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ABSTRACT

Placebo-controlled randomized clinical trials (RCT) have been regarded as the gold standard for
guiding the registry of new drugs. However, such trials in rare diseases are invariably small in
sample size due to the small number of patients with disease and to enroll in studies with a placebo
arm. A small n, sequential, multiple assignment, randomized trial (snSMART) is a design that
include placebo and dose levels of a drug to facilitate efficient treatment effect estimates.

In the first project, we propose a new snSMART design that investigates the response rates of
a drug tested at a low and high dose compared with placebo. Patients are randomized to an initial
treatment (stage 1). In stage 2, patients are rerandomized, depending on their initial treatment
and their response to that treatment in stage 1, to either the same or a different dose of treatment,
with no placebo option. We present a Bayesian approach where information is borrowed between
stage 1 and stage 2 to determine the efficacy of the active treatment. We compare our approach
to standard methods using only stage 1 data and a log-linear Poisson model that uses data from
both stages where parameters are estimated using generalized estimating equations. We observe
that our method has smaller root-mean-square-error (rMSE) and 95% credible interval widths than
standard methods in the tested scenarios.

In the second project, we extend the previous snSMART design with a binary endpoint to a
design that considers a continuous outcome. Data from both stages are used to determine the
marginal efficacy of the dose levels of the active treatment via a Bayesian model. We also compare
the approach with the standard model based solely upon the data from stage 1 and evaluate different
prior distributions in model fitting. We demonstrate that the joint stage Bayesian estimators have
smaller rMSE and narrower credible intervals.

In the third project, we aim to determine the sample size needed to achieve a prespecified signif-
icance level and desired statistical power for an snSMART. We focus on the design and Bayesian
analytical approach proposed in the second project to detect the difference in the mean outcome
between low dose and placebo. We adjust a one stage sample size calculation to account for the
extra information extracted from the two-stage design. We also provide an efficient approach to
calculate sample size in one step. Through simulations, we demonstrate that the required sample
sizes calculated using the two SSD methods both provide the desired power. Both approaches are
available in an RShiny App to disseminate the methods to rare disease investigations.
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CHAPTER 1

Introduction

A rare disease is defined as a disease that affects fewer than 200,000 people in the United States
(107th Congress, 2002). Taken together, there are more than 7,000 rare diseases that affect over 30
million people in the United States (NIH, 2023).

Unfortunately, many of these diseases have been neglected for a long time due to limited re-
sources and attention (Schieppati et al., 2008). The Orphan Drug Act was passed in 1983 in an
effort to promote the development of treatment of rare diseases which raised awareness of this
public-health issue (Herder, 2017). Despite the efforts in the past few decades, more work is
needed. It is recorded that only 552 (7%) of rare diseases have an approved drug on the market
having an orphan designation, leaving 93% of rare diseases without an approved treatment, causing
a considerable unmet need for many patients (NORD, 2021).

The limited number of individuals affected by these diseases presents a challenge for the de-
velopment of treatments. Approval of any drug is based on the same requirements for evidence
of effectiveness, regardless of the size of the diseased population. While randomized clinical tri-
als (RCTs) are utilized to demonstrate the strongest scientific evidence of an effective treatment,
these trials are often difficult or impossible in rare disease settings because they require a large
number of subjects. As a result, RCTs involving rare diseases often have reduced power when
compared to studies of diseases that are not rare (Gupta et al., 2011). To combat these issues,
Tamura et al. (2016) previously proposed a small n, sequential, multiple assignment, randomized
trial (snSMART) design to investigate three active treatments for a rare disease. Here, we propose
variations of the snSMART design that focuses on a single drug and placebo.

An snSMART is a variation of a SMART design (Lavori and Dawson, 2000; Murphy, 2005)
that is specifically intended for small samples. In a SMART, patients are randomized to at least
two sequential interventions in such a way that the second intervention assignment depends on
the patient’s response to the first intervention. The goal of a classic SMART is often to develop
effective dynamic treatment regimens (DTRs) that specify an initial treatment for a patient followed
by subsequent treatment, that is tailored by the response to the initial treatment (Robins, 1986;
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Murphy, 2003). In contrast, rather than to identify sequences of treatments tailored to an individual,
the stages in an snSMART are used to garner more information from a smaller set of subjects. In
other words, snSMARTs are not designed with the goal of developing or estimating the effects of
DTRs. Instead, the goal of an snSMART is to efficiently use data across the two stages of the trial
to find a single superior treatment or dose of treatment in a small sample of individuals.

Indeed, there have been previous examples of repurposing well-developed trial designs to ad-
dress novel goals. For example, randomized discontinuation trials have been studied as an alter-
native phase II design in oncology (Rosner et al., 2002). In addition, randomized discontinuation
trials have been modified using SMART designs in order to answer a wider variety of clinical
questions (Almirall et al., 2012). Researchers have also considered some enhanced crossover de-
signs in the rare diseases spectrum to address the concerns about the unnecessary exposure to
placebo or treatment of high toxicity. For example, Makubate and Senn (2010) and Nason and
Follmann (2010) both discussed designs that allow for discontinuation from the study according to
the absorbed binary endpoints after a subject receives the first treatment. Honkanen et al. (2001)
introduced an alternative design that consists of an initial randomized placebo-controlled stage, a
randomized withdrawal stage for subjects who respond, and a third randomized stage for placebo
non-responders who subsequently respond to treatment.

In Chapter 2, we introduce an snSMART design that compares varying doses of a study treat-
ment to placebo with a focus on the first stage treatment effect. In this snSMART design, patients
are initially randomized to one of three treatment groups: low dose, high dose, or placebo. They
are then followed for a pre-specified period. At the end of the stage 1, a binary endpoint is mea-
sured, based on which the patients are re-randomized to either receive low dose or high dose. The
binary endpoint is measured again after stage 2. We propose a Bayesian model to jointly model the
data from both stages and estimate the treatment effect of each dose level at stage 1. We perform
simulation studies to evaluate the accuracy and efficiency of our approach and compare it with
other alternative methods. This project has been published in Statistics in Medicine (Fang et al.,
2021).

In Chapter 3, we extend the application of the snSMART design with a binary outcome to
a design with a continuous outcome. A binary response that is different from the continuous
endpoint is used to determine the re-randomization in the second stage. The trial design is similar
to the one in Chapter 2. We propose a joint stage Bayesian model to determine the efficacy of the
low dose and high dose of the treatment, and compare the proposed approach with standard models
based on data from stage 1. We also evaluate the impact of different prior settings on Bayesian
estimates. This work has been published in Statistics in Biopharmaceutical Research (Fang et al.,
2022).

In Chapter 4, we present Bayesian sample size determination (SSD) methods based on the snS-
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MART design proposed in Chapter 3. We propose two SSD methods for the proposed snSMARTs
with a continuous outcome to detect the desired difference in the mean outcome of the low dose and
placebo. Both methods adopt the average coverage criterion (ACC) approach. In one approach, we
take advantage of the explicit posterior variance of the treatment effect from the joint model. The
other method updates the sample size needed for a single-stage parallel design with a proposed
adjustment factor (AF). Simulations evaluate the power of detecting the desired difference given
the required sample sizes calculated using the two SSD methods. The sample size methods have
been tranlated vis an RShiny app to disseminate the methods.
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CHAPTER 2

Bayesian Methods to Compare Response Rates of
Dose Levels with Placebo in a Small N, Sequential,

Multiple Assignment, Randomized Trial

2.1 Introduction

Designing clinical trials is crucial for evaluating the efficacy and safety of novel drugs. For registry
clinical trials, in many situations, there is only a single, novel drug of interest and the objective is to
determine efficacy of that drug. As an example, the Vasculitis Clinical Research Consortium was
recently interested in testing a novel drug for patients suffering from granulomatosis with polyan-
gitis (GPA) or microscopic polyangitis (MPA), forms of vasculitis characterized by inflammation
of the blood vessels. The binary endpoint of the study was remission after three weeks of therapy.
It was assumed, however, that an effective drug would have to be taken for longer than three weeks
in practice. The trial needed to be placebo controlled and the investigators were interested in novel
designs that could potentially increase the power of detecting a drug effect. Given that vasculitis is
a rare disease, it was also necessary that the trial design was appropriate for small sample sizes.

In the snSMART design of Tamura et al. (2016), three unique, active experimental treatments
were compared. We propose extending this design to a three-arm trial comparing placebo to low
and high doses of one experimental treatment (Figure 2.1). In such a trial, patients are initially
randomized at stage 1 to either receive placebo, low dose, or high dose with equal likelihood. Pa-
tients receive this treatment for a pre-specified amount of time, at which time their binary response
status is ascertained. In stage 2, patients are re-randomized to either the same or a different dose
of treatment depending on their initial treatment and their response to that treatment. Specifically,
patients who received placebo at stage 1 are re-randomized to receive either low dose or high dose
at stage 2, regardless of their stage 1 response. This is advantageous for patients because it means
that everyone enrolled in the trial will receive an active treatment by stage 2, even if they were
initially randomized to placebo. All patients who initially received low dose, regardless of their
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response status, are re-randomized to either low dose or high dose. In the case of patients who
responded to low dose, this re-randomization is appropriate because it allows patients to either re-
ceive a higher dose of the drug that is already effective for them or to continue receiving low dose.
Receiving low dose again is advantageous for patients because they continue receiving a drug they
respond to and advantageous for the trial because we gain more information about the response
rate to low dose in stage 2 of the study. All patients who did not respond to high dose receive high
dose again in stage 2, whereas patients who initially responded to high dose are re-randomized to
receive either high dose again or low dose. In this design, the primary objective is to estimate the
difference in the probability of response to treatment between low dose and placebo and between
high dose and placebo.

Figure 2.1: Study design of the proposed snSMART with a binary endpoint. Participants are
randomized (R) to one of the first stage treatment arms, placebo, low dose or high dose equally
(1:1:1). At the end of stage 1, patients are re-randomized to their second stage treatment based on
their response status. Outcomes are collected at the end of stage 1 and stage 2.

Compared to other rare diseases and clinical trial designs, this snSMART design is advanta-
geous for three reasons. First, this design allows for the comparison of treatment against placebo,
which is necessary to demonstrate efficacy of an experimental treatment. Second, this design al-
lows for the comparison of more than one dosage level of a drug, so that a lower, less toxic dose
may be shown to be efficacious as opposed to investigating only a high dose. Third, individuals
who respond to treatment in stage 1 may continue their original dose or may increase or decrease
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dose. All participants receive an active treatment at some point in the trial. In addition, those who
receive a low dose or high dose of the drug will continue to receive the drug at some level in both
stages because there are no participants randomized to placebo in stage 2. These factors may im-
prove patient engagement and recruitment, which is a challenge in the study of rare diseases. Wei
et al. (2018) demonstrated efficiency gains of the previous snSMART design compared to a one
stage design, but such advantages have not yet been confirmed for this setting.

In Section 2.2, we propose Bayesian and frequentist methods to analyze data for the primary
efficacy analysis of the proposed snSMART design by borrowing information across patients and
between trial stages. In the Bayesian model, we incorporate expert opinion and experience by
using mildly informative prior distributions that are more flexible than those considered in Wei
et al. (2018). In Section 2.3, we assess the influence of the prior distributions through simulation.
We compare the Bayesian model to a frequentist model that also jointly models the response rates
across the two stages of the snSMART. Both models are compared to models using only stage 1
data to illustrate the potential efficiency gain of the two-stage design. In Section 2.4, we complete
this chapter with a discussion.

2.2 Methods

2.2.1 Bayesian Joint Stage Model

For each subject i = 1, . . . , N , stage of the snSMART j = 1, 2 and treatment k = P, L, H, where N
denotes the sample size, P denotes placebo, L denotes low dose, and H denotes high dose, let Yijk
be the observed binary response outcome where 1 corresponds to “response” and 0 corresponds
to “no response” to treatment. The stage 1 outcome and the stage 2 outcome given the stage 1
outcome are each modeled as Bernoulli random variables. The stage 1 response rate for treatment
k is denoted as πk. The stage 2 response rate for stage 1 responders to treatment k who receive
treatment k′ in stage 2 is equal to β1kπk′ . For non-responders to treatment k in stage 1 who receive
treatment k* in stage 2, the stage 2 response rate is equal to β0kπk∗ . Thus we have six unique
linkage parameters that link stage 1 response to stage 2 response. Our proposed Bayesian joint
stage model (BJSM) is as follows:

Yi1k|πk ∼ Bernoulli(πk) (2.1)

Yi2k′ |πk, β1k, Yi1k = 1 ∼ Bernoulli(β1kπk′) (2.2)

Yi2k∗ |πk, β0k, Yi1k = 0 ∼ Bernoulli(β0kπk∗) (2.3)

Assumptions and prior distributions for the parameters are based on clinician input. Here, we
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incorporate prior knowledge about disease and current treatments and assume that an ineffective
treatment has a response rate of 15% and thus use an informative prior Beta(3, 17) for πP . It is
a setting similar to the GPA/MPA example mentioned in the Introduction. For the effect of low
and high dose, we allow for a weak tendency for the drug response rates to be greater than the
effect of placebo and assume that the logarithm of treatment effect ratio follows a Gaussian prior
distribution N(µ, σ2), i.e., log(πL/πP ) ∼ N(0.2, 100) and log(πH/πP ) ∼ N(0.2, 100). Note that
E(πL/πP ) = e0.2 ≈ 1.2 under the proposed prior setting.

Wei et al. (2018) assumed that the linkage parameters (i) did not depend on the initial treat-
ment and that, (ii) β0 ≤ 1 and (iii) β1 > 1. Here, since both responders and non-responders
are re-randomized and we are testing for a potential dose-response relationship between treatment
arms, these previous assumptions are not appropriate. In our simulations, instead of assuming the
Beta and Pareto priors used by Wei et al. (2018), we consider Gamma priors so that the linkage
parameters can span the positive real line.

2.2.2 Log-linear Poisson Joint Stage Model

The log-linear Poisson joint stage model (LPJSM) presented in Wei et al. (2018) is slightly adjusted
for our design. The LPJSM jointly models the stage 1 and stage 2 outcomes with a log link for
interpretability. The LPJSM is shown below where there is a one-to-one correspondence to the
parameters in the Bayesian model in Equations (2.1) - (2.3). Let Yij be the response of subject i in
stage j (j = 1, 2), where I(kij = k) is the indicator function for treatment k = P, L, H for subject i
in stage j, then the LPJSM is as follows:

log(P (Yi1)) =α1I(ki1 = P ) + α2I(ki1 = L) + α3I(ki1 = H)

log(P (Yi2)) =α1I(ki2 = P ) + α2I(ki2 = L) + α3I(ki2 = H) + α4I(ki1 = P, Yi1 = 0)+

α5I(ki1 = P, Yi1 = 1) + α6I(ki1 = L, Yi1 = 0) + α7I(ki1 = L, Yi1 = 1)+

α8I(ki1 = H,Yi1 = 0) + α9I(ki1 = H,Yi1 = 1)

Here we have nine estimated coefficients where α1, α2 and α3 represent the log response rates
of placebo, low and high dose. Coefficients α4 - α9 correspond to the six linkage parameters in the
Bayesian model. The Poisson family is used to model the variance of the outcome to overcome
convergence problems with log-binomial models in small samples (Williamson et al., 2013). The
parameters are estimated via generalized estimating equations assuming an independent correlation
structure. The variance of the LPJSM is corrected through robust sandwich estimators.
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2.3 Simulations

In our simulations, we first assume that our drug of interest is ineffective and consider trials in the
null scenario, i.e., the response rate of placebo, low dose and high dose are all equal (Scenario 1, P
= L = H). Under the assumption that the drug of interest is effective, we consider three additional
scenarios. In scenario 2, a dose-response relationship occurs, i.e. higher dose relates to higher
treatment effect (response rates such that P < L < H). In scenario 3, no dose response occurs
between low and high dose, so that the response rate of P < L = H. Lastly, we consider an unlikely,
but possible setting in scenario 4 where no dose response occurs and low dose is effective but high
dose is not, so that the response rate of P = H < L. We selected the Gamma(2, 2) prior for all
linkage parameters, understanding this allows for positive probability for β1kπk′ and β0kπk∗ to be
greater than 1. We chose Gamma(2,2) as the prior for all β1kπk′ and β0kπk∗ for three reasons: (i)
simplicity, (ii) the distribution ranges from 0 to 3 for most of the random draws, which serves as a
restriction to the prior distributions of the linkage parameters, and (iii) the distribution is centered
at 1 with variance equal to 0.5, which allows for flexibility of the prior distribution of the linkage
parameters to be below or above 1. This third property allows stage 1 responders the possibility
to worsen in the second stage if they decrease dose and stage 1 non-responders the possibility to
respond if they increase dose. See Table 1 for the scenarios and priors we used in simulations.

In the data generating process, we simulated 2,000 realizations per scenario under the four set-
tings in Table 2.1. For each realization, N/3 subjects were assigned to each treatment arm in stage
1, with a total sample size N . Responses to stage 1 were computed as random Bernoulli variables
with the proposed response rates under different scenarios (Table 2.1, column 3-6). Subjects were
then re-randomized equally to their stage 2 treatment based on their stage 1 treatment and stage
1 response. Stage 2 responses were computed using formulae (2) and (3) under the different sce-
narios. We compared bias, root mean-square error (rMSE), coverage rates and widths of the 95%

credible/confidence intervals (CIs) between the proposed BJSM, LPJSM, a Bayesian method using
only the first stage data (BFSM), and a maximum likelihood method (FSMLE) using only the first
stage data.

The 95% CI for BJSM and BFSM are the narrowest intervals that include 95% of the pos-
terior distribution of πk, while the 95% CI for LPJSM and FSMLE are the asymptotic, normal-
approximation 95% confidence intervals. The R package rjags was used to generate the posterior
distributions of πk, β1k, and β0k, and the R package gee was used to estimate the parameters defined
in LPJSM.
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BJSM Prior Response Rates/ Scenarios
for All Scenarios Linkage Parameters P=L=H P<L<H P< L=H P=H<L

Beta(3,17) πP 0.15 0.15 0.15 0.15
log(πL/πP ) ∼ N(0.2, 100) πL 0.15 0.25 0.4 0.4
log(πH/πP ) ∼ N(0.2, 100) πH 0.15 0.35 0.4 0.15

Gamma(2,2) β0P 0.9 0.9 0.9 0.9
Gamma(2,2) β1P 1.3 1.3 1.3 1.3
Gamma(2,2) β0L 0.8 0.8 0.8 0.8
Gamma(2,2) β1L 1.2 1.2 1.2 1.2
Gamma(2,2) β0H 0.7 0.7 0.7 0.7
Gamma(2,2) β1H 1.1 1.1 1.1 1.1

Table 2.1: Scenarios and priors for the simulation settings. πk is the first stage response rate
for treatment k, k = P,L,H , where P=placebo, L=low dose, H=high dose. β1k is the linkage
parameter for first stage responders who receive treatment k in stage 1. β0k is the linkage parameter
for first stage non-responders who receive treatment k in stage 1. Simulations are done under 4
scenarios: (i) P=L=H (low and high dose are both as effective as placebo), (ii) P<L<H (placebo is
less effective than low dose, and low dose is less effective than high dose), (iii) P<L=H (low dose
and high dose are equally effective, and they are more effective than placebo), and (iv) P=H<L (low
dose is effective but high dose is not). BJSM prior setting (column 1) is where we use Gamma(2,
2) for all linkage parameters to relax the restriction of priors.

2.3.1 Results

In this section, we present simulation results for the snSMART design in Figure 2.1 with sample
sizes of N=90. Results for N=300 and N=45 can be found in the Tables 2.4-2.5.

For all scenarios, Table 2.2 gives the bias and rMSE for estimators of the stage 1 response rates
for placebo, low dose, and high dose. In the null scenario (scenario 1, P = L = H), we note that
BJSM, BFSM, and FSMLE provide estimators of the difference in response rates and of individual
response rates with small bias. While the estimators for the difference in response rates in LPJSM
is comparable to the other methods, we see that the bias in the point estimates of πP , πL, and πH
is much larger than the other methods. This is likely because there are few patients that respond
to treatment in the trial. We also note that BJSM estimators have the smallest rMSEs out of all
methods.

For scenario 2 (P < L < H), there is, on average, low to no bias for the response rate estimators
for each dose level. Looking specifically at the estimation of the placebo response rate, we see that
there is no bias, on average, for BJSM, BFSM, and FSMLE. In the LPJSM method, the smallest
bias is in the estimator of πH . This is likely due to the large number of participants in the trial that
receive high dose. The estimators of πP and πL likely have higher bias in the LPJSM because there
are fewer patients that receive placebo and low dose in the trial. The estimator of πH , however, has
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the largest bias in the Bayesian methods (BJSM and BFSM). The bias of the high dose response
rate estimate is likely large because the true value of πH in scenario 2 is 0.35, which is relatively
far from the prior mean (0.183) for stage 1 response rates. In comparison, in BJSM and BFSM
the estimator of πL has less bias than that of πH , presumably because the true value of πL is 0.25,
which is closer to 0.183. Looking at rMSE, we observe that the BJSM method estimators of πP ,
πL, and πH have the lowest rMSE out of the estimators we compared. While the FSMLE approach
has very low bias, it tends to have the largest rMSE out of the compared methods because it only
models first-stage outcomes. When we consider the estimators for the difference between placebo
and low and high dose response rates, we see that all methods provide estimators with small bias.
The estimators for the difference in response rates for placebo vs. low and high dose of the BJSM
have the smallest rMSEs out of all methods.

In scenario 3 (P < L = H), we see small bias for the response rate estimators, specifically for
the LPJSM and FSMLE methods. Looking at the BJSM and BFSM results, we see that the bias is
negligible for the estimators of πP , but slightly larger for estimators of πL and πH . In contrast, the
LPJSM estimators of πL and πH have negligible bias, but the estimator of πP is slightly higher. As
in scenario 2, the bias in the Bayesian methods is due to the difference between the true value of
the parameters (0.40) and the prior mean (0.183). We expect to see larger bias in the estimation of
πP from the LPJSM because few patients are randomized to placebo. The BJSM provides response
rate estimators for placebo, low dose, and high dose with the smallest rMSEs out of all methods.
Again, we see that BFSM and FSMLE have larger rMSE than the joint stage modeling procedures.
The results of scenario 3 for the bias and rMSE of the estimators of response rate differences are
similar to that of scenario 2.

In scenario 4 (P = H < L), we once again see similar patterns in bias and rMSE of response rate
estimators to scenarios 2 and 3. Again, estimators for the difference in response rate estimators
generally have small bias, and the BJSM estimators have the smallest rMSE out of all methods.

It should be noted that across all four scenarios, the efficiency gain observed using joint stage
modeling approaches, compared to BFSM and FSMLE, is not large for the estimators of πP . We
see little efficiency gain using joint stage approaches because no one is randomized to placebo
treatment in stage 2 of the design. As such, first stage methods are comparable to joint stage
methods in estimating πP . We do, however, see modest efficiency gains using joint stage modeling
approaches for the estimators of πL - πP and πH - πP . Since the estimation of πL - πP and πH - πP
is typically of greater interest than the estimation of πP , the efficiency gains we observe represent
an advantage of using BJSM procedures.

Across all scenarios, we see that the bias of LPJSM estimators of πP is large compared to the
other LPJSM response rate estimators, and compared to the estimators of πP for other methods.
This increased bias likely stems from the low number of patients receiving placebo. Since there are
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few people in the placebo treatment arm, and none in stage 2 of the study, there is less information
to estimate πP , leading to more bias. In larger samples (see Table 2.4), we see negligible bias for
the LPJSM estimator of πP , which supports our explanation that the bias observed in Table 2.2 is
due to a low sample size.

BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 0.018 0.063 -0.001 0.039 -0.001 0.065
πL -0.003 0.048 0.022 0.062 -0.005 0.062 0.000 0.064
πH -0.007 0.043 0.020 0.062 -0.005 0.062 0.000 0.064
πL - πP -0.003 0.062 0.004 0.081 -0.005 0.073 0.001 0.091
πH - πP -0.006 0.058 0.002 0.087 -0.005 0.073 0.000 0.091

(2) P < L < H πP 0.000 0.039 0.009 0.063 0.000 0.039 0.000 0.065
πL -0.005 0.057 0.014 0.068 -0.011 0.078 -0.003 0.080
πH -0.013 0.064 -0.001 0.075 -0.013 0.084 -0.001 0.860
πL - πP -0.005 0.070 0.004 0.092 -0.011 0.087 -0.003 0.102
πH - πP -0.013 0.074 0.011 0.101 -0.012 0.093 -0.001 0.108

(3) P < L = H πP 0.000 0.040 0.007 0.064 0.000 0.040 -0.001 0.067
πL -0.009 0.066 0.000 0.076 -0.013 0.087 0.000 0.089
πH -0.012 0.065 0.000 0.074 -0.015 0.087 -0.003 0.089
πL - πP -0.009 0.077 -0.006 0.097 -0.013 0.096 0.001 0.112
πH - πP -0.012 0.076 -0.006 0.099 -0.015 0.096 -0.002 0.111

(4) P = H < L πP -0.001 0.039 0.014 0.063 -0.001 0.039 -0.001 0.065
πL -0.011 0.068 -0.023 0.081 -0.011 0.086 0.002 0.088
πH -0.003 0.044 0.030 0.060 -0.004 0.063 0.001 0.065
πL - πP -0.010 0.078 -0.037 0.104 -0.010 0.094 0.002 0.109
πH - πP -0.003 0.059 0.016 0.083 -0.003 0.075 0.002 0.093

Table 2.2: Simulated bias and root-mean-square error (rMSE) for the estimators of πk. πk is
the stage 1 response rate for treatment k, k = P,L,H , where P = placebo, L = low dose, and
H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 30.

Table 2.3 presents the 95% CI width and coverage rates (CR). Here, we see that the BJSM
methods has smaller average 95% CI width than the LPJSM, BFSM, and FSMLE methods. In
addition, the CR is around the target 95% for the BJSM in all tested scenarios.

When a sample size of N = 300 is used, we see similar results (see Table 2.4). Overall, we
observe smaller bias across all settings when N = 100 in each arm. Interestingly, there is still
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BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.98 0.187 0.97 0.261 0.99 0.187 0.94 0.245
πL 0.93 0.183 0.95 0.229 0.87 0.221 0.95 0.246
πH 0.93 0.171 0.95 0.228 0.87 0.221 0.95 0.246

(2) P < L < H πP 0.98 0.187 0.96 0.254 0.99 0.187 0.94 0.246
πL 0.94 0.225 0.94 0.263 0.88 0.280 0.94 0.304
πH 0.94 0.256 0.94 0.298 0.92 0.317 0.91 0.335

(3) P < L = H πP 0.98 0.186 0.96 0.252 0.98 0.187 0.94 0.245
πL 0.95 0.267 0.94 0.296 0.94 0.327 0.93 0.346
πH 0.94 0.261 0.95 0.296 0.94 0.327 0.94 0.344

(4) P = H < L πP 0.99 0.187 0.98 0.258 0.99 0.187 0.94 0.245
πL 0.96 0.282 0.92 0.301 0.94 0.328 0.94 0.336
πH 0.93 0.169 0.96 0.213 0.88 0.222 0.94 0.247

Table 2.3: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the true
stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose, and
H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 30.

an efficiency gain when using BJSM methods in larger sample sizes, as the BJSM response rate
estimators have smaller rMSEs than the response rate estimators from the LPJSM approach. In
addition, for small samples, N = 45, under the null setting where we assume a spontaneous response
rate of 30% or 40% for placebo, low and high doses of the experimental therapy, we again observe
efficiency gains when using BJSM methods (see Table 2.5). The BJSM response rate estimators
also have smaller bias than the LPJSM and BFSM methods.

2.3.2 Sensitivity to Priors

In addition to the prior setting presented in Section 2.3.1, we also explored other prior settings to
evaluate the robustness of the BJSM method. First, we adjusted the mean of the prior distribution
for log(πL/πP ) and log(πH/πP ). While we settled on a mean of 0.2 to be conservative, we also
tested mean values of 0.3, 0.4, and 0.5, and found that our results were largely unchanged in the
null and dose-response scenarios (see Table 2.6-2.7). Second, we adjusted the center of the prior
distribution for πP . In our presented results, the mean of the prior distribution for πP was equal
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BJSM LPJSM BFSM FSMLE
Scenario CR Width CR Width CR Width CR Width

(1) P = L = H πP 0.96 0.124 0.94 0.139 0.96 0.124 0.93 0.138
πL 0.94 0.112 0.95 0.121 0.93 0.135 0.93 0.139
πH 0.95 0.108 0.95 0.121 0.94 0.134 0.94 0.138

(2) P < L < H πP 0.95 0.125 0.94 0.138 0.95 0.125 0.93 0.139
πL 0.95 0.133 0.95 0.144 0.95 0.165 0.95 0.170
πH 0.95 0.156 0.93 0.164 0.95 0.182 0.94 0.186

(3) P < L = H πP 0.96 0.124 0.94 0.138 0.96 0.124 0.94 0.139
πL 0.95 0.157 0.94 0.163 0.94 0.188 0.94 0.191
πH 0.95 0.156 0.94 0.163 0.93 0.188 0.94 0.191

(4) P = H < L πP 0.96 0.125 0.94 0.139 0.96 0.125 0.93 0.139
πL 0.95 0.170 0.90 0.166 0.94 0.188 0.93 0.186
πH 0.94 0.101 0.90 0.117 0.93 0.134 0.93 0.138

Table 2.4: Simulated width and 95% coverage rate (CR) for the estimators of πk. πk is the true
stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose, and
H = high dose. Scenarios are given in Table 1. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 100.

to the true value of πP in all scenarios. In Tables 2.8-2.9, we present simulations for the null
and dose-response scenarios with prior distributions of Beta(2,18) and Beta(4,16), and means of
0.10 and 0.20, respectively, for πP . While in these simulations, we did find that our estimates of
the placebo response rate were more biased than in the results in Section 2.3.1, our estimation of
response rates for low and high doses were unchanged. Coverage rate and credible interval width
estimates were also unchanged in our sensitivity analyses (See Tables 2.10-2.13). Additionally,
even when the mean of our prior distribution for the placebo response rate did not match the true
value of πP , BJSM was still more efficient than the LPJSM and first-stage methods (see Tables
2.12-2.13). Based on these additional analyses, we conclude that our method is generally robust to
the choice of mean for all prior distributions of πP , log(πL/πP ), and log(πH/πP ).

2.4 Discussion

In this chapter, we adapted the Baysian method (BJSM) for use in a different snSMART design
where low and high doses of a single experimental therapy are compared to placebo. Due to dose

13



BJSM LPJSM BFSM FSMLE
Scenario Bias rMSE Bias rMSE Bias rMSE Bias rMSE

(1) P = L = H πP -0.002 0.047 0.012 0.116 -0.084 0.098 0.001 0.120
π = 0.3 πL -0.010 0.086 0.031 0.108 -0.021 0.110 0.003 0.121

πH -0.015 0.075 0.018 0.100 -0.018 0.111 0.002 0.120
πL - πP -0.008 0.098 0.019 0.157 0.062 0.135 0.002 0.175
πH - πP -0.012 0.085 0.006 0.152 0.066 0.138 0.002 0.168

(2) P = L = H πP 0.000 0.053 0.007 0.123 -0.141 0.151 0.004 0.128
π = 0.4 πL -0.015 0.087 0.012 0.107 -0.027 0.119 -0.003 0.130

πH -0.018 0.084 0.006 0.105 -0.023 0.120 -0.001 0.124
πL - πP -0.015 0.100 0.005 0.162 0.114 0.172 -0.007 0.182
πH - πP -0.018 0.100 -0.001 0.158 0.118 0.176 -0.005 0.175

Table 2.5: Simulated bias and root-mean-square error (rMSE) for the estimators of πk under null
scenarios with different spontaneous response rate. πk is the true stage 1 response rate for the
treatment k, k = P,L,H , where P = placebo, L = low dose, and H = high dose. Under null
scenario, we assume πP = πL = πH = π. Four modeling approaches: Bayesian joint stage
modeling (BJSM), log-linear Poisson joint stage modeling (LPJSM), Bayesian first stage modeling
(BFSM), and first stage maximum likelihood estimation (FSMLE) are compared. The sample size
per treatment arm is 15.

comparison and the stage 2 re-randomization strategy, our design required novel methods that use
six linkage parameters to share information on the response rates from both stages of the trial. In
this setting, the BJSM yields accurate estimators that are easy to interpret in a clinical setting. Our
proposed method was compared to three other methods via simulation. Through simulation, we
demonstrated that BJSM estimators are the most efficient of the methods presented.

An advantage of the BJSM method, is that it provides estimates of πP , πL, and πH , even when
the true response rates were low. In our simulation scenarios, we noted convergence issues for
the LPJSM method, specifically under scenario 1, where all treatments have true response rates of
0.15. In this scenario, there were instances where no response outcomes were observed for a given
stage 1 treatment. Thus, there would be no responders to re-randomize in stage 2; all stage 2 re-
randomization would occur through the non-responder arm of that treatment. This low probability
of response caused failures in convergence for the LPJSM method, but good estimation with low
bias was still possible using the BJSM.

Interestingly, in simulations with large true response rates or large sample size, LPJSM per-
forms better than BFSM (smaller rMSE) in terms of the estimation of each individual response
rate. However, LPJSM performs worse than BFSM in many scenarios in terms of the difference
between the response rates of different dosage levels. This is likely due to our assumption of a
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prior distribution on the ratio of response rates in the Bayesian methods, which implicitly places
correlation among response rates. No such correlation structure is assumed with LPJSM.

Another strength of the BJSM method is its robustness under different prior settings. As dis-
cussed in Section 2.3.2, the BJSM method remained efficient regardless of the center of the re-
sponse rate estimator prior distributions. Additionally, the bias of the response rate estimators for
low and high dose remained low in all tested scenarios for the BJSM, even when the mean of the
prior distribution for πP no longer matched the true mean in the simulation scenarios. This robust-
ness is particularly important for trials investigating drugs in rare diseases, as there may be little
previous data to guide prior distribution selection.

Our first formulation of the BJSM model had eleven, rather than six, linkage parameters. These
parameters corresponded to the eleven unique paths through which a participant could follow in the
trial. We found that, while this model still produced response rate estimators with small bias and
with increased efficiency compared to other tested methods, these advantages were not substantial.
By limiting the model to only six linkage parameters, we were able to retain small bias and gains
in efficiency, while using a simpler model. These efficiency gains were present for estimators of
πL - πP and πH - πP . These difference estimators are generally of greater interest than individual
response rates in clinical trials. As such, the efficiency gains we observe represent an advantage
of using Bayesian joint stage modeling procedures. This model could be expanded if investigators
wanted a different bias-variance trade-off than shown here.

The efficiency gains of the BJSM are still relevant for clinical trials with larger sample sizes
(see Table 2.4). A trial design that reduces rMSE would also reduce the total number of patients
that need to enroll in the trial, and therefore results in a shorter duration of the trial. As such, this
snSMART design may be appropriate not just in rare disease research, but also in time-sensitive
research like emerging infectious diseases. Similarly, efficiency gains of the BJSM remain for
clinical trials with even smaller sample size. Simulations with only N = 45 patients (N = 15 per
arm) showed that the BJSM remains efficient and estimates response rates with low bias, even as
sample size decreases (see Table 2.5).

A limitation that results from the proposed prior distribution settings and model assumptions is
that the posterior distributions for the linkage parameters and πk allow for β1kπk′ > 1. However,
we did not draw any samples where β1kπk′ > 1 in our simulations. Thus, it is unlikely that this
limitation would be a problem in clinical settings, unless the treatment under consideration has a
high response rate. Another limitation of our design is we assume there are no carryover effects
of the stage 1 treatment in stage 2 of the study. We note, however, that our trial design allows
for investigators to implement a washout period between stage 1 and stage 2 of the study if there
was concern with carryover effects. Our future work will include modifications to our method to
account for carryover effects.
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Future directions for this work include adapting the BJSM to continuous outcomes. We are also
examining models with fewer unique linkage parameters to see if we can improve efficiency of the
BJSM method without much increased bias. In addition, future work can construct sample size
calculations based on the BJSM for snSMART designs. These sample size calculations will aid in
the extension of snSMART designs for primary efficacy analysis when more than two dose levels
of a drug are compared. We note that our study design allows for a customizable randomization
scheme in stage 2. While balanced re-randomization was applied in our simulations, future work
could consider unbalanced or/and stratified randomization in stage 2 within responders and non-
responders.
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BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.3 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(3) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.4 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(4) P = L = H πP -0.001 0.039 -0.001 0.039
µ = 0.5 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

Table 2.6: Simulated bias and root-mean-square error (rMSE) under the “null” scenario
for the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e.
E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling ap-
proaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is
the true stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. The sample size per treatment arm is 30.
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BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.3 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(3) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.4 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(4) P < L < H πP 0.000 0.039 0.000 0.039
µ = 0.5 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.070 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

Table 2.7: Simulated bias and root-mean-square error (rMSE) under the dose-response scenario
for the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e.
E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling ap-
proaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is
the true stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. The sample size per treatment arm is 30.
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BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P = L = H πP -0.001 0.039 -0.001 0.039
E(πP ) = 0.15 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.003 0.062 -0.005 0.073
πH - πP -0.006 0.058 -0.005 0.073

(2) P = L = H πP -0.021 0.044 -0.021 0.044
E(πP ) = 0.1 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP 0.017 0.064 0.015 0.075
πH - πP 0.014 0.059 0.015 0.075

(3) P = L = H πP 0.019 0.043 0.019 0.043
E(πP ) = 0.2 πL -0.003 0.048 -0.005 0.062

πH -0.007 0.043 -0.005 0.062
πL - πP -0.023 0.066 -0.025 0.077
πH - πP -0.026 0.063 -0.025 0.077

Table 2.8: Simulated bias and root-mean-square error (rMSE) under the null scenario for the es-
timators when assuming different shape and scale parameter values for the placebo prior distri-
butions. Three different prior settings are presented: πP ∼ Beta(3, 17), πP ∼ Beta(2, 18) and
πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) = (0.15, 0.1, 0.2), respec-
tively. Results are presented for two modeling approaches: Bayesian joint stage model (BJSM)
and Bayesian first stage modeling (BFSM). πk is the true stage 1 response rate for the treatment k,
k = P,L,H , where P = placebo, L = low dose, and H = high dose. The sample size per treatment
arm is 30.
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BJSM BFSM
Scenario Bias rMSE Bias rMSE

(1) P < L < H πP 0.000 0.039 0.000 0.039
E(πP ) = 0.15 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.005 0.069 -0.011 0.087
πH - πP -0.013 0.074 -0.012 0.093

(2) P < L < H πP -0.020 0.044 -0.020 0.044
E(πP ) = 0.1 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP 0.015 0.071 0.009 0.087
πH - πP 0.007 0.073 0.008 0.092

(3) P < L < H πP 0.020 0.044 0.020 0.044
E(πP ) = 0.2 πL -0.005 0.057 -0.011 0.078

πH -0.013 0.064 -0.013 0.084
πL - πP -0.025 0.074 -0.031 0.091
πH - πP -0.033 0.080 -0.032 0.098

Table 2.9: Simulated bias and root-mean-square error (rMSE) under the dose-response scenario
for the estimators when assuming different shape and scale parameter values for the placebo prior
distributions. Three different prior settings are presented: πP ∼ Beta(3, 17), πP ∼ Beta(2, 18)
and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) = (0.15, 0.1, 0.2), respec-
tively. Results are presented for two modeling approaches: Bayesian joint stage model (BJSM)
and Bayesian first stage modeling (BFSM). πk is the true stage 1 response rate for the treatment k,
k = P,L,H , where P = placebo, L = low dose, and H = high dose. The sample size per treatment
arm is 30.
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BJSM BFSM
Scenario CR Width CR Width

(1) P = L = H πP 0.984 0.187 0.986 0.187
µ = 0.2 πL 0.925 0.183 0.872 0.221

πH 0.934 0.171 0.869 0.221

(2) P = L = H πP 0.985 0.187 0.986 0.187
µ = 0.4 πL 0.926 0.183 0.872 0.221

πH 0.934 0.171 0.880 0.221

(3) P = L = H πP 0.985 0.187 0.986 0.187
µ = 0.4 πL 0.926 0.183 0.872 0.221

πH 0.931 0.171 0.872 0.221

(4) P = L = H πP 0.984 0.187 0.986 0.187
µ = 0.5 πL 0.926 0.183 0.870 0.222

πH 0.933 0.171 0.870 0.221

Table 2.10: Simulated width and 95% coverage rate (CR) under the “null” scenario for the estima-
tors when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e. E(log(πL/πP )) =
µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling approaches: Bayesian joint
stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is the true stage 1 response
rate for the treatment k, k = P,L,H , where P = placebo, L = low dose, and H = high dose. The
sample size per treatment arm is 30.
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BJSM BFSM
Scenario CR Width CR Width

(1) P < L < H πP 0.984 0.187 0.988 0.187
µ = 0.2 πL 0.942 0.225 0.882 0.280

πH 0.942 0.225 0.924 0.317

(2) P < L < H πP 0.984 0.187 0.986 0.187
µ = 0.4 πL 0.942 0.225 0.880 0.280

πH 0.942 0.225 0.925 0.317

(3) P < L < H πP 0.984 0.187 0.988 0.187
µ = 0.4 πL 0.942 0.225 0.884 0.280

πH 0.941 0.256 0.926 0.316

(4) P < L < H πP 0.985 0.187 0.986 0.187
µ = 0.5 πL 0.942 0.225 0.882 0.280

πH 0.942 0.256 0.926 0.316

Table 2.11: Simulated width and 95% coverage rate (CR) under the dose-response scenario
for the estimators when assuming different prior mean for log(πL/πP ) and log(πL/πP ), i.e.
E(log(πL/πP )) = µ, given µ = 0.2, 0.3, 0.4, 0.5. Results are presented for two modeling ap-
proaches: Bayesian joint stage model (BJSM) and Bayesian first stage modeling (BFSM). πk is
the true stage 1 response rate for the treatment k, k = P,L,H , where P = placebo, L = low dose,
and H = high dose. The sample size per treatment arm is 30.
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BJSM BFSM
Scenario CR Width CR Width

(1) P = L = H πP 0.984 0.187 0.986 0.187
E(πP ) = 0.15 πL 0.925 0.183 0.872 0.221

πH 0.934 0.171 0.869 0.221

(2) P = L = H πP 0.950 0.174 0.950 0.174
E(πP ) = 0.1 πL 0.927 0.183 0.876 0.221

πH 0.934 0.171 0.878 0.221

(3) P = L = H πP 0.991 0.198 0.992 0.198
E(πP ) = 0.2 πL 0.927 0.183 0.880 0.221

πH 0.934 0.171 0.880 0.221

Table 2.12: Simulated width and 95% coverage rate (CR) under the “null” scenario for the es-
timators when assuming different shape and scale parameter values for the placebo prior distri-
butions. Three different prior settings are presented: πP ∼ Beta(3, 17), πP ∼ Beta(2, 18) and
πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) = (0.15, 0.1, 0.2), respec-
tively. Results are presented for two modeling approaches: Bayesian joint stage model (BJSM)
and Bayesian first stage modeling (BFSM). πk is the true stage 1 response rate for the treatment k,
k = P,L,H , where P = placebo, L = low dose, and H = high dose. The sample size per treatment
arm is 30.
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BJSM BFSM
Scenario CR Width CR Width

(1) P < L < H πP 0.984 0.187 0.988 0.187
E(πP ) = 0.15 πL 0.942 0.225 0.882 0.280

πH 0.942 0.225 0.924 0.317

(2) P < L < H πP 0.942 0.174 0.952 0.174
E(πP ) = 0.1 πL 0.939 0.225 0.884 0.280

πH 0.941 0.256 0.926 0.317

(3) P < L < H πP 0.986 0.198 0.987 0.198
E(πP ) = 0.2 πL 0.940 0.225 0.884 0.280

πH 0.940 0.256 0.926 0.317

Table 2.13: Simulated width and 95% coverage rate (CR) under the dose-response scenario for
the estimators when assuming different shape and scale parameter values for the placebo prior
distributions. Three different prior settings are presented: πP ∼ Beta(3, 17), πP ∼ Beta(2, 18)
and πP ∼ Beta(4, 16), corresponding to the placebo prior mean E(πP ) = (0.15, 0.1, 0.2), respec-
tively. Results are presented for two modeling approaches: Bayesian joint stage model (BJSM)
and Bayesian first stage modeling (BFSM). πk is the true stage 1 response rate for the treatment k,
k = P,L,H , where P = placebo, L = low dose, and H = high dose. The sample size per treatment
arm is 30.
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CHAPTER 3

Bayesian Methods to Compare Dose Levels to
Placebo in a Small N, Sequential, Multiple

Assignment, Randomized Trial (snSMART) with a
Continuous Outcome

3.1 Introduction

The dearth of available treatments of rare diseases suggests that more clinical studies are needed
(NORD, 2021). Although natural history and registry studies are important and can provide crit-
ical information guiding treatment development, randomized clinical trials (RCTs) are generally
regarded as providing the strongest scientific evidence for treatment efficacy (Grimes and Schulz,
2002). However, rare disease trials are more likely than non-rare disease trials to be single arm
(63.0% versus 29.6%) and non-randomized (64.5% versus 36.1%), and studies of rare diseases
often have reduced power relative to studies of non-rare diseases (Bell and Smith, 2014). This
differential occurs for a variety of reasons, including the lack of sufficient numbers of individuals
required for a RCT, as well as participant reluctance to be part of RCTs, especially those with a
placebo arm. It is therefore critical to develop novel clinical trial designs and analyses that can
maximize information from these small trials.

An snSMART design has been previously proposed to compare the efficacy of three unique,
potentially active treatments for a rare disease (Tamura et al., 2016; Wei et al., 2018), and we later
extended it to studies in which one of the arms was placebo rather than an active agent (Fang
et al., 2021). In these approaches, efficiency gains were demonstrated over a single-stage design in
which each participant is randomized only once to a treatment, while also maintaining very little
bias for the treatment effect estimates. However, these methods assumed that patient outcomes
were binary, while registration trials of new drugs often collect a continuous measure of response,
which can provide more statistical power than the dichotomized binary outcomes (Donner and
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Eliasziw, 1994; Bhandari et al., 2002). Thus, in this chapter, we present an snSMART design
that incorporates comparison of two dose levels of a drug to placebo when the primary outcome
is continuous. The methods required for analysis of an snSMART with continuous outcomes are
not simple extensions of the methods developed to analyze an snSMART with binary outcomes.
Instead, the new design incorporates new features that require the development of different models
and prior distribution considerations.

Our design and methods are motivated by examples in lymphangioleiomyomatosis (LAM),
which is a progressive, cystic, rare lung disease in women. Although no curative treatment exists,
sirolimus at 2 mg/day has been shown to be effective in preventing loss of forced expiratory volume
(FEV1) in women who have already demonstrated a loss of FEV1 (McCormack et al., 2011).
Currently, a placebo controlled trial of sirolimus at a lower dose of 1 mg/day is being conducted
in women with early stage LAM and normal FEV1 (MILED trial: ClinicalTrials.gov Identifier
NCT03150914). The prototype snSMART design proposed in this research would be an excellent
candidate design to simultaneously evaluate both a low and high dose for sirolimus or any other
investigational drug in early stage LAM.

In Section 3.2, we conceptualize the snSMART design and develop a Bayesian approach that
borrows information across both stages for the primary analysis of comparing the mean outcome of
dose levels versus placebo. In Section 3.3, we conduct simulations to assess the bias and efficiency
of our approach in a variety of settings and compare our proposed method to a similar method
using only stage 1 data. We present concluding thoughts in Section 3.4.

3.2 Methods

3.2.1 Design

Figure 3.1 conceptualizes the proposed snSMART design comparing dose levels to placebo. The
specific goal of this design is to estimate the differences in the first stage mean outcome between
low dose and placebo and between high dose and placebo. Patients are equally randomized to
placebo, low dose or high dose in stage 1 as the initial treatment and then are re-randomized in
stage 2 conditional on the stage 1 treatment and a dichotomized response variable collected at the
end of stage 1. This response variable can be a dichotomized version of the continuous stage 1
outcome, or a variable that differs altogether from the stage 1 outcome. An important feature of
our design is that placebo is only a treatment option in stage 1. By doing so, every patient enrolled
in the trial will be treated with a dose level of treatment by the end of stage 2, even when initially
assigned to receive placebo in stage 1. This re-randomization scheme is also advantageous for
participants receiving low dose in stage 1 because they are equally likely to receive a higher dose
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Figure 3.1: Study design of the proposed snSMART with a continuous endpoint. Participants are
randomized (R) to one of the first stage treatment arms, placebo, low dose or high dose equally
(1:1:1). At the end of stage 1, patients are re-randomized to their second stage treatment based on
their response status. Outcomes are collected at the end of stage 1 and stage 2.
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of the drug that is effective for them at a lower dose or to remain at the low dose. Receiving low
dose in both stages may be advantageous because participants receive two administrations of a
dose that could be effective for them, and the additional data helps us collect more information
about the efficacy of low dose. Non-responders to high dose in stage 1 receive high dose again in
stage 2, while patients who responded to high dose are re-randomized to either continue receiving
high dose or receive low dose. This design allows high-dose responders to receive a lower dose
later in stage 2 because a lower dose may still be efficacious and less toxic.

Using the setting of LAM as an example, women with normal lung function, defined as greater
than or equal 70% predicted FEV1, are enrolled and randomized at baseline to either placebo,
1 mg/day, or 2 mg/day of sirolimus. The primary endpoint is defined as change in FEV1 from
baseline, with increasingly negative changes indicating worsening lung function. After one year
of follow-up for the primary endpoint, women are randomized to either 1 mg/day or 2 mg/day
of sirolimus and are followed for an additional year. With regard to the response variable used
to determine second stage treatment randomization, non-responders are defined as those women
whose FEV1 declined by 10% or more in stage 1 (McCormack et al., 2011; Taveira-DaSilva et al.,
2004) . Non-responders to 2 mg/day of sirolimus are assigned to continue using the same dose
level during stage 2, and all other participants are randomized between 1 mg/day and 2 mg/day.

3.2.2 Model

The trial will enroll a total ofN subjects, each of whom will be observed for a continuous outcome
at the end of each of two stages. For subject i = 1, . . . , N observed in stage j = 1, 2, we let Tij
be the assigned treatment and Yij denote the observed continuous outcome. A binary indicator
(1=yes; 0=no) of response, Zi, is measured at the end of S tage 1 and is used for re-randomization
as illustrated in Figure 3.1.

In stage 1, we adopt the conditional model Yi1 ∼ N(µ(Ti1), σ
2), in which µ(Ti1) =∑

k µkI(Ti1 = k), where the three treatment arms are denoted by k ∈ {P,L,H}. In stage 2, we
adopt the conditional model Yi2 ∼ N(θ(Ti1, Ti2, Yi1), σ

2), in which θ(Ti1, Ti2, Yi1) = µk′I(Ti2 =

k′) + α + β(Yi1 − µ(Ti1)) and k′ ∈ L,H . Thus, the mean outcome after stage 2 for a treatment is
the mean outcome that would have been observed for that treatment after stage 1, but augmented
by a shift parameter α and a proportional residual response [Yi1 − µ(Ti1)] from stage 1. Here, α
serves as a parameter that allows for increases or decreases in treatment response in stage 2 rel-
ative to stage 1. We refer to β as a linkage parameter because it links an individual’s residual in
stage 1 to their mean outcome in stage 2, which implicitly induces a within-subject correlation of
β/
√

1 + β2 between Yi1 and Yi2.
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3.2.3 Prior Distributions of Parameters

We incorporate prior knowledge by first assuming that the placebo mean has a N(µ0, η
2) prior

distribution, where the value of η quantifies how confident we are about the placebo having mean
µ0. This information would likely be informed by natural history studies, drug registries or expert
opinions. For the mean outcomes of participants assigned to low and high dose, we use normal
prior distributions with prior means µ0 + γ1 and µ0 + γ2, respectively, each with variance η2. In
practice, one can assume different prior standard deviations for the mean outcomes of all three
treatment arms. We also assume σ, the standard deviation of the stage 1 and 2 outcomes, has a
Gamma(θ1, θ2) prior distribution.

The elicitation of prior distributions from experts’ opinions is not always straightforward due
to the scarcity of historic information or may not be representative of current data. Thus, for
the prior distributions for the mean outcomes, we also consider a mixture prior approach that
mixes an informative prior with a non-informative one. Suppose we denote two proper probability
densities of a parameter x as f1(x) and f2(x), then f(x) =

∑2
k=1wifi(x) is the density of a mixture

distribution that consists of the two component densities with weights w1 and w2, respectively,
given that w1 + w2 = 1. We assume such a mixture distribution for the prior distribution of each
mean parameter of interest.

3.2.4 Computations of Posterior Distributions and Considerations

Based on the conditional joint stage model construction in Section 3.2.2, the observed outcomes
from the two stages jointly follow a bivariate normal distribution as

Yi1, Yi2|Ti1=k,Ti2=k′,µP ,µL,µH ,α,β
i.i.d∼ BV N

((
µk

µk′ + α

)
,

(
σ2 βσ2

βσ2 (β2 + 1)σ2

))
.

The marginal expected outcome observed at the end of stage 2 is the mean outcome of the treat-
ment received at stage 2 as if it were received in stage 1, but adjusted by the shift parameter α.
The marginal variance of samples collected in stage 2 is influenced by the linkage parameter and
becomes (β2 + 1)σ2. Meanwhile, the linkage parameter induces a within-subject correlation of
β/
√

(1 + β2) between Yi1 and Yi2. Having the likelihood constructed based on the model assump-
tion as above, the posterior distribution of all unknown parameters θ = (µP , µL, µH , α, β) given
the observed data can then be computed by incorporating the prior distributions as specified in
Section 3.2.3. We draw samples from the posterior distribution generated via Monte Carlo Markov
Chain algorithm and we take the posterior means of each parameter as their Bayesian estimators.

Including the shift parameter α in the proposed model adds in flexibility and allows researchers
to account for potential resistance to the drug given historic knowledge of the drug. The linkage
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parameter results in more variability in stage 2 observations, but also helps in efficiency gains in
estimating the mean outcomes of low dose and high dose by inducing within-patient correlation.
The estimation of placebo is impacted by stage 2 data and therefore likely to be slightly biased,
but our simulations suggest that the contrast between drug levels and placebo remain essentially
unbiased and less variable than stage 1 estimators.

3.3 Simulations

3.3.1 Data Generation and Parameter Values

Via simulation, we examine the performance of our approach in three scenarios for a trial that will
enroll a total of N participants. For each simulation, we assign N/3 participants equally to receive
placebo, low and high doses of the study treatment in stage 1. The observed continuous outcomes
collected after stage 1 are randomly drawn from a normal distribution with standard deviation
σ = 25 and with means being drawn from the simulation scenarios to be specified later in this
section. The response variable Z is set to 1 for any stage 1 outcome greater than or equal to 0 (e.g.
No change or increase in FEV1 from baseline). The participants who receive high dose in stage 1
with Z = 0 remain at the same dose level in stage 1, while the others are re-randomized with equal
probabilities to receive low or high dose of the study treatment in stage 2. We set values of α and
β for the conditional mean stage 2 outcomes as specified below. Finally, the continuous endpoints
at the end of stage 2 are sampled from a normal distribution with the same standard deviation of
σ = 25.

In terms of the parameter values for µP , µL and µH , we consider three scenarios. In Scenario 1,
we simulate stage 1 outcomes under a “null” setting in which placebo, low and high doses all have
the same mean outcome. We have selected µP = µL = µH = −60, which is motivated by the
results presented in McCormack et al. (2011). We then examine the performance of our approach
in two alternative settings. In Scenario 2, we have a dose-response pattern among the three arms,
with mean stage 1 outcomes increasing with the dose. Specifically, we have selected µP = −75,
µL = 0, and µH = 25. In Scenario 3, we examine a setting in which the low and high doses are
equally effective, so that µP = −75 and µL = µH = 0. All other parameter values used in these
two scenarios are equal to those used in Scenario 1.

As the benchmark simulations, we implemented the three data generating scenarios described
above with a total sample size of N = 60, α = 0 and β = 1 that yields a conditional correlation of
0.71 between the primary outcomes in the two stages. We repeated our simulations for these three
scenarios by first using smaller sample sizes (N = 30 and N = 15) to assess if smaller numbers
of participants could still lead to acceptable operating characteristics. We also conducted a set of
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simulations in which outcomes are no longer normally distributed by adding a skewed error to each
individual mean. The skewed error is built by sampling values from a Gamma distribution with
mean 2σ and standard deviation σ that are then shifted by 2σ so that the error terms are centered
at 0 with a skewness of 0.28. To address the potential impact of discrepancy between our assumed
prior means and true parameter values, we performed additional simulations in which α = −2 and
β = 1 and in which α = 0 and β = 0.5. Because our model assumes values for α and β that
are constant regardless of treatment received in stage 1, we performed additional simulations in
which one of the two parameters, or both parameters, have values that are different across the three
treatment arms.

3.3.2 Prior Distributions

In our Bayesian analysis, we examine two different sets of prior distributions. In the first set, we
assume µP ∼ N(−75, 252), µL ∼ N(0, 252), and µH ∼ N(25, 252), so that the means in the
three prior distributions match the actual values used to simulate data in Scenario 2, i.e. the mean
responses in stage 1 increase with dose. We refer to this as our “optimistic” set of priors. We
also assume σ ∼ Gamma(25, 1), α ∼ N(0, 2), and β ∼ N(0, 1). In the second set of prior
distributions, which we refer to as a mixture set of priors, we mix the “optimistic” prior of each
treatment mean parameter with a non-informative prior with equal weights (w1 = w2 = 0.5). The
non-informative prior for each mean parameter is selected as a normal distribution with a mean of
zero and a variance of 1000. This mixture allows for a more flexible shape of the prior distributions
and indicates less certainty in the treatment effect. The prior distributions for σ, α, and β remain
the same.

3.3.3 Results

All simulations were done using R, version 4.0.3. Each scenario was simulated 2,000 times and
draws from the posterior distributions of all parameters were generated using Markov Chain Monte
Carlo via the R library rjags. The posterior mean is used as a point estimate and we compute the
highest posterior density (HPD) regions that include 95% of the posterior draws. Each scenario is
summarized by the mean bias, root mean-square error (rMSE), and the coverage rate and width of
the 95% credible intervals (CI) of the three stage 1 means, as well as the stage 1 mean differences
between placebo and each of low and high doses. As a comparator, we also fit our models based
solely on the data from the first stage. Results can be found in Tables 3.1 - 3.4. Simulation codes
are available at https://github.com/sqrfang/snSMART_PLH.

In Table 3.1, we present the simulation results under Scenarios 1-3 with the optimistic prior
setting. Across all three scenarios, the joint stage model outperforms the first stage model with
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Bias rMSE CR WidthScenario Parameter JS FS JS FS JS FS JS FS
1 µP 0.79 -0.64 4.23 5.34 0.96 0.96 17.12 21.66

µL 2.46 2.96 4.86 5.97 0.92 0.93 16.78 21.74
µH 3.16 4.33 5.28 6.82 0.90 0.89 16.97 21.82
µL − µP 1.67 3.60 5.10 8.17 0.95 0.94 19.97 30.72
µH − µP 2.37 4.97 5.42 8.85 0.94 0.92 20.50 30.78

2 µP 0.00 0.09 4.15 5.31 0.96 0.96 17.07 21.52
µL 0.06 0.01 3.96 5.16 0.96 0.96 16.02 21.53
µH 0.20 0.16 4.05 5.22 0.95 0.96 16.05 21.53
µL − µP 0.07 -0.08 4.65 7.31 0.97 0.96 19.51 30.45
µH − µP 0.21 0.07 4.70 7.29 0.96 0.95 19.60 30.44

3 µP 0.21 0.09 4.16 5.31 0.96 0.96 17.06 21.53
µL 0.38 0.01 4.04 5.16 0.96 0.96 16.27 21.53
µH 0.86 1.37 4.18 5.40 0.94 0.95 16.36 21.54
µL − µP 0.16 -0.08 4.71 7.31 0.96 0.96 19.65 30.45
µH − µP 0.64 1.28 4.78 7.40 0.96 0.95 19.89 30.46

Table 3.1: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.2.2) with total
sample size N = 60, using the optimistic prior setting. µP ,µL and µH are the mean outcome
for placebo, low dose and high dose in stage 1, respectively. JS=joint stage model, FS=first stage
model.

comparably lower rMSE and narrower 95% credible intervals in estimating the mean outcomes of
each dose level and their differences with placebo. In Scenario 1, µL and µH are overestimated in
both the joint stage model and the first stage model, affecting the bias of their differences with µP
as well. In Scenario 2, both joint stage estimators and first stage estimators for each dose level have
low bias because we used priors that are centered around the true parameter values. As for Scenario
3, the prior mean of µH is far from the true value, while the prior means of µP and µL are correctly
specified. We also see that the simulated coverage rates of the joint stage estimators for µL and µH
are slightly below 95% under Scenario 1. However, the coverage rates for the difference in mean
stage 1 outcomes are stable at around 95%, which is important because oftentimes decisions are
made on the difference in means.

Table 3.2 consists of the same scenarios as shown in Table 1, but using the mixture prior setting.
In Scenario 1, we observe slightly less biased estimates of µL and µH as well as their differences
between placebo, as compared to the same models in Table 3.1, and we observe similarly biased
estimates of parameters for mean outcomes under Scenarios 2 and 3. The differences in the widths
of the 95% HPD regions and rMSEs for the estimates between Table 3.1 and Table 3.2 are neg-
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Bias rMSE CR WidthScenario Parameter JS FS JS FS JS FS JS FS
1 µP 0.26 -0.63 4.21 5.35 0.96 0.96 17.18 21.61

µL 1.73 2.57 4.65 5.96 0.94 0.93 17.02 22.09
µH 1.41 1.60 4.82 6.20 0.93 0.93 17.69 23.22
µL − µP 1.47 3.20 5.07 8.13 0.95 0.94 20.04 30.93
µH − µP 1.15 2.23 5.17 8.15 0.96 0.94 20.81 31.74

2 µP 0.00 0.09 4.15 5.31 0.96 0.96 17.07 21.54
µL 0.07 0.01 3.96 5.17 0.96 0.96 16.02 21.53
µH 0.20 0.16 4.05 5.23 0.95 0.96 16.05 21.53
µL − µP 0.07 -0.08 4.65 7.32 0.96 0.96 19.51 30.45
µH − µP 0.21 0.07 4.70 7.29 0.96 0.95 19.61 30.45

3 µP 0.21 0.09 4.16 5.31 0.96 0.96 17.07 21.54
µL 0.37 0.01 4.05 5.17 0.96 0.96 16.28 21.54
µH 0.85 1.36 4.18 5.41 0.95 0.95 16.36 21.56
µL − µP 0.16 -0.08 4.71 7.32 0.96 0.96 19.66 30.46
µH − µP 0.64 1.26 4.78 7.41 0.96 0.95 19.90 30.48

Table 3.2: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.2.2) with total
sample size N = 60, using the mixture prior setting. µP ,µL and µH are the mean outcome for
placebo, low dose and high dose in stage 1, respectively. JS=joint stage model, FS=first stage
model.

ligible in Scenarios 2 and 3, while estimates in Table 3.2 have similar width and smaller rMSE
because of less bias. Overall, we still see the efficiency gain in the estimates of all mean outcome
parameters when using the joint stage estimators, which carries through to the differences between
low dose versus placebo, and high dose versus placebo. The coverage rates of all parameters under
all scenarios are around 95%.
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Bias rMSE CR WidthScenario Parameter JS FS JS FS JS FS JS FS
Optimistic priors
1 µP 1.47 -1.37 5.79 7.11 0.96 0.96 24.05 30.26

µL 4.90 6.05 7.51 9.26 0.89 0.90 23.66 30.55
µH 5.61 8.10 8.14 10.85 0.86 0.85 23.72 30.91
µL − µP 3.43 7.42 7.66 12.34 0.94 0.92 28.55 43.12
µH − µP 4.14 9.47 8.12 13.94 0.92 0.88 28.83 43.42

2 µP 0.05 0.06 5.59 7.00 0.97 0.96 23.83 29.68
µL 0.36 0.32 5.43 7.00 0.96 0.96 22.29 29.68
µH -0.07 -0.01 5.56 7.15 0.95 0.96 22.27 29.68
µL − µP 0.31 0.26 6.67 9.86 0.96 0.96 27.56 41.98
µH − µP -0.12 -0.07 6.67 10.19 0.96 0.96 27.59 41.97

3 µP 0.44 0.06 5.61 7.00 0.97 0.96 23.82 29.70
µL 0.91 0.32 5.61 7.00 0.95 0.96 22.68 29.71
µH 1.19 2.29 5.73 7.51 0.95 0.95 22.65 29.76
µL − µP 0.47 0.26 6.75 9.86 0.96 0.96 27.81 42.01
µH − µP 0.75 2.23 6.78 10.43 0.96 0.95 27.91 42.05

Mixture priors
1 µP 0.51 -1.33 5.72 7.12 0.97 0.96 24.18 30.03

µL 3.60 5.25 7.02 9.18 0.91 0.91 24.24 31.39
µH 2.40 3.11 7.30 9.66 0.91 0.91 25.48 34.26
µL − µP 3.09 6.58 7.62 12.18 0.93 0.92 28.71 43.53
µH − µP 1.89 4.44 7.68 12.53 0.94 0.93 29.58 45.68

2 µP 0.04 0.06 5.59 7.01 0.97 0.96 23.84 29.69
µL 0.36 0.32 5.43 7.01 0.96 0.96 22.29 29.70
µH -0.08 -0.01 5.56 7.15 0.95 0.96 22.28 29.70
µL − µP 0.31 0.26 6.67 9.87 0.96 0.96 27.56 42.00
µH − µP -0.12 -0.07 6.67 10.19 0.96 0.96 27.59 41.99

3 µP 0.44 0.06 5.61 7.01 0.97 0.96 23.83 29.72
µL 0.91 0.32 5.61 7.01 0.95 0.96 22.68 29.73
µH 1.17 2.26 5.74 7.52 0.95 0.95 22.67 29.81
µL − µP 0.47 0.27 6.75 9.87 0.96 0.96 27.81 42.04
µH − µP 0.73 2.20 6.78 10.44 0.96 0.95 27.92 42.09

Table 3.3: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.2.2) with total
sample size N = 30, using the optimistic prior setting or mixture prior setting. µP ,µL and µH are
the mean outcome for placebo, low dose and high dose in stage 1, respectively. JS=joint stage
model, FS=first stage model.
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Bias rMSE CR WidthScenario Parameter JS FS JS FS JS FS JS FS
Optimistic priors
1 µP 2.39 -2.64 7.87 9.40 0.97 0.97 34.19 42.03

µL 8.79 11.07 11.75 14.31 0.84 0.86 33.46 43.10
µH 10.59 15.84 13.13 18.35 0.79 0.73 33.42 44.21
µL − µP 6.40 13.72 11.48 18.80 0.92 0.89 41.64 60.60
µH − µP 8.20 18.49 12.42 22.71 0.91 0.82 41.54 61.58

2 µP 0.25 0.10 7.50 9.18 0.97 0.97 33.36 40.15
µL 0.35 0.10 7.40 9.22 0.96 0.98 30.74 40.16
µH -0.10 0.29 7.36 9.34 0.96 0.96 30.59 40.15
µL − µP 0.11 -0.01 9.17 13.03 0.96 0.97 39.49 56.78
µH − µP -0.35 0.19 8.96 13.29 0.97 0.96 39.41 56.78

3 µP 0.91 0.11 7.56 9.17 0.97 0.97 33.33 40.24
µL 1.18 0.10 7.65 9.20 0.96 0.98 31.29 40.24
µH 2.35 4.50 7.71 10.37 0.95 0.95 31.06 40.41
µL − µP 0.28 -0.01 9.25 13.01 0.96 0.97 39.82 56.92
µH − µP 1.45 4.40 9.16 14.01 0.96 0.95 39.72 57.04

Mixture priors
1 µP 0.90 -2.51 7.80 9.46 0.97 0.97 34.40 41.40

µL 6.62 9.33 10.88 13.98 0.89 0.88 34.85 45.18
µH 5.09 7.53 11.29 15.78 0.89 0.88 37.40 51.74
µL − µP 5.72 11.84 11.42 18.27 0.93 0.90 42.17 61.61
µH − µP 4.19 10.04 11.27 19.64 0.94 0.89 43.40 66.68

2 µP 0.24 0.10 7.51 9.19 0.97 0.97 33.40 40.21
µL 0.35 0.09 7.40 9.23 0.96 0.97 30.75 40.22
µH -0.10 0.29 7.37 9.37 0.96 0.96 30.62 40.20
µL − µP 0.11 -0.01 9.17 13.05 0.96 0.97 39.52 56.86
µH − µP -0.35 0.19 8.97 13.32 0.97 0.96 39.44 56.86

3 µP 0.90 0.11 7.57 9.19 0.97 0.97 33.37 40.30
µL 1.17 0.09 7.66 9.23 0.96 0.98 31.32 40.30
µH 2.31 4.43 7.72 10.40 0.95 0.95 31.13 40.57
µL − µP 0.27 -0.01 9.26 13.04 0.96 0.97 39.86 56.99
µH − µP 1.41 4.32 9.17 14.05 0.96 0.95 39.76 57.18

Table 3.4: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.2.2) with total
sample size N = 15, using the optimistic prior setting. µP ,µL and µH are the mean outcome for
placebo, low dose and high dose in stage 1, respectively. JS=joint stage model, FS=first stage
model.
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We then repeated the simulations in Scenarios 1-3 using the two prior settings, but with total
sample sizes of 30 and 15. The simulation results are presented in Table 3.3 for N = 30 and Table
3.4 for N = 15. In Scenario 1, as the sample size decreases, we observe increases in bias and
rMSE for all estimators and slightly lower coverage rates than expected. In Scenarios 2 and 3, the
bias using optimistic priors with smaller total sample size is comparable to the bias with N = 60,
but estimates from smaller sample size have greater rMSE and width of the 95% credible intervals.
Nevertheless, the joint stage model provides estimators with more efficiency and comparable or
less bias, than the first stage model.

3.3.4 Sensitivity to Error Distributions

We built skewed error distributions for the observed outcomes in simulated data by sampling from
a Gamma distribution with 2σ as the mean and σ as the standard deviation, then taking 2σ out
of each sample. We repeat the simulated scenarios shown in Table 3.1 with the modified error
distribution and present the results in Table 3.5.

In general, we observe very similar accuracy and efficiency of our models comparing the two
data generation approaches. The difference in mean outcomes for dose levels versus placebo still
have comparable bias when being compared to the reference scenarios. Notice that the similarity
is due to the skewed error term being built in a way that mimics a normal distributed error with
skewness of 0.28. Higher bias is likely to be observed when the error term has higher skewness.

3.3.5 Sensitivity to Shift and Linkage Parameter

Tables 3.6-3.7 demonstrate that joint stage model results are impacted by the discrepancy between
the true values of α and β and their respective prior distributions. Specifically, in Table 3.6, al-
though deviation of α from its prior mean leads to more biased estimators for the mean response
of all treatment arms, there is no substantial change in their efficiency. In Table 3.7, we see that the
true value of β impacts the efficiency of our estimates by altering the within-subject correlations
in the outcomes, such that there is greater rMSE when correlation is lower.

Last, in Table 3.8, in which our assumption of constant values for α and β is violated, we find
increased bias for the treatment means and slightly lower coverage rates when β actually varies
by treatment arm. Bias and efficiency differ from ideal settings when assumptions about α and
β are violated, but bias remains low in general and using data from both stages in a joint stage
model is more efficient than using data from only the first stage. Thus, our methods are relatively
robust to the prior distributions chosen for α and β and using a parsimonious model even if there
are treatment specific α and β values.
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Bias rMSE CR WidthScenario JS FS JS FS JS FS JS FS
1 µP 0.71 -0.79 4.24 5.35 0.95 0.95 17.13 21.59

µL 2.39 2.77 4.99 6.14 0.91 0.93 16.79 21.67
µH 2.88 4.18 5.25 6.95 0.90 0.89 16.92 21.76
µL − µP 1.68 3.57 5.22 8.29 0.94 0.93 20.04 30.62
µH − µP 2.17 4.97 5.53 9.08 0.93 0.92 20.46 30.69

2 µP -0.08 -0.06 4.15 5.33 0.96 0.95 17.07 21.46
µL 0.03 -0.16 4.09 5.28 0.95 0.95 16.02 21.46
µH -0.13 0.02 4.07 5.27 0.95 0.96 16.01 21.46
µL − µP 0.12 -0.10 4.80 7.45 0.95 0.95 19.55 30.35
µH − µP -0.05 0.08 4.86 7.54 0.95 0.95 19.57 30.36

3 µP 0.14 -0.06 4.16 5.34 0.96 0.95 17.07 21.47
µL 0.32 -0.16 4.20 5.28 0.95 0.95 16.34 21.47
µH 0.56 1.23 4.17 5.49 0.95 0.95 16.38 21.48
µL − µP 0.18 -0.10 4.86 7.45 0.95 0.95 19.74 30.36
µH − µP 0.42 1.29 4.94 7.65 0.95 0.95 19.93 30.37

Table 3.5: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.2.2) with
Gamma-distributed individual error, using the optimistic prior setting. µP , µL and µH are the
mean outcome of having placebo, low dose and high dose in stage 1, respectively. JS=joint stage
model, FS=first stage model.

3.4 Discussion

In this chapter, we propose an snSMART design that compares dose levels to placebo when the
outcome is continuous and describe how this model can be applied to a trial studying treatment for
the rare disease LAM. We propose a Bayesian model to obtain the stage 1 mean outcomes of each
dose level and test its performance across various assumptions via simulations. We conclude that
the proposed model that incorporates data from both stages provides results with low bias and high
efficiency compared to a similar model that uses only first stage data.

The endpoint of interest at the end of stage 1 and 2 in the proposed snSMART design is con-
tinuous, but the design requires a binary outcome variable for re-randomization to second stage
treatment. In our example and the simulations, we defined the response variable, Z, as the di-
chotomization of the primary continuous outcome collected at the end of stage 1. In reality, this
response variable can actually be any binary outcome that is reasonable to investigators, having
either a strong or weak correlation to the primary outcome. Allowing this variable to differentiate
from the primary outcome is especially helpful when the measurement of the primary outcome is
expensive or time-consuming and could hold up the second stage treatment assignment. The binary
response variable is not directly used in our proposed model because it is less informative than the
actual continuous outcome observed at the end of stage 1 which would be readily available at the
end of the trial for analysis.
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Bias rMSE CR WidthScenario JS FS JS FS JS FS JS FS
1 µP 0.12 -0.64 4.93 5.34 0.96 0.96 19.90 21.65

µL 2.18 2.96 4.71 5.97 0.93 0.93 16.99 21.74
µH 2.56 4.33 4.55 6.82 0.92 0.89 15.65 21.82
µL − µP 2.06 3.60 6.15 8.17 0.94 0.94 23.92 30.71
µH − µP 2.44 4.97 6.17 8.85 0.95 0.92 23.57 30.79

2 µP 0.02 0.09 4.92 5.31 0.96 0.96 19.85 21.53
µL 0.01 0.01 3.79 5.16 0.97 0.96 15.75 21.53
µH 0.21 0.16 3.79 5.22 0.96 0.96 15.56 21.53
µL − µP -0.02 -0.08 5.61 7.31 0.96 0.96 23.33 30.44
µH − µP 0.19 0.07 5.63 7.29 0.96 0.95 23.30 30.44

3 µP 0.14 0.09 4.92 5.31 0.96 0.96 19.84 21.53
µL 0.20 0.01 3.91 5.16 0.97 0.96 16.19 21.54
µH 0.81 1.37 3.84 5.41 0.95 0.95 15.58 21.55
µL − µP 0.06 -0.08 5.67 7.31 0.96 0.96 23.53 30.46
µH − µP 0.67 1.28 5.65 7.40 0.96 0.95 23.38 30.47

Table 3.6: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.3.2) with
α = 0 and β = 0.5, using the optimistic prior setting. µP , µL and µH are the mean outcome of
having placebo, low dose and high dose in stage 1, respectively. JS=joint stage model, FS=first
stage model.

In the simulated trials with very small total sample sizes (< 30), we observe greater bias as the
prior means deviate farther away from the actual values. We also observe slightly lower coverage
rates for the credible intervals for low and high dose. However, well-specified prior distributions
can substantially improve the accuracy and efficiency. Investigators should exercise extra caution
in the choice of the prior distributions for the means when the total sample size is small (≤ 30).

Under all primary simulation scenarios, we tested two sets of prior distributions, including an
optimistic one and one with a mixture prior, both assuming normal priors as the basic elements
for all three parameters that represent the mean outcomes for three dose levels. The normal dis-
tribution is most intuitive since it is well-known among researchers and the parameters are easily
elicited from experts. Morita et al. (2008) demonstrated that the effective sample size for a normal
prior distribution is the ratio of the sampling variance to the normal prior variance when sampling
variance is known. This helps in determining the values of the hyperparameters used in prior dis-
tributions. For the mixture prior distribution, we assumed equal weights for the informative and
non-informative element distributions although we could consider unequal weights or even adap-
tively determining the weights. For example, researchers may consider incorporating ways such as
an automatic prior elicitation method (Egidi et al., 2021) to choose the weight given the observed
data. We also found that the estimates using the mixture priors are robust especially when the prior
means misspecify the true mean outcomes. The mixture prior is associated with less bias and better
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Bias rMSE CR WidthScenario JS FS JS FS JS FS JS FS
1 µP 1.40 -0.64 4.39 5.34 0.95 0.96 17.11 21.66

µL 2.44 2.96 4.85 5.97 0.92 0.93 16.79 21.73
µH 2.56 4.33 4.96 6.82 0.91 0.89 17.01 21.81
µL − µP 1.05 3.60 4.93 8.17 0.96 0.94 19.94 30.71
µH − µP 1.17 4.97 5.02 8.85 0.96 0.92 20.48 30.79

2 µP 0.58 0.09 4.19 5.31 0.96 0.96 17.08 21.52
µL -0.22 0.01 3.96 5.16 0.96 0.96 16.03 21.52
µH -0.15 0.16 4.07 5.22 0.95 0.96 16.10 21.52
µL − µP -0.80 -0.08 4.72 7.31 0.97 0.96 19.52 30.44
µH − µP -0.73 0.07 4.76 7.29 0.96 0.95 19.63 30.44

3 µP 0.80 0.09 4.23 5.31 0.96 0.96 17.07 21.53
µL 0.19 0.01 4.02 5.16 0.96 0.96 16.26 21.53
µH 0.42 1.37 4.15 5.41 0.95 0.95 16.41 21.55
µL − µP -0.61 -0.08 4.74 7.31 0.96 0.97 19.65 30.45
µH − µP -0.38 1.28 4.77 7.40 0.96 0.95 19.92 30.46

Table 3.7: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% credible
intervals for the posterior mean treatment effects under Scenarios 1-3 (see Section 3.3.2) with
α = −2 and β = 1, using the optimistic prior setting. µP , µL and µH are the mean outcome of
having placebo, low dose and high dose in stage 1 respectively. JS=joint stage model, FS=first
stage model.

coverage under the null scenario where the treatment groups are equivalent.
When this study design is used in practice, we note a few additional considerations. When

describing our design, we assume equal rerandomization in stage 2 for all patients except for the
non-responders to high dose in stage 1. In our proposed design, questions might arise whether it
is ethical to allow the low-dose responders to receive a higher dose level in stage 2. While tox-
icity may be a concern, a higher dose may result in increased efficacy; for patients with severe
and fatal rare diseases such as certain types of cancers, the potential improvements in mitigation
or curative effects from taking a higher dose level may outweigh the risks of the accompanied
potential toxicity. However, in practice, researchers might consider reasonable unequal rerandom-
ization adapting to response measured at the end of stage 1. For example, low dose responders may
continue to receive low dose while all low dose non-responders could be assigned to high dose.
When using a dichotomous variable Z to restrict rerandomization for any group, we suggest this Z
variable is a quickly accessible response variable measured at the end of stage 1. A washout period
can be included in our design, similar to a standard crossover design if a large carryover effect is
expected. Our method can allow for a carryover effect by assuming varied α parameters among
different stage 1 treatments in the Bayesian model. However, the model and estimation are most
appropriate when little to no carryover effect is expected.

Similarly, when analyzing the data from this design, we should note some additional considera-
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Bias rMSE CR WidthScenario 1 Parameter JS FS JS FS JS FS JS FS
αP = αL = αH = 0 µP 0.05 0.09 5.17 5.31 0.96 0.96 20.70 21.53
βP = βL = βH = 0.3 µL -0.02 0.01 3.67 5.16 0.97 0.96 15.37 21.52

µH 0.21 0.16 3.63 5.22 0.96 0.96 15.11 21.53
µL − µP -0.07 -0.08 5.98 7.31 0.96 0.96 24.65 30.44
µH − µP 0.16 0.07 5.99 7.29 0.96 0.95 24.56 30.45

αP = 0, αL = −1, αH = −2 µP -0.10 0.09 5.17 5.31 0.96 0.96 20.72 21.53
βP = βL = βH = 0.3 µL -0.44 0.01 3.69 5.16 0.96 0.96 15.38 21.53

µH -0.19 0.16 3.65 5.22 0.96 0.96 15.13 21.53
µL − µP -0.34 -0.08 5.99 7.32 0.96 0.96 24.66 30.44
µH − µP -0.10 0.07 6.00 7.29 0.96 0.95 24.59 30.45

αP = αL = αH = 0 µP 0.05 0.09 5.62 0.93 0.93 0.96 20.42 21.52
βP = 0.01, βL = 0.5, βH = 1 µL 0.56 0.01 3.90 0.97 0.97 0.96 16.22 21.53

µH -0.34 0.16 3.98 0.96 0.96 0.96 16.03 21.52
µL − µP 0.51 -0.08 6.65 0.93 0.93 0.96 24.00 30.45
µH − µP -0.39 0.07 6.67 0.92 0.92 0.95 23.98 30.44

αP = 0, αL = −1, αH = −2 µP -0.13 0.09 5.62 5.31 0.93 0.96 20.44 21.52
βP = 0.01, βL = 0.5, βH = 1 µL 0.21 0.01 3.86 5.16 0.97 0.96 16.22 21.53

µH -0.61 0.16 4.03 5.22 0.95 0.96 16.06 21.52
µL − µP 0.34 -0.08 6.63 7.31 0.92 0.96 24.00 30.45
µH − µP -0.48 0.07 6.69 7.29 0.92 0.95 24.01 30.44

Table 3.8: Bias, root mean-square error (rMSE), coverage rates (CR) and the width of 95% cred-
ible intervals for the posterior mean treatment effects under Scenario 1 (see Section 3.3.2) with
varying α or β by stage 1 treatment arm, using the optimistic prior setting. µP , µL and µH are the
mean outcome of having placebo, low dose and high dose in stage 1 respectively. JS=joint stage
model, FS=first stage model. αP , αL, αH are the shift parameter for patients receiving placebo,
low dose and high dose in stage 1. Similarly, βP , βL, βH are the respetive linkage parameter for
each treatment arm.

tions. When building the joint stage Bayesian model, we assume the same conditional variance for
the observations from the two stages. In reality, this “equal variance” assumption can be relaxed
as long as there is evidence to support other assumptions. In choosing the prior distributions for
the parameters, our case simulations mainly focus on how to deal with the misspecification of the
mean outcome parameters. In addition, for the shift parameter α, we always assume its mean to be
around 0, implying little carryover effect nor stage effect exists. The prior variance of the α reflects
our belief in the possible range of treatment effect shiftings in stage 2. Since β has the same sign
as the correlation coefficient within a patient’s observations, it is very likely to be positive. Having
the prior distribution of β centered around 0 is to account for the situation when extremely weak
correlation exists between observations across two stages. Moreover, although α and β might vary
among different stage 1 treatments, our simulations show that our model was still quite robust to
such circumstances.

One limitation of our Bayesian model is the potential model misspecification due to little prior
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information. For example, in Section 3.3.3, we detect non-negligible bias when using the opti-
mistic priors (implying belief in strong treatment effects) to analyze data generated under Scenario
1 where none of the three treatments were efficacious. As an alternative, we apply the mixture prior
setting in which we assume equal weights for the optimistic and non-informative element distribu-
tions to analyze the same data. We found that the estimates using the mixture priors have smaller
bias and better coverage under Scenario 1 than the estimates using the optimistic priors. Under the
other two scenarios, the mixture priors exhibit little bias while sacrificing a small amount of effi-
ciency, as compared to the optimistic priors. Thus, we believe the utilization of a flexible type of
prior distribution can help accommodate the lack or misspecification of prior information. Another
limitation of our design is the potential loss to follow-up for some patients due to the longer dura-
tion of snSMART. As opposed to the benchmark one-stage parallel arm design, snSMARTs allow
patients to receive more than one dose level or treatment throughout their follow-up and collect
more observations, all of which require an extended study period. Potential compliance issues are
inevitable in such studies. Nevertheless, we believe that restricting placebo to be a treatment option
only for stage 1 may potentially improve patients’ retention and compliance and thus may offset
the loss due to the extension of the follow-up period. As a final limitation, we note the risk of very
high or very low observed response rates to stage 1 treatments. For example, the stage 1 response
rates are extremely low (less than 5%) for all patients under Scenario 1 where all three treatments
have equal low mean outcome. Since the response rate only impacts the rerandomization of those
patients who receive high dose in stage 1, only a small number of patients are impacted. Thus, an
unequal allocation does not make a great impact to the analysis nor the decision making since our
major objective in this study is to examine the efficacy of each dose level instead of identifying
the best treatment regimen. However, if randomization is more restricted in the second stage (i.e.
second stage treatment depends on response for more than those initially assigned to high dose),
bias and efficiency may be detrimentally affected.

Our future work includes exploring methods that estimate and compare the mean outcome of
the embedded treatment regimens in the proposed two-stage design and constructing a way to
calculate the sample size required for this snSMART design with regards to our proposed model.
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CHAPTER 4

Bayesian Sample Size Determination Methods for
Continuous Outcomes in a Small N, Sequential,

Multiple Assignment, Randomized Trial (snSMART)
Comparing Two Dose Levels with Placebo

4.1 Introduction

At the experimental design stage, determining sample size is very important, and it is a function of
multiple factors including the study population size, effect size of interest, and available resources.
Patient recruitment to a placebo-controlled randomized clinical trial (RCT) is especially challeng-
ing in rare disease clinical trials as the number of eligible and willing patients is limited. Thus,
novel clinical trial designs that reduce the required sample size while efficiently estimating treat-
ment effects are in great demand. The small n, sequential, multiple assignment, randomized trial
(snSMART) (Tamura et al., 2016) is such a design that provides efficient treatment effect estimates
in small samples.

Sample size determination (SSD) is the decision made about the number of human participants
needed for an experiment. Frequentist SSD methods have existed for decades (Cohen, 1962), and
most of the classical frequentist parametric methods follow power and size control (PSC) rules
(Adcock, 1997) to determine the required sample size. Such methods involve the use of a test
statistic from the observed data (i.e. t-statistic) to construct the corresponding power analysis.
Given a hypothesis test, statistical power is defined as the probability of correctly rejecting the
null hypothesis. Since the determination of sample size is made prior to the collection of data,
investigators have to choose a single specific value of the effect size of interest and the variability
of the effect based on previous knowledge or data.

Bayesian SSD approaches handle prior information about the parameters of interest differently
than frequentist approaches. Bayesian approaches account for uncertainty in unknown parameters
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through the use of prior distributions and determine the required sample size through a variety
of performance criteria. Adcock (1988) first proposed the Average Coverage Criterion (ACC)
rule, which determines sample size by controlling the average coverage rate of posterior credible
intervals with fixed length. Joseph et al. (1995) developed the Average Length Criterion (ALC)
method, choosing sample size by controlling the average length of posterior credible intervals with
fixed coverage rate. Joseph and Belisle (1997) proposed the Worst Outcome Criterion (WOC)
rule, which is a more conservative approach that controls both the expected coverage rate and the
posterior interval length.

Methods have also been developed to account for hypothesis testing or model selection us-
ing the Bayes factor (Raftery et al., 1995; Weiss, 1997). In addition to these performance based
approaches, Lindley (1997) argued that SSD is a decision problem and proposed a decision the-
oretic approach with utility theory. More recent work includes simulation-based Bayesian SSD
approaches (Wang and Gelfand, 2002; Sahu and Smith, 2006; Fu et al., 2021), evidence-based ap-
proaches (De Santis, 2004), approaches using historical data (De Santis, 2007; Chen et al., 2011)
and Bayesian-frequentist SSD approaches (Brutti et al., 2014). Simulation-based approaches are
often implemented when using a complicated hierarchical Bayesian model since simulations do
not require approximating the posterior distributions with explicit expressions. However, the com-
putational burden caused by recursive simulations is considerably high despite increasing compu-
tational speed over the past few decades. When other explicit sample size calculation methods are
available, these methods can be disseminated more broadly than simulation-based methods.

Most of the SSD methods we have described are concerned with the comparison of two popula-
tion means with known sample variance or applications in linear regression. Applying these SSD
methods to trials involving repeated measurements in multiple stages requires further consideration
and derivation. In traditional 2x2 crossover designs, patients are randomized to receive a sequence
of two study treatments. Inference is based on the comparison of effects within each patient re-
moving the intersubject variability, simplifying the sample size calculation (Chow et al., 2017).
In cluster randomized controlled trials, researchers take advantage of the intra-cluster correlation
(ICC) coefficient and update the sample size derived for independent data with the estimated vari-
ance inflation factor (VIF) and the average cluster size (Hemming et al., 2011). Researchers then
construct frequentist or Bayesian SSD approaches based on these fundamental derivations (Wang
et al., 2005; Zou et al., 2003).

In Chapter 3, we developed an snSMART design and a Bayesian analytical approach with the
aim of extracting information from two stages, from which we also demonstrated gains in effi-
ciency. In this chapter, we address SSD for an snSMART of placebo, low and high dose, applying
the ACC to the difference between the treatment effect of low dose and placebo. First, we derive
the posterior distribution of the difference between mean outcomes of low dose versus placebo.
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We then investigate two alternative ways of calculating sample size for the proposed snSMART.
The first approach is to directly apply the existing Bayesian SSD method to the posterior differ-
ence as the outcome. The second method is motivated by cluster randomized controlled trials. We
calculate the sample size needed for the first stage, and adjust this sample size to account for the
extra information contained in the second stage (i.e. a deflation factor as opposed to the variance
inflation factor used in cluster randomized controlled trials).

In Section 4.2.1, we review the study design and statistical model of interest. In Section 4.2.2
- 4.2.4 we present the details of the two candidate SSD approaches. In Section 4.3, we conduct
simulations to demonstrate the performance of our calculated sample size in an snSMART that
analyzes data using our proposed joint stage Bayesian model.

4.2 Methods

4.2.1 A Revisit of the Study Design and the Bayesian Model

We consider the snSMART design proposed in Chapter 3 (Figure 4.1). A total of N patients are
enrolled in the trial. In stage 1, N/3 patients are randomly assigned to each of placebo, low dose
and high dose of the study treatment, respectively. At the end of stage 1, a binary endpoint is
measured for each participant, which determines the reallocation of treatment in stage 2. Patients
receiving high dose in stage 1 who do not respond will continue to receive high dose in stage 2.
All other participants are randomized to either low dose or high dose of the study drug in stage 2
with equal probability. The continuous endpoint of primary interest is collected at the end of both
stages.

To estimate the first stage treatment effects, we adopt the Bayesian joint stage model proposed
in 3. For patient i = 1, . . . , N in stage j = 1, 2, we denote Tij as the treatment assigned and denote
Yij as the observed continuous outcome. Zi = 0, 1 is the binary intermediate endpoint measured
at the end of stage 1 that is used for re-randomization. The conditional model for stage 1 data is
written as Yi1 ∼ N(m1(Ti1), σ

2), in which m1(Ti1) =
∑

k µkI(Ti1 = k), for the three treatment
arms k ∈ {P,L,H}. In stage 2, we adopt the conditional model Yi2 ∼ N(m2(Ti1, Ti2, Yi1), σ

2), in
which m2(Ti1, Ti2, Yi1) = µk′I(Ti2 = k′) + α + β(Yi1 −m1(Ti1)) and k′ ∈ L,H .
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Figure 4.1: Study design of the proposed snSMART with a continuous endpoint. Participants are
equally randomized (R) to one of the first stage treatment arms, placebo, low dose or high dose.
At the end of stage 1, patients are re-randomized to their second stage treatment based on their
response status. Outcomes are collected at the end of stage 1 and stage 2.
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4.2.2 Derivation of the Posterior Variance-Covariance Matrix

Based on the Bayesian joint stage model construction, the observed outcomes from the two stages
are assumed to jointly follow a bivariate normal distribution as:

Yi1, Yi2|Ti1=k,Ti2=k′,µk,µ′k,α,β
i.i.d∼ BV N

((
µk

µk′ + α

)
,

(
σ2 βσ2

βσ2 (β2 + 1)σ2

))
.

Suppose we denote the N observed outcomes at the end of stage j = 1, 2 as Yj , i.e., Y1 =

(Y11, Y21, ..., YN1)
T and Y2 = (Y12, Y22, ..., YN2)

T . Similarly, we denote treatment assignments
in stage j = 1, 2 as Tj , i.e., T1 = (T11, T21, ..., TN1)

T , T2 = (T12, T22, ..., TN2)
T . To help

demonstrate the derivation, we define X1 = (I(T1 = P ), I(T1 = L), I(T1 = H), 0) and
X2 = (I(T2 = P ), I(T2 = L), I(T2 = H), 1), where I(Tj = k) are indicators of receiving
treatment k at stage j, 0 and 1 are single-value vectors of length N (total number of participants).
Denoting the parameters relevant to the expected values of outcomes as µ = (µP , µL, µH , α)T , the
likelihood of the observed data is specified as:

Y =
(
Y1
Y2

)
∼MVN

((
X1µ
X2µ

)
,Σ

)
,

where

Σ =



σ2 . . . 0 βσ2 . . . 0
... . . . ...

... . . . ...
0 . . . σ2 0 . . . βσ2

βσ2 . . . 0 (1 + β2)σ2 . . . 0
... . . . ...

... . . . ...
0 . . . βσ2 0 . . . (1 + β2)σ2


, with dimensions 2N × 2N . We partition the inverse matrix of Σ by four N × N square block
matrices, i.e., Σ−1 =

(
Σ11 Σ12
Σ21 Σ22

)
.

Suppose we fit the model with independent normal prior distributions on unknown parameters
as µ ∼MVN(µ0,Σ0), where

µ0 =

µ
P
0

µL0
µH0
µα0

 , and Σ0 =

τ
2
P 0 0 0
0 τ 2L 0 0
0 0 τ 2H 0
0 0 0 τ 2α


with prior effective sample size of the mean outcome parameters as κk = σ2/τ 2k for treatment
k ∈ P,L,H and κα = σ2/τ 2α for the shift parameter α. The posterior distribution of µ assuming β
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and σ are known is

p(µ|Y,Σ) ∝ exp{−1

2
[
(
Y1 −X1µ
Y2 −X2µ

)T
Σ−1

(
Y1 −X1µ
Y2 −X2µ

)
+ (µ− µ0)

TΣ−10 (µ− µ0)]}

∝ exp{−1

2
[(Y1 −X1µ)TΣ11(Y1 −X1µ) + (Y2 −X2µ)TΣ12(Y1 −X1µ)+

(Y1 −X1µ)TΣ21(Y2 −X2µ) + (Y2 −X2µ)TΣ22(Y2 −X2µ)]}

∝ exp{−1

2
[µT (XT

1 Σ11X1 +XT
2 Σ12X1 +XT

1 Σ21X2 +XT
2 Σ22X2 + Σ−10 )µ+

µT (2XT
1 Σ11Y1 +XT

2 Σ12Y1 +XT
1 Σ12Y2 +XT

1 Σ21Y2 +XT
2 Σ21Y1+

2XT
2 Σ22Y2 + 2Σ−10 µ0)]}.

(4.1)

Let A = XT
1 Σ11X1 + XT

2 Σ12X1 + XT
1 Σ21X2 + XT

2 Σ22X2 + Σ−10 and B = (1/2)(2XT
1 Σ11Y1 +

XT
2 Σ12Y1 +XT

1 Σ12Y2 +XT
1 Σ21Y2 +XT

2 Σ21Y1 + 2XT
2 Σ22Y2 + 2Σ−10 µ0), then the posterior distri-

bution can be written as

p(µ|Y,Σ) ∝ exp{−1

2
(µTA−1µ− 2µTB)}

∝ exp{−1

2
(µ− A−1B)TA(µ− A−1B)}.

(4.2)

Thus, the posterior distribution of µ is multivariate normal with posterior mean µ̂ = A−1B and
posterior variance V = A−1. Specifically, given the observed data,

µ̂ =
1

2
V (2XT

1 Σ11Y1 +XT
2 Σ12Y1 +XT

1 Σ12Y2 +XT
1 Σ21Y2 +XT

2 Σ21Y1 + 2XT
2 Σ22Y2 + 2Σ−10 µ0)

= V



{
∑

i:Ti1=P
[(1 + β2)Yi1 − βYi2] + µP0 κP}/σ2

{
∑

i:Ti1=L
[(1 + β2)Yi1 − βYi2] +

∑
i:Ti2=L

[−βYi1 + Yi2] + µL0 κL}/σ2

{
∑

i:Ti1=H
[(1 + β2)Yi1 − βYi2] +

∑
i:Ti2=H

[−βYi1 + Yi2] + µH0 κH}/σ2

{
∑N

i=1(−βYi1 + Yi2) + µα0κα}/σ2
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and V = (XT
1 Σ11X1 +XT

2 Σ12X1 +XT
1 Σ21X2 +XT

2 Σ22X2 + Σ−10 )−1

=



(1 + β2)NP+ + κP
σ2

−βNPL

σ2

−βNPH

σ2

−βNP+

σ2

−βNPL

σ2

(1 + β2)NL+ +N+L − 2βNLL + κL
σ2

−β(NLH +NHL)

σ2

N+L − βNL+

σ2

−βNPH

σ2

−β(NLH +NHL)

σ2

(1 + β2)NH+ +N+H − 2βNHH + κH
σ2

N+H − βNH+

σ2

−βNP+

σ2

N+L − βNL+

σ2

N+H − βNH+

σ2

NP+ +NL+ +NH+ + κα
σ2



−1

.

In the expression of V , Nkk′ =
∑N

i=1 I(Ti1 = k, Ti2 = k′) for k ∈ {P,L,H} and k′ ∈ {L,H},
and Nk+ =

∑N
i=1 I(Ti1 = k), N+k =

∑N
i=1 I(Ti2 = k). For instance, NPL is the number of

participants who receive placebo in stage 1 and are re-randomized to low dose in stage 2, and
N+L represents the total number of participants who receive low dose in stage 2. Before data
collection, we approximate the expected number Nkk′ according to the prespecified randomization
scheme and obtain the approximate posterior variance-covariance matrix of the mean outcome
parameters µ. Given the multivariate normality of µ, the posterior distribution of any weighted
linear combination of the three parameters is normal. We deploy this property for the sample size
calculation approaches described in the following sections.

4.2.3 One-step Approach Based on the Joint Stage Posterior Distribution

Since the purpose of our design is to demonstrate the efficacy of dose levels against placebo, our
hypotheses of interest are based on µL − µP and µH − µP . For SSD, we consider the difference
between the mean outcomes of low dose and placebo as it will provide a conservative sample size
assuming the lower dose is not more efficacious than the higher dose.

Like in Wei et al. (2020), we follow the ACC rule (Adcock, 1988) to determine the required
sample size to guarantee a desired “significance level” of φ and a desired “power” of ψ. We
refer to “significance level” as one minus the coverage rate of the posterior credible interval of the
outcome parameter of interest. We define “power” as the probability of rejecting the null from the
1 − φ credible interval with the proposed Bayesian analysis when a prespecified treatment effect
is present. For a fixed length l, the determined sample size is chosen as the smallest integer N that
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ensures ∫
x

{
∫ z+l/2

z−l/2
f(µL − µP |x,N)d(µL − µP )}f(x)dx ≥ 1− φ,

where x = (x1, x2) denotes the integrated data from two stages of a trial, where x1 = (X1, Y1) and

x2 = (X2, Y2); z denotes the posterior mean of µL − µP . We choose length l as
2(µL − µP )

1− z1−ψ/z1−φ/2
,

such that the sample size guarantees a power of ψ with the credible interval of length l in order to
detect the treatment effect as specified in the prior mean of µL − µP .

4.2.4 Two-step Approach Based on an Adjustment Factor

In this approach, we focus on quantifying the separate benefits of (i) having two stages in an
snSMART and (ii) using a Bayesian analysis as compared to a single stage RCT using a frequentist
analysis. That is, we quantify sample size savings from the two-stage study design and contribution
from the prior distributions used in analysis.

The first step of this approach is to calculate the sample size needed for a standard one-stage
design that uses only the first stage of the trial. Given the proposed Baysian joint-stage model and
a normal likelihood with normal conjugate priors for the mean of each dose level, the posterior
distribution of µP and µL are derived as

µP |x1 ∼ N(

∑
i∈I(P ) Yi1 + κPµ

P
0

N/3 + κP
,

σ2

N/3 + κP
)

µL|x1 ∼ N(

∑
i∈I(L) Yi1 + κLµ

L
0

N/3 + κL
,

σ2

N/3 + κL
),

where x1 denotes the data collected until the end of the first stage. Similarly, we apply the ACC
rule for SSD.

The second step updates the sample size computed in the first step with an adjustment factor
(AF). The AF assumes a fixed β and is defined as the expected ratio of the posterior variance
derived from the joint stage model over the posterior variance derived from the first stage model.
The AF is:

AF =

∫
x

V ar(µL − µP |x)f(x)

V ar(µL − µP |x1)f(x1)
dx,

where the posterior variance of mean outcome difference from the stage 1 model is V ar(µL −
µP |x1) = σ2/(N/3 + κP ) + σ2/(N/3 + κL), and its counterpart from the joint stage model
V ar(µL − µP |x) is derived in Section 4.2.2 given a fixed β. Given the complexity of integration,
we approximate the expected ratio of posterior variances by the average ratio of variances given a
large number of random draws of the study data that follow the sample size calculation assump-
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tions. Furthermore, in order to reduce the processing time, we approximate the AF using the ratio
between the posterior variances based upon exemplary data from one and two stages that reflects
the expected treatment allocation in two stages. This approximation by exemplery data is a simi-
lar idea as described in Shieh and O’Brien (1998). Through simulations, we demonstrate that the
approximation through exemplary data provides an AF value very close to the one computed from
approximating the expected ratio through simulations, and significantly reduces the computation
time (results not shown). Then, the total sample size needed is the product of the AF and the
number of patients needed to satisfy the ACC criterion using the posterior distribution from stage
1 data.

4.3 Simulations

In this section, we perform simulations regarding a hypothetical snSMART that compares low and
high dose of a drug with placebo to illustrate the performance of our proposed SSD approaches.

4.3.1 Main Analysis: Scenarios 1-10

To select the sample size for a hypothetical snSMART trial, researchers need to specify parameter
values related to features that best describe the study. In the proposed snSMART design, the first-
stage treatment assignment is fixed, while the allocations of second-stage treatments are influenced
by the response rate and the probability of participants being assigned to either low or high dose in
stage 2. The variability in observed outcomes and the underlying correlation between observations
from each stage are also critical factors that affect the precision in estimation. Finally, the mean
outcome parameters µP , µL and µH determine the magnitude of the effect size, and thus, determine
the desired sample size. Based on all these factors, we examine scenarios with varying inputs for
the two proposed sample size calculations.

We first define a standard input setting (Scenario 1 in Table 4.1). In this scenario, the response
rate to high dose in stage 1 is 0.6, meaning that 40% of the participants who received high dose
in stage 1 continue to receive the high dose in stage 2. We do not set constraints based on the
response rate to placebo or low dose, because all participants who receive placebo or low dose in
stage 1 are rerandomized to low or high dose with equal probabilities, no matter how they respond
to stage 1 treatment. We assume an ineffective placebo (µP = 0), a moderately efficacious low
dose (µL = 2), and a high dose with greatest efficacy (µH = 4). The standard deviation of the
stage 1 outcome Yi1 is σ = 4. We set the true value of the shift parameter α to be 0, meaning
that the treatment effects are not shifted in stage 2. We assume the linkage parameter β to be 0.5,
indicating a moderate amount of within-subject correlation (ρ(Yi1, Yi2) = 0.45).
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Sample Size Calculation Inputs
Re-randomization scheme Within-subject

Correlations Outcome Parameters
Scenarios πZ RL : RH β ρ(Yi1, Yi2) µP µL µH α σ

1 0.6 0.5:0.5 0.5 0.45 0 2 4 0 4
2 0.6 0.5:0.5 0.5 0.45 0 1 4 0 4
3 0.6 0.5:0.5 0.5 0.45 0 3 4 0 4
4 0.6 0.5:0.5 0.5 0.45 0 2 3 0 4
5 0.6 0.5:0.5 0.5 0.45 0 2 4 -1 4
6 0.6 0.5:0.5 0.5 0.45 0 2 4 0 3
7 0.2 0.5:0.5 0.5 0.45 0 2 4 0 4
8 0.6 0.7:0.3 for responders

0.3:0.7 for non-responders 0.5 0.45 0 2 4 0 4
9 0.6 0.5:0.5 0 0 0 2 4 0 4
10 0.6 0.5:0.5 1 0.71 0 2 4 0 4

Table 4.1: Presumed scenarios 1-10 for sample size calculations. πZ represents the response rate
of observing Z = 1 for patients on high dose in stage 1. RL : RH represents the ratio of the
probabilities for patients who are re-randomized to low and high dose in stage 2. β is the linkage
parameter as defined in Section 4.2.1, whereas ρ(Yi1, Yi2) = β/

√
1 + β2 is the within-subject

correlations between observations in two stages. For treatment k ∈ P,L,H , µk denotes the true
value the mean outcome parameter. σ stands for the standard deviation of the observed outcomes.
α is the true value of the shift parameter. Scenario 1 is the benchmark scenario. Any variation of
the other settings from Scenario 1 is highlighted in bold.

Given Scenario 1 as a benchmark, we examined 9 additional scenarios as specified in Table
4.1 varying the inputs of key elements of the study, including effect sizes (Scenarios 2-4), value
of the shift parameter α (Scenario 5), standard deviation of the observations σ (Scenario 6), ran-
domization schemes (Scenarios 7-8), and values of the linkage parameter β which determines the
within-subject correlation (Scenarios 9-10). All inputs match the true underlying parameters used
to generate the simulated data.

Under each setting, we calculate the sample size needed to satisfy the pre-specified criteria of
the chosen operating characteristics (coverage rate and power) using the two Bayesian approaches
proposed in Fang et al. (2022). We then repeatedly simulate 6,000 data sets of that calculated sam-
ple size from each SSD approach. We analyze each data set with the statistical method described
in Section 4.2.1. The estimated power is computed as the proportion of the 100(1− φ)% posterior
HDI of low dose versus placebo not covering 0 among these Bayesian analyses among 6,000 re-
peats, which indicates that we expect the true underlying power to be within plus or minus 0.01 of
the 95% confidence level of the simulated power. We quantify sample size savings by comparing
1) the sample size needed for a one-stage design versus the proposed two-stage snSMART design,
and 2) the sample size calculated using a conventional frequentist method versus the proposed
Bayesian methods. In all scenarios, we assume that the input parameter values are correctly spec-
ified and are equal to the prior means. The prior standard deviation is set to τ = 2 for all mean

51



Parameters in Data generationScenarios µP µL µH α σ β

1 0 2 4 0 4 0.5
11 0 2 3 0 4 0.5
12 0 1 4 0 4 0.5
13 0 2 4 -1 4 0.5
14 0 2 4 0 6 0.5
15 0 2 4 0 4 0.3

Table 4.2: Presumed scenarios 1, 11-15 for sample size calculations. πZ represents the response
rate of observing Z = 1 for patients on high dose in stage 1. RL : RH represents the ratio of the
probabilities for patients who are re-randomized to low and high dose in stage 2. β is the linkage
parameter as defined in Section 4.2.1, whereas ρ(Yi1, Yi2) = β/

√
1 + β2 is the within-subject

correlations between observations in two stages. For treatment k ∈ P,L,H , µk denotes the true
value the mean outcome parameter. σ stands for the standard deviation of the observed outcomes.
α is the true value of the shift parameter. Scenario 1 is the benchmark scenario. Any variation of
the other settings from Scenario 1 is highlighted in bold.

outcome parameters. Therefore, the effective sample size of the prior distribution of each mean
parameter is κk = σ2/τ 2 = 4 for k = P,L,H (Morita et al., 2008), providing information as if
from four extra patients besides the ones enrolled in the trial through the Bayesian analysis. The
estimated power is computed with the simulated data of the required size for each scenario. The
shift parameter α follows a normal prior distribution with standard deviation τα = 2. The prior
distributions for σ and β are Gamma(4, 1) and N(0, 1), respectively. We conduct all simulations
using R (version 4.02).

4.3.2 Sensitivity Analysis: Scenarios 11-15

As a sensitivity analysis, we apply the study inputs from Scenario 1 and further explore the per-
formance of our SSD approaches. In Table 4.2, we define scenarios that have (1) misspecification
in either the mean outcome parameter or the shift parameter α (Scenarios 11-13), (2) misspecified
variance of the observed outcome (Scenario 14), and (3) misspecified linkage parameter β which
determines the within-subject correlation (Scenario 15). In these scenarios, the design parameters
used in the two SSD methods differ from the data generation parameters, and the size of each sim-
ulated data set aligns with the computed sample size from the SSD process. Similar to the main
analysis, we analyze the generated data and evaluate the performance of our methods in terms of
the simulated power.
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Scenario One-stage design Two-stage snSMART design
One-step Approach Two-step approach

NFreq NBayes NB1 Simulated power AF NB2 Simulated power
1 50 46 31 0.814 0.693 32 0.823
2 197 194 133 0.804 0.687 134 0.814
3 22 18 12 0.830 0.707 13 0.838
4 50 46 31 0.812 0.693 32 0.824
5 50 46 31 0.814 0.693 32 0.824
6 28 26 18 0.808 0.694 19 0.820
7 50 46 31 0.813 0.690 32 0.824
8 50 46 31 0.816 0.695 32 0.829
9 50 46 38 0.806 0.847 39 0.809
10 50 46 20 0.804 0.459 22 0.850

Table 4.3: The estimated sample size that ensures the desired power at 0.8 and the coverage rate
at 0.9 and corresponding estimated power to demonstrate low dose effectiveness is given. We
consider Scenarios 1-10 as defined in Table 4.1 under two study designs. In a one-stage parallel
design, NFreq stands for the sample size calculated from the classical frequentest approach, and
NBayes stands for the sample size computed using ACC approach as if there is only one-stage
of data. Under the two-stage snSMART design, NB1 and NB2 are the sample sizes computed
using the proposed ACC approach and two-step approach as in Section 4.2. AF is the adjustment
factor used in the two-step approach. Simulated power is computed as the proportion of the 95%
posterior HDI not covering 0 among the Bayesian analyses conducted on 6,000 simulated datasets
compatible with each scenario.

4.4 Results

4.4.1 Main Analysis: Sample Size Calculation Inputs Match the Truth

Suppose we are interested in finding the minimum sample size needed to guarantee the desired
power of 0.8 and the coverage rate of 0.9. Table 4.3 presents the calculated sample size using
several approaches regarding the scenarios listed in Table 4.1. In Table 4.3, Nfreq and NBayes

are the sample sizes needed for a one-stage design computed using the classic frequentist formula
and the Bayesian ACC approach, respectively. Considering a two-stage snSMART design instead,
NB1 and NB2 are the sample sizes computed using the one-step and two-step approach (based on
the adjustment factor AF ) accordingly. In general, sample sizes using both approaches (NB1 and
NB2) are extremely close, while the two-stage approach requires one more subject in almost all
scenarios. Both SSD methods give reasonable sample size estimations when assumptions of the
calculation hold.

In Scenario 1, we assume a moderate amount of true treatment effect of µL − µP = 2 that
correctly reflects our assumptions (prior mean), and assume that σ and β are fixed and known.
In a one-stage design analyzed by the classical frequentist method, we need 50 patients in each
initial treatment arm to achieve the prespecified power. A Bayesian model that uses only the data
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from stage 1 reduces the required sample size by 4 patients per arm, which is the prior effective
size of the prior distribution for each mean outcome parameter (µP , µL and µH). The two-stage
snSMART design further reduces the required sample size from 46 to 31 or 32 (∼65%-70% to the
original size in a one-stage design). Both approaches proposed for the two-stage snSMART design
yield a sufficient sample size to detect the difference with 80% power.

Scenarios 2-4 explore different magnitudes of responses, assuming the true responses are identi-
cal to the ones used for SSD. With a smaller presumed treatment effect in Scenario 2 (µL−µP = 1),
we require a much larger sample size as compared to Scenario 1. The proportion of participants
saved from the usage of a two-stage design still holds, such that there is substantial reduction in the
number of participants required (from 190+ to 130+). Similarly, a larger presumed treatment effect
as shown in Scenario 3 (µL − µP = 4) leads to a smaller sample size while exhibiting a similar
level of reduction in sample size from the one-stage design. Since the sample size consideration is
based on the difference in treatment effects between low dose and placebo, changes in µH and µP
(Scenario 4) and the shift parameter α (Scenario 5) make no difference in the required sample size
as long as all treatment effects are correctly specified. Lower variability in the observed outcomes
(Scenario 6) makes the difference more easily detected and thus fewer participants are required.

Scenarios 7-8 adjust prespecified factors that are relevant to the treatment allocation in stage
2, including changing the expected intermediate response rate for patients receiving high dose in
stage 1 from 60% to 20% and varying the re-randomization probabilities to low and high dose in
stage 2 given the response, while holding all other factors the same as Scenario 1. There are minor
changes in AF values but not enough to affect the sample size in this case. We observe sufficient
estimated powers for both scenarios.

Scenarios 9-10 are designed to examine the impact of the correlation between observations from
two stages on the power at extreme values. When β = 0 (Scenario 4), two within-subject obser-
vations are completely independent of each other. As compared to Scenario 1, more participants
are needed in the trial to achieve the expected power, while still decreasing the required sample
size to 85% of the size for a one-stage design. Assuming β = 1 induces a high correlation in
the observations with correlation coefficient of 0.71. Given such a high correlation, we observe a
substantial shrinkage in the required sample size, and more than half of the participants required
in a one-stage design are no longer needed.

In addition, the proposed SSD approaches account for various amounts of prior information.
For instance, we applied non-informative prior distributions for all mean outcome parameters by
changing the prior standard deviation τ from 2 to 100. Naturally, the sample size required for a
one-stage design analyzed through the Bayesian method is the same as the conventional frequentist
sample size. With both SSD approaches, 34 participants are expected in a two-stage design, which
shows that the reduction in the sample size is induced from the design with two stages. Moreover,
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Scenario One-stage design Two-stage snSMART design
One-step Approach Two-step approach

NFreq NBayes NB1 Simulated power AF NB2 Simulated power
1 50 46 31 0.814 0.693 32 0.823
11 50 46 31 0.822 0.693 32 0.830
12 50 46 31 0.378 0.693 32 0.382
13 50 46 31 0.799 0.693 32 0.810
14 50 46 31 0.555 0.693 32 0.569
15 50 46 31 0.774 0.693 32 0.783

Table 4.4: The estimated sample size that ensures the desired power at 0.8 and the coverage rate at
0.9 and corresponding estimated power to demonstrate low dose effectiveness in one-stage parallel
design setting and two-stage snSMART design. We consider Scenarios 1, 11-15 as defined in
Table 4.2 under two study designs. In a one-stage parallel design, NFreq stands for the sample size
calculated from the classical frequentest approach, andNBayes stands for the sample size computed
using ACC approach as if there is only one-stage data. Under the two-stage snSMART design,NB1

and NB2 are the sample size computed using the proposed ACC approach and two-step approach
as in Section 4.2. AF is the adjustment factor used in the two-step approach. Simulated power is
computed as the proportion of the 95% posterior HDI not covering 0 among the Bayesian analyses
conducted on 6,000 simulated datasets compatible with each scenario.

we tried to place a concentrated mass on the prior distribution of α = 0 with an extremely small
prior standard deviation at 0.01. Such a prior distribution is shown to not only reduce the uncer-
tainty in the estimation of α alone, but also impact the estimations of the other mean outcome
parameters of interest. Fewer participants are required as compared to Scenario 1 to retain the
desired power.

4.4.2 Sensitivity Analysis: Misspecifications

We also explored additional settings with varying prior distributions and parameter values used in
generating the simulated data. Results can be found in Table 4.4.

Scenario 11 displays the case when the presumed value of µH used for SSD and prior mean is
slightly higher than the underlying parameter value in data generation. The misspecification of µH
not only induces biased estimation of µH but also impacts the estimation of µL−µP , and thus, the
simulated power. In this scenario, the simulated power is slightly above 0.8.

Scenario 13 explores the case when α is overestimated in the prior distribution for analysis.
Since the point estimation of α is not a deciding factor in sample size determination, the required
sample size stays the same as Scenario 1. Given the calculated sample size, the estimated power
decreased by a small amount, but the confidence interval of power still includes 80%.

Scenarios 12, 14 and 15 focus on the misspecification of a few key components that determine
the effect size size, including the overestimation of µL, underestimation of σ, and overestimation
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of β. All three scenarios show great loss in simulated power, which is expected.

4.5 Discussion

In this chapter, we proposed two SSD approaches tailored for the snSMARTs proposed for com-
paring two dose levels with placebo. We examined the accuracy of both approaches via simulations
and found them to provide sufficient sample sizes that fulfill certain user-defined criteria.

Although the two SSD approaches both provide adequate sample sizes that meet specific re-
quirements, they are distinct from each other in several ways. The one-step approach directly
applies the ACC rule using the posterior distribution of the expected treatment difference based on
the two-stage data. In contrast, the two-step approach updates the desired sample size using the
ACC rule for a one-stage design and intuitively quantifies the sample size savings from adding a
second stage through the adjustment factor, as smaller AF indicates more savings. Motivated by
the variance inflation factor as defined in cluster randomized controlled trials, the adjustment factor
for an snSMART sample size calculation quantifies the sample size savings of both the multi-stage,
multi-treatment design, and the prior information deployed in the Bayesian analysis. In general,
with the same inputs, the two-step approach is slightly more conservative than the one-step ap-
proach, as the rounding procedure for sample size is conducted twice. Moreover, the two-step
approach does not necessarily require the input of the value of µH and α, which may obscure the
power loss due to the biased estimation caused by model misspecification. In that sense, the one-
step approach is likely to provide the minimum sample size required when models are correctly
specified. The two-step approach, in contrast, relies less on the model assumptions and gives intu-
itive quantification of the contribution of the second-stage data and conservative estimations of the
sample sizes.

Although sample size calculation is anything but new, efficient sample size calculations for
Bayesian analysis of novel study designs are greatly needed. We proposed two tailored SSD
methods and established an explicit posterior distribution for the snSMART design comparing
two dose levels to placebo with a continuous outcome. A well-chosen closed-form posterior dis-
tribution allows us to apply the fundamental SSD criterion under Bayesian framework without
additional approximations, which enhances the accuracy of the calculation, allowing for ease of
use for investigators in future applications. The two SSD approaches proposed in Sections and
4.2.3-4.2.4 are available through an interactive applet: https://sqrfang.shinyapps.io/
snSMART_dosevp_SSD/.

An alternative way of doing power analysis without using an explicit form of the posterior
distribution within a complex Bayesian modeling framework is to utilize Markov chain Monte
Carlo (MCMC) procedures and draw inference from the constructed posterior samples. However,
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MCMC creates an extensive burden on the computational environment. In our study, we simulated
data and used MCMC to evaluate the power under certain settings. Although performed on a high
performance computing (HPC) cluster, the time cost for 6,000 simulations in each setting still took
more than 6 hours for a sample size of around 30 per arm. In contrast, our SSD approaches utilize
the explicit expression of the posterior distribution, thus saving the need for recursive simulations.
Meanwhile, we avoided extensive grid search and minimized the number of repeated loops in our
program, reducing the required computational time to calculate a sample size down to seconds, sig-
nificantly increasing the computation efficiency as compared to simulation-based SSD approaches
that depend on MCMC.

Furthermore, our approaches can be adapted to other multi-stage, multi-treatment designs with
repeated measures. In particular, crossover design shares several properties with snSMART. For
instance, both designs lead to a data structure with multiple stages (periods). Participants may
receive more than one treatment in the study. Both studies apply statistical approaches that account
for treatment effect, period effect and carryover effect. Potentially, a similar SSD approach will be
helpful in crossover studies that are analyzed under a Bayesian setting.

We acknowledge a few limitations in applying our SSD approaches and offer suggestions to
mitigate problems. First, the elicitation of parameter values used for SSD is not always clear. In
Section 4.4, we show that misspecification can lead to some power loss. Identifying the sensi-
tivity of the calculation to different magnitudes of effect size of low dose versus placebo and the
within-subject correlation are of most importance since other parameters are shown to have limited
impact on the sample size. To deal with the uncertainty in prior beliefs on the expected treatment
response, researchers can consider applying more than one possible value of the desired treatment
response and take the average sample size needed among all attempts. Similarly, investigators
may struggle to specify the correlation in observations between two stages as it affects the vari-
ance of the estimations. We can assume a positive correlation to narrow down the range of the
coefficient of correlation and pick a few values for the corresponding β in SSD. Investigators can
assign reasonable weights to each guess of the parameter values and compute a weighted average
of the desired sample size. Another typical concern in designing studies with a complex structure
is participant retention. So far, we have shown that our approaches perform well under the ideal
case where there are no intermediate dropouts. From the study design perspective, we believe the
proposed snSMART design can improve participant engagement by avoiding repeated exposure
to inactive interventions. However, patient dropouts from clinical trials are inevitable. Normally,
one can obtain the adjusted sample size by inflating the required number of participants by one
minus the expected dropout rate. Further investigation is required to identify other approaches
to handle missingness in snSMARTs. As such, our future work includes investigating the exten-
sion to other multi-stage, multi-treatment clinical trial designs, and exploring approaches to handle
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missing data.
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CHAPTER 5

Summary and Future Work

Motivated by previous work discussing small n, sequential, multiple assignment, randomized trials
(snSMARTs) with multiple active treatments (Wei et al., 2018), in this dissertation, we focused on
Bayesian approaches for snSMARTs evaluating different dose levels of one drug with a placebo
control. This work aims to address the need for clinical trials in rare diseases with limited treatment
options and to provide drug efficiency evidence when compared to a placebo for drug approval.

Chapter 2 presents an snSMART design comparing two dose levels to placebo with a binary
outcome. In contrast to Wei et al. (2018), which compares three active treatments, we tested a
single drug with two dose levels compared to placebo. The purpose of this trial design is to estimate
the first stage treatment effect. We adjusted the Bayesian Joint Stage Model (BJSM) proposed by
Wei et al. (2018) by making the prior distributions for the parameters more flexible to capture a
dose response. We conducted simulations and demonstrated the efficiency gain compared to the
log-linear Poisson joint stage model (LPJSM), a Bayesian model that only uses the first stage data
(BFSM), and a frequentist model using only the first stage data (FSMLE).

In Chapter 3, we extended the snSMART in Chapter 2 to incorporate a continuous outcome. We
built a joint stage Bayesian model that accounts for the within-subject correlation using a linkage
parameter and evaluated its performance via simulations. We compared our model to standard
methods that use the first stage data and demonstrated its advantages in improving efficiency. We
also assessed the influence of mixed prior distributions on the Bayesian model.

Based on the trial design and statistical model proposed in Chapter 3, we proposed two Bayesian
sample size determination (SSD) approaches in Chapter 4 to enhance applications of snSMARTs
in clinical practice. We derived a closed-form posterior distribution of the treatment effect pa-
rameters under the Bayesian framework. Given that, we adopted a general Bayesian SSD method
proposed by Adcock (1988, 1997) and developed two customized Bayesian SSD approaches. The
first approach directly used the average coverage criterion (ACC) rule to calculate the required
sample size for a two-stage trial in one step. The second approach quantifies the contribution of
sample savings from the two-stage design as opposed to a one-stage balanced design using an ad-
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justment factor (AF). We demonstrated that the power resulting from the calculated sample sizes
were guaranteed for both approaches.

Future work may consider extending the existing design that consists dose levels and placebo to
involve interim analysis that informs adaptations. Possible adaptations include early termination
of the study and claiming ineffectiveness, dropping one dose early, or dynamically adapting the
treatment allocation rules. Such an extension can potentially add flexibility to the trial, benefit-
ing patients and improving recruitment. In addition, we considered trials with a single primary
outcome (either binary or continuous) in our work, however, for some diseases, researchers are
interested in multiple outcomes that have comparable importance, possibly with different data
types. More sophisticated approaches are required in that case to handle multiple outcomes in an
snSMART.

In conclusion, this dissertation presents innovative Bayesian methods for snSMARTs in ad-
dressing the challenge of limited patients in rare disease studies. There is great potential in ap-
plying this type of trial design and Bayesian analysis across many rare diseases. We hope the
snSMART design can lead to more approved drugs for patients with a rare disease and ultimately,
improved patient outcomes.
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