
Exploiting Reconfiguration and Co-Design for
Domain-Agnostic Hardware Acceleration

by

Sung Kim

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Electrical and Computer Engineering)

in the University of Michigan
2023

Doctoral Committee:

Associate Professor Ronald Dreslinski, Chair
Professor David Blaauw
Assistant Professor Jean-Baptiste Jeannin
Associate Professor Hun-Seok Kim

Sung Kim

sungmk@umich.edu

ORCID iD: 0000-0002-9010-4617

© Sung Kim 2023

Acknowledgments

First, I’d like to thank Ron Dreslinski for his mentorship during my Ph.D. Ron’s ap-

proach to research fosters curiosity and open-mindedness, that lead naturally to driven and

productive researchers! Additionally, I’d like to thank Hun-Seok Kim for his trust and

confidence as a co-advisor. Among other things, Hun-Seok enthusiastically supported a

leading role in the DARPA SDH project when I first joined the University of Michigan.

Working on SDH was one of the best professional and personal experiences I’ve had to

date. I’d also like to thank David Blaauw, Trevor Mudge, and Chaitali Chakrabarti, who

were invaluable sources of advice, technical input, and lively discussion. In particular, I’m

grateful for David’s steady support during SDH chip development.

I’ve been fortunate to have great informal teachers, colleagues, and friends along the

way. Special thanks goes to Morteza Fayazi, Tutu Ajayi, Subhankar Pal, Siying Feng,

Dong-Hyeon Park, Kuan-Yu Chen, Alhad Daftardar, Jielun Tan, Chi-Sheng Yang, and all

the members of the CE Lab I had the pleasure of interacting with. At UW, I enjoyed

my time with (and learned a great deal from) Patrick Howe, Fahim ur Rahman, Xun Sun,

Anthony Smith, Rajesh Pamula, Thierry Moreau, Armin Alaghi, Amrita Mazumdar, and

the rest of the Sampa crew.

None of my work would be possible without Visvesh Sathe and Luis Ceze. Besides the

irreplaceable and unique technical training, Visvesh’s mentorship from my time at UW is

still a frequent source of wisdom and inspiration.

Finally, thank you to my family, for the love and support over the years.

ii

Table of Contents

Acknowledgments . ii

List of Figures . v

List of Tables . ix

Abstract . x

Chapter

I. Introduction . 1

1.1 Thesis Overview . 3

II. Recofigurable Hardware-Software . 7

2.1 Introduction . 7
2.2 Motivation . 11
2.3 Hardware Design . 12

2.3.1 Reconfigurable Modes 13
2.3.2 Reconfigurable Data Cache 15
2.3.3 Reconfigurable Crossbar 16
2.3.4 Processor Cores . 17
2.3.5 Host-Device Relationship 17

2.4 Software Interfaces . 18
2.5 Test Kernels . 19
2.6 FFT Kernel Generation . 21

2.6.1 Model-Specific Mappings 21
2.6.2 Limitations of Explicit Programming 23
2.6.3 MIMD Kernel Generation 24

2.7 Modeling and Experimental Methodology 24
2.8 Results . 27
2.9 Related Work . 34
2.10 Conclusion . 36

iii

III. A Reconfigurable Systolic Multiprocessor 37

3.1 Introduction . 37
3.1.1 High-Level Objectives 38

3.2 Hardware Overview . 39
3.2.1 Compute Tiles . 39
3.2.2 Memory Hierarchy and Tile-External Support 41

3.3 Algorithm-Driven Reconfigurability 43
3.3.1 Reconfigurable Crossbar 43
3.3.2 Reconfigurable On-Chip Memory 46
3.3.3 Systolic Execution . 48
3.3.4 Hierarchical Thread Primitives 51

3.4 Chip Implementation . 54
3.5 Baselines and Test Methodology 56
3.6 Measurements and Analysis . 58

3.6.1 Nominal Energy-Efficiency and Performance 60
3.6.2 Voltage-Scaled Characteristics 62

3.7 Related Work . 62
3.8 Conclusion . 65

IV. Compiler Support for Versatile Hardware 66

4.1 Introduction . 66
4.2 Motivation . 68
4.3 Polca: Polyhedral Compilation for Versatile Hardware 69
4.4 Machine Model and IR . 70

4.4.1 Accelerator Architecture 70
4.4.2 Polca Dialect . 71

4.5 Exploiting Versatile Parallelism 72
4.5.1 Frontend . 72
4.5.2 Polyhedral Loop Restructuring. 73
4.5.3 SPMD Parallelism. 73
4.5.4 Systolic Reduction Parallelism. 74
4.5.5 MIMD Conversion. 76
4.5.6 Final Lowering . 78

4.6 Evaluation . 78
4.7 Related Work . 84
4.8 Conclusion . 86

V. Conclusion . 88

Bibliography . 90

iv

List of Figures

Figure

1.1 The demand for computation has outpaced the capabilities of conven-
tional processors, such as CPUs. This is largely due to the departure
from Dennard Scaling in the early 2000s, marked by stringent physical
constraints in power density and clock frequency. It is unclear whether
ASICs, in addition to repurposed legacy architectures, will be sufficient
to support the growing range of new applications and requirements. . . . 2

1.2 Conventional general-purpose architectures and ASICs reside at extremes
of a performance, energy-efficiency, and programmability spectrum. In
contrast, accelerators that exploit algorithm characteristics without sacri-
ficing software-programmability target a knee point in the performance-
efficiency pareto curve. Hardware-algorithm co-design techniques that
apply to broad classes of computations are a promising way to improve
the pareto frontier, enabling better support for emerging applications that
continually evolve. 3

2.1 High-level analysis of workloads and key constituent kernels from the
DARPA software-defined hardware (SDH) program. (top) breakdown
of execution time, and (bottom) summary characterization. Runtime of
SDH workloads is dominated by diverse linear algebra and signal pro-
cessing kernels, with disparate levels of arithmetic intensity, data reuse,
and control/memory divergence. 9

2.2 Performance disparity on synthetic workloads for simulated multi-core
systems with different on-chip memory type, and different memory scopes.
(left) Speedup of scratchpad memory (SPM) over iso-capacity cache in
a 1-core system, under contiguous and random access patterns; SPM and
cache are provided the same stream of load/store addresses for a given
access pattern. (right) Speedup of 1 shared memory over 8 private mem-
ories in an 8-core system, under data access patterns with different levels
of overlap. 11

v

2.3 Overview of the Transmuter hardware design. (a) Top-level view of a
Transmuter system including host and DRAM interfaces. (b) A single
cluster containing 4 tiles with associated L2 R-DCaches and L2 R-Xbars.
Crossbar interfaces to HBM are non-reconfigurable. (c) Contents of a
single tile, containing GPE cores, the LCP core, LCP-GPE work/status
queues, L1 R-DCaches, and L1 R-XBars. Arbiters and instruction caches
are omitted. (d) Microarchitecture of an R-XBar; circled numbers indi-
cate the mode of operation (1©: Arbitrate with LRG, 2©: Transparent,
3©: Rotate). 13

2.4 Overview of the three Transmuter configurations evaluated in this work.
(a) Trans-SC: L1 shared cache with L2 shared cache. (b) Trans-PS: L1
private SPM with L2 private cache. (c, d) Trans-SA: L1 systolic array
with L2 private cache. 14

2.5 Illustration of crossbar ROTATE functionality: (a) Physical connections
between cores and R-DCache banks are time-multiplexed and “rotate”
every cycle. (b) Alternating port connections provide functional behavior
equivalent to spatial dataflow. 15

2.6 Summary of radix-2 FFT implementation: (top) Algorithmic partitioning
of vertical FFT stages onto processors. (bottom) Resulting pipeline of
butterfly computations across processors. 22

2.7 Overview of FFT kernel generation. 24
2.8 Performance comparison across kernels and input sizes for Trans-SC,

Trans-PS, and Trans-SA Transmuter configurations. 29
2.9 Performance attribution: (left axis) attribution of cycles for different ar-

chitectural events, and (right axis) work imbalance across cores. 30
2.10 Average performance (throughput) and energy-efficiency, normalized to

the CPU baseline. Data is averaged across all test inputs for each kernel.
GeoMean columns indicate the aggregated geometric mean for compute-
bound and memory-bound kernels. 32

3.1 Versa exploits reconfiguration of on-chip memory and compute to pro-
vide algorithm-optimized hardware characteristics. Based on learnings
from Transmuter, Versa evolves the programming model, provides en-
hanced reconfigurability, and resolves key scalability limitations. 39

3.2 Composition of a Versa compute tile. 40
3.3 Overview of the Versa prototype and memory hierarchy. 43
3.4 The reconfigurable crossbar (RXB) and overview of sub-modes. Dia-

grams in Private and Queue illustrate a sub-section of the crosspoint ma-
trix. 45

3.5 Sub-mode logic and SRAM components in the reconfigurable on-chip
memory. 46

3.6 Comparison of banking schemes (wide v.s. sub-banked): (a) data utiliza-
tion per access, and (b) design costs. 47

3.7 Conventional instruction sequence: obligatory memory access overheads
are interleaved with computation. 48

vi

3.8 Example computation with R2R: (a) instruction sequence, (b) logical
(pipeline) view, and (c) physical view of read/write conventions. R2R-
writes bypass the local RF, while R2R-reads utilize local registers. Car-
dinal directions are inverted for writes to maintain spatial symmetry. . . . 49

3.9 R2R microarchitectural implementation: (a) integration with the ARM
Cortex-M4F pipeline, (b) interception of operands in the R2R Shim and
2-bit link-state control. 50

3.10 Accelerated thread-synchronization barriers: (a) Distributed scratchpads
decentralize atomic updates to barrier data. Cores first synchronize within
tiles over the T-SPM, followed by a global synchronization phase involv-
ing only managers over the G-SPM. After managers pass the global syn-
chronization phase, each manager releases the barrier (and the workers)
within their respective tiles. (b) Serialization is reduced by partitioning
synchronization into parallel sections. In contrast to a centralized barrier
with O(N) scaling with respect to core count, the distributed hardware-
software barrier implementation scales with O(W +T), where W and T
are the number of workers per tile and number of tiles, respectively. . . . 52

3.11 Comparison of thread synchronization latency with alternative barrier im-
plementations. pthreads represents the off-the-shelf thread barrier im-
plementation from the popular pthreads library, measured on a quadcore
Arm A57 with 4 spawned threads. centralized SP is a barrier imple-
mented on Versa using single centralized scratchpad memory. tree-
based SP is the Versa thread barrier implementation that leverages dis-
tributed scratchpads. 52

3.12 (L) Die photo and (R) summary characteristics. 55
3.13 Setups for chip testing: (L) Linux single-board-computer debug host,

primarily for bringup and data collection, and (R) FPGA interface for
emulated MPSoC integration. 55

3.14 Evaluation kernels from MachSuite: kernels are selected to capture a
range of characteristics. 56

3.15 Energy-efficiency improvement over CPU and GPU baselines: (a) trends
across dataset footprints, and (b) summary boxplots. Boxplots are labeled
on min, median, and max values. 59

3.16 Chip characteristics under voltage scaling. (L) System frequency and
power, (M) energy-per-cycle, and (R) the performance-efficiency Pareto
curve. 62

4.1 Development of accelerator kernels and associated libraries is a challeng-
ing task that prioritizes hardware performance. Because kernel develop-
ment is already complex and effort-intensive, e.g. requiring extensive tun-
ing and detailed hardware knowledge, the rapid evolution of both hard-
ware and algorithms presents a non-trivial challenge. 67

4.2 Overview of the proposed compiler and IR lowering pipeline. 69
4.3 Overview of Polca target accelerator. 70
4.4 Key mid-level analysis and transformation passes. 72

vii

4.5 Overview of Polca spatial reduction parallelization. (a) Operations as-
sociated with a reduction loop are tabulated into a preamble, body, and
postamble. (b) Unparallelized reductions are restricted to parallelism in
outer dimensions, limiting data locality. Polca leverages spatial links to
parallelize inner reduction loops with low performance overhead, yield-
ing net speedup. (c) Pseudocode for functional partitioning of work. . . . 75

4.6 Physical and temporal views of the optimized reduction strategy. (a)
Outer-parallel iterations are mapped onto hardware stripes (vertical stripes
shown), with one stripe executing an entire parallel reduction. (b) Tempo-
ral view of execution for one stripe. Intra-stripe reduction in core postam-
bles is used to aggregate per-core (parallel) local reductions. 76

4.7 Excerpt of transformed IR for reduction, nested in a tiled parallel loop.
Identifiers edited for clarity. Affine predication on symbolic spatial in-
dices (tid, sid, eid) models differentiated execution. Symbols are
later substituted for constants during MIMD conversion; downstream
simplification passes produce predication-free IR for each core. 77

4.8 Speedups normalized to baseline sequential execution. tiled shows
sequential execution with tiling and basic restructuring optimizations en-
abled, while tiled-parallel enables both tiling and base parallelization
optimizations. 81

4.9 Speedups for kernels amenable to systolic reduction parallelization. r2r-
reduce enables all optimizations for tiling, base parallelization, and re-
duction parallelization. est-atomic-<20,100,200> labels denote esti-
mated speedups when R2R-based spatial data transfers are substituted
for 20-200ns atomic RMWs. (a) Cumulative speedup over baseline se-
quential execution, and (b) relative speedup over tiled-parallel. . . . 82

viii

List of Tables

Table

2.1 Key characteristics of Transmuter and comparable alternatives. 10
2.2 Microarchitectural parameters for gem5 simulations. 25
2.3 Hardware and software comparison baselines. 27
2.4 Breakdown of power and area for one 64× 64 Transmuter cluster. 28
2.5 Estimated speedup for end-to-end applications. 32
3.1 Composition of logical memory modes. R2R functionality is orthogonal

and compatible with all. 44
3.2 Hardware baselines. 56
3.3 Efficiency and performance improvement from dynamic reconfiguration

between modes. Stars indicate whether the mode-advantage is consistent
(8) or mixed (9). 58

3.4 Median improvements across all kernels. 58
4.1 Summary of average (geomean) speedup across kernels. ‘Rel.’ denotes

relative speedup obtained by stacking optimizations, while ‘Total’ de-
notes total (cumulative) speedup over sequential. 84

ix

Abstract

Hardware accelerators have become permanent features in the post-Dennard comput-

ing landscape, displacing conventional processors for a variety of applications. Not only

have semiconductor power and performance limitations become more stringent, but the de-

mand for computing power has accelerated at an unprecedented pace. Data and compute-

intensive application domains – such as machine learning, vision, and bioinformatics –

require processing power orders of magnitude greater than what general-purpose proces-

sors can provide. The requirements of emerging applications, in conjunction with the lim-

itations associated with conventional processors, have resulted in industry-wide efforts to

develop new application-specific integrated circuit (ASIC) designs. Nevertheless, conven-

tional ASIC accelerators sacrifice programmability for the sake of performance and energy-

efficiency – a non-ideal state of affairs.

To address the problems above, this thesis introduces an end-to-end hardware-software

concept for a semi-specialized accelerator that retains ASIC-like characteristics without

sacrificing software programmability. In particular, we propose hardware-software co-

design techniques to (1) exploit workload characteristics in programmable accelerators via

rapid hardware reconfiguration, and (2) develop a compiler stack that generates optimized,

auto-parallelized application kernels.

Chapter I discusses why hardware acceleration is needed, the current landscape of ASIC

and general-purpose processor hardware, and identifies challenges associated with build-

ing accelerators that are both programmable and efficient. Chapter II introduces an ini-

tial design concept for a rapidly-reconfigurable programmable accelerator, and discusses

challenges associated with the paradigm. Based on learnings from Chapter II, Chapter III

x

proposes key enhancements to improve performance and resolve key hardware bottlenecks,

and presents results from a fabricated prototype chip. Chapter IV discusses software de-

velopment challenges inherent with our hardware approach, and introduces an end-to-end

optimizing compiler to automatically generate kernels that exploit the proposed accelerator

architecture.

xi

Chapter I

Introduction

Hardware-software co-design is more important than ever. Improvements in comput-

ing hardware translate to faster software, more efficient resource usage, and can enable en-

tirely new application domains such as computational biology, machine learning (ML), and

AR/VR. In conjunction, better, more detailed information about how programs behave can

be structurally exploited in hardware to improve application support. Nevertheless, while

computing devices are directly constrained by physics, software is not – the breadth, diver-

sity, and processing requirements of software continue to grow at staggering rates. Coupled

with underlying semiconductor technologies that are no longer improving at historical rates

(thereby yielding robust, predictable improvements in power and performance), fundamen-

tal changes elsewhere in hardware-software stack are required to sustain future computing

demand.

Benefits from traditional semiconductor process scaling – the physical shrinking of

integrated circuits and associated benefits from better chip fabrication technology – are

nearly exhausted. For several decades, computer architects and system designers could

rely on semiconductor technologies with key metrics that improved predictably over short

periods of time. Rate of improvement in transistor density (Moore’s Law [1]), and scaling

of integrated circuit electrical characteristics (Dennard Scaling [2])) are notable examples.

Nevertheless, the escalating complexity of advanced semiconductor manufacturing, in ad-

1

Conventional
Capability

Present

Computing
Demand

Future

?

Post-Dennard
(Constant Voltage +
Power Constrained)

ASIC/GPU/FPGA
Accelerators

Dennard Scaling
(Constant Field)

Figure 1.1: The demand for computation has outpaced the capabilities of conventional
processors, such as CPUs. This is largely due to the departure from Dennard Scaling
in the early 2000s, marked by stringent physical constraints in power density and clock
frequency. It is unclear whether ASICs, in addition to repurposed legacy architectures, will
be sufficient to support the growing range of new applications and requirements.

dition to physical constraints such as power density [3], have resulted in a marked departure

from historical process scaling [4, 5]. As a result, domain experts, system architects, and

engineers are no longer able to rely solely on general-purpose hardware to satisfy appli-

cation requirements [6, 7]. This shift away from homogeneous CPU-based platforms puts

more burden on complementary solutions, creating new opportunities for novel design (Fig-

ure 1.1).

Orthogonal to process scaling and conventional general-purpose approaches, hardware

can be designed to take advantage of context-specific algorithm characteristics; this entails

a pareto frontier of performance and energy-efficiency versus flexibility (Figure 1.2). For

example, in contrast to general-purpose CPUs that are fully-programmable, an application-

specific integrated circuit (ASIC) is designed to support a small, restricted set of computa-

tions. By reorganizing on-chip resources and stripping away unnecessary hardware units,

an ASIC can yield energy-efficiency and performance orders of magnitude better than a

general-purpose counterpart. The inherent tradeoff with ASIC-like specialization is a loss

2

Perf. &

Energy-Eff.

Programmability

Conven�onal

General-Purpose

Conven�onal

ASIC

So�ware-Programmable

+ Near-ASIC Efficiency

Future:

min max

max

min

Figure 1.2: Conventional general-purpose architectures and ASICs reside at extremes of
a performance, energy-efficiency, and programmability spectrum. In contrast, accelerators
that exploit algorithm characteristics without sacrificing software-programmability target
a knee point in the performance-efficiency pareto curve. Hardware-algorithm co-design
techniques that apply to broad classes of computations are a promising way to improve the
pareto frontier, enabling better support for emerging applications that continually evolve.

of flexibility – fixed-function designs are typically limited to one use-case and carry greater

risk of near-term obsolescence. Given current engineering realities (e.g., resources and time

required to develop and deploy new silicon), fixed-function ASICs are likely sub-optimal

for applications that are still changing rapidly. Thus, while ASICs may be a good fit for

mature computations1, there is an abundant opportunity for semi-specialized designs that

improve energy-efficiency with little to no impact on programmability.

1.1 Thesis Overview

This thesis investigates how architects and hardware designers can make better use of

the specialization-programmability middle-ground illustrated in Figure 1.2. In particular,

we show that algorithm-specific behavior can be exploited in hardware without sacrific-

ing programmability, and that recent compilation techniques can be leveraged to rapidly

construct performant, end-to-end compilers for general-purpose accelerators. We show

1For example, the use of ASICs and fixed-function IP in media codec.

3

that energy-efficient, tiled programmable architectures can be constructed from commod-

ity off-the-shelf cores. Furthermore, we show that when such architectures are augmented

with a targeted form of memory reconfiguration and core-to-core dataflow, they exhibit bet-

ter performance and energy-efficiency due to hardware that can adapt to algorithm needs.

To demonstrate how a reconfigurable parallel architecture can be exploited from high-level

software, we develop an end-to-end optimizing compiler that builds on progressive lower-

ing and polyhedral compilation techniques.

The following chapters of this dissertation are organized as follows.

Recofigurable Hardware-Software

Homogeneous CPU-based machines have been unable satisfy the compute and mem-

ory requirements of critical algorithms, such as machine learning, leading to the rapid

growth and deployment of ASICs and graphics processing units (GPUs). Nevertheless, ex-

isting ASIC and GPU designs exhibit highly-suboptimal performance for specific classes

of emergent computations. In particular, existing ASIC and GPU platforms lack sufficient

support for sparsity, which is a key component of many emerging workloads. Chapter II

introduces Transmuter, a tiled reconfigurable architecture and design-space exploration for

software-defined reconfigurable hardware. Cycle-level simulation experiments with Trans-

muter illustrate the value of targeted memory reconfiguration for both sparse and dense

kernels, and also clarify architectural trade-offs for the design in terms of compute and

memory hierarchy design. This chapter also illustrates the importance of software support;

while optimized kernels for multi-core accelerators can be generated with adhoc infrastruc-

ture, a holistic optimizing compiler is crucial for productivity and performance.

A Reconfigurable Systolic Multiprocessor

Inter-core data transfer and thread synchronization operations are critical performance

and scalability bottlenecks for software-defined hardware designs. While processing ele-

4

ments in ASICs often achieve efficient data transfer over simple registers (e.g., in systolic

arrays), existing programmable processors lack an equivalent mechanism; this not only

results in performance and energy-efficiency penalties, but also impacts the design and

mapping of application kernels.

Chapter III introduces Versa, a programmable multi-core accelerator designed to ex-

ploit diverse workloads with high scalability and energy-efficiency. Based on lessons from

Transmuter, Versa supports sparse and irregular workloads with a tiled SPMD/MIMD ar-

chitecture composed of lightweight in-order cores. To exploit data-reuse characteristics

on a per-algorithm basis, the Versa design introduces a reconfigurable hierarchy of inter-

connects and on-chip memory. Inspired by ASIC designs, Versa introduces a register-

to-register (R2R) data transfer mechanism that fuses instruction-level computation with

core-to-core communication. R2R obviates the need for expensive SRAM and cache-

based communication, and enables systolic array-type algorithm mappings onto software-

programmable hardware. To alleviate crucial parallelization overheads, Versa also incor-

porates hardware support for a hierarchical tree-based thread synchronization scheme. To

evaluate our hypothesis and experimental hardware features, a prototype of Versa is fabri-

cated in 28nm CMOS, along with a custom C++ software stack. We develop hand-tuned

implementations for several kernels exhibiting diverse control and compute characteristics,

and benchmark the prototype against comparable 22nm CPU and GPU designs.

Compiler Support for Versatile Hardware

Developing high-performance kernel code for accelerators in a scalable manner is chal-

lenging for several reasons. Because accelerator kernels are typically in the critical path of

end-to-end execution time, developers strive for accelerator programs that extract max-

imum hardware performance. However, accelerator kernel development assumes deep

knowledge of parallel software optimization, and also of underlying microarchitectural

details – a non-ideal state of affairs. Even with specialized hardware and software knowl-

5

edge, delivering high-performance accelerator code is highly time and labor intensive, typ-

ically requiring invasive code optimizations. Such optimizations involve non-trivial code

restructuring that not only obfuscates core algorithms, but also prevents accelerator soft-

ware portability. The explosion and rapid evolution of accelerator variants only exacerbates

the problems above.

Resolving critical software barriers – to yield accelerator code that is performant, portable,

and extensible – is a problem that requires new compiler infrastructure. Chapter IV intro-

duces Polca, an end-to-end optimizing compiler for parallel SPMD/MIMD architectures

with reconfigurable memory and fine-grained core-to-core data transfer. Based on ex-

periences developing accelerator kernel code for Transmuter and Versa, we identify key

optimizations, such as auto-parallelization, memory tiling, and fast parallel reduction oper-

ations, that are non-trivial to develop by hand but crucial for performance. Through a com-

bination of modular compiler infrastructure reuse, polyhedral techniques, and lightweight

intermediate representation (IR) extensions, Polca supports the full compilation flow, from

unoptimized single-threaded C++ to object code, for Versa and Transmuter accelerator tar-

gets. We validate the end-to-end compilation stack on a set of unoptimized benchmark

kernels, demonstrating the feasibility of Polca and future accelerator compilers.

6

Chapter II

Recofigurable Hardware-Software

2.1 Introduction

The end of Dennard scaling and the slowing of Moore’s law has driven both indus-

try and research efforts to develop accelerator-centric solutions. GPPs, ASICs, and re-

configurable accelerators have been historically bound by three conflicting constraints:

(1) software programmability, (2) algorithm-specificity, (3) and overhead from low-level

configurability. While existing General-Purpose Processors (GPPs) are designed for high

programmability, ASIC accelerators maximize performance and energy-efficiency, albeit

for a single algorithm or at best a narrow set of kernels. For instance, hardware mech-

anisms such as caching and out-of-order execution improve performance for the general

case, but carry significant energy and area overhead compared to ASIC designs. ASICs

achieve high performance and efficiency by stripping away extraneous hardware (e.g., con-

trol overhead), and exploit algorithm-specific data access patterns. At the same time, due to

high non-recurring expenses, building ASIC accelerators is typically infeasible except for

a small number of application-critical workloads. Furthermore, fixed-function ASICs for

fast-moving application domains, such as machine learning, carry high risk for near-term

obsolescence.

In an effort to accelerate emerging workloads without the drawbacks of an ASIC de-

sign, a variety of solutions that leverage reconfigurable hardware have been developed. For

7

instance, promising solutions that incorporate reconfigurability have developed for web

search [8], machine learning [9], graph processing [10], sparse linear algebra [11], and

general data-parallel workloads [12]. Nevertheless, compared to GPPs and ASICs, recon-

figurable accelerators such as FPGAs have historically been limited to a narrow range of

use-cases. FPGAs are effective tools for logic emulation, but gate- and bit-level reconfig-

urability constitute significant overhead – the efficiency of an FPGA accelerator is typically

orders of magnitude lower than a corresponding ASIC design. FPGA reconfiguration at

kernel granularity is also too slow to be used at runtime, on the order of microseconds to

milliseconds despite partial reconfiguration [13, 14]. Furthermore, the programming model

for FPGAs involves low-level hardware description languages that impact productivity. 1

A key challenge for programmable accelerators is the need to handle emerging work-

loads with contrasting compute and memory characteristics. For instance, Figure 2.1 illus-

trates that real-world applications exhibit diverse characteristics not only across domains,

but also within a single application. Handling both the inter- and intra-application diver-

sity efficiently – in a single processor architecture – calls for an architecture without a

conventional, static hierarchy of compute and memory. A programmable accelerator for

emerging applications must be capable of tailoring itself at runtime, according to the needs

of different applications and diverse underlying kernels.

To overcome the challenges above we present a flexible accelerator called Transmuter [15].

Transmuter is a hardware design that bridges the gap between GPPs and ASICs via low-

latency, runtime reconfiguration of on-chip resources. In contrast to FPGAs and ASICs,

Transmuter retains software-programmability, but exploits lightweight reconfiguration to

achieve greater performance and efficiency compared to GPPs. In particular, reconfigu-

ration of on-chip memory type, resource sharing, and dataflow are used to address the

requirements of contrasting application kernels.

1While the FPGA programming model is currently a non-trivial barrier to the deployment of FPGA accel-
erators, compiler and high-level synthesis (HLS) solutions are improving rapidly. The FPGA programming
model will likely improve. On the other hand, energy-efficiency overheads in FPGAs appear to be irrecon-
cilable, and constrained by logic emulation use-cases.

8

Figure 2.1: High-level analysis of workloads and key constituent kernels from the DARPA
software-defined hardware (SDH) program. (top) breakdown of execution time, and (bot-
tom) summary characterization. Runtime of SDH workloads is dominated by diverse lin-
ear algebra and signal processing kernels, with disparate levels of arithmetic intensity, data
reuse, and control/memory divergence.

9

Hardware Program-
mability

Compiler
Support

Reconfig.
Time

Relative
Efficiency

ASIC N.A. Custom N.A. Very High

CGRA Partial Custom O(µs)-O(ns) High

FPGA High COTS O(ms)-O(µs) Medium

ASIP/GPP Very High COTS N.A. Low-Medium

Transmuter Very High COTS <10 cycles High

Table 2.1: Key characteristics of Transmuter and comparable alternatives.

Transmuter differs from existing solutions that use gate-level reconfigurability (FP-

GAs), in addition to pipeline-level reconfigurability used in most coarse-grained reconfig-

urable arrays (CGRAs). Notably, Transmuter selectively reconfigures the on-chip memory

type, resource sharing patterns, and dataflow, at a coarser granularity than contemporary

CGRAs. From a hardware and energy-efficiency perspective, targeted reconfiguration lim-

its logic overhead, and also eases the development of downstream software toolchains.

Downstream software benefits similarly from the use of general-purpose cores with a stan-

dard ISA as compute units. As a result, Transmuter ’s reconfigurable hardware enables

runtime reconfiguration within 10s of nanoseconds, faster than existing CGRA and FPGA

designs. A qualitative comparison of key characteristics for Transmuter and existing archi-

tectures are listed in Table 2.1.

From a software perspective, Transmuter provides application and developer interfaces

at higher levels of abstraction (e.g., compared to hardware description language). The soft-

ware stack exposes two layers: (i) a C++ intrinsics layer that compiles directly for the

hardware using a commercial off-the shelf (COTS) compiler, and (ii) a drop-in replace-

ment for existing high-level libraries in Python, called TransPy, that exposes optimized

Transmuter kernel implementations to an end-user. Transmuter incorporates an end-to-end

software solution, providing both low-level and high-level APIs for kernel and application

development, demonstrating the feasibility of the approach.

10

0 100 200
Arithmetic Intensity (FLOPS/B)

0.1

1.0

10.0

Sp
ee

du
p

(S
PM

ov

er
 C

ac
he

)
Contiguous
Random

5 10 15
Memory Access Stride

1.0

10.0

Sp
ee

du
p

(S
ha

re
d

ov
er

 P
riv

at
e)

No overlap
Full overlap
Thrashing

Figure 2.2: Performance disparity on synthetic workloads for simulated multi-core sys-
tems with different on-chip memory type, and different memory scopes. (left) Speedup of
scratchpad memory (SPM) over iso-capacity cache in a 1-core system, under contiguous
and random access patterns; SPM and cache are provided the same stream of load/store
addresses for a given access pattern. (right) Speedup of 1 shared memory over 8 private
memories in an 8-core system, under data access patterns with different levels of overlap.

2.2 Motivation

Emerging workloads are often heterogeneous with respect to arithmetic and data access

characteristics. For instance, neural network models may entail a mix of dense and sparse

linear algebra, while graph problems heavily depend on irregular index structure traversals.

These differences are crucial, determining when programs become compute- or memory-

bound, and how kernels interact with hardware structures (such as on-chip memory banks).

For conventional architectures that incorporate static hardware, runtime variation in com-

pute and access patterns represent missed optimization opportunities.

To understand the interactions above, we designed synthetic kernels with varying lev-

els of arithmetic intensity, access stride, and data overlap, and measured their performance

against potential on-chip memory configurations (Figure 2.2). In particular, cache and

scratchpad are the predominant types of on-chip memory used in programmable architec-

tures, but offer distinct tradeoffs [16, 17]. The partitioning of on-chip memories – e.g.,

into groups that are shared between cores or private to a single core – also has significant

performance implications.

11

Figure 2.2 (left) illustrates that performance disparity between scratchpad memory

(SPM) and cache can vary by up to ~10×, depending on the access pattern and arithmetic

intensity. Regardless of access pattern, SPM speedup over cache is drastically reduced if

arithmetic intensity is low, largely due to SPM buffering overhead. SPM buffering overhead

is amortized as arithmetic intensity increases, implying that SPM is more useful if algorith-

mic data reuse can be found. Under random (irregular) accesses, iso-capacity cache incurs

significant penalties compared to SPM due to cache granularity, imperfect caching, and

resulting evictions. On the other hand, SPM offers little to no advantage under contiguous

(regular) accesses since cache miss penalties are largely eliminated; if accesses are random

and arithmetic intensity is low, SPM incurs significant slowdown.

Figure 2.2 (right) shows the speedup of shared cache over private cache, for different

access patterns and access strides. If loads/stores from different cores do not overlap and

access distinct cache lines, shared and private caching offer similar performance; accesses

are distributed across memories in either case. However, in the case of full overlap, shared

caching offers significant benefits up to 1-2 orders of magnitude, since data is reused across

cores. The ‘Thrashing’ access pattern illustrates the pitfall of shared caching – shared

caching is vulnerable to cache conflicts across cores (i.e., cache pollution), while private

caching is free of this problem by design.

The experiments above highlight the potential advantages (and pitfalls) that any single,

static memory configuration provides. We claim that it is advantageous to eschew static

hardware assumptions, and instead provide hardware suited to varying application needs

via reconfiguration.

2.3 Hardware Design

Transmuter (Figure 2.3) is a massively parallel tiled architecture, composed of energy-

efficient in-order cores and a two-level memory hierarchy. A single Transmuter chip may

contain one or more clusters that interface to HBM stack(s) in a 2.5D configuration, en-

12

Figure 2.3: Overview of the Transmuter hardware design. (a) Top-level view of a Trans-
muter system including host and DRAM interfaces. (b) A single cluster containing 4 tiles
with associated L2 R-DCaches and L2 R-Xbars. Crossbar interfaces to HBM are non-
reconfigurable. (c) Contents of a single tile, containing GPE cores, the LCP core, LCP-
GPE work/status queues, L1 R-DCaches, and L1 R-XBars. Arbiters and instruction caches
are omitted. (d) Microarchitecture of an R-XBar; circled numbers indicate the mode of
operation (1©: Arbitrate with LRG, 2©: Transparent, 3©: Rotate).

abling scalability up to GPU-like system sizes. Tiles within clusters connect to main mem-

ory through two levels of reconfigurable caches (R-DCaches, Section 2.3.2) and recon-

figurable crossbars (R-XBars, Section 2.3.3). The network of R-DCaches and R-XBars

provide fast reconfiguration of the on-chip memory type, resource sharing pattern, and

dataflow (Section 2.3.1). As discussed in Section 2.1, restricted reconfigurability in the

R-DCaches and R-XBars is a key aspect of the design that enables workload adaptation

with low overhead. Similarly, the abundance of in-order cores as general-purpose process-

ing elements (GPEs, Section 2.3.4) maximally exploit workload parallelism, with minimal

overhead compared to conventional processors.

2.3.1 Reconfigurable Modes

Transmuter contains coarse-grained reconfigurable resources that enable emulation of

multiple architectural configurations, which may cater to different workloads. Specifically,

reconfiguration in the L1 and L2 – detailed later in Section 2.3.2 and Section 2.3.3 – allow

for different on-chip memory type (cache, scratchpad, or FIFO), resource sharing (shared

13

Figure 2.4: Overview of the three Transmuter configurations evaluated in this work.
(a) Trans-SC: L1 shared cache with L2 shared cache. (b) Trans-PS: L1 private SPM with
L2 private cache. (c, d) Trans-SA: L1 systolic array with L2 private cache.

or private), and dataflow (demand-driven or spatial). While reconfiguration of the L1 and

L2 allow for 8 modes each and 64 modes in total, we identify and evaluate 3 distinct

configurations (Figure 2.4); these configurations are described as follows.

Shared Cache (Trans-SC): L1 and L2 as shared cache. Trans-SC is most similar to the

cache hierarchy of existing multicore CPUs. R-XBars in the L1 and L2 levels arbitrate

accesses to tile-internal and tile-external R-DCache banks, respectively. This configuration

maximizes cache hit rates under regular data access patterns.

Private Scratchpad (Trans-PS): L1 as private scratchpad and L2 as shared cache. Trans-

PS reconfigures L1 cache banks in each tile to be core-private, while the L2 is shared cache

(i.e., the same L2 configuration as Trans-SC). This configuration is suited for data access

patterns that would otherwise induce cache thrashing, for instance when data structures are

partitioned across cores without overlap. Private L2 banks in Trans-PS promote occasional

reuse of shared secondary data structures, or victim data that may be spilled.

14

Figure 2.5: Illustration of crossbar ROTATE functionality: (a) Physical connections be-
tween cores and R-DCache banks are time-multiplexed and “rotate” every cycle. (b) Alter-
nating port connections provide functional behavior equivalent to spatial dataflow.

Emulated Systolic Array (Trans-SA): L1 as FIFO buffers and L2 as private cache.

Trans-SA provides a view of FIFO-buffered ports in the R-XBars and R-DCaches to emu-

late either a 1D or 2D systolic array. Finite-state-machines in the R-XBars time-multiplex

connections between cores and R-DCache FIFOs on a per-cycle basis, thereby providing

spatial array functionality. This configuration is suited for applications that exhibit minimal

workload imbalance, and are amenable to mapping onto spatial hardware.

The three configurations above are chosen to be well-suited to the SDH kernels pre-

sented in Figure 2.1. For example, while L1 as shared cache and L2 as private cache is

functionally valid, the configuration is largely redundant (and often sub-optimal) compared

to Trans-SC. Similarly, we find little benefit to using the L2 as scratchpad in conjunction

with either L1 scratchpad or cache, largely due to greater L2 access latencies. Thus, we

find that the three modes above provide sufficient functional coverage over useful behavior

without exposing all possible modes to software.

2.3.2 Reconfigurable Data Cache

Transmuter has two layers of multi-banked memories called reconfigurable data caches,

i.e. R-DCaches [Figure 2.3(b, c)]. Each R-DCache bank supports cache functionality, in

addition to enhancements to support the following modes of operation:

15

• CACHE: Each bank is accessed as a non-blocking, write-back, write-no-allocate

cache with a least-recently used (LRU) replacement policy. The banks are interleaved

at set-granularity, and a cache line physically resides in one bank. Additionally, this

mode uses a simple stride prefetcher to boost performance for regular kernels.

• SPM: The tag array, set-index logic, prefetcher and MSHRs are power gated and the

bank is accessed as a scratchpad.

• FIFO + SPM: A partition of the bank is configured as SPM, while remaining par-

titions are accessed as FIFO queues using a set of head/tail pointers.2 This mode is

used to implement spatial dataflow in Trans-SA (Figure 2.4).

2.3.3 Reconfigurable Crossbar

A fully-digital multicasting N×N crossbar creates one-to-one or one-to-many connec-

tions between N source and N destination ports. We augment the crossbar design with a

Crosspoint Control Unit (XCU) that enables reconfiguration by programming individual

crosspoints.

A block diagram of a reconfigurable crossbar (R-XBar) is illustrated in Figure 2.3(d).

R-XBars support the following modes of operation:

• ARBITRATE: This R-XBar mode is used in Trans-SC. Any source port can access

any destination port, and contended accesses to the same port are serialized. Arbi-

tration completes in a single cycle using a least-recently granted (LRG) policy [18],

while the serialization latency varies from 0 to (N−1) cycles.

• TRANSPARENT: Trans-PS (in L1 and L2) and Trans-SA (in L2) employ R-XBars

in TRANSPARENT mode. Crosspoints within the crossbar are fixed to 0 or 1 [Fig-

ure 2.3(d)], i.e., a requester can only access its corresponding private resource. Thus,

the R-XBar is “transparent” and incurs no arbitration or serialization in this mode.

2The queue depth is configurable over memory-mapped registers.

16

• ROTATE: Trans-SA relies on the ROTATE mode, where the R-XBar cycles through

a set of pre-programmed 1-to-1 port connections. Similar to the TRANSPARENT

mode, ROTATE incurs no arbitration cost. Figure 2.5 illustrates how time-multiplexing

of ports is used to achieve 1D spatial dataflow in Trans-SA.

There are two L1 R-XBars within a tile [Figure 2.3(c)]. The upper R-XBar enables

GPEs to access the L1 R-DCache, while the lower R-XBar (interfacing with the tile-

external crossbar) provides alternate routes to reduce L1-L2 congestion under load.

2.3.4 Processor Cores

A general-purpose processing element (GPE) is a standard ISA scalar processor with

a single floating point (FP) unit and single load/store (LS) unit. Its small footprint en-

ables Transmuter to incorporate hundreds to a few thousand GPEs within current reticle

sizes. The large number of GPEs, coupled with MSHRs in the cache hierarchy, allows

Transmuter to maximally exploit memory-level parallelism across cores. GPEs operate in

a MIMD/SPMD fashion, and have per-core (private) instruction caches (I-caches).

GPEs are grouped into tiles and are coordinated by a local control processor (LCP)

via work-status queues. Each LCP has private D- and I-caches that connect to the HBM

interface. The LCP is primarily responsible for distributing work across GPEs, using either

static or dynamic scheduling, thus trading-off code complexity for work-balance.

2.3.5 Host-Device Relationship

A Transmuter accelerator is treated as a slave device, and is hosted by a separate

application-class processor. Device and host main-memory (HBM and DDR4, respec-

tively) are distinct, and transfers between the two are orchestrated with hardware direct

memory access (DMA). The host is responsible for executing serial/latency-critical work,

while parallelized kernels are dispatched to Transmuter.

17

2.4 Software Interfaces

We implement a software stack for Transmuter in order to support flexible programming

and ease-of-adoption of our solution. The software stack has two main components: a high-

level Python application programming interface (API), and lower-level C++ APIs for the

host, LCPs, and GPEs. The highest-level API, called TransPy [19], is a drop-in replacement

for NumPy [20], the well-known high-performance Python library. To swap in Transmuter-

accelerated function calls, developers can simply change Python import statements from

import numpy as np to import transpy.numpy as np . TransPy also contains drop-

in replacements for SciPy [21], PyTorch [22], NetworkX [23], and other common libraries

used in scientific and numerical applications. TransPy binds to underlying accelerated

kernels with pybind11 [24], effectively hiding software integration complexity, while indi-

vidual kernels are implemented with the C++ API layer.

Transmuter kernels are developed by library writers with the aid of the C++ API layer.

In order to develop an SPMD kernel (MIMD is discussed in Section 2.6), three programs

are required: one each for the host, LCP, and GPE. Host code primarily orchestrates kernel

launches and is written in the style of OpenCL [25]. LCP and GPE code comprise the

bulk of kernel, and are written in SPMD-style parallel code that utilizes C++ intrinsics for

core/thread identification. Other notable C++ API methods used in GPE and LCP code

include those for SPM and FIFO access, cache control, and memory reconfiguration.

The Transmuter software stack facilitates the use of accelerator hardware by end-users

without exposing hardware details of reconfiguration. At the same time, the C++ layer

provides expert programmers with the freedom to develop custom kernel implementations

if needed. In the future, library developers may automatically generate kernel code from

architecture-specific intermediate languages (Chapter IV), or leverage recent program syn-

thesis and rewriting techniques [26–28].

18

2.5 Test Kernels

Transmuter was evaluated using constituent kernels from the workloads characterized

in Section 2.1. Evaluation kernels were implemented in C++ (using the C++ API layer

discussed in Section 2.4), hand-optimized for each Transmuter configuration, and compiled

at the -O2 optimization level using the Arm GNU compiler. Data transfer and initialization

times are excluded for all platforms. All experiments used single-precision floating point.

Throughput is reported in FLOPS/s, and arithmetic op counts are derived analytically to

account for useful (algorithmic) work.

The following describes the kernels and their mappings onto Transmuter hardware.

GeMM and GeMV. GeMM and GeMV are both dense linear-algebra kernels with high

regularity. Both kernels exhibit contiguous data, and computation that can be evenly par-

titioned across cores. GeMM implementations apply standard on-chip memory blocking

optimizations [29, 30], while GeMV does not apply blocking due to lower reuse. The

Trans-SC kernel implementation blocks data in the cache, while the Trans-PS implementa-

tion blocks partial results in private L1 SPMs. For Trans-SA the GPEs stream rows of the

first operand matrix through the L2 cache, while columns of the second operand matrix are

loaded from the L1 SPM.

Conv. Conv cross-correlates OC number of F×F× IC filters over an N×N× IC image

with stride S, where IC and OC are the number of input and output channels, respectively.

The filter is reused while computing one output channel, and across multiple images. For

Trans-SC, we assign each GPE to compute the output of multiple rows to maximize filter

reuse. For Trans-PS and Trans-SA, we partition each image into B×B× IC sub-blocks,

such that the input block and filter fit in the private L1 SPM; each block is then mapped to a

different GPE. Trans-SA uses a row-stationary approach similar to Chen et al. [31], where

blocks are mapped to a set of F adjacent processors.

19

SpMM. SpMM is a memory-bound kernel with low FLOPS that decrease with increas-

ing sparsity.3 Sparse storage formats lead to indirection and thus irregular memory ac-

cesses [11, 32]. We implement SpMM in Trans-SC using a prior outer product approach [11,

33]. In the multiply phase of the algorithm, the GPEs multiply a column of A with the cor-

responding row of B, such that the row elements are reused in the L1 cache. In the merge

phase, a GPE merges all the partial products corresponding to one row of C. Each GPE

maintains a private list of sorted partial results and fills it with data fetched from off-chip.

Trans-PS operates similarly, but with the sorting list placed in private L1 SPM, given that

SPMs are a better fit for operations on disjoint memory chunks. Lastly, SpMM in Trans-SA

is implemented following a recent work that uses sparse packing [34].

SpMV. SpMV, similar to SpMM, is bandwidth-bound and produces low FLOPS.4 We

exploit the low memory traffic in the outer product algorithm for sparse vectors, mapping

it to Trans-SC and Trans-PS. The GPEs and LCPs collaborate to merge the partial product

columns in a tree fashion, with LCP 0 writing out the final elements to the HBM. SpMV on

1D Trans-SA is implemented using inner product on a packed sparse matrix as described

in Kung et al. [35]. The packing algorithm packs 64 rows as a slice and assigns one slice

to each 1× 4 sub-tile within a tile. Each GPE loads the input vector elements into SPM,

fetches the matrix element and performs MAC operations, with the partial results being

streamed to its neighbor within the sub-tile.

FFT. FFT in 1D computes an N-point discrete Fourier transform in log(N) sequential

stages. Each vertical stage of the FFT graph consists of N/2 butterfly operations. FFT

applications often operate on streaming input samples, and are highly-amenable to spatial

dataflow architectures [36, 37]. While butterfly computations are deterministic, dependen-

cies between FFT stages are challenging to implement efficiently with the SPMD model.

3 2N3r2 for uniform-random N×N matrices with density r.
4∼ 2N2rrv for a uniform-random N×N matrix with density r, and vector with density rv.

20

In particular, frequent thread synchronization and irregular control-flow introduce signifi-

cant overhead. Thus, in addition to Trans-SC and Trans-PS SPMD implementations, we

develop a control-free Trans-SA MIMD FFT implementation that leverages code genera-

tion (Section 2.6).

2.6 FFT Kernel Generation

In addition to direct implementation of kernels in high-level languages, deeper opti-

mizations can be exploited with kernel-specific code generation. With the generator-based

approach, kernel writers develop a meta-programming system to control the emission of

optimized kernel code, instead of writing it by hand. For Transmuter we leverage a sim-

ple template-based meta-programming flow to generate control-free, statically optimized

FFT kernels. By simplifying control-flow and statically specializing kernel code a per-core

basis, generated kernels yield up to 20× speedup over comparable implementations.

2.6.1 Model-Specific Mappings

Before describing the details of the kernel generator, we first give an overview of how

FFT is mapped using Transmuter parallel programming models. The following describes

the mappings onto Transmuter under the SPMD model and Trans-SA MIMD model.

SPMD Mappings. The kernel mappings for Trans-SC and Trans-PS resemble a GPU

SIMT implementation, where control-flow and data partitioning are determined by thread

indices. The sequence of vertical stages is computed sequentially (i.e., with thread-synchronization

between each stage), while individual stages are parallelized. Butterflies within each stage

are statically partitioned evenly among GPEs; the LCPs assign inputs and collect outputs.

Trans-PS uses the L1 SPM to store partial results but the Trans-SC and Trans-PS kernels

are otherwise the same, with identical scheduling and work partitioning schemes. Look-

up-tables are used to store twiddle coefficients when the transform size is small enough

21

+

-

in[0]

in[1]

out[0]

out[1]

Local coefficient storage

TM
or

next tile

TM
or

prev. tile

Twiddle coefficient

0

1

2

3

4

5

6

7

Time

GPE0

GPE1

GPE2

0, 4 1, 5 2, 6 3, 7

0, 2 1, 3 4, 6 5, 7

0, 1 2, 3 4, 5 6, 7(Prev. FFT)

(Next FFT)

Figure 2.6: Summary of radix-2 FFT implementation: (top) Algorithmic partitioning of
vertical FFT stages onto processors. (bottom) Resulting pipeline of butterfly computations
across processors.

to fit in on-chip memory. When the transform size becomes large, runtime twiddle co-

efficient generation is used to reduce memory-related overheads at the expense of added

computation.

MIMD-Optimized Trans-SA Mapping. The scheduling and dataflow for the Trans-

SA mapping is similar to the radix-2 multipath-delay-commutator (R2-MDC) FFT algo-

rithm [38]. With the R2-MDC dataflow, an entire vertical stage is assigned to a single GPE,

and every GPE immediately transmits butterfly operands using L1 FIFO buffers. Like the

SPMD mappings, the Trans-SA mapping also leverages runtime twiddle coefficient gen-

eration. In contrast to the SPMD mappings – where computations from different vertical

stages do not overlap – the MIMD kernel uses a fully-pipelined schedule (Figure 2.6).

Pipelining the schedule of computations ensures high utilization, since butterfly operations

can proceed greedily as soon as operands are available. The MIMD-optimized mapping

also does not rely on thread indices in the kernel implementation to partition work, since

cores execute independent programs.

22

2.6.2 Limitations of Explicit Programming

While most Transmuter kernels are implemented by hand with the SPMD program-

ming model, the FFT Trans-SA MIMD kernel leverages meta-programming infrastructure.

The need for meta-programming (i.e., code generation) in this case is largely driven by

performance and pragmatism. For instance, compared to the SPMD model where a single

program is sufficient to specify program behavior, the MIMD model entails writing N vari-

ants of the same kernel, where N can range up to the number of cores in the system.5 The

following summarizes additional key factors, based on experience with Transmuter kernel

development and tuning:

(i) SPMD inefficiency: explicitly specializing the program behavior of cores or threads

at fine grain to improve performance is counter-productive in SPMD and SIMT programs.

For instance, avoiding redundant computations across cores by incorporating fine-grained

core index-based control appears desirable, since the scheme skips computation. However,

in our experience such core-/thread-specific runtime specialization under SPMD/SIMT of-

ten introduces overheads (e.g., conditional branching and predication) that outweigh pur-

ported benefits.

(ii) MIMD verbosity: canonical MIMD programs are permissive and enable differenti-

ated behavior across threads or cores, but expressing differentiated behavior tends to require

more code. This contrasts with canonical SPMD and SIMT programs, where the behavior

of parallel computation is expressed within a single unit of code. Verbosity makes it harder

to create, optimize, and maintain sophisticated kernels.

(iii) Conservative compilation: general-purpose compilers apply code transformations

and optimizations conservatively to guarantee correctness. Unless implementations are

carefully written and tuned to produce efficient machine code (often leading to greater

verbosity), important transformations that rely on static analysis may not be fully exploited.

5The number of “kernel variants” required under a MIMD model is architecture and implementation de-
pendent, but roughly proportional to the number of divergent control-flow paths in an SPMD implementation
that uses the same algorithm mapping.

23

...

Functional
Model

Index & Address
Generation

Reference
(NumPy)

FFT Parameters

Hardware Config
- # tiles
- # cores / tile

Kernel
Templates

Butterfly
Assignment

Model Verification

Textual Rewrite & Substitution

Test Vectors

Constant
Elaboration

Twiddle LUT
Generation

MIMD C++

...

Figure 2.7: Overview of FFT kernel generation.

2.6.3 MIMD Kernel Generation

Compared to standalone hand-written kernel implementations, kernel generation im-

proves abstraction, maintainability, implementation leverage, and enables a variety of crit-

ical optimizations (Figure 2.7). In particular, generator automation facilitates the emission

of MIMD code that is specialized per-core, and allows for statically multi-versioned ker-

nels. Kernel multi-versioning is critical for downstream compiler optimizations related to

constant propagation, dead-code elimination, and loop unrolling. MIMD specialization and

kernel multi-versioning both contribute to reduced code size, reduced branch density, and

overall improvement in compute throughput.

2.7 Modeling and Experimental Methodology

This section describes the methodology to derive Transmuter performance, power and

area, the experimental setup, and baseline comparisons.

Performance Models

We used the gem5 cycle-level simulator [39, 40] to model Transmuter performance.

Simulation parameters for key modules are listed in Table 2.2. The GPE and LCP cores

use a parameterized gem5 MinorCPU pipeline, with parameters set to resemble a typical

in-order scalar core with basic DSP support. Cache and crossbar latencies were based on

prior prototype designs [18, 41, 42].

24

Table 2.2: Microarchitectural parameters for gem5 simulations.

Module Microarchitectural Parameters

GPE/LCP
core

1-issue, 4-stage, in-order core @ 1.0 GHz, 3-cycle pipelined integer
& floating-point FUs, 9-cycle divide

Work/Status
Queue 4 B, 4-entry FIFO buffer between each GPE and LCP within a tile

R-DCache
(per bank)

CACHE: 4 kB, 64 B block size, 4-way set-associative, 1-ported,
non-coherent, 8 MSHRs, stride prefetcher with degree 2 and 1-cycle
latency
SPM: 4 kB, 1-ported, physically-addressed, word-granular
FIFO+SPM: 4 kB, 1-ported, physically-addressed, 32-bit head/tail
pointer registers

R-XBar

Non-coherent N-by-N crossbar with 1-cycle response
ARBITRATE: 1-cycle arbitration latency, serialized at conflicts
TRANSPARENT: no arbitration, direct access
ROTATE: alternate port connections at programmable intervals
L1 R-XBar width: 32 address + 32 data bits
L2 R-XBar width: 32 address + 128 data bits

GPE/TM
I-cache

4 kB, 64 B block size, 4-way set-associative, 1-ported, non-
coherent, 8 MSHRs

Sync. SPM 4 kB, 1-ported, physically-addressed scratchpad

Memory 1 HBM2 stack, 16 64-bit pseudo-channels @ 8000 MB/s, 80-150 ns
average access latency

25

The resource requirement for running detailed timing simulations with the standalone

gem5 model is only tractable for Transmuter systems up to 8× 16. For larger systems,

we substitute the gem5 cores with trace replay engines while retaining the gem5 model

for the rest of the system. Offline traces are generated on a native machine and replayed

with trace-based timing; this allows scaling of Transmuter size up to one 64× 64 cluster in

simulation. On average, across the evaluated kernels, the trace-driven model is pessimistic

to 4.5% of the execution-driven (detailed) model. To model multi-cluster system sizes, we

use analytical models from gem5-derived bandwidth and throughput scaling data.

Power and Area Models

We designed RTL models for Transmuter hardware blocks and synthesized them. For

the R-XBar, we use a synthesizable version of the design proposed by Satpathy et al. [18],

augmented with an XCU. The R-XBar power model is taken from synthesis reports, and

calibrated against the data reported by Satpathy et al. [18, 43]. The R-DCaches are cache

modules enhanced with SPM and FIFO control logic. For the caches and sync SPM, we

used CACTI 7.0 [44] to estimate the dynamic energy and leakage power. Power and area

for GPEs and LCPs are based on the Arm Cortex-M4/M4F specification document, while

area for other blocks are derived from synthesis estimates. Finally, we cross-referenced our

power estimate for SpMM on Transmuter against a prior SpMM ASIC prototype [45] and

obtained a pessimistic deviation of 17% after accounting for architectural differences.

Baselines and Comparisons

We compared Transmuter with a high-end Intel Core i7 CPU and an NVIDIA Tesla

V100 GPU, both using software kernels from optimized commercial libraries (Table 2.3).

For comparable evaluations we collected results for two different Transmuter designs,

TransX1 and TransX8, which are similar in terms of area to the CPU (~120mm2) and GPU

(~800mm2), respectively. TransX1 has a single 64× 64 Transmuter cluster while TransX8

26

Table 2.3: Hardware and software comparison baselines.

Platform Hardware Detail Kernel Libraries

CPU
Intel i7-6700K (14nm), 4 cores/8
threads @ 4.2 GHz, 16 GB DDR3 @
34.1 GB/s, AVX2, SSE4.2

MKL 2018.3.222 (GeMM, GeMV,
SpMM, SpMV), DNNL 1.1.0 (Conv),
FFTW 3.0 (FFT)

GPU
NVIDIA Tesla V100 (12nm), 5120
CUDA cores @ 1.25 GHz, 16 GB
HBM2 at 900 GB/s

cuBLAS v10 (GeMM, GeMV),
CUSP v0.5.1 (SpMM), cuSPARSE
v8.0 (SpMV), cuDNN v7.6.5 (Conv),
cuFFT v10.0 (FFT)

employs eight 64× 64 clusters with one HBM2 stack per cluster in both designs.

We used standard profiling tools to measure GPU and CPU power, namely nvprof and

RAPL. For fairer comparison with the GPU, we estimated HBM access energy [46], mea-

sured memory bandwidth, and subtracted HBM power from the value reported by nvprof.

Power for baselines is scaled for iso-technology comparison using quadratic scaling.

2.8 Results

This section presents experimental results for Transmuter. Using the modeling method-

ology described in Section 2.7, we evaluate Transmuter configurations (Trans-SC, Trans-

PS, and Trans-SA) across different system sizes. We analyze the performance and energy

impact of architectural choices, and interpret comparisons against the CPU and GPU base-

lines. This section also discusses the impact of kernel generation, using observations from

the MIMD FFT kernel.

Power and Area

Table 2.4 lists the power and area for one Transmuter cluster in 14 nm, resulting from

the models described in Section 2.7. Static (leakage) power constitutes the majority of total

power at 8 W (60% of total), largely due to instruction and data caches (~32 MiB SRAM

in total for I-/-DCaches). Meanwhile, dynamic power is dominated by the GPE cores and

27

Table 2.4: Breakdown of power and area for one 64× 64 Transmuter cluster.

Power (mW) Area
Static Dynamic Total (mm2)

GPE Cores 361.3 2380.5 2741.7 28.9
LCP Cores 5.6 22.5 28.1 0.4
Sync. SPM 0.6 0.1 0.6 0.1

ICaches 2566.6 373.6 2940.1 25.7
LCP DCaches 39.5 0.9 40.4 0.5
L1 R-DCaches 2527.1 204.0 2731.0 30.7
L2 R-DCaches 37.4 18.3 55.7 0.5

L1 R-XBars 1757.8 2149.3 3907.1 30.3
L2 R-Xbars 36.9 14.8 51.7 0.8

Muxes/Arbiters 581.9 87.6 669.5 0.7
Memory Ctrls. 47.5 129.0 176.4 5.5

Total 8.0 W 5.4 W 13.3 W 124.1

crossbars, which reflects the high switching activity that is anticipated for those modules.

The estimated total power for a single TransX1 cluster in 14 nm CMOS is 13.3 W, with

an active area of 124.1 mm2; this makes the die size of TransX1 and TransX8 roughly

comparable to the CPU and GPU baselines (Table 2.3), respectively. The worst-case re-

configuration energy is less than 266 nJ (10 cycles) – an order of magnitude lower than the

energy (and latency) required by existing reconfigurable architectures.

Impact of Reconfiguration

Figure 2.8 shows the performance across kernels and kernel-specific input sizes for the

three evaluated Transmuter modes, using a small 2× 8 system. Notably, the results show

that the best performing mode is both kernel-dependent and input-dependent. This is a crit-

ical result that illustrates how static hardware is insufficient to obtain optimal performance,

and why dynamic reconfiguration is beneficial.

We now analyze the performance of individual kernels and their interaction with differ-

ent Transmuter configurations.

28

Figure 2.8: Performance comparison across kernels and input sizes for Trans-SC, Trans-PS,
and Trans-SA Transmuter configurations.

Dense kernels. For GeMM and GeMV, Trans-SC achieves high L1 hit rates (>99%), with

efficient blocking and shared memory that leads to high data reuse. In contrast, Trans-PS

exhibits a large fraction of L2 cache capacity misses that impact performance. Trans-SC

also performs consistently better than Trans-SA, as it does not incur the overhead of explicit

L1 SPM buffering (i.e., scratchpad copy loops). For Conv, as with GeMM/GeMV, Trans-

SC performs the best due to a regular access pattern with sufficient filter and input reuse.

Across the dense kernels, stride prefetching in Trans-SC is sufficient to capture regular

access patterns.

Sparse kernels. For SpMM, the multiply phase of outer product is better suited to Trans-

SC as rows in the second operand matrix are shared. The merge phase is amenable to

Trans-PS, since private SPMs are not susceptible to cache trashing that otherwise occurs

when merging disjoint element lists. Trans-SA obtains the best performance for matrix

densities greater than ~11%, but performs poorly in comparison to outer product for highly-

29

Figure 2.9: Performance attribution: (left axis) attribution of cycles for different architec-
tural events, and (right axis) work imbalance across cores.

sparse matrices. For SpMV, performance depends on the input matrix size, dimensions, as

well as the vector density. SpMV with Trans-SA benefits from spatial dataflow, due to

dense vectors that can be streamed regularly to GPEs, while SpMM does not. As vector

sparsity increases, the number of zero elements fetched by the Trans-SA sparse-packing

algorithm increases, and outer product on Trans-SC/Trans-PS outperforms Trans-SA (as

with SpMM). For Trans-SA with highly-sparse inputs, the work imbalance (Figure 2.9)

exhibited by SpMM and SpMV suggests that the sparse-packing algorithm is unable to

keep GPEs utilized, resulting in lower throughput.

FFT. For FFT, inter-GPE synchronization and coherence handling in the SPMD kernel

implementations limit the performance achievable by Trans-SC and Trans-PS. In contrast,

the MIMD Trans-SA kernel achieves significantly higher throughput compared to Trans-

SC and Trans-PS SPMD kernels, and exhibits ~10× lower memory bandwidth usage.

The large performance disparity above is achievable due to the FFT generator infrastruc-

ture (Section 2.6), as we describe in the following section.

Impact of FFT Kernel Generation

Generated MIMD FFT kernels outperform other hand-written Transmuter SPMD ker-

nels for several key reasons. First, the generator allows for specialized code emission that

30

either eliminates or optimizes thread synchronization and data communication costs. For

instance, bulk-synchronous thread synchronization is eliminated in the generated Trans-SA

code since producer-consumer GPE cores communicate directly over FIFO channels; these

fine-grained, core-specific communication patterns are emitted by the generator such that

nearly zero runtime control overhead is required. The generator also makes it trivial to

statically parameterize the MIMD code with optimizations that are input-size dependent.

At smaller FFT sizes, MIMD kernels are generated with small, per-core twiddle coefficient

look-up-tables. At larger sizes where look-up-table size is prohibitive, the generator in-

stead enables runtime twiddle computation. As a result of efficient generator optimizations,

MIMD FFT kernels outperform hand-optimized SPMD implementations by 1-2 orders of

magnitude (Figure 2.8). In comparison, the performance range across different Transmuter

modes (including Trans-SA) is typically within 1.5-4×, as illustrated by GeMM/GeMV,

Conv, and SpMM/SpMV.

Second, MIMD code generation produces smaller per-core binaries and eliminates con-

trol indirection that otherwise occurs in SPMD code. As described in Section 2.6.3, gen-

erated kernels are statically simplified and individually pre-processed prior to downstream

compilation. Downstream compilation for generated kernels is able to produce machine

code that is compact, minimal in stack usage, minimal in control and branch density, and

highly-dense in terms of compute instructions. As a result, the generated Trans-SA kernels

obtains extremely high compute efficiency, while the non-systolic SPMD code is impacted

by branchy control flow and expensive cache misses (Figure 2.9). Notably, the compute ef-

ficiency exhibited by generated MIMD FFT code (~90%) is greater than all other evaluated

kernels. In comparison, the Trans-SC and Trans-PS SPMD implementations are limited to

50% and 25% compute efficiency.

31

Figure 2.10: Average performance (throughput) and energy-efficiency, normalized to the
CPU baseline. Data is averaged across all test inputs for each kernel. GeoMean columns
indicate the aggregated geometric mean for compute-bound and memory-bound kernels.

Table 2.5: Estimated speedup for end-to-end applications.

Speedup DANMF LSTM Marian MaxCut MFCC

TransX1 v.s. CPU 4.1× 1.1× 2.2× 6.2× 1.7×
TransX8 v.s. GPU 3.5× 3.8× 2.1× 7.2× 1.6×

NBSGD RolePred SemSeg Sinkhorn VidSeg

TransX1 v.s. CPU 3.5× 2.7× 2.4× 3.1× 2.2×
TransX8 v.s. GPU 2.8× 2.3× 2.5× 3.0× 2.8×

Comparison with CPU and GPU Baselines

This section presents performance and energy-efficiency comparisons against the base-

lines introduced in Section 2.7. The TransX1 and TransX8 system sizes are used as com-

parison points for the CPU and GPU, respectively. Figure 2.10 shows the average perfor-

mance and energy-efficiency for evaluated kernels, normalized to the CPU baseline. Data

from individual kernels is back-annotated into runtimes for the end-to-end SDH applica-

tions introduced in Section 2.1, culminating in estimated end-to-end speedups in the range

of 1.1-7.2× (Table 2.5). The following provides deeper analysis for individual kernels.

Compute Bound Kernels: GeMM, Conv, and FFT. Compared to the CPU, TransX1

achieves performance improvements of 1.2-2.5× across the group of compute bound ker-

32

nels. Profiling suggests that the majority of performance improvement with Transmuter re-

sults from greater hardware parallelism. Similarly, energy-efficiency improvements range

from 3.6-16.3×, in large part due to Transmuter’s use of simple in-order cores and non-

coherent cache. Compared to the GPU, TransX8 obtains performance improvements of

1.3-2.6×, and energy-efficiency improvements of 0.8-4.4×. The ~20% energy-efficiency

loss corresponds to the GeMM kernel, where the GPU is known to be highly optimized.

The result with GeMM is within reason, since independent scalar cores, in theory, should

incur greater control overhead relative to an iso-compute SIMD counterpart.6 On FFT,

Transmuter obtains significant performance improvement over both the CPU and GPU; in-

terestingly, the 4× performance gain over GPU does not translate proportionally into the

energy metric due to efficient FFT batching provided by the cuFFT GPU kernel.

Memory Bound Kernels: GeMV, SpMM and SpMV. On GeMV, TransX1 achieves

2.4× greater throughput relative to the CPU; notably, the CPU becomes bandwidth bound

for input dimensions beyond 1024 compared to both the GPU and Transmuter. The 14.2×

energy-efficiency gain obtained by TransX1 stems from reducing the number of active

GPEs to mitigate bandwidth-starvation, thereby saving power. On SpMM and SpMV, per-

formance improvement is highly dependent on the parameters of the inputs (e.g., sparsity),

with improvements over the CPU and GPU in the ranges of 4.4-110.8× and 5.9-37.7×,

respectively. While Transmuter is memory-bottlenecked for SpMM, SpMV is bounded by

the scheduling granularity of packing algorithm deployed on Trans-SA. In comparison, the

GPU has 7.2× greater available memory bandwidth but is bottlenecked by thread diver-

gence and synchronization stalls (i.e., due to SIMT side-effects); the GPU achieves just

0.6% and 0.002% of its peak performance for SpMM and SpMV, respectively. Relative to

the GPU, Transmuter demonstrates ASIC-level performance gains of 5.9-11.6× by reduc-

ing off-chip traffic in the outer product algorithm, and by employing independent scalar

cores that are tolerant to divergence.
6We don’t believe this is a hard and fast rule, since realized overheads are implementation-dependent.

33

2.9 Related Work

There is a vast body of work that explores the use of reconfigurability in programmable

hardware. Although the compute, on-chip memory, and programming model of Transmuter

and CGRAs differ significantly, aspects of Transmuter interconnects are similar to those

used in CGRAs. Several prior works augment more conventional processor architectures to

exploit reconfiguration within core pipelines, caches, or other functional units, in a fashion

similar to the reconfiguration in Transmuter.

Reconfigurable Core Pipelines and CMPs. Several prior works have used reconfigura-

tion to augment multi-core processor designs, or emulate flexible versions of them. Smart

Memories [47] was among the first to consider reconfigurable processor components. In

addition to fine-grained logic reconfiguration within the processor datapath, the on-chip

memory design in Smart Memories supported cache, streaming accesses (i.e., FIFO), and

scratchpad. Although the Smart Memories hardware resembled a CGRA, Mai et al. [47]

demonstrated the potential of reconfiguration by emulating two dissimilar parallel architec-

tures.7 Compared to Smart Memories, Transmuter employs off-the-shelf cores to maintain

software compatibility, and restricts the scope of reconfiguration to limit hardware over-

heads.

CoreFusion [50], MorphCore [51], and Composite Cores [52] explored reconfigura-

tion within processor datapaths. For example, CoreFusion augmented a conventional OoO

processor design to support operation as a single large OoO core, or as multiple smaller

dual-issue cores. Similarly, MorphCore and Composite Cores enhance processor datapaths

to operate either as big OoO cores or little in-order cores, supported by efficient thread

migration. These works are complementary to Transmuter (which does not consider recon-

figuration within the processor datapath) but share a common overall goal, i.e., to optimize

across software phases by dynamically switching between architectural configurations.

7The Imagine stream processor [48], and the Hydra CMP [49].

34

Coarse-Grained Reconfigurable Arrays. CGRA architectures [10, 53] employ recon-

figuration of interconnects and simple functional units (FUs) to support variants of explicit

dataflow graph (DFG) execution. Piperench [54] and RSVP [55] are examples of early

CGRA designs that use reconfigurable interconnect to form dynamic chains of pipelined

FUs. Early CGRA designs did not support indirect or irregular computations, however, and

required static DFGs that could be unrolled (and then mapped) onto hardware. Subsequent

efforts such as TRIPS [56, 57], Wavescalar [58], and Dyser [12] extended dataflow ideas

to general-purpose CGRA-like hardware, with the goal of increasing ILP in superscalar

execution.

Recent work such as Plasticine [59, 60], Stream Dataflow [61], and SPU [62], adapt

CGRA hardware and programming models to address a broader set of accelerator kernels.

Compared to early CGRA designs, these efforts place more emphasis on reconfiguration

of control logic within CGRA memories in order to support a variety of memory access

patterns, and also target both dense and sparse computations.

Compared to CGRAs and dataflow execution-based architectures, Transmuter uses sim-

ilar low-level mechanisms for logic and interconnect reconfiguration, but applies them in

the context of adaptive many-core acceleration. CGRAs use fine-grained interconnect re-

configuration to form physical pipelines between ALUs and FUs. In contrast, Transmuter

interconnect reconfiguration is used in the SPMD/MIMD model to provide different logical

views of memory, and to improve interconnect performance. Similarly, Plasticine, Stream

Dataflow, and SPU incorporate reconfigurable control logic to support different scratchpad

addressing modes, while Transmuter employs reconfiguration of memory control logic to

expose multiple types of memory (beyond scratchpad) to software. Finally, reconfiguration

in the dataflow and CGRA designs above is strictly necessary to support targeted appli-

cations (i.e., a functional requirement); Transmuter does not require reconfiguration, but

incorporates broadly-applicable reconfiguration mechanisms to enhance many-core perfor-

mance and energy efficiency.

35

2.10 Conclusion

The end of traditional semiconductor scaling is driving the need for alternative com-

pute substrates, but balancing flexibility, performance, and energy-efficiency is a challenge.

In this chapter we introduced Transmuter, an energy-efficient many-core architecture de-

signed to accelerate diverse application kernels. Transmuter consists of simple in-order

cores connected to a network of reconfigurable caches and crossbars, supporting fast re-

configuration of memory type, resource sharing pattern, and dataflow. Thus, Transmuter is

amenable to different workloads with varying resource requirements and memory access

patterns. We also showed how Transmuter can be easily used and integrated by application

developers, with software APIs that provide entry points at different levels of the library

stack. On a benchmark suite with a mix of dense and sparse kernels, Transmuter obtains

significant improvements over a baseline CPU/GPU; 46.8×/9.8× considering the memory-

bound kernels, and 7.2×/1.6× for the compute-bound kernels. Transmuter thereby demon-

strates how lightweight interconnect and memory reconfiguration may be used to address

the flexibility-efficiency gap in future programmable accelerators.

36

Chapter III

A Reconfigurable Systolic Multiprocessor

3.1 Introduction

Kernels with diverse computation and data-transfer are ubiquitous in emerging applica-

tions, but are challenging to support in general-purpose processors. For instance, sparsity

techniques [63, 64] continue to gain adoption for machine learning but rely on complex,

irregular data structures. Similarly, irregular algorithms that operate on index structures

(such as trees and adjacency formats) are ubiquitous in graph analytics [65, 66] and ge-

nomics pipelines [67, 68]. Nevertheless, existing programmable designs lack first-class

support for the types of workloads above and fail to exploit their properties.

Multi-core CPUs are the gold-standard in programmability but incur significant over-

head for features like speculative out-of-order (OoO) execution and hardware-managed

cache coherence. These features are crucial for fully-general software and single-thread

workloads, but have limited utility in acceleration contexts. On the other hand, despite be-

ing programmed with the SIMT model, GPUs rely on backend SIMD units that amortize

control-related overheads. GPU programmers benefit from a SIMT programming model

(that lends the illusion of scalar execution), but the underlying SIMD hardware is vul-

nerable to thread divergence; under irregular workloads in particular, GPUs suffer from

underutilization and degraded performance [69]. FPGAs are highly configurable but incur

non-trivial hardware overheads in exchange for gate-level reconfigurability. In addition,

37

FPGAs exhibit long reconfiguration times at microsecond scales [70].

This work describes Versa [71] (Figure 3.1): a general-purpose accelerator that ex-

ploits microarchitectural flexibility to support diverse algorithms. In contrast to existing

designs that incorporate fixed compute, interconnect, and on-chip memory, Versa provides

optimized modes for each of the previous that are reconfigurable at nanosecond scales.

This enables kernel implementations and hardware that are co-optimized for per-algorithm

characteristics and dynamic application needs.

This section discusses high-level design choices and introduces the Versa architecture.

3.1.1 High-Level Objectives

An accelerator architecture that addresses the limitations from Section 3.1 should con-

sider the following criteria:

1. Programmability using productive, high-level languages

2. Tolerance to irregular compute and data-access patterns (i.e., no thread divergence)

3. Maximal support for contrasting (potentially unknown) workloads

This work addresses the above with a combination of existing techniques and novel

contributions:

1. ARM-based cores, coupled with a robust ecosystem of toolchain and compiler in-

frastructure

2. Multi-threaded execution backed by scalar core clusters, intrinsically tolerant to di-

vergence

3. Reconfiguration and lightweight pipeline augmentations to support distinct, workload-

optimizing hardware modes

38

L2$

C C

C C

C C

C C

C C

C C

C C

C C

L2$

ROCM ROCM ROCM ROCM

Scalar
Core

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

C

: Memory Type : Sharing Scope : Systolic Array

Figure 3.1: Versa exploits reconfiguration of on-chip memory and compute to provide
algorithm-optimized hardware characteristics. Based on learnings from Transmuter, Versa
evolves the programming model, provides enhanced reconfigurability, and resolves key
scalability limitations.

While not listed above, the need for energy-efficiency and performance dictates addi-

tional design traits. For instance, while the possible scopes and granularities of hardware

reconfiguration are virtually unbounded, reconfiguration that is finer-grained generally in-

curs greater overhead. The energy-efficiency and performance penalties of fine-grained

reconfigurability are illustrated by FPGA designs, as discussed in Section 3.1. Thus, Versa

incorporates reconfigurability that is limited to critical functional units, and designed to ei-

ther reuse existing logic or incur minimal added overhead. Detailed aspects of the hardware

design are discussed in the following section.

3.2 Hardware Overview

3.2.1 Compute Tiles

The majority of Versa’s energy-efficiency, performance uplift, and research novelty

are attributed to features in its compute tiles (Figure 3.2). A tile contains eight ARM

Cortex-M4F ‘worker’ cores that are responsible for the bulk of an algorithmic computa-

tion. Workers are single-issue cores equipped with an IEEE 754-compliant single-precision

(i.e., FP32) scalar floating-point unit (FPU). The inclusion of the FPU extends the base

39

L1 Recfg. On-Chip Memory
(ROCM)

8 Slices x 4 KB

Worker

M4F

Worker

M4F

Worker

M4F

Worker

M4F

Worker

M4F

Worker

M4F

Worker

M4F

Worker

M4F

R2R Systolic Links

Recfg.
X-Bar
(RXB)

T-SPM (8 KB)

Msg. Buffer

Manager

M4F

G-SPM Bus

Tile Bus

......

Figure 3.2: Composition of a Versa compute tile.

ARMv7-M ISA with DSP-oriented floating-point instructions, and adds 32 additional operands

(s0-s31) to the M4F register set. Bare-metal ARM binaries are loaded into a 16 KB instruc-

tion memory that resides in each M4F core. A tile also includes a Cortex-M4F ‘manager’

core to handle supervisory tasks, including reconfiguration.

Versa workers have reduced functional coupling to the manager, unlike prior processors

that explicitly partition management and computation. For instance, "Synergistic Process-

ing Elements" (SPEs) in the Cell processor [72] could not directly access memory, instead

requiring manager-coordinated DMA transfer between memory and SPE scratchpads. In

contrast, Versa workers can access system memory without manager intervention, thereby

reducing software complexity.

40

Each tile contains reconfigurable resources to support multiple hardware modes - namely

the reconfigurable on-chip memory (ROCM), reconfigurable crossbar (RXB), and register-

to-register (R2R) links. The ROCM and RXB reconfigure in a pair, and compose to provide

a multi-modal L1 memory with optimized characteristics. 32 KB of L1 memory is parti-

tioned into 8 slices (4 KB each), where the functionality of each slice is determined by RXB

and ROCM sub-modes. Although it is possible to add reconfigurability in other levels of

the memory hierarchy, early simulation experiments suggest diminishing returns. This is

largely due to the intensity of data-transfer at the L1 level, and the Cortex-M4F’s relative

sensitivity to load/store latency 1. In addition to the ROCM and RXB, R2R links (illustrated

by green arrows) augment the M4F processors to enable systolic computations in arbitrary

2D-spatial groupings. Further detail on the ROCM, RXB, and R2R-related enhancements

are provided in Section 3.3.

Large data structures that require cross-mode persistence are placed in a dedicated tile-

level scratchpad memory (T-SPM). Notably, the T-SPM and a global-level scratchpad (G-

SPM) external to the tiles facilitate accelerated thread-synchronization operations, which

is discussed further in Section 3.3.4. A small point-to-point message buffer between the

manager and each worker facilitates low-latency distribution of small runtime variables

(e.g., parameters for load balancing).

3.2.2 Memory Hierarchy and Tile-External Support

The four compute tiles in the Versa prototype are supported by two additional levels of

cache (Figure 3.3). Overall, the L1-L3 have capacities that form an ‘hourglass’ or inverted

shape, typical for processors with high core counts. In addition, cache coherence and

invalidation is explicitly software-managed; this mechanism significantly reduces hardware

overhead, and is also the mechanism used in current GPU products.

1 The M4F cores are augmented with a simple form of software-controlled prefetching to facilitate mem-
ory latency-hiding. This prefetch mechanism leverages ‘store inversion’, where cores may prefetch a cache
line by storing its address to a special memory section. Effectively leveraging this mechanism involves com-
piler integration, which we leave for future work.

41

In terms of cache policies, Versa utilizes both read-allocate write-through, and read-

allocate write-back caches. This is due to relative advantages between cache policies that

depend on the level of temporal locality. For instance, a write-through policy prevents the

problem of false sharing [73], while write-back typically incurs less spurious traffic under

high temporal locality.

The L2 is a 16 KB fixed-function shared cache (implemented with four 4 KB slices)

that utilizes read-allocate write-through. Slices are statically cacheline-interleaved 2. In

contrast to a small L2 write-back cache that would retain ‘victim’ lines evicted from the

L1 [74], the write-through L2 effectively serves as a staging area for data shared across tiles.

For instance, while cache lines never experience write-back eviction to the L2, updates to

cross-tile shared data still update valid cachelines in the L2, obviating the need for L3

access.

The last level of the cache hierarchy contains a 1 KB ‘L2.5’ cache and 512 KB L3

cache. As discussed above, write-through stores necessarily propagate through the hierar-

chy. However, it is desirable to minimize the number of SRAM accesses in the L3. Thus,

in contrast to the L2, the L2.5 is a fully-associative write-back cache that supports sub-

block valid tracking [73]. Due to the small size of the L2.5, only 256 bits are required for

word-granularity sub-block valid state.

The last notable component outside the tiles is an 8 KB global scratchpad memory

(G-SPM) that is accessible by managers. Similar to the T-SPM, the G-SPM facilitates

low-latency transfer of data related to control and supervisory tasks, in particular for the

thread-synchronization optimizations discussed in Section 3.3.4.

2 The interleaving function is s = index mod4, where s is the slice number and index is the cacheline
index bit-selected from an incoming address.

42

Tile 3

ROCM
8x4 / 32 KB

Tile 2

ROCM
8x4 / 32 KB

Tile 1

ROCM
8x4 / 32 KB

Tile 0

ROCM
8x4 / 32 KB

Slice 0
4 KB

Shared L2$ (16 KB)

Slice 1
4 KB

Slice 2
4 KB

Slice 3
4 KB

Shared L2.5$ + L3$ (512 + 1 KB)

Ctrl + DRAM Emu. Ctrl + DRAM Emu.

G-SPM 8 KB

 32b x 8

 32b x 1

128b x 1 multicast

128b x 1

L2.5$
1 KB

L3 Slice 0
256 KB

L3 Slice 1
 256 KB

Figure 3.3: Overview of the Versa prototype and memory hierarchy.

3.3 Algorithm-Driven Reconfigurability

Versa supports 5 composite modes (Table 3.1) that can be dynamically configured at

runtime, in addition to systolic R2R. The ROCM implements functionality that governs the

memory type, namely for ROCM-cache, ROCM-scratchpad, and ROCM-queue. The RXB

implements functionality for the memory scope, namely RXB-private, RXB-shared, and

RXB-queue - a variation of the private scope that allows a pair of cores to access the same

slice simultaneously. The microarchitecture of the RXB and ROCM and functionality of

their sub-modes is described below.

3.3.1 Reconfigurable Crossbar

The reconfigurable crossbar (RXB) (Figure 3.4, top-left) contains 8 bidirectional ports,

equal to the number of worker core and ROCM slice pairs. Each port is implemented

with a pair of arbiters, one per upstream and downstream direction. Arbiters operate on

43

Table 3.1: Composition of logical memory modes. R2R functionality is orthogonal and
compatible with all.

ROCM Sub-mode

Cache Scratchpad Queue

RXB Sub-mode
Private X X -
Shared X X -
Queue - - X

a per-direction basis - rather than per-signal basis - to amortize crossbar overhead (e.g.,

muxes and arbitration logic). The pair of arbiters is reconfigurable to one of 3 RXB sub-

modes (Figure 3.4): 1) RXB-shared, 2) RXB-private, or 3) RXB-queue (access from a pair

of cores). These sub-modes function as follows:

• RXB-shared: The crossbar provides all-to-all ‘winner-take-all’ connectivity between

workers and ROCM slices, with least-recently-granted (LRG) arbitration [43].

• RXB-private: The arbiter crosspoints are statically fixed in both directions with ‘winner-

take-all’, locking connections vertically between worker and ROCM pairs.

• RXB-queue: Upstream arbiters use ‘winner-take-all’ as in RXB-private, while down-

stream arbiters are statically ‘split’ between a pair of cores.

In RXB-shared, the ROCM slices appear as a single shared memory that is accessible

by all workers in the tile. This is often beneficial for workloads with data structures that

are accessed (and reused) across multiple cores. In addition, the 8× increase in capac-

ity provided by RXB-shared reduces spills and re-fetches from subsequent memory levels

for larger data footprints. In RXB-private, the locking of crosspoints between worker and

ROCM slices not only eliminates bank contention, but also obviates arbitration. This results

in up to 10.6× improvement in bandwidth and latency relative to shared mode (i.e., con-

tention elimination + arbitration skipping), with a lower bound of 1.33× improvement due

to arbitration skipping alone. RXB-queue supports common streaming DSP and filtering

44

 RXB
Dn.

UpP
o

rt
 0

P
o

rt
 2

P
o

rt
s

3-
7

Cores ➊ Shared: arbitrating, 1 grant/cycle
 - All-to-all connectivity (LRG priority)
 - Dynamic ‘Winner-Take-All’

ROCM Slices

 ➋ Private: no arbitration
 - 1-to-1 connectivity
 - Static ‘Winner-Take-All’

rd_ctrl
wr_ctrl
wr_data

rd_data
rd_ctrl
wr_ctrl
wr_data

rd_data

RXB Port

Core Core Core Core

ROCM ROCM ROCM ROCM

 ➌ Queue: no arbitration
 - Producer-consumer connectivity
 - Static ‘Port-Splitting’

address

address

rd_ctrl
wr_ctrl
wr_data

rd_data
rd_ctrl
wr_ctrl
wr_data

rd_data

ROCM Slice

C
o

re
C

o
re

Down
Arbiter

Up
Arbiter

address

address

C
o

re
C

o
re

ROCM Slice

Core

ROCM

Core Core Core

ROCM ROCM ROCM

Core

ROCM

Core

ROCM ROCM

Don’t
Care:

Down
Arbiter

Up
Arbiter

Core Core

ROCM

Figure 3.4: The reconfigurable crossbar (RXB) and overview of sub-modes. Diagrams in
Private and Queue illustrate a sub-section of the crosspoint matrix.

45

Miss Coalescing

ROCM Control

Tags
Hit/Miss

Detection
RD-Ptr

WR-Ptr

QueueCache

Multi-Purpose Regs (8 entries)

Rqst State: 48b x 8 (addr, core ID, ...)

RD/WR Data Pipe Regs: 32b x 8

RXB Port: 32b/cycle

L2$ Port: 128b/cycle Bank 0 Bank 1 Bank 2 Bank 3

0

255

256

511

512

767

768

1023

Cache (4-Way Set Associative)

32b

Sets 1-15... ...

Bank 0 Bank 1 Bank 2 Bank 3

Set 0
(64B/way)

32b 32b 32b
Way 0
Way 1
Way 2
Way 3

4
4
4
4

SRAM Sub-Bank Addressing

SPM & Queue (1D-Contiguous)

ROCM Logic

SPM

N/A

Figure 3.5: Sub-mode logic and SRAM components in the reconfigurable on-chip memory.

kernels. In contrast to the ‘winner-take-all’ pattern used in RXB-private and RXB-shared,

RXB-queue resolves structural contention by sub-partitioning ownership of signals inside

an RXB port. This ‘port-splitting’ enables simultaneous reader-writer access to ROCM

slices, and effectively doubles bandwidth over the same port. Notably, FIFO semantics in

queue mode enables full reuse of existing crossbar signals, without signal duplication or

widening of buses.

3.3.2 Reconfigurable On-Chip Memory

Similar to the RXB, the L1-ROCM (Figure 3.5) contains logic to support multiple sub-

modes as follows:

• ROCM-cache: a 4-way set-associative read-allocate write-through cache. Coherence

is software-managed.

• ROCM-scratchpad: an explicitly-managed scratchpad memory. Main-memory ac-

cesses bypass the L1 and are forwarded directly to the L2.

• ROCM-queue: an explicitly-managed FIFO queue between core pairs. Main-memory

accesses are forwarded to the L2 (as with ROCM-scratchpad).

46

R/W Access Energy (pJ)

Narrow
Sub.

Wide

R
W

R
W

Area (um sq.)

24.6k

18.4k

(a)

B0 B1 B2 B3B0

Narrow
Sub-Banks

Wide Bank

3/4 unused

 32b
 32b

4x32b
128b

L1 Physical
SRAM Access

L2 Fill

 128b
 32b

128b
128b

Core Load/Store

(b)

 ~3.4×
 ()

1.33×
 ()

Figure 3.6: Comparison of banking schemes (wide v.s. sub-banked): (a) data utilization
per access, and (b) design costs.

The cache sub-mode logic is primarily composed of cache tags, support for non-blocking

cache requests (i.e., multiple outstanding requests), hit/miss detection, and coalescing logic.

Coalescing refers to the case when an existing (in-flight) request with a cacheline match is

merged with an incoming request, such that dispatch of a new L2 request is unnecessary

(saving both bandwidth and request slots).

Logic to support ROCM-scratchpad and ROCM-queue is minimal. Aside from inter-

face logic to forward requests that have addresses pointing to main-memory, a ROCM slice

configured as scratchpad is functionally equivalent to a simple SRAM. With a 4 KB phys-

ical capacity (1024 32-bit words), additional state for FIFO operation in ROCM-queue

consists of two 10-bit read/write pointers.

SRAM is reused across modes, with interface overhead limited to combinational logic

that maps logical addresses to physical sub-banks (Figure 3.5-right). The choice of 32-bit

sub-banks is driven by the native load/store width of the cores (Figure 3.6). While a single

128-bit bank amortizes SRAM periphery more effectively, 75% of the physical SRAM

read-width would be unutilized for 32-bit scalar accesses (Figure 3.6a). Thus, sub-banking

reduces common-case access energy by 3.4× in exchange for 33% more area (Figure 3.6b).

47

Useful work
(mul, fma, ...)

Figure 3.7: Conventional instruction sequence: obligatory memory access overheads are
interleaved with computation.

3.3.3 Systolic Execution

Systolic arrays have been recently applied in ASIC designs [31, 75–77] but lack a

general-purpose, programmable counterpart. While systolic arrays leverage registers for

data movement, inter-core data transfer in load-store architectures necessitates cache or

main-memory access. This reliance on explicit load/store instructions for data transfer has

two impacts:

1. Performance costs (Figure 3.7): explicit load/store instructions consume pipeline

cycles, stalling pipeline ALUs even if they are physically available for use

2. Energy costs: load/store instructions entail underlying operations that are signifi-

cantly more dissipative than register access, e.g., SRAM access and cache traversal

Versa performs systolic array computation with register-to-register (R2R) tunneling.

R2R directly connects adjacent cores to enable programmable systolic computation and

enhanced spatial data reuse. Compared to existing multi-threaded programming models,

R2R confers the following benefits:

1. Implicit data movement that increases utilization of pipeline ALUs, up to the physical

limit

2. Inter-core data transfer that is register-to-register only, eliminating the energy cost of

cache and SRAM access

48

Space/Time
Pipeline View

Systolic Operations
(3-core example)

(a)

(c)

Core Pipeline

WR to South

RD from NorthPhysical
View

(b)

Figure 3.8: Example computation with R2R: (a) instruction sequence, (b) logical (pipeline)
view, and (c) physical view of read/write conventions. R2R-writes bypass the local RF,
while R2R-reads utilize local registers. Cardinal directions are inverted for writes to main-
tain spatial symmetry.

49

Primary Pipeline

FPU Pipeline

Cortex M4F Boundary

Flow
Ctrl.

s0

R2R Shim

s1 s2 s3

sWest sEast sNorth sSouth

FPU Reg-File

s4 - s31

R2R Shim

Read Ports

 ...

Write Port

sW sE sN sS s4 - s31

RF WR Data (32b) & Control

RF RD Data
(32b x 2)

 Inbound WR (4x)

wr_addr

rd_addr

r2r_enable

Non-R2R Regs

(a)

(b)

To/From
East

To/From North

East Write
I/F State

 v
a

lid
0: Allow WR
 [A] wen: valid ← 1
1: Backpressure
 [B] rden: valid ← 0

East Read
I/F State

 v
al

id

1: Allow RD
 [A] rden: valid ← 0
0: Backpressure
 [B] wen: valid ← 1

 To East [A]: wen, wdata, rden

 Fr East [B]: rden, wdata, wen

To N, S, W

To/From
West

 Fr. N, S, W

To/From South

 Outbound WR (4x)

Figure 3.9: R2R microarchitectural implementation: (a) integration with the ARM Cortex-
M4F pipeline, (b) interception of operands in the R2R Shim and 2-bit link-state control.

50

Figure 3.8a shows an example R2R instruction sequence across three cores. In place of

explicit loads and stores, data movement with R2R is implicitly controlled by the inclusion

of spatial registers as source or destination operands. This enables fine-grained, multi-

step systolic computations (Figure 3.8b) with energy and performance benefits similar to

an ASIC equivalent. Figure 3.8c illustrates the physical view of data movement between

spatial registers. We note that the semantics of R2R requires a convention for the physical

location of a shared spatial register; in Versa, the write destination always resides in the

remote core. E.g., “Write to South” and “Read from North” both physically refer to the

reader’s ‘North’ register.

R2R integrates seamlessly in the Cortex-M4F pipeline with minimal overhead. If en-

abled at runtime (i.e., in software), the FPU registers s0-s3 are aliased to scalar data links

in the <W, E, N, S> directions, respectively (Figure 3.9a). Link state (i.e., data valid track-

ing) requires 2 bits per bidirectional link. When an instruction writes to an R2R register,

data from register write-back - normally directed to the local register file (RF) - is instead

intercepted by the ‘R2R Shim’ (Figure 3.9b) and forwarded to an adjacent core. An R2R-

write updates the link state and allows a matching R2R-read to proceed at the neighbor.

In contrast, R2R-reads proceed if the link state is valid but utilize the local RF. Symmetry

in read/write logic across cores minimizes timing impact and prevents the creation of new

critical paths. Finally, flow control that prevents stale reads and destructive writes is im-

plemented by tie-in with existing pipeline stall mechanisms. While this work augments the

FPU register file to demonstrate the R2R concept with floating point workloads, the integer

pipeline may be similarly extended (if desired) with no loss of generality.

3.3.4 Hierarchical Thread Primitives

Thread-synchronization barriers are fundamental operations that are notorious perfor-

mance bottlenecks in parallel programs [78, 79]. For instance, thread barriers may con-

sume up to 60% of execution time in complex parallel workloads [80]. Because barriers

51

(b)

Time (unit access time)

Mgr. T-SPM access
Worker T-SPM access Mgr. G-SPM access

Tile 0 Tile 1 Tile 2 Tile 3

T

W: # Worker Cores / Tile

Cores (Thread Indices)

...

T-SPM

G-SPM

...

T-SPM

Tile 0 Tile T-1

Mgr Mgr

CC C CC C

(1 to T-2)

… ~W

T: # of Tiles

(a)

Figure 3.10: Accelerated thread-synchronization barriers: (a) Distributed scratchpads de-
centralize atomic updates to barrier data. Cores first synchronize within tiles over the T-
SPM, followed by a global synchronization phase involving only managers over the G-
SPM. After managers pass the global synchronization phase, each manager releases the
barrier (and the workers) within their respective tiles. (b) Serialization is reduced by parti-
tioning synchronization into parallel sections. In contrast to a centralized barrier with O(N)
scaling with respect to core count, the distributed hardware-software barrier implementa-
tion scales with O(W +T), where W and T are the number of workers per tile and number
of tiles, respectively.

7.9

4.7

1.2

1.7x

3.8x

(qty.4) (qty.36)

pthreads
centralized SP
tree-based SP

μ

Figure 3.11: Comparison of thread synchronization latency with alternative barrier imple-
mentations. pthreads represents the off-the-shelf thread barrier implementation from the
popular pthreads library, measured on a quadcore Arm A57 with 4 spawned threads. cen-
tralized SP is a barrier implemented on Versa using single centralized scratchpad mem-
ory. tree-based SP is the Versa thread barrier implementation that leverages distributed
scratchpads.

52

constitute a non-trivial fraction of parallelization overhead, application developers go to

significant lengths to both minimize their usage and develop low-level optimizations. Prior

efforts include entirely new algorithm implementations [81, 82], in addition to a significant

body of work on underlying synchronization-related primitives [83]. Nevertheless, thread

barriers can be minimized but typically not eliminated entirely.

Thread synchronization entails serialized, atomic updates to shared variables that track

whether threads can safely enter or exit a region of parallel execution. In conventional

CPUs each atomic update can require 100’s to 1000’s of cycles (i.e., microseconds), largely

due to deep coherent caches that centralize barrier data. In addition, barrier operations

have poor scalability in manycore designs, and in the worst case exhibit O(N) scaling with

respect to core count.

Versa abolishes cache altogether and instead utilizes scratchpads distributed at the tile

(T-SPM) and global (G-SPM) levels for lock and barrier operations. In addition to con-

trolled latency and full support for Cortex-M exclusive access extensions, the T-SPM and

G-SPM enable decentralized updates in a tree-based strategy (Figure 3.10a). The hierar-

chical (tree-based) strategy partitions atomic updates across tiles into sections that run in

parallel (Figure 3.10b), improving scalability from O(WT) to O(W +T), where W and T

are the number of workers per tile and number of tiles, respectively. Although we focus

on thread barriers for this work, the flexibility of the T/G-SPMs facilitate the full range of

thread synchronization primitives built on atomic memory access (e.g., semaphores, locks,

and general multi-threaded data structures).

The tree-based scratchpad barrier is evaluated (Figure 3.11c) against two baselines:

a centralized scratchpad barrier that is measured with Versa in RTL simulation, and an

off-the-shelf barrier implementation from the popular pthreads library, measured on a

quadcore ARM A57 CPU. The centralized scratchpad-based approach alone achieves a

1.7× speedup compared to the cache-based barrier from pthreads on the CPU. Adding the

tree-based strategy yields an additional 3.8× speedup - or 6.5× total - despite a 9× higher

53

threadcount. Thus, Versa accelerates barrier operations such that thread synchronization

contributes marginally to parallelization overheads; this is critical for design scalability,

and to prevent performance bottlenecks at higher core counts.

3.3.4.1 Reconfiguration Control

Typical reconfigurable systems (e.g., FPGAs) have combinatorially-large configura-

tions that necessitate large bitstreams and significant on-chip storage. In contrast, the finite

set of Versa modes are governed by a single memory-mapped register (MMR) in each

tile, accessible by the manager core. 4 bits control RXB and ROCM sub-modes (2 bits

each). Thus, memory mode transitions involve a simple MMR write and complete in 2

cycles. Versa software libraries currently support (optional) memory reconfiguration by

managers during thread synchronization, which guarantees that reconfigurable resources

are not accessed during the 2-cycle reconfiguration window. In contrast, the enable/disable

for systolic R2R is tied to 1 bit in an MMR local to each worker core, and R2R registers

are guarded from automatic compiler usage in regions of code where R2R is enabled (i.e.,

correctness for R2R is compiler-enforced).

3.4 Chip Implementation

Versa is fabricated in a 28 nm CMOS process and occupies 12 mm2 die area (Fig-

ure 3.12). The design is implemented hierarchically with tiles and the L3 as hard partitions.

The L3 also includes logic for DRAM timing emulation, which is disabled for this work

and left for future evaluation with Versa’s prefetching features. A single unstructured clock

tree is sufficient to meet the 2 ns Tclk target, with 520 ps mean insertion delay and 70 ps

mean global skew (3.5% of Tclk). At the nominal voltage (1.0V) the system operates at 510

MHz, corresponding to 811.2 mW and 11.9 GFLOPS power and performance, respectively.

The test chip incorporates parallel boundary scan interfaces for test and debug, in ad-

dition to a VITA 57.1 FMC interface. Automated infrastructure for data collection is de-

54

Technology 28 nm

Area (mm2) Die: 12 (Ex. pads: 11.3)

Core Config 36 Cores (9 Cores / Tile)

Core μ-arch Arm Cortex-M4F, R2R

Total SRAM 1.27 MB

Voltage 0.55 - 1.0V (MEP @ 0.60V)

Frequency 12 - 510 MHz

Power 7.9 – 811.2 mW

Energy Eff. 14.7 – 36.4 GFLOPS/W

Performance 0.74 – 11.9 GFLOPS

Figure 3.12: (L) Die photo and (R) summary characteristics.

FMC FPGA Host
GPIO SBC HostDUT

Figure 3.13: Setups for chip testing: (L) Linux single-board-computer debug host, primar-
ily for bringup and data collection, and (R) FPGA interface for emulated MPSoC integra-
tion.

55

Table 3.2: Hardware baselines.

Cores Clock Architecture Feature Note

ARM A57 4 1.8 GHz ARMv8-A 2-way superscalar, OoO

NVIDIA TX1 256 1.0 GHz Maxwell Gen.2 Eight 32-lane SIMD units

Executed
Instruction

Fraction

Figure 3.14: Evaluation kernels from MachSuite: kernels are selected to capture a range of
characteristics.

veloped in python and C++ and runs on a Linux single-board computer (Figure 3.13-left).

The FMC interface (Figure 3.13-right) enables emulated integration with an FPGA MPSoC

device, in particular with hard application-class host cores.

3.5 Baselines and Test Methodology

Versa is evaluated against two energy-efficient hardware baselines. The baselines - a

quad-core ARM A57 CPU and 256-core Maxwell Gen.2 GPU (both integrated in NVIDIA’s

Tegra X1 SoC) - are mobile-class processors fabricated in a comparable 20 nm CMOS pro-

cess. All measurements are performed with uncapped power states, and averaged across the

latter half of 1000 iterations with the first half discarded for cache warmup. GPU measure-

ments utilize custom timers implemented in PTX assembly to obtain nanosecond-resolution

timings free of host-side overheads. CPU measurements use nanosecond-resolution timers

from std::chrono.

Power dissipation for the Versa chip is measured from a benchtop power-supply, while

56

the CPU and GPU measurements leverage on-board I2C-addressable current monitors on

the Jetson TX1 platform. All major portions of the test chip (core logic, test and debug

circuitry, SRAM) are included in measurements, and recorded as a lump number from a

single supply. Digital I/O and a tunable clock generator reside on separate voltage domains

and are excluded, but contribute marginally to power dissipation. The current monitors on

the TX1 enable independent measurement of CPU and GPU power, but to the best of our

knowledge do not compensate for DC-DC converter losses or DRAM power 3.

Five kernels from MachSuite [84] are selected based on the mix of instruction types,

capturing representative diversity (Figure 3.14). Stencil2D (2D convolution) and GeMM

(matrix mult.) exhibit regular data accesses to dense data, while KMP (string search)

and SpMV (sparse matrix-vector mult.) have data-dependent variation in access patterns.

Mergesort is a branch and synchronization-heavy comparison-based sort. We select 2 Versa

modes per kernel based on analysis of the MachSuite reference kernels, and modulate data

sizes up to 512 KB. The CPU is evaluated with the reference kernels, while the GPU ker-

nels use hand-optimized CUDA. CUDA kernels were developed with an effort-level of

2-4 weeks per kernel, guided by nvprof profiling and analysis with hardware performance

counters. Best-effort optimizations were utilized wherever possible, including memory

coalescing, data tiling, scratchpad (‘CUDA shared mem.’) usage, divergence optimiza-

tion, and sweeps of thread-block and grid sizes. Kernels for all platforms use FP32 as

the primary workload datatype, which is predominant in ML research, sparse HPC, graph

analytics, and genomics. We note that an evaluation with integer datatypes is largely re-

dundant, since benefits from memory reconfiguration are orthogonal, and performance of

the Cortex-M4F FPU pipeline is a lower bound relative to integer performance [85].

3The TX1 uses two Samsung 16Gbit LPDDR4 chips (part no. K4F6E3S4HM) soldered on-board. Ac-
cording to manufacturer datasheets the two DRAM chips dissipate between 150-400 mW. This would trans-
late to less than 10% of either CPU or GPU power.

57

Table 3.3: Efficiency and performance improvement from dynamic reconfiguration be-
tween modes. Stars indicate whether the mode-advantage is consistent (8) or mixed (9).

Kernel Mode A Mode B Relative Gain

STENCIL2D 9 P. Cache 9 P. SPM+R2R 1.26×
KMP P. SPM 8 P. Cache 2.62×
GEMM 9 S. Cache 9 S. SPM 1.73×
MERGESORT S. Cache 8 S. SPM 1.22×
SPMV P. Cache 8 S. Cache 1.57×

All Kernels 1.53×

Table 3.4: Median improvements across all kernels.

GFLOPS/W GFLOPS

Kernel CPU GPU CPU GPU

STENCIL2D 42.2× 2.25× 6.92× 0.16×
KMP 19.6× 22.3× 3.18× 1.51×
GEMM 64.5× 2.18× 10.5× 0.15×
MERGESORT 14.4× 105× 2.33× 71.6×
SPMV 33.5× 11.8× 5.42× 1.80×

All Kernels 37.2× 11.6× 5.86× 0.78×

3.6 Measurements and Analysis

The following section presents measured results for MachSuite test kernels at nominal

voltage, followed by voltage-scaling measurements.

We note that because hardware reconfiguration time is marginal, measured results for

kernel sequences (with reconfiguration interleaved) is virtually identical to the sum of run-

times for kernels executed in isolation. This property also holds for multi-modal kernels

that are decomposed into distinct phases.

58

G
F

L
O

P
S

/W
(R

a
ti

o
)

G
F

L
O

P
S

/W
(R

a
ti

o
)

Versa Configuration

GEMMKMP SPMV

CPU (ARM A57) GPU (Tegra X1)Denominator Platform

STENCIL2D MERGESORT

Versa Configuration

Private Cache

Private SPM

Shared Cache

Shared SPM

Private SPM + R2R

GEMM

KMP

SPMV

STENCIL2D

MERGESORT

(a)

(b)

Figure 3.15: Energy-efficiency improvement over CPU and GPU baselines: (a) trends
across dataset footprints, and (b) summary boxplots. Boxplots are labeled on min, median,
and max values.

59

3.6.1 Nominal Energy-Efficiency and Performance

The benefit of Versa reconfiguration is illustrated by trends in energy-efficiency across

dataset footprints4 (Figure 3.15a) and median overall improvements (Figure 3.15b). We

find that the best mode varies not only across the testsuite, but also within individual ker-

nels. Energy-efficiency improvements between Versa modes extend up to 3.17×, with

1.53× disparity on average (Table 3.3). This is a key result that indicates the lack of any

mode that could serve as a static replacement for reconfigurability. For instance, Sten-

cil2D with Versa private cache (P.Cache) yields 1.37× higher GFLOPS/W relative to pri-

vate SPM+R2R at small data sizes, but the advantage between modes is inverted at larger

sizes. This result is due to the use of R2R to share and reuse overlapped input patches

across cores, and cache pressure as dataset footprint increases. Overall, Versa achieves

42.2×/2.2× median improvement over the CPU/GPU for Stencil2D.

For KMP, P.Cache consistently outperforms private SPM (P.SPM) despite Q−1 reuses

of the query per search iteration, where Q is the query length. Since scratchpads require ex-

plicit buffering, the number of loads/stores per iteration is nearly doubled relative to cache

mode. Given a short query string (tests use Q = 4), reuse is low and SPM buffering dom-

inates. This results in 2.62× disparity between modes, with 19.6×/22.3× improvement

over the CPU/GPU with P.SPM.

GeMM utilizes data tiling in shared cache (S.Cache) and shared scratchpad (S.SPM)

modes, and has a reuse/buffering tradeoff similar to KMP. However, the benefit of quadratic

data reuses outweighs scratchpad buffering cost, resulting in 1.73×median mode-advantage

for S.SPM and 64.5×/2.1× improvement over the CPU/GPU.

On Mergesort, Versa attains 2.33× and 71.6× speedups over the CPU and GPU, re-

spectively, translating to 14.4× and 105× energy-efficiency improvements. GPU profil-

ing indicates bottlenecks in parallel synchronization and branch-heavy comparison opera-

tions. Results from Mergesort suggest that Versa’s independent scalar cores and tree-based

4Dataset footprint is the size in bytes for a kernel’s input and output arguments.

60

scratchpad barriers are highly effective in-practice.

For SpMV, the Versa kernels allocate 1 or more sparse dot product operations per

worker core, implying that accesses between cores are non-overlapping. However, since

MachSuite provides matrices in CSR format, sparse values are packed contiguously in

memory such that multiple sparse rows frequently reside in the same cache lines. This

produces implicit cache prefetching of sparse matrix values and column pointers into the

shared cache. Synergistic prefetching does not occur in P.Cache, resulting in a mode-

advantage for S.Cache up to 1.9×, and 33.5×/11.8× improvement against the CPU/GPU.

Across all kernels, energy-efficiency improvements extend up to 64.5×/105× against

the CPU/GPU, with median improvements of 37.2× and 11.6× overall (Table 3.4-left).

In terms of performance, Versa consistently outperforms the CPU but results are mixed

against the GPU (Table 3.4-right). 5.86× median improvement in performance is obtained

relative to the CPU; we estimate that hardware parallelism accounts for roughly half of

the disparity, with the other half attributed to reconfiguration benefits. GPU performance

ratios range from 0.15× to 71.6× on GeMM and MergeSort, respectively. While GPUs

are known to excel on linear algebra computations (which are prevalent in graphics ap-

plications), the difference in core counts is a plausible explanation for the performance

shortfall. For instance, multiplying Versa’s performance by a factor of 8 to normalize core

count results in performance improvements of 1.28× and 1.2× for Stencil2D and GeMM,

respectively. However, it is unlikely that Versa’s power dissipation would scale linearly,

in addition to production-related overheads and design margins that the Versa prototype

lacks. Nevertheless, these observations are promising and suggest that Versa is comparable

on dense kernels, and within the margin of error created by differences in implementation

methodology.

61

543 pJ @ 31 MHz

1588 pJ @ 510 MHz

14.7 GFLOPS/W
@ 11.9 GFLOPS

36.4 GFLOPS/W
@ 0.74 GFLOPS

Figure 3.16: Chip characteristics under voltage scaling. (L) System frequency and power,
(M) energy-per-cycle, and (R) the performance-efficiency Pareto curve.

3.6.2 Voltage-Scaled Characteristics

We conclude the measurement results with chip characteristics under voltage-scaling,

examined on a non-terminating 11-tap FIR filter. This gives a reasonable measure of ‘peak-

practical’ performance and efficiency, since the FIR kernel is compute-oriented but retains

a realistic number of memory accesses. At the far ends of the 0.55-1.0V operating range,

the chip dissipates 7.9 mW (at 31 MHz) and 811 mW (at 510 MHz) (Figure 3.16-left).

Energy-per-cycle (Figure 3.16-mid) varies from 543-1588 pJ/cycle. The minimum-energy-

point (MEP) is observed at 0.6V, resulting in 2.47× improvement over the nominal voltage.

Thus, Pareto-optimal operation (Figure 3.16-right) corresponds to 11.9 GFLOPS perfor-

mance at 1.0V, or 36.4 GFLOPS/W energy-efficiency at 0.6V.

3.7 Related Work

Prior designs most similar to Versa include the Raw processor [86], Manticore [87],

and the ET-SoC-1 from Esperanto Technologies [88] (the latter two developed concur-

rently with this work). Raw incorporates packet-switched routers that are instruction-

addressable for stream-based dataflow, similar to Versa’s instruction-level systolic com-

putation. However, Versa’s systolic mechanism is comparatively lightweight (e.g., without

packet routers), does not require per-packet initialization or link setup, and is physically-

62

constructed to mimic an ASIC design. Manticore incorporates hardware for DMA oper-

ations into core registers. This enables removal of explicit load/store instructions simi-

lar to Versa, but still incurs DMA setup overhead, and the mechanism does not facilitate

cross-thread spatial data reuse. ET-SoC-1 is a flexible accelerator targeted for machine

learning that incorporates lightweight general-purpose cores. To the best of our knowl-

edge, ET-SoC-1 is the most recent industry accelerator design to incorporate memory that

is dynamically reconfigurable as cache or scratchpad.5 We speculate that the ET-SoC-1’s

reconfigurable memory confers benefits similar to the Versa design, however Esperanto has

not disclosed details or performance metrics related to reconfigurability.

In addition to the works above, aspects of Versa can be compared to recent FPGA

systems, reconfigurable ASICs, and general-purpose processors with programmable inter-

connect. We also summarize relevant work on application phase-based dynamic reconfig-

uration and optimization. The authors of [89] and [90] integrate embedded FPGAs and

fixed-function accelerators in heterogeneous SoCs. In this setup, kernels are accelerated

by offloading to different, distinct subsystems or cores. In contrast, Versa is a standalone

accelerator architecture that reconfigures to support different algorithm needs. The ASICs

from [45, 91, 92] leverage programmable interconnect or packet routers in order to support

multiple applications. For instance, the systolic array in [91] uses reconfigurable routers

to support both dense and sparse linear-algebra operations. The ASIC design from [45]

reconfigures between phases of a single sparse matrix-multiplication algorithm, and [92]

use programmable routers to support multiple image processing kernels. The efforts above

employ reconfigurability to broaden the capabilities of a fixed-function ASIC design. In

contrast, Versa is the first to demonstrate how reconfigurability - in a general-purpose pro-

cessor - can enhance programmability and performance.

The designs presented in [86, 87, 93–95] are fabricated multi-core processors capable

of spatial data-transfer that resembles that of a systolic array. Versa also leverages pro-

5Recent Nvidia GPUs have configurability along these lines, but it is rather limited; CUDA shared mem-
ory size can be configured via the host GPU driver API, but not at fine temporal grain.

63

grammable interconnect, but for the purpose of reconfiguration in-conjunction with ROCM

memory modes. Furthermore, systolic dataflow in Versa is not emulated but instead em-

ploys direct R2R links, with performance and energy-efficiency characteristics closer to

those of an ASIC design.

Versa can be compared to recent coarse-grained reconfigurable array (CGRA) designs

with dataflow execution [12, 56–58, 61, 96]. Dataflow machines [96] depart from program

counter (PC)-based execution and instead traverse dataflow graphs explicitly. Data values

and associated data-tags flow through distributed on-chip memories and compute resources

according to graph dependencies (‘firing rules’). In comparison, our work retains PC-based

execution and reconfigures at higher levels of abstraction, but follows dataflow-like firing

rules for systolic R2R. In this sense, Versa is closer to a “hybrid dataflow machine,” or

“pseudo-systolic processor” [97] that incorporates von Neumann processing elements.

Phase-based optimization [98] for adaptive hardware is a well-established research area,

with prior work that spans the hardware stack [15, 99–104]. [99] and [100] examine pro-

gram features and learning-based approaches to optimize main-memory allocation in real

server workloads. [101] optimizes last-level cache capacity in an off-the-shelf Xeon pro-

cessor, using L1 and L2 cache performance counters to build a phase-based heuristic con-

troller. [15, 102–104] are architectural (cycle-level simulation) studies that optimize on-

chip memory types, cache sizes, and pipeline resources. For instance, [15] and [104] lever-

age explicit workload phases and varying data sparsity to reconfigure on-chip resources

according to power-performance tradeoffs. Similarly, [102] and [103] adapt microarchi-

tectural parameters, but use learning-based models to detect and exploit implicit workload

phases. While we leave an in-depth study of phase-based optimizations on Versa for future

work, our hardware is designed to be compatible with both explicit and implicit phase-

based methods, as described above.

64

3.8 Conclusion

This chapter introduced Versa, a flexible multi-core accelerator that optimizes for di-

versity in computation and data-access patterns. The premise is that given dynamic com-

pute and data-access characteristics, any static hardware design will exhibit sub-optimal

energy-efficiency and performance. Versa addresses this issue through fast, nanosecond-

scale reconfiguration between distinct hardware modes. Reconfigurable functional units

exploit mode-dependent operating guarantees (such as privatized data) to optimize mi-

croarchitectural characteristics. In addition, Versa’s scalar cores are augmented to support

a new class of programmable, register-to-register systolic array computation. To minimize

and prevent performance bottlenecks on synchronization-heavy workloads, Versa employs

distributed scratchpads that facilitate a tree-based thread-synchronization algorithm. The

techniques above are demonstrated in a 28 nm prototype chip that incorporates industry-

grade IP cores and system components. Against comparable CPU and GPU baselines, the

prototype achieves 37.2× and 11.6× median improvements in energy-efficiency respec-

tively on a set of diverse kernels. Overall, this work indicates that compute and memory

reconfiguration are highly-effective, and may be broadly applicable to future accelerator

designs.

65

Chapter IV

Compiler Support for Versatile Hardware

4.1 Introduction

Specialized software-programmable accelerators were introduced in Chapter I as a

promising avenue to obtain better compute performance and energy-efficiency. However,

while the shape and quantity of accelerator hardware resources set theoretical limits on

performance and efficiency, accelerator software dictates whether those resources can

be utilized in practice. In particular, accelerator programs are typically partitioned into

computationally-intensive subunits called kernels. Kernels are not only ubiquitous build-

ing blocks that constitute larger programs, but kernels also typically dominate end-to-end

workload execution time. Thus, developing high-performance kernel code in a productive,

scalable way is crucial to harness the potential of future accelerator designs.

Developing high-performance kernel code is notoriously challenging, and still an active

area of research for several key reasons. In particular 1) the need for complex, expertise-

driven optimizations over a large space of possible code variants, and 2) the software churn

and effort-intensive development required to support a diverse, evolving hardware land-

scape (Figure 4.1). These reasons make accelerator software development (and kernel en-

gineering) a non-trivial, effort-intensive affair. For instance, effective loop tiling must take

the structure of multi-level memory hierarchies into account, and parallelization strategies

will depend on the structure of compute units, available memory bandwidth, and latency

66

foreach architecture {

 foreach arch. variant {

 foreach kernel {

 foreach kernel variant {

 write and optimize kernel

 }

 }

 }

}

...

Conv, DilateConv, SparseConv, ...

3x3, 5x5, 9x9, NCHW, NHWC, ...

v1.big, v1.edge, v2.big, ...

Tune for:
• Caches, scratchpads, DRAM, ...
• Compute capability
• Communication capability
• Arch-specific capability

Figure 4.1: Development of accelerator kernels and associated libraries is a challenging
task that prioritizes hardware performance. Because kernel development is already com-
plex and effort-intensive, e.g. requiring extensive tuning and detailed hardware knowledge,
the rapid evolution of both hardware and algorithms presents a non-trivial challenge.

hiding capabilities. Not only are impactful code optimizations typically invasive (i.e., re-

quiring major source modification), but tuning them is also hard. Exploring over the space

of possible code optimizations is a combinatorially hard problem, and different programs

often exhibit varying behavior under the same optimization. A single mathematical op-

eration may be implemented as several independent kernels that are tuned for different

input/output parameters, or to exploit different hardware functionality. Hardware that ex-

poses a variety of architectural features exacerbates the combinatorial explosion of ker-

nel and optimization variants, and breaking software abstractions impacts the portability

of accelerated code. In summary, development of conventional kernel libraries is highly

architecture-dependent, labor intensive, and intractable for programmable accelerators that

will continuously evolve to support emerging domain-specific computations.

As a result of the challenges above, compute kernel developers must typically choose

between tradeoffs in performance, portability, and productivity. For instance, hand-tuning

and adhoc heuristics are often used in-place of comprehensive design-space-exploration,

resulting in performance opportunities that are overlooked. On the other hand, the need

to develop and optimize a large set of kernels for a given target architecture is a major

67

contributor to maintenance issues and large, esoteric kernel libraries [105]. Regardless of

the tradeoffs that engineers select, the development methodology suffers due to the lack of

appropriate tools and abstractions.

4.2 Motivation

Exploiting the proliferation of accelerator hardware in the post-Moore era is a diffi-

cult software problem. We argue that better compilation is the key to enable emerging

programmable accelerators, and the hardware-software co-design that is required.

One critical barrier is the lack of compatible tools and compiler infrastructure. Because

most existing compilers are designed primarily to support mainstream CPU architectures,

existing internal representations (IRs), optimization methods, and compiler utilities are ill-

suited to accelerators that employ a drastically different hardware organization.

The lack of first-class compiler support also holds for the Transmuter and Versa accel-

erators presented in Chapters II-III. In particular, while we programmed both Transmuter

and Versa in C++ (supported by a GNU-based toolchain), the language and tooling lim-

itations described in Section 4.1 reduced the scope of feasible application development.

For instance Transmuter required adhoc code generator infrastructure to be effective (Sec-

tion 2.6), and kernels using Versa reconfiguration and register-to-register features (Sec-

tion 3.3) were challenging to develop by hand. For both Transmuter and Versa, weeks to

months of development were required to obtain a relatively small set of hardware-optimized

kernels; In our experience, this appears to be the status quo for most programmable accel-

erators (e.g., GPUs) rather than the exception.

Polyhedral methods offer a promising framework to compile and optimize high-level

accelerator programs. By representing program components as affine geometric objects –

specifically polyhedra – the polyhedral framework enables a wide array of crucial analy-

sis and transformations. Polyhedral tools are especially amenable to compute kernels and

multi-dimensional loop nests, enabling composable transformations that are well-suited for

68

Input Program High-Level IRs LLVM IR Machine Code

Accelerator Dialect

Spatial Ops

Memory Ops

Parallelism

Polyhedral/Affine Transforms

HLL Frontend

Figure 4.2: Overview of the proposed compiler and IR lowering pipeline.

tiled accelerator architectures. In contrast to conventional low-level IRs that lose critical

dependency information, polyhedral methods enable exact memory dependency analysis;

this is crucial for automatic parallelization, compute partitioning, and transformations in-

volving program dataflow.

4.3 Polca: Polyhedral Compilation for Versatile Hardware

We propose the use of a progressively lowered compiler infrastructure augmented with

polyhedral methods to automatically generate performant kernels, and exploit emerging ac-

celerator hardware. Our approach (Figure 4.2) will initially target the Versa and Transmuter

architectures proposed in Chapters II-III, and can be summarized as follows: (i) An end-

to-end toolchain to compile high-level input programs into optimized, executable MIMD

binaries. The toolchain leverages MLIR [106, 107] – a recent compiler infrastructure with

strong, modular support for progressive lowering – to mitigate the loss of semantics that

are required for invasive (but impactful) transformations. Segregating functionality in the

form of different internal IRs maximizes reuse of upper-level compiler passes, improves

modularity, and reduces the engineering overhead required to support new hardware.

(ii) Custom language constructs formalized as an accelerator IR dialect to support

architecture-specific features and operations. In particular, constructs to support partitioned

reconfigurable memory and reconfigurable buffer allocation, parallelization and hardware

mapping, and systolic dataflow (i.e., inter-core register-to-register operations).

69

...

...

...

...

...

...

...

...

...

...

...

...

...

...

... ...

...

...

...

...

...

Scalar Core Array tile_id 0 1 T-1

L1$ L1$ L1$

L2$

Compute Tiles flat_id [0, ..., T*N-1]
core_id [0, ..., N-1] [0, ..., N-1] [0, ..., N-1]

tile_id 0 1 T-1
col_id

row_id

C-1 0 C-1 0 C-10

R-1

0

...
...

...

..
.

...

...

..
.

..
.

...

(Spatial Links)

(a)

(b)

(c)

Figure 4.3: Overview of Polca target accelerator.

(iii) Polyhedral transformations and program analysis that exploit light-weight analyt-

ical cost models. Analytical cost models significantly reduce compilation time compared

to methods that require performance feedback (i.e., direct execution on target hardware).

The reduction in compilation time still applies if cost models are substituted for perfor-

mance feedback in program autotuners and search-based techniques. Finally, compiler cost

models can guide future hardware design decisions, while performance-directed feedback

cannot.

4.4 Machine Model and IR

This section describes the abstract hardware architecture that Polca targets, and the

associated IR constructs that facilitate compiler optimization passes.

4.4.1 Accelerator Architecture

Figure 4.3 illustrates the parallel accelerator architecture supported by Polca. The base

abstract architecture – modeled on the Versa [108] and Transmuter [15] designs – is a hi-

erarchical processor composed of tiled scalar cores and software managed memory (either

explicitly invalidated cache, or scratchpad). The base architecture assumes an SPMD pro-

gramming model where cores and tile identifiers are exposed to software as integer indices.

Groups of cores participate in data-parallel computations with relaxed memory consistency,

where parallel compute is interleaved with barriers that enforce memory ordering at syn-

70

chronization boundaries. Synchronization is supported at both tile and global scope. Tile

scope synchronization appears in two forms: a stronger form that provides ordering over

both scratchpad and shared cache (if any), and a weaker form that provides ordering over

only intra-tile scratchpad.

Extended functionality and optimization is enabled if the machine supports point-to-

point communication between cores, and exposes associated spatial information. In par-

ticular, the extended architecture assumes spatial scalar (word-sized) links that enable low-

latency data transfer at instruction granularity. For example, the design from Kim et al.

[108] implements such links with hardware extensions that allow instruction operands to

access the physical register files of adjacent neighbors. We note that the hardware from

Kim et al. [108] supports spatial register operands with arbitrary instructions, such that

compute and spatial data transfer are fused in a single instruction. For simplicity, Polca’s

backend only utilizes mov instructions for spatial data transfer.

While the abstract machine is designed to capture the traits of specific targets, the com-

piler is not tied to a specific target except where necessary (i.e., when IR is finally lowered

to machine code). Polca optimization passes are ISA-agnostic, accept hardware size/shape

information as parameters, and are generally applicable to an arbitrary hardware target,

provided the target can satisfy the basic assumptions of the machine model.

4.4.2 Polca Dialect

IR constructs to support Polca functionality are embedded in the MLIR infrastructure

as a lightweight collection of IR operations and attributes. These Polca-specific constructs

form an MLIR dialect, which defines the language-level interfaces between distinct groups

of IR and constituent operations.

The Polca dialect is minimal, since the compilation pipeline reuses IR from other di-

alects in the MLIR ecosystem. I.e., the Polca dialect adds the minimum set of constructs

to support custom hardware features and pass optimizations, but does not need to represent

71

Parallel Loop
Detect

Parallelism
Mapping

Iteration
Partitioning

Barrier InsertArch. Configs

MIMD
Conversion (...)

Spatial SPMD/MIMD Passes

Frontend

Loop Restruct.
Polygeist

Pluto

C/C++

Reduction
Opt.

LLVM IR

Figure 4.4: Key mid-level analysis and transformation passes.

arithmetic operations, basic loop structures, functions, and so on.

IR operations for work identification and partitioning includes logical core, logical

tile, and physical/spatial indices; these are symbolic identifiers that Polca uses to imple-

ment SPMD data parallel computations, or to model MIMD control flow in a single unit

of IR. The Polca dialect also includes GPU-like memory synchronization barriers (i.e.,

polca.mem_barrier), and associated attributes to specify synchronization scopes. Finally,

the Polca dialect adds operations to express spatial data movement, namely two-operand

polca.spatial_<push|pop> operations that accept a cardinal direction and scalar value.

In addition to explicit IR operations, other accelerator-specific details (such as core array

geometries) are either passed at compile-time as arguments, or attached to relevant IR in

the form of attribute tags as needed.

4.5 Exploiting Versatile Parallelism

This section presents the key components and optimizations in the Polca compilation

flow (Figure 4.4).

4.5.1 Frontend

The earliest stages of our compiler re-uses existing IR and transform infrastructure from

the MLIR framework. This enables inter-operation and targeting from high-level MLIR

dialects such as Linalg and Tensor, and reuse of frontends for mainstream languages such

as C/C++. We use the Affine dialect as the main entry-point to our custom infrastructure,

72

as it is still abstract enough for many important transformations – such as loop tiling – but

low enough in the compiler stack to benefit from optimizations shared between mid-level

IRs.

4.5.2 Polyhedral Loop Restructuring.

Many real-world programs appear in forms that are not trivially parallelizable, despite

parallelism that is intrinsically present in the algorithm. Optimizing for data locality is

also critical for performance, but difficult and time consuming to perform manually. Loop

restructuring techniques address the problems above by transforming loop nests to expose

parallelism and improve locality.

The polyhedral model [] provides a powerful framework for optimizations that operate

on loops. In contrast to conventional methods, polyhedral techniques express programs

in terms of abstract integer sets and affine transforms, enabling precise analysis of mem-

ory dependencies, succinct specification of desired transformations, and global optimiza-

tion under mathematical objectives. Polca uses Pluto [] as a generic polyhedral optimiza-

tion backend to perform automatic loop restructuring. Our integration is enabled by re-

cent work improves MLIR interoperability with polyhedral scheduling tools [109]. While

Pluto [pluto] was originally developed to generate OpenMP for CPUs, we find that modest

configuration is sufficient to obtain good schedules for the SPMD architecture described in

Section 4.4.1.

4.5.3 SPMD Parallelism.

This set of passes converts abstract loop constructs into concrete IR, and materializes

other key operations from IR attributes. In particular, this pass lowers unordered parallel

loops into SPMD-like loops, with the iteration space mapped onto thread indices. As an

initial implementation heuristic, the iteration partitioning pass maps outermost loops onto

space (i.e. hardware), and inner loops onto time. Buffer allocation is also required if a mem-

73

ory reference is marked with IR attributes indicating SPM usage; this consists of an SPM

buffer declaration outside the nest, and a new loop inserted within the nest at the appropri-

ate level to materialize SPM initialization. Finally, synchronization operations are inserted

within the nest to enforce parallel load-store ordering, for instance, to prevent races on data

that is cooperatively buffered and subsequently reused across threads. Synchronization in-

sertion can be implemented in several ways, in particular by analyzing affine dependence

vectors and their intersection points (e.g., Bondhugula et al. [110]).

4.5.4 Systolic Reduction Parallelism.

Polca leverages the systolic array-like hardware capabilities described in Section 4.4.1

to efficiently exploit reduction parallelism. A reduction is a function g(f (·) ,V) that ap-

plies a reduce operation f (·) to every element in a set of values V , producing up to one

result. For example, accumulation over elements of an array and histogram-style counting

are two frequently-occurring reduction patterns. In terms of IR, reductions appear in the

form of a looped load→ compute→ store pattern, where the load-store pair operates

on the same memory reference with an access index that is loop-invariant. If a reduc-

tion pattern is detected, the reduction load-store pairs are hoisted out of the loop, and the

memory reference is converted into a local accumulator value (thereby eliminating inter-

mediate memory operations); in the IR, this value is expressed as a secondary induction

variable. In addition to reducing memory pressure, if the reduce operation is associative

and there are no aliasing interleaved stores, then the entire abstract reduction function can

be parallelized [109]. Crucially, the parallel reduction optimization exposes fine-grained

parallelism within inner loops where potential for data reuse is high.

We observe that IR regions containing reductions can be organized into four pieces:

1) an outer (enclosing) parallel loop, 2) a preamble containing hoisted loads, 3) the inner

reduction loop, and 4) a postamble containing hoisted stores [Figure 4.5(a)]. Polca maps

the pieces above onto hardware stripes that correspond to a contiguous 1-D chains of cores.

74

parallel.for ... {
 r = parallel.reduce {...}
 s = spatial_pop()
 a = arith(s, r)
 spatial_push(a)
}

parallel.for ... {
 pre = load(...)
 v = for {...}
 res = arith(pre, v)
 store(res, ...)
}

parallel.for ... {
 r = parallel.reduce {...}
 s = spatial_pop()
 res = arith(s, r)
 store(res, ...)
}

parallel.for ... {
 pre = load(...)
 r = parallel.reduce {...}
 a = arith(pre, r)
 spatial_push(a)
}

Preamble
Reduction Body

Postamble

Time = T Time = T - 𝚫_locality (a) (b)

(c)

Figure 4.5: Overview of Polca spatial reduction parallelization. (a) Operations associated
with a reduction loop are tabulated into a preamble, body, and postamble. (b) Unparal-
lelized reductions are restricted to parallelism in outer dimensions, limiting data locality.
Polca leverages spatial links to parallelize inner reduction loops with low performance
overhead, yielding net speedup. (c) Pseudocode for functional partitioning of work.

Figure 4.6 illustrates the lowering and mapping strategy. Outer parallel iterations that

correspond to independent, full reductions are mapped element-wise onto stripes (cyclic,

modulo the number of stripes). Inner iterations of the reduction loop are mapped across

cores within the stripe element-wise (cyclic, modulo the stripe length), such that each core

performs a partial reduction. Within each stripe, two cores at the spatial edges are desig-

nated as ‘head’ and ‘tail’ cores (e.g., row_id’s 0 and R-1, respectively, for vertical stripes).

In addition to inner reduction iterations, head and tail cores also execute the initial loads

and concluding stores, respectively. Thus, a complete inner reduction after transformation

corresponds to initial loads by the leader, parallel partial reductions, intra-stripe aggrega-

tion, and concluding stores in the tail’s postamble.

Notably, deferring the intra-stripe reduction reduces data movement substantially, com-

pared to a naïve scheme that reduces across cores with every inner iteration. In addition,

because spatial data transfers lower to inter-core register-register instructions [108], Polca’s

reduction scheme is more performant than conventional reduction strategies that require

atomics (e.g., on CPUs).

Differentiated execution (e.g., between head and tail cores) in transformed IR is ex-

pressed with affine predication on row_id and col_id symbolic indices. That is, core-

75

...

Stripes

...

...

...

...

Stripe Elmts.

Heads

Chains

Tails

Head

Chain

Tail
Time

Startup Steady State

Intra-stripe reduction

Reduction work Spatial push/pop Load/Store

(interior)

(b)(a)

...

...

...

...

Figure 4.6: Physical and temporal views of the optimized reduction strategy. (a) Outer-
parallel iterations are mapped onto hardware stripes (vertical stripes shown), with one stripe
executing an entire parallel reduction. (b) Temporal view of execution for one stripe. Intra-
stripe reduction in core postambles is used to aggregate per-core (parallel) local reductions.

specific operations are guarded in an affine.if region with an affine constraint (affine_set

in MLIR). Language-level predication at this point does not correspond to executed code,

however. Subsequent MIMD conversion simplifies the IR for each core, resulting in code

that is free of index-based predication.

4.5.5 MIMD Conversion.

The MIMD conversion pass lowers the SPMD-like IR into independent units of scalar

code. This pass operates in two steps, followed by downstream passes that simplify and

DCE unnecessary operations. The IR is first replicated to produce an independent unit

of kernel code for each core, with all per-core IR units encapsulated in a parent module.

Per-core IR is tagged with identification attributes in the process, followed by rewrites on

symbolic indices. All symbolic indices, such Polca core_id’s, tile_id’s, etc., are substi-

tuted for constant values (i.e., arith.constant operations). With runtime core identifica-

tion removed, regions predicated on core indices and other index-based computations are

simplified or DCE’d entirely in downstream lowering.

76

// I, J, K := Loop bounds
// N_TILES, N_STRIPES := Number of hardware tiles, stripes per tile
// LEN_STRIPE := Hardware stripe length

#is_head = affine_set<()[s0] : (s0 == 0)>
#is_tail = affine_set<()[s0] : (s0 - LEN_STRIPE + 1 == 0)>

func @kernel_..._wrap(...) {
%tid = polca.tile_id
%sid = polca.stripe_id
%eid = polca.stripe_elem_id
(...)
affine.parallel (%i) = (symbol(%tid)) to (I) step (N_TILES) {
affine.parallel (%j) = (symbol(%sid)) to (min(%i + 1, J)) step (N_STRIPES) {
// Preamble (head only)
%10 = affine.if #is_head()[%eid] -> f32 {
%13 = affine.load %arg4[%i, %j] : memref<IxJxf32>
affine.yield %13 : f32

} else { // this else-branch is for IR legality only
%cst_0 = arith.constant 0.000000e+00 : f32
affine.yield %cst_0 : f32

}
// Reduction body (all cores)
%11 = affine.parallel (%k) = ←↩

(symbol(%eid)) to (K) step (LEN_STRIPE) reduce ("addf") -> (f32) {
%13 = affine.load %arg5[%j, %k] : memref<JxKxf32>
%14 = arith.mulf %13, %cst : f32
%15 = affine.load %arg6[%i, %k] : memref<IxKxf32>
%16 = arith.mulf %14, %15 : f32
%17 = affine.load %arg6[%j, %k] : memref<JxKxf32>
%18 = arith.mulf %17, %cst : f32
%19 = affine.load %arg5[%i, %k] : memref<IxKxf32>
%20 = arith.mulf %18, %19 : f32
%21 = arith.addf %16, %20 : f32
affine.yield %21 : f32

}
// Postamble
// (head)
%12 = affine.if #is_head()[%eid] -> f32 {
%13 = arith.addf %10, %11 : f32
affine.yield %13 : f32

// (chain and tail)
} else {
%13 = polca.spatial_pop N : f32
%14 = arith.addf %13, %11 : f32
affine.yield %13 : f32

}
// (tail)
affine.if #is_tail()[%eid] {
affine.store %12, %arg4[%i, %j] : memref<IxJxf32>

// (head and chain)
} else {
polca.spatial_push S %12 : f32

}
}

}
polca.mem_barrier all
(...)
return

}

Figure 4.7: Excerpt of transformed IR for reduction, nested in a tiled parallel loop. Iden-
tifiers edited for clarity. Affine predication on symbolic spatial indices (tid, sid, eid)
models differentiated execution. Symbols are later substituted for constants during MIMD
conversion; downstream simplification passes produce predication-free IR for each core.

77

4.5.6 Final Lowering

Polca largely maintains the loop-based structure of the IR until final lowering to LLVM

IR. At this stage, a few operations use custom lowering to LLVM IR with a polca-to-

llvm conversion pass to maintain ease of integration with accelerator C++ support libraries.

memref.alloc memory allocations are lowered to llvm.call’s that invoke accelerator mal-

loc routines. Similarly, other coarse-grained Polca dialect operations are converted into

llvm.call operations that invoke accelerator library counterparts. Any library-side calls

that return/accept bare pointers have additional handling that statically pack/unpack mem-

refs for type-compatibility. For memrefs in function signatures, we emit LLVM IR with

the bare pointer calling convention so that generated kernels are callable from C++ with-

out special handling. Spatial data transfer operations (discussed further in Section 4.6)

correspond 1:1 with instructions, and are lowered to LLVM IR intrinsics.

4.6 Evaluation

This section presents the experimental methodology, benchmarks, and evaluation re-

sults.

Benchmarks. We evaluate Polca on PolyBench/C [111], a well-known suite of compu-

tational kernels from linear algebra, signal processing, and optimization problems. Poly-

Bench kernels are naïve, single-threaded C programs containing static control parts (SCoPs) [].

The Polygeist frontend natively generates IR that strips memref datatypes of shape informa-

tion; this removes information present in the original C function signatures, and impedes

downstream affine analysis. We patch the frontend to preserve memref shape informa-

tion, and invoke kernels from C++ with the bare pointer calling convention as described

in Section 4.5.6. Kernels are compiled separately from wrapping C++ testbench code (i.e.,

without inlining or DCE that crosses function call boundaries). Using the mini dataset size,

wall time to execute a set of kernels in RTL simulation is bounded to ~10-12 hours. All but

78

7 kernels compile successfully, and 7 of the 23 evaluated kernels contain reduction loops

amenable to systolic reduce optimizations.

Hardware. Polca uses Versa [108], a prototype accelerator design previously validated

in silicon, as the specific hardware target for experiments ??. The programmable SP-

MD/MIMD core arrays are implemented in Versa with modified Arm Cortex M4F cores1

All kernels are evaluated with single-precision floating point, supported in Versa cores by

hardware floating point units. Machine code generation for Versa entails translation of

LLVM IR to ARMv7 assembly, followed by assembly and linking using standard GNU

tools (configured for Versa’s bare-metal software environment). Unless noted otherwise,

performance for all experiments is measured in cycle-exact RTL simulation with Versa’s

development infrastructure. Performance measurements count only the time required for

the kernel function call, including final barrier synchronization.

The fine-grained spatial communication required for reduction acceleration is supported

with Versa’s prototype register-to-register (R2R) links. R2R links form connections be-

tween the floating point (FP) register files of adjacent cores, and are addressable as instruc-

tion operands that alias to four standard FP registers (one register per cardinal direction).

Because R2R operates on physical machine registers, which are not exposed at the IR

level, the final lowering stage in Polca translates spatial data transfers to LLVM IR in-

trinsics. Corresponding LLVM IR intrinsics are subsequently custom lowered in LLVM

llc during instruction selection, using a modified version of llc’s ARM backend. Simi-

larly, we modify routines relevant to ARMv7 register allocation to prevent clobbering and

auto-allocation of R2R registers.

Compilation Variants. We evaluate Polca with several compilation flows that succes-

sively enable proposed optimizations. All variants share the same frontend pre-processing,

1The Arm Cortex M4F is a in-order single-issue scalar core; this makes the M4F core very efficient in
terms of silicon area and power.

79

and differentiation is restricted to points after initial lowering from C++ to MLIR. Un-

less noted otherwise, all compilation variants share the same options for lowering, and the

same support utility passes (e.g., DCE, CSE, constant propagation) with a common pass

ordering. Evaluated compilation flows include:

• sequential: Sequential execution without any restructuring optimizations.

• tiled: Sequential execution with polyhedral tiling optimizations only, and all paral-

lelization passes disabled.

• tiled-parallel: MIMD parallel execution with polyhedral tiling and loop restruc-

turing for parallelism.

• r2r-reduce: MIMD parallel execution with tiling, restructuring, and R2R-based sys-

tolic reduction parallelization.

tiled aims to distinguish the impact of data locality optimizations alone. Thus, tiled

enables polyhedral tiling but disables all parallelization optimizations, and downstream

IR is lowered for sequential execution on a single Versa core. Relative to tiled, tiled-

parallel enables parallelization options in the polyhedral backend (tiling, in addition to

transforms that expose parallelism such as skewing, fission, etc.), in addition to paralleliza-

tion passes for MIMD execution. The r2r-reduce pass consumes the same IR as tiled-

parallel at the SPMD stage, but inner reduction loops are restructured as described in

Section 4.5.4 prior to MIMD conversion.

Performance Breakdown. Tiling alone (Figure 4.8: tiled) improves performance by

up to 6.3× (down to 0.3×) compared to unoptimized sequential kernels. This is entirely

due to changes in spatial-temporal data locality across multiple loop nests, where restruc-

turing is beneficial for the majority of kernels. 5 kernels do not exhibit speedups with

tiling, however, largely due to the addition of loop control overheads that outweigh small

improvements in locality. Small data footprints that limit potential benefits from tiling also

80

Figure 4.8: Speedups normalized to baseline sequential execution. tiled shows se-
quential execution with tiling and basic restructuring optimizations enabled, while tiled-
parallel enables both tiling and base parallelization optimizations.

likely contribute to slowdowns in durbin and bicg. Overall, tiling provides 1.8× geomean

speedup compared to the sequential baseline.

Parallelization with tiling (Figure 4.8: tiled-parallel) results in up to 63.4× speedup

(down to 0.4×) over baseline sequential execution. Under this compilation variant, polyhe-

dral outer-tiling typically produces tiled loop nests with two or more parallelizable bands.

Parallel bands typically reside on outer and inner edges of the nest, with non-parallel in-

termediate bands that capture dependencies between data tiles. Any non-parallel inner

bands that exist are executed serially per core (with parallel execution along outer bands).

Thus, outer-parallel loop nests map naturally onto Versa hardware, which is structurally

organized into hardware tiles and core arrays. One notable exception is the durbin kernel,

where the polyhedral backend finds parallel inner loops but no outer-parallelism; sequential

work and synchronization overheads dominate in this case. Otherwise, most kernels exhibit

parallelization efficiency of ~20-50%, translating to 9.9× geomean speedup overall.

Reduction operations that can be meaningfully accelerated are detected in 7 kernels

(Figure 4.9: r2r-reduce). A reduction is also detected in durbin, but the loop is not

a valid candidate for mapping due to the lack of nested parallelism.2 Compared to the

2The non-nested reduction on durbin could hypothetically be parallelized, but resulting speedup would
likely be small regardless (due to the absence of outer-parallel loops).

81

(a) (b)

Figure 4.9: Speedups for kernels amenable to systolic reduction parallelization. r2r-
reduce enables all optimizations for tiling, base parallelization, and reduction paralleliza-
tion. est-atomic-<20,100,200> labels denote estimated speedups when R2R-based spa-
tial data transfers are substituted for 20-200ns atomic RMWs. (a) Cumulative speedup over
baseline sequential execution, and (b) relative speedup over tiled-parallel.

sequential baseline [Figure 4.9(a)], r2r-reduce results in up to 43.1× speedup (down to

8.8×). However, we are more interested with how optimized reductions perform relative

to the ‘baseline’ parallel execution of tiled-parallel; Figure 4.9(b) illustrates up to 2.1×

speedup (down to 1.1×) in this case. For the r2r-reduce kernel subset, enabled by R2R-

based spatial links, reduction optimizations result in 19.3× and 1.6× geomean speedups

over the sequential and parallel baselines, respectively.

Substituting Spatial Data Transfer. Reductions accelerated using R2R spatial links can

also be compared to parallelized reductions that use an alternative hardware mechanism.

Because the exact number of spatial data transfers along the loop critical path is known, in

addition to R2R latencies, we can estimate the impact of alternative link implementations.

The closest alternative to the R2R-based reduction is likely an implementation that uses the

same mapping, but substitutes R2R with atomic read-modify-write (RMW) operations.

Since the latency of atomic RMWs varies, depending on the underlying hardware and

runtime contention levels, we evaluate three abstract atomics that exhibit latencies of 20ns,

100ns, and 200ns per update (e.g., latency per atomic_add()). Changes in kernel execution

times are calculated by replicating affine loop nests for the 7 applicable kernels in python,

82

and counting the number of updates (N) on reduction accumulator values along the par-

allelized critical path. The new runtime is then estimated as t ′ = t −N (Lr2r−Latomic),

where t is the runtime from measurement, and Lr2r / Latomic is the latency per R2R/atomic

operation.

est-atomic labels in Figure 4.9 illustrate the resulting speedups when R2R, with 4ns

per transfer (two cycles), is substituted for variable-latency atomic RMWs. The first obser-

vation is that changes in performance are not linear with respect to latency; this is expected

since reduction loops constitute a fraction (< 1) of execution time. In addition, some ker-

nels are impacted more than others; for instance, syr2k and syrk exhibit steep drops in

performance, while gemver and gesummv show smaller changes. In this case we observe

that syr2k and syrk both contain a 2D→3D loop sequence, where the innermost band of

the 3D loop constitutes the reduction. In contrast, gemver contains a 4D→2D→3D loop

sequence, with reduction in the final 3D loop.

The most important consideration is: at what point does atomic latency negate the ben-

efits of parallelizing reductions entirely? Figure 4.9(b) shows that most kernels start to

exhibit slowdowns under a 20ns atomic RMW. At 100ns latency, all kernels exhibit slow-

downs and the geomean speedup over tiled-parallel is 0.7×, indicating that parallelized

reductions offer no benefit. Especially at higher core counts, atomics are subject to greater

contention and non-deterministic latencies grow proportionally [83, 112]. Thus, the results

above demonstrate the value of hardware support for systolic-inspired spatial data transfer,

and how it can be exploited by compilers.

Ablation Summary. Table 4.1 summarizes the performance of kernels compiled with

different Polca optimizations. Considering all kernels [Table 4.1(a)], base paralleliza-

tion provides 5.53× relative speedup (9.88× total) over tiling, with an additional 1.16×

(11.46× total) provided by reduction optimizations. A more precise ablation is obtained if

we consider the 7 kernels where reduction optimizations apply [Table 4.1(b)]. In this case,

83

Table 4.1: Summary of average (geomean) speedup across kernels. ‘Rel.’ denotes rela-
tive speedup obtained by stacking optimizations, while ‘Total’ denotes total (cumulative)
speedup over sequential.

(a) Speedup over all kernels.

+tiled +parallel +r2r-reduce

Rel. - 5.53× 1.16×
Total 1.79× 9.88× 11.46×

(b) Speedup on r2r-reduce subset.

+tiled +parallel +r2r-reduce

Rel. - 10.40× 1.57×
Total 1.18× 12.27× 19.31×

the relative speedup contributions for base parallelization and reduction optimization both

grow to 10.40× and 1.57×, respectively, translating to 12.27× and 19.31× total speedup.

While reduction optimizations are not applicable to all kernels, these results are encour-

aging and suggest Polca’s optimizations are effective. The results also suggest future di-

rections – for instance the detection of additional parallel patterns (beyond reductions) that

might be exploited with compiler-hardware co-design.

4.7 Related Work

This section discusses previous work on polyhedral methods, compilation for accelera-

tors, and related techniques for systolic array-like hardware.

While polyhedral compilation is not new,3 recent advances have made polyhedral meth-

ods more practical and accessible for a variety of platforms. Bondhugula et al. [110] (Pluto)

and Baskaran et al. [114] were among the first to demonstrate end-to-end polyhedral op-

timization of parallelism and locality for CPUs and GPUs, respectively. In particular, the

optimization strategies from Pluto are general enough such that many subsequent works

have been able to reuse or improve on variants of the Pluto algorithm (e.g., PPCG [115]

and our work).

There is also a large body of historical work on constructing systolic array hardware

and appropriate algorithm mappings [116–118], in addition to subsequent efforts that em-

3Cedric Bastoul’s thesis [113] contains a good overview of techniques, historical references, and recent
tools.

84

ploy generalized polyhedral methods [119–123]. These efforts use the same underlying

mathematical machinery of polyhedral and affine analysis as our work, but towards a dif-

ferent end; i.e., the works above use polyhedral methods to synthesize different systolic

array designs from algorithm kernels, while Polca compiles a variety of algorithm kernels

to a common spatial architecture.

Building on traditional polyhedral methods, several efforts have developed compilers

and domain-specific languages (DSLs) focused on accelerator programs, in particular for

image processing [124, 125] and machine learning [126–130]. PolyMage [124] introduces

a DSL and auto-tuning framework for image processing pipelines, leveraging model-driven

search and polyhedral techniques that match or outperform comparable Halide pipelines.

Pencil [125] is a C99-based DSL and polyhedral compiler that supports multiple CPU

and GPU backends starting from a single platform-agnostic kernel implementation; affine

and non-affine kernels are supported through OpenMP-like directives. Tensor Compre-

hensions [126] (TC) develops a DSL to express end-to-end DAGs of ML operators, and a

polyhedral JIT compiler with auto-tuning functionality. While the DSLs above target either

CPU or GPU platforms, Verdoolaege et al. [128] and Zhao et al. [130] develop compilers

and employ polyhedral techniques for specific ML accelerators; the former for generation

of SIMD instructions on the Cerebras CS-1, and the latter for loop transformations and

memory management on the Huawei Ascend 910.

Polca and the works above all address different problems associated with the genera-

tion of optimized kernel libraries, but Polca places more emphasis on optimizations that

exploit the Versa spatial SPMD/MIMD accelerator prototype. In addition, PolyMage and

TC are motivated by context-dependent optimization opportunities that arise in sequences

of kernels (e.g., in ML operator graphs and image processing pipelines); PolyMage and TC

focus on operator fusion in particular. In this sense, Polca is most similar to Verdoolaege

et al. [128] and Zhao et al. [130], which target novel accelerator cores, and focus on trans-

formations within isolated kernels or operator sub-graphs.

85

Polca bears some similarity to previous works that develop systolic array-like program-

ming models for mainstream processor architectures [131–134]. Suriana et al. [131] in-

troduces a scheduling primitive called rfactor to exploit reduction parallelism in Halide

programs. In contrast to Polca, where reductions are automatically exploited using pattern-

based detection, Halide developers use rfactor directives explicitly in the schedule spec-

ification, obviating the need for modifications to the corresponding algorithm code. Chen

et al. [132], Rong et al. [133], and Thuerck et al. [134] develop programming abstractions

and compilation methods to semi-automatically exploit systolic array-like data movement

over register caches. Shuffle-based data movement between threads in the GPU register

cache idiom4 is similar to the fine-grained inter-core data movement exploited by Polca.

The methods above involve DSLs and GPU-specific abstractions, while Polca hides spa-

tial data transfers from the programmer, and targets an accelerator with native support for

systolic data movement between scalar cores.

4.8 Conclusion

This chapter presented Polca, an end-to-end compiler for versatile SPMD/MIMD paral-

lel hardware. Polca incorporates polyhedral optimization to enable parallelization and crit-

ical loop transformations, and exploits progressive lowering from high-level C programs.

Progressive lowering within the MLIR infrastructure enables rapid construction of an entire

toolchain that runs on prototype silicon. Polca adds an accelerator IR extension to exploit

core-to-core communication features, enabling an efficient form of reduction parallelism.

Evaluated on 23 kernels from the Polybench suite, Polca optimizations result in 11.5× av-

erage speedup (up to 63.4×). For kernels where reduction parallelism is exposed, Polca’s

R2R-based systolic reduction results in 19.3× average speedup (up to 43.1×).

There are a number of avenues for future work. For example, Polca uses spatial data

4Originating from Ben-Sasson et al. [135], the register cache idiom is now a fairly well-known GPU
optimization technique that enhances intra-warp data reuse over registers.

86

transfer in a restricted manner while the hardware allows for arbitrary 2-D communication

patterns; this flexibility is likely amenable to a variety of parallel patterns, provided they

can be detected reliably. Polca also does not exploit spatial instructions that fuse arith-

metic and data movement, which will yield additional performance in tight inner loops.

Finally, hardware techniques such as coarse-grained memory reconfiguration [103, 108]

create additional opportunities for automatic optimization.

87

Chapter V

Conclusion

This dissertation is motivated by the end of classical scaling in the performance and

energy-efficiency of hardware-software systems. With the departure from historical semi-

conductor scaling trends, domain experts, system architects, and engineers are no longer

able to rely solely on general-purpose hardware to satisfy application requirements. Thus,

greater emphasis is placed on new paradigms in hardware and software, including co-

designed solutions that leverage components from both. While fixed-function ASICs can

provide performance and energy-efficiency orders of magnitude better than general-purpose

counterparts, they come with steep tradeoffs in flexibility and are only practical for narrow

sub-domains. This leaves ample room for flexible accelerators that strike a different bal-

ance between specialization and efficiency, and that leverage opportunities for co-design

with accelerator programming models.

To address the challenges associated with flexible accelerator design, this dissertation

explored the idea of flexibility in software-programmable manycore hardware; such an ac-

celerator architecture is not only semi-specialized with ideas from ASIC design, such as

systolic dataflow, but also exploits algorithm-specific opportunities that arise at runtime

through fast reconfiguration. In particular, we explored the problem and developed solu-

tions in three pieces of research: 1) Transmuter (Chapter II), a comprehensive, simulation-

based study of architectural requirements; 2) Versa (Chapter III), an architectural refine-

88

ment and concrete silicon prototype; and 3) Polca (Chapter IV), an end-to-end compiler

enabling automatic optimization over multiple levels of parallelism and locality.

In conclusion, prospects for semiconductor scaling are dim; in order to improve the

pareto frontier of performance and energy efficiency, future accelerators must blur the lines

between fixed-function and general-purpose designs without sacrificing flexibility. As this

dissertation demonstrates, such accelerator designs obtain such gains by exploiting context-

and algorithm-specific opportunities in both hardware and software, thereby enabling a

variety of future applications.

89

Bibliography

[1] Robert R. Schaller. “Moore’s Law: Past, Present and Future.” In: IEEE Spectrum.
Vol. 34. 6. 1997, pp. 52–59.

[2] Robert H. Dennard, Fritz H. Gaensslen, Hwa-Nien Yu, V. Leo Rideout, Ernest Bas-
sous, and Andre R. Leblanc. “Design of Ion-Implanted MOSFET’s with Very Small
Physical Dimensions.” In: IEEE Journal of Solid-State Circuits (JSSC). Vol. 9. 5.
1974, pp. 256–268.

[3] Mark Horowitz, Elad Alon, Dinesh Patil, Samuel Naffziger, Rajesh Kumar, and
Kerry Bernstein. “Scaling, Power, and the Future of CMOS.” In: IEEE Interna-
tional Electron Devices Meeting (IEDM). 2005, pp. 7–15.

[4] Karl Rupp. 50 Years of Microprocessor Trend Data. 2022. URL: https://github.
com/karlrupp/microprocessor-trend-data.

[5] Andrew Danowitz, Kyle Kelley, James Mao, John P. Stevenson, and Mark Horowitz.
“CPU DB: Recording Microprocessor History.” In: Communications of the ACM.
Vol. 55. 4. 2012, pp. 55–63.

[6] Hadi Esmaeilzadeh, Emily Blem, Renée St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. “Dark Silicon and the End of Multicore Scaling.” In: ACM/IEEE
International Symposium on Computer Architecture (ISCA). 2011, pp. 365–376.

[7] Michael B. Taylor. “Is Dark Silicon Useful? Harnessing the Four Horsemen of
the Coming Dark Silicon Apocalypse.” In: ACM/EDAC/IEEE Design Automation
Conference (DAC). 2012, pp. 1131–1136.

[8] Andrew Putnam, Adrian Caulfield, Eric Chung, Derek Chiou, Kypros Constan-
tinides, John Demme, Hadi Esmaeilzadeh, Jeremy Fowers, Jan Gray, Michael Hasel-
man, Scott Hauck, Stephen Heil, Amir Hormati, Joo-Young Kim, Sitaram Lanka,
Eric Peterson, Aaron Smith, Jason Thong, Phillip Yi Xiao, Doug Burger, Jim Larus,
Gopi Prashanth Gopal, and Simon Pope. “A Reconfigurable Fabric for Accelerat-
ing Large-Scale Datacenter Services.” In: ACM/IEEE International Symposium on
Computer Architecture (ISCA). 2014, pp. 13–24.

[9] Jeremy Fowers, Kalin Ovtcharov, Michael Papamichael, Todd Massengill, Ming
Liu, Daniel Lo, Shlomi Alkalay, Michael Haselman, Logan Adams, Mahdi Ghandi,
Stephen Heil, Prerak Patel, Adam Sapek, Gabriel Weisz, Lisa Woods, Sitaram
Lanka, Steven K. Reinhardt, Adrian M. Caulfield, Eric S. Chung, and Doug Burger.
“A Configurable Cloud-Scale DNN Processor for Real-Time AI.” In: ACM/IEEE
International Symposium on Computer Architecture (ISCA). 2018, pp. 1–14.

90

https://github.com/karlrupp/microprocessor-trend-data
https://github.com/karlrupp/microprocessor-trend-data

[10] Mingyu Gao and Christos Kozyrakis. “HRL: Efficient and Flexible Reconfigurable
Logic for Near-Data Processing.” In: IEEE International Symposium on High Per-
formance Computer Architecture (HPCA). 2016, pp. 126–137.

[11] Subhankar Pal, Jonathan Beaumont, Dong-Hyeon Park, Aporva Amarnath, Siy-
ing Feng, Chaitali Chakrabarti, Hun-Seok Kim, David Blaauw, Trevor Mudge, and
Ronald Dreslinski. “OuterSPACE: An Outer Product Based Sparse Matrix Mul-
tiplication Accelerator.” In: IEEE International Symposium on High Performance
Computer Architecture (HPCA). 2018, pp. 724–736.

[12] Venkatraman Govindaraju, Chen-Han Ho, Tony Nowatzki, Jatin Chhugani, Na-
dathur Satish, Karthikeyan Sankaralingam, and Changkyu Kim. “DySER: Unifying
Functionality and Parallelism Specialization for Energy-Efficient Computing.” In:
IEEE Micro. Vol. 32. 5. 2012, pp. 38–51.

[13] Kizheppatt Vipin and Suhaib A. Fahmy. “FPGA Dynamic and Partial Reconfigura-
tion: A Survey of Architectures, Methods, and Applications.” In: ACM Computing
Surveys. Vol. 51. 4. 2018, pp. 1–39.

[14] Xilinx Inc. Vivado Design Suite User Guide: Partial Reconfiguration (UG909 v2018.1).
2018. URL: https://docs.xilinx.com/v/u/2018.1-English/ug909-vivado-
partial-reconfiguration.

[15] Subhankar Pal, Siying Feng, Dong-hyeon Park, Sung Kim, Aporva Amarnath, Chi-
Sheng Yang, Xin He, Jonathan Beaumont, Kyle May, Yan Xiong, Kuba Kaszyk,
John Magnus Morton, Jiawen Sun, Michael O’Boyle, Murray Cole, Chaitali Chakrabarti,
David Blaauw, Hun-Seok Kim, Trevor Mudge, and Ronald Dreslinski. “Trans-
muter: Bridging the Efficiency Gap Using Memory and Dataflow Reconfiguration.”
In: ACM International Conference on Parallel Architectures and Compilation Tech-
niques (PACT). 2020, pp. 175–190.

[16] Anurag Mukkara, Nathan Beckmann, and Daniel Sanchez. “Whirlpool: Improving
Dynamic Cache Management with Static Data Classification.” In: International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS). 2016, pp. 113–127.

[17] Rakesh Komuravelli, Matthew D. Sinclair, Johnathan Alsop, Muhammad Huzaifa,
Maria Kotsifakou, Prakalp Srivastava, Sarita V. Adve, and Vikram S. Adve. “Stash:
Have Your Scratchpad and Cache It Too.” In: ACM/IEEE International Symposium
on Computer Architecture (ISCA). 2015, pp. 707–719.

[18] Sudhir Satpathy, Reetuparna Das, Ronald Dreslinski, Trevor Mudge, Dennis Sylvester,
and David Blaauw. “High Radix Self-Arbitrating Switch Fabric With Multiple Ar-
bitration Schemes and Quality of Service.” In: ACM/EDAC/IEEE Design Automa-
tion Conference (DAC). 2012, pp. 406–411.

[19] Transmuter Software Demo (DARPA SDH). TransPy Documentation. 2019. URL:
https://transpy.readthedocs.io.

91

https://docs.xilinx.com/v/u/2018.1-English/ug909-vivado-partial-reconfiguration
https://docs.xilinx.com/v/u/2018.1-English/ug909-vivado-partial-reconfiguration
https://transpy.readthedocs.io

[20] Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers,
Pauli Virtanen, David Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg,
Nathaniel J. Smith, Robert Kern, Matti Picus, Stephan Hoyer, Marten H. van Kerk-
wijk, Matthew Brett, Allan Haldane, Jaime Fernández del Río, Mark Wiebe, Pearu
Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy, Warren Weckesser,
Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. “Array programming
with NumPy.” In: Nature. Vol. 585. 7825. Sept. 2020, pp. 357–362.

[21] Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy,
David Cournapeau, Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan
Bright, Stéfan J. van der Walt, Matthew Brett, Joshua Wilson, K. Jarrod Millman,
Nikolay Mayorov, Andrew R. J. Nelson, Eric Jones, Robert Kern, Eric Larson, C J
Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas, Denis Laxalde, Josef
Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris, Anne
M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy
1.0 Contributors. “SciPy 1.0: Fundamental Algorithms for Scientific Computing in
Python.” In: Nature Methods. Vol. 17. 2020, pp. 261–272.

[22] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. “PyTorch: An Imperative Style, High-Performance Deep Learning Li-
brary.” In: Advances in Neural Information Processing Systems (NeurIPS). 2019,
pp. 8024–8035.

[23] Aric Hagberg, Pieter Swart, and Daniel S. Chult. Exploring Network Structure,
Dynamics, and Function Using NetworkX. Tech. rep. Los Alamos National Lab
(LANL), Los Alamos, NM (United States), 2008.

[24] Wenzel Jakob, Jason Rhinelander, and Dean Moldovan. pybind11 — Seamless op-
erability between C++11 and Python. 2016. URL: https://github.com/pybind/
pybind11.

[25] John E. Stone, David Gohara, and Guochun Shi. “OpenCL: A Parallel Program-
ming Standard for Heterogeneous Computing Systems.” In: Computing in Science
Engineering. Vol. 12. 3. 2010, pp. 66–73.

[26] Michel Steuwer, Toomas Remmelg, and Christophe Dubach. “Lift: A Functional
Data-Parallel IR for High-Performance GPU Code Generation.” In: IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). 2017,
pp. 74–85.

[27] Phitchaya Mangpo Phothilimthana, Archibald Samuel Elliott, An Wang, Abhinav
Jangda, Bastian Hagedorn, Henrik Barthels, Samuel J. Kaufman, Vinod Grover,
Emina Torlak, and Rastislav Bodik. “Swizzle Inventor: Data Movement Synthe-
sis for GPU Kernels.” In: International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 2019, pp. 65–78.

92

https://github.com/pybind/pybind11
https://github.com/pybind/pybind11

[28] Jackson Woodruff, Jordi Armengol-Estapé, Sam Ainsworth, and Michael F. P. O’Boyle.
“Bind the Gap: Compiling Real Software to Hardware FFT Accelerators.” In: ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation (PLDI). 2022, pp. 687–702.

[29] Kazushige Goto and Robert A. van de Geijn. “Anatomy of High-Performance Ma-
trix Multiplication.” In: ACM Transactions on Mathematical Software (TOMS).
Vol. 34. 3. 2008, pp. 1–25.

[30] Clint R. Whaley, Antoine Petitet, and Jack J. Dongarra. “Automated empirical op-
timizations of software and the ATLAS project.” In: Parallel Computing. Vol. 27.
1-2. 2001, pp. 3–35.

[31] Yu-Hsin Chen, Tushar Krishna, Joel S Emer, and Vivienne Sze. “Eyeriss: An Energy-
Efficient Reconfigurable Accelerator for Deep Convolutional Neural Networks.” In:
IEEE Journal of Solid-State Circuits (JSSC). Vol. 52. 1. 2016, pp. 127–138.

[32] Benjamin C. Lee, Richard W. Vuduc, James W. Demmel, and Katherine A. Yelick.
“Performance Models for Evaluation and Automatic Tuning of Symmetric Sparse
Matrix-Vector Multiply.” In: International Conference on Parallel Processing (ICPP).
2004, pp. 169–176.

[33] Monica D. Lam, Edward E. Rothberg, and Michael E. Wolf. “The Cache Perfor-
mance and Optimizations of Blocked Algorithms.” In: International Conference on
Architectural Support for Programming Languages and Operating Systems (ASP-
LOS). 1991, pp. 63–74.

[34] Xin He, Subhankar Pal, Aporva Amarnath, Siying Feng, Dong-Hyeon Park, Austin
Rovinski, Haojie Ye, Yuhan Chen, Ronald Dreslinski, and Trevor Mudge. “Sparse-
TPU: Adapting Systolic Arrays for Sparse Matrices.” In: ACM/IEEE International
Conference for High Performance Computing, Networking, Storage, and Analysis
(SC). 2020, pp. 1–12.

[35] H.T. Kung, Bradley McDanel, and Sai Qian Zhang. “Packing Sparse Convolutional
Neural Networks for Efficient Systolic Array Implementations: Column Combining
Under Joint Optimization.” In: International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS). 2019, pp. 821–
834.

[36] Preston A. Jackson, Cy P. Chan, Jonathan E. Scalera, Charles M. Rader, and M.
Michael Vai. “A Systolic FFT Architecture for Real Time FPGA Systems.” In:
IEEE High Performance Extreme Computing Conference (HPEC). 2004.

[37] Earl E. Jr. Swartzlander. “Systolic FFT Processors: Past, Present and Future.” In:
IEEE International Conference on Application-specific Systems, Architectures and
Processors (ASAP). 2006, pp. 153–158.

[38] Mario Garrido, Jesús Grajal, MA Sanchez, and Oscar Gustafsson. “Pipelined Radix-
2k Feedforward FFT Architectures.” In: IEEE Transactions on VLSI Systems (TVLSI).
Vol. 21. 1. 2011, pp. 23–32.

93

[39] Nathan L. Binkert, Ronald G. Dreslinski, Lisa R. Hsu, Kevin T. Lim, Ali G. Saidi,
and Steven K. Reinhardt. “The M5 Simulator: Modeling Networked Systems.” In:
IEEE Micro. 4. 2006, pp. 52–60.

[40] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi,
Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sar-
dashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill,
and David A. Wood. “The Gem5 Simulator.” In: SIGARCH Computer Architecture
News. Vol. 39. 2. 2011, pp. 1–7.

[41] Korey Sewell, Ronald G. Dreslinski, Thomas Manville, Sudhir Satpathy, Nathaniel
Pinckney, Geoffrey Blake, Michael Cieslak, Reetuparna Das, Thomas F. Wenisch,
Dennis Sylvester, David Blaauw, and Trevor Mudge. “Swizzle-Switch Networks
for Many-Core Systems.” In: IEEE Journal on Emerging and Selected Topics in
Circuits and Systems (JETCAS). Vol. 2. 2. 2012, pp. 278–294.

[42] Supreet Jeloka, Reetuparna Das, Ronald G. Dreslinski, Trevor Mudge, and David
Blaauw. “Hi-Rise: A High-Radix Switch for 3D Integration With Single-Cycle
Arbitration.” In: ACM/IEEE International Symposium on Microarchitecture (MI-
CRO). 2014, pp. 471–483.

[43] Sudhir Satpathy, Korey Sewell, Thomas Manville, Yen-Po Chen, Ronald Dreslin-
ski, Dennis Sylvester, Trevor Mudge, and David Blaauw. “A 4.5 Tb/s 3.4 Tb/s/W
64×64 Switch Fabric with Self-Updating Least-Recently-Granted Priority and Quality-
Of-Service Arbitration in 45nm CMOS.” In: IEEE International Solid-State Cir-
cuits Conference (ISSCC). 2012, pp. 478–480.

[44] Norman P. Jouppi, Andrew B. Kahng, Naveen Muralimanohar, and Vaishnav Srini-
vas. “CACTI-IO: CACTI With Off-Chip Power-Area-Timing Models.” In: IEEE/ACM
International Conference On Computer Aided Design (ICCAD). 2012, pp. 294–
301.

[45] Dong-Hyeon Park, Subhankar Pal, Siying Feng, Paul Gao, Jielun Tan, Austin Rovin-
ski, Shaolin Xie, Chun Zhao, Aporva Amarnath, Timothy Wesley, Jonathan Beau-
mont, Kuan-Yu Chen, Chaitali Chakrabarti, Michael Bedford Taylor, Trevor Mudge,
David Blaauw, Hun-Seok Kim, and Ronald G. Dreslinski. “A 7.3 M Output Non-
Zeros/J, 11.7 M Output Non-Zeros/GB Reconfigurable Sparse Matrix-Matrix Mul-
tiplication Accelerator.” In: IEEE Journal of Solid-State Circuits (JSSC). Vol. 55.
4. 2020, pp. 933–944.

[46] Mike O’Connor, Niladrish Chatterjee, Donghyuk Lee, John Wilson, Aditya Agrawal,
Stephen W Keckler, and William J Dally. “Fine-Grained DRAM: Energy-Efficient
DRAM for Extreme Bandwidth Systems.” In: ACM/IEEE International Symposium
on Microarchitecture (MICRO). 2017, pp. 41–54.

[47] Ken Mai, Tim Paaske, Nuwan Jayasena, Ron Ho, William J. Dally, and Mark
Horowitz. “Smart Memories: A Modular Reconfigurable Architecture.” In: ACM/IEEE
International Symposium on Computer Architecture (ISCA). 2000, pp. 161–171.

94

[48] Brucek Khailany, William J Dally, Ujval J Kapasi, Peter Mattson, Jinyung Namkoong,
John D Owens, Brian Towles, Andrew Chang, and Scott Rixner. “Imagine: Media
Processing with Streams.” In: IEEE Micro. Vol. 21. 2. 2001, pp. 35–46.

[49] Lance Hammond, Benedict A Hubbert, Michael Siu, Manohar K Prabhu, Michael
Chen, and Kunle Olukolun. “The Stanford Hydra CMP.” In: IEEE Micro. Vol. 20.
2. 2000, pp. 71–84.

[50] Engin Ipek, Meyrem Kirman, Nevin Kirman, and Jose F. Martinez. “Core Fusion:
Accommodating Software Diversity in Chip Multiprocessors.” In: ACM/IEEE In-
ternational Symposium on Computer Architecture (ISCA). 2007, pp. 186–197.

[51] Khubaib, M. Aater Suleman, Milad Hashemi, Chris Wilkerson, and Yale N. Patt.
“MorphCore: An Energy-Efficient Microarchitecture for High Performance ILP
and High Throughput TLP.” In: ACM/IEEE International Symposium on Microar-
chitecture (MICRO). 2012, pp. 305–316.

[52] Andrew Lukefahr, Shruti Padmanabha, Reetuparna Das, Faissal M. Sleiman, Ronald
G. Dreslinski, Thomas F. Wenisch, and Scott Mahlke. “Exploring Fine-Grained
Heterogeneity with Composite Cores.” In: IEEE Transactions on Computers (TOC).
Vol. 65. 2. 2016, pp. 535–547.

[53] Mark Wijtvliet, Luc Waeijen, and Henk Corporaal. “Coarse Grained Reconfig-
urable Architectures in the Past 25 Years: Overview and Classification.” In: IEEE
International Conference on Embedded Computer Systems: Architectures, Model-
ing and Simulation (SAMOS). 2016, pp. 235–244.

[54] Seth Copen Goldstein, Herman Schmit, Mihai Budiu, Srihari Cadambi, Matthew
Moe, and R. Reed Taylor. “PipeRench: A Reconfigurable Architecture and Com-
piler.” In: IEEE Computer. Vol. 33. 4. 2000, pp. 70–77.

[55] Silviu Ciricescu, Ray Essick, Brian Lucas, Phil May, Kent Moat, Jim Norris, Michael
Schuette, and Ali Saidi. “The Reconfigurable Streaming Vector Processor (RSVP).”
In: ACM/IEEE International Symposium on Microarchitecture (MICRO). 2003,
pp. 141–150.

[56] K. Sankaralingam, R. Nagarajan, Haiming Liu, Changkyu Kim, Jaehyuk Huh, D.
Burger, S.W. Keckler, and C.R. Moore. “Exploiting ILP, TLP, and DLP with the
Polymorphous TRIPS Architecture.” In: ACM/IEEE International Symposium on
Computer Architecture (ISCA). 2003, pp. 422–433.

[57] Karthikeyan Sankaralingam, Ramadass Nagarajan, Robert McDonald, Rajagopalan
Desikan, Saurabh Drolia, M.S. Govindan, Paul Gratz, Divya Gulati, Heather Han-
son, Changkyu Kim, Haiming Liu, Nitya Ranganathan, Simha Sethumadhavan,
Sadia Sharif, Premkishore Shivakumar, Stephen W. Keckler, and Doug Burger.
“Distributed Microarchitectural Protocols in the TRIPS Prototype Processor.” In:
ACM/IEEE International Symposium on Microarchitecture (MICRO). 2006, pp. 480–
491.

95

[58] Steven Swanson, Andrew Schwerin, Martha Mercaldi, Andrew Petersen, Andrew
Putnam, Ken Michelson, Mark Oskin, and Susan J. Eggers. “The WaveScalar Ar-
chitecture.” In: ACM Transactions on Mathematical Software (TOMS). Vol. 25. 2.
2007, pp. 1–54.

[59] Raghu Prabhakar, Yaqi Zhang, David Koeplinger, Matt Feldman, Tian Zhao, Ste-
fan Hadjis, Ardavan Pedram, Christos Kozyrakis, and Kunle Olukotun. “Plasticine:
A Reconfigurable Architecture for Parallel Patterns.” In: ACM/IEEE International
Symposium on Computer Architecture (ISCA). 2017, pp. 389–402.

[60] David Koeplinger, Matthew Feldman, Raghu Prabhakar, Yaqi Zhang, Stefan Had-
jis, Ruben Fiszel, Tian Zhao, Luigi Nardi, Ardavan Pedram, Christos Kozyrakis,
and Kunle Olukotun. “Spatial: A Language and Compiler for Application Accel-
erators.” In: ACM SIGPLAN International Conference on Programming Language
Design and Implementation (PLDI). 2018, pp. 296–311.

[61] Tony Nowatzki, Vinay Gangadhar, Newsha Ardalani, and Karthikeyan Sankar-
alingam. “Stream-Dataflow Acceleration.” In: ACM/IEEE International Sympo-
sium on Computer Architecture (ISCA). 2017, pp. 416–429.

[62] Vidushi Dadu, Jian Weng, Sihao Liu, and Tony Nowatzki. “Towards General Pur-
pose Acceleration by Exploiting Common Data-Dependence Forms.” In: ACM/IEEE
International Symposium on Microarchitecture (MICRO). 2019, pp. 924–939.

[63] Song Han, Huizi Mao, and William J. Dally. “Deep Compression: Compressing
Deep Neural Networks with Pruning, Trained Quantization and Huffman Coding.”
In: International Conference on Learning Representations (ICLR). 2015.

[64] Yujun Lin, Song Han, Huizi Mao, Yu Wang, and William J. Dally. “Deep Gradient
Compression: Reducing the Communication Bandwidth For Distributed Training.”
In: International Conference on Learning Representations (ICLR). 2017.

[65] Lawrence Page, Sergey Brin, Rajeev Motwani, and Terry Winograd. The PageRank
Citation Ranking: Bringing Order to the Web. Tech. rep. Stanford InfoLab, 1999.

[66] Jaewon Yang and Jure Leskovec. “Defining and Evaluating Network Communities
Based on Ground-Truth.” In: Knowledge and Information Systems. Springer, 2015,
pp. 181–213.

[67] Ben Langmead and Steven L Salzberg. “Fast Gapped-Read Alignment with Bowtie
2.” In: Nature Methods. Vol. 9. 4. 2012, pp. 357–359.

[68] Heng Li and Nils Homer. “A Survey of Sequence Alignment Algorithms for Next-
Generation Sequencing.” In: Briefings in Bioinformatics. Vol. 11. 5. 2010, pp. 473–
483.

[69] Ping Xiang, Yi Yang, and Huiyang Zhou. “Warp-Level Divergence in GPUs: Char-
acterization, Impact, and Mitigation.” In: IEEE International Symposium on High
Performance Computer Architecture (HPCA). 2014, pp. 284–295.

[70] Dirk Koch. Partial Reconfiguration on FPGAs: Architectures, Tools and Applica-
tions. Springer Science & Business Media, 2012.

96

[71] Sung Kim, Morteza Fayazi, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan, Sub-
hankar Pal, Tutu Ajayi, Yan Xiong, Trevor Mudge, Chaitali Chakrabarti, David
Blaauw, Ronald Dreslinski, and Hun-Seok Kim. “Versa: A Dataflow-Centric Multi-
processor with 36 Systolic ARM Cortex-M4F Cores and a Reconfigurable Crossbar-
Memory Hierarchy in 28nm.” In: IEEE Symposium on VLSI Circuits (VLSI). 2021,
pp. 1–2.

[72] Jim Kahle. “The Cell Processor Architecture.” In: ACM/IEEE International Sym-
posium on Microarchitecture (MICRO). 2005, pp. 3–3.

[73] Inderpreet Singh, Arrvindh Shriraman, Wilson W. L. Fung, Mike O’Connor, and
Tor M. Aamodt. “Cache Coherence for GPU Architectures.” In: IEEE International
Symposium on High Performance Computer Architecture (HPCA). 2013, pp. 578–
590.

[74] Norman P. Jouppi. “Improving Direct-Mapped Cache Performance by the Addition
of a Small Fully-Associative Cache and Prefetch Buffers.” In: ACM/IEEE Interna-
tional Symposium on Computer Architecture (ISCA). 1990, pp. 364–373.

[75] Norman P. Jouppi, Cliff Young, Nishant Patil, David Patterson, Gaurav Agrawal,
Raminder Bajwa, Sarah Bates, Suresh Bhatia, Nan Boden, Al Borchers, Rick Boyle,
Pierre-luc Cantin, Clifford Chao, Chris Clark, Jeremy Coriell, Mike Daley, Matt
Dau, Jeffrey Dean, Ben Gelb, Tara Vazir Ghaemmaghami, Rajendra Gottipati, William
Gulland, Robert Hagmann, C. Richard Ho, Doug Hogberg, John Hu, Robert Hundt,
Dan Hurt, Julian Ibarz, Aaron Jaffey, Alek Jaworski, Alexander Kaplan, Harshit
Khaitan, Daniel Killebrew, Andy Koch, Naveen Kumar, Steve Lacy, James Laudon,
James Law, Diemthu Le, Chris Leary, Zhuyuan Liu, Kyle Lucke, Alan Lundin,
Gordon MacKean, Adriana Maggiore, Maire Mahony, Kieran Miller, Rahul Na-
garajan, Ravi Narayanaswami, Ray Ni, Kathy Nix, Thomas Norrie, Mark Omer-
nick, Narayana Penukonda, Andy Phelps, Jonathan Ross, Matt Ross, Amir Salek,
Emad Samadiani, Chris Severn, Gregory Sizikov, Matthew Snelham, Jed Souter,
Dan Steinberg, Andy Swing, Mercedes Tan, Gregory Thorson, Bo Tian, Horia
Toma, Erick Tuttle, Vijay Vasudevan, Richard Walter, Walter Wang, Eric Wilcox,
and Doe Hyun Yoon. “In-Datacenter Performance Analysis of a Tensor Processing
Unit.” In: ACM/IEEE International Symposium on Computer Architecture (ISCA).
2017, pp. 1–12.

[76] Yu-Hsin Chen, Tien-Ju Yang, Joel Emer, and Vivienne Sze. “Eyeriss v2: A Flexible
Accelerator for Emerging Deep Neural Networks on Mobile Devices.” In: IEEE
Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS). Vol. 9.
2. 2019, pp. 292–308.

[77] Hasan Genc, Seah Kim, Alon Amid, Ameer Haj-Ali, Vighnesh Iyer, Pranav Prakash,
Jerry Zhao, Daniel Grubb, Harrison Liew, Howard Mao, Albert Ou, Colin Schmidt,
Samuel Steffl, John Wright, Ion Stoica, Jonathan Ragan-Kelley, Krste Asanovic,
Borivoje Nikolic, and Yakun Sophia Shao. “Gemmini: Enabling Systematic Deep-
Learning Architecture Evaluation via Full-Stack Integration.” In: ACM/EDAC/IEEE
Design Automation Conference (DAC). 2021.

97

[78] Mark Roth, Micah J. Best, Craig Mustard, and Alexandra Fedorova. “Deconstruct-
ing the Overhead in Parallel Applications.” In: IEEE International Symposium on
Workload Characterization (IISWC). 2012, pp. 59–68.

[79] Richard M. Yoo, Christopher J. Hughes, Konrad Lai, and Ravi Rajwar. “Perfor-
mance Evaluation of Intel® Transactional Synchronization Extensions for High-
Performance Computing.” In: ACM/IEEE International Conference for High Per-
formance Computing, Networking, Storage, and Analysis (SC). 2013, pp. 1–11.

[80] Shucai Xiao and Wu chun Feng. “Inter-block GPU Communication Via Fast Bar-
rier Synchronization.” In: IEEE International Parallel and Distributed Processing
Symposium (IPDPS). 2010, pp. 1–12.

[81] Hyokun Yun, Hsiang-Fu Yu, Cho-Jui Hsieh, SVN Vishwanathan, and Inderjit Dhillon.
“NOMAD: Non-locking, Stochastic Multi-machine Algorithm for Asynchronous
and Decentralized Matrix Completion.” In: arXiv. 2013.

[82] Xiangru Lian, Yijun Huang, Yuncheng Li, and Ji Liu. “Asynchronous Parallel
Stochastic Gradient for Nonconvex Optimization.” In: Advances in Neural Infor-
mation Processing Systems (NeurIPS). 2015, pp. 2737–2745.

[83] Michael L. Scott. “Shared-memory Synchronization.” In: Synthesis Lectures on
Computer Architecture. Vol. 8. 2. Morgan & Claypool Publishers, 2013.

[84] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-yeon Wei, and David
Brooks. “MachSuite: Benchmarks for Accelerator Design and Customized Archi-
tectures.” In: IEEE International Symposium on Workload Characterization (IISWC).
2014, pp. 110–119.

[85] Arm Cortex-M4 Processor Technical Reference Manual. 100166_0001_04_en. Rev.
r0p1. Arm Ltd. 2020.

[86] Michael Bedford Taylor, Walter Lee, Jason Miller, David Wentzlaff, Ian Bratt, Ben
Greenwald, Henry Hoffmann, Paul Johnson, Jason Kim, James Psota, Arvind Saraf,
Nathan Shnidman, Volker Strumpen, Matt Frank, Saman Amarasinghe, and Anant
Agarwal. “Evaluation of the Raw Microprocessor: An Exposed-Wire-Delay Archi-
tecture for ILP and Streams.” In: ACM SIGARCH Computer Architecture News.
Vol. 32. 2. 2004, p. 2.

[87] Florian Zaruba, Fabian Schuiki, and Luca Benini. “Manticore: A 4096-Core RISC-
V Chiplet Architecture for Ultra-Efficient Floating-Point Computing.” In: IEEE
Micro. Vol. 41. 2. 2020, pp. 36–42.

[88] Ditzel Dave, Espasa Roger, Aymerich Nivardl, Baum Allen, Berg Tom, Burr Jim,
Hao Eric, Iyer Jayesh, Izquierdo Miquel, Jayaratnam Shankar, Jones Darren, Klingner
Chris, Kim Jin, Lee Stephen, Lupon Marc, Magklis Grigorios, Maric Bojan, Nath
Rajib, Neilly Mike, Northcutt Duane, Orner Bill, Renau Jose, Reves Gerard, Reves
Xavier, Riordan Tom, Sanchez Pedro, Samudrala Sri, Sole Guillem, Tang Ray-
mond, Thorn Tommy, Torres Francisco, Tortella Sebastia, and Yau Daniel. “Accel-
erating ML Recommendation with over a Thousand RISC-V/Tensor Processors on
Esperanto’s ET-SoC-1 Chip.” In: IEEE Hot Chips Symposium (HCS). 2021.

98

[89] Paul N. Whatmough, Sae Kyu Lee, Marco Donato, Hsea-Ching Hsueh, Sam Likun
Xi, Udit Gupta, Lillian Pentecost, Glenn G. Ko, David M. Brooks, and Gu-Yeon
Wei. “A 16nm 25mm2 SoC With a 54.5x Flexibility-Efficiency Range From Dual-
Core Arm Cortex-A53 to eFPGA and Cache-Coherent Accelerators.” In: IEEE
Symposium on VLSI Circuits (VLSI). 2019, pp. C34–C35.

[90] Pasquale Davide Schiavone, Davide Rossi, Alfio Di Mauro, Frank K Gürkaynak,
Timothy Saxe, Mao Wang, Ket Chong Yap, and Luca Benini. “Arnold: An eFPGA-
Augmented RISC-V SoC for Flexible and Low-Power IoT End Nodes.” In: IEEE
Transactions on VLSI Systems (TVLSI). Vol. 29. 4. 2021, pp. 677–690.

[91] Mark A. Anders, Himanshu Kaul, Sanu K. Mathew, Vikram B. Suresh, Sudhir K.
Satpathy, Amit Agarwal, Steven K. Hsu, and Ram Kumar Krishnamurthy. “2.9TOP-
S/W Reconfigurable Dense/Sparse Matrix-Multiply Accelerator With Unified INT8
/ INTI6 / FP16 Datapath in 14NM Tri-Gate CMOS.” In: IEEE Symposium on VLSI
Circuits (VLSI). 2018, pp. 39–40.

[92] Sander Smets, Toon Goedemé, Anurag Mittal, and Marian Verhelst. “A 978GOP-
S/W Flexible Streaming Processor for Real-Time Image Processing Applications
in 22nm FDSOI.” In: IEEE International Solid-State Circuits Conference (ISSCC).
2019, pp. 44–46.

[93] Anthony Mark Jones and Mike Butts. “TeraOPS Hardware: A New Massively-
Parallel MIMD Computing Fabric IC.” In: IEEE Hot Chips Symposium (HCS).
2006.

[94] Brent Bohnenstiehl, Aaron Stillmaker, Jon J. Pimentel, Timothy Andreas, Bin Liu,
Anh T. Tran, Emmanuel Adeagbo, and Bevan M. Baas. “KiloCore: A 32-nm 1000-
Processor Computational Array.” In: IEEE Journal of Solid-State Circuits (JSSC).
Vol. 52. 4. 2017, pp. 891–902.

[95] Joao P. Cerqueira, Thomas J. Repetti, Yu Pu, Shivam Priyadarshi, Martha A. Kim,
and Mingoo Seok. “Catena: A Near-Threshold, Sub-0.4-mW, 16-Core Programmable
Spatial Array Accelerator for the Ultralow-Power Mobile and Embedded Inter-
net of Things.” In: IEEE Journal of Solid-State Circuits (JSSC). Vol. 55. 8. 2020,
pp. 2270–2284.

[96] Fahimeh Yazdanpanah, Carlos Alvarez-Martinez, Daniel Jimenez-Gonzalez, and
Yoav Etsion. “Hybrid Dataflow/von-Neumann Architectures.” In: IEEE Transac-
tions on Parallel and Distributed Systems (TPDS). Vol. 25. 6. 2014, pp. 1489–
1509.

[97] Kurtis T. Johnson, Ali R Hurson, and Behrooz Shirazi. “General-Purpose Systolic
Arrays.” In: IEEE Computer. Vol. 26. 11. 1993, pp. 20–31.

[98] Keeley Criswell and Tosiron Adegbija. “A Survey of Phase Classification Tech-
niques for Characterizing Variable Application Behavior.” In: IEEE Transactions
on Parallel and Distributed Systems (TPDS). Vol. 31. 1. 2019, pp. 224–236.

99

[99] Chad T. Effler, Brandon Kammerdiener, Michael R. Jantz, Saikat Sengupta, Prasad
A. Kulkarni, Kshitij A. Doshi, and Terry Jones. “Evaluating the Effectiveness of
Program Data Features for Guiding Memory Management.” In: ACM International
Symposium on Memory Systems (MEMSYS). 2019, pp. 383–395.

[100] Martin Maas, David G. Andersen, Michael Isard, Mohammad Mahdi Javanmard,
Kathryn S. McKinley, and Colin Raffel. “Learning-based Memory Allocation for
C++ Server Workloads.” In: International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS). 2020, pp. 541–556.

[101] Ziqiang Huang, José A. Joao, Alejandro Rico, Andrew D. Hilton, and Benjamin
C. Lee. “DynaSprint: Microarchitectural Sprints with Dynamic Utility and Ther-
mal Management.” In: ACM/IEEE International Symposium on Microarchitecture
(MICRO). 2019, pp. 426–439.

[102] Christophe Dubach, Timothy M. Jones, and Edwin V. Bonilla. “Dynamic Microar-
chitectural Adaptation Using Machine Learning.” In: ACM Transactions on Archi-
tecture and Code Optimization (TACO). Vol. 10. 4. 2013.

[103] Subhankar Pal, Aporva Amarnath, Siying Feng, Michael O’Boyle, Ronald Dreslin-
ski, and Christophe Dubach. “SparseAdapt: Runtime Control for Sparse Linear Al-
gebra on a Reconfigurable Accelerator.” In: ACM/IEEE International Symposium
on Microarchitecture (MICRO). 2021, pp. 1005–1021.

[104] Siying Feng, Jiawen Sun, Subhankar Pal, Xin He, Kuba Kaszyk, Dong-hyeon Park,
Magnus Morton, Trevor Mudge, Murray Cole, Michael O’Boyle, Chaitali Chakrabarti,
and Ronald Dreslinski. “CoSPARSE: A Software and Hardware Reconfigurable
SpMV Framework for Graph Analytics.” In: ACM/EDAC/IEEE Design Automa-
tion Conference (DAC). 2021.

[105] Thierry Moreau, Tianqi Chen, Luis Vega, Jared Roesch, Eddie Yan, Lianmin Zheng,
Josh Fromm, Ziheng Jiang, Luis Ceze, Carlos Guestrin, and Arvind Krishnamurthy.
“A Hardware–Software Blueprint for Flexible Deep Learning Specialization.” In:
IEEE Micro. Vol. 39. 5. 2019, pp. 8–16.

[106] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. “MLIR: A Compiler Infrastructure for the End of Moore’s Law.” In: arXiv.
2020.

[107] Chris Lattner, Mehdi Amini, Uday Bondhugula, Albert Cohen, Andy Davis, Jacques
Pienaar, River Riddle, Tatiana Shpeisman, Nicolas Vasilache, and Oleksandr Zi-
nenko. “MLIR: Scaling Compiler Infrastructure for Domain Specific Computa-
tion.” In: IEEE/ACM International Symposium on Code Generation and Optimiza-
tion (CGO). 2021, pp. 2–14.

[108] Sung Kim, Morteza Fayazi, Alhad Daftardar, Kuan-Yu Chen, Jielun Tan, Sub-
hankar Pal, Tutu Ajayi, Yan Xiong, Trevor Mudge, Chaitali Chakrabarti, David
Blaauw, Ronald Dreslinski, and Hun-Seok Kim. “Versa: A 36-Core Systolic Mul-
tiprocessor With Dynamically Reconfigurable Interconnect and Memory.” In: IEEE
Journal of Solid-State Circuits (JSSC). 2022, pp. 1–1.

100

[109] William S. Moses, Lorenzo Chelini, Ruizhe Zhao, and Oleksandr Zinenko. “Polygeist:
Raising C to Polyhedral MLIR.” In: ACM International Conference on Parallel Ar-
chitectures and Compilation Techniques (PACT). 2021.

[110] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. “A Practi-
cal Automatic Polyhedral Parallelizer and Locality Optimizer.” In: ACM SIGPLAN
International Conference on Programming Language Design and Implementation
(PLDI). Association for Computing Machinery, 2008, pp. 101–113.

[111] Louis-Noel Pouchet and Tomofumi Yuki. PolyBench/C 4.2.1. URL: https : / /
polybench.sourceforge.net.

[112] Travis Downs. A Concurrency Cost Hierarchy. 2020.

[113] Cédric Bastoul. “Contributions to High-Level Program Optimization.” PhD thesis.
Habilitation Thesis. Paris-Sud University, France, 2012.

[114] Muthu Manikandan Baskaran, Uday Bondhugula, Sriram Krishnamoorthy, J. Ra-
manujam, Atanas Rountev, and P. Sadayappan. “A Compiler Framework for Op-
timization of Affine Loop Nests for GPGPUs.” In: ACM International Conference
on Supercomputing (ICS). 2008, 225–234.

[115] Sven Verdoolaege, Juan Carlos Juega, Albert Cohen, José Ignacio Gómez, Chris-
tian Tenllado, and Francky Catthoor. “Polyhedral Parallel Code Generation for
CUDA.” In: ACM Transactions on Architecture and Code Optimization (TACO).
Vol. 9. 4. 2013, pp. 1–23.

[116] H. T. Kung. “Algorithms for VLSI Processor Arrays.” In: Introduction to VLSI
Systems (1980), pp. 271–292.

[117] Patrice Quinton. “Automatic Synthesis of Systolic Arrays from Uniform Recurrent
Equations.” In: vol. 12. 3. 1984, pp. 208–214.

[118] Pei Zong Lee and Zvi M. Kedem. “Mapping Nested Loop Algorithms into Multi-
dimensional Systolic Arrays.” In: vol. 1. 1. 1990, pp. 64–76.

[119] Jason Cong and Jie Wang. “PolySA: Polyhedral-Based Systolic Array Auto-Compilation.”
In: IEEE/ACM International Conference On Computer Aided Design (ICCAD).
2018, pp. 1–8.

[120] Nitish Srivastava, Hongbo Rong, Prithayan Barua, Guanyu Feng, Huanqi Cao,
Zhiru Zhang, David Albonesi, Vivek Sarkar, Wenguang Chen, Paul Petersen, Geoff
Lowney, Adam Herr, Christopher Hughes, Timothy Mattson, and Pradeep Dubey.
“T2S-Tensor: Productively Generating High-Performance Spatial Hardware for Dense
Tensor Computations.” In: IEEE International Symposium on Field-Programmable
Custom Computing Machines (FCCM). 2019, pp. 181–189.

[121] Yi-Hsiang Lai, Hongbo Rong, Size Zheng, Weihao Zhang, Xiuping Cui, Yun-
shan Jia, Jie Wang, Brendan Sullivan, Zhiru Zhang, Yun Liang, Youhui Zhang, Ja-
son Cong, Nithin George, Jose Alvarez, Christopher Hughes, and Pradeep Dubey.
“SuSy: A Programming Model for Productive Construction of High-Performance
Systolic Arrays on FPGAs.” In: IEEE/ACM International Conference On Computer
Aided Design (ICCAD). 2020, pp. 1–9.

101

https://polybench.sourceforge.net
https://polybench.sourceforge.net

[122] Jie Wang, Licheng Guo, and Jason Cong. “AutoSA: A Polyhedral Compiler for
High-Performance Systolic Arrays on FPGA.” In: ACM/SIGDA International Sym-
posium on Field-Programmable Gate Arrays (FPGA). 2021, pp. 93–104.

[123] Ruizhe Zhao and Jianyi Cheng. “Phism: Polyhedral High-Level Synthesis in MLIR.”
In: Workshop on Languages, Tools, and Techniques for Accelerator Design (LATTE).
2021. URL: https://arxiv.org/abs/2103.15103.

[124] Ravi Teja Mullapudi, Vinay Vasista, and Uday Bondhugula. “PolyMage: Auto-
matic Optimization for Image Processing Pipelines.” In: International Conference
on Architectural Support for Programming Languages and Operating Systems (AS-
PLOS). 2015, pp. 429–443.

[125] Riyadh Baghdadi, Ulysse Beaugnon, Albert Cohen, Tobias Grosser, Michael Kruse,
Chandan Reddy, Sven Verdoolaege, Adam Betts, Alastair F. Donaldson, Jeroen
Ketema, Javed Absar, Sven Van Haastregt, Alexey Kravets, Anton Lokhmotov,
Robert David, and Elnar Hajiyev. “Pencil: A Platform-Neutral Compute Interme-
diate Language for Accelerator Programming.” In: ACM International Conference
on Parallel Architectures and Compilation Techniques (PACT). 2015.

[126] Nicolas Vasilache, Oleksandr Zinenko, Theodoros Theodoridis, Priya Goyal, Zachary
DeVito, William S. Moses, Sven Verdoolaege, Andrew Adams, and Albert Co-
hen. “Tensor Comprehensions: Framework-Agnostic High-Performance Machine
Learning Abstractions.” In: arXiv. 2018.

[127] Tim Zerrell and Jeremy Bruestle. “Stripe: Tensor Compilation via the Nested Poly-
hedral Model.” In: arXiv. 2019.

[128] Sven Verdoolaege, Manjunath Kudlur, Rob Schreiber, and Harinath Kamepalli.
“Generating SIMD Instructions for Cerebras CS-1 using Polyhedral Compilation
Techniques.” In: International Workshop on Polyhedral Compilation Techniques
(IMPACT). 2020.

[129] Uday Bondhugula. “High Performance Code Generation in MLIR: An Early Case
Study with GEMM.” In: arXiv. 2020.

[130] Jie Zhao, Bojie Li, Wang Nie, Zhen Geng, Renwei Zhang, Xiong Gao, Bin Cheng,
Chen Wu, Yun Cheng, Zheng Li, Peng Di, Kun Zhang, and Xuefeng Jin. “AKG:
Automatic Kernel Generation for Neural Processing Units Using Polyhedral Trans-
formations.” In: ACM SIGPLAN International Conference on Programming Lan-
guage Design and Implementation (PLDI). 2021, pp. 1233–1248.

[131] Patricia Suriana, Andrew Adams, and Shoaib Kamil. “Parallel Associative Reduc-
tions in Halide.” In: IEEE/ACM International Symposium on Code Generation and
Optimization (CGO). 2017, pp. 281–291.

[132] Peng Chen, Mohamed Wahib, Shinichiro Takizawa, Ryousei Takano, and Satoshi
Matsuoka. “A Versatile Software Systolic Execution Model for GPU Memory-
Bound Kernels.” In: ACM/IEEE International Conference for High Performance
Computing, Networking, Storage, and Analysis (SC). 2019.

102

https://arxiv.org/abs/2103.15103

[133] Hongbo Rong, Xiaochen Hao, Yun Liang, Lidong Xu, Hong H Jiang, and Pradeep
Dubey. “Systolic Computing on GPUs for Productive Performance.” In: arXiv.
2020.

[134] Daniel Thuerck, Nicolas Weber, and Roberto Bifulco. “Flynn’s Reconciliation: Au-
tomating the Register Cache Idiom for Cross-accelerator Programming.” In: ACM
Transactions on Architecture and Code Optimization (TACO). Vol. 18. 3. 2021,
pp. 1–26.

[135] Eli Ben-Sasson, Matan Hamilis, Mark Silberstein, and Eran Tromer. “Fast Mul-
tiplication in Binary Fields on GPUs via Register Cache.” In: ACM International
Conference on Supercomputing (ICS). 2016, pp. 1–12.

103

	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	 I. Introduction
	1.1 Thesis Overview

	 II. Recofigurable Hardware-Software
	2.1 Introduction
	2.2 Motivation
	2.3 Hardware Design
	2.3.1 Reconfigurable Modes
	2.3.2 Reconfigurable Data Cache
	2.3.3 Reconfigurable Crossbar
	2.3.4 Processor Cores
	2.3.5 Host-Device Relationship

	2.4 Software Interfaces
	2.5 Test Kernels
	2.6 FFT Kernel Generation
	2.6.1 Model-Specific Mappings
	2.6.2 Limitations of Explicit Programming
	2.6.3 MIMD Kernel Generation

	2.7 Modeling and Experimental Methodology
	2.8 Results
	2.9 Related Work
	2.10 Conclusion

	 III. A Reconfigurable Systolic Multiprocessor
	3.1 Introduction
	3.1.1 High-Level Objectives

	3.2 Hardware Overview
	3.2.1 Compute Tiles
	3.2.2 Memory Hierarchy and Tile-External Support

	3.3 Algorithm-Driven Reconfigurability
	3.3.1 Reconfigurable Crossbar
	3.3.2 Reconfigurable On-Chip Memory
	3.3.3 Systolic Execution
	3.3.4 Hierarchical Thread Primitives
	3.3.4.1 Reconfiguration Control

	3.4 Chip Implementation
	3.5 Baselines and Test Methodology
	3.6 Measurements and Analysis
	3.6.1 Nominal Energy-Efficiency and Performance
	3.6.2 Voltage-Scaled Characteristics

	3.7 Related Work
	3.8 Conclusion

	 IV. Compiler Support for Versatile Hardware
	4.1 Introduction
	4.2 Motivation
	4.3 Polca: Polyhedral Compilation for Versatile Hardware
	4.4 Machine Model and IR
	4.4.1 Accelerator Architecture
	4.4.2 Polca Dialect

	4.5 Exploiting Versatile Parallelism
	4.5.1 Frontend
	4.5.2 Polyhedral Loop Restructuring.
	4.5.3 SPMD Parallelism.
	4.5.4 Systolic Reduction Parallelism.
	4.5.5 MIMD Conversion.
	4.5.6 Final Lowering

	4.6 Evaluation
	4.7 Related Work
	4.8 Conclusion

	 V. Conclusion
	Bibliography

