, y0]⊺ ∈ R2 with its x-axis aligned
according to the ego vehicle’s heading h0 ∈ R, where zpos

0 = [x0, y0, h0]⊺ gives the ego ve-
hicle’s position [x(t), y(t), h(t)]⊺ at time t = 0 in the world frame. Similarly, ξ(Rj, z

vel
0 , p)

is a local representation of the area that the ego vehicle may occupy during Tj in the same
local frame.

Because obstacles are defined in the world frame, to generate not-at-fault trajectories,
one has to either transfer ξ(Rj, z

vel
0 , p) from the local frame to the world frame, or transfer

the obstacle position ϑ(j, i) from the world frame to the local frame using a 2D rigid body
transformation. This work utilizes the second option and transforms ϑ(j, i) into the local
frame as

ϑloc(j, i, zpos
0) =

⎡⎢⎢⎢⎢⎣

cos(h0) sin(h0)
− sin(h0) cos(h0)

⎤⎥⎥⎥⎥⎦

⎛
⎝
ϑ(j, i) −

⎡⎢⎢⎢⎢⎣

x0

y0

⎤⎥⎥⎥⎥⎦

⎞
⎠
. (3.57)

3.7.2 Online Optimization

Given the predicted initial condition of the vehicle at t = 0 as z0 = [(zpos
0)⊺, (zvel

0)⊺]⊺ ∈
R3×Zvel

0 , REFINE computes a not-at-fault trajectory by solving the following optimization

51

problem at each planning iteration:

min
p∈P

cost(z0, p) (Opt)

s.t. ξ(Rj, z
vel
0 , p) ∩ ϑloc(j, i, zpos

0) = ∅, ∀j ∈ J ,∀i ∈ I

where cost ∶ R3 × Zvel
0 × P → R is a user-specified cost function and ξ is defined as

in Lemma 28. Note that the constraint in (Opt) is satisfied if for a particular trajectory
parameter p, there is no intersection between any obstacle and the reachable set of the ego
vehicle with its footprint considered during any time interval while following p.

3.7.3 Representing the Constraint and its Gradient in (Opt)

The following theorem, whose proof can be found in Appendix C, describes how to repre-
sent the set intersection constraint in (Opt) and how to compute its derivative with respect
to p ∈ P:

Theorem 32. There exists matrices A and B and a vector b such that ξ(Rj, z
vel
0 , p) ∩

ϑloc(j, i, zpos
0) = ∅ if and only if max(BA ⋅ p − b) > 0. In addition, the subgradient of

max(BA ⋅ p − b) with respect to p is maxk∈K̂[BA]k∶, where K̂ = {k ∣ [BA ⋅ p − b]k =
max(BA ⋅ p − b)}.

Formulas for the matrices A and B and vector b in the previous theorem can be found in
(C.4), (C.7), and (C.8), respectively.

3.7.4 Online Operation

Algorithm 1 summarizes the online operations of REFINE. In each planning iteration,
the ego vehicle executes the feasible control parameter that is computed in the previous
planning iteration (Line 4). Meanwhile, SenseObstacles senses and predicts obstacles
as in Assumption 31 (Line 5) in local frame decided by zpos

0 . (Opt) is then solved to
compute a control parameter p∗ using z0 and {ϑloc(j, i, zpos

0)}(j,i)∈J×I (Line 6). If (Opt)
fails to find a feasible solution within tplan, the contingency braking maneuver whose safety
is verified in the last planning iteration is executed, and REFINE is terminated (Line 7). In
the case when (Opt) is able to find a feasible p∗, StatePrediction predicts the state
value at t = tm based on z0 and p∗ as in Assumption 13 (Lines 8 and 9). If the predicted
velocity value does not belong to Zvel

0 , then its corresponding FRS is not available and the
planning has to stop while executing a braking maneuver (Line 10). Otherwise we reset
time to 0 (Line 11) and start the next planning iteration. Note Lines 4 and 7 are assumed

52

to execute instantaneously, but in practice the time spent for these steps can be subtracted
from tplan to ensure real-time performance. By iteratively applying Definition 15, Lemmas
21 and 28, Assumption 31 and (3.57), the following theorem holds:

Theorem 33. Suppose the ego vehicle can sense and predict surrounding obstacles as in

Assumption 31, and starts with a not-at-fault control parameter p0 ∈ P . Then by performing

planning and control as in Algorithm 1, the ego vehicle is not-at-fault for all time.

Algorithm 1 REFINE Online Planning

Require: p0 ∈ P and z0 = [(zpos
0)⊺, (zvel

0)⊺]⊺ ∈ R3 ×Zvel
0

Initialize: p∗ = p0, t = 0
Loop: // Line 3 executes at the same time as Line 4-8

Execute p∗ during [0, tm)
{ϑloc(j, i, zpos

0)}(j,i)∈J×I ← SenseObstacles()
Try p∗ ← OnlineOpt(z0,{ϑloc(j, i, zpos

0)}(j,i)∈J×I) // within tplan seconds

Catch execute p∗ during [tm, tf], then break
(zpos

0 , zvel
0)← StatePrediction(z0, p∗, tm)

z0 ← [(zpos
0)⊺, (zvel

0)⊺]⊺
If (zvel

0 ∉ Zvel
0), execute p∗ during [tm, tf] and break

Reset t to 0
End

3.8 Extensions

This section describes how to extend various components of REFINE. This section begins
by describing how to apply CORA to compute tight, conservative approximations of the
FRS. Next, it illustrates how to verify the satisfaction of Assumption 10. The section
concludes by describing how to apply REFINE to AWD and RWD vehicles.

3.8.1 Subdivision of Initial Set and Families of Desired Trajectories

In practice, CORA may generate overly conservative representations for the FRS if the ini-
tial condition set is large. To address this challenge, one can instead partition Z0 and P
and compute a FRS beginning from each element in this partition. Note one could then
still apply REFINE as in Algorithm 1. However in Line 5 must solve multiple optimiza-
tions of the form (Opt) in parallel. Each of these optimizations optimizes over a unique

53

partition element that contains initial condition z0, then p∗ is set to be the feasible control
parameter that achieves the minimum cost function value among these optimizations. Sim-
ilarly note if one had multiple classes of desired trajectories (e.g. lane change, longitudinal
speed changes, etc.) that were each parameterized in distinct ways, then one could extend
REFINE just as in the instance of having a partition of the initial condition set. In this
way one could apply REFINE to optimize over multiple families of desired trajectories to
generate not-at-fault behavior. Note, that the planning horizon tf is constant within each
element of the partition, but can vary between different elements in the partition.

3.8.2 Satisfaction of Assumption 10

Throughout our analysis thus far, we assume that the slip ratios and slip angles stay within
the linear regime as described in Assumption 10. This subsection describes how to en-
sure that Assumption 10 is satisfied by performing an offline verification on the computed
reachable sets.

Recall that in an FWD vehicle model, Fxr(t) = 0 for all t as in Remark 9. By plugging
(3.12) in (3.21), one can derive:

λf(t) =
l

glrµ̄
(−Kuu(t) +Kuu

des(t, p) + u̇des(t, p) − v(t)r(t) + τu(t, p)). (3.58)

Similarly by plugging (3.13) in (3.27) one can derive:

αf(t) = −
IzzKr

lfc̄αf
(r(t) − rdes(t, p)) − IzzKh

lfc̄αf
(h(t) − hdes(t, p))+

+ Izz

lfc̄αf
ṙdes(t, p) + lr

lfc̄αf
Fyr(t) +

Izz

lfc̄αf
τr(t, p).

(3.59)

If the slip ratio and slip angle computed in (3.58) and (3.59) satisfy Assumption 10, they
achieve the expected tire forces as introduced in Section 3.5.1.

By Definition 8 any Rj = <cRj
, GRj

> that is computed by CORA under the hybrid
vehicle dynamics model from a partition element in Section 3.8.1, can be bounded by a
multi-dimensional box int(cRj

− ∣GRj
∣ ⋅ 1, cRj

+ ∣GRj
∣ ⋅ 1) where 1 is a column vector of

ones. This multi-dimensional box gives interval ranges of all elements in zaug during Tj ,
which allows us to conservatively estimate {∣αr(t)∣}t∈Tj

, {Fyr(t)}t∈Tj
and {∣λf(t)∣}t∈Tj

via
(3.9), (3.13) and (3.58) respectively using Interval Arithmetic [42]. The approximation of
{Fyr(t)}t∈Tj

makes it possible to over-approximate {∣αf(t)∣}t∈Tj
via (3.59).

Note in (3.58) and (3.59) integral terms are embedded in τu(t, p) and τr(t, p) as de-
scribed in (3.22) and (3.28). Because it is nontrivial to perform Interval Arithmetic over in-

54

tegrals, we extend zaug to zaug+ by appending three more auxiliary states εu(t) ∶= ∫
t

t0
∥u(s)−

udes(s, p)∥2ds, εr(t) ∶= ∫
t

t0
∥r(s)−rdes(s, p)∥2ds and εh(t) ∶= ∫

t

t0
∥h(s)−hdes(s, p)∥2ds. No-

tice
⎡⎢⎢⎢⎢⎢⎢⎣

ε̇u(t)
ε̇r(t)
ε̇h(t)

⎤⎥⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎢⎣

∥u(t) − udes(t, p)∥2
∥r(t) − rdes(t, p)∥2
∥h(t) − hdes(t, p)∥2

⎤⎥⎥⎥⎥⎥⎥⎦
, (3.60)

then we can compute a higher-dimensional FRS of zaug+ during [0, tf] through the same pro-
cess as described in Section 3.6. This higher-dimensional FRS makes over-approximations
of {εu(t)}t∈Tj , {εr(t)}t∈Tj and {εh(t)}t∈Tj available for computation in (3.58) and (3.59).

If the supremum of {∣λf(t)∣}t∈Tj
exceeds λcri or any supremum of {∣αf(t)∣}t∈Tj

and
{∣αr(t)∣}t∈Tj

exceeds αcri, then the corresponding partition section of Z0 × P may result
in a system trajectory that violates Assumption 10. Therefore to ensure not-at-fault, we
only run optimization over partition elements whose FRS outer-approximations satisfy As-
sumption 10. Finally we emphasize that such verification of Assumption 10 over each
partition element that is described in Section 3.8.1 can be done offline.

3.8.3 Generalization to All-Wheel-Drive and Rear-Wheel-Drive

This subsection describes how REFINE can be extended to AWD and RWD vehicles. AWD
vehicles share the same dynamics as (3.14) in Section 3.3 with one exception. In an AWD
vehicle, only the lateral rear tire force is estimated and all the other three tire forces are
controlled by using wheel speed and steering angle. In particular, computations related to
the lateral tire forces as (3.27) and (3.59) are identical to the FWD case . However, both
the front and rear tires contribute nonzero longitudinal forces, and they can be specified by
solving the following system of linear equations:

lfFxf(t) = lrFxr(t)
Fxf(t) + Fxr(t) = −mKuu(t) +mKuu

des(t, p)+ (3.61)

+mu̇des(t, p) −mv(t)r(t) +mτu(t, p)

Longitudinal tire forces Fxf(t) and Fxr(t) computed from (3.61) can then be used to com-
pute wheel speed ωf(t) = ωr(t) as in (3.36). In this formulation, (3.58) also needs to be
modified to

λf(t) = λr(t) =
1

gµ̄
(−Kuu(t) +Kuu

des(t, p) + u̇des(t, p) − v(t)r(t) + τu(t, p)) (3.62)

55

to verify Assumption 10 along the longitudinal direction. Compared to FWD, in RWD the
longitudinal front tire force is 0 and the longitudinal rear tire force is controlled. Thus one
can generalize to RWD by switching all related computations on Fxf(t) and Fxr(t) from the
FWD case.

3.9 Experiments

This section describes the implementation and evaluation of REFINE in simulation using
a FWD, full-size vehicle model and on hardware using an AWD, 1

10 th size race car model.
Readers can find a link to the software implementation2 and videos3 online.

3.9.1 Desired Trajectories

As detailed in Section 3.5.1, the proposed controller relies on desired trajectories of vehicle
longitudinal speed and yaw rate satisfying Definition 14. As detailed in Section 3.5.1, the
proposed controller relies on desired trajectories of vehicle longitudinal speed and yaw rate
satisfying Definition 14. To test the performance of the proposed controller and planning
framework, we selected 3 families of desired trajectories that are observed during daily
driving. Each desired trajectory is the concatenation of a driving maneuver and a contin-
gency braking maneuver. The driving maneuver is either a speed change, direction change,
or lane change (i.e. each option corresponds to one of the 3 families of desired trajecto-
ries). Moreover, each desired trajectory is parameterized by p = [pu, py]⊺ ∈ P ⊂ R2 where
pu denotes desired longitudinal speed, and py decides desired lateral displacement. Recall
the duration of a driving maneuver is tm, which can vary according to the maneuver type,
and tstop is the time from when the reference trajectory of longitudinal speed remains 0.

Assuming that the ego vehicle has initial longitudinal speed u0 ∈ R at time 0, the desired
trajectory for longitudinal speed is the same for each of the 3 families of desired trajectories:

udes(t, p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

u0 + pu−u0

tm
t, if 0 < t < tm

ubrake(t, p), if t ≥ tm

(3.63)

2https://github.com/roahmlab/REFINE
3https://drive.google.com/drive/folders/1bXl07gTnaA3rJBl7J05SL0tsfIJED

fKy?usp=sharing, https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWR
gB30h7exmGTjRyel?usp=sharing

56

https://github.com/roahmlab/REFINE
h
t
t
p
s
:
/
/
g
i
t
h
u
b
.
c
o
m
/
r
o
a
h
m
l
a
b
/
R
E
F
I
N
E
https://drive.google.com/drive/folders/1bXl07gTnaA3rJBl7J05SL0tsfIJEDfKy?usp=sharing
h
t
t
p
s
:
/
/
d
r
i
v
e
.
g
o
o
g
l
e
.
c
o
m
/
d
r
i
v
e
/
f
o
l
d
e
r
s
/
1
b
X
l
0
7
g
T
n
a
A
3
r
J
B
l
7
J
0
5
S
L
0
t
s
f
I
J
E
D
https://drive.google.com/drive/folders/1bXl07gTnaA3rJBl7J05SL0tsfIJEDfKy?usp=sharing
f
K
y
?
u
s
p
=
s
h
a
r
i
n
g
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
h
t
t
p
s
:
/
/
d
r
i
v
e
.
g
o
o
g
l
e
.
c
o
m
/
d
r
i
v
e
/
f
o
l
d
e
r
s
/
1
F
v
G
H
u
q
I
R
Q
p
D
S
5
x
W
R
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
g
B
3
0
h
7
e
x
m
G
T
j
R
y
e
l
?
u
s
p
=
s
h
a
r
i
n
g

Figure 3.5: Examples of udes(t, p) with u0 = 1.0 [m/s], ucri = 0.5[m/s], tm = 1.5[s], adec = −1.5[m/s2], and pu
taking values of 0.6, 1.2 and 2.0 from top to bottom. Note zero lateral controls are commanded among all 3
examples.

where

ubrake(t, p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

pu + (t − tm)adec, if pu > ucri and tm ≤ t < tm + ucri−pu
adec

0, if pu > ucri and t ≥ tm + ucri−pu
adec

0, if pu ≤ ucri and t ≥ tm

(3.64)

with some deceleration adec < 0. Note by Definition 14, tstop can be specified as

tstop =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

tm + ucri−pu
adec , if pu > ucri

tm, if pu ≤ ucri.
(3.65)

As shown in Figure 3.5, desired longitudinal speed approaches pu linearly from u0 before
braking begins at time tm, then decreases to ucri with deceleration adec and immediately
drops down to 0 at time tstop. Moreover, one can verify that the chosen udes(t, p) in (3.63)
satisfies the assumptions on desired longitudinal speed in Lemma 21.

Assuming the ego vehicle has initial heading h0 ∈ [−π,π] at time 0, the desired heading
trajectory varies among the different trajectory families. Specifically, for the trajectory

57

Figure 3.6: Examples of hdes(t, p) and rdes(t, p) to achieve direction changes with u0 = 1.0[m/s], tm = 1.5[s],
hdes
1 = 20

27
, hdes

2 = 27
10

, and py taking values of -0.4, 0.4 and 0.8 from top to bottom. Note pu is set as u0 to
maintain the vehicle longitudinal speed before tm among all 3 examples.

family associated with speed change:

hdes(t, p) = h0, ∀t ≥ 0. (3.66)

Desired heading trajectory for the trajectory family associated with direction change:

hdes(t, p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h0 + pyt
2 −

pytm
4π sin (2πttm

) , if 0 ≤ t < tm

h0 + pytm
2 , if t ≥ tm

(3.67)

and for the trajectory family associated with lane change:

hdes(t, p) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

h0 + hdes
1 py ⋅ e−hdes

2 (t−0.5tm)2 , if 0 ≤ t < tm

h0, if t ≥ tm

(3.68)

where e is Euler’s number, and hdes
1 and hdes

2 are user-specified auxiliary constants that
adjust the desired heading amplitude. As shown in Figure 3.6 and 3.7, hdes(t, p) remains
constant for all t ≥ tm among all families of desired trajectories. By Definition 14, desired
trajectory of yaw rate is set as rdes(t, p) = d

dth
des(t, p) among all trajectory families.

In this work, tm for the speed change and direction change trajectory families are set

58

Figure 3.7: Examples of hdes(t, p) and rdes(t, p) to achieve lane changes with u0 = 1.0[m/s], tm = 3.0[s],
hdes
1 = 20

27
, hdes

2 = 27
10

, and py taking values of -0.4, 0.4 and 0.8 from top to bottom. Note pu is set as u0 to
maintain the vehicle longitudinal speed before tm among all 3 examples.

equal to one another. tm for the lane change trajectory family is twice what it is for the
direction change and speed change trajectory families. This is because a lane change can
be treated as a concatenation of two direction changes. Because we do not know which
desired trajectory ensures not-at-fault a priori, during each planning iteration, to guarantee
real-time performance, tplan should be no greater than the smallest duration of a driving
maneuver, i.e. speed change or direction change.

3.9.2 Simulation on a FWD Model

This subsection describes the evaluation of REFINE in simulation. In particular, this sec-
tion describes the simulation environment, how we implement REFINE, the methods we
compare it to, and the results of the evaluation.

3.9.2.1 Simulation Environment

We evaluate the performance on 1000 randomly generated 3-lane highway scenarios in
which the same full-size, FWD vehicle as the ego vehicle is expected to autonomously
navigate through dynamic traffic for 1[km] from a fixed initial condition. All lanes of all
highway scenario share the same lane width as 3.7[m]. Each highway scenario contains

59

Vehicle Parameter REFINE Controller Parameter
(Simulation) (Simulation)

m 1575[kg] Ku 4.0
lf 1.13[m] Kr 2.0
lr 1.67[m] Kh 5.0
Izz 3273[kg⋅m2] κ1,u 1.3
rw 0.33[m] κ2,u 0.7
λcric 0.15 ϕ1,u 1.3
αcric 0.1[rad] ϕ2,u 0.7
µ̄ 10 κ1,r 0.5
c̄αf 1.72e5[N/rad] κ2,r 1.0
c̄αr 2.90e5[N/rad] ϕ1,r 4.0
ucri 5[m/s] ϕ2,r 1.0
L 4.8[m] Mu 0.25
W 2.2[m] bpro

u 0.05
boff
u 0
Mr 0.01

Table 3.1: Vehicle specification for simulation.

up to 24 moving vehicles and up to 5 static vehicles that start from random locations and
are all treated as obstacles to the ego vehicle. Moreover, each moving obstacle maintains
its randomly generated highway lane and initial speed up to 25[m/s] for all time. Because
each highway scenario is randomly generated, there is no guarantee that the ego vehicle
has a path to navigate itself from the start to the goal. Such cases allow us to verify if the
tested methods can still keep the ego vehicle safe even in infeasible scenarios. Parameters
of the ego vehicle are listed in Table 3.1.

During each planning iteration, all evaluated methods use the same high level planner.
This high level planner generates waypoints by first choosing the lane on which the nearest
obstacle ahead has the largest distance from the ego vehicle. Subsequently it picks a way-
point that is ahead of the ego vehicle and stays along the center line of the chosen lane. The
cost function in (Opt) or in any of the evaluated optimization-based motion planning algo-
rithms is set to be the Euclidean distance between the waypoint generated by the high level
planner and the predicted vehicle location based on initial state z0 and decision variable p.
All simulations are implemented and evaluated in MATLAB R2022a on a laptop with an
Intel i7-9750H processor and 16GB of RAM.

60

3.9.2.2 REFINE Simulation Implementation

REFINE invokes C++ for the online optimization via IPOPT [110]. Parameters of REFINE’s
controller are chosen to satisfy the conditions in Lemma 21 and can be found in Table
3.1. REFINE tracks families of desired trajectories as described in Section 3.9.1 with
P = {(pu, py) ∈ [5,30] × [−0.8,0.8] ∣ pu = u0 if py ≠ 0}, adec = −5.0[m/s2], hdes

1 = 6
√
2e

11 and
hdes
2 = 121

144 . The duration tm of driving maneuvers for each trajectory family is 3[s] for speed
change, 3[s] for direction change and 6[s] for lane change, therefore tplan is set to be 3[s].
As discussed in Section 3.8.1, during offline computation, we evenly partition the first and
second dimensions of P into intervals of lengths 0.5 and 0.4, respectively. For each parti-
tion element, tf is assigned to be the maximum possible value of tbrake as computed in (B.19)
in which tfstop is by observation no greater than 0.1[s]. An outer-approximation of the FRS
is computed for every partition element of P using CORA with ∆t as 0.015[s], 0.010[s],
0.005[s] and 0.001[s]. Note, that we choose these different values of ∆t to highlight how
this choice affects the performance of REFINE.

3.9.2.3 Other Implemented Methods

We compare REFINE against several state of the art trajectory planning methods: a baseline
zonotope reachable set method [69], a Sum-of-Squares-based RTD (SOS-RTD) method
[52], and an NMPC method using GPOPS-II [81].

The first trajectory planning method that we implement is a baseline zonotope based
reachability method that selects a finite number of possible trajectories rather than a con-
tinuum of possible trajectories as REFINE does. This baseline method is similar to the
classic funnel library approach to motion planning [66] in that it chooses a finite number
of possible trajectories to track. The baseline method computes zonotope reachable sets
using CORA with ∆t = 0.010[s] over a sparse discrete control parameter space P sparse ∶=
{(pu, py) ∈ {5,5.1,5.2, . . . ,30} × {0,0.4} ∣ pu = u0 if py ≠ 0} and a dense discrete control
parameter space Pdense ∶= {(pu, py) ∈ {5,5.1,5.2, . . . ,30} × {0,0.04,0.08, . . . ,0.8} ∣ pu =
u0 if py ≠ 0}. We use P sparse and Pdense to illustrate the challenges associated with applying
this baseline method in terms of computation time, memory consumption, and the ability to
robustly travel through complex simulation environments. During each planning iteration,
the baseline method searches through the discrete control parameter space until a feasible
solution is found such that the corresponding zonotope reachable sets have no intersection
with any obstacles over the planning horizon. The search procedure over this discrete con-
trol space is biased to select the same trajectory parameter that worked in the prior planning
iteration or to search first from trajectory parameter that are close to one that worked in the

61

previous planning iteration.
The SOS-RTD plans a controller that also tracks families of trajectories to achieve speed

change, direction change and lane change maneuvers with braking maneuvers as described
in Section 3.9.1. SOS-RTD offline approximates the FRS by solving a series of polynomial
optimizations using Sum-of-Squares so that the FRS can be over-approximated as a union
of superlevel sets of polynomials over successive time intervals of duration 0.1[s] [52].
Computed polynomial FRS are further expanded to account for footprints of other vehicles
offline in order to avoid buffering each obstacle with discrete points online [106]. During
online optimization, SOS-RTD plans every 3[s] and uses the same cost function as REFINE
does, but checks collision against obstacles by enforcing that no obstacle has its center stay
inside the FRS approximation during any time interval.

The NMPC method does not perform offline reachability analysis. Instead, it directly
computes the control inputs that are applicable for tm seconds by solving an optimal control
problem. This optimal control problem is solved using GPOPS-II in a receding horizon
fashion. The NMPC method conservatively ensures collision-free trajectories by covering
the footprints of the ego vehicle and all obstacles with two overlapping balls, and requiring
that no ball of the ego vehicle intersects with any ball of any obstacle. Notice during each
online planning iteration, the NMPC method does not need pre-defined desired trajectories
for solving control inputs. Moreover, it does not require the planned control inputs to stop
the vehicle by the end of planned horizon as the other three methods do.

3.9.2.4 Evaluation Criteria

We evaluate each implemented trajectory planning method in several ways as summarized
in Table 3.2. First, we report the percentage of times that each planning method either
came safely to a stop (in a not-at-fault manner), crashed, or successfully navigated through
the scenario. Note a scenario is terminated when one of those three conditions is satisfied.
Second, we report the average travel speed during all scenarios. Third, we report the av-
erage and maximum planning time over all scenarios. Finally, we report on the size of the
pre-computed reachable set.

3.9.2.5 Results

REFINE achieves the highest success rate among all evaluated methods and has no crashes.
The success rate of REFINE converges to 84% as the value of ∆t decreases because the
FRS approximation becomes tighter with denser time discretization. However as the time
discretization becomes finer, memory consumption grows larger because more zonotopes

62

are used to over-approximate FRS. Furthermore, due to the increasing number of zonotope
reachable sets, the solving time also increases and begins to exceed the allotted planning
time. According to our simulation, we see that ∆t = 0.010[s] results in high enough suc-
cessful rate while maintaining a planning time no greater than 3[s].

The baseline method with P sparse shares almost the same memory consumption as
REFINE with ∆t = 0.005[s], but results in a much lower successful rate and smaller
average travel speed. When the baseline method runs over Pdense, its success rate is in-
creased, but still smaller than that of REFINE. More troublingly, its memory consumption
increases to 9.1 GB. Neither evaluated baseline is able to finish online planning within 3[s].
Compared to REFINE, SOS-RTD completes online planning faster and can also guarantee
vehicle safety with a similar average travel speed. However SOS-RTD needs a memory of
2.4 GB to store its polynomial reachable sets, and its success rate is only 64% because the
polynomial reachable sets are more conservative than zonotope reachable sets.

When the NMPC method is utilized for motion planning, the ego vehicle achieves a
similar success rate as SOS-RTD, but crashes occur 29% of the time. Note the NMPC
method achieves a higher average travel speed of the ego vehicle when compared to the
other three methods. More aggressive operation can allow the ego vehicle drive closer
to obstacles, but can make subsequent obstacle avoidance difficult. The NMPC method
uses 40.8906[s] on average to compute a solution, which makes real-time path planning
untenable.

Figure 3.8 illustrates the performance of the three methods in the same scene at three
different time instances. In Figure 3.8(a), because REFINE gives a tight approximation of
the ego vehicle’s FRS using zonotopes, the ego vehicle is able to first bypass static vehicles
in the top lane from t = 24[s] to t = 30[s], then switch to the top lane and bypass vehicles in
the middle lane from t = 30[s] to t = 36[s]. In Figure 3.8(b) SOS-RTD is used for planning.
In this case the ego vehicle bypasses the static vehicles in the top lane from t = 24[s] to
t = 30[s]. However because online planing becomes infeasible due to the conservatism
of polynomial reachable sets, the ego vehicle executes the braking maneuver to stop itself
t = 30[s] to t = 36[s]. In Figure 3.8(c) because NMPC is used for planning, the ego vehicle
drives at a faster speed and arrives at 600[m] before the other evaluated methods. Because
the NMPC method only enforces collision avoidance constraints at discrete time instances,
the ego vehicle ends up with a crash at t = 24[s] though NMPC claims to find a feasible
solution for the planning iteration at t = 21[s].

63

t=
24

.0
0

[s
]

t=
30

.0
0

[s
]

600 650 700 750 800 850 900 950

t=
36

.0
0

[s
]

(a) REFINE utilized.

t=
24

.0
0

[s
]

t=
30

.0
0

[s
]

600 650 700 750 800 850 900 950

t=
39

.0
0

[s
]

(b) SOS-RTD utilized.

t=
21

.0
0

[s
]

t=
22

.5
0

[s
]

600 650 700 750 800 850 900 950

t=
24

.0
0

[s
]

(c) NMPC utilized.

Figure 3.8: An illustration of the performance of REFINE, SOS-RTD, and NMPC on the same simulated
scenario. In this instance REFINE successfully navigates the ego vehicle through traffic (top three images),
SOS-RTD stops the ego vehicle to avoid collision due to the conservatism of polynomial reachable sets
(middle three images), and NMPC crashes the ego vehicle even though its online optimization claims that it
has found a feasible solution (bottom three images). In each set of images, the ego vehicle and its trajectory
are colored in black. Zonotope reachable sets for REFINE and polynomial reachable sets for SOS-RTD are
colored in green. Other vehicles are obstacles and are depicted in white. If an obstacle is moving, then it is
plotted at 3 time instances t, t + 0.5 and t + 1 with increasing transparency. Static vehicles are only plotted at
time t.

3.9.3 Real World Experiments

REFINE was also implemented in C++17 and tested in the real world using a 1
10 th All-

Wheel-Drive car-like robot, Rover, based on a Traxxax RC platform. The Rover is equipped
with a front-mounted Hokuyo UST-10LX 2D lidar that has a sensing range of 10[m] and
a field of view of 270 The Rover is equipped with a VectorNav VN-100 IMU unit which

64

publishes data at 800Hz. Sensor drivers, state estimator, obstacle detection, and the pro-
posed controller are run on an NVIDIA TX-1 on-board computer. A standby laptop with
Intel i7-9750H processor and 32GB of RAM is used for localization, mapping, and solving
(Opt) in over multiple partitions of P . The rover and the standby laptop communicate over
wifi using ROS [97].

Desired trajectories on the Rover are parameterized with P = {(pu, py) ∈ [0.05,2.05] ×
[−1.396,1.396] ∣ pu = u0 if py ≠ 0}, adec = −1.5[m/sec2], hdes

1 = 20
27 and hdes

2 = 27
10 as

described in Section 3.9.1. The duration tm of driving maneuvers for each trajectory family
is set to 1.5[s] for speed change, 1.5[s] for direction change, and 3[s] for lane change, thus
planning time for real world experiments is set as tplan = 1.5[s]. The parameter space P
is evenly partitioned along its first and second dimensions into small intervals of lengths
0.25 and 0.349, respectively. For each partition element, tf is set equal to the maximum
possible value of tbrake as computed in (B.19) in which tfstop is by observation no greater
than 0.1[s]. The FRS of the Rover for every partition element of P is overapproximated
using CORA with ∆t = 0.01[s]. During online planning, a waypoint is selected in real time
using Dijkstra’s algorithm [23], and the cost function of (Opt) is set in the same way as
we do in simulation as described in Section 3.9.2. The robot model, environment sensing,
and state estimation play key roles in real world experiments. In the rest of this subsection,
we first explain how the Rover performs localization, mapping, and obstacle detection and
how we perform system identification of the tire models. We then describe how to bound
the modeling error in (3.14) and summarize the real world experiments.

3.9.3.1 Environment Sensing

To sense the environment, we perform simultaneous localization and mapping (SLAM)
using Cartographer [117] at a rate of 200Hz with lidar scans and IMU readings as its sensor
inputs. Cartographer is a lidar based 2D SLAM algorithm that consists of a local sub-
system, which builds locally consistent and successive submaps, and a global sub-system,
which runs in background to achieve loop closure. Lidar scans are also used for obstacle
detection at a rate of 10Hz using the method illustrated in [87], which detects an object in
the environment by multiple line segments. To account for estimation error as discussed
in [87], we inflate the detected line segments and convert them into zonotopes for online
planning. Both Cartographer and obstacle detection are validated compared against data
collected by a motion capture system, and estimation errors of both both algorithms are at
most 10 [cm].

65

3.9.3.2 System Identification of Tire Models

The goal of system identification is to specify necessary parameters that describe dynamics
of the Rover. Because parameters like mass, length, and moment of inertia can be directly
measured, we focus on specifying tire force related parameters including λcri, αcri, µ̄, c̄αf

and c̄αr, and explain how we generate the computational error ∆u, ∆v, ∆r in (3.14) as well
as their bounding parameters bpro

u , boff
u , Mu, Mv, and Mr in the next subsection. Note this

system identification is done by using a motion capture system; however, when REFINE is
applied, the motion capture system is not used.

Recall actual tire models in (3.6), (3.7), (3.10) and (3.11) become saturated at large
slip ratios and slip angles. However, during experiments, the Rover is always expected to
operate in linear regimes of tires by Assumption 10. Thus, to figure out the tire force-related
parameters of the Rover, we need to identify the critical slip ratio and critical slip angle at
which tire force saturation begins, then fit linear tire models within the linear regimes.

To identify the parameters related to longitudinal tire forces, the Rover executed a se-
ries of speed change maneuvers in a motion capture system to estimate u, v, and r. u̇ is
estimated using the onboard IMU. Recall the ideal dynamics of longitudinal speed as in
(3.4). By plugging in the speed information from the motion capture system, we gener-
ate the longitudinal tire force Fx(t) ∶= Fxf(t) + Fxr(t) that achieves the observed velocity
trajectory. Because the Rover is AWD, both the front and the rear tires have the same tire
speed and thus the same slip ratio, i.e. λf = λr. Adding the two equations in (3.12) results
in Fx(t) = mgµ̄λi(t) where the subscript ‘i’ can be replaced by either ‘f’ for front tire or
‘r’ for rear tire. Using the information from the encoder of driving motor and u(t), slip
ratios of both tires can be computed via (3.5). As shown in Figure 3.9, the longitudinal tire
force saturates when the slip ratio becomes bigger than 0.45. Thus we set λcri = 0.45 and
fit µ̄ from Fx(t) = mgµ̄λi(t) by performing least squares over collected data that satisfies
∣λi(t)∣ ≤ λcri at any time.

To identify the parameters related to lateral tire forces, we follow a similar procedure
and let the Rover execute a series of direction change maneuvers with various longitudinal
speeds. Ground truth u, v, and r are again estimated using the motion capture system, and
v̇ and ṙ are estimated using the onboard IMU for all time. Recall when u(t) > ucri, the
error-free dynamics of v and r are as in (3.4). One can then compute Fyf(t) and Fyr(t) by
using the relevant components of (3.4) for Fyf(t) and Fyr(t). Using u(t), v(t), r(t), and
the steering motor input, one can compute slip angles for both tires via (3.8) and (3.9). As
shown in Figure 3.10, the lateral tire force saturates when the slip angle becomes bigger
than 0.165. Thus we set αcri = 0.165, and fit c̄αf and c̄αr in (3.13) by performing least
squares over collected data that satisfies ∣αi(t)∣ ≤ αcri at any time.

66

-1 -0.5 0 0.5 1

i

-20

0

20

F
xf

+
F

xr
 [N

]

collected
linear model

Figure 3.9: System Identification on longitudinal tire force. A linear model is fit using data collected within
the linear regime [-0.45,0.45] of slip ratio.

3.9.3.3 State Estimation and System Identification on Computation Error of Vehicle
Dynamics

The modeling error in the dynamics (3.14) arise from ignoring aerodynamic drag force and
the inaccuracies of state estimation and the tire models. We use the data collected to fit the
tire models to identify the modeling errors ∆u, ∆v, and ∆r.

We compute the model errors as the difference between the actual accelerations col-
lected by the IMU and the estimation of applied accelerations computed via (3.4) in which
tire forces are calculated via (3.12) and (3.13). The estimation of applied accelerations is
computed using the estimated system states via an Unscented Kalman Filter (UKF) [111],
which treats SLAM results, IMU readings, and encoding information of wheel and steer-
ing motors as observed outputs of the Rover model. The robot dynamics that UKF uses
to estimate the states is the error-free, high-speed dynamics (3.4) with linear tire mod-
els. Note the UKF state estimator is still applicable in the low-speed case except the es-
timation of v and r are ignored. To ensure ∆u, ∆v and ∆r are square integrable, we set
∆u(t) = ∆v(t) = ∆r(t) = 0 for all t ≥ tbrake where tbrake is computed in Lemma 21. As
shown in Figure 3.11 bounding parameters Mu, Mv, and Mr are selected to be the maxi-
mum value of ∣∆u(t)∣, ∣∆v(t)∣, and ∣∆r(t)∣ respectively over all time, and bpro

u and boff
u are

generated by bounding ∣∆u(t)∣ from above when u(t) ≤ ucri.
Identified model parameters of the Rover and the REFINE’s controller parameters to be

used in real world experiments are listed in Table 3.3. An example of tracking performance
of the proposed controller on the Rover with identified parameters is shown in Figure 3.12.

67

-0.3 -0.2 -0.1 0 0.1 0.2 0.3

f
 [rad]

-5

0

5

F
yf

 [N
]

Front Lateral Tire Force Modeling

collected
linear model

-0.3 -0.2 -0.1 0 0.1 0.2

r
 [rad]

-10

-5

0

5

10

F
yr

 [N
]

Rear Lateral Tire Force Modeling

collected
linear model

Figure 3.10: System identification on lateral tire forces. Linear models are fit using data collected within the
linear regime [-0.165,0.165] of slip angles.

3.9.3.4 Demonstration

The Rover was tested indoors under the proposed controller and planning framework in 6
small trials and 1 loop trial4. In every small trail, up to 11 identical 0.3×0.3×0.3[m]3 card-
board cubes were placed in the scene before the Rover began to navigate itself. The Rover
was not given prior knowledge of the obstacles for each trial. Figure 3.13 illustrates the
scene in the 6th small trial and illustrates REFINE’s performance. The zonotope reachable
sets over-approximate the trajectory of the Rover and never intersect with obstacles.

In the loop trial, the Rover was required to perform 3 loops, and each loop is about
100[m] in length. In the first loop of the loop trial, no cardboard cube was placed in the
loop, while in the last two loops the cardboard cubes were randomly thrown at least 5[m]
ahead of the running Rover to test its maneuverability and safety. During the loop trial,
the Rover occasionally stoped because a randomly thrown cardboard cube might be close
to a waypoint or the end of an executing maneuver. In such cases, because the Rover was
able to eventually locate obstacles more accurately when it was stopped, the Rover began

4https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjR
yel?usp=sharing

68

https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
h
t
t
p
s
:
/
/
d
r
i
v
e
.
g
o
o
g
l
e
.
c
o
m
/
d
r
i
v
e
/
f
o
l
d
e
r
s
/
1
F
v
G
H
u
q
I
R
Q
p
D
S
5
x
W
R
g
B
3
0
h
7
e
x
m
G
T
j
R
https://drive.google.com/drive/folders/1FvGHuqIRQpDS5xWRgB30h7exmGTjRyel?usp=sharing
y
e
l
?
u
s
p
=
s
h
a
r
i
n
g

0 0.5 1 1.5 2

u [m/s]

0

0.5

1

u [m
/s

2] collected
upper bound

Figure 3.11: An illustration of the modeling error along the dynamics of u. Collected ∆u(t) is bounded by
Mu = 1.11 for all time. Whenever u(t) ≤ ucri = 0.5, ∆u(t) is bounded by bpro

u u(t) + boff
u with bpro

u = 1.2 and
boff
u = 0.51.

a new planning iteration immediately after stopping and passed the cube when a feasible
plan with safety guaranteed was found.

For all 7 real-world testing trials, the Rover either safely finishes the given task, or it
stops itself before running into an obstacle if no clear path is found. The Rover is able to
finish all computation of a planning iteration within 0.4021[s] on average and 0.6545[s]
in maximum, which are both smaller than tplan = 1.5[s], thus real-time performance is
achieved.

3.10 Conclusion

This work presents a controller-oriented trajectory design framework REFINE using zono-
tope reachable sets. A robust controller is designed to partially linearize the full-order
vehicle dynamics with modeling error by performing feedback linearization on a subset
of vehicle states. The proposed controller can be generalized to FWD, AWD and RWD
vehicle models. Zonotope-based reachability analysis is performed on the closed-loop ve-
hicle dynamics for FRS computation, and achieves less conservative FRS approximation
than that of the traditional reachability-based approaches. Mathematical derivation of con-
straints on collision-free using zonotope reachable sets is provided for online planning.
Tests on a full-size vehicle model in simulation and a 1/10th race car robot in real hardware
experiments show that the proposed method is able to safely navigate the vehicle through
random environments in real time and outperforms all evaluated state of the art methods.
Unfortunately as a deterministic approach, REFINE accounts for perception uncertainty by
requiring the robot to avoid all possible area that could cause a collision, thus a downside of

69

0 1 2 3 4 5

t [s]

0

1

2

u
[m

/s
]

-1

0

1

r
[r

ad
/s

]

Tracking: Speed Change

estimated
desired

0 1 2 3 4 5

t [s]

0

0.5

1

u
[m

/s
]

-1

0

1

r
[r

ad
/s

]

Tracking: Direction Change

estimated
desired

0 1 2 3 4 5

t [s]

0

0.5

1

u
[m

/s
]

-1

0

1

r
[r

ad
/s

]

Tracking: Lane Change

estimated
desired

Figure 3.12: An illustration of the tracking performance of the Rover with the proposed controller and iden-
tified parameters in Table 3.3.

the planning performance. In the next chapter, we extend the framework of REFINE within
uncertain environment and achieve path planning with risk of collision being bounded.

70

(a)

(b)

Figure 3.13: An illustration of the performance of REFINE during the 6th real-world trial. The rover was
able to navigate itself to the goal in red through randomly thrown white cardboard cubes as shown in (a).
Online planning using zonotope reachable sets is illustrated in (b) in which trajectory of the Rover is shown
from gray to black along time, goal is shown in red, and the zonotope reachable sets at different planning
iterations are colored in green.

71

M
et

ho
d

Sa
fe

ly
St

op
C

ra
sh

Su
cc

es
s

A
vg

.T
ra

ve
lS

pe
ed

O
nl

in
e

Pl
an

ni
ng

R
un

tim
e

M
em

or
y

(A
ve

ra
ge

,M
ax

im
um

)
B

as
el

in
e

(s
pa

rs
e,
∆
t
=
0.
01
0)

38
%

0%
62

%
22

.3
57

2[
m

/s
]

(2
.0

3[
s]

,4
.1

5[
s]

)
98

0
M

B
B

as
el

in
e

(d
en

se
,∆

t
=
0.
01
0)

30
%

0%
70

%
23

.6
32

7[
m

/s
]

(1
2.

42
[s

],
27

.7
4[

s]
)

9.
1

G
B

SO
S-

R
T

D
36

%
0%

64
%

24
.8

04
9[

m
/s

]
(0

.0
5[

s]
,1

.5
8[

s]
)

2.
4

G
B

N
M

PC
3%

29
%

68
%

27
.3

96
3[

m
/s

]
(4

0.
89

[s
],

53
4.

82
[s

])
N

/A
R

E
FI

N
E

(∆
t
=
0.
01
5)

27
%

0%
73

%
23

.2
45

2[
m

/s
]

(0
.3

4[
s]

,0
.9

5[
s]

)
48

8
M

B
R

E
FI

N
E

(∆
t
=
0.
01
0)

17
%

0%
83

%
24

.8
31

1[
m

/s
]

(0
.5

2[
s]

,1
.5

7[
s]

)
70

3
M

B
R

E
FI

N
E

(∆
t
=
0.
00
5)

16
%

0%
84

%
24

.8
76

1[
m

/s
]

(1
.2

8[
s]

,4
.3

5[
s]

)
99

7
M

B
R

E
FI

N
E

(∆
t
=
0.
00
1)

16
%

0%
84

%
24

.8
95

3[
m

/s
]

(6
.4

8[
s]

,1
0.

78
[s

])
6.

4
G

B

Table 3.2: Summary of performance of various tested techniques on the same 1000 simulation environments.

72

Rover Parameter REFINE Controller Parameter
(Real World) (Real World)

m 4.96[kg] Ku 4.0
lf 0.203[m] Kr 8.0
lr 0.107[m] Kh 5.0
Izz 0.11[kg⋅m2] κ1,u 1.2
rw 0.055[m] κ2,u 0.8
λcric 0.45 ϕ1,u 1.2
αcric 0.165[rad] ϕ2,u 0.8
µ̄ 0.77 κ1,r 0.9
c̄αf 36.24[N/rad] κ2,r 0.6
c̄αr 63.52[N/rad] ϕ1,r 0.9
ucri 0.5[m/s] ϕ2,r 0.6
L 0.52[m] Mu 1.11
W 0.28[m] bpro

u 1.2
boff
u 0.51
Mr 1.03

Table 3.3: Specification of the Rover.

73

CHAPTER 4

Real-time Risk-aware Reachability-based
Trajectory Design

4.1 Introduction

For robots to safely operate in unstructured environments, especially where humans are
present, they must be able to sense their environments and develop plans to dynamically
react to changes in those environments and avoid obstacles. Safe navigation through these
uncertain environments in the presence of dynamic obstacles is a critical challenge. It is
difficult to accurately predict an obstacle’s movement due to imperfect knowledge of the
obstacle motions as well as the presence of noise in sensors. For robots to operate robustly,
this uncertainty must be accounted for while generating motion plans. Various approaches
to account for this uncertainty have been proposed in the literature, but these methods either
(1) have difficulty being evaluated in real-time, (2) make strong assumptions on the class
of probability distributions used to model the uncertainty, or (3) generate motion plans that
are overly conservative and thereby limit most motion. This chapter develops an algorithm
called Risk-RTD for real-time risk-aware reachability-based trajectory design while
addressing each of the aforementioned challenges.

Depending on how accurate the provided environment knowledge is, deterministic and
stochastic planning strategies have been developed in the field. With locations and pre-
dictions of obstacles accurately given, deterministic approaches including works in pre-
vious chapters and related literature therein can provide robot safety by either enforcing
that no collision happens between the robot and any obstacle at multiple discrete time in-
stances [25, 27], or ensuring that the forward reachable set has no intersection with any
obstacle during time intervals [52, 56]. In real application, observing and predicting the
motion of a moving obstacle exact can be impractical due to sensor noise or the lack of
knowledge on obstacle motion. In the case when locations and predictions of obstacles can
be conservatively bounded, aforementioned approaches are still applicable because they

74

can require the robot to avoid larger area for safety. However it is possible that such con-
servative estimations of obstacles’ locations make online planning infeasible, thus a loss of
performance on maneuverability [91].

To balance the tradeoff between safety and maneuverability in uncertain environments,
stochastic methods embed probabilistic information about uncertain environments in or-
der to achieve risk-aware motion planning. [19,86,112,121] achieve motion planning with
probabilistic explorations of environments by solving an optimization problem in which
chance constraints are enforced to limit the probability of collision from above. However
because in most scenarios the probability of collision could be hardly evaluated due to
the arbitrariness of probabilistic environmental observation, chance-constrained methods
have to approximate the probability of collision while maintaining real-time performance.
Sampling-based methods, [12, 47] for example, apply numerical integration techniques to
compute the probability of collision. In this context the chance constraint is expressed as
an indicator function on the set of variables that violate the collision constraint. Random
samples are drawn from the uncertain region and the weighted sum of these samples is
taken to approximate the integral. These methods are simple to implement but can be com-
putationally expensive and have slow convergence rates. Moreover, they are difficult to
utilize in gradient-based optimization algorithms due to the non-smooth nature of the indi-
cator function used as the integrand. Moment-Based methods [18, 112, 113] upper bound
the probability of collision using the moments of the probability distribution, which can
be computed efficiently. However because multiple probability distribution can share the
same moments up to some finite order [98], online planning may result in avoiding un-
considered probabilistic distributions. Chance Constrained Parallel Bernstein Algorithm
(CCPBA) [105] as a branch-and-bound method uses reachability-based methods in con-
junction with a branch-and-bound style algorithm to compute tight bounds for the proba-
bility of collision. In order to compute these probabilities they make strong assumptions
about knowing a-priori a closed-form cumulative distribution function that returns the prob-
ability of intersection with their reachable set. Unfortunately such closed-form cumulative
distribution may not exist in real application.

Compared to chance constraints, Conditional Value-at-Risk (CVaR) constraints can also
be utilized to incorporate probabilistic estimation of the environment for decision making
due to their coherency and convexity [89, 100]. For example in the application of motion
planning, CVaR-based method in [38] regulates safety by limiting the expectation of the
distance to safe region within certain worst-case quantile of its distribution. However one
may have to approximate such CVaR constraints via sampling to avoid computationally
expensive multi-dimensional integration. Moreover, because CVaR-constrained optimiza-

75

Prob.

low

high

Figure 4.1: Illustration of the proposed Risk-RTD framework in an uncertain dynamic environment for au-
tonomous driving in which the ego vehicle in black tries to avoid a static obstacle and a moving vehicle shown
in white. Transparencies of the ego vehicle and the moving vehicle increase along time. Given probabilistic
descriptions of location and prediction of the moving vehicle, Risk-RTD limits the risk of collision between
the ego vehicle and the moving vehicle from above by enforcing an upper bound on the over-approximation
of the probabilistic integration over offline-computed zonotope reachable set during each time interval.

tions are typically formulated as mixed integer convex problem, achieving real-time plan-
ning can be challenging. Safety performance of CVaR-constrained motion planning can
be improved by using Entropic Value-at-Risk(EVaR) risk measure [24], but EVaR shares
similar issues as CVaR.

In this work we propose a real-time Risk-aware Reachability-based Trajectory Design
(Risk-RTD) framework for path planning in dynamic environments shown in Figure 4.1. As
the probabilistic extension of the original RTD method [52], Risk-RTD shares the same of-
fline reachability analysis with REFINE to benefit from the tightness of zonotope reachable
sets, but enforces robot safety by bounding the probability of any collision from above as
chance constraints at all time during online planning. Contributions of this work are three
folds. First, we provide a closed-form over-approximation on the probability of a colli-
sion with mild assumption on the probabilistic distribution of obstacle estimation. Second,
we illustrate the analytical derivative of the probability over-approximation with respect to
control parameters, which parametrize desired trajectory for the robot to track and are the
decision variables of online optimization. Lastly, computations of both probability over-
approximation and its derivative are parallelizable so that real-time motion planning can be
achieved.

Note to simplify exposition, this chapter explains the idea of Risk-RTD with an au-
tonomous driving application, but the proposed idea can be generalized to other robot
platforms with zonotope reachable sets in uncertain environments. The remainder of this
chapter is organized as follows. Section 4.2 provides necessary preliminaries on obstacle
uncertainty, risk-aware vehicle safety, and chance-constrained online planning. Section 4.3
explains how Risk-RTD matches frames among zonotope reachable sets and obstacle prob-
ability descriptions. Because the probability of collision in the chance constraint of online
planning can be hard to evaluate in general, Section 4.4 conservatively relaxes the chance

76

constraint in a differentiable closed-form, which is more tractable to enforce during online
planning. Section 4.5 describes a methodology to select risk threshold dynamically. Exper-
iments of the proposed framework are presented in Section 4.6, and Section 4.7 concludes
the chapter.

4.2 Preliminaries

In this work we adopt all notations, vehicle dynamics and control from the last chapter,
and for convenience we denote Prob(E) the probability of occurrence of some event E.
Recall in REFINE the i-th obstacle Oi(t) during the j-th time interval Tj is assumed to be
over-approximated by zonotope ϑ(j, i) ⊂W . However such assumption can be empirically
difficult to achieve because in real application a sensor used for obstacle detection could
have measurement error and an obstacle detection algorithm may result in a probabilistic
description of an obstacle [119,122]. One can certainly make ϑ(j, i) large enough to bound
the obstacle location based on its probabilistic description to achieve a confidence level of
almost 1, but this may result in conservativeness that could affect the maneuverability of
the ego vehicle. To incorporate the uncertainty in obstacle sensing into the motion planning
framework, in this work we re-define vehicle safety and relax the zonotope description of
an obstacle from the probability perspective.

4.2.1 Obstacle Uncertainty

For notional simplicity, for arbitrary time t and i ∈ I , denote cobs
i (t) ∈ W the center of

Oi(t). We then make the following assumption about the probabilistic estimation of an
obstacle’s location.

Assumption 34. For any (i, j) ∈ I × J , the probability distribution of wobs
i,j ∶= cobs

i ((j −
0.5)∆t) satisfies a probability density function q(⋅ ∣ i, j) ∶ W → [0,+∞). The probability

density function q is further assumed twice-differentiable.

Note Assumption 34 is the only assumption we make on the probabilistic observation of
any obstacle, thus the proposed framework is general to any probability distribution as long
as the corresponding density function is twice-differentiable. To account for the obstacle’s
potential location over Tj , we make the following assumption:

Assumption 35. There exists a 2-row matrix Gobs such that ∪t∈Tj
Oi(t) stays inside a zono-

tope <wobs
i,j , G

obs> ⊂W for all (i, j) ∈ I ×J .

77

According to Assumptions 34 and 35, <wobs
i,j , Gobs> = wobs

i,j + <0, Gobs> has an un-
certain center wobs

i,j with probability density q(wobs
i,j ∣ i, j), and has invariant shape and size

with respect to i and j due to the constant generator matrix Gobs. Such probability density
functions q can be generated by, for example, performing variants of Kalman Filter on the
i-th obstacle given its dynamics or detecting the i-th obstacle with a Bayesian confidence
framework [28] and a neural network [31] during Tj . The generator matrix Gobs can be
generated according to the vehicle footprint and maximum speed νobs of all obstacles.

4.2.2 Risk-Aware Vehicle Safety

For arbitrary time t, given state z(t) of the ego vehicle with the closed-loop dynamics (3.39)
that starts from some initial condition z0 ∈ R6 and applies a control input parametrized by
p ∈ P , the ego vehicle’s footprint at time t can be represented as

E(t, z0, p) ∶= rotate(h(t)) ⋅Oego + [x(t), y(t)]⊺ (4.1)

where rotate(a) gives the 2-dimensional rotation matrix
⎡⎢⎢⎢⎢⎣

cos(a) − sin(a)
sin(a) cos(a)

⎤⎥⎥⎥⎥⎦
for an arbi-

trary value a ∈ R. Recall thatOego is a zonotope as defined in Definition 17, then E(t, z0, p)
is also a zonotope by (3.3). Then we can redefine vehicle’s safety in this work from the
probability perspective by bounding the probability of the ego vehicle running into any
obstacles.

Definition 36. Let the ego vehicle start from initial condition z0 ∈ Z0 with control param-

eter p ∈ P . Given some allowable risk threshold ϵ ∈ [0,1], the ego vehicle is not-at-fault,
with a chance of collision of at most ϵ, if it is stopped, or if

Prob(∪t∈[0,tf] (E(t, z0, p) ∩ (∪i∈I Oi(t)))) ≤ ϵ (4.2)

while it is moving during time interval [0, tf].

In the case when ϵ = 0, inequality (4.2) results in

∪t∈[0,tf](E(z(t), z0, p) ∩ (∪i∈I Oi(t))) = ∅, (4.3)

which happens to be the constraint of no intersection in REFINE.

78

4.2.3 Online Optimization

To construct a motion plan that ensures the ego vehicle is not-at-fault with a chance of
collision at most ϵ during online planning, one could solve the following chance constrained
optimization problem:

min
p∈P

cost(z0, p) (Opt-C)

s.t. Prob(∪t∈[0,tf] (E(t, z0, p) ∩ (∪i∈I Oi(t)))) ≤ ϵ

where cost ∶ Z0 × P → R is a user-specified cost function, and the constraint is a chance
constraint that ensures the vehicle is not-at-fault with a maximum chance of collision of ϵ
during the planning horizon as stated in Definition 36.

To achieve real-time motion planning, (Opt-C) must be solved within tplan seconds.
Unfortunately, efficiently evaluating the chance constraint in (Opt-C) in a closed-form
can be challenging in real applications because of two reasons. Firstly, the exact informa-
tion of the ego vehicle’s location E(t, z0, p) at any time is usually not accessible due to the
nonlinearity and hybrid nature of the vehicle dynamics. Secondly, the probability distribu-
tion that describes the probabilistic observation of an obstacle as assumed in Assumption
34 can be arbitrary. Therefore to achieve real-time performance, Risk-RTD seeks a closed-
form approximation of the chance of collision for evaluation efficiency. In addition, such
approximation needs to be an over-approximation to ensure that Risk-RTD does not under-
estimate the true risk of collision or generate plans that violate the not-at-fault condition
from Definition 36. Moreover, it is preferable that this approximation is differentiable, as
providing the gradient of the constraint can speed up the solving procedure of online opti-
mization. We describe how we generate an approximation that satisfies these requirements
in the following sections.

4.3 Offline Reachability Analysis

Due to the nonlinearity and hybrid nature of the vehicle dynamics as in (3.39), it is chal-
lenging to compute trajectory of the ego vehicle exactly for evaluating the chance constraint
in (Opt-C). Therefore Risk-RTD adopts from REFINE the same offline reachability anal-
ysis in which a collection of zonotopes {Rj}j∈J is generated to outer-approximate the FRS
as described in Theorem 23. Notice {Rj}j∈J generated in Theorem 23 is a local represen-
tation of the ego vehicle’s behavior during the planning horizon in ego vehicle’s body frame
because it assumes x(0) = y(0) = h(0) = 0. To enforce vehicle safety condition online,

79

instead of transferring obstacle observation from the world frame into ego vehicle’s body
frame as REFINE does, Risk-RTD accounts for nonzero initial position and heading con-
ditions during zonotope slicing to match obstacle observation in the world frame through
the following lemma and theorem.

Lemma 37. Given arbitrary [x0, y0, h0]⊺ ∈ R3, zvel
0 ∈ R3 and p ∈ P , let z and z̃ be solutions

to (3.39) with initial conditions z(0) = [x0, y0, h0, (zvel
0)⊺]⊺ and z̃(0) = [0,0,0, (zvel

0)⊺]⊺
respectively, then

πxy(z(t)) = rotate(h0) ⋅ πxy(z̃(t)) + [x0, y0]⊺. (4.4)

Proof. Notice that z(0) and z̃(0) shares the same initial velocities, and that the dynamics
of [u, v, r]⊺ is invariant to the initial condition of [x, y, h]⊺. Therefore the last 3 dimensions
of z(t) and z̃(t) coincides for all t. Because ḣ(t) = r(t), then

[z(t)]3 = [z̃(t)]3 + h0. (4.5)

Then the claim follows from the fact that

⎡⎢⎢⎢⎢⎣

ẋ(t)
ẏ(t)

⎤⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎣

cos(h(t)) − sin(h(t))
sin(h(t)) cos(h(t))

⎤⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎣

u(t)
v(t)

⎤⎥⎥⎥⎥⎦
. (4.6)

Theorem 38. Let {Rj}j∈J be the collection of zonotopes in Theorem 23, and let z be the

solution to (3.39) with initial condition z(0) = z0 ∈ R3 ×Zvel
0 and control parameter p ∈ P .

Then there exists a map ξ̄ ∶ P (R9+np) ×Z0 ×P → P (W) such that

1. for any j ∈ J , ξ̄(Rj, z0, p) contains footprint of the ego vehicle during Tj , i.e.,

∪t∈Tj
E(t, z0, p) ⊆ ξ̄(Rj, z0, p), and

2. ξ̄(Rj, z0, p) ⊂ W is a zonotope of the form <cξ̄,j(z0) + Aξ̄,j ⋅ p, Gξ̄,j> with some

vector cξ̄,j(z0) ∈ R2, some matrix Aξ̄,j ∈ R2×np and some 2-row matrix Gξ̄,j .

Proof. For any z(0) = z0 = [x0, y0, h0, (zvel
0)⊺]⊺ ∈ R3 × Zvel

0 , let z̃ be the solution to (3.39)
with initial condition z̃(0) = [0,0,0, (zvel

0)⊺]⊺ with control parameter p. Then by Lemma
28, there exists a zonotope ξ(Rj, z

vel
0 , p) ⊂W such that for any j ∈ J and t ∈ Tj , the vehicle

footprint oriented and centered according to z̃(t) is contained within ξ(Rj, z
vel
0 , p). Let

ξ̄(Rj, z0, p) ∶= rotate(h0) ⋅ ξ(Rj, z
vel
0 , p) + [x0, y0]⊺, (4.7)

80

then ξ̄(Rj, z0, p) contains the ego vehicle’s footprint according to z(t) during Tj based on
Lemma 37.

In addition, ξ(Rj, z
vel
0 , p) is a zonotope and can be represented as <cξ,j(zvel

0) + Aξ,j ⋅
p, Gξ,j> with some cξ,j(zvel

0) ∈ W , some Aξ,j ∈ R2×np and some 2-row real matrix Gξ,j

as derived in Lemma 48 in Appendix C. Thus ξ̄(Rj, z0, p) is a zonotope of the form
<cξ̄,j(z0) +Aξ̄,j ⋅ p, Gξ̄,j> where

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

cξ̄,j(z0) = rot(h0) ⋅ cξ,j(zvel
0) + [x0, y0]⊺

Aξ̄,j = rot(h0) ⋅Aξ,j

Gξ̄,j = rot(h0) ⋅Gξ,j

. (4.8)

4.4 An Implementable Alternative to (Opt-C)

This section describes an implementable alternative to (Opt-C) that can be solved rapidly.
This is done by describing how to relax the chance constraint in (Opt-C) in a conservative
fashion.

4.4.1 Chance Constraint Relaxation

The chance constraint in (Opt-C) is relaxed conservatively as illustrated in Figure 4.2.
First, the chance of collision during [0, tf] is over approximated using the integration of the
probability density function (PDF) assumed in Assumption 34. Then we relax the domain
of integration into a collection of right-angled triangles, and relax the PDF as a quadratic
polynomial. Finally a closed-form formulation of the relaxed integration is provided.

4.4.1.1 PDF Integration

Recall the ego vehicle’s performance during the planning horizon is over-approximated by
ξ̄(Rj, z0, p) over all time interval Tj’s, then the chance constraint in (Opt-C) is relaxed in
the following theorem.

Theorem 39. Suppose the ego vehicle starts with initial condition z0 ∈ Z0 and control

parameter p ∈ P . Let {q(⋅ ∣ i, j)}i∈I,j∈J be assumed in Assumption 34, let matrix Gobs be

assumed in Assumption 35, and let map ξ̄ be described in Theorem 38. Then for arbitrary

81

(a) PDF Integration. (b) Domain Relaxation.

(c) Integrand Relaxation. (d) Closed-form Computation.

Figure 4.2: An illustration of chance constraint relaxation. Given arbitrary (i, j) ∈ I×J , in (a) the probability
of collision between the ego vehicle and the i-th obstacle during time interval Tj is relaxed as the integration
of probability density function q(⋅ ∣ i, j) over zonotope ξ̄(Rj , z0, p) ⊕<0, Gobs> ⊂ W shown in green. In
(b), ξ̄(Rj , z0, p)⊕<0, Gobs> is over-approximated by a collection of right-angled triangles colored in white
and black depending on if a triangle has nontrivial intersection with ξ̄(Rj , z0, p)⊕<0, Gobs> or not. In (c),
q(⋅ ∣ i, j) is approximated from below and above over each right-angled triangle using Interval Arithmetic.
And in (d), the integration of the over-approximation of q(⋅ ∣ i, j) over each right-angled triangle is computed
in closed-form.

ϵ ∈ [0,1],
∑
i∈I
∑
j∈J
∫
ξ̄(Rj ,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤ ϵ (4.9)

sufficiently implies

Prob(∪t∈[0,tf] (E(t, z0, p) ∩ (∪i∈I Oobs
i (t)))) ≤ ϵ. (4.10)

82

Proof. Notice that

∪t∈[0,tf] (E(t, z0, p) ∩ (∪i∈I Oest
i (t)))

= ∪j∈J ∪t∈Tj
(E(t, z0, p) ∩ (∪i∈I Oest

i (t))) (4.11)

= ∪j∈J ∪i∈I ∪t∈Tj
(E(t, z0, p) ∩Oest

i (t)) (4.12)

⊆ ∪j∈J ∪i∈I(∪t∈Tj
E(t, z0, p)) ∩ (∪t∈Tj

Oest
i (t)). (4.13)

For simplicity denote E1 the event of ∪t∈[0,tf](E(t, z0, p) ∩ (∪i∈I Oest
i (t))) ≠ ∅, and denote

E2 the event of ∪j∈J ∪i∈I (∪t∈Tj
E(t, z0, p)) ∩ (∪t∈Tj

Oest
i (t)) ≠ ∅. Because E1 being true

ensures E2 being true based on (4.13), then by monotonicity of probability measure,

Prob(E1) ≤ Prob(E2). (4.14)

Therefore Prob(E2) ≤ ϵ implies Prob(E1) ≤ ϵ. Notice by Boole’s inequality [72],

∑
i∈I
∑
j∈J

Prob((∪t∈Tj
E(t, z0, p)) ∩ (∪t∈Tj

Oest
i (t)) ≠ ∅) ≤ ϵ. (4.15)

is a sufficient condition of Prob(E2) ≤ ϵ, thus it suffices to show that (4.9) sufficiently
implies (4.15).

By Theorem 38, ∪t∈Tj
E(t, z0, p) ⊂ ξ̄(Rj, z0, p) for arbitrary j ∈ J , thus

∑
i∈I
∑
j∈J
∫∪t∈Tj E(t,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤∑
i∈I
∑
j∈J
∫
ξ̄(Rj ,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤ ϵ.

(4.16)

Notice by Assumption 34, q(wobs
i,j ∣ i, j) describes the probability density of wobs

i,j during Tj ,
thus

∫∪t∈Tj E(t,z0,p)⊕<0, Gobs>
q(w ∣ i, j) dw = Prob(wobs

i,j ∈ ∪t∈Tj
E(t, z0, p)⊕<0, Gobs>).

(4.17)

Then as a result of [37, Lem. 5.1],

∫∪t∈Tj E(t,z0,p)⊕<0, Gobs>
q(w ∣ i, j) dw = Prob((∪t∈Tj

E(t, z0, p)) ∩<wobs
i,j , G

obs> ≠ ∅).

(4.18)

83

For simplicity denote E3 the event that (∪t∈Tj
E(t, z0, p)) ∩ <wobs

i,j , Gobs> ≠ ∅, and
denote E4 the event that (∪t∈Tj

E(t, z0, p)) ∩ (∪t∈Tj
Oest

i (t)) ≠ ∅. Because E4 being true
sufficiently ensures E3 being true due to ∪t∈Tj

Oest
i (t) ⊂ <wobs

i,j , G
obs> by Assumption 35,

then by monotonicity of probability measure

Prob(E4) ≤ Prob(E3). (4.19)

Therefore (4.15) holds based on (4.16), (4.18) and (4.19).

As a sufficient condition of the chance constraint in (Opt-C), (4.9) in Theorem 39 re-
laxes the original collision probability as accumulated probability density integration over
all elements in I × J , where the domain of integration ξ̄(Rj, z0, p) ⊕ <0, Gobs> is an
over-approximation of the ego vehicle’s footprint buffered by swept volume of any ob-
stacle during time interval Tj . Next we focus on approximating the probability density
integration with arbitrary (i, j) ∈ I ×J by relaxing the domain and integrand of integration

∫ξ̄(Rj ,z0,p)⊕<0, Gobs> q(w ∣ i, j) dw.

4.4.1.2 Domain Relaxation

Recall by Theorem 38 that ξ̄(Rj, z0, p) can be rewritten as zonotope <cξ̄,j(z0) + Aξ̄,j ⋅
p, Gξ̄,j> = <cξ̄,j(z0), Gξ̄,j>+Aξ̄,j ⋅p. Then to relax the domain of integration ξ̄(Rj, z0, p)⊕
<0, Gobs>, we start by constructing a k-by-k grid that covers zonotope ξ̄(Rj, z0,0) ⊕
<0, Gobs> = <cξ̄,j(z0), [Gξ̄,j,G

obs]> where k is some user-specified positive integer.
Each cell in the grid shares the same size and is indexed by its row and column index in
the grid. Each cell in the grid is further divided into two right triangles that are indexed
by 1 or -1 depending on if the lower or upper regions of the block is covered respec-
tively. For notational convenience, denote Tj,k1,k2,k3(z0) ⊂ W the right triangle indexed
by k3 ∈ {−1,1} in the block on the k1-th row and k2-th column of the grid that covers
<cξ̄,j(z0), [Gξ̄,j,G

obs]>. Define

T j(z0) ∶= {Tj,k1,k2,k3(z0) ∣k1, k2 ∈ {1,2, . . . , k}, ∣k3∣ = 1,
Tj,k1,k2,k3(z0) ∩<cξ̄,j(z0), [Gξ̄,j,G

obs]> ≠ ∅}.
(4.20)

that collects all possible Tj,k1,k2,k3(z0) intersecting with <cξ̄,j(z0), [Gξ̄,j,G
obs]>, thus

<cξ̄,j(z0), [Gξ̄,j,G
obs]> ⊂ (∪T ∈T j(z0)T). (4.21)

84

Notice ξ̄(Rj, z0, p) = ξ̄(Rj, z0,0) +Aξ̄,j ⋅ p, therefore

ξ̄(Rj, z0, p)⊕<0, Gobs> ⊂ (∪T ∈T j(z0)T) +Aξ̄,j ⋅ p (4.22)

and

∫
ξ̄(Rj ,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤ ∑
T ∈T j(z0)

∫T +Aξ̄,jp
q(w ∣ i, j) dw. (4.23)

Remark 40. Note that for any T ∈ T j(z0), T depends on z0 and j. However we drop

its dependency on z0 and j in the remainder of this manuscript for notational simplicity.

Certainly as the value of k increases, one could generate a tighter cover of ξ̄(Rj, z0, p) ⊕
<0, Gobs>, but the computational consumption also increases as a trade-off due to the

increasing cardinality of T j(z0).

4.4.1.3 Integrand Relaxation

Given arbitrary p ∈ P and T ∈ T j(z0), denote wctr
T the vertex of the right angle in T , then

wctr
T + Aξ̄,jp gives the vertex of the right angle in T + Aξ̄,jp. To relax the integrand q, we

start by computing the 2nd-order Taylor Expansion of q(⋅ ∣ i, j) centered at wctr
T +Aξ̄,jp and

applying Mean Value Theorem (MVT) [90, Theorem 4.1] to eliminate higher order terms
in the Taylor Expansion as:

q(w ∣ i, j) =q(wctr
T +Aξ̄,jp ∣ i, j) +

∂q

∂w
(wctr
T +Aξ̄,jp ∣ i, j) ⋅ (w −wctr

T −Aξ̄,jp)+

+ 1

2
(w −wctr

T −Aξ̄,jp)⊺ ⋅ Hessq(w′ ∣ i, j) ⋅ (w −wctr
T −Aξ̄,jp)

(4.24)

where w′ ∈ T + Aξ̄,jp is some point on the line segment joining points wctr
T + Aξ̄,jp and w

in T + Aξ̄,jp, and Hessq gives the Hessian of q. Because MVT does not provide w′ in a
closed-form, we then drop the dependency of w′ in (4.24) by bounding the Hessian of q as
a matrix HT ∈ R2×2 where HT is generated by taking element-wise supremum of Hessq

over T ⊕ Aξ̄,jP using Interval Arithmetic [42]. Note by construction of T and wctr
T , it is

guaranteed that either w ≥ wctr
T + Aξ̄,jp for all w ∈ T + Aξ̄,jp or w ≤ wctr

T + Aξ̄,jp for all

85

w ∈ T +Aξ̄,jp, thus by definition of HT the following inequality holds for all w ∈ T +Aξ̄,jp:

q(w ∣ i, j) ≤ q(wctr
T +Aξ̄,jp ∣ i, j) +

∂q

∂w
(wctr
T +Aξ̄,jp ∣ i, j) ⋅ (w −wctr

T −Aξ̄,jp)+

+ 1

2
(w −wctr

T −Aξ̄,jp)⊺ ⋅HT ⋅ (w −wctr
T −Aξ̄,jp)

=∶ qT (w,p ∣ i, j).

(4.25)

Note the inequality in (4.25) flips if HT is generated by taking element-wise infimum of
Hessq, thus a under-estimation of q is constructed. However because our goal is to ensure
vehicle safety with a chance of collision bounded from above, an over-estimation of q is
preferred.

Remark 41. To achieve a tighter upper bound of q on T + Aξ̄,jp, one can replace HT in

(4.25) by some matrix HT (p) ∈ R2×2, which is computed by taking element-wise supremum

of Hessq over T +Aξ̄,jp instead of T ⊕Aξ̄,jP using Interval Arithmetic. However recall

that we aim for over-approximating ∫ξ̄(Rj ,z0,p)⊕<0, Gobs> q(w ∣ i, j) dw in closed-form while

maintain differentiability, when q gets complicated, taking the derivative of HT (p) with

respect to p becomes intractable easily due to the involvement of Interval Arithmetic. On

the other hand, derivative of HT with respect to p is simply 0 because by construction HT
is invariant over P .

4.4.1.4 Closed-form Computation

As a result of (4.23) and (4.25), the following inequality holds:

∫
ξ̄(Rj ,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤ ∑
T ∈T j(z0)

∫T +Aξ̄,jp
qT (w,p ∣ i, j) dw. (4.26)

Notice that qT (w,p ∣ i, j) defined in (4.25) is indeed a quadratic polynomial of w, and
T +Aξ̄,jp is a simplex in R2. One can then compute ∫T +Aξ̄,jp

qT (w,p ∣ i, j) dw in closed-
form in the following theorem, and the derivative of ∫T +Aξ̄,jp

qT (w,p ∣ i, j) dw with respect
to p is provided in Section 4.4.3.

Theorem 42. For any i ∈ I , j ∈ J , z0 ∈ Z0, p ∈ P and T ∈ T j(z0) where T j(z0) is defined

as in (4.20), let Aξ̄,j ∈ R2×np be defined as in Theorem 38, let qT be defined as in (4.25), and

let idxk3(T) ∶= k3 ∈ {−1,1} denote the last index of Tj,k1,k2,k3(z0) as in (4.20). Assume

that positive numbers l1 and l2 give the lengths of horizontal and vertical right angle sides

86

of T respectively, then

∫T +Aξ̄,jp
qT (w,p ∣ i, j) dw =

1

2det(AT)
(fT ,0(p ∣ i, j) + fT ,1(p ∣ i, j) + fT ,2(p ∣ i, j))

(4.27)

with

AT =
⎡⎢⎢⎢⎢⎣

idxk3(T)/l1 0

0 idxk3(T)/l2

⎤⎥⎥⎥⎥⎦
, (4.28)

ĤT = A−⊺T HTA−1T , (4.29)

fT ,0(p ∣ i, j) = q(wctr
T +Aξ̄,jp ∣ i, j), (4.30)

fT ,1(p ∣ i, j) =
∂q

∂w
(wctr
T +Aξ̄,jp ∣ i, j) ⋅A−1T ⋅

⎡⎢⎢⎢⎢⎣

1
3
1
3

⎤⎥⎥⎥⎥⎦
, (4.31)

fT ,2(p ∣ i, j) = [1
4
√
3

1
4
√
3
]
⎛
⎝
ĤT ⊙

⎡⎢⎢⎢⎢⎣

2 1

1 2

⎤⎥⎥⎥⎥⎦

⎞
⎠

⎡⎢⎢⎢⎢⎣

1
2
√
3

1
2
√
3

⎤⎥⎥⎥⎥⎦
, (4.32)

where ⊙ denotes the element-wise multiplication.

Proof. The claim follows from [58, Theorem 1.1] and the fact that AT ((T +Aξ̄,jp)−(wctr
T +

Aξ̄,jp)) equals the canonical simplex ∆ ∶= {(x, y) ∈ R2 ∣ x + y ≤ 1, x ≥ 0, y ≥ 0}.

4.4.2 Enhanced Online Optimization

Computation in Section 4.4.1 provides a more tractable way of enforcing vehicle safety
compared to the original chance constraint in (Opt-C), thus we instead solve the following
optimization during online planning in Risk-RTD.

min
p∈P

cost(z0, p) (Opt-CE)

s.t. ∑
i∈I
∑
j∈J

∑
T ∈T j(z0)

∫T +Aξ̄,jp
qT (w,p ∣ i, j) dw ≤ ϵ

(Opt-CE) is an enhanced version of (Opt-C) because the chance constraint in (Opt-CE)
sufficiently implies the chance constraint in (Opt-C) by Theorem 39, (4.21) and (4.25).
Thus the following theorem holds based on Definition 36.

Theorem 43. If the ego vehicle applies any feasible solution, p∗ ∈ P , of (Opt-CE) begin-

ning from z0 at t = 0, then the ego vehicle is not-at-fault with a chance of collision at most

ϵ during [0, tf].

87

4.4.3 Constraint Gradient

Because (Opt-CE) is expected to be solved in real time, providing derivatives of con-
straints could be helpful for speeding up the solving procedure of online optimization. To
compute the gradient of chance constraint in (Opt-CE), it suffices to compute the deriva-
tives of fT ,0(p ∣ i, j), fT ,1(p ∣ i, j) and fT ,2(p ∣ i, j) in Theorem 42 with respect to p. Note
q is twice-differentiable as in Assumption 34, then

∂fT ,0
∂p
(p ∣ i, j) = ∂q

∂w
(wctr
T +Aξ̄,jp ∣ i, j) ⋅Aξ̄,j, (4.33)

∂fT ,1
∂p
(p ∣ i, j) =

⎡⎢⎢⎢⎢⎣

1
3
1
3

⎤⎥⎥⎥⎥⎦

⊺

A−⊺T Hessq(wctr
T +Aξ̄,jp ∣ i, j) ⋅Aξ̄,j, (4.34)

∂fT ,2
∂p
(p ∣ i, j) =

⎡⎢⎢⎢⎢⎣

0 0

0 0

⎤⎥⎥⎥⎥⎦
. (4.35)

4.4.4 Parallelization

Notice the computation of ∫T +Aξ̄,jp
qT (w,p ∣ i, j) dw can be achieved in parallel for all

(i, j,T) ∈ I × J × T j(z0). Thus we summarize the parallel computation of the chance
constraint in (Opt-CE) in Algorithm 2. T j(z0) is generated in line 2 for all j ∈ J . Within
the parallel for loop from line 3 to 9, wctr

T and AT are first generated in line 4, the over-
approximation of the probability integration is computed from line 5 to 6, and gradient of
the over-approximation is computed from line 7 to 8. Finally the chance constraint and its
gradient are evaluated in line 10 and 11.

Algorithm 2 Chance Constraint Parallelization

Require: z0, p′, {f(⋅ ∣ i, j)}i∈I,j∈J , {Rj}j∈J
Generate {T j(z0)}j∈J as in (4.20) using {Rj}j∈J
Parfor (i, j,T) ∈ I ×J × T j(z0) do

Compute wctr
T and AT

Compute fT ,0, fT ,1, fT ,2 as in (4.30), (4.31), (4.32)
c(p′, i, j,T)← 1

2det(AT)(fT ,0 + fT ,1 + fT ,2)
Compute ∂fT ,0

∂p ,
∂fT ,1

∂p ,
∂fT ,2

∂p as in (4.33), (4.34), (4.35)

dc(p′, i, j,T)← 1
2det(AT) (

∂fT ,0

∂p +
∂fT ,1

∂p +
∂fT ,2

∂p)
End parfor
con← ∑i∈I∑j∈J ∑T ∈T j(z0) c(p′, i, j,T)
dcon← ∑i∈I∑j∈J ∑T ∈T j(z0) dc(p′, i, j,T)

88

4.5 Extension on Risk Threshold Selection

So far we have assumed the risk threshold ϵ is some constant in [0,1]. However it is
unclear how the risk threshold ϵ should be selected. Most works evaluate the ego vehicle
performance at different thresholds and arbitrarily select a threshold that they deem fit and
keep it constant for the entire time during the operation of a robot [65, 105, 113]. In this
section we present a novel methodology for systematically varying the risk threshold based
on how likely it is for the passengers of the vehicle to be injured should a crash occur
during the motion plan. For the rest of this section, we shall refer to this likelihood of
injury should a crash occur as the risk of injury. This methodology allows the ego vehicle
to only be conservative when it has to ensure passenger safety (i.e., when the risk of injury
is high), and be less conservative in situations where the passenger are less likely to be
injured should a collision occur (i.e., when the risk of injury is low).

This methodology hinges on being able to compute this risk of injury at the beginning
on each motion plan. To compute the risk of injury, we make the following assumption,
whose satisfaction can be satisfied by, for example, using lidar data in conjunction with an
extended Kalman filter [1, 5].

Assumption 44. There exists some upper and lower bounds of the longitudinal velocity of

the i-th obstacle given by ui and ui such that ui(t) ∈ [ui, ui], for all t ∈ [0, tf].

Given the estimated velocity bounds of sensed obstacles, Risk-RTD then computes the
relative velocity of the ego vehicle with respect to each obstacle. It is important to note
that the ego vehicle velocity may vary over the time interval [0, tm] based on the planned
action. As such, for each obstacle and ego vehicle pair, the relative velocity will vary over
the time interval [0, tm]. Thus, to ensure that we do not underestimate the risk of injury, for
each obstacle and ego vehicle pair we must compute the supremum of this range of relative
velocities. Such supremum is computable because velocity of any obstacle is bounded as
assumed in Assumption 44 and velocity of ego vehicle is bounded by tracking error usmall as
derived the proof of Lemma 21 in Appendix B. Let urel

i for any i ∈ I be the supremum of the
estimated relative velocity of the ego vehicle with respect to the i-th obstacle during [0, tm].
We then compute the estimated risk of serious injuries (MAIS3+) [32] to passengers should
a collision occur with the i-th obstacle as αinj(urel

i)where αinj ∶ R→ [0,1] gives the binary
logistic model with parameters adopted from [13, Table A]. For each obstacle, Risk-RTD
then decides how conservatively this obstacle should be treated by either 1) enforcing a
near zero chance of collision with the obstacle if the risk of serious injury is greater than
some user-defined threshold αcrit, or 2) selecting risk levels from human crash data if it

89

can afford to treat this obstacle less conservatively because the risk of serious injury is less
than αcrit.

In the first case when αinj(urel
i) ≥ αcrit, precisely enforcing 0 chance of collision could

be too conservative because the probabilistic description of an obstacle may have non-zero
probability density for all w ∈ W . Therefore we instead relax the chance of collision to
some user-specified number η > 0 sufficiently close to 0, and make the following assump-
tion.

Assumption 45. For each (i, j) ∈ J × I , there exists a 2-row matrix Govr
i,j (η) such that

1 − ∫
<Eq(w∣i,j), Govr

i,j(η)>
q(w ∣ i, j)dw ≤ η (4.36)

where Eq(w ∣ i, j) is the expectation of the location of the i-th obstacle over Tj satisfying

q.

Based on Assumption 45, zonotope <Eq(w ∣ i, j), Govr
i,j (η)> captures almost all proba-

bility mass of q given (i, j) ∈ I ×J . Therefore ξ̄(Rj, z0, p) ∩<Eq(w ∣ i, j), Govr
i,j (η)> = ∅

implies that Prob((∪t∈Tj
E(t, z0, p)) ∩ (∪t∈Tj

Oi(t)) ≠ ∅) ≤ η. For notational simplicity,
define Iη-risk ∶= {i ∈ I ∣ αinj(urel

i) ≥ αcrit} and I risk ∶= {i ∈ I ∣ αinj(urel
i) < αcrit}.

For the i-th obstacle with i ∈ I risk we apply our chance constraint from (Opt-CE) and
set the risk threshold to match human risk levels. We estimate human risk levels based on
the percentage of licensed drivers that are involved in crashes per year using crash statistics
from the National Highway Traffic Safety Agency (NHTSA) [29]. We leverage the crash
data reported at various driving speeds to get a set of human risk data that varies as a
function of traveling velocity. The following polynomial ϵdyn ∶ R → R was used to fit these
data with an R-squared value of 0.965 in order to obtain a closed-form approximation of
these human risk levels:

ϵdyn(u(t)) =1.53 × 10−8u4(t) − 1.84 × 10−6u3(t)+
+ 5.49 × 10−5u2(t) + 1.1 × 10−4u(t) + 2.23 × 10−5

(4.37)

where u(t) is in miles per hour (mph). ϵdyn is a continuous function that gives the risk
levels human drivers use as as function of their traveling velocity. Recall that [0, tm]
is the time interval that the driving maneuver is executed in. Depending on the driving
maneuver, u(t) will vary over t ∈ [0, tm]. To ensure that we do not exceed human risk
levels over the execution of the trajectory we select a lowest human risk threshold, i.e.
inft∈[0,tm] ϵdyn(u(t)), over our range of velocities during the trajectory. The following the-
orem shows that inft∈[0,tm] ϵdyn(u(t)) is piece-wise differentiable, which can be helpful to

90

increase the solving procedure of online optimization as presented in the next subsection.

Theorem 46. Let u be the longitudinal velocity of the solution to (3.39) from initial con-

dition z0 ∈ Z0 with control parameter p ∈ P . There exists some piece-wise differentiable

function ϵ ∶ Z0 ×P → [0,+∞) such that ϵ(z0, p) = inft∈[0,tm] ϵdyn(u(t)).

Proof. See Appendix D.

Note that in Theorem 46 we have abused notation and have allowed ϵ to vary as a func-
tion of z0 and p. This varying threshold allows us to dynamically select the risk threshold
based on the risk of injury to the passenger beginning of each planning iteration, instead of
arbitrarily setting a constant ϵ value as done in the earlier chance constraint in (Opt-CE).
With this varying threshold we instead solve the following optimization:

min
p∈P

cost(z0, p) (Opt-CV)

s.t. ξ(Rj, z0, p) ∩<Eq(w ∣ i, j), Govr
i,j (η)> ≠ ∅,∀i ∈ Iη-risk, j ∈ J

∑
i∈Irisk

∑
j∈J

∑
T ∈T j(z0)

∫T +Ajp
qT (w,p ∣ i, j) dw ≤ ϵ(z0, p)

where cost ∶ Z0 × P → R is a user-specified cost function. The first constraint conser-
vatively bounds the uncertain region with a zonotope and ensures that any solution found
by Risk-RTD has bounded chance of colliding with all Oi such that i ∈ Iη-risk as assumed
in Assumption 45. The second constraint is similar to the chance constraint introduced
in (Opt-CE), except that ϵ(z0, p) has replaced ϵ and it only accounts for all Oi such that
i ∈ I risk. The not-at-fault behavior of the vehicle is given by the following theorem.

Theorem 47. If the ego vehicle applies any feasible solution, p∗ ∈ P , of (Opt-CV) begin-

ning from z0 at t = 0, then the ego vehicle is not-at-fault with a chance of collision at most

ϵ(z0, p∗) + ∣Iη-risk∣∣J ∣η during [0, tf].

Proof. Through the same reasoning as in the proof of Theorem 39, it suffices to show that

∑
i∈I
∑
j∈J

Prob((∪t∈Tj
E(t, z0, p∗)) ∩ (∪t∈Tj

Oi(t)) ≠ ∅) ≤ ϵ(z0, p∗) + ∣Iη-risk∣∣J ∣η. (4.38)

In addition, as an analog to (4.16) we have

∑
i∈Irisk

∑
j∈J
∫∪t∈Tj E(t,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤

≤ ∑
i∈Irisk

∑
j∈J
∫
ξ̄(Rj ,z0,p)⊕<0, Gobs>

q(w ∣ i, j) dw ≤ ϵ(z0, p∗).

(4.39)

91

Notice that the set intersection constraints in (Opt-CV) ensure

Prob((∪t∈Tj
E(t, z0, p∗)) ∩ (∪t∈Tj

Oest
i (t)) ≠ ∅) ≤ η (4.40)

for all i ∈ Iη-risk by Assumption 45. Then based on (4.18), (4.19) and the fact that I =
Iη-risk ∪ I risk, (4.38) follows by iteratively adding (4.40) to (4.39) for all i ∈ Iη-risk and for
all j ∈ J .

4.6 Experiments

This section describes multiple experiments to demonstrate the performance of Risk-RTD.
We first verify tightness and computational efficiency of the proposed closed-form over-
approximation of risk of collision. Next we test the proposed Risk-RTD framework in
simulation with randomly generated scenarios. All experiments are conducted in MATLAB
R2021b on a laptop with an 8 Cores Intel i9-10980HK CPU, an Nvidia GeForce RTX 3080
GPU, and 32GB RAM. Involved parallel implementation for experiments is achieved using
CUDA 11.0. Among all experiments, we adopt vehicle and control parameters, families of
desired trajectories, initial condition and control parameter spaces, and the collection of
zonotope reachable sets {Rj}j∈J generated with ∆t = 0.01 [sec] from REFINE in Chapter
3.

4.6.1 Evaluation on Tightness and Computational Efficiency

For effective motion planning, we expect a tight over-approximation of the risk of colli-
sion. To evaluate the tightness of proposed over-approximation, we compare the proposed
method of chance integration approximation against Monte-Carlo integration [17, Chap-
ter 4], Chance-Constrained Parallel Bernstein Algorithm (CCPBA) [105, Chapter 6] and
Cantalli’s inequality [113, eq. (17)] through 3039 randomly generated tests. In each test,
(j, i, z0, p) is randomly chosen from J × I × Z0 × P where I = {1}, and q is set to be
the probability density function of a 2D Gaussian distribution with randomly generated
mean and variance. Assume the only obstacle is a dynamic vehicle that has zero heading
and shares the same size of footprints with the ego vehicle, then Gobs is chosen such that
<0, Gobs> = Oego ⊕ int([0,0]⊺, [νobs ⋅∆t,0]⊺) where νobs = 25 [mps]. Note such choice
of Gobs is used in all the following experiments as well.

We treat Monte-Carlo integration of q(⋅ ∣ j, i) over ξ̄(Rj, z0, p) ⊕ <0, Gobs> as the
ground truth of chance integration ∫ξ̄(Rj ,z0,p)⊕<0, Gobs> q(w ∣ j, i) dw. Such Monte-Carlo

92

Method Avg. Max. Avg. Max.
Absolute Error Absolute Error Runtime [ms] RunTime [ms]

Cantelli 0.4366 0.5533 0.0140 0.0663
CCPBA 0.1881 0.2149 1.1012 3.5820

Risk-RTD 0.0073 0.0523 0.4372 2.3150

Table 4.1: Integration error of Gaussiandistribution compared to Monte-Carlo integration as the ground truth.

integration is performed by randomly sampling the world space 106 times according to q

and counting the number of samples that fall inside ξ̄(Rj, z0, p) ⊕ <0, Gobs>. With the
proposed method being utilized, integration area ξ̄(Rj, z0, p) ⊕ <0, Gobs> is covered by
a 24-by-24 grid for the generation of T j(z0). Because CCPBA can only integrate over a
polynomial set, to utilize CCPBA we need to approximate ξ̄(Rj, z0, p)⊕<0, Gobs> as the
superlevel set of some degree-4 polynomial function ρ ∶ W → R solved by the following
polynomial optimization.

min
ρ

∫W ρ(w) dw (Poly-Opt)

ρ(w) − 1 ≥ 0, ∀w ∈ ξ̄(Rj, z0, p)⊕<0, Gobs>

ρ(w) ≥ 0, ∀w ∈W

By construction, the optimal solution ρ of (Poly-Opt) is an over-approximation of the
indicator function of ξ̄(Rj, z0, p) ⊕ <0, Gobs>. Note ρ is constructed conservatively be-
cause polynomial reachable sets are in general more conservative than zonotope reachable
sets as observed in Chapter 3.

As shown in Figure 4.3, compared to CCPBA, the proposed method provides much
tighter over-approximation of the ground truth generated by Monte-Carlo integration in all
3039 testing scenarios. This is because CCPBA has to integrate over a larger area than the
proposed method. In most scenarios, Cantelli’s inequality gives even more conservative
over-approximation of the risk of collision compared to CCPBA. Statistic of computa-
tion error is illustrated in Table 4.1 along with the associated average and maximum times
to approximate the probability integration. Among all tests, Cantelli achieves the lowest
computation time of the approximation and CCPBA needs the most time to approximate a
chance integration in general.

To test generality of the proposed method, we reuse aforementioned 3039 random tests
except that this time q is set to be the probability density of either a randomly generated
bivariate beta distribution [78] or a multimodel distribution as a mixture of two randomly
generated 2D Gaussian distributions. Ground truth of the probability density integration

93

47
Figure 4.3: This shows the testing results for the risk of collision estimation error between the each of the
comparison methods and the ground truth risk of collision generated via Monte-Carlo integration. Risk-RTD
is able to get a significantly lower risk estimation error in most scenarios.

Exponential Family Avg. Absolute Error Max. Absolute Error
Gaussian 0.0073 0.0523

Bivariate beta 0.0055 0.0172
Multimodal 0.0138 0.0435

Table 4.2: Integration error of multiple exponential families using the proposed method.

is also generated using Monte-Carlo integration. Because CCPBA is unable to handle a
distribution that is not normal, we only test using Risk-RTD. As shown in Table 4.2, the
proposed method is able to consistently provide tight over-approximation of the chance
integration when q describes a 2D beta distribution or a multimodel distribution.

4.6.2 Simulation

We test the performance of Risk-RTD under a number of 3-lane highway driving scenarios
with lane width as 3.7 [m]. In each scenario, a full-size FWD vehicle with u(0) = 20 [m/s]
and parameters as shown in Table 3.1 is treated as the ego vehicle. The ego vehicle is
controlled with the robust feedback linearization controller proposed in Chapter 3, and is
tasked to autonomously navigate itself through the traffic. The probability density function
q is assumed to describe a Gaussian distribution so that CCPBA can be applied.

94

4.6.2.1 Single Planning Iteration

In this experiment we compare the performance of Risk-RTD to that of CCPBA, and Can-
telli MPC in simulation over 10 randomly generated scenarios. Each scenario contains 1
static obstacle and between 4 to 9 dynamic obstacles, where the number of dynamic ob-
stacles is randomly selected for each scenario. The initial speed of all dynamic obstacles
are also randomly sampled from between 15 [m/s] to 25 [m/s] in each scenario. The ego
vehicle is randomly initialized in a lane, and is commanded to navigate itself to a given
waypoint in a different lane within a single planning iteration with tplan = 3 [sec] and lim-
ited risk of collision as 5%. The waypoint is provided in a way that the ego vehicle is
expected to reach by a lane change maneuver within 6 [sec] without any collision. Each
scenario is simulated for 200 trials, so these result in a total of 2000 simulation cases.

Among the 200 trials of the same scenario, for arbitrary (j, i) ∈ J × I , the i-th obstacle
is always initialized with the same states but follows different trajectories that satisfies the
same probability density function q(⋅ ∣ j, i) during Tj . In other words, these trajectories are
selected such that the locations of the i-th obstacle at the middle time of Tj are randomly
sampled from q(⋅ ∣ j, i) for each trial, where q(⋅ ∣ j, i) is kept constant for all trials of the
same scenario for any (j, i) ∈ J × I . In particular, for each (j, i) ∈ J × I , q is generated
such that Eq(w ∣ j, i) results in a trajectory on the center of a lane with constant speed
as j increases within J . And the standard deviation σj,i of q(⋅ ∣ j, i) is chosen such that
the 3σj,i-region of this Gaussian distribution covers the area of width 3.7 −W and length
L + ui(0) ⋅∆t. Note the choice of width 3.7 −W ensures that the footprint of the obstacle
stays inside the lane with a probability more than 99.7%.

Table 4.3 presents the statistic of simulation results of Risk-RTD, CCPBA and Can-
telli MPC for the experiment on single planning iteration. In this experiment, a success is
defined as being able to find a feasible lane change maneuver. Risk-RTD is able to suc-
cessfully execute the lane change maneuver 81.8% among all simulation cases, and among
the other 18.2% of simulation cases it either decides to stay in lane, or is unable to find
a solution and executes its fail-safe stopping maneuver. In addition, Risk-RTD does not
have any crashes in these 2000 simulation cases. CCPBA is able to successfully execute
the lane change maneuver 55.2% among all simulation cases, and it decides to either stay
in lane or come to a safe stop 44.8% of simulation cases. CCPBA also does not have any
crashes. Cantelli MPC is only able to successfully execute the lane change maneuver 9.1%
among all simulation cases. It either stays in lane or comes to a safe stop among 55.5%
of all simulation cases, and it crashes in 35.4% of all simulation cases. Risk-RTD is able
to achieve a higher success rate than CCPBA and Cantelli MPC due to the fact that it is
able to more closely approximate the actual risk of collision as indicated in Section 4.6.1.

95

Method Success Crash Other Online Planning Runtime
[%] [%] Action [%] (Avg., Max.) [sec]

Risk-RTD 81.8 0.0 18.2 (0.812, 0.907)
CCPBA 55.2 0.0 44.8 (0.291, 0.396)

Cantelli MPC 9.1 35.4 55.5 (0.643, 0.658)

Table 4.3: Single planning iteration results using Risk-RTD, CCPBA and Cantelli MPC. “Other Action”
encompasses the trials where each method does not complete the lane change manuever, but instead executes
a speed change maneuver, a direction change maneuver, a safe stop manuever, or just decides to keep driving
in lane.

This allows Risk-RTD to generate plans that navigate the ego vehicle through more difficult
scenarios, while conservative over-approximation of the risk of collision is still possible to
yield plans that are infeasible. Cantelli MPC has a relatively substantial number of crashes,
because unlike Risk-RTD and CCPBA, Cantelli MPC does not have a failsafe manuever
for when it cannot find a solution. As a result when Cantelli MPC cannot find a solution,
it just maintains the ego vehicle’s velocity within the lane while keeping searching, thus a
crash may occur if there is an obstacle in front of the ego vehicle. Figure 4.4 provides an
example of tested simulation case in which the chance of collision is limited by 5% and the
ego vehicle is able to reach the provided waypoint through a lane change maneuver without
a collision using Risk-RTD and CCPBA. However because Cantelli fails to find a feasible
plan, the ego vehicle ends up with a crash.

Note both Risk-RTD and CCPBA had 0 crashes for these 200 trials due to the fact
that they still over-approximate the risk of collision. In the plans that they are able to
execute, the actual probability of crashing evaluated via Monte-Carlo integration is usually
around 0.1%, which is much smaller than 5%, so it is possible to see no crash within just
2000 trials. A detailed analysis of conservatism of the proposed probability integration is
provided in Section 4.6.3.

To test how different values of risk threshold affects the performance of the proposed
method, the same 2000 simulation cases are tested again with Risk-RTD with the risk of
collision limited by 0.5%, 5%, 10% and ϵ(z0, p) presented in Theorem 46. Among all
2000 simulation cases, ϵ(z0, p) results in staying between 0.01 and 0.02. Table 4.4 presents
the statistic of simulation results using Risk-RTD under various risk thresholds. Clearly
as the risk threshold increases, Risk-RTD gets easier to find a feasible solution to fulfil
the task, thus the success rate increases as well. Figure 4.5 provides an example of tested
simulation case in which Risk-RTD is used to navigate the ego vehicle towards the provided
waypoint. With the risk threshold being 0.005, Risk-RTD is unable to find a feasible lane
change maneuver, thus executes a speed change maneuver to follow the traffic. With the

96

1

1

1

2

2

2

3

3

3

4

4

5

6

6

7

7

8

8

(a) Risk-RTD utilized.

1

1

1

2

2

2

3

3

3

4

4

5

6

6

7

7

8

8

(b) CCPBA utilized.

1

1

1

2

2

2

3

3

3

4

4

5

6

6

7

7

8

8

(c) Cantelli MPC utilized.

Figure 4.4: Example of a simulated scenario in which Risk-RTD and CCPBA are able to navigate the ego ve-
hicle (black) to the provided waypoint (black cross) through a lane change maneuver solved by one planning
iteration, while Cantelli MPC results in a crash. Forward reachable sets are shown in green. Obstacles are
shown in white and are marked by their indices to make them trackable among different time instances.

97

Risk Threshold Success [%] Crash [%] Other Action [%]
0.005 54.6 0.0 45.4
0.05 81.8 0.0 18.2
0.10 90.6 0.0 9.4

ϵ(z0, p) ∈ [0.01,0.02] 76.8 0.0 33.2

Table 4.4: Single planning iteration results using Risk-RTD under various risk thresholds. “Other Action”
encompasses the trials where each method does not complete the lane change manuever, but instead executes
a speed change maneuver, a direction change maneuver, or a safe stop manuever.

risk threshold being 0.05 and ϵ(z0, p), Risk-RTD is able to find a feasible lane change
maneuver that only results in a lateral displacement of half of the lane width. With the risk
threshold being 0.10, Risk-RTD is able to find a feasible lane change maneuver that results
in a lateral displacement of three quarters of the lane width.

4.6.2.2 Multiple Planning Iterations

We compare Risk-RTD against CCPBA and Cantelli MPC over a 1000 randomly gener-
ated 3-lane highway scenarios in simulation with risk threshold set to be a constant value
0.05. In each simulation scenario the ego vehicle is expected to navigate through dynamic
traffic for 1000[m] from a given initial position with tplan = 3[sec]. Each highway scenario
contains 3 static obstacles and a number of moving vehicles as dynamic obstacles, where
the number of moving vehicles in each scenario randomly varies between 5 and 25. Initial-
izations of each dynamic obstacle and its corresponding probility density function q with
each j ∈ J are performed in the same way as explained in Section 4.6.2.1. The ego vehicle
is initialized in the center of the first (bottom) lane with zero heading, zero lateral velocity,
zero yaw rate, and initial longitudinal speed as 20 [m/s].

Similar as in Section 4.6.2.1, each scenario is simulated for 10 trials among which each
dynamic obstacle follows different trajectories that satisfy the same series of probability
density functions. The uncertain observation of each dynamic obstacle is described in the
same way as in the single planning iteration highway experiment. Table 4.5 presents the
statistic of simulation results using Risk-RTD, CCPBA and Cantelli MPC among all the
10000 simulation cases. In this experiment, a success is defined as being able to success-
fully navigate through the entire 1000 [m] highway and reach the goal. Risk-RTD is able to
successfully navigate through the highway 78.9% of the time, comes to a safe stop partially
through the highway 20.7% of the time and crashes 0.4% of the time. CCPBA is able to
successfully through the highway 19.4% of the time, comes to a safe stop 79.6% of the
time and crashes 1.0% of the time. Cantelli MPC is only able to successfully through the

98

1
2 3

45

1

2 3

45

6

7
8

1
2

45

6

7

8

1
2

45

6

7

8

1
2

45

6

7

8

(a) Risk threshold as 0.005.

1
2 3

45

1

2 3

45

6

7
8

1
2

45

6

7

8

1
2

45

6

7

8

1
2

45

6

7

8

(b) Risk threshold as 0.050.

1
2 3

45

1

2 3

45

6

7
8

1
2

45

6

7

8

1
2

45

6

7

8

1
2

45

6

7

8

(c) Risk threshold as 0.100.

1
2 3

45

1

2 3

45

6

7
8

1
2

45

6

7

8

1
2

45

6

7

8

1
2

45

6

7

8

(d) Risk threshold as ϵ(z0, p).

Figure 4.5: Example of a simulated scenario in which Risk-RTD is utilized under various risk thresholds. Ego
vehicle and its trajectory are shown in black, forward reachable sets are shown in green, and the provided
waypoint is shown as the black cross. Obstacles are shown in white and are marked by their indices to make
them trackable among different time instances.

highway 17.5% of the time, crashed 82.5% of the time, and never comes to a safe stop due
to the lack of a braking maneuver. Compared to the single planning iteration experiments,
Risk-RTD has a small drop in success rate. This is expected as over a highway scenario
of multiple planning iterations, once Risk-RTD has executed an action, it may start the
next planning iteration from an initial condition where it is difficult to find a solution that
satisfies the constraint. This is also the case for CCPBA and Cantelli MPC.

Risk-RTD is also compared against deterministic approaches REFINE and SOS-RTD
to see how chance constraint improves the aggressiveness of the driving behavior. As
shown in Table 4.5, success rates of REFINE and SOS-RTD are significantly lower than
that of Risk-RTD, because deterministic approaches are more conservative and try to avoid
a much larger area to achieve fully safety. However, both deterministic approaches results

99

Method Success [%] Crash[%] Safely Stop [%] Avg. Speed [m/s]
Risk-RTD 78.9 0.4 20.7 18.1328
CCPBA 19.4 1.0 79.6 15.8395

Cantelli MPC 17.5 82.5 0.0 16.6322
REFINE 61.6 0 38.4 16.5927

SOS-RTD 14.6 0 85.4 15.3302

Table 4.5: Statistic of simulation results using Risk-RTD, CCPBA, Cantelli MPC, REFINE and SOS-RTD.

in zero crash rates. Figure 4.6 provides an example of tested simulation scenarios with
Risk-RTD, REFINE and SOS-RTD. It can be seen that Risk-RTD allows the ego vehicle to
travel aggressively and try to surpass moving obstacles in the middle lane. However with
REFINE being applied, the ego vehicle fails to find a feasible plan at the second planning
iteration thus execute a stopping maneuver. And later on as its speed is decreased till
t = 6[s], the ego vehicle finds a feasible plan again and starts following the moving vehicle
ahead. On the other hand, because the traffic is dense at time t = 0[s] and the polynomial
reachable sets are more conservative than zonotope reachable sets, the ego vehicle tries to
vary its speed but fails and ends up with a stop.

4.6.3 Analysis on Tightness of Probability Integration

Recall among all simulation cases in Section 4.6.2.1, Risk-RTD results in 0 crash rate even
the risk threshold is set to 0.10 = 10%. This suggests the proposed over-approximation
of risk of collision during the planning horizon, ∑j∈J ∑i∈Irisk∑T ∈T j(z0) ∫T +Aξ̄,jp

qT (w,p ∣

j, i) dw, is still too conservative compared to the actual risk of collision Prob(∪t∈[0,tf]

(E(z(t), z0, p) ∩ (∪i∈I Oi(t)))). This subsection discusses three reasons that contribute
notable conservatism to the proposed over-approximation of risk of collision.

The first reason that introduces conservatism is the usage of Boole’s inequality in The-
orem 39. Boole’s inequality is used to account for the interdependence among time in-
tervals {Tj}j∈J , and it is known that Boole’s inequality is overly conservative in general.
In addition, Boole’s inequality becomes more conservative if one increases the number of
probabilities to be accumulated. To test how much conservatism Boole’s inequality intro-
duces, we consider the same planning iterations that are used in Section 4.6.2.1, and we
use Monte-Carlo integration to compute the chance integration so that the conservatism in-
troduced by the proposed over-approximation in Risk-RTD is avoided. In particular given
arbitrary i ∈ I , Boole’s inequality over-approximates the risk of collision with the i-th

100

0 50 100 150 200
-5

0

5

10

t = 0.00

6

 5

 4

 3 2

 1

0 50 100 150 200
-5

0

5

10

t = 3.00

6

 5

 4

 3 2

 1

0 50 100 150 200
-5

0

5

10

t = 6.00

6

 5

 4

 3 2

 1

(a) Risk-RTD utilized.

0 50 100 150 200
-5

0

5

10

t = 0.00

6

 5

 4

 3 2

 1

0 50 100 150 200
-5

0

5

10

t = 3.00

6

 5

 4

 3 2

 1

0 50 100 150 200
-5

0

5

10

t = 6.00

6

 5

 4

 3 2

 1

(b) REFINE utilized.

0 50 100 150 200
-5

0

5

10

t = 0.00

6

 5

 4

 3 2

 1

0 50 100 150 200
-5

0

5

10

t = 3.00

6

 5

 4

 3 2

 1

0 50 100 150 200
-5

0

5

10

t = 6.00

6

 5

 4

 3 2

 1

(c) SOS-RTD utilized.

Figure 4.6: Example of a simulated scenario in which Risk-RTD successes to achieve a lane change, but
REFINE and SOS-RTD cannot. Probability densities of all obstacles are visualized in (a), and areas that are
used to approximate all probability densities are visualized as transparent white boxes (b) and (c).

101

obstacle during the planning horizon:

probBoole(i, z0, p) ∶= ∑
j∈J
∫
ξ̄(Rj ,z0,p)⊕<0, Gobs>

q(w ∣ j, i) dw. (4.41)

If we conservatively consider the risk of collision during different time intervals indepen-
dently, then the risk of collision furing the planning horizon can be over-approximated as

probind(i, z0, p) ∶= 1 −∏
j∈J
(1 − ∫

ξ̄(Rj ,z0,p)⊕<0, Gobs>
q(w ∣ j, i) dw) (4.42)

Among all tested planning iterations, Monte-Carlo integration shows that the probabil-
ity probBoole(i, z0, p) is relatively 10.99% higher than probind(i, z0, p) on average, and
the maximum relative error is 12.94%. This means Boole’s inequality introduces at least
10.99% relative error on average.

The second reason that introduces conservatism is mentioned in Remark 41. Recall that
we relax the probability density function q in Section by evaluating Hessq over T +Aξ̄,jP
in order to make the resulted matrix HT invariant over P . Notice ∪T ∈T j(z0)T + Aξ,jP
covers ∪p∈P ξ̄(Rj, z0, p)⊕<0, Gobs>, thus the proposed chance integration approximation
evaluates the Hessian over a much larger area instead of the actual space of integration,
ξ̄(Rj, z0, p) ⊕<0, Gobs>, that we really care about. As suggested in Remark 41, one can
apply the idea of ‘slice before Interval Arithmetic’ to bound the Hessian of q by evaluating
it over T + Aξ̄,jp with the exact value of control parameter p using Interval Arithmetic,
so that a tighter over-approximation of the risk of collision can be generated. This idea is
intuited by the fact that Interval Arithmetic generates tighter result as the evaluated interval
space gets smaller. By testing all scenarios in Section 4.6.1, compare to applying the idea
of ‘slice before Interval Arithmetic’, evaluating Hessq over T +Aξ̄,jP results in the final
chance constraint over-approximation a relative error of 1.34% on average and 20.28% at
maximal. However by evaluating Hessq over T + Aξ̄,jp using Interval Arithmetic, the
gradient of the chance constraint over-approximation easily becomes intractable, thus a
decrease in real-time performance.

The last reason that introduces conservatism comes from the way we generate triangle
covering, but it is also related to Interval Arithmetic. With the grid size k being fixed,
generated triangles for chance integration approximation becomes larger if they are used
to cover a bigger zonotope, thus the evaluated Hessian by Interval Arithmetic gets looser,
and so does the final chance integration approximation. Given arbitrary T ∈ T j(z0) with
arbitrary j ∈ J and initial condition z0, we point out that it is how the probability density
varies within T + Aξ̄,jP that affects the conservatism of Interval Arithmetic. For nota-

102

Range of AreaT
Areaq

Avg. Relative Error [%] Max. Relative Error [%]
[0.1,0.5) 1032.6 2174.3

[0.08, 0.1) 153.54 264.25
[0.05, 0.08) 83.37 125.74
[0.01, 0.05) 37.88 53.42

[0.001, 0.01) 13.39 30.41
(0, 0.001) 1.58 14.73

Table 4.6: Tightness of the proposed over-approximation of risk of collision with varying AreaT /Areaq .
Relative error is computed by comparing against the result of Monte-Carlo integration as the ground truth of
chance integration.

tional simplicity, denote AreaT the area of triangle T and Areaq the area of the region
whose element results in a nontrivial probability density according to the density function
q. In this experiment we use all 3039 random tests utilized in Section 4.6.1 to evaluate
the performance of different values of AreaT /Areaq, and have the resulted chance in-
tegration approximations compared against Monte-Carlo integration as the ground truth.
Notice the value of AreaT /Areaq can be changed by varying the value of k. By regen-
erating T ∈ T j(z0) with respect to different values of AreaT /Areaq, we see that the
proposed over-approximation of risk of collision gets significantly improved when the area
ratio AreaT /Areaq decreases as illustrated in Table 4.6. It happens that all tests in Section
4.6.2.1 and Section 4.6.2.2 are evaluated with the area ratio AreaT /Areaq no smaller than
0.05, and this explains why the actual crash rates among our tests are significantly smaller
than the actual risk thresholds that we enforce.

4.7 Conclusion

In this work we propose a real-time Risk-aware Reachability-based Trajectory Design
(Risk-RTD) framework for path planning in dynamic environments. Risk-RTD shares the
same offline reachability analysis with REFINE using zonotopes, but online enforces robot
safety by limiting the probability of any collision from above as chance constraints. In
particular, we provide a closed-form over-approximation on the probability of a collision
with mild assumption on the probabilistic distribution of obstacle estimation, and illustrate
the analytical derivative of the probability over-approximation with respect to the deci-
sion variables of online optimization. Experiments show that the proposed computation
method consistently provides tight upper bound of probability integration, and real-time
performance is achieved through the parallelized evaluation of the proposed chance inte-
gration. Compared with state-of-arts methods, Risk-RTD allows the ego vehicle to travel

103

through crowd traffic more aggressively with higher success rate in the application of au-
tonomous driving. However, the proposed over-approximation probability integration is
still considerably conservative compared to the actual risk of collision as discussed in the
last subsection. Hence potential improving directions are provided in the next chapter.

104

CHAPTER 5

Conclusion and Future Directions

This thesis makes contributions to generalize the original Reachability-based Trajectory
Design (RTD) framework and enable less conservatism in real-time motion planning both
deterministically and probabilistically. Recall the original RTD framework suffers from
two shortcomings. First, because the original RTD framework performs reachability anal-
ysis by solving polynomial optimization programs whose performances are sensitive to
system dimensionality, RTD introduces undue conservatism due to the representation of
the full order dynamics as a reduced order model. Second, more conservatism is intro-
duced when RTD deals with uncertain environment sensing by requiring the ego robot to
avoid any possible unsafe area. This chapter provides a summary of the contributions and
potential future research directions.

5.1 Summary of Contributions

In Chapter 2, we extend the RTD framework to bipedal robots for flat ground walking.
We use the idea of template and anchor to approximate the full-order robot model using a
simplified model with the error between the two models being conservatively bounded. In
Chapter 3, we focus on autonomous driving scenarios and present a robust, partial feedback
linearization controller that allows for tight reachability analysis on the full-order model
dynamics using zonotopes for real-time motion planning in deterministic environments.
In Chapter 4, we address the case when there is uncertainty in the estimated locations of
surrounding obstacles by proposing a real-time risk-aware motion planning framework.
This framework enforces safety amidst the uncertainty by limiting the risk of collision as a
chance constraint. A differentiable over-approximation of the risk of collision is provided
in closed-form in order to make online planning tractable.

105

5.2 Future Directions

Reachability Analysis on Bipedal Robots. Instead of performing reachability analysis on
the full-order robot dynamics as REFINE does in Chapter 3, the motion planning frame-
work on bipedal robots proposed in Chapter 2 uses the simplified model (SBM) from which
conservatism is introduced. Constructing the FRS using the full-order dynamics of bipedal
robots could be extremely challenging due to the hybrid nature and high dimensionality of
bipedal robots, i.e. the degrees of freedom of Cassie and Digit are 20 and 30 respectively.
One potential way to utilize the full-order robot model for tighter reachability analysis is
by using the Error Reachable Set (ERS), which captures all possible tracking error of the
closed-loop system dynamics. Then the FRS can be over-approximated by the Minkowski
sum of ERS and the reference trajectory that the controller tries to track. However to
achieve provably small tracking error, larger control inputs are possibly required and can
potentially violate torque limits of robot motors. Therefore a robust controller of bipedal
robots that achieves tight tracking performance even with the presence of the reset map for
stance foot switching might be of interest to design.

Faster Online Motion Planning using Zonotope Reachable Sets. Although real-time
planning is achieved by REFINE proposed in Chapter 3 as shown in Table 3.2, in real ap-
plications, we would desire motions plans to be generated even faster so that the robot
can act as soon as possible to the new sensing information that is rapidly collected at run-
time. Notice in (Opt) each zonotope reachable set results in one intersection constraint
and the FRS is over-approximated by hundreds of zonotopes. Therefore to solve (Opt) ,
hundreds of intersection constraints need to be evaluated for each obstacle, and this is the
major reason why REFINE may spend more than 1 [sec] for a planning iteration. There
are two potential ways to speed up the solving procedure of online planning for REFINE.
First, one can decrease the number of zonotope reachable sets by grouping multiplpropri-
oceptivee zonotopes into one while maintaining sliceability without introducing too much
conservatism. Note this is a post-processing step of offline reachability analysis, so that
we can avoid using a larger value of ∆t which could potentially cause divergence during
zonotope reachable set generation. Second, notice that all intersection constraints in (Opt)
result in almost-linear inequalities of the same form as shown in Theorem 32. Then one
can instead enforce the minimum value of the left hand sides of these inequalities among
all (j, i) ∈ J × I being positive so that (Opt) ends up with only one constraint evaluation
during each of its solving iteration.

Tighter Approximation on Risk of Collision. Improving the tightness of the prob-
ability integration proposed in Risk-RTD can potentially increase the maneuverability for

106

autonomous driving. As explained in Section 4.6.3, Interval Arithmetic results in looser
approximation of the risk of collision when the triangles we use to cover the buffered zono-
tope reachable sets are relatively large compared to the area that has nontrivial probability
density. One can certainly increase the number of triangles to achieve a finer covering,
but this requires more calculations and can affect real-time performance. Because a low
tolerance of collision risk is preferred for real application, usually most triangle results in
0 probability masses, thus a waste of computational resources. To maintain real-time per-
formance while increasing the quality of the approximation on risk of collision, one can
keep the value of grid size k and only cover the intersection between buffered zonotope
reachable set and the area that has nontrivial probability density. In this way, because the
same amount of triangles are used to cover a subset of a buffered zonotope reachable set,
the sizes of triangles become smaller so that the approximation of risk of collision suffers
less from the conservatism due to the application of Interval Arithmetic.

Planning with Uncertainty. The trajectory planning framework in Chapter 4 handles
exteroceptive uncertainty from environment sensing. However possible proprioceptive un-
certainty should also be taken into account for motion planning including imperfect system
identification during the mechanical design of a robot [104]. For example in the scenario
of legged robot walking, a commonly made assumption is that the stance foot is relatively
static to the contact ground, which requires the contact ground to provide enough fric-
tion [36]. However because the friction coefficient could vary when the robot walks over
different kinds of ground, this assumption may be violated so that the dynamics is not ac-
curate any more. Another example could be a manipulator tasked to move packages with
unknown weights. In this situation, the dynamics of the manipulator would change de-
pending on the mass of the package and whether the robot is holding a package or not.
This would introduce uncertainty into the manipulator’s dynamics. In the case when these
kinds of uncertainty could be provided probabilistically [26], the proposed idea of over-
approximation the probability integration in Risk-RTD can be generalized to handle the
uncertainties under task-specific modifications.

107

APPENDIX A

Derivation of SBM Dynamics

(a) (b)

Figure A.1: (a) SBM walking from the i-th mid-stance to the (i + 1)-st mid-stance. (b) SBM at the touch-
down moment.

Consider a Simplified Biped Model (SBM) adopted from [116], illustrated in Fig. A.1. The
model consists of a point-mass (also called hip, shown as black circle) and two mass-less
legs each with constant length l. The stance leg is colored in red, and the swing leg is
colored in blue. The stance leg angle with respect to the upright direction is denoted as θ̂,
and the swing leg angle with respect to the upright direction is denoted as ϕ̂. In the scope
of this work we consider the walking motion of SBM starting from the mid-stance position
θ̂ = π with positive hip velocity v0 > 0. During single stance phase, the stance leg rotates
around the pivot point O, and the swing leg swings forward instantaneously to form an
angle β relative to the stance leg. Notice β = θ̂− ϕ̂, and the value of β stays constant during
the stance phase. Given any control parameter p2(i) that represents the step length during
the i-th step, such β can be obtained using the Law of Cosines (Fig. A.1(b)):

β = arccos(2l
2 − p2(i)2
2l2

) . (A.1)

As the single stance phase continues, the touch-down event, described by the guard
condition θ̂ + ϕ̂ = 2π, will eventually be triggered, and an instantaneous stance phase takes

108

place as shown in Fig. A.1(b). Subsequent to the double stance phase, an impact with the
ground happens with a coefficient of restitution of 0. That is, the axial component of v1
resets to zero after the impact, but the lateral component v′1 remains unchanged. The stance
leg is then pivoted at a new point O′ and the system keeps evolving forward.

We denote a hybrid execution of the SBM as a pair (Î, â) where Î = {Îi}Ni=0 is a hybrid
time set with Îi ∶= [τ̂+i , τ̂−i+1] and â = {âi(⋅)}Ni=0 is a finite sequence of solutions to the
SBM’s equations of motion. In the scope of this work we require θ̂ ∈ [π/2,3π/2], and only
consider the motion of SBM in the duration of Îi ∪ Îi+1.

Now we derive the functions fŷ1 , fŷ2 , fŷ3 , and fŷ4 in our manuscript by writing down
ŷ1(i + 1), ŷ2(i), ŷ3(i), ŷ4(i) explicitly. Ideally we expect SBM to walk from mid-stance
to mid-stance as shown in Fig. A.1 (a). Assume SBM arrives at the i-th mid-stance at
tMS
i with positive hip velocity v0 and positive stance leg angular velocity ˙̂

θ(tMS
i). As SBM

moves forward, denote v1 as the hip velocity when touch-down happens, and v′1 as the
projection of v1 to the direction that is perpendicular to the swing leg. Eventually, SBM
should reach the (i+1)-th mid-stance at tMS

i+1 with hip velocity v2. Notice that v1, v′1 and v2

all remain to be computed. From [116, (3)] we know

¨̂
θ(t) = g sin(θ̂(t))

l
(A.2)

and thus ˙̂
θ(t) > 0 for all t ∈ [t̂MS

i , τ−i+1].
We want to point out an important observation at the touch-down moment as shown in

Fig. A.1(b). Given any p2(i), the angle between stance and swing leg, β ∶= θ̂ − ϕ̂ computed
in (A.1) is independent of the states θ̂ and ϕ̂. Moreover, for all p2(i) ∈ [0.15,0.7] considered
in this work, 0 < β ≤ π/3.

By conservation of energy, we have:

0.5(l ⋅ ˙̂θ(tMS
i))2 + g(l − l cos(β/2)) = 0.5(v1)2, (A.3)

v′1 = v1 ⋅ cosβ, (A.4)

0.5(v′1)2 − g(l − l cos(β/2)) = 0.5(v2)2, (A.5)

where the unknowns are marked in red. Notice from (A.1) that 0 < β ≤ π/3 for all
p2(i) ∈ [0.15,0.7] considered in this work, therefore cosβ > 0. The solution to the system
of equations (A.3)-(A.5) may or may not exists, depending on whether SBM eventually
reaches the (i + 1)-st mid-stance. These two cases are discussed separately as follows.

1. If 0.5(v′1)2 − g(l − l cos(β/2)) ≥ 0, the reader can solve for a positive v2 from (A.3)-

109

(A.5), and thus
ŷ1(i + 1) = v2/l. (A.6)

where v2 is a function of ŷ1(i) = ˙̂
θ(tMS

i). Furthermore, we have

ŷ2(i) = π − β/2. (A.7)

Notice that θ̂(t) > π, ˙̂
θ(t) > 0 for all t ∈ [t̂MS

i , τ̂−i+1], and θ̂(t) < π, ˙̂
θ(t) > 0 for all

t ∈ [τ̂−i+1, t̂MS
i+1]. We then have

ŷ3(i) = θ̂(τ̂−i+1) = ŷ2(i) = π − β/2, (A.8)

ŷ4(i) = θ̂(τ̂−i+1) = π + β/2. (A.9)

2. If 0.5(v′1)2 − g(l − l cos(β/2)) < 0, then ˙̂
θ(t) becomes 0 at some time t̂0i+1 before the

(i + 1)-st mid-stance is reached, and SBM may fall backward as in Fig. A.2.

Figure A.2: SBM fails to reach the (i + 1)-th mid-stance.

By on conservation of energy, we have

0.5(v′1)2 − g(l ⋅ cos(θ̂(t̂0i+1)) − l cos(β/2)) = 0, (A.10)

where the unknown are again marked in red. Using (A.3), (A.4), and (A.10), one can
compute that

ŷ1(i + 1) = −
√
2gl(1 − cos(θ̂(t̂0i+1)))/l. (A.11)

Again we have ŷ2(i) = π − β/2. Since θ̂(t) < π for all t ≥ τ+i+1, tMS
i = +∞, then we

have ŷ3(i) = −∞ and ŷ4(i) = +∞.

Notice that β is actually a function of p2(i), one can then check that ŷ1(i + 1) is es-
sentially a function of ŷ1(i) and p2(i). Furthermore, since ŷ2(i) = π − β/2, ŷ2(i) is then

110

only a function of p2(i). Since the values of y3(i) and y4(i) depend on the positivity of
0.5(v′1)2 − g(l− l cos(β/2)), then we can obtain the expressions for y3(i) and y4(i) both as
functions of ŷ1(i) and p2(i).

111

APPENDIX B

Proof of Lemma 21

Proof. This proof defines a Lyapunov function candidate and uses it to analyze the tracking
error of the ego vehicle’s longitudinal speed before time tstop. Then it describes how u

evolves after time tstop in different scenarios depending on the value of u(tstop). Finally it
describes how to set the time tbrake to guarantee u(t) = 0 for all t ≥ tbrake. For convenience,
let usmall ∶= Mu

κ1,uMu+ϕ1,u
, then by assumption of the theorem usmall ∈ (0.15, ucri]. This proof

suppresses the dependence on p in udes(t, p), τu(t, p), κu(t, p), ϕu(t, p) and eu(t, p).
Note by (3.25) and rearranging (3.26),

ėu(t) = −Kueu(t) + τu(t) +∆u(t). (B.1)

Recall udes is piecewise continuously differentiable by Definition 14, so are eu and τu. With-
out loss of generality we denote {t1, t2, . . . , tkmax} a finite subdivision of [0, tstop)with t1 = 0
and tkmax = tstop such that udes is continuously differentiable over time interval [tk, tk+1) for
all k ∈ {1,2, . . . , kmax − 1}. Define V (t) ∶= 1

2e
2
u(t) as a Lyapunov function candidate for

eu(t), then for arbitrary k ∈ {1,2, . . . , kmax − 1} and t ∈ [tk, tk+1), one can check that V (t)
is always non-negative and V (t) = 0 only if eu(t) = 0. Then

V̇ (t) = eu(t)ėu(t) (B.2)

= −Kue
2
u(t) + eu(t)τu(t) + eu(t)∆u(t) (B.3)

= −Kue
2
u(t) − (κu(t)Mu + ϕu(t))e2u(t) + eu(t)∆u(t) (B.4)

in which the second equality comes from (B.1) and the third equality comes from (3.22).
Because the integral terms in (3.23) and (3.24) are both non-negative, κu(t) ≥ κ1,u and
ϕu(t) ≥ ϕ1,u hold. Then

V̇ (t) ≤ −Kue
2
u(t) − (κ1,uMu + ϕ1,u)∣eu(t)∣2 + ∣eu(t)∣∣∆u(t)∣. (B.5)

112

By factoring out ∣eu(t)∣ in the last two terms in (B.5):

V̇ (t) ≤ −Kue
2
u(t) < 0 (B.6)

holds when ∣eu(t)∣ > 0 and ∣eu(t)∣ ≥ ∣∆u(t)∣
κ1,uMu+ϕ1,u

. Note ∣eu(t)∣ ≥ usmall conservatively

implies ∣eu(t)∣ ≥ ∣∆u(t)∣
κ1,uMu+ϕ1,u

given ∣∆u(t)∣ ≤ Mu for all time by Assumption 11. Then
when ∣eu(t)∣ ≥ usmall > 0 we have (B.6) hold, or equivalently V (t) decreases. Therefore if
∣eu(tk)∣ ≥ usmall, ∣eu(t)∣ monotonically decreases during time interval [tk, tk+1) as long as
∣eu(t)∣ does not reach at the boundary of closed ball B(0, usmall). Moreover, if ∣eu(t′)∣ hits
the boundary of B(0, usmall) at some time t′ ∈ [tk, tk+1), eu(t) is prohibited from leaving
the ball for all t ∈ [t′, tk+1) because V̇ (t) is strictly negative when ∣eu(t)∣ = usmall. Similarly
∣eu(tk)∣ ≤ usmall implies ∣eu(t)∣ ≤ usmall for all t ∈ [tk, tk+1).

We now analyze the behavior of eu(t) for all t ∈ [0, tstop). By assumption udes(0) =
u(0), then ∣eu(0)∣ = 0 < usmall and thus ∣eu(t)∣ ≤ usmall for all t ∈ [t1, t2). Because both u(t)
and udes(t) are continuous during [0, tstop), so is eu(t2). Thus ∣eu(t2)∣ ≤ usmall. By iteratively
applying the same reasoning, one can show that ∣eu(t)∣ ≤ usmall for all t ∈ [tk, tk+1) and for
all k ∈ {1,2, . . . , kmax−1}, therefore ∣eu(t)∣ ≤ usmall for all t ∈ [0, tstop). Furthermore, because
udes(t) converges to ucri as t converges to tstop from below, u(tstop) ∈ [ucri−usmall, ucri+usmall].
Note u(tstop) ≥ 0 because usmall ≤ ucri.

Next we analyze how longitudinal speed of the ego vehicle evolves after time tstop.
Using V (t) = 1

2e
2
u(t), we point out that (B.5) remains valid for all t ≥ tstop, and (B.6) also

holds when ∣eu(t)∣ ≥ usmall with t ≥ tstop. Recall u(t) = eu(t) for all t ≥ tstop given udes(t) = 0
for all t ≥ tstop, then for simplicity, the remainder of this proof replaces every eu(t) by u(t)
in (B.5), (B.6) and V (t). Because u(0) > 0 and u is continuous with respect to time, the
longitudinal speed of the ego vehicle cannot decrease from a positive value to a negative
value without passing 0. However when u(t) = 0, ∆u(t) = 0 by Assumption 12, thus u̇(t) =
0 by (3.26) given udes(t) = 0 for all t ≥ tstop. In other words, once u arrives at 0, it remains
at 0 forever. For the ease of expression, from now on we assume t ≥ tstop and u(t) ≥ 0 for
all t ≥ tstop. Recall u(tstop) ∈ [ucri − usmall, ucri + usmall] and ucri − usmall ∈ [0, ucri − 0.15). We
now discuss how u evolves after time tstop by considering three scenarios, and giving an
upper bound of the time at when u reaches 0 for each scenario.
Case 1 - When u(tstop) ≤ 0.15: Because the longitudinal speed stays at 0 once it becomes
0, by Assumption 20 the ego vehicle reaches to a full stop no later than tfstop + tstop.
Case 2 - When 0.15 < u(tstop) ≤ usmall: By Assumption 12, upper bound of V̇ (t) can be

113

further relaxed from (B.5) to

V̇ (t) ≤ −Kuu
2(t) − (κ1,uMu + ϕ1,u − bpro

u)u2(t) + boff
u u(t). (B.7)

Moreover, by completing the square among the last two terms in (B.7), one can derive

V̇ (t) ≤ −Kuu
2(t) + (boff

u)2
4(κ1,uMu + ϕ1,u − bpro

u)
. (B.8)

Notice (boff
u)2

4(κ1,uMu+ϕ1,u−bpro
u) < 0.15

2Ku by assumption, thus

V̇ (t) < −Ku(u2(t) − 0.152). (B.9)

This means as long as u(t) ∈ [0.15, ucri] with t ≥ tstop, we obtain V̇ (t) < 0, or equivalently
V (t) = 1

2u
2(t) decreases monotonically. Recall u(tstop) ≤ usmall ≤ ucri, then the longitudinal

speed decreases monotonically from u(tstop) to 0.15 as time increases from tstop. Suppose
u becomes 0.15 at time t′brake ≥ tstop, then u(t) ≤ 0.15 for all t ≥ t′brake because of the fact
that V̇ (t) is strictly negative when u(t) = 0.15.

Define qu ∶= (boff
u)2

4(κ1,uMu+ϕ1,u−bpro
u) , then when u(t) ∈ [0.15, u(tstop)], (B.8) can be relaxed to

V̇ (t) ≤ −Ku ⋅ 0.152 + qu. (B.10)

Integrate both sides of (B.10) from time tstop to t′brake results in

t′brake ≤
u(tstop)2 − 0.152
2 ⋅ 0.152Ku − 2qu

+ tstop. (B.11)

Because u(tstop) ≤ usmall,

t′brake ≤
(usmall)2 − 0.152
2 ⋅ 0.152Ku − 2qu

+ tstop. (B.12)

Then u becomes 0 no later than time tfstop + sup(t′brake) based on Assumption 20, where
sup(t′brake) as the upper bound of t′brake reads

sup(t′brake) =
(usmall)2 − 0.152
2 ⋅ 0.152Ku − 2qu

+ tstop. (B.13)

Case 3 - When usmall < u(tstop) ≤ ucri + usmall: Recall (B.6) holds given ∣eu(t)∣ = u(t) ≥
usmall, then

V̇ (t) ≤ −Kue
2
u(t) ≤ −Ku(usmall)2, (B.14)

114

and we have the longitudinal speed monotonically decreasing from u(tstop) at time tstop

until it reaches at usmall at some time tsmall ≥ tstop. Integrating the left hand side and right
hand side of (B.14) from tstop to tsmall gives

1

2
(usmall)2 − 1

2
u(tstop)2 ≤ −Ku(usmall)2(tsmall − tstop). (B.15)

Because u(tstop) ≤ ucri + usmall, (B.15) results in

tsmall ≤
(ucri + usmall)2 − (usmall)2

2Ku(usmall)2 + tstop. (B.16)

Once the longitudinal speed decreases to usmall, we can then follow the same reasoning
as in the second scenario for seeking an upper bound of some time t′′brake that is no smaller
than tsmall and gives u(t′′brake) = 0.15. However, this time we need to integrate both sides of
(B.10) from time tsmall to t′′brake. As a result,

t′′brake ≤
(usmall)2 − 0.152
2 ⋅ 0.152Ku − 2qu

+ tsmall. (B.17)

Then u becomes 0 no later than time tfstop + sup(t′′brake) based on Assumption 20, where
sup(t′′brake) as the upper bound of t′′brake reads

sup(t′′brake) =
(usmall)2 − 0.152
2 ⋅ 0.152Ku − 2qu

+ (u
cri + usmall)2 − (usmall)2

2Ku(usmall)2 + tstop. (B.18)

Now that we have the upper bound for u across these three scenarios, recall that once
u arrives at 0, it remains at 0 afterwards, and notice sup(t′′brake) > sup(t′brake) > tstop. Con-
sidering all three scenarios discussed above, setting tbrake as the maximum value among
tfstop + tstop, tfstop + sup(t′brake) and tfstop + sup(t′′brake), i.e.,

tbrake = tfstop +
(usmall)2 − 0.152
2 ⋅ 0.152Ku − 2qu

+ (u
cri + usmall)2 − (usmall)2

2Ku(usmall)2 + tstop (B.19)

guarantees that u(t) = 0 for all t ≥ tbrake.

115

APPENDIX C

Proof of Theorem 32

We first present a pair of lemmas.

Lemma 48. Let Rj = <cRj
, [gRj ,1, gRj ,2, . . . , gRj ,ℓj]> be the zonotope computed by

CORA under the hybrid vehicle dynamics model HS beginning from Zaug
0 for arbitrary

j ∈ J , and let rot(πh(Rj)) = <crot, Grot> be defined as (3.49). Then for arbitrary

zvel
0 ∈ Zvel

0 and p ∈ P , there exist cξ ∈W , A ∈ R2×np and a real matrix Gξ with two rows such

that ξ(Rj, z
vel
0 , p) = <cξ +A ⋅ p, Gξ>.

Proof. Recall cslc is defined as in (3.46), then

ξ(Rj, z
vel
0 , p) = πxy(<cslc, [gRj ,(3+np+1), . . . , gRj ,ℓj]>)⊕ rot(πh(Rj))

= <πxy(cslc) + crot, [πxy(gRj ,(4+np)), . . . , πxy(gRj ,ℓj),Grot]>.
(C.1)

where the first equality comes from using (3.54) and (3.45) and the last equality comes
from denoting rot(πh(Rj)) as <crot, Grot> and performing Minkowski addition on
two zonotopes. cslc can be rewritten as

cslc = cRj
+

9

∑
k=7

[zvel
0](k−6) − [cRj

]k
[gRj ,(k−6)]k

gRj ,(k−6) −
9+np

∑
k=10

[cR]k
[gR,(k−6)]k

gR,(k−6) +A′ ⋅ p (C.2)

with A′ = [1
[gRj ,4

]10 gRj ,4, . . . ,
1

[g
Rj ,(3+np)](9+np)

gRj ,(3+np)]. Therefore by performing algebra

one can find that ξ(Rj, z
vel
0 , p) = <cξ +A ⋅ p, Gξ> where

cξ = crot +
9

∑
k=7

[zvel
0]k−6 − [cRj

]k
[gRj ,(k−6)]k

πxy(gRj ,(k−6)) −
9+np

∑
k=10

[cR]k
[gR,(k−6)]k

πxy(gR,(k−6)) + πxy(cRj
),

(C.3)

116

A = [1

[gRj ,4]10
πxy(gRj ,4),

1

[gRj ,5]11
πxy(gRj ,5), . . . ,

1

[gRj ,(3+np)](9+np)
πxy(gRj ,(3+np))] ,

(C.4)

and
Gξ = [πxy(gRj ,(6+np+1)), . . . , πxy(gRj ,ℓj),Grot]. (C.5)

Note ϑloc(j, i, zpos
0) is a zonotope by construction in (3.57) because ϑ(j, i) is assumed

to be a zonotope. The following lemma follows from [37, Lem. 5.1] and allows us to
represent the intersection constraint in (Opt) .

Lemma 49. Let ξ(Rj, z
vel
0 , p) = <cξ + A ⋅ p, Gξ> be computed as in Lemma 48, and let

ϑloc(j, i, zpos
0) =< cϑ,Gϑ > be computed from (3.57). Then ξ(Rj, z

vel
0 , p)∩ϑloc(j, i, zpos

0) ≠ ∅
if and only if A ⋅ p ∈ <cϑ − cξ, [Gϑ,Gξ]>.

Now we can finally state the proof of Theorem 32:

Proof. Let zonotope ξ(Rj, z
vel
0 , p) = <cξ +A ⋅ p, Gξ> be computed as in Lemma 48, and

let ϑloc(j, i, zpos
0) =< cϑ,Gϑ > be computed from (3.57). Because all zonotopes are convex

polytopes [37], zonotope <cϑ − cξ, [Gϑ,Gξ]> ⊂ W ⊆ R2 can be transferred into a half-
space representation A ∶= {a ∈W ∣ B ⋅ a − b ≤ 0} for some matrix B and vector b. To find
such B and b, we denote c = cϑ − cξ ∈ R2 and G = [Gϑ,Gξ] ∈ R2×ℓ with some positive

integer ℓ, and denote B− =
⎡⎢⎢⎢⎢⎣

−[G]2∶
[G]1∶

⎤⎥⎥⎥⎥⎦
∈ R2×ℓ. Define

B+ ∶= [[B
−]∶1

∥[B−]∶1∥
,
[B−]∶2
∥[B−]∶2∥

, . . . ,
[B−]∶ℓ
∥[B−]∶ℓ∥

]
⊺
∈ Rℓ×2. (C.6)

Then as a result of [6, Thm 2.1], <c, G> = {a ∈W ∣ B ⋅ a − b ≤ 0} with

B =
⎡⎢⎢⎢⎢⎣

B+

−B+
⎤⎥⎥⎥⎥⎦
∈ R2ℓ×2, (C.7)

b =
⎡⎢⎢⎢⎢⎣

B+ ⋅ c + ∣B+ ⋅G∣ ⋅ 1
−B+ ⋅ c + ∣B+ ⋅G∣ ⋅ 1

⎤⎥⎥⎥⎥⎦
∈ R2ℓ (C.8)

where 1 ∈ Rℓ is the column vector of ones. By Lemma 49, ξ(Rj(d), zvel
0 , p)∩ϑloc(j, i, zpos

0)
is empty if and only if A ⋅ p ∉ <cϑ − cξ, [Gϑ,Gξ]>, or in other words A ⋅ p ∉ A. Notice
A ⋅ p ∉ A if and only if max(B ⋅A ⋅ p − b) > 0.

The subgradient claim follows from [83, Theorem 5.4.5].

117

APPENDIX D

Proof of Theorem 46

Proof. Based on the reasoning of Lemma 21, the tracking error on longitudinal speed using
the proposed robust partial feedback linearization controller is bounded above by usmall,
i.e., udes(z0, p) − usmall ≤ u(t) ≤ udes(z0, p) + usmall, for all t ∈ [0, tm] and arbitrary p ∈ P .
Because we have a closed form representation of ϵdyn as in (4.37), we know its monoticity
at every point. In particular, for u(t) ∈ [0,31.5) [mph] it is monotonically increasing, for
u(t) ∈ (31.5,59.6) [mph] it is monotonically decreasing, and for u(t) ∈ (59.6,67.1] [mph]
it is monotonically increasing.

For notational simplicity, denote a(z0, p) ∶= ϵdyn(mint∈[0,tm] udes(t, z0, p) − usmall) and
b(z0, p) ∶= ϵdyn(maxt∈[0,tm] udes(t, z0, p) + usmall). Let u = mint∈[0,tm] u(t) and let u =
maxt∈[0,tm] u(t). Assuming the ego vehicle can only reach a maximum velocity of 67.1
[mph] = 30.0 [m/s], then ϵ(z0, p) = inft∈[0,tm] (ϵdyn(u(t))) is given as:

ϵ(z0, p) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

a(z0, p), if a(z0, p) ≤ b(z0, p) and 59.6 ∉ [u,u]
b(z0, p), if a(z0, p) > b(z0, p) and 59.6 ∉ [u,u]
ϵdyn(59.6), otherwise

. (D.1)

Notice that ϵdyn is a polynomial and thus differentiable. Denote

∂ϵdyn
min

∂u
(z0, p) ∶=

∂ϵdyn

∂u
(min
t∈[0,tm]

udes(t, z0, p) − usmall), (D.2)

∂ϵdyn
max

∂u
(z0, p) ∶=

∂ϵdyn

∂u
(max
t∈[0,tm]

udes(t, z0, p) + usmall). (D.3)

118

Then

∂ϵ

∂p
(z0, p) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂ϵdyn
min

∂u
(z0, p) ⋅

∂udes

∂p
(t, z0, p), if a(z0, p) ≤ b(z0, p) and 59.6 ∉ [u,u]

∂ϵdyn
max

∂u
(z0, p) ⋅

∂udes

∂p
(t, z0, p), if a(z0, p) > b(z0, p) and 59.6 ∉ [u,u]

0, otherwise

.

(D.4)

119

BIBLIOGRAPHY

[1] Real-time ego-motion estimation using lidar and a vehicle model based extended
kalman filter. In 17th International IEEE Conference on Intelligent Transportation
Systems (ITSC), pages 431–438, 2014.

[2] M Abduljabbar, Nader Meskin, and Christos G Cassandras. Control barrier function-
based lateral control of autonomous vehicle for roundabout crossing. In 2021 IEEE
International Intelligent Transportation Systems Conference (ITSC), pages 859–864.
IEEE, 2021.

[3] Amir Ali Ahmadi and Anirudha Majumdar. Dsos and sdsos optimization: Lp and
socp-based alternatives to sum of squares optimization. In 2014 48th annual confer-
ence on information sciences and systems (CISS), pages 1–5. IEEE, 2014.

[4] Anil Alan, Andrew J Taylor, Chaozhe R He, Aaron D Ames, and Gabor Orosz.
Control barrier functions and input-to-state safety with application to automated ve-
hicles. arXiv preprint arXiv:2206.03568, 2022.

[5] Jorge Almeida and Vitor Manuel Santos. Real time egomotion of a nonholonomic
vehicle using lidar measurements. Journal of Field Robotics, 30(1):129–141, 2013.

[6] Matthias Althoff. Reachability analysis and its application to the safety assessment
of autonomous cars. PhD thesis, Technische Universität München, 2010.

[7] Matthias Althoff. An introduction to cora 2015. In Proc. of the Workshop on Applied
Verification for Continuous and Hybrid Systems, 2015.

[8] Matthias Althoff and John M Dolan. Online verification of automated road vehicles
using reachability analysis. IEEE Transactions on Robotics, 30(4):903–918, 2014.

[9] Aaron D Ames, Kevin Galloway, Koushil Sreenath, and Jessy W Grizzle. Rapidly
exponentially stabilizing control lyapunov functions and hybrid zero dynamics.
IEEE Transactions on Automatic Control, 59(4):876–891, 2014.

[10] Aaron D Ames, Jessy W Grizzle, and Paulo Tabuada. Control barrier function based
quadratic programs with application to adaptive cruise control. In 53rd IEEE Con-
ference on Decision and Control, pages 6271–6278. IEEE, 2014.

[11] Aaron D Ames, Paulo Tabuada, Austin Jones, Wen-Loong Ma, Matthias Rungger,
Bastian Schürmann, Shishir Kolathaya, and Jessy W Grizzle. First steps toward

120

formal controller synthesis for bipedal robots with experimental implementation.
Nonlinear Analysis: Hybrid Systems, 25:155–173, 2017.

[12] Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analy-
sis, volume 57. Springer, 2007.

[13] George Bahouth, Jill Graygo, Kennerly Digges, Carl Schulman, and Peter Baur. The
benefits and tradeoffs for varied high-severity injury risk thresholds for advanced au-
tomatic crash notification systems. Traffic injury prevention, 15(sup1):S134–S140,
2014.

[14] James Balkwill. Performance vehicle dynamics: engineering and applications.
Butterworth-Heinemann, 2017.

[15] Somil Bansal, Mo Chen, Sylvia Herbert, and Claire J Tomlin. Hamilton-jacobi
reachability: A brief overview and recent advances. In 2017 IEEE 56th Annual
Conference on Decision and Control (CDC), pages 2242–2253. IEEE, 2017.

[16] Stephen Boyd, Laurent El Ghaoui, Eric Feron, and Venkataramanan Balakrishnan.
Linear matrix inequalities in system and control theory, volume 15. Siam, 1994.

[17] Russel E Caflisch. Monte carlo and quasi-monte carlo methods. Acta numerica,
7:1–49, 1998.

[18] Francesco Paolo Cantelli. Sui confini della probabilita. In Atti del Congresso Inter-
nazionale dei Matematici: Bologna del 3 al 10 de settembre di 1928, pages 47–60,
1929.

[19] Manuel Castillo-Lopez, Philippe Ludivig, Seyed Amin Sajadi-Alamdari, Jose Luis
Sanchez-Lopez, Miguel A Olivares-Mendez, and Holger Voos. A real-time approach
for chance-constrained motion planning with dynamic obstacles. IEEE Robotics and
Automation Letters, 5(2):3620–3625, 2020.

[20] Christine Chevallereau, Gabriel Abba, Yannick Aoustin, Franck Plestan, Eric West-
ervelt, Carlos Canudas De Wit, and Jessy Grizzle. Rabbit: A testbed for advanced
control theory. 2003.

[21] Jason J Choi, Donggun Lee, Koushil Sreenath, Claire J Tomlin, and Sylvia L Her-
bert. Robust control barrier–value functions for safety-critical control. In 2021 60th
IEEE Conference on Decision and Control (CDC), pages 6814–6821. IEEE, 2021.

[22] S Dieter, M Hiller, and R Baradini. Vehicle dynamics: Modeling and simulation,
2018.

[23] Edsger W Dijkstra et al. A note on two problems in connexion with graphs. Nu-
merische mathematik, 1(1):269–271, 1959.

[24] Anushri Dixit, Mohamadreza Ahmadi, and Joel W Burdick. Risk-sensitive motion
planning using entropic value-at-risk. In 2021 European Control Conference (ECC),
pages 1726–1732. IEEE, 2021.

121

[25] Mohamed Elbanhawi and Milan Simic. Sampling-based robot motion planning: A
review. IEEE Access, 2:56–77, 2014.

[26] Parker Ewen, Adam Li, Yuxin Chen, Steven Hong, and Ram Vasudevan. These
maps are made for walking: Real-time terrain property estimation for mobile robots.
IEEE Robotics and Automation Letters, 2022.

[27] Paolo Falcone, Francesco Borrelli, J Asgari, HE Tseng, and Davor Hrovat. Low
complexity mpc schemes for integrated vehicle dynamics control problems. In 9th
international symposium on advanced vehicle control (AVEC), 2008.

[28] Jaime F Fisac, Andrea Bajcsy, Sylvia L Herbert, David Fridovich-Keil, Steven
Wang, Claire J Tomlin, and Anca D Dragan. Probabilistically safe robot planning
with confidence-based human predictions. arXiv preprint arXiv:1806.00109, 2018.

[29] National Center for Statistics and Analysis. 2019 traffic safety facts: A compilation
of motor vehicle crash data (annual report). National Highway Traffic Safety Agency,
2021.

[30] Robert J Full and Daniel E Koditschek. Templates and anchors: neuromechan-
ical hypotheses of legged locomotion on land. Journal of experimental biology,
202(23):3325–3332, 1999.

[31] Lu Gan, Youngji Kim, Jessy W Grizzle, Jeffrey M Walls, Ayoung Kim, Ryan M
Eustice, and Maani Ghaffari. Multitask learning for scalable and dense multilayer
bayesian map inference. IEEE Transactions on Robotics, 2022.

[32] Thomas A. Gennarelli and Elaine Wodzin. Ais 2005: A contemporary injury scale.
Injury, 37(12):1083–1091, 2006. Special Issue: Trauma Outcomes.

[33] Thomas D Gillespie. Fundamentals of vehicle dynamics. Technical report, SAE
Technical Paper, 1992.

[34] Antoine Girard. Reachability of uncertain linear systems using zonotopes. In Inter-
national Workshop on Hybrid Systems: Computation and Control, pages 291–305.
Springer, 2005.

[35] Andrea Giusti and Matthias Althoff. Ultimate robust performance control of rigid
robot manipulators using interval arithmetic. In 2016 American Control Conference
(ACC), pages 2995–3001. IEEE, 2016.

[36] Yukai Gong, Ross Hartley, Xingye Da, Ayonga Hereid, Omar Harib, Jiunn-Kai
Huang, and Jessy Grizzle. Feedback control of a cassie bipedal robot: Walking,
standing, and riding a segway. In 2019 American Control Conference (ACC), pages
4559–4566. IEEE, 2019.

[37] Leonidas J Guibas, An Thanh Nguyen, and Li Zhang. Zonotopes as bounding vol-
umes. In SODA, volume 3, pages 803–812, 2003.

122

[38] Astghik Hakobyan, Gyeong Chan Kim, and Insoon Yang. Risk-aware motion plan-
ning and control using cvar-constrained optimization. IEEE Robotics and Automa-
tion letters, 4(4):3924–3931, 2019.

[39] Didier Henrion and Milan Korda. Convex computation of the region of attraction of
polynomial control systems. IEEE Transactions on Automatic Control, 59(2):297–
312, 2013.

[40] Sylvia L Herbert, Mo Chen, SooJean Han, Somil Bansal, Jaime F Fisac, and Claire J
Tomlin. Fastrack: a modular framework for fast and guaranteed safe motion plan-
ning. In 2017 IEEE 56th Annual Conference on Decision and Control (CDC), pages
1517–1522. IEEE, 2017.

[41] Ayonga Hereid and Aaron D Ames. Frost: Fast robot optimization and simulation
toolkit. In 2017 IEEE/RSJ International Conference on Intelligent Robots and Sys-
tems (IROS), pages 719–726. IEEE, 2017.

[42] Timothy Hickey, Qun Ju, and Maarten H Van Emden. Interval arithmetic: From
principles to implementation. Journal of the ACM (JACM), 48(5):1038–1068, 2001.

[43] Patrick Holmes, Shreyas Kousik, Bohao Zhang, Daphna Raz, Corina Barbalata,
Matthew Johnson-Roberson, and Ram Vasudevan. Reachable sets for safe, real-time
manipulator trajectory design. In Robotics: Science and Systems, 2020.

[44] Thomas M Howard and Alonzo Kelly. Optimal rough terrain trajectory genera-
tion for wheeled mobile robots. The International Journal of Robotics Research,
26(2):141–166, 2007.

[45] S. C. Hsu, X. Xu, and A. D. Ames. Control barrier function based quadratic pro-
grams with application to bipedal robotic walking. In 2015 American Control Con-
ference (ACC), pages 4542–4548, July 2015.

[46] Lucas Janson, Edward Schmerling, Ashley Clark, and Marco Pavone. Fast marching
tree: A fast marching sampling-based method for optimal motion planning in many
dimensions. The International Journal of Robotics Research, 34(7):883–921, 2015.

[47] Lucas Janson, Edward Schmerling, and Marco Pavone. Monte carlo motion planning
for robot trajectory optimization under uncertainty. In Robotics Research, pages
343–361. Springer, 2018.

[48] Reza N Jazar. Vehicle dynamics: theory and application. Springer, 2008.

[49] Tae-Yun Kim, Samuel Jung, and Wan-Suk Yoo. Advanced slip ratio for ensuring
numerical stability of low-speed driving simulation: Part ii—lateral slip ratio. Pro-
ceedings of the Institution of Mechanical Engineers, Part D: Journal of automobile
engineering, 233(11):2903–2911, 2019.

123

[50] Twan Koolen, Michael Posa, and Russ Tedrake. Balance control using center of mass
height variation: limitations imposed by unilateral contact. In Humanoid Robots
(Humanoids), 2016 IEEE-RAS 16th International Conference on, pages 8–15. IEEE,
2016.

[51] Shreyas Kousik, Patrick Holmes, and Ramanarayan Vasudevan. Safe, aggressive
quadrotor flight via reachability-based trajectory design. In Dynamic Systems and
Control Conference, volume 59162. American Society of Mechanical Engineers,
2019.

[52] Shreyas Kousik, Sean Vaskov, Fan Bu, Matthew Johnson-Roberson, and Ram Va-
sudevan. Bridging the gap between safety and real-time performance in receding-
horizon trajectory design for mobile robots. The International Journal of Robotics
Research, 39(12):1419–1469, 2020.

[53] Shreyas Kousik, Sean Vaskov, Matthew Johnson-Roberson, and Ram Vasudevan.
Safe trajectory synthesis for autonomous driving in unforeseen environments. In
ASME 2017 Dynamic Systems and Control Conference, pages V001T44A005–
V001T44A005. American Society of Mechanical Engineers, 2017.

[54] Xiaolong Kuang, Bissan Ghaddar, Joe Naoum-Sawaya, and Luis F Zuluaga. Alter-
native sdp and socp approximations for polynomial optimization. EURO Journal on
Computational Optimization, 7(2):153–175, 2019.

[55] Arthur D Kuo. Choosing your steps carefully. IEEE Robotics & Automation Maga-
zine, 14(2):18–29, 2007.

[56] Alexander B Kurzhanski and Pravin Varaiya. Ellipsoidal techniques for reachability
analysis: internal approximation. Systems & control letters, 41(3):201–211, 2000.

[57] Yoshiaki Kuwata, Justin Teo, Gaston Fiore, Sertac Karaman, Emilio Frazzoli, and
Jonathan P How. Real-time motion planning with applications to autonomous urban
driving. IEEE Transactions on control systems technology, 17(5):1105–1118, 2009.

[58] Jean B Lasserre. Simple formula for integration of polynomials on a simplex. BIT
Numerical Mathematics, 61(2):523–533, 2021.

[59] Steven M LaValle. Planning algorithms. Cambridge university press, 2006.

[60] Steven M LaValle and James J Kuffner Jr. Randomized kinodynamic planning. The
international journal of robotics research, 20(5):378–400, 2001.

[61] Jinsun Liu, Yifei Shao, Lucas Lymburner, Hansen Qin, Vishrut Kaushik, Lena
Trang, Ruiyang Wang, Vladimir Ivanovic, H Eric Tseng, and Ram Vasudevan. Re-
fine: Reachability-based trajectory design using robust feedback linearization and
zonotopes. arXiv preprint arXiv:2211.11997, 2022.

124

[62] Jinsun Liu, Pengcheng Zhao, Zhenyu Gan, Matthew Johnson-Roberson, and Ram
Vasudevan. Leveraging the template and anchor framework for safe, online robotic
gait design. In 2020 IEEE International Conference on Robotics and Automation
(ICRA). IEEE, 2020.

[63] Jan Lunze and Françoise Lamnabhi-Lagarrigue. Handbook of hybrid systems con-
trol: theory, tools, applications. Cambridge University Press, 2009.

[64] John Lygeros, Shankar Sastry, and Claire Tomlin. Hybrid systems: Foundations, ad-
vanced topics and applications. under copyright to be published by Springer Verlag,
2012.

[65] Daniel Lyons, Jan-P. Calliess, and Uwe D. Hanebeck. Chance constrained model
predictive control for multi-agent systems with coupling constraints. pages 1223–
1230, 2012.

[66] Anirudha Majumdar and Russ Tedrake. Funnel libraries for real-time robust feed-
back motion planning. The International Journal of Robotics Research, 36(8):947–
982, 2017.

[67] Anirudha Majumdar, Ram Vasudevan, Mark M Tobenkin, and Russ Tedrake. Con-
vex optimization of nonlinear feedback controllers via occupation measures. The
International Journal of Robotics Research, page 0278364914528059, 2014.

[68] Sandeep Kumar Malu and Jharna Majumdar. Kinematics, localization and control
of differential drive mobile robot. Global Journal of Research In Engineering, 2014.

[69] Stefanie Manzinger, Christian Pek, and Matthias Althoff. Using reachable sets for
trajectory planning of automated vehicles. IEEE Transactions on Intelligent Vehi-
cles, 6(2):232–248, 2020.

[70] Shankar Mohan, Jinsun Liu, and Ram Vasudevan. Synthesizing the optimal
luenberger-type observer for nonlinear systems. In 2017 IEEE 56th Annual Con-
ference on Decision and Control (CDC), pages 3658–3663. IEEE, 2017.

[71] Mohamad Shafiee Motahar, Sushant Veer, and Ioannis Poulakakis. Composing limit
cycles for motion planning of 3d bipedal walkers. In 2016 IEEE 55th Conference on
Decision and Control (CDC), pages 6368–6374. IEEE, 2016.

[72] Arkadi Nemirovski and Alexander Shapiro. Convex approximations of chance con-
strained programs. SIAM Journal on Optimization, 17(4):969–996, 2007.

[73] Q. Nguyen, A. Hereid, J. W. Grizzle, A. D. Ames, and K. Sreenath. 3d dynamic
walking on stepping stones with control barrier functions. In 2016 IEEE 55th Con-
ference on Decision and Control (CDC), pages 827–834, Dec 2016.

[74] Quan Nguyen, Ayonga Hereid, Jessy W Grizzle, Aaron D Ames, and Koushil
Sreenath. 3d dynamic walking on stepping stones with control barrier functions.
In 2016 IEEE 55th Conference on Decision and Control (CDC), pages 827–834.
IEEE, 2016.

125

[75] Quan Nguyen and Koushil Sreenath. Optimal robust control for bipedal robots
through control lyapunov function based quadratic programs. In Robotics: Science
and Systems, 2015.

[76] Quan Nguyen and Koushil Sreenath. Exponential control barrier functions for en-
forcing high relative-degree safety-critical constraints. In American Control Confer-
ence (ACC), 2016, pages 322–328. IEEE, 2016.

[77] Quan Nguyen and Koushil Sreenath. Optimal robust time-varying safety-critical
control with application to dynamic walking on moving stepping stones. In Dynamic
Systems and Control Conference, volume 50701. American Society of Mechanical
Engineers, 2016.

[78] Ingram Olkin and Thomas A Trikalinos. Constructions for a bivariate beta distribu-
tion. Statistics & Probability Letters, 96:54–60, 2015.

[79] Dávid Papp and Sercan Yildiz. Sum-of-squares optimization without semidefinite
programming. SIAM Journal on Optimization, 29(1):822–851, 2019.

[80] Pablo A Parrilo. Structured semidefinite programs and semialgebraic geometry
methods in robustness and optimization. PhD thesis, California Institute of Tech-
nology, 2000.

[81] Michael A Patterson and Anil V Rao. Gpops-ii: A matlab software for solving
multiple-phase optimal control problems using hp-adaptive gaussian quadrature col-
location methods and sparse nonlinear programming. ACM Transactions on Mathe-
matical Software (TOMS), 41(1):1–37, 2014.

[82] Christian Pek, Stefanie Manzinger, Markus Koschi, and Matthias Althoff. Using
online verification to prevent autonomous vehicles from causing accidents. Nature
Machine Intelligence, 2(9):518–528, 2020.

[83] Elijah Polak. Optimization: algorithms and consistent approximations, volume 124.
Springer Science & Business Media, 2012.

[84] Michael Posa, Twan Koolen, and Russ Tedrake. Balancing and step recovery cap-
turability via sums-of-squares optimization. In 2017 Robotics: Science and Systems
Conference, 2017.

[85] Stephen Prajna and Ali Jadbabaie. Safety verification of hybrid systems using bar-
rier certificates. In International Workshop on Hybrid Systems: Computation and
Control, pages 477–492. Springer, 2004.

[86] András Prékopa. Stochastic programming, volume 324. Springer Science & Busi-
ness Media, 2013.

[87] Mateusz Przybyła. Detection and tracking of 2d geometric obstacles from lrf data. In
2017 11th International Workshop on Robot Motion and Control (RoMoCo), pages
135–141. IEEE, 2017.

126

[88] Reinhold Remmert. Theory of complex functions, volume 122. Springer Science &
Business Media, 1991.

[89] R Tyrrell Rockafellar, Stanislav Uryasev, et al. Optimization of conditional value-
at-risk. Journal of Risk, 2:21–42, 2000.

[90] Prasanna Sahoo and Thomas Riedel. Mean value theorems and functional equations.
World Scientific, 1998.

[91] Shai Shalev-Shwartz, Shaked Shammah, and Amnon Shashua. On a formal model
of safe and scalable self-driving cars. arXiv preprint arXiv:1708.06374, 2017.

[92] Yifei Simon Shao, Chao Chen, Shreyas Kousik, and Ram Vasudevan. Reachability-
based trajectory safeguard (rts): A safe and fast reinforcement learning safety layer
for continuous control. IEEE Robotics and Automation Letters, 6(2):3663–3670,
2021.

[93] V. Shia, R. Vasudevan, R. Bajcsy, and R. Tedrake. Convex computation of the reach-
able set for controlled polynomial hybrid systems. In 53rd IEEE Conference on
Decision and Control, pages 1499–1506, Dec 2014.

[94] Nils Smit-Anseeuw, C David Remy, and Ram Vasudevan. Walking with confidence:
Safety regulation for full order biped models. IEEE Robotics and Automation Let-
ters, 4(4):4177–4184, 2019.

[95] S.W. Smith, H. Yin, and M. Arcak. Continuous abstraction of nonlinear systems
using sum-of-squares programming. In 58th Conference on Decision and Control,
2019.

[96] Eric Squires, Pietro Pierpaoli, and Magnus Egerstedt. Constructive barrier certifi-
cates with applications to fixed-wing aircraft collision avoidance. In 2018 IEEE Con-
ference on Control Technology and Applications (CCTA), pages 1656–1661. IEEE,
2018.

[97] Stanford Artificial Intelligence Laboratory et al. Robotic operating system.

[98] Jordan Stoyanov. Stieltjes classes for moment-indeterminate probability distribu-
tions. Journal of Applied Probability, 41(A):281–294, 2004.

[99] Matteo Tacchi, Carmen Cardozo, Didier Henrion, and Jean Lasserre. Approximating
regions of attraction of a sparse polynomial differential system. IFAC-PapersOnLine,
53(2):3266–3271, 2020.

[100] Aviv Tamar, Yinlam Chow, Mohammad Ghavamzadeh, and Shie Mannor. Sequen-
tial decision making with coherent risk. IEEE Transactions on Automatic Control,
62(7):3323–3338, 2016.

127

[101] J. Z. Tang, A. M. Boudali, and I. R. Manchester. Invariant funnels for underactuated
dynamic walking robots: New phase variable and experimental validation. In 2017
IEEE International Conference on Robotics and Automation (ICRA), pages 3497–
3504, May 2017.

[102] A Galip Ulsoy, Huei Peng, and Melih Çakmakci. Automotive control systems. Cam-
bridge University Press, 2012.

[103] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher Baker, Robert Bittner,
MN Clark, John Dolan, Dave Duggins, Tugrul Galatali, Chris Geyer, et al. Au-
tonomous driving in urban environments: Boss and the urban challenge. Journal of
Field Robotics, 25(8):425–466, 2008.

[104] Karthik Urs, Challen Enninful Adu, Elliott J Rouse, and Talia Y Moore. Design and
characterization of 3d printed, open-source actuators for legged locomotion. arXiv
preprint arXiv:2202.12395, 2022.

[105] Sean Vaskov. Fast and Safe Trajectory Optimization for Autonomous Mobile Robots
Using Reachability Analysis. PhD thesis, 2021.

[106] Sean Vaskov, Shreyas Kousik, Hannah Larson, Fan Bu, James Ward, Stewart Wor-
rall, Matthew Johnson-Roberson, and Ram Vasudevan. Towards provably not-
at-fault control of autonomous robots in arbitrary dynamic environments. arXiv
preprint arXiv:1902.02851, 2019.

[107] Sean Vaskov, Hannah Larson, Shreyas Kousik, Matthew Johnson-Roberson, and
Ram Vasudevan. Not-at-fault driving in traffic: A reachability-based approach.
In 2019 IEEE Intelligent Transportation Systems Conference (ITSC), pages 2785–
2790. IEEE, 2019.

[108] Sushant Veer and Ioannis Poulakakis. Safe adaptive switching among dynamical
movement primitives: Application to 3d limit-cycle walkers. In 2019 International
Conference on Robotics and Automation (ICRA), pages 3719–3725. IEEE, 2019.

[109] Miomir Vukobratović and J Stepanenko. On the stability of anthropomorphic sys-
tems. Mathematical biosciences, 15(1-2):1–37, 1972.

[110] Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point
filter line-search algorithm for large-scale nonlinear programming. Mathematical
programming, 106(1):25–57, 2006.

[111] E.A. Wan and R. Van Der Merwe. The unscented kalman filter for nonlinear es-
timation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Process-
ing, Communications, and Control Symposium (Cat. No.00EX373), pages 153–158,
2000.

[112] Allen Wang, Xin Huang, Ashkan Jasour, and Brian C Williams. Fast risk assessment
for autonomous vehicles using learned models of agent futures. Positions, 2:10,
2020.

128

[113] Allen Wang, Ashkan Jasour, and Brian C. Williams. Non-gaussian chance-
constrained trajectory planning for autonomous vehicles under agent uncertainty.
IEEE Robotics and Automation Letters, 5(4):6041–6048, 2020.

[114] Eric R Westervelt, Christine Chevallereau, Jun Ho Choi, Benjamin Morris, and
Jessy W Grizzle. Feedback control of dynamic bipedal robot locomotion. CRC
press, 2007.

[115] Pierre-Brice Wieber. On the stability of walking systems. In Proceedings of the
international workshop on humanoid and human friendly robotics, 2002.

[116] Derek L Wight, Eric G Kubica, and David W Wang. Introduction of the foot place-
ment estimator: A dynamic measure of balance for bipedal robotics. Journal of
computational and nonlinear dynamics, 3(1):011009, 2008.

[117] Holger Rapp Daniel Andor Wolfgang Hess, Damon Kohler. Real-time loop closure
in 2d lidar slam. In Robotics and Automation (ICRA), page 1271–1278, 2016.

[118] John Wurts, Jeffrey L Stein, and Tulga Ersal. Collision imminent steering using
nonlinear model predictive control. In 2018 Annual American Control Conference
(ACC), pages 4772–4777. IEEE, 2018.

[119] Yu Yao, Ella Atkins, Matthew Johnson-Roberson, Ram Vasudevan, and Xiaoxiao
Du. Bitrap: Bi-directional pedestrian trajectory prediction with multi-modal goal
estimation. IEEE Robotics and Automation Letters, 6(2):1463–1470, 2021.

[120] Hakan Yazarel and George J Pappas. Geometric programming relaxations for lin-
ear system reachability. In Proceedings of the 2004 American control conference,
volume 1, pages 553–559. IEEE, 2004.

[121] Zhang-Cai Yin, Hui Liu, Zhi-Jun Zhang, Zhang-Hao-Nan Jin, San-Juan Li, Jia-
Qiang Xiao, et al. Probabilistic model of random encounter in obstacle space. ISPRS
International Journal of Geo-Information, 8(1):32, 2019.

[122] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. Occlusion-aware
risk assessment for autonomous driving in urban environments. IEEE Robotics and
Automation Letters, 4(2):2235–2241, 2019.

[123] Ming-Yuan Yu, Ram Vasudevan, and Matthew Johnson-Roberson. Risk assessment
and planning with bidirectional reachability for autonomous driving. In 2020 IEEE
International Conference on Robotics and Automation (ICRA), pages 5363–5369.
IEEE, 2020.

[124] Ji Zhang and Sanjiv Singh. Loam: Lidar odometry and mapping in real-time. In
Robotics: Science and Systems, volume 2, pages 1–9. Berkeley, CA, 2014.

[125] Pengcheng Zhao. Fast, Optimal, and Safe Motion Planning for Bipedal Robots. PhD
thesis, 2020.

129

[126] Pengcheng Zhao, Shankar Mohan, and Ram Vasudevan. Control synthesis for non-
linear optimal control via convex relaxations. In 2017 American Control Conference
(ACC), pages 2654–2661. IEEE, 2017.

[127] Pengcheng Zhao, Shankar Mohan, and Ram Vasudevan. Optimal control for nonlin-
ear hybrid systems via convex relaxations. arXiv preprint arXiv:1702.04310, 2017.

130

	ACKNOWLEDGMENTS
	Table of Contents
	LIST OF FIGURES
	LIST OF TABLES
	LIST OF APPENDICES
	ABSTRACT
	Introduction
	Reachability-based Trajectory Design
	Contributions and Outlines

	Real-Time Safe Control for Bipedal Robots
	Introduction
	Preliminaries
	Outputs to Describe Successful Walking
	Enforcing N-Step Safe Walking
	Results
	Conclusion

	REFINE: Reachability-based Trajectory Design Using Robust Feedback Linearization and Zonotopes
	Introduction
	Preliminaries
	Vehicle Dynamics
	Trajectory Design and Safety
	Controller Design and Hybrid System Vehicle Model
	Computing and Using the FRS
	Online Planning
	Extensions
	Experiments
	Conclusion

	Real-time Risk-aware Reachability-based Trajectory Design
	Introduction
	Preliminaries
	Offline Reachability Analysis
	An Implementable Alternative to (Opt-C)
	Extension on Risk Threshold Selection
	Experiments
	Conclusion

	Conclusion and Future Directions
	Summary of Contributions
	Future Directions

	Appendices
	Derivation of SBM Dynamics
	Proof of Lemma 21
	Proof of Theorem 32
	Proof of Theorem 46
	BIBLIOGRAPHY

