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ABSTRACT 

 
Proteins and non-coding RNA are the macromolecules responsible for performing the vast 

majority of biological functions in living organisms. These functions are mediated by the diverse 

structures adopted by different macromolecules, which in turn are determined by their primary 

sequences. Understanding the principles that govern this sequence-structure-function paradigm 

has become a hallmark of structural biology. The work presented in this thesis focuses on 

elucidating these principles by developing state-of-the-art deep learning and physical models for 

computational protein/RNA structure prediction and protein design.  

Despite the immense progress witnessed in protein structure prediction through the use of deep 

neural networks to predict spatial restraints, the modeling accuracy for proteins that lacked 

sequence and/or structure homologs remained to be improved. Thus, we developed an open-source 

program, DeepFold, which integrates spatial restraints predicted by multi-task deep residual neural 

networks along with a physics-based potential to guide rapid gradient-descent folding simulations. 

The results on large-scale benchmark tests showed that DeepFold created full-length models with 

accuracies significantly beyond classical folding approaches and other leading, contemporaneous 

deep learning methods. Of particular interest was the modeling performance on targets with very 

few homologous sequences, where DeepFold achieved an average TM-score that was ~40-45% 

higher than deep learning methods such as trRosetta and DMPfold, while being 262 times faster 

than traditional folding simulations.  

Inspired by the revolutionary advances in self-attention-based structure prediction, we 

developed DeepFoldRNA, which is an extension of the DeepFold pipeline that predicts RNA 

structures from sequence by coupling deep self-attention neural networks with gradient-based 

folding simulations. The method was tested on two independent benchmark datasets, including the 

RNA-Puzzles experiment, where DeepFoldRNA constructed models with an average RMSD of 

2.72 Å, which was significantly better than the best models submitted by the community 



 xvi 

(RMSD=6.90 Å). Overall, these findings illustrate the major advantage of advanced deep learning 

techniques at capturing detailed structural information over human-engineered potentials. 

The second area of research that will be covered in the proceeding chapters is protein design, 

which is often regarded as the conceptual inverse of protein structure prediction. Protein design 

generally consists of two sub-problems, namely sequence design and structure design. For the first 

sub-problem, we developed an online server system, EvoDesign, which uses evolutionary profiles 

alongside a physical potential to guide the sequence search simulations. EvoDesign demonstrated 

advantages over pure physics-based approaches in terms of more accurately designing proteins 

that adopt desired target folds. Furthermore, as one of the essential difficulties in computer-based 

protein design is the expensive cost of experimental validation, the server aims to provide various 

transparent intermediate data to allow for a detailed annotation and analysis of the confidence of 

the designed sequences.   

 Lastly, for the second design sub-problem, we developed FoldDesign to create novel 

protein folds from specific secondary structure (SS) assignments through sequence-independent 

replica-exchange Monte Carlo simulations. The method was tested on a large-scale dataset of non-

idealized, SS topologies, where FoldDesign outperformed other state-of-the-art methods and 

consistently created stable structural folds with local characteristics that closely matched native 

structures. Notably, while sharing similar local characteristics, a large portion of the designed 

scaffolds possessed novel global folds that were completely different from natural proteins in the 

PDB. This highlights FoldDesign’s ability to explore areas of protein fold space through 

computational simulations that have not been explored by nature. 
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CHAPTER 1  
 

Introduction 

 
Proteins and non-coding RNA are the macromolecules that are nearly ubiquitously responsible for 

carrying out the unique and varied functions necessary to sustain life. These diverse functions are 

made possible by the unique three-dimensional structures adopted by different molecules. The 

landmark study by Anfinsen in the 1970s demonstrated that tertiary structure is dictated by primary 

sequence (1), and since then, understanding the sequence-structure-function paradigm has become 

a cornerstone of modern biomedical studies. Among the most accurate experimental methods for 

determining the structures of macromolecules are X-ray crystallography (2), NMR spectroscopy 

(3), and cryo-electron microscopy (4). However, due to the significant human effort and expenses 

required for experimental structure determination, the growth in the number of solved structures 

has lagged far behind the accumulation of sequence data. So far, the structures of approximately 

0.18 million proteins and less than 0.01 million RNA have been deposited in the Protein Data Bank 

(5) (PDB), which accounts for ~0.08% of the 230 million protein sequences in the UniProt 

database (6) and ~0.03% of the 34 million non-coding RNA sequences in RNAcentral (7). 

Therefore, it is apparent that there is a large gap between the number of known sequences, which 

by themselves provide only limited functional insight, and the number of experimentally solved 

structures.  

Nevertheless, due to the tremendous effort made by the community over the last few decades 

(8-22), an increasing portion of the genes in organisms have had their tertiary structures reliably 

modeled by computational approaches (23-29). In addition, high-quality structural models are 

created every day by online structure prediction systems (15, 16, 20, 22, 30-36). These models 

have been used to assist various biomedical studies, including structure-based protein function 

annotation (37-41), mutation analysis (42-49), ligand screening (50-57), and drug discovery (58-

63). Thus, the development of high-accuracy structure prediction methodologies represents 
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perhaps the most promising, yet challenging approach to address the disparity between the number 

of known sequences and experimentally solved structures, while also elucidating the fundamental 

principles that govern the sequence-structure-function paradigm. 

 Despite the impressive role of natural molecules such as proteins, only a tiny portion of the 

total possible amino acid sequences and structures appear in nature, which is most likely due to 

the selective pressures exerted by environmental constraints upon organisms (64). For example, 

there have been just under 1,500 protein folds classified in the SCOPe database (65) and the 

evidence indicates that, for proteins, the current PDB is nearly complete, representing the vast 

majority of natural folds (66, 67). Thus, computational protein design, which aims to create 

artificial proteins tailored to specific design applications, is a thorough test of our understanding 

of the principles that underly the folding paradigm. To date, computational design approaches have 

been applied to create proteins with promising therapeutic potential (68-70), novel ligand-binding 

activity (71, 72), and complex logical interactions (73). Thus, given the importance of these 

problems, the remaining sections of this chapter will cover the fields of protein/RNA structure 

prediction and protein design in more depth, with a particular emphasis on the impact brought 

about by deep learning for structure prediction and recent progress in de novo protein design. 

 

1.1 Protein and RNA Structure Prediction 

The goal of protein and RNA structure prediction is to use computational methods to determine 

the spatial location of every atom in a given molecule starting from its primary sequence. 

Depending on whether a template structure is used, structure prediction approaches can be 

generally categorized as either template-based modeling (TBM) or template-free modeling (FM) 

methods. While TBM constructs models by copying and refining structural frameworks of 

evolutionarily related protein/RNA molecules, called templates, identified from the PDB, FM aims 

to predict structures without using global template information. FM methods have also been 

referred to as ab initio or de novo modeling approaches. A general pipeline that illustrates the key 

steps involved in TBM and FM methods is depicted in Fig. 1.1.  
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Figure 1.1 Typical steps involved in template-free and template-based protein structure prediction 
approaches. Starting from a query sequence, a multiple sequence alignment (MSA) is generated by 
identifying homologous sequences from a sequence database. The MSA is then converted into a 
sequence profile and is also used to predict several structural features such as the secondary 
structure, backbone torsion angles and solvent accessibility. For fragment assembly-based template-
free modeling methods, these structural features together with the sequence profile are used to search 
a fragment library in order to identify high scoring local fragments. For template-based modeling 
methods, they are used by threading protocols to identify global template structures. Meanwhile, 
co-evolutionary information is extracted from the MSA and fed into a deep residual neural network 
in order to predict important spatial restraints such as inter-residue contacts, distances, hydrogen 
bonds and torsion angles. For full-length model construction, structure assembly simulations are 
performed under the guidance of a composite force field which usually combines the generic 
knowledge- and/or physics-based energy function with deep neural network feature prediction (plus 
template-based restraints in the case of template-based modeling). Finally, representative models 
are selected typically from the lowest energy conformations or based on structural clustering, 
followed by atomic-level refinement to generate the final model. 

1.1.1 Classical Approaches to Template Based Modeling 

There are four key steps involved in TBM methods: (1) identification of experimentally solved 

structures (templates) that are related to the protein/RNA to be modeled, (2) alignment of the 

protein/RNA of interest (query) and the templates, (3) construction of initial structural frameworks 

by copying the aligned regions of the template structure, and (4) construction of the unaligned 

regions and refinement of the global fold.  
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Depending on the evolutionary distance between the query and template, TBM has been 

historically divided into comparative modeling (CM, see Fig. A.1 in Appendix A) and threading 

(see Fig. 1.1). CM is designed for targets with close homologous templates where the templates 

can typically be identified by sequence-based alignment, while threading is designed for detecting 

more distantly homologous templates by combining sequence profiles and/or Hidden Markov 

Model (HMM) alignments with local structure feature prediction (74-76). With the progress in the 

field, the difference between CM and threading has become increasingly blurred, especially for 

protein structure prediction, and most of the modern TBM approaches start with templates 

identified by advanced threading programs. Since different threading programs are trained with 

different scoring function and alignment algorithms, the template recognition and alignment 

results are often diverse for the same query sequence. This has resulted in the prevalence of meta-

threading programs (77, 78), which collect and combine template alignments from a set of 

complementary threading algorithms. While rigorous theoretical studies to explain the consistent 

improvement brought about by combining multiple structures were not available until many years 

later (79), the intuition behind the usage of multiple threading templates is simple. Given that there 

are many more ways for threading to generate incorrect alignments than to generate a correct 

alignment, it is much easier to get a consensus correct alignment than multiple consistent but 

incorrect alignments (80). 

Since threading templates only provide gapped traces, which have no practical use for detailed 

function annotation and/or virtual ligand screening, many programs have been developed to 

assemble and refine full-length atomic structural models starting from the template alignments. 

Among the methods for protein-specific TBM, MODELLER (13) was one of the first programs 

and builds atomic models by optimally satisfying spatial restraints derived from a threading 

alignment, where the restraints are expressed as probability density functions for the restrained 

features. One of the most successful classical TBM methods is I-TASSER (17), which is an 

extension of TASSER (25). I-TASSER has been consistently ranked as the top automated method 

in the community-wide Critical Assessment of Structure Prediction (CASP) experiments, where 

the goal of CASP is to benchmark the state of the art in protein structure prediction (81, 82). In the 

I-TASSER pipeline, continuous fragments are excised from the template alignments and 

reassembled through replica-exchange Monte Carlo (REMC) simulations, where the unaligned 

regions (mainly loops) are built ab initio using a lattice-based system in junction with the aligned 
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fragments. One of the key reasons for the success of I-TASSER is its effective combination of 

multiple threading templates (often more than 20-50) under the guidance of an optimal knowledge-

based force field whose parameters were extensively optimized using large-scale structural decoys 

(83). Following a similar idea, RosettaCM was developed which assembles global structural folds 

by recombining aligned segments of threading templates and building unaligned regions de novo 

in torsion space using gradient-based minimization (84). 

In comparison to protein structure prediction, the field of RNA structure prediction has 

witnessed considerably less progress in TBM modeling (85, 86). This is in part due to the fact that, 

compared to proteins, there is much less structural information present in the PDB for RNA, which 

makes template-based modeling less effective. For example, of the 4,192 Rfam RNA families, 

only 99 families have solved structures (87). This is drastically different from protein structure 

prediction, where the PDB is nearly complete, representing the vast majority of single domain 

protein folds (66, 67). Nevertheless, there has been some work in template-based RNA modeling. 

For example, ModeRNA, which is mainly used for CM, copies the coordinates from the aligned 

region of a template and rebuilds the unaligned regions using a cyclical coordinate descent 

algorithm guided by a knowledge-based potential to ensure proper loop closure (88). Other RNA-

specific TBM methods, such as RNAbuilder (89), combine restraints from multiple template 

structures with a physical potential that accounts for factors such as steric clashes and base-pairing. 

Structural minimization is then performed in torsion angle space, where the RNA bond lengths 

and angles are kept fixed, and the dihedral angles are optimized with respect to the template- and 

physics-based potential. 

 

1.1.2 Classical Approaches to Template-Free Modeling 

Unlike TBM, FM approaches predict structures without the use of global template information. 

One of the most effective methods for constructing FM models is fragment assembly, where the 

idea was pioneered by Bowie and Eisenberg in 1994 for protein structure prediction (90). More 

modern protein fragment assembly approaches include Rosetta (14) and QUARK (16). These 

methods first identify local fragments, ranging from 1-20 residues long, from solved protein 

structures based on the profile-profile similarity and comparison of the local structural features 

such as secondary structure, solvent accessibility and torsion angles, either predicted for the query 

or extracted from the templates (16). In the next step of the fragment assembly simulations, the 



 6 

backbone torsion angles for a specific region of the simulated structure are replaced with those 

from a selected fragment, either assuming ideal bond lengths and angles (14), or directly taking 

these from the fragments themselves (16). Loop closure may also be used, which adjusts the torsion 

angles around the substitution site in order to prevent large conformational changes downstream 

(91). The rationale for constructing models through fragment assembly is two-fold: it reduces the 

size of the conformational search space, while ensuring the local structures of models are well 

formed as the fragments are selected from experimentally determined structures, which can help 

compensate for inaccuracies in the energy functions used for modeling. To improve the efficiency 

of conformational sampling, Rosetta (14) uses simulated annealing Monte Carlo simulations, while 

QUARK (16) uses REMC simulations with as many as 11 different conformational moves and 

extracts distance-profile restraints from the generated fragments in order to guide the simulations 

towards the native structure (92). 

Fragment assembly has also been among the most popular methods for RNA structure 

prediction given the lack of template information in the PDB for RNA molecules. For example, 

FARNA (93), which was introduced in 2007 and later extended to FARFAR (94), is an extension 

of the Rosetta fragment assembly protocol, where the altered protocol includes an RNA-specific 

fragment library as well as base-pairing and stacking potentials derived from PDB statistics. The 

core procedure of FARFAR is similar to the procedure for Rosetta-based protein structure 

prediction, where small, evolutionarily related structural fragments are identified from a fragment 

library and assembled during the Monte Carlo folding simulations. Other successful fragment 

assembly-based approaches to RNA structure modeling include methods such as 3dRNA (95), 

RNAComposer (96), and VfoldLA (97). 

Fragment assembly methods have consistently been among the top performers in the FM 

section of the CASP experiment as well as the RNA-Puzzles challenge by successfully folding 

protein and RNA targets that lack identifiable homology templates (86, 98-101). Here, the RNA-

Puzzles challenge is similar to the CASP experiment in that it is a blind modeling challenge whose 

aim is to identify the top RNA tertiary structure prediction methods (85, 86, 101, 102). Despite the 

success, the Monte Carlo simulation-based fragment assembly process can be time-consuming 

compared to TBM approaches, since FM methods need to create models starting from random 

conformations. These computational limitations also impose further restrictions on the energy 
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functions, which typically use coarse-grained representations that account for only a fraction of 

the atoms that make up each residue.  

 

1.1.3 Early Effort in Inter-residue Contact Prediction to Assist FM Approaches 

Given the inability of threading-based methods to reliably identify high-quality templates for many 

targets as well as the sampling and physical energy function limitations, an additional source of 

information was needed to guide structure prediction approaches, particularly for FM targets. 

Thus, the use of statistical models and machine learning methods to predict pairwise spatial 

restraints has become a major area of research in the field. This is because the tertiary structures 

of proteins and RNA are formed and stabilized by interactions between the atoms that make up 

each residue, and prediction of these interactions provides extremely useful information that can 

guide modeling approaches. Initially, these pairwise spatial restraints took the form of contact map 

prediction, where a contact map for a protein or RNA with length L is a symmetric, binary L×L 

matrix and each element of the matrix indicates whether the distance between two residues falls 

below a specific cutoff (typically <8Å). 

 One of the earliest sequence-based contact prediction methods used correlated mutations 

observed in multiple sequence alignments (MSAs) to predict inter-residue contact maps (103). 

Here, an MSA is an alignment of sequences that are evolutionarily related or share sequence 

homology to a given query sequence (104). The hypothesis behind the approach was that if 

mutations that occur at two positions in an MSA are correlated, these positions are more likely to 

form a contact in 3D space (105). This is because there is evolutionary pressure to conserve the 

structures of proteins/RNA and a mutation at one position may be rescued by a corresponding 

mutation at a nearby residue. The accuracy of co-evolution-based contact map prediction remained 

low for many years due to the inability to distinguish between direct and indirect interactions (106, 

107), where indirect interactions occur when residues appear to co-evolve but do not actually form 

contacts. For example, if Residues A and B are both in contact with Residue C, A and B often 

appear as if they co-evolve even when there is no physical contact between them. There is evidence 

that shows such co-evolution may have a functional cause rather than a structural one, which 

resulted in the failure of structure-based contact derivation (108).  

Progress in contact prediction remained stagnant for some time. However, a leap in contact 

prediction accuracy took place when algorithms started utilizing global prediction approaches. 
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Early methods mainly predicted contacts between residue pairs one-at-a-time using techniques 

such as mutual information, thus ignoring the interactions with other residue pairs and the global 

context in which the interactions took place (109). This was largely why it was difficult for these 

local methods to distinguish between direct and indirect interactions. The introduction of global 

statistical models determined through the use of direct coupling analysis (DCA) was more 

successfully able to distinguish between these direct and indirect interactions (106, 107). The goal 

of such global statistical models is to determine the set of direct interactions that most 

harmoniously accounts for the observed sequence co-variation by simultaneously considering the 

entire set of pairwise interactions. Since all pairwise interactions are simultaneously considered, 

instead of just considering one interaction at a time and ignoring the global context in which the 

interactions take place, DCA was able to significantly improve the contact prediction accuracy. 

Many DCA techniques fit a Markov random field (MRF), or more specifically a Potts model, 

to an MSA (106, 107, 110, 111). An MRF is a graphical model that represents each column of an 

MSA as a node that describes the distribution of residues at a given position, where the edges 

between nodes indicate the joint distributions of residues between each pair of positions. The 

couplings or co-evolutionary parameters can then be determined from the edge weights. Since 

fitting an MRF model using its actual likelihood function is computationally intractable due to the 

need to calculate the partition function, various approximations have been developed including 

those based on message passing (106), Gaussian approximation (111), mean-field approximation 

(107), and pseudo-likelihood maximization (110). Another popular method was introduced by 

PSICOV (112), which determines the coupling parameters by estimating the inverse covariance 

matrix or precision matrix using a graphical LASSO penalty (L1 regularization) instead of directly 

fitting an MRF model to an MSA. This was later extended by ResPRE (113), where the inverse 

covariance matrix is estimated using L2 regularization instead of L1 regularization. Network 

deconvolution has also been used to distinguish direct from indirect interactions determined from 

co-evolutionary data (114). 

 

1.1.4 Accurate Restraint Prediction through Deep Residual Neural Networks 

Although encouraging progress in contact prediction was made by DCA, the accuracy remained 

unsatisfactory in many cases, particularly for targets with few homologous sequences and shallow 

alignment depths (115). However, a breakthrough in protein contact map prediction came in 2017 
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when Xu’s group proposed RaptorX-Contact (19), which reformulated the contact prediction 

problem through the introduction of deep residual convolutional neural networks (ResNets (116)). 

Here, a ResNet is a convolutional neural network that adds an identity map of the input to the 

output of the convolutional layers, allowing gradients to flow smoothly from deeper to shallower 

layers and enabling the training of deep networks with many layers. Under this framework, the 

contact map prediction problem is considered an image segmentation task, i.e., a pixel-level 

labeling problem, where the whole contact map is an image in which each residue pair corresponds 

to a pixel. Image segmentation is a task for which ResNets, originally developed for computer 

vision, have demonstrated excellent performance. While the features used by RaptorX-Contact, 

such as co-evolutionary information obtained through DCA, predicted secondary structures, and 

PSSMs, were quite similar to other predictors, the introduction of deep ResNets with 

approximately 60 hidden layers enabled RaptorX-Contact to dramatically outperform other 

methods. The approach introduced by RaptorX-Contact was adapted by methods such as ResPRE 

(113) and TripletRes (117), which used a similar deep learning architecture but with a unique set 

of features that included multiple co-evolutionary coupling matrices. 

Similar ResNets were later extended to multi-class distance prediction, which predicts the 

binned distance between two residues as opposed to a binary contact value (36). The power of 

distance map-guided folding was convincingly demonstrated by AlphaFold in the CASP13 

experiment, in which the program utilized an ultra-deep neural network composed of 220 ResNet 

blocks to predict distance maps for a query sequence (118). The distance maps were then used to 

guide rapid gradient descent-based folding simulations (118).  

 The success of deep learning contact and distance map prediction raised the question of 

what other restraints could be accurately predicted using deep learning. As structure modelers have 

known for years that knowledge-based energy functions that are dependent only on residue-residue 

distances are often not as accurate as those that use both distances and orientations (119), a natural 

extension of distance prediction was inter-residue orientation prediction. Orientation-dependent 

energy functions are important as certain types of residue-residue interactions require not only 

distance proximity but also specific orientations between the residue pairs, e.g. β-strand pairing. 

Furthermore, it is not possible to uniquely determine the geometry of a structure without 

orientation information, as distance information alone cannot differentiate between a pair of 

mirrored structures. Orientation prediction in a deep learning framework was introduced by 
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NEMO (120) and later refined by  trRosetta, which simultaneously predicts both pairwise residue 

distances and inter-residue orientations from co-evolutionary features using a unified deep ResNet 

(22). As will be discussed in Chapter 2, inspired by these advances, we developed 

DeepPotential/DeepFold, which predicts an ensemble of contact, distance, orientation and 

hydrogen bonding maps and converts these into a deep learning-based potential that is minimized 

using rapid gradient-based folding simulations (121, 122). This approach was found to be highly 

effective at modeling non-homologous protein targets in the CASP14 experiment and independent 

benchmark analyses (121, 122).  

 

1.1.5 Highly Accurate Protein Structure Prediction by AlphaFold2 

The most exciting progress to date in the field of protein structure prediction was recently brought 

about by AlphaFold2 (123), the second iteration of AlphaFold developed by DeepMind, which 

achieved unprecedented modeling accuracy in the CASP14 experiment. Compared to the first 

iteration of AlphaFold in CASP13, which was driven by convolutional neural network-based 

distance map prediction, one of the major advancements of AlphaFold2 is the incorporation of a 

self-attention-based neural network architecture known as the Transformer. Transformers are a 

novel machine learning architecture that was introduced in 2017 by Google, and have significantly 

impacted the field of natural language processing, outperforming recurrent and convolutional 

networks (124). Briefly, transformers pass inputs through a series of self-attention and feedforward 

connections, which allow the network to attend to relevant information from the input and build 

up complex representations that incorporate long-range dependencies. Moreover, instead of using 

gradient-descent optimization to construct models based on the predicted distance restraints, as 

AlphaFold did in CASP13, AlphaFold2 utilizes a full end-to-end training system from sequence 

to structure using iterative structural refinement. As part of this, the system replaces traditional 

folding simulations with a structure module composed of 3D equivariant transformer neural 

networks, which treat each amino acid as a gas of 3D rigid bodies and allows for the direct 

generation of structure models.   

 The accuracy of AlphaFold2 was convincingly demonstrated in CASP14, where it dramatically 

outperformed all other methods. As evidence of this, Fig. 1.2.A depicts the historical modeling 

results from CASP7 and CASP11-14 on FM and TBM targets in terms of the mean TM-scores of 

the best first submitted model for each target. Here, TM-score is sequence length independent 



 11 

metric that ranges from (0, 1], where a score >0.5 indicates the predicted and native structures 

share the same global topology and a score >0.914 may be used as a cutoff for low-to-medium 

resolution experimental accuracy (125). From Fig. 1.2.A, it can be seen that in the eight years from 

CASP7-11 the average TM-score on FM targets improved slowly from 0.38 to 0.47. However, 

with the wide-spread adoption of DCA and shallow neural networks in CASP12 and deep ResNets 

in CASP13 for restraint prediction, the modeling accuracy for FM targets improved significantly 

from 0.47 to 0.65 over the span of four years. Notably, the accuracy on TBM targets remained 

largely stagnant during this time (TM-score 0.80-0.83).  

 In CASP14, most top predictors used deep ResNets to predict distance and orientation maps, 

which were then used to guide the folding simulations, where the average performance of the best 

submitted models for FM and TBM targets improved to 0.69 and 0.84, respectively. However, 

AlphaFold2 alone was able to achieve an average TM-score of 0.84 for FM targets and 0.93 for 

TBM targets. From Figs. 1.2.B-C, we can also see a marked increase in the number of models 

produced with experimental accuracy when considering a cutoff TM-score of 0.914 (125). In 

previous CASP experiments, none of the FM targets could be folded with such high accuracy, but 

in CASP14, AlphaFold2 was able to fold ~33% of the FM targets with experimental accuracy, and 

almost 80% of the TBM targets. Thus, AlphaFold2 was able to produce FM predictions with 

accuracies comparable to TBM models generated by other groups, and their models for TBM 

targets had an average accuracy comparable to low-to-medium resolution experimental structures. 
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Figure 1.2 CASP modeling results from CASP7 through CASP14. (A) Mean TM-score of the best 
first TBM and FM models submitted in the corresponding CASP competitions. (B) Results for the 
best first TBM models (including TBM, TBM-easy, TBMA-hard, and FM/TBM) submitted by any 
group in CASP7/11-14, where the models are categorized into one of three categories based on their 
TM-scores: [0, 0.5), [0.5, 0.914], (0.914, 1.0]. (C) Results for the best first FM models submitted by 
any group in CASP7/11-14, where the models are categorized into one of three categories based on 
their TM-scores: [0, 0.5), [0.5, 0.914], (0.914, 1.0]. 

1.1.6 Other Self-Attention-based Networks for Structure Prediction 

 Inspired by the remarkable performance of AlphaFold2, current state-of-the-art structure 

prediction methods have followed suit in using deep self-attention networks. For example, 

RosettaFold, which was introduced in the months following CASP14, combines a self-attention-

based MSA trunk network with a structure-based, SE(3)-equivariant graph transformer network to 

produce either the predicted coordinates for a given protein sequence (end-to-end version) or the 

predicted distance and orientation maps (pyRosetta) (126). For the pyRosetta version, the predicted 

restraints are used to guide gradient-based folding simulations to generate a final model. 

Interestingly, the authors found that the performance of the end-to-end version was slightly worse 

than that of the restraint-based pyRosetta version, which in part reflects the difficulty in end-to-

end structure prediction training. Overall, RosettaFold was able to significantly outperform deep 

ResNet-based models in a retrospective benchmark test on CASP14 targets but was less accurate 

than AlphaFold2 (126).  
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 Motivated by such advancements, we introduced DeepFoldRNA (127), which was the first 

available self-attention-based network for RNA tertiary structure prediction (Chapter 3). 

DeepFoldRNA is an extension of our DeepFold pipeline (122), where the ResNet architecture was 

replaced with a deep self-attention-based network that predicts the combined distance and 

orientation maps for an RNA molecule. Similar to the trunk network of AlphaFold2, 

DeepFoldRNA takes as input the MSA built for a query sequence, which is then processed using 

multiple layers of row- and column-wise self-attention to extract the evolutionary and positional 

information encoded in an alignment. The processed MSA embedding is then projected to a pair-

wise positional embedding using an outer-product mean operation and refined using a triangular 

self-attention scheme as introduced by AlphaFold2 (123). Lastly, the distance and orientation maps 

are predicted from the final pair-wise embedding and converted into a deep learning-based 

potential that is minimized using gradient descent to produce a full-length model. Benchmark tests 

revealed that DeepFoldRNA significantly outperformed other leading RNA folding methods, with 

greatly reduced folding simulation times. 

 

1.2 De Novo Protein Design 

Having covered the field of protein/RNA structure prediction, we will now turn our attention 

toward protein design. Unlike protein structure prediction, which aims to model unknown 3D 

structures from known sequences, protein design attempts to identify new amino acid sequences 

that fold into specific 3D structures. De novo protein design usually contains two steps, the 

construction of a specific tertiary structure (or fold) and the identification/optimization of new 

amino acid sequences for that structure.  

In addition to its use in protein structure prediction, fragment assembly has been successfully 

used to address the first step in de novo protein design, which is the construction of new protein 

folds beyond those observed in nature. One of the landmark achievements in de novo protein 

design was the design of Top7 in 2003 (128), which is one of the few proteins designed without a 

natural structural analog. The design of Top7 and other more recent de novo designed proteins 

have expanded on the strategies used by fragment assembly-based structure prediction methods, 

where a generic pipeline for such approaches is highlighted in Fig. 1.3.  
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Figure 1.3 Typical steps involved in a fragment assembly-based approach to design new protein 
structures. Starting from the desired secondary structure together with any user-defined packing 
restraints, such as residue-residue contact/distance restraints, the query is searched through a non-
redundant PDB structure library using gapless threading to generate position-specific fragment 
structures. High scoring fragments, which may range from 1-20 residues long, are identified based 
on the complementarity between the desired secondary structure and a fragment’s secondary 
structure and backbone torsion angles. Then during the folding simulations, the top scoring local 
fragments are assembled under the guidance of a sequence-independent energy function, which 
accounts for fundamental rules that govern protein folding such as secondary structure packing, 
backbone hydrogen bonding, favorable backbone torsion angles, steric clashes, radius of gyration, 
as well as the artificial contact/distance restraints supplied by the user. As the method is sequence 
independent, generic side-chain centers of mass, typically those for valine, are used to evaluate 
energy terms such as steric clashes. Following the folding simulations, the final design may be 
selected based on clustering of the simulation decoys, by selecting the lowest energy structure, or 
through whatever filter the user deems appropriate.  

Instead of starting from an amino acid sequence, leading structure design methods such as 

Rosetta (129) start from a predefined secondary structure and other user-defined constraints such 

as inter-residue distances, which define a target fold. Fragments are then picked with secondary 

structures and backbone torsion angles that are compatible with the predefined secondary structure. 

The simulation strategy is slightly altered as the amino acid-specific energy function is replaced 

with an energy function that is independent of the amino acid sequence and generic side-chain 

centers of mass are used to avoid steric clashes (129). Another popular method for designing 

backbone structures is to generate them using idealized parametric models (130), although this 

approach is typically more useful for designing helical bundle proteins and is not as effective at 

designing proteins with more complex topologies or hydrogen bonding networks.  
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Following the generation of the initial target folds based on the input constraints, iterative 

rounds of sequence and structure optimization are performed for amino acid sequence design 

(129). Here, sequence design and structure optimization can be performed using combined physics 

and knowledge-based energy functions such as Rosetta (131) or EvoEF2 (132). These approaches 

may start from a fixed protein backbone or perform flexible backbone refinement, where the amino 

acid side-chain conformation or rotamer of a randomly selected position is substituted for another 

rotamer randomly selected from a rotamer library (129). The corresponding energy changes caused 

by the mutation are then calculated using the physical energy function, where mutations are 

accepted or rejected based on the Metropolis criterion.  

While most current protein design methods utilize physical energy functions to search for low 

free energy states in sequence space, the design results may be limited by the inability of physical 

energy functions to accurately recapitulate inter-atomic interactions or recognize correct folds, 

which has also been manifested in various protein folding and structure prediction studies (80, 

133). Motivated by these limitations, as will be discussed in Chapter 4, we proposed EvoDesign 

(134), which includes evolutionary profiles derived from natural structural analogs in the force 

field in order to enhance the folding stability of the designed sequences and accommodate for the 

inaccuracies in purely physics-based energy models. For protein-protein interaction (PPI) design, 

EvoDesign starts from an input complex structure and identifies both monomeric and interface 

structural analogs from databases of solved protein structures. These structural analogs are 

converted into PPI evolutionary profiles, which are then combined with a physical energy function 

to guide the REMC sequence design simulations.  

 

1.2.1 De Novo Design of Proteins with Complex Structures and Functions 

The past few years have seen encouraging progress in de novo protein design, where proteins 

with increasingly complex structural characteristics and functions have been created (135-145). 

Although many de novo designed proteins have highly idealized structures with a single low 

energy conformation, recent work by Wei et al. demonstrated that it is possible to design proteins 

that adopt multiple low energy states that assume significantly different conformations (135). In 

the study, the authors used Rosetta to design a helical bundle that either adopted a short (~66 Å 

height) or long (~100 Å height) state based on the environmental conditions, which mimicked the 

action of membrane fusion proteins. Additionally, new studies have focused on designing proteins 
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with more complex logical functions for use in synthetic biology. In this regard, Chen et al. was 

able to design logic gates that controlled transcription and enzymatic activity via the association 

of different designed coiled-coil heterodimers (136). The backbone structures of each coiled-coil 

were designed in a previous study using parametric modeling to generate the helices and loop 

fragments to connect them into a single chain (137). The association between different 

heterodimers was achieved using the Rosetta HBNet protocol (138), which can be used to 

exhaustively enumerate all of the hydrogen bond networks available for a given design space in 

order to design highly specific protein-protein interactions. 

Rosetta has also been applied to the classical problem of designing proteins with significant β-

sheet content, which have enriched hydrogen bonding patterns. For example, Dou et al. designed 

fluorescence-activated β-barrel proteins using either ideal parametric models or fragment assembly 

(139). Interestingly, the authors found that the ideal backbones generated by the parametric models 

had unfavorable steric strain and hydrogen bonding interactions. These problems were alleviated 

by building backbones using fragment assembly and introducing kinks and bulges into the 

structures, producing a stable and functional protein. Another challenging problem in protein 

design is the ability to create proteins that can bind to highly functionalized small molecules. 

Polizzi et al. tackled this problem by creating a unit of protein structure called the van der Mer, 

which directly maps the backbone of each amino acid to preferred positions of interacting chemical 

groups (145). The method was then used to design proteins capable of binding the complex drug 

apixaban, which has implications for the de novo design of customized biosensors and enzymes, 

among other applications (145).  

 

1.2.2 De Novo Design of Therapeutic Proteins 

Other studies have focused on designing proteins for therapeutic applications. One strategy to 

accomplish this goal is to design proteins that are capable of binding natural targets with high 

affinity. For instance, Chevalier et al. described a protocol for generating large pools of mini-

proteins with different backbone scaffolds composed of ~40 residues produced by fragment 

assembly (140). The authors demonstrated that given advances in high throughput experimental 

techniques and computational modeling, an unprecedented number of designed proteins could be 

tested. This resulted in the production of highly stable designs that could bind to influenza 

hemagglutinin and provide prophylactic protection without eliciting an adverse immune response 
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(140). Another study by Silva et al. used parametric modeling to design mimics of IL-2 and IL-15 

capable of binding the IL-2 receptor βγc heterodimer but without binding sites for CD25 and 

CD215, producing a potent anti-cancer effect without the toxicity of natural IL-2 therapeutics 

(141). Furthermore, methods such as TopoBuilder have been used to generate computationally 

designed immunogens with topologies designed to stabilize functional motifs that induce the 

production of virus-neutralizing antibodies (142-144). These successes highlight the potential for 

de novo protein design to create therapeutics with tailor-made characteristics and superior efficacy 

compared to those produced by traditional approaches. 

Lastly, during the COVID-19 pandemic, researchers sought to develop new proteins that could 

serve as therapeutic treatments. Along this line, in the study by Huang et al., we proposed the 

design of de novo peptides to inhibit the association of the SARS-CoV-2 Spike protein with the 

human ACE2 receptor (146). The in silico assay experiments showed that the peptide inhibitors 

designed by EvoEF2 and EvoDesign had a significantly higher affinity for the binding domain of 

the Spike protein than the wildtype hACE2 receptor did. With a similar goal, Cao et al. applied 

Rosetta’s fragment assembly design method to design protein inhibitors for the SARS-CoV-2 

Spike protein (68). The authors used two design strategies, either incorporating the native helical 

interface between ACE2 and the Spike protein or generating novel interfaces de novo by 

optimizing the rotamer interaction field. After affinity maturation, they found the second approach 

was able to create proteins capable of potently inhibiting SARS-CoV-2 with picomolar affinity.  

 

1.2.3 Recent Advancements in De Novo Protein Design Methodologies 

Despite the successes, de novo protein design still remains somewhat of an art form, where 

large-scale experimental optimization is often required to generate successful designs (68, 70). In 

particular, extensive user-intervention during scaffold creation and selection is frequently 

necessary (71, 147). Furthermore, even given the examples in the previous sections, the ability to 

consistently design stable structures for non-idealized fold definitions or to create novel folds 

remains an outstanding problem in the field (148). 

Recently, Anishchenko et al. performed an interesting study that combined deep neural-

network training with structural refinement simulations to ‘hallucinate’ proteins; it could create 

novel protein sequences but the structural folds were generally close to PDB structures (with an 

average TM-score=0.78) (149). Meanwhile, the resulting protein folds were largely randomized 
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depending on the stochastic process of the design iterations, where the method was further 

extended to allow for the incorporation of specific functional sites or structural motifs (150). In 

another recent approach, Huang et al. combined a neural network-derived, sidechain-independent 

potential (SCUBA) with stochastic dynamics simulations and demonstrated an impressive ability 

to generate successfully folded designs (151). Notably, the method should be used in tandem with 

3D backbone sketches adapted from a ‘periodic table’ of protein structures (152) through manual 

manipulation and thus the conformational space of the final structures is limited to the topological 

area defined by the initial backbone sketches.  

Similarly, extensions of the Rosetta fragment assembly protocol such as the aforementioned 

TopoBuilder require pre-definition of a target fold in the form of sketches that specify the 3D 

arrangement of the desired secondary structure (SS) elements. Then the sketches are parametrically 

optimized based on matching the desired fold with analogous structures in the PDB and assembled 

from fragments that match the fold definition using Rosetta (153). Other methods like SEWING 

(154) have been successful at producing stable designs by reassembling relatively large helical 

substructures identified from the PDB; however, the approach is limited to the conformations 

adopted by large substructures present in the PDB and has been benchmarked only on helical folds 

(154, 155). Additionally, as mentioned, most of the successful de novo designs have highly 

idealized structures with optimized SS compositions that lack the complex irregularities often 

present in native proteins, where a significant portion of the designed folds are well represented in 

nature or may be described through ideal parametric geometries (148, 156-159). Thus, 

development of automated algorithms capable of precisely designing any required fold type, 

including those without structure analogs in the PDB or idealized SS compositions, with limited 

human intervention is critical to improve the scope and success rate of de novo protein design.  

To address this issue, we developed FoldDesign, which will be covered in Chapter 5, to create 

novel protein folds from specific secondary structure (SS) assignments through sequence-

independent replica-exchange Monte Carlo (REMC) simulations. Detailed data analyses revealed 

that the major contributions to the successful structure design lay in the optimal energy force field, 

which contains a balanced set of secondary structure and novel fragment-based energy terms, and 

the efficient REMC simulations, which combine fragment assembly with multiple auxiliary 

movements to search the conformational space. On a large benchmark dataset of non-idealized, 

complex SS topologies, FoldDesign was able to consistently generate stable structure designs, 
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where roughly 1/4 of the designs possessed novel folds that were not represented in the PDB, 

illustrating an important ability of the program to explore the areas of protein fold space 

unexplored by natural evolution. 

 

1.3 Thesis Overview 

The goal of my thesis is to develop new state-of-the-art methods for protein/RNA structure 

prediction and protein design. In the remaining chapters, I will cover representative works in each 

of these areas as follows. 

Chapter 2 describes DeepFold, a method for ab initio protein structure prediction. DeepFold 

uses deep ResNets to predict the combined contact, distance, and orientation restraints from an 

MSA generated for a query sequence. These restraints are then converted to a deep learning-based 

potential that is combined with a general physical energy function, where rapid gradient-descent 

minimization is used to generate a full-length protein structure model. 

Chapter 3 focuses on DeepFoldRNA, an extension of the DeepFold pipeline for ab initio RNA 

structure prediction. In DeepFoldRNA, the ResNet architecture of DeepFold is replaced with a 

deep self-attention-based network that generates predicted distance and orientation maps. These 

are then converted to a potential and minimized using gradient-descent simulations to produce a 

full-length RNA structure model. 

Chapter 4 describes EvoDesign, an online tool for functional protein sequence design. 

EvoDesign combines evolutionary profiles collected from analogous protein folds with an 

optimized physics-based potential to generate new amino acid sequences for a given fold. 

Chapter 5 describes FoldDesign, a method for de novo protein structure design. FoldDesign 

uses a sequence-independent energy function with REMC-based fragment assembly simulations 

to design new protein folds given a specific secondary structure topology definition. 

Chapter 6 summarizes the findings and presents future directions. 
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CHAPTER 2  
 

DeepFold: Fast and Accurate Ab Initio Protein Structure Prediction Using 

Potentials from Deep Learning 

 
In this chapter, we will focus on the protein structure prediction problem. As mentioned in the 

introduction, depending on whether reliable structural templates are available in the PDB, protein 

structure prediction methods have been divided into template-based modeling (TBM) and 

template-free (FM) approaches (80). For many years, TBM has been the most reliable method for 

modeling protein structures; however, its accuracy is essentially determined by the availability of 

close homologous templates and the quality of the query-template alignments. Conversely, FM 

methods were designed to use advanced energy functions and sampling techniques to improve the 

folding performance for proteins that lack homologous templates in the PDB. However, due to the 

inaccuracy in force field design and the limitations of conformational search engines, the 

performance of the physics-based FM methods for non-homologous targets has remained 

significantly worse than that of the TBM methods for targets with readily identifiable homologous 

templates (160, 161). 

Throughout the last few years, the use of deep learning techniques to predict spatial restraints 

has dramatically improved the accuracy of ab initio structure prediction (125). For example, in 

CASP11 and CASP12, predictors primarily used direct coupling analysis and shallow neural 

networks to predict contact maps, where the prediction accuracy largely relied on the identification 

of abundant sequence homologs in order to accurately predict contacts based on the information 

from correlated mutation patterns (115). In the CASP13 experiment, however, the top-ranked 

server groups, Zhang-Server and QUARK, used contact maps predicted by deep convolutional 

residual networks (ResNets) (162) to guide the I-TASSER (17) and QUARK (16) folding 

simulations, respectively, which greatly improved the contact prediction and folding accuracies 

for the physics- and knowledge-based modeling approaches. This was especially apparent for 
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targets that lacked homologous templates and high-quality MSAs (115). In the recent CASP14 

experiment, multiple deep learning constraints, including distance maps, which are conceptually 

similar to contact maps but include inter-residue distance information (36, 163), inter-residue 

dihedral angles (22) and hydrogen-bonding networks (164), were integrated with the folding 

simulations. The results demonstrated significant improvements over the contact-based structure 

assembly approaches, due to the introduction of more precise spatial information to guide the 

folding simulations (164). 

Despite the improvement in modeling accuracy, the approaches built on traditional 

fragment/template assembly folding techniques, such as I-TASSER (17), Rosetta (14) and 

QUARK (16), often require lengthy simulation times, especially for longer proteins, which hinders 

them from large-scale modeling applications. In fact, the necessity of extensive conformational 

sampling required for ab initio modeling is due to the immense structure space and complex energy 

landscape associated with protein folding. Although this may still be required when integrated 

with sparse spatial constraints from threading alignments and low-resolution experiments (165-

167), the advanced deep learning techniques can now provide abundant high-quality restraints. 

These abundant and accurate restraints can significantly smooth the rough protein folding energy 

landscape. In this regard, extensive folding simulations may no longer be needed, which partially 

explains the remarkable success enjoyed by other teams in the CASP experiments such as the first 

iteration of AlphaFold (163) in CASP13 and trRosetta (22), which construct structural models 

using local gradient-descent based conformational searching procedures.  

Inspired by these advances, we developed a fast open-source protein folding pipeline, 

DeepFold, which combines a general physical force field and deep learning-based potential with 

rapid L-BFGS folding simulations to improve the speed and accuracy of FM protein structure 

prediction. The pipeline was carefully benchmarked on large-scale datasets and showed superiority 

over other leading structure prediction approaches, all with greatly reduced simulation times 

compared to traditional folding simulation methods. Notably, following the development of 

DeepFold, the newest self-attention-based methods, such as AlphaFold2 (123) and RosettaFold 

(126), were released and showed greatly improved modeling accuracy compared to deep 

convolutional ResNet architectures. Nevertheless, utilizing restraints from these methods, 

DeepFold was able to achieve similar or slightly better performance than the newest self-attention-

based networks, demonstrating that it is a versatile platform that can be easily adapted for advances 



 22 

in the state of the art. Each component of the program, including the deep learning models and L-

BFGS structure optimization pipeline, is integrated into an easy-to-use, stand-alone package 

available at both https://zhanggroup.org/DeepFold and https://github.com/robpearc/DeepFold. 

Meanwhile, an online webserver for DeepFold is available at https://zhanggroup.org/DeepFold, 

where users can apply the method to generate structure models for their own protein sequences. 

 
2.1 Results and Discussion 

2.1.1 Distance and orientation restraints have the dominant impact on global fold accuracy 

As shown in Fig. 2.1, DeepFold starts by searching the query sequence through multiple whole-

genome and metagenomic databases using DeepMSA2 (164) to create a multiple sequence 

alignment (MSA). Next, the co-evolutionary coupling matrices are extracted from the resulting 

MSA and used as input features by the deep ResNet architecture of DeepPotential to predict spatial 

restraints, including distance/contact maps and inter-residue torsional angle orientations. These 

restraints are then converted into a deep learning-based potential, which is used along with a 

general physical potential to guide the L-BFGS folding simulations for full-length model 

generation (see Methods). 

 
Figure 2.1 Overview of the DeepFold pipeline. Starting from a query amino acid sequence, 
DeepMSA2 is used to search the query against multiple whole-genome and metagenome sequence 
databases to create a multiple sequence alignment (MSA). The MSA is then used by DeepPotential 
to derive input features based on co-evolutionary analyses for the deep ResNet training. 
DeepPotential outputs the probability distribution of Cβ-Cβ/Cα-Cα contact and distance maps as 
well as the inter-residue orientations. These restraint potentials along with the inherent statistical 
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energy function are used to guide the L-BFGS folding simulations for final full-length structure 
model construction. 

To test DeepFold, we collected a set of 221 non-redundant (<30% sequence identity to each 

other) protein domains from the SCOPe 2.06 database and FM targets from CASP9-12. These 

proteins were non-homologous (with a sequence identity <30%) to the training dataset of 

DeepFold, were solved at 3 Å resolution or better by X-ray crystallography, had lengths between 

100-500 residues, and were all defined as Hard threading targets by LOMETS (168) after 

excluding homologous templates with >30% sequence identity to the query. Here, a Hard target is 

a protein for which LOMETS could not identify a significant template, allowing for a systematic 

evaluation of the developed method on FM modeling targets. To examine the importance of the 

different components of the DeepFold energy function, we ran DeepFold using different 

combinations of spatial restraints from DeepPotential for the 221 test proteins, where the modeling 

results are summarized in Fig. 2.2 and Table B.1 in Appendix B.  

Overall, the baseline potential using just the general physical energy function (GE in Table B.1 

and Fig. 2.2) achieved an average TM-score of only 0.184. Furthermore, when considering a cutoff 

TM-score ≥0.5 to indicate a correctly folded model, which would mean the predicted model and 

native structure share the same global fold (169, 170), the baseline energy function was unable to 

correctly fold any of the test proteins (Table B.1). Given that the coupling of a similar force field 

with replica-exchange Monte Carlo simulations in QUARK could fold substantially more proteins 

with a much higher average TM-score (16), this result suggests that one major reason for the failure 

here is due to the frustration of the baseline energy landscape, which cannot be quickly explored 

by gradient-based searching methods. The further inclusion of Cα and Cβ contact restraints 

improved the TM-score to 0.263, where 4 of the 221 test proteins, or 1.8%, were successfully 

folded with TM-scores ≥0.5. The addition of the Cα and Cβ distance restraints dramatically 

improved the average TM-score on the test dataset to 0.677, representing an increase of 157.4%, 

where 76.0% of the test proteins were correctly folded. Lastly, the inclusion of the inter-residue 

orientations further improved the average TM-score to 0.751 and the percent of successfully folded 

proteins to 92.3%. Overall, as the level of detail in the restraints increased, the energy landscape 

became increasingly smooth and thus the L-BFGS folding simulations resulted in increased 

average TM-scores across the test proteins. 
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Figure 2.2 Contribution of the various spatial restraints and energy terms on the DeepFold modeling 
accuracy. The violin plot shows the TM-score of DeepFold using different combinations of energy 
terms/restraints on the 221 test proteins, including the general physical energy function (GE), 
contact restraints (Cont), distance restraints (Dist), and orientation restraints (Orien). 

Although the addition of inter-residue distances to the energy function brought about the 

largest improvement in accuracy, one interesting observation is the synergistic effect observed 

when combining different components of the restraints. For example, the addition of inter-residue 

orientations improved DeepFold’s ability to find structures that optimally satisfied the distance 

restraints. As evidence of this, in Table B.2 we present the mean absolute errors (MAEs) for the 

top n*L long-range distance restraints, where L is the protein length and n is a chosen scale factor, 

which were calculated between the DeepPotential predicted distance maps and the final DeepFold 

models with and without the use of the orientation restraints.  

The table shows that the introduction of inter-residue orientations helped to significantly 

decrease the MAE between the predicted distance maps and the structure models. For example, 

when considering the top 2*L distance restraints, which were sorted by their DeepPotential 

distance prediction confidence scores, the MAE was 0.74 Å when DeepFold was run using the GE 

and contact/distance restraints, whereas the MAE was reduced by 17.6% to 0.61 Å when the 

orientation restraints were added. Therefore, not only do orientations provide useful geometric 

information on their own, they also help further smooth the energy landscape and facilitate the L-

BFGS search to identify energy basins that satisfy the ensemble of spatial restraints.  
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Furthermore, inter-residue orientations were particularly useful for folding β-proteins. As seen 

in Table B.3, the inclusion of orientations increased the average TM-score for β-proteins from 

0.590 to 0.706, corresponding to a 19.7% improvement, which was significantly higher than the 

10.9% improvement observed on the overall dataset (Table B.1); this makes sense intuitively given 

the intricate hydrogen bonding patterns present in β-proteins that would require more detailed local 

inter-residue dihedral angle restraint information to properly recapitulate. Fig. 2.3 presents an 

illustrative example from SCOPe protein d1jqpa1, which adopts a β-barrel fold. The model built 

without orientations had a low TM-score of 0.313 and an RMSD of 11.43 Å, where the MAE 

between the top 2*L DeepPotential distances and the model without orientations was 0.87 Å. In 

contrast, the model built using the orientation restraints had a drastically improved TM-score of 

0.800 and an RMSD of 2.74 Å. Additionally, the MAE between the top 2*L DeepPotential 

distances and the model improved to 0.61 Å. Thus, the orientation restraints provide 

complementary information to the distance maps and had a particularly important role for folding 

β-proteins. 

 
Figure 2.3 Case study from SCOPe protein d1jqpa1 that demonstrates the importance of inter-
residue orientations for folding β-proteins. The native structure is shown in yellow, and the 
superposed predicted models built without (left) and with (right) orientation restraints are shown in 
blue.   

2.1.2 The general physical energy function improves local structure quality 

The rapid improvement in the accuracy of deep learning-based restraint prediction has called 

into question the role of the physical energy function in the era of deep learning. Indeed, we saw 

that the major contributor to DeepFold’s accuracy is the high number of accurately predicted 

restraints generated by DeepPotential, where their addition dramatically improved the average 

TM-score from 0.184 to 0.751 (Fig. 2.2). Nevertheless, the physical energy function, which 



 26 

accounts for fundamental forces that drive protein folding, such as hydrogen bonding interactions 

and van der Waals clashes, plays an important role in improving the physical quality of the 

predicted models; this is especially true when the model quality is poor. As evidence, Table 2.1 

lists several model quality metrics for models generated with and without the use of the GE 

function. 

On the overall test set of 221 hard protein targets, the inclusion of the GE potential provided a 

modest yet consistent enhancement in the physical model quality, as reflected in the improvement 

of the MolProbity score (171) from 1.735 to 1.692 with the addition of the GE function (Table 

2.1). Similar trends were observed for the secondary structure quality (SOV score (172)), the 

number of Ramachandran outliers, and the steric clash score, all of which improved with the 

inclusion of the GE (Table 2.1). The most notable improvement was observed in the clash score, 

which improved by 13.3% on the overall dataset. 

More significant improvements were witnessed for the 16 targets with poor physical quality, 

as measured by a MolProbity score in the 50th percentile or lower from the PDB structures. For 

these targets, the physical energy function improved the average MolProbity score from 2.882 to 

2.308, representing an improvement of 19.9% compared to 2.5% on the overall dataset. Similarly, 

these improvements were consistent across the SOV score, number of Ramachandran outliers, and 

the clash score for these targets. Again, the most dramatic improvement occurred for the clash 

score, which decreased from 17.5 to 8.6, representing an improvement of 50.9%.  
 

Target Type  

(# of Proteins) 

DeepFold  

Energy Function 
SS SOV 

Rama 

Outliers 

Clash 

Score 
MP-score 

All Targets  

(221) 

w/o General Energy 79.68% 6.52 3.61 1.735 

with General Energy 79.71% 5.92 3.13 1.692 

MP-score <50th 

Percentile (16) 

w/o General Energy 58.41% 13.00 17.54 2.882 

with General Energy 61.44% 9.81 8.58 2.308 

 
Table 2.1 Impact of the general energy (GE) function on DeepFold’s modeling performance. 
Specifically, the table presents the effect of the GE on the secondary structure SOV score, number 
of Ramachandran outliers, the MolProbity clash score, and the total MolProbity score on the overall 
dataset and those targets with poor physical model quality. 

Fig. 2.4 illustrates a case study from SCOPe protein d1xsza2, where models were generated 

with and without the inclusion of the general physical energy function. In the model built without 
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the GE function, there are several residues that directly overlap each other leading to severe steric 

clashing, as shown in the inset. These clashes among other factors led to a model with a large, and 

thus unfavorable, MolProbity score of 3.908 (3rd percentile) along with a very high clash score of 

212.8. As shown in the inset in Fig. 2.4, these clashes were resolved with the inclusion of the GE 

potential and its term for van der Waals clashes, where the resulting model had a reduced 

MolProbity score of 1.624 (92nd percentile) and a low clash score of 1.2. Clearly, simply satisfying 

the geometric restraints provided by deep learning may lead to models that are physically 

unrealistic, where the introduction of physical energy terms may partially alleviate this problem.  
 

 
Figure 2.4 Case study from SCOPe protein d1xsza2, which highlights the importance of the general 
energy function for improving the physical quality of the models. The models built without (left) 
and with (right) the general physical energy function are depicted in rainbow coloring, where the 
clashing region is shown in the inset. 

2.1.3 Comparison of DeepFold with other leading modeling methods 

To further evaluate the performance of DeepFold, we compared the modeling results on the 

221 test proteins with a leading contact map-based folding program (C-I-TASSER (173)), two top 

distance (DMPfold (174)) and distance/orientation-based (trRosetta (22)) methods, and the classic 

I-TASSER pipeline (17), where the results are summarized in Table 2.2. To provide a fair 

comparison, we used the same MSAs that DeepFold used, which were produced by DeepMSA2 

(164) (see Fig. 2.12 in Methods section 3.3.1), for the deep learning restraint prediction by 

DMPfold, trRosetta and C-I-TASSER, as well as for template identification by LOMETS in I-

TASSER and C-I-TASSER. Furthermore, templates with ≥30% sequence identity to the query 

were excluded from I-TASSER and C-I-TASSER. 

As shown in Table 2.2, the average TM-score of the DeepFold models for the 221 test proteins 

was significantly higher than all the control methods. For instance, the average TM-score for the 
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models produced by I-TASSER was only 0.383, where DeepFold achieved an average TM-score 

(0.751) that was 96.1% higher than I-TASSER with a p-value of 9.4E-80 as determined by a paired, 

two-sided Student’s t-test (Table 2.2). This result is understandable as I-TASSER does not use any 

deep learning spatial restraints, making the modeling accuracy more reliant on the templates, 

while, by design, all homologous templates were excluded for the Hard threading targets. The 

inclusion of deep learning contact maps into C-I-TASSER greatly increased the TM-score to 

0.584. Nevertheless, DeepFold still achieved an average TM-score that was 28.6% higher than C-

I-TASSER with a p-value of 1.8E-55. This is mainly due to the fact that DeepFold utilizes both 

distance and orientation restraints, which contain more detailed information than the contact maps 

used in C-I-TASSER (115).  

 

Method TM-score (p-value) RMSD (p-value) Correct Folds* 
 TMDeepFold > 

TMMethod
‡  

I-TASSER 0.383 (9.4E-80) 15.10 (7.1E-25) 24.0% 95.9% 

C-I-TASSER 0.584 (1.8E-55) 8.89 (4.0E-26) 67.0% 95.9% 

DMPfold 0.657 (5.6E-37) 7.81 (2.0E-18) 79.6% 92.3% 

trRosetta 0.694 (8.3E-24) 6.81 (4.7E-09) 85.5% 87.8% 

DeepFold 0.751 5.61 92.3% - 
* This column represents the percent of proteins with TM-scores ≥0.5. 

‡ This column indicates the percent of test proteins for which DeepFold generated a model with a higher TM-score than the control 

method. 
Table 2.2 Summary of structure modeling results by DeepFold and the control methods on the 221 
test proteins. The p-values were calculated between DeepFold and the control methods using paired, 
two-sided Student’s t-tests. 

Interestingly, there were two targets (d1ltrd and d1nova) for which I-TASSER and C-I-

TASSER produced models that were significantly more accurate than DeepFold. To examine the 

reason for the discrepancy in performance, Fig. 2.5 depicts the models generated by I-TASSER, 

C-I-TASSER, and DeepFold superposed with the native structures along with the top templates 

used by I-TASSER and C-I-TASSER for these proteins. For d1ltrd, despite the fact that it was a 

hard threading target, LOMETS was able to identify a reliable template from the PDB (1prtI) with 

a coverage of 92.6% and a TM-score of 0.553; thus, both I-TASSER and C-I-TASSER constructed 

accurate models with TM-scores of 0.663 and 0.637, respectively. Conversely for DeepFold, the 

generated MSA contained few homologous sequences with a normalized number of effective 
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sequences (or Neff, defined in Text D.1 in Appendix D) of 0.42, resulting in inaccurate predicted 

restraints with an MAE of 2.60 Å for the top 2*L distances. This ultimately lead DeepFold to 

produce an inaccurate model with a TM-score of 0.326. Additionally, the contact precision for the 

top L/2 contacts used by C-I-TASSER was only 50.0%, which is largely why the C-I-TASSER 

model was worse than the I-TASSER model.  

Similarly, for d1nova, LOMETS was able to identify a reliable template (PDB ID 1hofC) with 

a coverage of 100% and a TM-score of 0.544, which resulted in accurate I-TASSER and C-I-

TASSER models with TM-scores of 0.631 and 0.713 for the two methods, respectively. Again, for 

DeepFold, the generated MSA was shallow with a normalized Neff value of 9.40. Nevertheless, 

the predicted distance restraints were still accurate with an MAE of 0.90 Å for the top 2*L 

distances; however, the predicted orientations were inaccurate, particularly the Ω orientation, 

which had an MAE of 31.3° for the top 2*L restraints. This resulted in a model with a TM-score 

of 0.546, which still possessed a correct fold, but was less accurate than the models generated by 

I-TASSER and C-I-TASSER. Unlike the previous example, the C-I-TASSER model was more 

accurate than the I-TASSER model for d1nova as the predicted contacts were accurate with a 

precision of 98.7% for the top L/2 contacts. These two examples highlight that even with the 

advances in deep learning methods, template-based modeling still remains important, particularly 

given the reliance of deep learning techniques on the generated MSAs, which may be lower quality 

than the identified templates for numerous targets. 
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Figure 2.5 Case study from two targets, d1ltrd (A-D) and d1nova (E-H), for which I-TASSER/C-I-
TASSER outperformed DeepFold. A) LOMETS template (blue) superposed with the native 
structure for d1ltrd (yellow); B) I-TASSER model (blue) superposed with the native structure 
(yellow); C) C-I-TASSER model (blue) superposed with the native structure (yellow); D) DeepFold 
model (blue) superposed with the native structure (yellow); E) LOMETS template (blue) superposed 
with the native structure for d1nova (yellow); F) I-TASSER model (blue) superposed with the native 
structure (yellow); G) C-I-TASSER model (blue) superposed with the native structure (yellow); H) 
DeepFold model (blue) superposed with the native structure (yellow). 

DeepFold also outperformed the two other leading distance (DMPfold) and 

distance/orientation-based (trRosetta) methods, where DMPfold achieved an average TM-score of 

0.657 and trRosetta obtained an average TM-score of 0.694. Therefore, DeepFold’s average TM-

score was 14.3% higher than DMPfold and 8.2% higher than trRosetta, where the differences were 

statistically significant with p-values of 5.6E-37 and 8.3E-24, respectively (see Table 2.2). 

Furthermore, Fig. 2.6 presents a head-to-head comparison of DeepFold with the control methods, 

where DeepFold outperformed trRosetta and DMPfold on 194 and 204 of the 221 test proteins, 

respectively.  
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Figure 2.6 Head-to-head TM-score comparisons between DeepFold and other protein structure 
prediction methods.A) I-TASSER; B) C-I-TASSER; C) DMPfold; D) trRosetta; E) AlphaFold. (A-
D) are based on the 221 Hard benchmark proteins, while (E) is on 31 FM targets from CASP13. 

Compared to DMPfold, an obvious advantage of DeepFold is the use of inter-residue dihedral 

angle orientations, which resulted in a substantial TM-score increase for DeepFold as shown in 

Fig. 2.2. Compared to trRosetta, since both methods use distance and orientation restraints, the 

major advantage of DeepFold is the high accuracy of the restraints generated by DeepPotential. 

Therefore, in Table 2.3, we provide an accuracy comparison for the 𝐶𝛽 distance predictions by 

different programs, where the distance maps by DeepPotential had a significantly lower MAE to 

the native structures than those produced by both trRosetta and DMPfold across all cutoff values.  

 

Method L/2 (p-value) L (p-value) 2L (p-value) 5L (p-value) 10L (p-value) 

DeepPotential 0.974 (*) 1.018 (*) 1.090 (*) 1.302 (*) 1.613 (*) 

trRosetta 1.050 (4.9E-02) 1.154 (5.9E-04) 1.328 (2.8E-06) 1.730 (2.0E-07) 2.241 (1.4E-11) 

DMPfold 1.779 (1.4E-15) 1.930 (7.6E-22) 2.184 (7.5E-28) 2.695 (1.6E-33) 3.488 (1.1E-41) 

 

Table 2.3 MAEs of the top n*L long-range distances by different distance predictors on the 221 test 
proteins. The p-values were calculated using paired, two-sided Student’s t-tests between the 
DeepPotential results and the control methods. 

In Table B.4, we also list the modeling results of trRosetta using the DeepPotential restraints. 

Although trRosetta+DeepPotential resulted in a higher average TM-score (0.735) than trRosetta 
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alone, due to the use of the more accurate restraints from DeepPotential, the average TM-score of 

DeepFold was still significantly higher than that of trRosetta+DeepPotential with a p-value of 

3.9E-09. This is likely due to the unique DeepFold knowledge-based force field and the utilization 

of the additional 𝐶𝛼 distance maps that are not used by trRosetta. In addition, the simultaneous 

optimization of the DeepFold force field with the L-BFGS search engine (see Methods) helped 

enhance the structure construction process.  

Here, of particular interest is the modeling performance for those hard targets with very few 

effective sequences in their MSAs, which are the most difficult targets to fold using deep learning 

approaches. For this purpose, we collected a set of 16 targets with normalized Neff values less 

than 1 and calculated the TM-scores for the models produced by DeepFold, trRosetta, and 

DMPfold. On these targets, DeepFold achieved an average TM-score of 0.494, which was 40.3% 

higher than trRosetta (0.352) and 44.9% higher than DMPfold (0.341). In Fig. 2.7, we present a 

scatter plot of TM-score vs. the logarithm of the normalized MSA Neff value for the three methods 

on all 221 test proteins, where DeepFold demonstrated a lower correlation between the TM-score 

and Neff value than trRosetta and DMPfold, which partially explains the superior performance of 

DeepFold. 

 
Figure 2.7 Model TM-score vs. the logarithm of the MSA Neff value for DeepFold, trRosetta, and 
DMPfold. The fitted models were obtained by linear regression with Pearson’s Correlation 
Coefficients of 0.615, 0.712, and 0.675 for DeepFold, trRosetta, and DMPfold, respectively. 

Lastly, we compared the modeling accuracy of DeepFold with the first version of AlphaFold 

on the 31 CASP13 FM targets that the AlphaFold human group submitted models for (Table B.5). 



 33 

Note, we could not benchmark the performance of AlphaFold on the 221 test proteins as the feature 

generation scripts and folding pipelines are not publicly available. It can be seen from Table B.5 

that DeepFold outperformed AlphaFold on 20 of the 31 FM targets, where, on average, the TM-

score of DeepFold was 0.636 compared to 0.589 for AlphaFold (p-value=0.025, Table B.5). It is 

also important to note that the AlphaFold human group performed thousands of different 

optimization runs for the CASP13 targets as reported (163), while DeepFold only used a single 

optimization run in this study. 

 

2.1.4 Comparison of DeepFold with AlphaFold2 and RosettaFold 

Since DeepFold uses restraints from DeepPotential, which was developed before the advances 

made by AlphaFold2 (123) in CASP14, it is also of interest to compare the results against the most 

recent self-attention-based neural network methods, namely, AlphaFold2 and RosettaFold (126). 

Thus, in Fig. C.1 in Appendix C, we provide a head-to-head comparison of the DeepFold modeling 

results utilizing the restraints from DeepPotential with RosettaFold and AlphaFold2 on the 221 

test proteins in terms of the model TM-scores, where the results are summarized in Table 2.4. 

Overall, the average TM-score of the RosettaFold end-to-end pipeline was 0.812 and the 

average TM-score of the Pyrosetta version was 0.838, which were higher than the results by 

DeepFold (TM-score=0.751) with p-values of 3.6E-10 and 8.0E-22, respectively. Similarly, the 

average TM-score of AlphaFold2 was 0.903, which was higher than DeepFold with a p-value of 

1.4E-49. These results were expected given that the advances in deep self-attention neural 

networks and end-to-end training by AlphaFold2 and, subsequently, RosettaFold showed greatly 

improved modeling accuracy over previously introduced convolutional ResNet architectures, such 

as DeepPotential. 
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Method 
Mean TM-score  

(p-value) 

Correct 

Folds* 

RosettaFold (End-to-End) 0.812 (3.6E-10) 93.7% 

RosettaFold (Pyrosetta) 0.838 (8.0E-22) 95.5% 

AlphaFold2 0.903 (1.4E-49) 95.0% 

DeepFold 0.751 92.3% 
* This column represents the percent of proteins with TM-scores ≥0.5. 

Table 2.4 Modeling results of DeepFold using the DeepPotential restraints vs RosettaFold and 
AlphaFold2 on the 221 test proteins. For the mean TM-scores, the p-values were calculated using 
paired, two-sided Student’s t-tests. 

Notably, there were 7 targets for which DeepFold outperformed AlphaFold2. In Fig. 2.8, we 

illustrate two examples where DeepFold generated models that were significantly more accurate 

than AlphaFold2. The first example is from SCOPe protein d1a34a, for which DeepFold generated 

a model with a TM-score of 0.613, while AlphaFold2 generated a model with a TM-score of 0.242. 

For this target, DeepMSA2 was not able to identify any sequence homologs, resulting in an MSA 

composed of only the query sequence and an extremely low normalized Neff value of 0.08. 

Nevertheless, DeepPotential generated accurate restraints with an MAE of 1.10 Å for the top 2*L 

distances, resulting in a higher quality model than that produced by AlphaFold2.  

The second example is from SCOPe protein d1s2xa, for which DeepFold generated a model 

with a TM-score of 0.590, while AlphaFold2 generated a model with a TM-score of 0.369. Again, 

for this target, DeepMSA2 was only able to identify two sequence homologs, which resulted in a 

very low normalized Neff value of 0.15. Additionally, the DeepPotential restraints were fairly 

inaccurate with an MAE of 2.54 Å for the top 2*L distances and 59.29° for the 2*L Ω orientations. 

Surprisingly, even though the orientation restraints were inaccurate, their inclusion greatly 

improved the modeling accuracy, as the model built using only the contact and distance restraints 

possessed a low TM-score of 0.268, while the model built using the full set of contact/distance and 

orientation restraints had a TM-score of 0.514. Moreover, the addition of the general knowledge-

based energy function further improved the TM-score to 0.590. This suggests that even when 

inaccurate, the combination of various restraints with a general energy function may act 

synergistically to filter out inaccuracies in the predictions.  

It is noteworthy that the two preceding examples were from proteins with few to no 
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homologous sequences. In fact, if we consider the 5 proteins in the benchmark dataset with the 

least homologous sequence information (<3 sequence homologs) and normalized Neff values 

<0.20, DeepFold generated more accurate models than AlphaFold2 for 4 of these targets, where 

the average TM-score of DeepFold was 0.528 compared to 0.398 for AlphaFold2. This suggests 

that, while deep self-attention-based protein structure prediction approaches have demonstrated an 

improved ability to fold proteins with few sequence homologs, the performance on the most 

extreme cases remains to be improved. 
 

 
Figure 2.8 Case study from two proteins (d1a34a and d1s2xa) for which DeepFold significantly 
outperformed AlphaFold2. The DeepFold/AlphaFold2 models are shown in blue superposed with 
the native structures in yellow. 

Lastly, given the importance of the most recent advances in protein structure prediction, we 

sought to determine whether or not they could be incorporated into DeepFold to further improve 

its performance. To answer this question, we utilized the restraints from RosettaFold, including 

the Cβ distances and orientations, as well as the Cα distances/contacts and Cβ contacts from 

DeepPotential to guide the DeepFold simulations. The results of this analysis are depicted in Table 

2.5 and Fig. C.2, which present head-to-head comparisons between DeepFold utilizing the 

combined restraints with RosettaFold and AlphaFold2 in terms of the model TM-scores on the 221 
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benchmark proteins.  

With the combined RosettaFold and DeepPotential restraints, DeepFold achieved an average 

TM-score of 0.844, higher than that attained by the end-to-end (TM-score=0.812) and Pyrosetta 

(TM-score=0.838) versions of RosettaFold with p-values of 2.4E-11 and 1.2E-2, respectively. 

These data demonstrate that the DeepFold knowledge-based force field and DeepPotential contact 

and Cα distance restraints may improve the results obtained by RosettaFold. Additionally, it shows 

that DeepFold is a versatile platform that can be easily adapted for any future advances in state-

of-the-art deep learning restraint predictors. 

 

Method 
Mean TM-score  

(p-value) 

Correct 

Folds* 

RosettaFold (End-to-End) 0.812 (2.4E-11) 14.3% 

RosettaFold (Pyrosetta) 0.838 (1.2E-02) 95.5% 

AlphaFold2 0.903 (4.1E-11) 95.0% 

DeepFold 0.844 96.4% 
* This column represents the percent of proteins with TM-scores ≥0.5. 

Table 2.5 Modeling results of DeepFold using the combined RosettaFold and DeepPotential 
restraints vs RosettaFold and AlphaFold2 on the 221 test proteins. For the mean TM-scores, the p-
values were calculated using paired, two-sided Student’s t-tests. 

2.1.5 DeepFold greatly improves the accuracy and speed of protein folding over classical ab 

initio methods 

Rosetta (14) and QUARK (16) are two of the most well-known fragment-assembly methods 

and have been consistently ranked as the top methods for ab initio protein structure prediction in 

previous CASP experiments (161, 175, 176). However, a major drawback of the traditional ab 

initio folding approaches is that their modeling performance drops as the protein length increases, 

making them significantly less reliable for modeling larger protein structures composed of more 

than 150 residues (80). To examine the impact of deep learning on ab initio structure prediction 

for long protein sequences, we compared DeepFold to both Rosetta and QUARK, where Fig. 2.9.C 

depicts the TM-score of DeepFold, QUARK, and Rosetta vs the protein length. The data show that 

the performance of DeepFold remained consistent as the protein length increased, where the 

average TM-score for large proteins composed of 350-450 residues was in fact higher than that for 

the small proteins in the test set with lengths <150 residues (0.809 vs. 0.742), mostly due to the 
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more favorable MSAs collected for the set of larger proteins. However, the performance of both 

QUARK and Rosetta noticeably decreased as the protein length increased; the average TM-score 

for proteins with lengths less than 150 residues was 0.329 for QUARK and 0.304 for Rosetta but 

was only 0.190 and 0.196 for QUARK and Rosetta, respectively, on proteins with lengths between 

350 and 450 residues. From these results, DeepFold outperformed QUARK and Rosetta 

remarkably on the overall dataset and especially on the longest proteins in the dataset, for which 

the average TM-score of DeepFold was 325.8% higher than QUARK and 312.8% higher than 

Rosetta. 

Another major limitation of fragment-assembly approaches is that they require lengthy 

simulations to adequately explore the immense structure space available. In Figs. 2.9.A-B, we list 

a comparison of the folding simulation time requirement for DeepFold and the QUARK fragment 

assembly approach for different protein lengths. The results show that the speed of DeepFold is 

orders of magnitude faster than QUARK, especially for large proteins. Note that we ran QUARK 

using 5 separate trajectories in parallel and the run time shown in Fig. 2.9.A is the average run 

time across all 5 simulation trajectories. Thus, if the simulations were run sequentially, the run 

time would be 5 times longer, which further accentuates the cost of fragment assembly. Therefore, 

while fragment assembly requires hours to days to fold a protein, DeepFold requires only seconds 

to minutes. Overall, the average run time of DeepFold on the test set was 6.98 minutes, while the 

average for QUARK was 1830.82 minutes for an average protein length of 188.1 residues. This 

indicates that QUARK requires 262.3 times the computing time that DeepFold requires for one 

simulation trajectory, and the difference was even greater as the sequence length increased. 

Overall, the run time of DeepFold was similar to trRosetta, which required 5.48 minutes to 

construct models on the test dataset on average. Of particular importance is that the greatly reduced 

folding times did not cause the model quality to deteriorate for larger proteins, demonstrating the 

ability of deep learning restraints to effectively smooth the energy landscape, thereby allowing 

rapid and accurate optimization across protein lengths. 
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Figure 2.9 Dependence of simulation time and TM-score on protein length. A) Simulation runtime 
for QUARK, trRosetta, and DeepFold in minutes plotted against the protein length. B) A close up 
of the runtime vs protein length for DeepFold and trRosetta. C) Analysis of the average TM-score 
for DeepFold, QUARK, and Rosetta across different protein length ranges. 

2.1.6 Gradient-based protein folding requires a high number of deep learning restraints 

The success of rapid L-BFGS-based protein folding approaches raises the question on what 

the role of fragment assembly is in protein structure prediction. As L-BFGS and other gradient-

based methods are essentially local optimization techniques that may be prone to becoming trapped 

in local energy minima, the more extensive conformational sampling performed by fragment 

assembly may still be necessary in the absence of a high number of deep learning spatial restraints.  

To examine this hypothesis, Fig. 2.10 depicts the TM-score for L-BFGS-based protein folding 

simulations using different numbers of spatial restraints. Consistent with the data in Fig. 2.2, Fig. 

2.10 shows that only using the GE function to guide the L-BFGS simulations resulted in a poor 

average TM-score of 0.184. This was significantly lower than that obtained by QUARK (TM-

score =0.274), which uses a similar physical energy function without deep learning restraints (16). 

These data indicate the frustration of the baseline physical energy force field used by DeepFold, 

which cannot be quickly explored with gradient-based methods. Inclusion of the top L all-range 

Cβ distances slightly improved the TM-score to 0.186, and at least the top 5*L distances were 

required to improve the TM-score to a significant degree. In order to achieve a performance that 

was better than QUARK, the L-BFGS simulations required 10*L Cβ distance restraints, where the 

average TM-score using this number of restraints was 0.323. The inclusion of more distance 

restraints, such as the top 15*L and 20*L restraints, steadily improved the average TM-score to 

0.392 and 0.453, respectively. 

However, our tests showed that setting a specific probability cutoff for the selection of distance 
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restraints allowed the method to achieve the best result. In DeepFold, all distances with a 

probability >0.55 were selected for inclusion in the L-BFGS optimization procedure, which 

corresponded to an average of ~93*L distance restraints on the test set, increasing the TM-score 

to 0.668. Overall, the addition of the full set of DeepPotential restraints (including contacts, C𝛼 

distance and orientations in addition to the C𝛽 distances) increased the accuracy by an additional 

12.4%, resulting in a TM-score of 0.751 for the full pipeline. Thus, it is clear that L-BFGS requires 

a high number of spatial restraints in order to adequately smooth the energy landscape and make 

gradient-based protein folding feasible. 
 

 
Figure 2.10 Evaluation of the modeling accuracy of QUARK and DeepFold guided by different 
numbers of spatial restraints. The top n*L distances were selected by sorting the Cβ distances 
according to their predicted probabilities. 

2.1.7 Case study reveals drastically different dynamics in Monte Carlo and L-BFGS folding 

simulations 

To further illustrate the differences in the sampling procedures for the fragment assembly 

method, QUARK, and the L-BFGS optimization approach, DeepFold, we present in Fig 2.11 a 

case study from the amino terminal domain of enzyme I from E. coli (SCOPe ID: d1zyma1). Both 

DeepFold and QUARK generated a correct fold for this target, where the TM-score of the model 

produced by QUARK was 0.547 and the TM-score for the DeepFold model was very high at 0.923 
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with an RMSD of 1.29 Å, indicating a close atomic match to the experimental structure.  

To show the conformational changes during the QUARK folding simulations, Fig. 2.11.A 

depicts the TM-score of the conformation for the last replica at REMC cycle i relative to the 

conformation of the previous decoy at cycle i-1. From the figure, it can be seen that large changes 

in the conformation occur throughout the simulation due to the global conformational searching 

and replica exchange steps. On the other hand, the opposite trend was observed for the L-BFGS 

folding simulations shown in Fig. 2.11.B, during which large conformational changes occurred 

early on in the simulation, and the global fold of the protein was largely determined by the 100th 

L-BFGS step. After that, only small fluctuations in the conformation occurred, where the L-BFGS 

optimization quickly converged and did not extensively sample the structure space due to the 

nature of the local optimization of the smooth energy landscape produced by the large number of 

deep learning restraints. Moreover, Fig. 2.11.C depicts the DeepFold models at L-BFGS steps 100 

and 1100 superposed with the experimental structure. While the global fold of the model was 

determined by the 100th L-BFGS step, substantial conformational changes occurred during the 

later L-BFGS steps at the two regions, namely the highlighted terminal coil and core helix regions, 

which were poorly formed at step 100 due to the inconsistency in the spatial restraints in these 

sections. For the helix region in particular, the model at step 100 had poorly formed secondary 

structure as well as severely clashing segments. These errors were gradually corrected over the 

remaining 1000 L-BFGS steps. Therefore, while the global folds of proteins may quickly be 

determined by the consensus DeepPotential restraints during the L-BFGS simulations, additional 

steps are often needed to precisely fine-tune the model quality under the guidance of the atomic 

force field. 
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Figure 2.11 Comparison of the simulation dynamics for DeepFold and QUARK. A) Analysis of the 
conformational changes that occur during the QUARK fragment assembly simulations. The figure 
plots the TM-score of the decoy at REMC cycle i compared to the decoy at the previous cycle i-1. 
The right hand side shows the final QUARK model in red superposed with the native structure in 
cyan. B) Analysis of the conformational changes that occur during the DeepFold simulations. The 
figure plots the TM-score of the decoy at L-BFGS step i compared to the decoy at the previous step 
i-1, where the right hand side shows the final DeepFold model in red superposed with the native 
structure in cyan. C) Comparison between the DeepFold model at L-BFGS step 100 (blue) with the 
model at step 1100 (red) and the experimental structure (cyan). The insets show the areas of the 
structure that change the most after the 100th L-BFGS step. 

2.2 Concluding Remarks 

We developed an open-source program (DeepFold) to quickly construct accurate protein 

structure models from deep learning-based potentials. DeepFold significantly outperformed other 

ab initio structure prediction methods such as Rosetta, QUARK, I-TASSER, C-I-TASSER, 

DMPfold, and trRosetta on the test set of 221 Hard threading targets, and AlphaFold on the 

CASP13 FM targets. The impact of deep learning on DeepFold was best highlighted by the 

benchmark test with Rosetta, QUARK and I-TASSER, which represent the top traditional FM and 

TBM methods. On the benchmark dataset, Rosetta, QUARK and I-TASSER were only able to 
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generate correctly folded models for 0.9%, 2.7% and 24.0% of the proteins, respectively, while 

DeepFold successfully folded 92.3% of the test proteins with an average TM-score of 0.751, 

compared to 0.260, 0.274, and 0.383 for Rosetta, QUARK and I-TASSER, respectively.  

Furthermore, the average TM-score of DeepFold was 7.8% and 13.9% higher than the other 

leading deep learning-based methods, DMPfold and trRosetta, respectively, starting from the same 

MSAs. It was also 8.0% higher than AlphaFold on the 31 CASP13 FM targets. Of particular 

interest is the performance on the hardest targets in the dataset with very shallow MSAs (i.e., with 

normalized Neff values less than 1), where the average TM-score of DeepFold was 40.3% higher 

than trRosetta and 44.9% higher than DMPfold. On top of the improved accuracy, DeepFold had 

a similar running time as other gradient descent-based approaches such as trRosetta, but it was 

more than 200 times faster than the traditional fragment-assembly based approaches. The success 

of DeepFold is mainly due to the effective combination of the inherent knowledge-based potential 

with the high number of accurately predicted spatial restraints that help smooth the energy 

landscape, making L-BFGS optimization tractable. 

Despite the success, significant improvements may still be made. For example, the use of 

attention-based networks (123, 177, 178), especially an end-to-end learning protocol (123), should 

help further improve the prediction accuracy of DeepFold. Given that the main input features to 

DeepPotential are derived from co-evolutionary analyses, DeepFold often requires the input MSAs 

contain a sufficient number of effective sequences to enable determination of the co-evolutionary 

relationships between protein residues. Despite the fact that the quality of the DeepFold models 

was considerably less dependent on the MSA quality than other methods such as DMPfold and 

trRosetta, the use of a transformer architecture should help further enhance the performance of 

DeepPotential for those targets with poor MSA quality and few homologous sequences by self-

attention-based, iterative MSA refinement. This can be illustrated by the comparison of DeepFold 

with the most recent methods, RosettaFold and AlphaFold2, which achieved higher TM-scores on 

the benchmark targets. Nevertheless, when utilizing the combined RosettaFold and DeepPotential 

restraints, DeepFold was able to outperform both the end-to-end and distance-based versions of 

RosettaFold, demonstrating that it is a versatile platform that can be easily adapted for advances 

in the state of the art. Meanwhile, DeepFold outperformed AlphaFold2 on 4 out of the 5 targets 

with the least homologous sequence information (normalized Neff <0.2), revealing that there is 

significant room for improvement on very difficult modeling targets. 
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Furthermore, more efficient and precise MSA construction strategies should be developed to 

improve the MSA quality and reduce the time required to search the various sequence databases. 

The need to increase the searching efficiency is particularly important as the increase in the size 

of the sequence databases, mainly the metagenomics databases, is a double-edged sword. While it 

enables the collection of more sequences, it also greatly increases the time and computational 

resources necessary to search the sequence databases and the potential for false negative sequence 

samples due to the increase in noise. For example, searching a 150-residue protein through 

MetaClust, which is approximately 100 GB, using DeepMSA2 requires around 1 hour with 1 CPU; 

however, searching the same protein through the 5TB JGI metagenome database is dramatically 

more expensive, requiring approximately 4 hours using 50 CPUs. This issue is particularly 

important for hard modeling targets, which often require extensive homologous sequence 

detection. As evidence of this, in Fig. C.3, we plot the number of times each of the 7 MSAs 

produced by DeepMSA2 were selected for the 221 benchmark targets. From the figure, it can be 

seen that ~55% of the targets required searching beyond the MetaClust database, while only ~15% 

did not require searching through any metagenomics database. Meanwhile, incorrectly collected 

MSAs, despite having a high number of homologous sequences, can negatively impact the 

modeling results as witnessed in the CASP experiments (20). The use of a targeted MSA 

generation protocol that focuses on searching sequences related to the target protein’s biome 

represents a promising strategy for improving the speed and quality of the MSA generation and 

the accuracy of the final 3D structure modeling (179). 

 

2.3 Methods 

DeepFold is an algorithm that can quickly construct accurate full-length protein structure 

models from deep learning restraints and consists of three main steps: MSA generation by 

DeepMSA2, spatial restraint prediction by DeepPotential, and L-BFGS folding simulations, as 

depicted in Fig. 2.1. 

 

2.3.1 MSA generation by DeepMSA2  

DeepMSA2 is an extension of DeepMSA (180) for iterative MSA collection, where the new 

components include an additional pipeline to search larger sequence databases and a novel MSA 

selection method based on predicted contact maps (see Fig. 2.12 below). Briefly, DeepMSA2 
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collects 7 candidate MSAs by iteratively searching whole-genome (Uniclust30 and UniRef90) and 

metagenome (Metaclust, BFD, and Mgnify) sequence databases. The first 3 MSAs are generated 

using the same procedure as DeepMSA (i.e., dMSA in Fig. 2.12), where the query sequence is first 

searched through Uniclust30 (2017_04) by HHblits2 to create MSA-1. Next, the sequences 

identified by Jackhmmer and HMMsearch are used to construct a custom HHblits database, against 

which HHblits2 is run starting from the MSA generated in the previous stage to generate MSA-2 

and MSA-3, respectively. The four remaining MSAs are generated using a procedure called 

quadruple MSA (qMSA in Fig. 2.12), which uses HHblits2 to search the original query sequence 

against the Uniclust30 database (version 2020_01) to create MSA-4. Next, the sequences detected 

by Jackhmmer, HHblits3, and HMMsearch through the UniRef90, BFD, and Mgnify databases are 

used to construct custom HHblits-style databases, against which HHblits2 is used to search starting 

from the MSAs generated by the previous stages to create MSA-5, MSA-6, and MSA-7, 

respectively. To select the final MSA, a quick TripletRes contact map prediction (181) is run 

starting from each of the 7 MSAs, where the MSA with the highest cumulative probability for the 

top 10*L all-range contacts is selected as the final MSA. 
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Figure 2.12 DeepMSA2 pipeline, which contains three major steps: (A) dMSA, (B) qMSA, and (C) 
MSA selection. 

2.3.2 Spatial restraint prediction by DeepPotential 

Starting from the selected MSAs, two sets of 1D and 2D features are extracted. The 2D features 

include the raw coupling parameters from the pseudo likelihood maximized (PLM) 22‐state Potts 

model and the raw mutual information (MI) matrix, where the 22 states of the Potts model 

represent the 20 standard amino acids, a non‐standard amino acid type, and a gap state. As 

mentioned in Chapter 1, a Potts model is a specific type of Markov Random Field (MRF) model 

that is widely-used in protein structure prediction (106, 107, 182, 183). Briefly, an MRF is a 

graphical model that represents each column of an MSA as a node that describes the distribution 

of amino acids at a given position (Potts model field parameters), where the edges between nodes 

indicate the joint distributions of amino acids at each pair of positions. The 2D coupling parameters 

can then be determined from the edge weights, where residue pairs that exhibit correlated mutation 

patterns will possess greater edge weights, which can be used to infer positions that should be 

closer together in 3D space. This is based off of the intuition that if two residues are in contact 

with each other, then when one residue mutates, the contacting residue should also mutate in order 

to preserve the interaction. In DeepPotential, CCMpred (183) is used to fit the Potts model. The 

corresponding parameters for each residue pair in the PLM and MI matrices are extracted as 

additional features that measure query‐specific co‐evolutionary information in an MSA. The 1D 

features contain the Potts model field parameters, Hidden Markov Model (HMM) features, and the 

self‐mutual information, along with the one‐hot representation of the MSA and other descriptors, 

such as the number of sequences in the MSA.  

Next, these 1D and 2D features are fed into deep convolutional residual neural networks 

separately, where each of them is passed through a set of one‐dimensional and two‐dimensional 

residual blocks, respectively, and are subsequently tiled together. The tiled feature representations 

are considered as the input of another fully residual neural network which outputs the inter‐residue 

interaction terms, including Cα-Cα distances, Cβ-Cβ distances, and the inter-residue orientations 

(Fig. 2.1). Here, the predicted spatial restraints are represented using various bins that correspond 

to specific distance/angle values, where DeepPotential predicts the probability that the spatial 

restraints fall within the specific bins. For example, for the Cα and Cβ distances, the predictions 

are divided into 38 bins, where the first bin represents the probability that the distance is <2Å and 

the final bin represents the probability that the distance is ≥20Å. The remaining 36 bins represent 
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the probability that the distance falls in the range [2Å, 20Å), where each bin has a width of 0.5 Å. 

On the other hand, the 3 orientation features, as defined in Fig. 2.13, are predicted using a bin 

width of 15˚ with an additional bin to indicate whether there is no interaction between the two 

residues (i.e., Cβ-Cβ distance ≥20Å). The DeepPotential models were trained on a set of 26,151 

non-redundant proteins collected from the PDB at a pair-wise sequence identity cutoff of 35%. 

 

 
Figure 2.13 Definition of the inter-residue orientations predicted by DeepPotential. Ω and 𝜃 are 
inter-residue torsion angles formed by the four indicated atoms and 𝜑 is an inter-residue angle 
formed by three atoms. 

2.3.3 DeepFold Force Field 

The DeepFold energy function is a linear combination of the following terms: 

 

𝐸!""#$%&' = (𝐸()'*+, + 𝐸(-'*+, + 𝐸().%/, + 𝐸(-.%/, + 𝐸0 + 𝐸1 + 𝐸2) + (𝐸34 + 𝐸5'6

+ 𝐸,%7)					(2.1) 

 

where the first seven terms 𝐸()'*+,, 𝐸(-'*+,, 𝐸().%/,, 𝐸(-.%/,, 𝐸0, 𝐸1, and 𝐸2 account for the 

predicted Cβ–Cβ distances, Cα–Cα distances, Cβ–Cβ contacts, Cα–Cα contacts, and three inter-

residue orientation angles by DeepPotential; and the last three terms 𝐸34, 𝐸5'6, and 𝐸,%7 denote 

the generic energy terms for hydrogen bonding, van der Waals clashes, and backbone torsion 

angles, respectively.  

Overall, the DeepFold force field consists of 24 weighting parameters, where the weights given 

to each of the deep learning restraints were separated into short (1<|𝑖 − 𝑗| ≤ 11), medium 

(11<|𝑖 − 𝑗| ≤ 23) and long-range (|𝑖 − 𝑗| > 23) weights, which were determined by maximizing 
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the TM-score on the training set of 257 non-redundant, Hard threading targets collected from the 

PDB that shared <30% sequence identity to the test proteins. Briefly, all the weights were 

initialized to 0, then the weight for each individual energy term was varied one-at-a-time by an 

increment of 0.25 in the range from [0, 25] and the DeepFold folding simulations were run using 

the new weights. The weight for each term that resulted in the highest average TM-score on the 

training set was accepted. After the initial weighting parameters were determined, 3 more 

optimization runs were carried out, where the weight for each energy term was again varied in a 

range from [0, 25] using an increment of 0.1 and the weighting parameters that resulted in the 

highest average TM-score on the training set were accepted. A final optimization run was carried 

out, where the weights were perturbed by [-2, 2] from their previously accepted values using an 

increment of 0.02 to precisely fine-tune their values. The details of each energy term are further 

explained in Text D.2 in Appendix D. Since DeepPotential provides the bin-wise histogram 

probability of the spatial descriptors, these terms are further fit with cubic spline interpolation to 

facilitate the implementation of the L-BFGS optimization, which requires a continuously 

differentiable energy function. 

 

2.3.4 L-BFGS Folding Simulations 

A protein structure in DeepFold is specified by its backbone atoms (N, H, Cα, C, and O), Cβ 

atoms and the side-chain centers of mass (Fig. 2.14).  

 
Figure 2.14 Depiction of the reduced model used to represent protein conformations during the 
DeepFold folding simulations.The conformations include the backbone atoms (N, H, Cα, C, and O) 
as well as the Cβ atoms and side-chain centers of mass for each amino acid type. 
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The initial conformations are generated from the backbone torsion angles (𝜙, 𝜓) predicted by 

ANGLOR through a small, fully-connected neural network (184), where the cartesian coordinates 

of the backbone atoms are determined using simple geometric relationships, assuming ideal bond 

length and angle values. The conformational search simulations are performed using L-BFGS, 

with bond lengths and bond angles fixed at their ideal values, and the optimization is carried out 

on the backbone torsion angles. 

Here, L-BFGS is a gradient-descent based optimization method that is a limited memory 

variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. At each step 𝑘, the search 

direction 𝑑8 of the simulation is calculated by 

 

𝑑8 = −𝐻89: ∙ ∇𝐸!""#$%&'(𝑥)																																																																				(2.2) 

 

where 𝐻89: is an estimate for the inverse Hessian matrix and ∇𝐸!""#$%&'(𝑥) represents the gradient 

of 𝐸!""#$%&'(𝑥) with respect to the backbone torsion angles 𝑥 = (𝜙, 𝜓). The value of 𝐻89: at step 

𝑘 = 0 is set to the identity matrix, 𝐼, and the value of 𝐻8;:9:  is obtained following the BFGS 

formulation 

T

𝐻8;:9: = 𝑉8<𝐻89:𝑉8 + 𝜌8𝑠8𝑠8<

𝑉8 = 𝐼 − 𝜌8𝑦8𝑠8<

𝜌8 = 1
𝑦8<𝑠8
Y

																																																												(2.3) 

 

where 𝑠8 = 𝑥8;: − 𝑥8 and 𝑦8 = ∇𝐸!""#$%&'(𝑥8;:) − ∇𝐸!""#$%&'(𝑥8). 𝐻8;:9:  can be computed 

recursively by storing the previously calculated values of 𝑠8 and 𝑦8. To preserve memory, L-BFGS 

only stores the last 𝑚 values of 𝑠8 and 𝑦8. Thus, 𝐻8;:9: 	is calculated by 

 

𝐻8;:9: = [ \ 𝑉*<
89=>;:

*?8

]𝐻@9: ^ \ 𝑉*

8

*?89=>;:

_ + ` [ \ 𝑉*

A;:

*?8;:

]
89=>;:

A?8

𝜌8𝑠8𝑠8< [\ 𝑉*

8

*?A;:

]																		(2.4) 

 

where 𝑚b = 𝑚𝑖𝑛(𝑘,𝑚 − 1) and 𝑚 is set to 256 in DeepFold. Once the search direction 𝑑8 is 

decided, the torsion angles for the next step are updated according to 
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d𝜙8;: = 𝜙8 + 𝛼8𝑑8
𝜓8;: = 𝜓8 + 𝛼8𝑑8

																																																																						(2.5) 

 

The value of 𝛼8 is determined using the Armijo line search technique (185) and dictates the extent 

to move along the given search direction. In DeepFold, a maximum of 10 L-BFGS iterations are 

performed with 2,000 steps each, or until the simulations converge. The final model is selected as 

the one with the lowest energy produced during the folding simulations. 

 

2.4 Author Contributions 

The findings of this study were published in PLOS Computational Biology (122) with myself 

(R.P.) as first author, co-authors Drs. Yang Li (Y.L.) and Gilbert S. Omenn (G.S.O.), and 

corresponding author Dr. Yang Zhang (Y.Z.). R.P. developed DeepFold, performed the 

experiments, analyzed the data, developed the stand-alone package, and drafted the text and 

figures; Y.L. developed DeepPotential; R.P., G.S.O., and Y.Z. finalized the manuscript. 
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CHAPTER 3  
 

DeepFoldRNA: Ab Initio RNA Tertiary Structure Prediction at Atomic 

Resolution Using Geometric Potentials from Deep Learning  

 
Having covered our work in protein structure prediction, we will now turn our attention towards 

the related field of RNA structure prediction. Like proteins, RNAs are vital macromolecules that 

play a fundamental role in many cellular processes in living organisms, including mediating gene 

translation, serving as catalysts of important biological reactions, and regulating gene expression 

(186). Again, as is true for proteins, RNA functions are determined by their unique three-

dimensional structures, which in turn are dictated by their nucleic acid sequences. Although 

understanding RNA structures is fundamental to elucidating their functions, there is an enormous 

discrepancy between the number of known RNA sequences and the number of solved structures. 

For example, while ~34 million RNA sequences have been deposited in the RNAcentral database 

(7), there are <500 non-redundant RNA structures solved in the Protein Data Bank (PDB) at a 

resolution of ~2 Å and <30 are composed of >70 nucleotides. Furthermore, only 99 of the 4,192 

Rfam families have members with solved structures (87). Thus, there is an urgent need to develop 

computational RNA structure prediction methods capable of addressing this stark disparity. 

Like with protein structure prediction, the goal of RNA structure prediction is to determine the 

spatial location of every atom in an RNA molecule starting from its nucleic acid sequence. Some 

state-of-the-art methods take a physics-based approach to model RNA structures by identifying 

low free-energy states through Monte Carlo simulations (187), while others approach the problem 

by assembling homologous fragments for a given nucleic acid sequence guided by knowledge-

based energy functions (94). However, even with the assistance of human expert intervention and 

experimental data, these methods struggle to produce accurate folds for larger, more complex RNA 

molecules, rarely achieving RMSDs lower than 8-12 Å in blind RNA structure prediction studies 

(86, 101). Moreover, the results are typically worse for automatic modeling methods, which may 
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produce models with around 20 Å RMSDs for complex folds (187). Progress has been made by 

using deep learning to predict secondary structure and contact information to guide the folding 

simulations (188-191); however, the improvements remain unsatisfactory and current state-of-the-

art methods rarely achieve atomic resolution models, i.e., <2Å RMSD (192), for complex RNA 

folds (86, 94, 101, 102). Recently, deep learning approaches have been successfully applied to the 

problem of model selection (193). Nevertheless, the success of these methods is predicated on 

generating conformations that are close to the native structures, where atomic resolution was only 

obtained after utilizing restraints from native structures, which are not available in practical 

modeling applications. 

To improve the performance of RNA structure prediction methods, we drew inspiration from 

our work with DeepFold and the dramatic advances in protein structure prediction made by 

AlphaFold2 and other self-attention-based methods (115, 123, 125). Toward this goal, we 

developed DeepFoldRNA, which uses a self-attention-based neural network architecture to predict 

geometric restraints, where 3D RNA structures are then built using L-BFGS minimization 

simulations. Across multiple test experiments, DeepFoldRNA drastically outperformed other 

state-of-the-art modeling methods and consistently achieved atomic-level resolution for complex 

RNA folds. In addition, due to the rapid gradient-based folding simulations, RNAs could be folded 

in a tiny fraction of the time required by current methods. The speed and accuracy of 

DeepFoldRNA will allow for large-scale elucidation of RNA structure and function, addressing a 

fundamental problem in structural biology. Each component of the program, including the deep 

learning models and L-BFGS optimization pipeline, is integrated into a stand-alone package at 

https://github.com/robpearc/DeepFoldRNA and an online webserver is available at 

https://zhanggroup.org/DeepFoldRNA, from which users can generate structure models for their 

own RNA of interest. 

 

3.1 Results and Discussion 

DeepFoldRNA is a method for fully-automated RNA structure prediction that consists of two 

consecutive modules (Fig. 3.1). In the restraint generation module (Fig 3.1.A), multiple sequence 

alignments (MSAs) of RNAs are collected by iteratively searching through multiple nucleic acid 

sequence databases using rMSA (194), where spatial restraints, including pairwise distance and 

inter-residue/backbone torsion angles maps, are predicted using self-attention neural networks that 
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are built on two transformer elements with information encoded from the sequence, MSA, and 

pairwise positional embeddings. In the structure construction module (Fig 3.1B), the predicted 

geometric restraints are converted into composite potentials by taking the negative log-likelihood 

of the binned probability predictions, which are then used to guide the L-BFGS folding 

simulations. 

 
Figure 3.1 Overview of the DeepFoldRNA pipeline. A) Starting from a nucleic acid sequence, 
multiple RNA sequence databases are searched to create a multiple sequence alignment (MSA) for 
the query RNA, which is embedded into the network to initialize the MSA representation. The raw 
MSA is also used to derive the secondary structure prediction and initialize the pair embedding. The 
MSA and pair embeddings are then processed by the MSA Transformer layers, which use multiple 
self-attention mechanisms to refine the initial embeddings, where communication is encouraged 
between the two to ensure consistency. Next, the sequence embedding is extracted from the row in 
the final MSA embedding corresponding to the query sequence, which is further processed using 
self-attention mechanisms by the Sequence Transformer layers. Finally, the distance and inter-
residue torsion angle maps are predicted from a linear projection of the final pair embedding, while 
the backbone pseudo-torsion angles are generated by a linear projection of the sequence embedding. 
B) The geometric restraints are converted into a negative-log likelihood potential to guide the L-
BFGS simulations for final RNA model construction. 

Two datasets were constructed to test DeepFoldRNA. The first was collected from Rfam 

families (87) with experimentally solved structures, where we curated a set of 4082 Rfam 

structures with complex folds and lengths between 70-250 nucleotides. From this set, we obtained 

105 non-redundant RNA structures from 32 Rfam families after using a sequence identity cutoff 

of 80%. The second dataset was taken from the community-wide RNA-Puzzles experiment (85, 
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86, 101, 102) and consisted of 17 non-redundant, monomeric RNA structures where the models 

predicted by all groups were available to be downloaded at https://github.com/RNA-

Puzzles/standardized_dataset. All targets in the test sets, together with those at >80% sequence 

identity to them, were held out from training the DeepFoldRNA pipeline. 

 

3.1.1 DeepFoldRNA accurately predicts geometric restraints 

Two central geometric restraints are predicted by DeepFoldRNA, including distance and 

orientation maps. The distance maps include the pairwise distances between the nitrogen atoms of 

the base bonded to the ribose sugar (N1 for pyrimidines and N9 for purines) as well as the backbone 

C4’ and P atoms (Fig. 3.2.A), while the inter-residue orientations include Ω =< 𝐶4*B − 𝑁1 𝑁9⁄ * −

𝑁1 𝑁9⁄ A − 𝐶4A
B >, 𝜆* =< 𝑃* − 𝐶4*B − 𝑁1 𝑁9⁄ * − 𝑁1 𝑁9⁄ A >, and 𝜆A =< 𝑃A − 𝐶4AB − 𝑁1 𝑁9⁄ A −

𝑁1 𝑁9⁄ A >, where i and j are the nucleotide indices along the sequence (Fig. 3.2.B). The network 

of Module-1 generates probability distributions for each of the geometric restraints, where the 

distances and orientations are divided into 40 and 25 bins, respectively (see Methods). 

 

 
Figure 3.2 Definition of the geometric restraints predicted by DeepFoldRNA. These restraints 
include (A) inter-residue distances, (B) inter-residue torsion angles, and (C) backbone pseudo-
torsion angles. 

To assess the accuracy of the predicted restraints, we list in Table 3.1 the Mean Absolute Errors 

(MAEs) for the top L, 5L and 10L medium/long-range (|𝑖 − 𝑗|>12) distance and orientation 

restraints predicted by DeepFoldRNA for the 122 RNAs in the two test sets. Here, MAE =

(1/𝑛) ∑ |𝑥* − 𝑦*|/
*?: , where 𝑥* is the value of the predicted restraint with the maximum probability 

score for a selected residue pair, 𝑦* is the corresponding value in the native structure, and 𝑛 is the 

number of restraints considered. As a control, we also list the distance/orientation parameters taken 



 54 

from the predicted models by two state-of-the-art modeling methods: SimRNA (187) and Rosetta 

FARFAR2 (94), which have been among the most accurate automatic modeling servers in previous 

RNA-Puzzles experiments (86, 101, 102). To provide a fair comparison between the methods, the 

predicted secondary structures used by DeepFoldRNA were used as constraints during the 

SimRNA and FARFAR2 simulations, where the exact procedures used to run both programs are 

provided in Texts F.1 and F.2 in Appendix F. Overall, DeepFoldRNA produced accurate distance 

and orientation predictions, where the average MAEs for the top L, 5L and 10L N1/N9 distances 

were 0.72, 0.83 and 0.93 Å, respectively, which were ~9-11 times lower than those extracted from 

the SimRNA and FARFAR2 models. For the Ω/𝜆 orientations, the average L, 5L and 10L MAEs 

were 0.17/0.14, 0.20/0.16 and 0.23/0.17 radians, respectively, which were around 4-6.5 times 

lower than those obtained from the SimRNA and FARFAR2 models. These data demonstrate the 

ability of DeepFoldRNA to create very accurate restraint predictions, which are crucial to its 

modeling performance. 

It is noted that since the SimRNA and FARFAR2 models do not have confidence scores 

associated with each distance/orientation, we selected restraints based on the DeepFoldRNA 

confidence scores alone in the above comparisons. To remove the bias in restraint selection, we 

present a comparison for all medium/long-range restraints at the last column of Table 3.1. As 

expected, the MAE was much larger for the DeepFoldRNA restraints when all residues were 

considered, suggesting the sensitivity of the DeepFoldRNA confidence scores and the rationality 

for the 3D model construction based on a limited number of high-ranking restraints. Interestingly, 

the MAEs of the SimRNA and FARFAR2 models were also typically smaller (except for the 𝜆 

orientation) for the top-ranked residues than for all residues; this is probably because 

DeepFoldRNA tends to have higher confidence scores in conserved regions where SimRNA and 

FARFAR2 could also generate slightly better models. 
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Restraint Type Method Top-L (p-value) Top-5L (p-value) Top-10L (p-value) All (p-value) 

N1/N9 Distance 

MAE (Å) 

SimRNA Model 6.52 (2.7E-27) 7.47 (5.4E-30) 8.06 (2.9E-27) 10.71 (5.1E-10) 

FARFAR2 Model 8.17 (1.6E-25) 9.34 (7.0E-32) 9.91 (1.1E-32) 12.01 (5.6E-20) 

DeepFoldRNA 0.72 (-) 0.83 (-) 0.93 (-) 6.37 (-) 

C4’ Distance 

MAE (Å) 

SimRNA Model 9.29 (1.8E-30) 9.38 (4.0E-35) 9.44 (9.2E-33) 10.86 (4.8E-11) 

FARFAR2 Model 11.37 (2.4E-29) 11.40 (2.8E-35) 11.27 (2.2E-36) 12.00 (1.5E-20) 

DeepFoldRNA 0.88 (-) 0.97 (-) 1.06 (-) 6.80 (-) 

P Distance  

MAE (Å) 

SimRNA Model 8.37 (7.0E-36) 8.61 (3.3E-38) 8.87 (3.4E-33) 11.49 (1.1E-12) 

FARFAR2 Model 10.25 (1.3E-28) 10.76 (7.6E-37) 11.13 (2.8E-38) 14.27 (8.6E-28) 

DeepFoldRNA 0.87 (-) 0.98 (-) 1.1 (-) 6.84 (-) 

Ω Orientation 

MAE (radians) 

SimRNA Model 0.83 (1.9E-52) 0.87 (2.1E-61) 0.88 (4.9E-61) 0.94 (4.7E-55) 

FARFAR2 Model 0.90 (2.4E-62) 0.91 (2.0E-73) 0.91 (1.0E-74) 0.98 (2.3E-65) 

DeepFoldRNA 0.17 (-) 0.20 (-) 0.23 (-) 0.43 (-) 

λ Orientation 

MAE (radians) 

SimRNA Model 0.88 (2.3E-38) 0.82 (1.2E-47) 0.78 (1.2E-51) 0.77 (6.3E-48) 

FARFAR2 Model 0.85 (2.2E-38) 0.81 (1.7E-52) 0.79 (1.1E-56) 0.79 (1.8E-51) 

DeepFoldRNA 0.14 (-) 0.16 (-) 0.17 (-) 0.37 (-) 

 

Table 3.1 Summary of the accuracy of the DeepFoldRNA predicted restraints. The accuracy is 
analyzed in terms of the Mean Absolute Errors (MAEs) for the top medium/long-range (|𝑖 − 𝑗|>12) 
restraints, where L is the RNA length. The p-values were calculated between DeepFoldRNA and 
the control methods using paired, two-sided Student’s t-tests. 

3.1.2 DeepFoldRNA dramatically outperforms state-of-the-art methods on the Rfam dataset 

To evaluate the modeling performance of DeepFoldRNA, Table 3.2 presents a summary of the 

3D modeling results on the 105 RNAs from the Rfam dataset in terms of the average/median 

RMSDs and TM-scores relative to the experimental structures along with the results by SimRNA 

and FARFAR2. As a reminder, TM-score is a length-independent metric for assessing structural 

similarity that takes a value in the range (0, 1], where a TM-score=1 corresponds to an identical 

structural match and a TM-score >0.45 indicates that two RNAs share the same global fold (170, 

195).  
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Method 
RMSD Avg/Median  

(p-value) 

TM-score Avg/Median 

(p-value) 

Correct 

Folds* 
RMSDDeepFoldRNA 

<RMSDMethod‡ 

SimRNA 19.37/17.23 (6.2E-44) 0.228/0.222 (1.0E-66) 0.0% 100.0% 

FARFAR2 21.07/19.17 (8.4E-52) 0.228/0.219 (6.6E-64) 0.0% 100.0% 

DeepFoldRNA 2.68/2.11 (-) 0.757/0.779 (-) 99.0% - 

* This column represents the percent of RNAs with TM-scores ≥0.45. 

‡ This column indicates the percent of test RNAs for which DeepFoldRNA generated a model with a lower RMSD than the 

control method. 

Table 3.2 Summary of the structure modeling results by DeepFoldRNA compared to the control 
methods on the 105 test RNAs from the Rfam dataset. The RMSDs and TM-scores were calculated 
using the RNA-align program(195) based on sequence-dependent superposition of the C3’ atoms. 
The p-values were calculated between DeepFoldRNA and the control methods using paired, two-
sided Student’s t-tests. 

On average, DeepFoldRNA achieved a TM-score of 0.757, which was 232% higher than that 

attained by SimRNA and FARFAR2 (0.228); the differences were highly statistically significant 

with p-values of 1.0E-66 and 6.6E-64 for the comparison with SimRNA and FARFAR2, 

respectively. Meanwhile, the average RMSD of the DeepFoldRNA models was 2.68 Å compared 

to 19.37 Å and 21.07 Å for SimRNA and FARFAR2, respectively; the differences were again 

statistically significant with p-values of 6.2E-44 and 8.4E-52. When considering the median 

values, DeepFoldRNA produced models with a median RMSD of 2.11 Å (SimRNA: 17.23 Å; 

FARFAR2: 19.17 Å) and a median TM-score of 0.779 (SimRNA: 0.222; FARFAR2: 0.219), 

corresponding to close atomic matches between the predicted and native structures. 

In Fig. 3.3, we present head-to-head RMSD and TM-score comparisons of DeepFoldRNA with 

SimRNA and FARFAR2. Overall, DeepFoldRNA generated models with lower RMSDs and 

higher TM-scores than the control methods for all of the test RNAs. Furthermore, Fig. 3.3.C and 

3.3.F list the number of models produced below a specific RMSD or above a given TM-score 

threshold. When considering a cutoff TM-score of 0.45, for example, DeepFoldRNA generated 

correct global folds for 99% or all but one of the test RNAs, while the control methods were unable 

to generate correct global folds for any of the targets. DeepFoldRNA also consistently generated 

models with atomic-level accuracy, where 46 of the 105 models (43.8%) had RMSDs <2 Å to their 

experimental structures. When considering a more permissive RMSD cutoff of <4.0 Å to define a 

native-like structure, 86.7% of the DeepFoldRNA models met this criterion, while none of the 

models by the control methods did so. 
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Figure 3.3 Head-to-head RMSD and TM-score comparisons of DeepFoldRNA with the selected 
state-of-the-art methods on the 105 Rfam RNA strucures. A) RMSD comparison with SimRNA, B) 
RMSD comparison with FARFAR2, C) Number of targets below a given RMSD threshold, D) TM-
score comparison with SimRNA, E) TM-score comparison with FARFAR2, F) Number of targets 
above a given TM-score threshold. 

Importantly, the success of DeepFoldRNA modeling was not limited to any specific fold type. 

Fig. 3.4 plots representative models across all 32 Rfam families in the test set. For 14 of the 32 

families (43.8%), DeepFoldRNA generated atomic resolution models with <2Å RMSD and 100% 

of the models possessed correct global folds with TM-scores >0.45. Highly accurate models could 

be constructed for well represented families such as RF00001 (composed of 5S ribosomal RNAs) 

and RF00005 (made up of tRNAs), where the DeepFoldRNA models had RMSDs of 1.08 Å and 

1.09 Å, respectively, corresponding to very close atomic matches between the predicted and 

experimental structures. Accurate models were also constructed for families with few sequence 

homologs. For instance, RF01689 (PDB ID 4frg, chain B, residues 1-83) is composed of AdoCbl 

variant RNAs and the generated MSA had relatively few homologous sequences with a Neff value 

(number of effective sequences) of 3.65, where DeepFoldRNA created an accurate model for this 

family with an RMSD of 2.12 Å and a TM-score of 0.709.  
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Figure 3.4 Representative models generated by DeepFoldRNA for each of the 32 Rfam families. 
The modeled structures in blue are superposed with the native structures in yellow. The PDB IDs, 
chain ids, and residue numbers are shown below each RNA together with the TM-scores and 
RMSDs. 

Interestingly, for models with higher RMSDs, the modeling errors were often localized in 

flexible or unstructured regions of the RNAs. For instance, for RF02678 (PDB ID 6jq5, chain A, 

residues 1-81) the model generated by DeepFoldRNA had an RMSD of 8.02Å, where the deviation 

between the modeled and native structures was mainly confined to the unpaired region of the 

structure from residues 64-81 (Fig. E.1 in Appendix E). In the core region of the RNA (residues 

1-63), in contrast, the RMSD between the modeled and native structures was only 1.40 Å, resulting 

in a correct global fold with a TM-score of 0.667. Overall, the results demonstrate that 

DeepFoldRNA is able to consistently generate correct global folds, frequently with atomic-level 

resolution, for RNAs across various complex fold types, drastically outperforming the leading 

Monte Carlo simulation methods. 

 

3.1.3 DeepFoldRNA outperforms the best models by the RNA-Puzzles community by a large 

margin 

To further examine DeepFoldRNA with the state of the art, we tested it on 17 challenging, 

monomeric RNA targets from the community-wide RNA-Puzzles experiment, where many of the 
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targets lacked structural and sequence homologs (85, 86, 101, 102). The experiment is split into 

Human and Server Sections, where each group is allowed to submit up to 10 models for each 

target. Traditionally, the automated Server methods, which are given 48 hours to model a target, 

have been unable to achieve the same performance as Human groups, who are typically given 3-6 

weeks and often utilize extensive expert intervention during the modeling process and restraints 

from fast-track experimental data (86, 101, 102). Fig. 3.5 summarizes the modeling results of 

DeepFoldRNA compared to all RNA-Puzzles participants. 

 

 
Figure 3.5 DeepFoldRNA modeling results on the 17 RNA-Puzzles targets compared to the 
participants. (A) TM-score; (B) RMSD; (C) Same as (B) but only for models with RMSDs below 
12 Å. (D) Z-score of the TM-score for DeepFoldRNA compared to the participating groups. The 
RMSDs and TM-scores were calculated using the RNA-align program(195) based on sequence-
dependent superposition of the C3’ atoms. 
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Overall, DeepFoldRNA achieved an average TM-score of 0.654, which was 77.7% higher than 

the average TM-score of the first models generated by the best-performing group in RNA-Puzzles 

(Das Group, TM-score=0.368). If we select the best model submitted for each target by all of the 

RNA-Puzzles participants, the DeepFoldRNA TM-score was still 55.0% higher than that of the 

best models by the community (TM-score=0.422). Similarly, the average RMSD of 

DeepFoldRNA (2.72 Å) was 4.18 Å lower than the average RMSD of the best models (6.90 Å) 

generated by all RNA-Puzzles groups. When considering a cutoff TM-score of 0.45, 

DeepFoldRNA generated correct global folds for 15 of the 17 Puzzles (88.2%), while correct 

global folds could only be constructed for 5 of the 17 targets (29.4%) by the RNA-Puzzles 

community. Meanwhile, DeepFoldRNA generated models with <2.5 Å RMSD for 10 of the 17 

cases (58.8%), while this accuracy was achieved for only one target (Puzzle 25) by the community. 

Since many of the RNA-Puzzles targets lack sequence homologs, it is of interest to examine 

the modeling performance in relation to the quality of the generated MSAs. In Fig. 3.6.A, we plot 

the TM-score of the DeepFoldRNA models against the logarithm of the MSA Neff value on the 

RNA-Puzzles dataset. From the figure, it can be seen that there is essentially no correlation (ρ=-

0.001) between the model TM-score and the MSA Neff value, suggesting that DeepFoldRNA is a 

robust method for the hardest class of RNA targets, which lack homologous sequence information. 

Furthermore, Fig. 3.6.B plots the model TM-scores vs. the MSA Neff values across the targets in 

both the RNA-Puzzles and Rfam datasets. Again, only a very weak correlation (ρ=0.013) existed 

between the Neff value and the model quality by DeepFoldRNA. Overall, these results 

demonstrate that DeepFoldRNA is capable of accurately folding very challenging modeling targets 

using a fully automated pipeline, significantly outperforming approaches from the RNA-Puzzles 

challenge, where many of the predictions were guided by human expert intervention and 

experimental restraints. 
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Figure 3.6 Model TM-score vs. the logarithm of the MSA Neff value for DeepFoldRNA on the 
RNA-Puzzles dataset (A) and the overall dataset (B). The fitted models were obtained by linear 
regression. 

3.1.4 Case studies reveal DeepFoldRNA’s ability to fold challenging targets with complex 

structures 

A closer examination of Fig. 3.5 shows that DeepFoldRNA achieved the best models with the 

highest TM-scores and lowest RMSDs for 15 out of the 17 RNA targets. If we define a Z −

score = (TMC − ⟨TM⟩)/𝜎, where TMC is the TM-score of the DeepFoldRNA model, ⟨TM⟩ is the 

average TM-score of all groups and 𝜎 is the standard deviation, DeepFoldRNA generated a model 

that was better than any other submitted model by a large margin for 10 cases (i.e., Puzzles 1, 5, 

6, 7, 11, 12, 13, 21, 22, and 23) with Z-scores above 5 (Fig. 3.5.D). There were only two targets 

(PZ9 and PZ25) for which the DeepFoldRNA model was marginally worse with RMSDs that were 

0.2 and 0.66 Å higher than the best models from the RNA-Puzzles community, respectively. 

In Fig. 3.7, we present four case studies for which DeepFoldRNA achieved near-native quality 

models with RMSDs <2.5 Å, while all models submitted by the RNA-Puzzles community had 

RMSDs above 10 Å.  

First, Puzzle 5 is a 188-nucleotide long lariat-capping ribozyme (PDB ID: 4p9r) that catalyzes 

reactions involving the formation of a 3 nucleotide 2’,5’ lariat (196). The RNA possesses a unique 

open ring structure formed by the interaction between the two peripheral helical regions. The 

highest TM-score model submitted by the RNA-Puzzles community had a TM-score of 0.426 and 

an RMSD of 10.61Å, where the open ring structure was not reproduced by any of the submitted 

models (102). For this target, the generated MSA by rMSA contained 17 sequence homologs, 

where only 3 sequences were aligned to the query with a coverage >50%, resulting in a low Neff 

value of 0.65. Nevertheless, the deep learning module generated accurate spatial restraints with 
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MAEs for the top 5L N-N distances and Ω/𝜆 orientations of 0.99 Å and 0.17/0.14 radians, 

respectively. Additionally, the structure produced by the folding simulations closely converged to 

the predicted restraints with an MAE of 0.72 Å between the predicted top 5L N-N distances and 

the model distances. This resulted in a high-quality 3D structure with a TM-score of 0.851 and 

RMSD of 2.43 Å, accurately recapitulating the open ring structure and again highlighting the 

ability of DeepFoldRNA to model challenging targets with few homologous sequences. 

Second, Puzzle 6 is a 168-nucleotide adenosylcobalamin riboswitch (PDB ID: 4gxy), which 

possesses a large ligand binding pocket that binds the adenosyl moiety to control gene expression 

(197). The models submitted by the RNA-Puzzles community had a wide range of TM-scores 

(~0.142-0.424) and RMSDs (~38.02-11.89 Å), where the best model (TM-score=0.424) was 

produced with the assistance of experimental SHAPE data to help elucidate important secondary 

structure and contact information (102). For DeepFoldRNA, a reliable MSA was collected with a 

high Neff of 517.9, which resulted in accurate predicted restraints with MAEs for the top 5L N-N 

distances and Ω/𝜆 orientations of 0.94 Å and 0.22/0.17 radians, respectively. Moreover, the folding 

simulations produced a structure that closely matched the predicted restraints with an MAE of 0.73 

Å between the top 5L predicted N-N distances and the model distances. Thus, the generated model 

possessed a near-native structure with a TM-score of 0.846 and RMSD of 2.23 Å. Importantly, the 

ligand binding site, which is essential to the RNA’s function, was accurately recapitulated without 

any explicit provisions or simulations that accounted for the ligand position. 

Third, Puzzle 7 is the Varkud satellite ribozyme (PDB ID: 4r4v), which is composed of 185 

nucleotides and mediates rolling circle replication of a plasmid in the Neurospora mitochondrion 

(198). The highest TM-score RNA-Puzzles model was constructed with the assistance of hydroxy 

radical footprinting experiments as well as mutate-and-map measurements used to determine 

contact information (101). Nevertheless, the resulting model had a low TM-score of 0.295 and a 

high RMSD of 25.33 Å, where the model possessed incorrect helical orientations and an overly 

compact structure. For this target, DeepFoldRNA generated a poor MSA containing only 3 

sequence homologs, all of which were nearly identical to the query sequence, resulting in an 

extremely low Neff of 0.07, making the prediction essentially a single sequence prediction 

problem. Nevertheless, the deep learning module produced accurate restraints with MAEs for the 

top 5L N-N distances and Ω/𝜆 orientations of 0.77 Å and 0.16/0.14 radians, respectively. This 
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resulted in a DeepFoldRNA model with a TM-score of 0.875 and RMSD of 2.40 Å, corresponding 

to a 196.6% higher TM-score than the best model submitted during RNA-Puzzles. 

Last, Puzzle 12 is a medium-size (108 nucleotides) ydaO riboswitch (PDB ID: 4qlm) with a 

novel structural topology that contains two binding pockets for cyclic-di-AMP (199). It is involved 

in a number of important cellular functions, including sporulation, osmotic stress responses, and 

cell wall metabolism (199). The best RNA-Puzzles model was produced with the assistance of 

fast-track experimental SHAPE data and multidimensional chemical mapping (101) and had a TM-

score of 0.347 and RMSD of 14.35Å. Notably, the bubble region in the structure was unable to be 

correctly predicted by any of the submitted models and is partially unresolved in the crystal 

structure, likely due to its flexibility and lack of base pairing (101). For DeepFoldRNA, the 

generated MSA was reliable with a Neff value of 135.5 and the resulting predicted restraints were 

accurate with MAEs of 0.70 Å and 0.15/0.20 radians for the top 5L N-N distances and Ω/𝜆 

orientations, respectively. Again, the folding simulations closely converged to the predicted 

restraints with an MAE of 0.72 Å between the predicted top 5L N-N distances and the model 

distances. These resulted in a high-quality model by DeepFoldRNA with an RMSD of 2.38 Å and 

a TM-score of 0.796 to the experimental structure, corresponding to a 129.4% improvement in the 

TM-score over the best model produced during the RNA-Puzzles challenge. 

The results on these case studies demonstrate that DeepFoldRNA is able to produce accurate 

structural models for challenging RNAs that could not be folded by any traditional approach even 

with expert intervention and experimental restraints. It is practically encouraging that medium to 

higher resolution structures could be created for complex folds with few homologous RNA 

sequences, which has been one of the most challenging problems for deep learning-based protein 

structure modeling methods (123, 125, 164). This is probably due to the fact that, compared to 

proteins whose structural patterns are often buried in deep evolutionary profiles, RNA structures 

are more explicitly encoded in the individual nucleic acid sequences (e.g., the tertiary structures 

are highly dependent on the Watson-Crick pairing of the RNA sequence), which can be readily 

captured by advanced deep learning models even with relatively shallow sequence profiles. 
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Figure 3.7 Case studies from difficult RNA-Puzzles targets. The native structures are shown in 
yellow, and the structures by DeepFoldRNA and the best RNA-Puzzles models are shown in blue 
and red, respectively. 

3.1.5 DeepFoldRNA improves the speed and accuracy of RNA folding simulations for large 

RNAs 

Monte Carlo sampling is a widely used approach in structural folding simulations and has been 

proven to be efficient at identifying global free-energy minima for cases with frustrated 

knowledge-based energy landscapes (14, 25, 187). However, these simulations typically require 

lengthy runtimes, which partially limits their application to large-scale modeling experiments. 

Given that the DeepFoldRNA energy landscape is significantly simplified by accurate and 

abundant spatial restraints, gradient-based L-BFGS sampling is sufficient to quickly fold RNA 

molecules and drastically reduce the simulation runtime.  

As evidence, we plot in Fig. 3.8.A the simulation time required for DeepFoldRNA, SimRNA 

and FARFAR2 against the RNA length, where both SimRNA and FARFAR2 are based on Monte 

Carlo sampling. Overall, SimRNA required 379.3 minutes on average to fold the RNAs in the 

Rfam dataset, while DeepFoldRNA required 1.1 minutes, corresponding to a 345-fold reduction 

of the folding simulation time. The difference was even more significant when compared to 

FARFAR2, which required 4547.1 minutes for its folding simulations on average. Notably, 



 65 

DeepFoldRNA could fold the largest RNA in the dataset, which was composed of 237 nucleotides, 

within 7 minutes, while SimRNA and FARFAR2 required 1146 and 11615 minutes, respectively. 

Thus, DeepFoldRNA can be used to fold RNA molecules in seconds to minutes, significantly 

improving the speed at which RNAs can be modeled.  

Crucially, the modeling performance of DeepFoldRNA did not deteriorate as the sequence 

length of the RNA increased. In Fig. 3.8.B, we plot the TM-score values for the models generated 

by DeepFoldRNA, SimRNA, and FARFAR2 against the RNA sequence length. As expected, there 

was a negative correlation between the RNA length and model TM-score for both SimRNA and 

FARFAR2, as larger RNAs often have more complex folds that require sampling from wider-

ranging conformational space, which is more difficult for Monte Carlo sampling to cover when 

guided by low-resolution energy force fields. For DeepFoldRNA, however, there was actually a 

slight positive correlation, where the method was able to generate on average more accurate spatial 

restraints and reliable folds for longer RNAs in the test set. These data demonstrate that the rapid 

simulations do not lead to unreliable results for larger and more complex folds, making 

DeepFoldRNA a robust method for generating accurate models independent of the fold 

complexity, which is critical for applications to large-scale RNA structure modeling. 

 
Figure 3.8 Dependence of the simulation runtime/modeling performance on the RNA length for 
DeepFoldRNA, SimRNA, and FARFAR2. A) Log-scale simulation runtime for DeepFoldRNA, 
SimRNA, and FARFAR2 in minutes plotted against the RNA length. B) Model TM-score versus 
RNA length for DeepFoldRNA, SimRNA, and FARFAR2. Lines are plotted to guide the eye. 

3.2 Concluding Remarks 

Inspired by our work with DeepFold and the latest advances in protein structure prediction, we 

developed a fully-automated method, DeepFoldRNA, to model RNA structures starting from 

sequence alone. The approach is built on deep self-attention neural networks to deduce high-
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accuracy spatial restraints from multiple RNA sequence alignments, followed by full-length 3D 

model construction through restraint-guided L-BFGS folding simulations. 

The method was tested on two independent benchmark datasets. The first consisted of 105 

non-redundant RNAs from 32 Rfam families with complex global folds. For these targets, 

DeepFoldRNA generated models with an average TM-score of 0.757 and RMSD of 2.68 Å, which 

was dramatically more accurate than the state-of-the-art methods, SimRNA (187) and FARFAR2 

(94), which are physical and knowledge-based Monte Carlo approaches that produced models with 

an average TM-score/RMSD of 0.228/19.37 Å and 0.228/21.07 Å, respectively. For the second 

benchmark dataset containing 17 challenging targets from the community-wide RNA-Puzzles 

experiment, DeepFoldRNA constructed models with better quality than the best models submitted 

from the community for 15 cases, where there was a large margin in the TM-score/RMSD 

difference for 10 cases, despite the fact that many models from the community were constructed 

with human expert intervention and experimental restraints (86, 101, 102). 

These improvements demonstrate the power and advantage of deep self-attention neural 

networks, which can learn more detailed structural information from evolutionary profiles than 

knowledge-based potentials derived from statistical analyses of PDB structures. The success of 

DeepFoldRNA modeling exhibited little correlation to the quality of the input MSAs, in part due 

to the effectiveness of self-attention networks, which are able to learn structural patterns embedded 

in single RNA sequences. Meanwhile, given the abundant, high-accuracy restraints produced by 

the deep learning modules, which can dramatically smooth the energy landscape, an additional 

advantage of DeepFoldRNA is its rapid model construction enabled by the gradient-based folding 

simulations. On average, DeepFoldRNA only required 1.1 minutes to fold the Rfam RNAs, which 

was 345 times faster than SimRNA and 4134 times faster than FARFAR2.  

The high accuracy and speed of DeepFoldRNA, together with its fully-automated procedure, 

should help facilitate its usefulness and application to large-scale, atomic-level RNA structure 

modeling. Currently, only 2% of Rfam families have experimentally solved structures, where the 

application of DeepFoldRNA to model unknown Rfam families will provide critical information 

and insight into uncharacterized RNA structure space. Furthermore, the extension of the deep 

neural network models to RNA complexes and RNA-protein interactions will help elucidate the 

molecular and cellular functions of non-coding RNAs. Studies along these lines are in process. 
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3.3 Methods 

DeepFoldRNA is a deep learning-based approach to full-length RNA structure modeling, 

which consists of three main steps: input feature generation, spatial restraint prediction, and L-

BFGS folding simulations, as depicted in Fig. 3.1. 

 

3.3.1 Input feature generation 

DeepFoldRNA takes as input the nucleic acid sequence in FASTA format for the RNA of 

interest, from which all features used by the neural network are derived. The major input to the 

network is the MSA generated by rMSA (194). Briefly, rMSA constructs an MSA for a query 

sequence by iteratively searching multiple nucleic acid sequence databases, including Rfam (87), 

RNAcentral (7), and the nt database (200) using blastn (201), nhmmer (202), and cmsearch (202) 

(Fig. 3.9). From the MSA, nhmmer is used to generate a hidden Markov model (HMM), which 

serves as a succinct statistical representation of the detected homologous sequence profile. 

Additionally, PETfold (203) is used to predict the secondary structure from the generated MSA, 

where the pairwise reliability scores are used as the input of the network. This allows for a 

convenient embedding of the secondary structure information, while simultaneously capturing the 

uncertainty in the PETfold predictions. 

 
Figure 3.9 rMSA pipeline overview. rMSA generates 5 MSAs in total, where “CM” and “rc” stand 
for Covariance Model and the RNAcentral database, respectively, and Nfcut=128. The blastn 
searches are performed with “-max_target_seqs 50000 -strand plus” and “-max_target_seqs -strand 
both” options to search only the plus strand through RNAcentral and both strands through the nt 
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database, respectively. This is due to the fact that RNAcentral is a transcriptomics database, while 
nt is a genomics database. Similarly, cmsearch is performed using the “--toponly --incE 10.0” option 
for the plus strand in RNAcentral and “--incE 10.0” for both strands in nt. The nhmmer search is 
performed using “--watson” to only consider alignments with directions that are consistent with the 
blastn alignments. 

3.3.2 Network Architecture 

Overall Architecture. The overall network architecture is depicted in Fig. 3.1.A. The generated 

features are first embedded into the network and passed through 48 MSA Transformer blocks, 

which use multiple self-attention layers to extract information encoded in the MSA to determine 

the spatial relationships between each pair of positions. Meanwhile, a pair representation is 

embedded into the network, where communication is encouraged between the MSA and pair 

representations using biased self-attention as well as updating the pair representation based on the 

processed MSA representation. Following this step, the sequence embedding is extracted from the 

MSA representation based on the position in the MSA embedding that corresponds to the original 

query sequence. The sequence embedding is then processed by 4 Sequence Transformer blocks, 

which use multiple self-attention layers that are biased by the pair representation to encourage 

consistency between the two. This process is repeated for 4 cycles, where the MSA and pair 

representations determined from the MSA Transformer layers of the previous cycle as well as the 

sequence embedding from the previous Sequence Transformer layers are added to those produced 

by the current iteration, allowing the network to gradually refine its predictions. Finally, the 

distance and orientation restraints are predicted from a linear projection of the final pair 

representation, while the backbone torsion angles are predicted from a linear projection of the 

sequence representation. A more detailed description of each component of the network is 

described below. 

Input embedding. As shown in Fig. 3.1.A, the input features are used to generate two major 

representations: the MSA representation and the pairwise representation. The MSA embedding 

captures the evolutionary information contained in the MSA, while the pairwise representation 

captures the pairwise relationships between each nucleic acid in the target sequence. To initialize 

the MSA representation, up to 128 sequences from the MSA are randomly sampled and encoded 

using one-hot-encoding. Then a linear layer with an output channel size of 32 is used to embed the 

one-hot-encoded MSA along with the relative positional encodings of each MSA column. The 

nhmmer HMM is also embedded using a linear layer with an output channel dimension of 32 and 

concatenated to the MSA embedding to produce the initial MSA representation. The pairwise 
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representation is initialized from the paired sequence encodings as well as the predicted secondary 

structure using linear layers with an output dimension of 32. Here, the predicted secondary 

structure is not in dot-bracket format, but rather the LxL reliability scores output by PETfold, which 

allows for a convenient projection of the secondary structure information as well as inherently 

capturing the uncertainty in the predictions. A triangular self-attention procedure (123) is applied 

to further refine the pair representation derived from the predicted secondary structure information. 

Triangular self-attention represents the pair embedding as a directed graph and performs multiple 

rounds of self-attention-based transformations by first updating the outgoing edges of the pair 

representation graph followed by the incoming edges. Then self-attention is performed around the 

starting nodes and around the ending nodes. Lastly, a transition block composed of two linear 

layers is used to project the pair embedding to an output dimension of 32*2 and back down to the 

original size of 32.  

MSA Transformer network. The MSA Transformer network takes as input the MSA and pair 

embeddings, where the MSA representation contains information from homologous sequences in 

each row and the positional relationships in each column and the pair representation contains the 

pairwise distance relationships. The MSA embedding is first processed using multi-head, row-

wise self-attention, which extracts positional information encoded by the different homologous 

sequences contained in the MSA. During the row-wise self-attention procedure, the rows of the 

MSA are mapped to a set of queries (q), keys (k), and values (v) using linear layers with an input 

dimension of 32 and an output dimension of 8x16, where 8 is the number of heads and 16 is the 

size of the hidden dimension.  

The attention maps can be derived from the set of queries, keys, and values following the 

standard formulation: 𝑎𝑡𝑡 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑞<𝑘/√𝑐), where c is the size of the hidden dimension. Bias 

from a linear projection of the pair representation is added to the resulting attention maps and the 

updated MSA row embeddings are determined by applying the attention maps to the values (v) 

along with a gate determined from a linear projection of the rows of the MSA representation 

followed by a sigmoid activation. After the row-wise self-attention layer, a similar procedure is 

repeated for the MSA columns using multi-head, column-wise self-attention. During this process, 

the columns of the MSA are mapped to queries, keys, and values using linear layers with an input 

dimension of 32 and an output dimension of 8x16, where 8 is the number of heads and 16 is the 

size of the hidden dimension. Next, the MSA columns are updated using the queries and keys to 
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calculate the attention maps and applying these to the obtained values. Similar to the MSA row-

wise self-attention, a gate is applied to the updated columns using a linear projection of the MSA 

columns followed by a sigmoid activation. The updated MSA rows and columns are further 

processed using an MSA transition block that passes the embedding through two linear layers, 

where the first layer projects the MSA embedding with a hidden dimension of 32 to a hidden 

dimension of 32x16 and the second layer projects the MSA embedding back to its original size of 

32. Finally, the pairwise representation is updated by taking the outer product mean of the 

processed MSA representation and adding it to the pair representation. The pair representation is 

then processed using the same triangular self-attention scheme introduced above.  

Overall, this process is repeated 48 times to gradually refine the MSA and pair embeddings, 

where the final output is the updated MSA and pair representations. If it is not the first cycle 

through the network, the MSA and pair representations from the previous pass of the network are 

then added to the representations from the current cycle.  

Sequence Transformer network. Following the MSA Transformer layers, the position in the 

MSA embedding that corresponds to the original sequence is extracted and a linear layer is used 

to project its dimension from 32 to 64. Next, the sequence embedding is processed by two self-

attention blocks. The first maps the input sequence to a set of queries, keys, and values from which 

the attention maps are derived. Bias from a linear projection of the pair representation is then added 

to the attention maps and the attention maps are applied to the values to update the sequence 

representation. A gate is also applied to the updated sequence representation by a linear projection 

of the sequence embedding followed by a sigmoid activation. The second attention block is similar 

to the first with the exception that it does not include bias from the pair representation. Finally, the 

updated sequence embedding is passed through 3 linear layers with an input and output channel 

dimension size of 64 to produce the final sequence representation. If it is not the first cycle through 

the network, the sequence representation from the previous pass through the network is added to 

the final sequence embedding from the current iteration. 

Geometric restraint prediction. The predicted geometric restraints include the pairwise 

distance maps between the N1/N9 atoms, C4’ atoms, and backbone P atoms, as well as the inter-

residue and backbone torsion angles (𝜔, 𝜆, 𝜂, 𝜃) specified in Fig. 3.2. The distances are divided 

into 40 bins, where the first and last bins indicate predicted distances <2 Å or >40 Å, respectively, 

while the middle 38 bins correspond to distances in the range of [2Å, 40Å] with an even bin width 
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of 1Å. Similarly, the inter-residue torsion angles (Ω, 𝜆) are divided into 25 bins with a width of 

15°, where the first 24 bins correspond to the probability that the orientation angles fall in the range 

[-180°, 180°] and the last bin captures the probability that there is no interaction between a given 

pair of nucleotides. Non-interacting nucleotides are defined as those with N1/N9-N1/N9 distances 

>40 Å. The distance and orientation restraints are predicted from the final pairwise representation 

using linear layers with an input dimension of 32 and an output dimension of 40 for the distance 

restraints and 25 for the inter-residue orientation restraints, where a log softmax activation is 

applied to each output restraint. Lastly, the backbone pseudo-torsion angles (𝜂, 𝜃) are predicted 

from a linear projection of the sequence embedding with an input channel dimension of 64 and an 

output channel dimension of 24. Thus, the predicted pseudo-torsion angles are divided into 24 bins 

from [-180°, 180°] with a width of 15°, where a log softmax activation function is applied to the 

final predictions. 

 

3.3.3 Training Data and Procedure 

DeepFoldRNA was trained on 2,986 RNA chains collected from the PDB which were non-

redundant (with a sequence identity <80%) to the 122 test RNAs used in this study. The labeled 

features from the PDB structures include the native C4’, N1/N9 and P distance maps, the inter-

residue Ω and 𝜆 orientations, and the backbone 𝜂 and 𝜃 pseudo-torsion angles. The training features 

from the experimental structures were discretized into binned values with the same sizes as the 

predicted features. The output of the network is the probability that each feature falls within one 

of the given bins, thus the network was trained using the softmax cross-entropy loss between the 

predicted and native distributions. In addition, a BERT-style loss (204) was incorporated by 

randomly masking positions in the MSA and predicting the masked positions from a linear 

projection of the final MSA representation. The softmax cross-entropy loss was then calculated 

between the predicted MSA and the unmasked MSA. 

Since the number of solved RNA structures is low, we also collected a non-redundant 

distillation set of 16,842 RNAs from the bp-RNA-1m database (205) that were predicted to have 

regular secondary structures. Since the RNA in the distillation set do not have solved tertiary 

structures, we generated predicted labels for each RNA based on the network that was trained on 

the PDB sample. We then trained the network by sampling from the PDB dataset at a probability 

of 25% and from the distillation set at a probability of 75%. The loss function for the distillation 
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set was identical to that used for the PDB set, where the softmax cross-entropy loss was calculated 

between the predicted features and the labels.  

The network model was trained using Adam optimization with a learning rate of 0.001 for 

159,000 steps, where the distillation set was incorporated after step 99,000. The entire model was 

trained using a single Nividia V100 SMX2 GPU on the SDSC Expanse cluster (206). 

 

3.3.4 DeepFoldRNA Energy Function 

DeepFoldRNA uses L-BFGS simulations to quickly fold RNA based on optimization of the 

following energy function: 

ECDDEFGHIJKL = EMN!IOPQ + EKIOPQ + ERIOPQ + E0 + ES + ETTU + ETTV																								(3.1) 

where EMN!IOPQ, EKIOPQ, ERIOPQ, E0, EW, ETTU, and ETTV are energy terms derived from the predicted 

C4’–C4’ distances, N1/N9-N1/N9 distances, P-P distances, Ω orientations, λ orientations, 

backbone η torsions, and backbone θ torsions, respectively. The details of each energy term are 

further explained in Appendix F Text F.3. As L-BFGS optimization requires a continuously 

differentiable energy function, the energy terms are fit using cubic spline interpolation. 

Overall, the DeepFoldRNA force field consists of 7 weighting parameters, which were 

determined on 184 RNAs from the training set with lengths between 60-480 nucleotides and 

pairwise sequence identities <50%. The weights were tuned iteratively, where the weight for each 

energy term was adjusted one at a time in the range [0, 10] using an increment of 0.25. The 

weighting parameter for each term that produced models with the highest average TM-score for 

the 184 RNAs were selected. Once the initial weight for each energy term was determined, this 

process was repeated 4 more times, varying each weight one-at-a-time using an increment of 0.1.   

 

3.3.5 L-BFGS Folding Simulations 

In DeepFoldRNA, an RNA structure is represented by its backbone P and C4’ atoms as well 

as the N1/N9 atoms and two carbon atoms from the base (C2/C4 for pyrimidines and C2/C6 for 

purines) (Fig. 3.2.A). During the simulations, the bond lengths and bond angles are fixed at their 

ideal values, and the optimization is directly carried out on the backbone 𝜂 and 𝜃 pseudo-torsion 

angles guided by the gradient of the energy function with respect to 𝜂 and 𝜃. L-BFGS optimization 
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is used to find the backbone 𝜂/𝜃 angles for each residue that minimize the energy function 

described in Eq. (3.1). 

Here, L-BFGS is a gradient descent-based optimization method built on a limited memory 

variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm, which attempts to identify 

the minimum of 𝐸CDDEFGHIJKL(𝜂, 𝜃), where 𝜂/𝜃 are vectors of length L that represent the backbone 

pseudo-torsion angles at each position of the simulated structure. At each L-BFGS step 𝑘, the 

search direction 𝑑8 is calculated by 

𝑑8 = −𝐻89: ∙ ∇𝐸CDDEFGHIJKL(𝑥)																																																		(3.2) 

where 𝐻89: is an estimate for the inverse Hessian matrix and ∇𝐸CDDEFGHIJKL(𝑥) is the gradient of 

the DeepFoldRNA energy function with respect to the backbone pseudo-torsion angles, that is 𝑥 =

(𝜂, 𝜃). 𝐻89: at step 𝑘 = 0 is set to the identity matrix, 𝐼, and the value of 𝐻8;:9:  is obtained following 

the BFGS formulation: 

𝐻8;:9: = 𝑉8<𝐻89:𝑉8 + 𝜌8𝑠8𝑠8<,  𝜌8 = 1
𝑦8<𝑠8
Y ,  𝑉8 = 𝐼 − 𝜌8𝑦8𝑠8< 																																		(3.3) 

where 𝑠8 = 𝑥8;: − 𝑥8 and 𝑦8 = ∇𝐸CDDEFGHIJKL(𝑥8;:) − ∇𝐸CDDEFGHIJKL(𝑥8). Accordingly, the 

value of 𝐻8;:9:  can be computed recursively by storing the previously calculated values of 𝑠8 and 

𝑦8. However, to preserve memory, L-BFGS only stores the last 𝑚 values of 𝑠8 and 𝑦8. Thus, 𝐻8;: 

can be calculated as follows: 

𝐻8;:9: = [ \ 𝑉*<
89=>;:
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]												(3.4) 

where 𝑚b = 𝑚𝑖𝑛(𝑘,𝑚 − 1) and 𝑚 is set to 256 in DeepFoldRNA. Once the search direction 𝑑8 is 

calculated, the 𝜂/𝜃 angles are updated according to: 

𝜂8;: = 𝜂8 + 𝛼8𝑑8,   𝜃8;: = 𝜃8 + 𝛼8𝑑8 																																																	(3.5) 

The value of 𝛼8 is determined using the Armijo line search technique (185) and dictates the amount 

to move along the given search direction. In DeepFoldRNA, a maximum of 10 L-BFGS iterations 

are performed with 2000 steps each, or until the simulations converge. We also use 3 rounds of 

noisy restarts, where the optimal backbone pseudo-torsion angles from the previous simulation are 
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perturbed by a random value in the range [-10°, 10°] to avoid becoming trapped in local minima. 

The final model is the lowest energy decoy produced during the folding simulations. 
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CHAPTER 4  
 

EvoDesign: Online Resource for Designing Protein-Protein Binding 

Interactions Using Evolutionary Interface Profiles in Conjunction with an 

Optimized Physical Energy Function 

 
We will now transition from the problem of structure prediction to the second major topic of this 

thesis, protein design. In this chapter, we will specifically focus on protein sequence design and 

the development of an online webserver for this purpose. Despite the impressive role of natural 

proteins, only a tiny portion of the total possible amino acid sequences appear in nature. 

Computational protein design can be used to more thoroughly explore the sequence space in order 

to design artificial proteins with increased stability and/or enhanced functionality compared to 

their natural counterparts. Since many protein functions are mediated by protein-protein 

interactions (PPIs) (207, 208), an effective strategy to enhance the function of proteins is to 

redesign their interfaces to increase or alter the binding affinity and binding mode of PPIs (209). 

This approach has been successfully applied to the redesign of various protein systems (140, 210-

213), and holds tremendous potential for the development of novel therapeutics, enzymes, and 

other useful proteins. 

Most current protein design methods utilize physical energy functions to search for low free 

energy states in sequence space. This approach, however, may be limited by the inability of 

physical energy functions to accurately recapitulate inter-atomic interactions or recognize correct 

folds, which has also been manifested in various protein folding and structure prediction studies 

(80, 133). To partially address the inaccuracies of computational protein design using physics-

based energy functions, we previously developed an evolution-based method, EvoDesign (214). 

EvoDesign utilizes evolutionary profiles collected from analogous protein folds to help guide the 

sequence search simulations. Large-scale design and folding experiments demonstrated that the 

combination of evolutionary profiles with physical energy terms, where the latter was included 
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mainly to accommodate the local atomic-level packing interactions, was more effective than purely 

physics-based methods in terms of designing proteins that adopted a desired target fold (215). 

Despite the success, the former version of EvoDesign focused solely on the design of monomeric 

proteins, and could not be used to design PPIs, which considerably limited its usefulness in terms 

of functional protein design. 

In this work, we extended the use of evolutionary-profile guided design to the design of PPIs. 

For this purpose, a new strategy was developed to extract PPI profiles from structurally analogous 

protein interfaces, which are then used to guide the interface design search (216). Furthermore, the 

former EvoDesign pipeline utilized an external program, FoldX (217), to calculate the physical 

energy of a protein. Although it worked reasonably well, the procedure of calling an external 

program was prohibitively time-consuming. We developed a new physical energy function, EvoEF 

(EvoDesign Energy Function), which showed an improved ability to recognize inter-molecular 

binding interactions, while significantly speeding up the design process. Overall, the new 

EvoDesign server contains two design protocols: monomer fold design and dimer interface design, 

each with its own online interface.  

It should be noted that the focus of the new dimer interface design protocol is on the redesign 

of one specific chain in the complex structure, termed the scaffold, so as to increase its stability 

and binding affinity towards the other chain in the complex, termed the binding partner. The 

sequence of the binding partner is unchanged during the simulations, although its side-chain 

conformations are allowed to rotate in order to accommodate the designed interface residues. This 

interface design protocol can be used for various applications that allow for a variable scaffold 

protein but call for a fixed binding partner. One such application is the design of protein 

therapeutics, where the therapeutic can be redesigned to increase its affinity for a fixed target in 

the body. The EvoDesign pipeline is fully automated and freely available at 

https://zhanggroup.org/EvoDesign/. In addition to the online server, the source code for the newly 

developed physical energy function, EvoEF, can be downloaded at 

https://zhanggroup.org/EvoEF/.  
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4.1 Methods and Results 

4.1.1 Overview of the EvoDesign Protocol 

In order to incorporate functional protein design into EvoDesign, the evolution-based design 

method was extended to the design of PPIs, where an overview of the new EvoDesign pipeline is 

depicted in Fig. 4.1.  

 

 
Figure 4.1 Flowchart of the EvoDesign pipeline for protein-protein interaction design. Similar 
monomer and interface structures are identified from monomer and dimer libraries, respectively, 
which are used to create the evolutionary profiles. These profiles guide the redesign simulations of 
the scaffold protein. 

Starting from a two-chain complex structure of interest, its interface is structurally aligned to 

interfaces in the non-redundant interface library (NIL) (216) using iAlign (218). A profile is then 

constructed from the interface multiple sequence alignment (iMSA), based on the structures that 

have a high similarity score (IS-score (218)) to the query complex interface. Finally, the evolution-

based binding affinity change for each mutation at the interface is determined by the logarithm of 
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the relative probability of each mutant amino acid compared to the wild-type amino acid in the 

interface profile (216, 219). This evolutionary energy term is combined with the physical energy 

score calculated by EvoEF to determine the total binding energy. Complementing the interface 

profile, a monomer structural profile is constructed from the multiple sequence alignment of 

monomer proteins that have a similar fold to the scaffold chain as identified by TM-align (220) 

from the PDB library. Overall, the information from both the monomer and interface profiles, as 

well as the physical energy function, are used as the composite energy function to guide the replica-

exchange Monte Carlo (REMC) simulation in order to search for low free energy sequences.  

Following the REMC simulation, the generated sequence decoys are clustered by SPICKER 

(221) based on the distance matrix defined by their BLOSUM62 sequence similarity. The final 

designs are selected from the lowest free energy sequences in the largest clusters. Here, it is 

important to note that EvoDesign provides an option for users to specify which chain in the 

complex is the scaffold and which chain is its binding partner. As stated previously, EvoDesign 

only focuses on the redesign of the scaffold, leaving the sequence of its binding partner unchanged, 

although the side-chain rotamer conformations of both chains are repacked during the design 

simulations. 

 

4.1.2 Evolutionary Profile-Based Potentials 

The evolutionary energy is composed of two terms: 𝐸"5%X%/%="7 and 𝐸"5%Y/,"7Z[.". The first 

term, 𝐸"5%X%/%="7 is used to capture the information from the multiple sequence alignment (MSA) 

generated by TM-align based on the scaffold structure. The derivation of 𝐸"5%X%/%="7 was 

discussed previously (215). For the webserver description, we will focus on the new evolutionary 

interface potential. However, a full explanation of 𝐸"5%X%/%="7 is provided in Text G.1 in 

Appendix G. 

The second term, 𝐸"5%Y/,"7Z[.", captures the information from the iMSA collected by the 

iAlign search: 

𝐸"#$%&'"()*+")𝑆,"-, 𝑆.+*)), = −.ln
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where 𝑃(𝑎𝑎!"+,* , 𝑖) and 𝑃�𝑎𝑎].[ZZ,* , 𝑖� are the probabilities that the designed and scaffold amino 

acids, respectively, appear at position 𝑖 in the interface. These terms are composed of the number 

of times either the designed, 𝑁%4+�𝑎𝑎!"+,* , 𝑖�, or the native scaffold, 𝑁%4+�𝑎𝑎].[ZZ,* , 𝑖�, amino 

acids appear at the 𝑖,3 position in the iMSA and the corresponding, position-specific pseudocount, 

𝑁#+"^'%. The pseudocount is used to help compensate for the small size of the interface library and 

takes into consideration gaps in the iMSA as well as amino acids that are related to the 

native/mutant residues in the interface alignment. A full description of the pseudocount is 

contained in Text G.2. 

 

4.1.3 EvoEF Energy Terms 

The energy function of EvoEF is designed to describe the atomic interactions in proteins and 

contains five terms: 
 

𝐸8#$89 =.[𝐸#7:(𝑖, 𝑗) + 𝐸";"+(𝑖, 𝑗) + 𝐸<=(𝑖, 𝑗) + 𝐸-$;#(𝑖, 𝑗)]
0,>

− 𝐸(")																																	(4.2) 

 

The first term, 𝐸5'6(𝑖, 𝑗), is the van der Waals energy, which is modified from the Lennard-Jones 

(LJ) 12-6 potential (222, 223): 
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where 𝑑*A is the distance between the two atoms 𝑖 and 𝑗, 𝜎*A = 𝜎* + 𝜎A is the sum of their van der 

Waals atomic radii and 𝜀*A is the combined well depth parameter for atoms 𝑖 and 𝑗, which is taken 

from the CHARMM19 force field (224).	Here, the attractive and repulsive components of the van 

der Waals potential are split at	d*A = 0.8909σ*A. To increase the computational efficiency of 

EvoEF, we set a maximum distance cutoff of 6.0 Å and use a cubic function to continuously 

transition the LJ energy from its value at 5.0 Å to zero at the cutoff distance. For the repulsive 

component of the LJ potential, the maximum energy cutoff is set to 5.0ε*A. This helps alleviate 

possible clashes, while not overly penalizing them due to the discrete rotameric conformations 

used in protein design. An example of the overall shape of the van der Waals energy between an 

amide N and a carbonyl C is shown in Fig. 4.2.  
 

 
Figure 4.2 Shape of the Van der Waals Energy Between an Amide N and a Carbonyl C. The van 
der Waals radii for the amide N and carbonyl C are 1.7632 and 1.9649 Å, respectively, while their 
corresponding well-depths are 0.1617 and 0.1418 kcal/mol, respectively. 

The second term in Eq. (4.2), 𝐸"&".(𝑖, 𝑗), is used to determine the electrostatic interactions 

between partially charged atoms: 
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where 𝑞* and 𝑞A are the partial atomic charges, which are calculated using the PARSE method 

(225). Furthermore, 𝐶@ = 332 Å kcal mol-1e-2, where e is the elementary charge, and 𝜀(𝑑*A) is the 

distance-dependent dielectric constant. 𝜀�𝑑*A� takes the form 𝜀�𝑑*A� = 40𝑑*A. When computing 

the electrostatics term and dielectric constant, if the distance between two atoms, 𝑑*A, is less than 

0.8	𝜎*A, 𝑑*A is set to 0.8	𝜎*A. This restricts the electrostatics energy to a reasonable, finite value. 

Again, for the sake of computational efficiency, a maximum distance cutoff is set to 6.0 Å, beyond 

which the value of the electrostatics term is zero. 

The third term in Eq. (4.2), 𝐸_`(𝑖, 𝑗), is used to calculate the hydrogen-bonding interactions. 

𝐸_`(𝑖, 𝑗) is a linear combination of three energy terms that depend on the hydrogen-acceptor 

distance (dOabL), the angle between the donor atom, hydrogen and acceptor (θOa!_c), and the angle 

between the hydrogen, acceptor and base atom (φOa_c`): 
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																		(4.7) 

 

The optimal distance between the hydrogen and its acceptor is set to 1.9 Å, which was taken from 

Kortemme et al. (226). Additionally, 𝑑=*/ = 1.4 Å and 𝑑=[d = 3.0 Å are the lower and upper 

bounds on the distance between the hydrogen-acceptor pair. The optimal 𝜑*A_c` value is set to either 

150° or 135°, depending on the acceptor hybridization (sp2 or sp3) and the locations of the donor 

and acceptor atoms (HBbb: backbone-backbone; HBsb: sidechain-backbone; HBss: sidechain-

sidechain). 
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The fourth term in Eq. (4.2), 𝐸+%&5(𝑖, 𝑗) , describes the desolvation energy following the model 

introduced by Lazaridis and Karplus (227): 
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where 𝑉*,A, Δ𝐺*,A
Z7"" , and 𝜆*,A are the atom volumes, reference solvation energies, and correlation 

lengths, respectively. These values were taken from the Lazardis and Karplus paper (227). The 

desolvation energy for both polar and nonpolar atoms is calculated using this method; however, 

the contribution from polar atoms is weighted differently from non-polar atoms. Specifically, 

𝐸+%&5e%&[7(𝑖, 𝑗) = 𝑤+%&5e%&[7𝐸+%&5(𝑖, 𝑗) and 𝐸+%&5f%/#%&[7(𝑖, 𝑗) = 𝑤+%&5f%/#%&[7𝐸+%&5(𝑖, 𝑗). 

The last term in Eq. (4.2), 𝐸7"Z, is the reference energy of a protein sequence and is used to 

approximate the energy of the unfolded state ensemble:  
 

𝐸7"Z =`𝐸7(𝑎𝑎*)
g

*?:

																																																																								(4.9) 

 

where L is the length of the protein sequence, 𝐸7(𝑎𝑎*) is an amino acid specific parameter to be 

optimized. The reference energy is used to choose sequences that have a large energy gap between 

the folded and unfolded states. 

 

4.1.4 EvoEF Parameter Optimization and Benchmark Tests  

EvoEF contains a total of 36 weights and 20 reference energies. These parameters were decided 

by optimizing the energy function’s ability to predict protein stability and binding affinity change 

upon mutation. Since EvoEF’s energy calculation is split into three parts: the non-bonded atomic 

interactions within a residue (𝐸*/,7[h"+*'^"), those between different residues within the same 

chain (𝐸*/,"7h"+*'^"][="(3[*/), and those between different residues from different chains 

(𝐸*/,"7h"+*'^"!*ZZ(3[*/) (see Text G.3), the parameterization of EvoFF was performed in two steps. 

First, the reference energies and weighting factors for 𝐸*/,7[h"+*'^" and 𝐸*/,"7h"+*'^"][="(3[*/ 
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were optimized by minimizing the difference between experimental and predicted values for 

mutation-induced protein monomer stability change (ΔΔ𝐺+,[4*&*,ij<→=^,).  The experimental data 

consisted of 3,989 non-redundant mutation samples from 210 monomeric proteins taken from the 

FoldX and STRUM datasets (44, 228). Second, the 14 weights for 𝐸*/,"7h"+*'^"!*ZZ(3[*/ were 

determined using the mutation-induced protein-protein binding affinity change data 

(ΔΔ𝐺4*/'*/lj<→=^,), which contained 2,204 non-redundant mutant samples from 177 dimeric 

complexes collected from the latest version of the SKEMPI database (229). Each dataset was 

randomly split in half into training and test sets. A detailed description of the data construction and 

EvoEF optimization procedure is provided in Text G.3. 

The performance of EvoEF was evaluated using the above test datasets by calculating the 

Pearson correlation coefficients (PCCs) and root mean square errors (RMSEs) between the 

experimental and predicted ΔΔ𝐺+,[4*&*,ij<→=^, and ΔΔ𝐺4*/'*/lj<→=^,. The results showed that the PCC 

between ΔΔ𝐺+,[4*&*,i,#7"'j<→=^,  and ΔΔ𝐺+,[4*&*,i,"d#j<→=^,  for EvoEF was 0.472 with an RMSE of 1.751 

kcal/mol (Fig. 4.3.A). As a comparison, FoldX obtained a PCC of 0.465 with an RMSE of 2.010 

kcal/mol for the same dataset (Fig. 4.3.B). Furthermore, the PCC between ΔΔ𝐺4*/'*/l,#7"'j<→=^,  and 

ΔΔ𝐺4*/'*/l,"d#j<→=^,  for EvoEF was 0.514 with an RMSE of 2.109 kcal/mol (Fig. 4.3.C), while the PCC 

for FoldX was 0.490 with an RMSE of 2.248 kcal/mol (Fig. 4.3.D). The data show that EvoEF 

slightly outperforms FoldX for both ΔΔ𝐺+,[4*&*,ij<→=^, and	ΔΔ𝐺4*/'*/lj<→=^, prediction. 

We also tested EvoEF’s ability to recognize the native structure from non-native decoys using 

the 3DRobot Decoy Set (230), which contains 200 individual decoy sets. Among the 200 decoy 

sets, EvoEF was able to properly rank the native as the lowest energy in all the sets, while FoldX 

did so in 198 cases. In the second more stringent test, we calculated the energy gap between the 

near-native decoys (top 10% of decoys) and the remainder of the decoys. If we define a successful 

case as that with a Z-score (i.e., the energy gap normalized by the standard deviation) above 1, 

EvoEF successfully recognized the near-native structural decoys in 198 out of the 200 cases, while 

FoldX did so for 193 of the cases. Moreover, for the near-native decoy discrimination test, EvoEF 

had a higher average Z-score of 1.959 compared to 1.844 for FoldX. These data suggest that EvoEF 

has a relatively better ability to distinguish nativelike monomer structures from other structural 

decoys (see Text G.4 for a detailed description). 
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Furthermore, based on our tests on identical computational cores, EvoEF is about three times 

faster than FoldX at computing stability energy and approximately five times faster at computing 

protein-protein binding energy, indicating that using EvoEF can significantly increase the speed 

of our design simulations.  

 
Figure 4.3 Correlation between predicted and experimental values for mutation-induced folding 
stability and binding affinity changes. (A, B) Folding stability changes upon mutation, ΔΔ𝐺-'*40;0'IJK→F6', 
in monomer proteins predicted by EvoEF (A) and FoldX (B) versus the experimental data for 1,994 
test proteins. (C, D) Binding affinity changes upon mutation in the interface of protein-protein 
complexes,	ΔΔ𝐺40&70&MJK→F6', predicted by EvoEF (C) and FoldX (D) versus the experimental data for 
1,102 test proteins. 

4.1.5 Replica-Exchange Monte Carlo Simulation for Sequence Space Search 

Starting from a random sequence, REMC is used to search the sequence space, where random 

mutations are made on a set of randomly selected residues at each step, which are accepted or 

rejected based on the Metropolis criterion (231). The composite energy function used to guide the 

REMC simulation is as follows: 
 

𝐸X( = −𝐸"5%X%/%="7 +𝑤"5%Y/,"7Z[."𝐸"5%Y/,"7Z[." +𝑤m5%m$𝐸m5%m$ 									(4.10) 
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where 𝐸"5%X%/%="7 and 𝐸"5%Y/,"7Z[." are the evolutionary energies from the monomer and 

interface profiles, while 𝐸m5%m$ is the physical energy calculated by EvoEF. For interface design, 

the weight parameters 𝑤"5%Y/,"7Z[." and	𝑤m5%m$ are set to 3.0 and 2.0, respectively. These weights 

were selected in order to balance the average contribution from each energy term based on design 

simulations for a training set composed of 625 monomers and 177 protein-protein complexes (Text 

G.3).  

Within REMC, four parameters need to be carefully considered. First, the highest temperature 

(𝑇=[d) should be high enough to enable the simulation to overcome energy barriers, while the 

lowest temperature (𝑇=*/) should be low enough to ensure the simulation sufficiently scans the 

low-energy states. Second, the number of replicas (𝑁7"#) should be large enough to ensure 

sufficient chance for the adjacent replicas to communicate with each other. Third, the number of 

local movements (𝑁+6""#) before the global swaps should be selected to make the local Metropolis 

search achieve satisfactory equilibrium. After successive rounds of optimization, the final 

parameters were selected as follows: 𝑇=[d = 15 𝑇=*/ = 0.5, 𝑁7"# = 40, and 𝑁+6""# = 100.  

 

4.1.6 Server Input 

The only input to the EvoDesign server is the monomer (for monomer design) or protein-

protein complex (for interface design) structures of interest in PDB format. For monomer design, 

the input structure may be full-atomic or a Cα trace, while for interface design, it must be full-

atomic given the sensitivity of the design to the shape of the binding pocket. In addition, for 

interface design, the user is able to upload the scaffold structure and its binding partner as a 

preformed complex structure or as two separate chains. If the two chains are uploaded separately, 

the user is given an option to dock the two chains together using ZDOCK (232), a leading fast 

Fourier transform-based protein-protein docking software.  

Several advanced options are provided to give users the ability to further tailor the EvoDesign 

simulation to suit their needs. This is achieved by allowing users (i) to select the structural 

similarity cutoff (TM-score) used during profile construction, (ii) to select the type of energy 

function used during the design simulation (either evolution-based only design or combined 

physics- and evolution-based design), (iii) to exclude residue types at specific locations, (iv) to 

prevent the mutation of residues at specific locations, and (v) to model the structures of the final 

designed sequences using I-TASSER (17). 
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It should be noted that the default EvoDesign setting for PPI design is to redesign the entire 

sequence of the scaffold chain. The rationale behind designing non-interface residues is that 

introducing mutations in the interface may have destabilizing effects on the whole protein or lead 

to suboptimal packing (233, 234). However, for some large complexes with specific folding 

architectures such as antibody-antigen complexes, it might be beneficial to focus the design only 

on the interface regions. Thus, for interface design, users are given an additional option to either 

redesign the entire scaffold protein or to redesign only its interface residues, which are defined as 

residues within 5 Å of the opposite chain. 

 

4.1.7 Server Output 

Immediately following submission of a design job, an output page with a private URL for the 

job is created, which users are able to bookmark for future visit. When the EvoDesign simulation 

finishes, users will be notified by e-mail with a link to the results page. The results in the output 

page contain:  

 

(i) A summary of the input to the server (Fig. 4.4):  
 

 
Figure 4.4 Illustration of the input summary section in the EvoDesign output page. The first section 
of the EvoDesign results page is a summary of the input, which is created immediately after 
submission of a job. It contains a description of the structural similarity cutoff (TM-score) used 
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during the evolutionary profile construction along with a description of the force field used by the 
design simulation. Additionally, a link is provided to download the input scaffold structure and, in 
the case of interface design, the complex structure. If the user opts to upload the scaffold and 
receptor structures separately and dock them together, the complex structure will be available to 
download upon completion of docking. For monomer design, if the input scaffold structure is a Cα 
trace, a full-atomic model will be generated using REMO (235). The full-atomic model is then 
uploaded to the server, replacing the initial Cα trace model. The scaffold, receptor and complex 
structures are visualized using the interactive JSmol applet. 

(ii) The top structural homologs used for monomer and interface profile construction as well 

as links to download the full multiple sequence alignment and evolutionary profile (Fig. 4.5): 

 
Figure 4.5 Summary of the top homologs used for profile construction. To generate the evolutionary 
profiles, structural and interface homologs are identified from the PDB and protein interaction 
libraries. Although all homologous proteins with TM-scores higher than the specified cutoff are 
used for monomer profile construction, only the top ten structural homologs, which are sorted by 
TM-score to the scaffold structure, are displayed in this section. The information displayed for each 
homolog includes: (i) the homolog PDB ID and the link to download the structure, (ii) the TM-score 
and sequence identity to the scaffold, and (iii) the alignment between the scaffold and the homolog. 
Moreover, links are provided to download the full multiple sequence alignment and the evolutionary 
profile used to guide the design simulation. 

(iii) The clustering results of sequence decoys generated during the REMC simulation (Fig. 

4.6):  
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Figure 4.6 Clustering results. During the Monte Carlo simulation, many designed sequences are 
generated. After the simulation is completed, the generated sequences are clustered using SPICKER 
(221) based on the distance scaled by their BLOSUM62 sequence similarity. For each target, 
EvoDesign outputs ten designed sequences, which are selected after clustering. The number of 
sequences selected from each cluster depends on the cluster size. For example, if 70% of the 
sequence decoys are contained in the first cluster, 7 sequences would be selected from the first 
cluster. For each cluster, the sequence in the cluster center is selected first, followed by selection of 
the non-redundant and lowest-energy sequences. Here, the non-redundant sequence identity cutoff 
is equal to 70%. The first column of the table lists the cluster number. The relative size of each 
cluster and the number of sequences selected from each cluster are displayed in columns 2 and 3, 
respectively. The last column contains links to download text files containing each sequence in the 
cluster. The files contain the sequences and the EvoDesign calculated energy of each sequence. 

(iv) A summary of the top ten designed sequences and the local feature assessment parameters 

(Fig. 4.7): 
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Figure 4.7 Results Table. A summary of the results of the local structural analysis is provided for 
the top ten designed sequences in tabular form. Here, the secondary structure, solvent accessibility 
and torsion angles of the designed and scaffold sequences are predicted using three neural-network 
programs, namely, PSSpred (236), Solve (237), and Anglor (238). The normalized relative errors 
(NRE) are provided for each of the features (Columns 3-6) to give an approximate assessment of 
the local structural quality of the designed sequences. The NRE is an error measure for the local 
structural feature predictors for each designed sequence relative to the scaffold sequence: 𝑁𝑅𝐸 =
(𝐸𝐷𝑆 − 𝐸𝑇𝑆)/𝐸𝑇𝑆. 𝐸𝐷𝑆 (EDS stands for ‘error of designed sequence’) is the error of prediction 
for the designed sequence relative to that assigned by the DSSP program (239) on the scaffold 
structure, and 𝐸𝑇𝑆 (ETS stands for ‘error of target sequence’) is the error of the prediction for the 
target scaffold sequence. Thus, a small (or negative) NRE value indicates that the designed sequence 
has a relatively small (or even smaller) prediction error than the scaffold sequence, while a large 
NRE usually signals a bad design due to the large prediction error relative to the scaffold sequence. 
Links are provided at the bottom of the table to download the secondary structure, solvent 
accessibility, and backbone torsional angle prediction data for the designed sequences. The first 
column of the table contains links so that users can download each of the designed sequences. In 
addition, the binding energy change of the designed proteins compared to the native scaffold are 
calculated by EvoEF and BindProfX and are listed in the results table. This should help provide 
information on how the altered interfaces affect the binding affinities compared to the wild type 
proteins. All of the information can be downloaded as a compressed file under the link to ‘Data.zip’. 

 

(v) A detailed overview of the top ten designed sequences including the sequence alignments 

between the scaffold and designs, and (vi) the I-TASSER folding results for the top 10 designs 

(Fig. 4.8): 
 



 90 

 
Figure 4.8 I-TASSER modeling of the top 10 designed sequences. If the user selects the option, the 
structures of the top ten designed sequences are modeled with the I-TASSER pipeline. For each 
model, a confidence score (C-score) of the folding simulation is calculated by 𝐶-𝑠𝑐𝑜𝑟𝑒 =
ln }N/N%&%⟨QN.,⟩

⋅ 3
S
∑ T(0)

T'())
S
023 	�, where 𝑀/𝑀'$' is the fraction of the structure decoys generated by I-

TASSER in the largest structure cluster, and ⟨𝑅𝑀𝑆𝐷⟩ is the average RMSD of the decoys to the 
cluster center. This term corresponds to the degree of convergence of the folding simulations. 
𝑍(𝑖)/𝑍B(𝑖) is the normalized significance score of the templates by the 𝑖'W threading program, where 
there are a total of N threading program used by I-TASSER for template identification. The C-score 
is normally in the range of [-5, 2], and a C-score >−1.5 usually indicates that the I-TASSER model 
has a correct fold with a TM-score >0.5 (17). Since not all designs can be folded by I-TASSER with 
a high confidence, the C-score can be used as an approximate assessment of the foldability of the 
designed sequences. In a large-scale experiment that examined the folding of designed sequences 
(214), it was shown that there is a strong correlation between the C-score of I-TASSER simulations 
and the folding rate of designed proteins, where 80% (or 100%) of designed sequences are 
experimentally foldable for sequences with an I-TASSER C-score >0 (or >0.8). In this figure, the 
TM-scores and RMSDs are between the I-TASSER model and the starting scaffold. Users are able 
to download the I-TASSER models from the provided links. 

4.2 Concluding Remarks 

The EvoDesign server is a fully automated, online tool for protein design and has the ability to 

design new protein sequences either as a free monomer (monomer design) or as a receptor in a 

protein-protein complex (interface design). Starting from the structural coordinates of a 

monomeric protein or complex, EvoDesign first collects homologous folds and protein interfaces 
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from the PDB, from which monomeric and complex profiles are constructed separately. Next, the 

evolutionary profiles are combined with a newly developed physical energy function, EvoEF, to 

guide the replica-exchange Monte Carlo simulation in order to design new sequences. Finally, the 

designed sequences are clustered, and the final designs are chosen from the lowest free energy 

sequences in the largest clusters. 

It is important to note that the core algorithm of EvoDesign has been preserved from previous 

iterations of the program. This algorithm was validated in a large-scale, in silico redesign 

experiment of >300 soluble protein folds (215). Moreover, from this experiment, five designed 

domains with variable fold types and sequence lengths were experimentally tested through circular 

dichroism and NMR spectroscopy. All five proteins (including heterogeneous nuclear 

ribonucleoprotein K domain, thioredoxin domain, light oxygen voltage domain, translation 

initiation factor 1 domain, and the CISK-PX domain) were soluble and possessed secondary 

structure as determined by circular dichroism, and three of the designed domains had stable folds 

as shown by 1D NMR data. The follow-up X-ray crystallography study (240) showed that the 

crystal structure of the EvoDesign designed CISK-PX domain is very similar (1.32 Å) to the target 

model generated by I-TASSER structure prediction.  

In this work, we have extended the EvoDesign pipeline to enable the design of PPIs by 

incorporating an evolutionary interface potential and a new physical energy function into the 

program. Previous benchmark studies of our evolutionary interface potential demonstrated that its 

predicted ΔΔ𝐺4*/'*/lj<→=^, values, binding affinity change of protein complexes upon amino acid 

mutation, showed superior correlation with experimental values (216). The correlation was 

significantly higher than that produced by leading physics- and statistical-based methods. Most 

recently, we applied the new EvoDesign program to the redesign of the BIR3 domain of the X-

linked inhibitor of apoptosis protein (XIAP) (213), whose primary function is to suppress cell 

death by inhibiting caspase-9 activity. However, the suppression of cell death by wild type XIAP 

can be eliminated by the binding of Smac peptides. Multiple biophysical experiments such as NMR 

chemical shift perturbation and isothermal calorimetry binding assays demonstrated that the 

redesigned XIAP domains can bind the Smac peptide with dissociation constants in the low 

nanomolar range, but do not inhibit the caspase-9 proteolytic activity in vitro. Detailed 

mutagenesis analyses demonstrated that the major driving force behind the successful redesign of 
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the native XIAP-Smac interaction was the interplay of the evolutionary profiles and physical 

potential (213). 

The physical energy function utilized by the previous version of EvoDesign was FoldX. FoldX 

was originally developed and optimized to predict protein stability change upon mutation and has 

been widely used in the protein science community. Our benchmark tests show that the newly 

developed EvoEF generates more accurate predictions than FoldX for both stability and binding 

affinity change upon mutation, where the latter is critical to PPI design/engineering. In addition to 

the improved prediction accuracy, EvoEF is significantly faster than FoldX when it comes to 

energy calculation. This is particularly important in extensive protein design simulations like 

EvoDesign, where the physics-based energy computation is one of the most time-consuming parts 

of the pipeline. FoldX’s inefficient energy computation is partly due to the fact that, currently, 

only executables are provided for the software and the computational speed cannot be fully 

optimized by users. Therefore, an effective and efficient physical energy function should be very 

helpful to the protein science community. The EvoEF source code is freely available at 

https://zhanggroup.org/EvoEF/, where users can optimize the code and parameters according to 

their own needs. Text G.5 in the SI provides a detailed description of the commands and functions 

implemented in EvoEF. 

Despite their effectiveness and efficiency, the evolutionary components of the EvoDesign 

potential can be limited by the availability of structural homologs in the PDB; in particular, the  

number of protein interface homologs identified by iAlign may be low. In a previous study, we 

found that the average number of interface homologs identified for a set of test complexes was 

approximately five (216). To address this issue, we recently tested a new method to construct 

interface profiles by combining the structural iMSA with sequence homologs from sequence-based 

PPI databases. Based on the preliminary data, the method shows promise to significantly increase 

binding affinity prediction accuracy and we plan to integrate it into EvoDesign after further 

optimization. 

As one of the essential difficulties in computational protein design is the expensive cost of 

experimental validations, the EvoDesign server aims to provide various transparent intermediate 

data to allow for detailed annotation and analysis of the confidence of the designed sequences. 

With the continuous effort on the development and improvement of the scope and accuracy of the 

methodology, we believe the new EvoDesign pipeline should be a useful tool to the community, 
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especially for scientists who have known protein structures but want to design new sequences with 

enhanced foldability and biological functionality. 

 

4.3 Author Contributions 

The findings from this study were published in the Journal of Molecular Biology (134) with myself 

(R.P.) and Dr. Xioqiang Huang (X.H.) as co-first authors, Dr. Dani Setiawan (D.S.) as co-Author, 

and Dr. Yang Zhang (Y.Z.) as corresponding author.  R.P. developed the online server, analyzed 

the data, and drafted the manuscript and figures; R.P., X.H., and D.S. co-developed EvoDesign; 

R.P., X.H., and Y.Z. finalized the manuscript. 
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CHAPTER 5  
 

FoldDesign: De Novo Protein Fold Design Through Sequence-Independent 

Fragment Assembly Simulations 

 
In the previous chapter we covered our work in protein sequence design; thus, in this chapter we 

will cover the second major topic of the design problem, protein structure design. As has been 

mentioned in the preceding sections, the unique and varied functions performed by proteins are 

made possible by the diverse structural folds adopted by different protein molecules. However, as 

is the case for the protein sequence space, despite the enormous conformational space available, 

only a tiny portion appears in nature following billions of years of evolution, probably due to the 

selective pressures exerted by environmental constraints upon organisms (64). For example, there 

have been just under 1,500 protein folds classified in the SCOPe database (65) and studies have 

indicated that the current PDB is nearly complete, representing the vast majority of natural folds 

(66, 67). Given the vital importance of proteins to living organisms, there has been growing interest 

in designing artificial proteins with enhanced functionality beyond their native counterparts. 

However, many of the attempts have focused on generating new protein sequences starting from 

the structures of experimentally solved proteins (134, 241-243). While this may be effective in 

certain cases, protein design starting from solved structures is severely limited as nature has 

essentially sampled from an insignificant portion of the possible structure and function space, 

thereby greatly limiting the number of design applications.  

Given these limitations, de novo protein design aims to create not only artificial protein 

sequences, but also novel structures tailored to specific design applications, e.g., with specific fold 

types or binding pockets, has gained considerable traction in recent years. For instance, approaches 

such as Rosetta have been applied to design proteins with promising therapeutic potential (68-70), 

novel ligand-binding activity (71, 72), and complex logical interactions (73). The core protocol 

that has enabled Rosetta to design new protein folds is fragment assembly, which involves the 
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identification of small structural fragments from experimentally solved structures that match a 

desired fold definition and the assembly of the identified fragments to produce full-length 

structural folds (14, 128, 244). Notably, fragment assembly was adapted from the related field of 

protein structure prediction, where it has been among the most successful classical approaches to 

template-free structure modeling (14, 16, 90, 125).  

Despite the successes, de novo protein design remains somewhat of an art form, where large-

scale experimental optimization is often required to generate successful designs (68, 70). In 

particular, extensive user-intervention during scaffold creation and selection is frequently 

necessary (71, 147). Nevertheless, automated fold design tailored to specific applications is highly 

non-trivial because traditional homologous structure assembly programs often create folds that are 

similar to the template structures even when distracted with strong external spatial restraints (13, 

25). Although ab initio fragment assembly approaches, such as QUARK (16) and Rosetta (14), 

can create template-free models, they need to start from specific natural sequences and often create 

conformations that either converge to specific folding clusters or are not protein-like (245). 

Furthermore, as we covered in Chapter 1, most of the successful de novo designs have highly 

idealized structures with optimized SS compositions that lack the complex irregularities often 

present in native proteins, where a significant portion of the designed folds are well represented in 

nature or may be described through ideal parametric geometries (148, 156-159). Thus, 

development of automated algorithms capable of precisely designing any required fold type, 

including those without structure analogs in the PDB or idealized SS compositions, with limited 

human intervention is critical to improve the scope and success rate of de novo protein design. 

Toward this goal, we proposed a new automated pipeline, FoldDesign, to create desired protein 

folds starting from user-specified restraints, such as the secondary structure topology and/or inter-

residue contact and distance maps, through sequence-independent replica-exchange Monte Carlo 

(REMC) simulations. Since the designed folds do not necessarily have experimental counterparts, 

we designed several objective assessment criteria based on the satisfaction rate of the input 

requirements and the folding stability of the designs, as outlined in Fig. 5.1. The results showed 

that FoldDesign can produce protein-like structural folds that closely recapitulate the input features 

with enhanced folding stability, significantly outperforming other start-of-the-art approaches on 

the large-scale benchmark tests. Importantly, this was demonstrated on a set of non-idealized, 

complex SS topologies and roughly 1/4 of the designs possessed novel folds that were not 
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represented in the PDB, illustrating an important ability of the program to explore the areas of 

protein fold space unexplored by natural evolution. The online server, which presently supports 

fold design targets up to 1500 residues long, and the standalone package for FoldDesign are freely 

available to the community at https://zhanggroup.org/FoldDesign/ and 

https://github.com/robpearc/FoldDesign, respectively. 
 

 
Figure 5.1 Illustrations of the strategies used to evaluate the quality of the FoldDesign scaffolds. 
The red lines mark the four criteria used to assess the FoldDesign scaffolds: (1) the secondary 
structure similarity between the input secondary structures and the secondary structures of the 
scaffolds designed by FoldDesign; (2) the physical quality score including hydrophobic core 
formation and statistical energies; (3) the fold stability assessed by the structural similarity (TM-
score/RMSD) between the FoldDesign scaffolds and the final models after constraint-free molecular 
dynamic simulations (MD); (4) the foldability as determined by the structural similarity between 
the FoldDesign scaffolds and the predicted models by AlphaFold. 

5.1 Results and Discussion 

FoldDesign is an automated algorithm for sequence-independent, de novo protein fold design, 

where the flowchart is outlined in Fig. 5.2. The program takes as input the SS topology for a 

designed structure scaffold, which includes the length, order, and composition of the SS elements. 

A set of structural fragments with lengths between 1-20 residues is then collected from the PDB 

library by scoring the similarity between the input SS and the SS of the PDB fragments. These 

fragments are finally reassembled by REMC folding simulations to generate protein-like structural 
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scaffolds that satisfy the input constraints, where the lowest energy structure is subjected to further 

atomic-level refinement to produce the final structural design (see 5.3 Methods). 
 

 
Figure 5.2 Overview of the FoldDesign pipeline.Starting from a user-defined SS topology as well 
as any further design constraints such as inter-residue contacts or distances, FoldDesign identifies 
1-20 residue structural fragments from the PDB with SSs that match the input constraints. These 
fragments are then assembled together along with 10 other conformational movements during the 
replica-exchange Monte Carlo folding simulations under the guidance of a sequence-independent 
energy function that accounts for the fundamental forces that underlie protein folding. The lowest 
energy structure produced during the folding simulations is selected for further atomic-level 
refinement by ModRefiner to produce the final designed structure. 

5.1.1 Auxiliary movements improve the folding simulation efficiency and ability to identify low 

energy states 

Fragment substitution is the predominant movement used by FoldDesign, which involves the 

replacement of a selected region of a decoy structure with the structure from one of the identified 

fragments collected from the PDB. However, fragment substitution may cause large 

conformational changes that prevent the movement from being accepted. To improve the 

simulation efficiency, FoldDesign introduces 10 auxiliary movements, including bond length and 

angle perturbations, segment rotations, torsion angle substitutions, and those that form packing 

interactions between specific SS elements (see Texts J.1 and J.2 in Appendix J).  
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Fig. 5.3.A displays the FoldDesign energies of the lowest energy structures produced for each 

of the 354 test SS topologies (see 5.3 Methods), either using the full set of 11 conformational 

movements or only using fragment substitution. Of note, the 354 test SS sequences were derived 

from native proteins, which include irregularities and non-ideal compositions, making it a rigorous 

test set to determine if a method can design stable structures given non-ideal SS definitions. It can 

be observed that the auxiliary movements enabled the simulations to find structures with 

significantly lower energies than those found using fragment substitution alone. Overall, the 

average FoldDesign energy of the best structures produced using the full movement set was -529.5 

𝑘`𝑇 compared to -449.7 𝑘`𝑇 when using only fragment substitution, where the difference was 

statistically significant with a p-value of 2.1E-66 as determined by a paired two-sided Student’s t-

test. In addition to the improved ability to sample low energy states, the auxiliary movements 

reduced the simulation times required to fold the proteins. Fig. 5.3.B plots the simulation time 

versus the protein length for each of the test topologies. From the figure, a clear reduction in the 

simulation time required can be seen across all protein lengths, where the average time for the 

simulations with the full movement set was 9.6 hours compared to 22.8 hours for the simulations 

that used only fragment substitution. This reduction in simulation time is due to the fact that 

fragment substitution is computationally expensive and requires additional loop closure to ensure 

that it does not cause large downstream perturbations, while the auxiliary movements are 

comparatively fast.  

In Figs. 5.3.C-D, we further present a representative case study for the topology from the PDB 

protein 1ec6A, which adopts an α/β fold. Fig. 5.3.C shows the conformational dynamics of the 

decoys produced during the lowest-temperature replica of the simulations using only the fragment 

substitution movement, while Fig. 5.3.D uses the full movement set. Specifically, the figures plot 

the TM-score between the decoy at REMC cycle i compared to cycle i-1 from cycles 50-100. In 

Fig. 5.3.C, there are several plateaus where no movement could be accepted, leading to identical 

conformations between a number of the cycles, where the most notable plateau lasted for 11 cycles 

(cycles 59 through 70). On the other hand, with the full movement set in Fig. 5.3.D, no such 

plateaus were observed. Although several cycles had very similar folds, which may be caused by 

subtle conformational refinements such as bond length perturbation, none of the cycles had 

identical structures. As a result, the simulations using the full movement set generated a structure 



 99 

with an energy of -346.2 𝑘`𝑇 in 4.7 hours compared to a structure with an energy of -224.3 𝑘`𝑇 

in 14.2 hours using only fragment substitution. 

 

 
Figure 5.3 Importance of the auxiliary conformational movements. A) Energy distributions for the 
designs produced by the FoldDesign simulations using the full movement set and using only 
fragment assembly. B) Simulation time required versus protein length for FoldDesign using the full 
movement set and fragment assembly alone. C-D) Two representative case studies that demonstrate 
the dynamics of the folding simulations without (C) and with (D) the auxiliary movements. The y-
axis displays the TM-score between the decoy at REMC cycle i compared to the decoy at cycle i-1. 

As a comparison, Fig. I.1 in Appendix I depicts the native 1ec6A structure, which had a higher 

FoldDesign energy (-145.5 𝑘`𝑇) than either of the simulated designs in Figs 5.3.C-D. This is 

expected as de novo protein design methods optimize the structure of a design with respect to their 

own energy functions and the native proteins from which an SS topology was derived will most 

likely never be the lowest energy conformation that the sampling procedures could/should achieve. 

Moreover, since many natural proteins with divergent global folds may adopt similar SS types, a 

given natural protein, such as 1ec6A, may not necessarily represent the most optimal fold or the 

lowest energy structure for a given SS composition, even with a perfect energy force field. In fact, 

it has been shown that many de novo designed proteins have increased stability compared to their 

native counterparts (148, 159). This is a departure from the scenario of protein structure prediction, 

in which the native structure, with some caveats, should lie at the global free energy minimum for 
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a given protein sequence following Anfinsen’s thermodynamic hypothesis (246); however, the 

same is not necessarily true for protein structure design given just the SS composition. 

 

5.1.2 FoldDesign scaffolds closely match the input constraints 

To assess its ability to design structural folds that possess the desired SS topologies, we list in 

Table 5.1 a summary of the FoldDesign results in terms of the average Q3 scores on the 354 test 

topologies. As a comparison, we also list the results from the state-of-the-art Rosetta method (156), 

which similarly starts from the desired SS of a designed scaffold, where a detailed description of 

the procedures used to run Rosetta is given in Text J.3. Here, the Q3 score is defined as the fraction 

of positions with SS elements that are identical to that of the input topology. Following fold 

generation, the SSs of the designed scaffolds for both FoldDesign and Rosetta were assigned using 

DSSP (239) and compared to the input for each protein. 

Overall, FoldDesign achieved an average Q3 score of 0.877 compared to 0.833 for Rosetta 

with a p-value of 1.7E-08. When considering the Q3 scores for α-proteins, β-proteins, and α/β-

proteins separately, FoldDesign achieved Q3 scores of 0.934, 0.863, and 0.875, compared to 0.828, 

0.829, and 0.835, respectively, for Rosetta. Thus, across all fold types, FoldDesign was able to 

generate structures that more closely matched the input topologies than Rosetta. This partially 

reflects the advanced dynamics of the folding simulations as well as the effectiveness of the 

optimized energy function in FoldDesign. 

 

Method 
Q3 Score All 

(p-value) 

Q3 Score α-proteins 

(p-value) 

Q3 Score β-proteins 

(p-value) 

Q3 Score α/β proteins 

(p-value) 

FoldDesign 0.877 (*) 0.934 (*) 0.863 (*) 0.875 (*) 

Rosetta 0.833 (1.7E-08) 0.828 (5.4E-05) 0.829 (0.10) 0.835 (4.5E-06) 

 

Table 5.1 Comparison of the Q3 scores for the structures produced by FoldDesign and Rosetta on 
the 354 test SS topologies. Here, the Q3 score is defined as the fraction of positions in the designed 
structures whose SSs were identical to the input SSs. The results are further separated based on the 
fold type (α, β, and α/β) and the p-values were calculated using paired, two-sided Student’s t-tests. 

Although no user-defined distance restraints were included in the above tests, these are still 

important in many design cases where recapitulation of specific folds is desired. In Table 5.2, we 

extracted the pairwise Cα distances from the native structures in the test set and used them as 

restraints during the design simulations. From the table, it can be seen that FoldDesign was able 



 101 

to generate designs that closely matched the native structures with average TM-scores/RMSDs of 

0.993/0.31Å, 0.993/0.27Å, 0.992/0.32Å, and 0.994/0.31Å for all, α, β, and α/β topologies, 

respectively. Therefore, the FoldDesign structures nearly perfectly recapitulated the desired folds 

when guided by user-defined distance restraints. Additionally, the Mean Absolute Errors (MAEs) 

between the Cα distance maps extracted from the designed folds and native structures were 0.148, 

0.115, 0.130, and 0.154 Å for all, α, β, and α/β topologies, respectively, confirming that the 

generated structures closely satisfied the given distance restraints. 

 

Protein Type MAE (Å) TM-score RMSD (Å) 

All 0.148 0.993 0.31 

Α 0.115 0.993 0.27 

Β 0.130 0.992 0.32 

α/β 0.154 0.994 0.31 

 

Table 5.2 Results of FoldDesign starting from distance restraints extracted from the native 
structures. All metrics were computed between the designed and native structures. Here, MAE is 
the mean absolute error between the Cα distance maps from the designed and native structures and 
is calculate by 𝑀𝐴𝐸 = ∑ |G)ZI)|

+
),-

&
, where 𝑥0 is a distance from a designed structure, 𝑦0 is the 

corresponding distance from the native structure, and 𝑛 is the number of considered distances.  

5.1.3 FoldDesign generates low energy, native-like protein structures  

While an important metric, the Q3 score is unable to provide a complete picture of the physical 

quality of the designs. In theory, a method could produce trivial or even unfavorable folds that 

satisfy the desired SS definitions. Thus, a more detailed analysis of the energetics and physical 

characteristics of the produced structures had to be performed (Fig. 5.1). As the designed scaffolds 

for FoldDesign and Rosetta are both sequence-independent and many of the traditional scoring 

and assessment tools are sequence-specific, the sequence for each scaffold had to be designed 

before further quantitative analysis could be conducted. To design the sequences for each scaffold, 

two sequence design methods were used, namely EvoEF2 (132), which is the latest iteration of the 

EvoEF design method described in Chapter 4, and RosettaFixBB (131), where the backbone 

structures of the designed scaffolds were kept fixed during the sequence design to ensure a fair 

comparison of the scaffolds that were directly output by FoldDesign and Rosetta. Here, 

RosettaFixBB and EvoEF2 are sequence design methods that perform Monte Carlo sampling in 

sequence space guided by combined physics- and knowledge-based energy functions. 100 
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sequences were designed for each scaffold, and the average results from the 10 lowest energy 

sequences were reported for both FoldDesign and Rosetta in the following analyses.  

First, Fig. 5.4.A shows that the percent of buried residues for the FoldDesign scaffolds closely 

resembled the native protein structures from which the input SSs were extracted. For example, in 

the native structures, 19.2% of the residues were buried in the hydrophobic core, compared to 

20.2% and 17.2% for the FoldDesign scaffolds whose sequences were designed by EvoEF2 and 

RosettaFixBB, respectively. However, for Rosetta, only 9.8% and 7.5% of the residues were buried 

in the hydrophobic core. Additionally, the solvent accessible surface area (SASA) for the native 

proteins was 7081.8 Å2 compared to 6964.9 Å2 and 7376.3 Å2 for the FoldDesign scaffolds whose 

sequences were designed by EvoEF2 and RosettaFixBB, while the average SASA for the 

corresponding Rosetta scaffolds was 8721.2 Å2 and 8944.2 Å2, respectively. These results suggest 

that the FoldDesign scaffolds possessed more compact hydrophobic cores and less solvent exposed 

area than the Rosetta scaffolds and shared a higher similarity to the native structures for these 

characteristics. The difference is in part due to the fact that FoldDesign includes a number of 

energy terms that promote the formation of well-packed SS elements; these include specific 

fragment-derived distance and solvation potentials, generic backbone atom distance energy terms, 

and SS-specific fragment packing terms (see Text J.2). In addition, the energy weights were 

carefully optimized using the results of the design simulations to ensure the formation of well-

folded globular proteins (see 5.3 Methods). 

In Figs. 5.4.C-D, we further display the energies of the designed scaffolds by FoldDesign and 

Rosetta, as assessed by two leading third-party atomic-level statistical energy functions, GOAP 

(247) and ROTAS (248). For the sequences designed by EvoEF2 and RosettaFixBB, the 

FoldDesign scaffolds had average GOAP energies of -9736.9 and -10166.7, which were 

significantly lower than the GOAP energies of -8174.5 and -8838.8 for the Rosetta scaffolds with 

p-values of 3.4E-13 and 4.3E-10, respectively. Similar trends were observed for ROTAS. For the 

sequences designed by EvoEF2 and RosettaFixBB, the FoldDesign scaffolds had average ROTAS 

energies of -6110.3 and -4446.5 compared to -4360.8 and -3281.5 for the corresponding Rosetta 

designs; the differences were statistically significant with p-values of 6.8E-27 and 1.3E-15. 

Overall, the FoldDesign scaffolds possessed more tightly packed hydrophobic cores and were 

energetically more favorable than the Rosetta scaffolds, with GOAP energies that were 19.1% and 

15.0% lower than the Rosetta scaffolds and ROTAS energies that were 40.1% and 35.5% lower 
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than the Rosetta scaffolds depending on the sequence design method that was used. Importantly, 

neither FoldDesign nor Rosetta used any of the third-party energy functions for optimization.  

 
Figure 5.4 Comparison of the physical characteristics and energies for the designed folds by 
FoldDesign and Rosetta. The results are on the 354 test proteins, where the sequence for each 
scaffold was designed by EvoEF2 and RosettaFixBB, respectively. The native designation 
represents the proteins from which the SSs of the designed folds were derived. A) Proportion of 
buried residues is plotted for each protein, where a buried residue was defined as having a relevant 
solvent accessible surface area <5%. B) Solvent accessible surface area (SASA) for each protein. 
C-D) Energies for each protein calculated by GOAP and ROTAS. 

Furthermore, introduction of ABEGO bias (249) during the Rosetta fragment selection protocol 

and enabling sub-rotamer sampling during the RosettaFixBB sequence design did not alter the 

above conclusions (see Text J.4 in Appendix J and Figs. I.2-3 in Appendix I). Lastly, despite the 

fact that Valine was used as the generic center of mass in FoldDesign and Rosetta (see 5.3 

Methods), neither method demonstrated a bias towards scaffolds that favored Valine as described 

in Text J.5 and Fig. I.4 and all allowable regions of the Ramachandran plot were well represented 

in the FoldDesign scaffolds (Fig. I.5). 
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5.1.4 FoldDesign force field plays an important role in promoting the structural design 

performance  

As shown in Eq. 5.1 in the Methods section, FoldDesign utilizes a number of newly introduced 

energy terms, including fragment-derived distance and solvation potentials (𝐸Z7[l_'*+,_#7%Z*&" and 

𝐸Z7[l_+%&5) and detailed SS specific packing potentials (𝐸33#[.8 , 𝐸++#[.8 , and 𝐸3+#[.8), as well 

as generic atomic contact- and distance-based terms that promote the formation of compact, 

globular structures (𝐸l"/"7*._'*+, and 𝐸.%/,[.,_/^=). Moreover, these terms were optimally 

combined with other more routine energy terms using an extensive weight optimization protocol 

based on the 107 training proteins (see 5.3 Methods).  

To examine the impact of the FoldDesign force field and to probe the reason for the 

performance difference from the control method, we present in Fig. 5.5 the comparative results for 

the physical characteristics of the Rosetta designed scaffolds when the final models were selected 

using either the Rosetta or FoldDesign energy functions. It is noted that for this test we had to 

disable the fragment-derived distance and solvation potentials for FoldDesign as these are specific 

to the fragments generated by the FoldDesign program, which were not used to assemble the 

Rosetta designs given the differences in the fragment databases and identification protocols for the 

two methods. The data showed that selecting the Rosetta decoys according to their FoldDesign 

energies led to a significant improvement in the compactness of the folds as well as the GOAP and 

ROTAS energies compared to the designs selected using their original Rosetta energies. For 

example, selection using the FoldDesign energy function increased the percent of buried residues 

by 31.5% for the EvoEF2 sequence designs and 39.3% for the RosettaFixBB sequence designs, 

compared to selection by the Rosetta centroid energy function, where the differences were 

statistically significant with p-values of 1.6E-13 and 1.5E-14, respectively. Similarly, 

improvements were observed in the third-party energies of the designed scaffolds. For example, 

the average GOAP energy improved by 9.2% and 7.6% for the EvoEF2 and RosettaFixBB 

sequence designs, respectively, where the differences were significant with p-values of 3.1E-04 

and 1.5E-03. 
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Figure 5.5 Comparison of the physical characteristics and energies for the designed folds by 
Rosetta. The results are on the 354 test proteins, where the final designs were selected using either 
the Rosetta centroid energy function or the FoldDesign energy function. A) Proportion of buried 
residues is plotted for each protein, where a buried residue was defined as having a relevant solvent 
accessible surface area <5%. B) Solvent accessible surface area (SASA) for each protein in the test 
set. C-D) Energies for each protein calculated by GOAP and ROTAS respectively. 

In Fig. 5.6, we present a similar comparative result for the FoldDesign scaffolds when the final 

designs were selected by either the Rosetta or FoldDesign energy functions. For this test, an 

opposite trend was observed, where the selection of the FoldDesign scaffolds using the alternative 

force field from Rosetta resulted in a reduced performance compared to the original FoldDesign 

force field. For instance, the Rosetta energy-based selection led to a 43.2% and 49.4% decrease in 

the percent of buried residues for the EvoEF2 and RosettaFixBB sequence designs, compared to 

the models selected using the original FoldDesign energy function; these differences were 

statistically significant with p-values of 8.2E-79 and 5.8E-86, respectively. Furthermore, the 

GOAP energies were 26.7% and 25.2% worse for the EvoEF2 and RosettaFixBB sequence designs 

with p-values of 5.8E-35 and 9.8E-34, respectively. Based on the data shown in the above section, 

apart from the extensive REMC searching simulations, the optimized force field of FoldDesign, 
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with newly introduced energy features, plays another critical role in creating compact and 

physically sound structure designs that outperform those from other state-of-the-art design 

methods. 

 

 
Figure 5.6 Comparison of the physical characteristics and energies for the designed folds by 
FoldDesign. The results are on the 354 test proteins, where the final designs were selected using 
either the FoldDesign energy function or the Rosetta centroid energy function. A) Proportion of 
buried residues is plotted for each protein, where a buried residue was defined as having a relevant 
solvent accessible surface area <5%. B) Solvent accessible surface area (SASA) for each protein in 
the test set. C-D) Energies for each protein calculated by GOAP and ROTAS respectively. 

5.1.5 FoldDesign generates stable structures with novel folds  

To further assess the stability of the designed structures, molecular dynamics (MD) simulations 

were run starting from the designed scaffolds produced by FoldDesign and Rosetta. MD is a useful 

tool as it allows for the study of protein motion and stability beyond static measurements such as 

energy calculations, where 20 ns unconstrained MD simulations were carried out using 

GROMACS (250) with the CHARMM36 force field (see 5.3 Methods). Following the simulations, 

the final MD structures were obtained by clustering the 1000 trajectories from the last nanosecond 
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of each simulation using the GROMOS method with an RMSD cutoff of 2 Å, where the 

representative structure for each design was taken from the largest cluster center. To determine the 

stability of the structures, the TM-scores between the initial designed scaffolds and the final 

clustered MD structures were calculated, where the results are depicted in Figs. 5.7.A-B for the 

structures whose sequences were designed by EvoEF2 and RosettaFixBB, respectively.  

 

 
Figure 5.7 Analysis of the FoldDesign and Rosetta scaffolds using molecular dynamics (A-B) and 
protein structure prediction by AlphaFold2 (C-D). A-B) TM-scores of the FoldDesign and Rosetta 
scaffolds relative to their final structures following 20 ns MD simulations, where the sequence for 
each scaffold was designed by EvoEF2 (A) and RosettaFixBB (B). C-D) TM-scores of the 
FoldDesign and Rosetta scaffolds relative to the structures predicted by AlphaFold2 starting from 
the EvoEF2 (C) and RosettaFixBB (D) sequences designed for each scaffold. E) TM-score 
distribution between the FoldDesign structures and their closest native analogs obtained by 
searching the designed scaffolds through the PDB using TM-align. 

From the figures, it can be seen that the TM-scores between the initial FoldDesign scaffolds 

and the final MD structures were higher than those for the Rosetta scaffolds, indicating a closer 

match and thus more stable conformations for the FoldDesign scaffolds against MD-based 

perturbations. For instance, the average TM-score between the FoldDesign scaffolds and final MD 

structures for the EvoEF2 sequence designs was 0.645 compared to 0.584 for the corresponding 

Rosetta scaffolds (Fig. 5.7.A), where the difference was statistically significant with a p-value of 

7.4E-19. A similar trend was observed for the scaffolds whose sequences were designed by 
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RosettaFixBB, where the average TM-score between the initial FoldDesign structures and the final 

MD structures was 0.602 compared to 0.525 for the Rosetta scaffolds with a p-value of 4.6E-26 

(Fig. 5.7.B). Furthermore, when considering a cutoff TM-score of 0.5, 93.7% and 87.9% of the 

FoldDesign scaffolds whose sequences were designed by EvoEF2 and RosettaFixBB, respectively, 

shared the same global folds as their final MD structures, compared to 77.1% and 54.8% of the 

corresponding Rosetta structures. Fig. 5.8.A shows three examples selected from among the most 

stable FoldDesign scaffolds, where the TM-scores were all greater than 0.8 and the RMSDs were 

less than 2Å, indicating a close atomic match between the designed scaffolds and the final MD 

structures. Overall, the vast majority of the FoldDesign scaffolds possessed stable global folds, 

outperforming the state-of-the-art Rosetta protocol across the test set. 

 

 
Figure 5.8 Examples of stable, well-folded FoldDesign scaffolds. The stability of the designs was 
assessed by molecular dynamics (A) and AlphaFold2 (B), where the sequences for each scaffold 
were designed by EvoEF2. A) The initial FoldDesign structures (yellow) superposed with the final 
MD structures (blue). B) The FoldDesign scaffolds (yellow) superposed with the AlphaFold2 
models (blue). 

Interestingly, despite the high fold stability with local structural features that were highly 

similar to the native proteins, a large portion of the FoldDesign scaffolds adopted novel folds that 

were different from what exists in the PDB. In Fig. 5.7.E, we present a histogram distribution of 
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the TM-scores between the FoldDesign scaffolds and the closest structures identified by TM-align 

(220) from the PDB, where the average TM-score of 0.551 was relatively low given the searching 

power of TM-align and the near completeness of the PDB (66, 220). Of the 354 designs, 79 had a 

TM-score below 0.5 to any structure in the PDB, indicating they possessed novel folds, while the 

remaining 275 designs had analogous structures in the PDB with the same global folds (TM-scores 

≥0.5). Furthermore, 74 of the 79 novel structures whose sequences were designed by EvoEF2 had 

stable folds with TM-scores ≥0.5 to their final structures output by the MD simulations. Moreover, 

there was no obvious difference between the novel folds and other folds in terms of stability, as 

the TM-score distributions between the designs and the final MD structures were quite similar 

(Fig. I.6), where their average TM-scores were 0.647 and 0.645, respectively. These results 

demonstrate that FoldDesign is capable of producing compact and stable scaffolds, while allowing 

for the exploration of novel areas of protein fold space. 

 

5.1.6 Protein structure prediction indicates FoldDesign produces well-folded structures 

As additional proof of the foldability of the designed structures, we examined the structural 

similarity between the designed scaffolds and the predicted models generated by the state-of-the-

art AlphaFold2 program (123) starting from the designed sequences for each scaffold. As protein 

structure prediction is essentially the inverse problem of protein design, it would stand to reason 

that well-formed structure designs should be able to be recapitulated starting from their 

corresponding designed sequences.  

However, given that AlphaFold2 is a deep learning-based modeling program, its performance 

largely depends on collecting meaningful MSAs (123), yet de novo designed proteins almost 

always lack natural sequence homologs. To illustrate this, in Fig. I.7 we plot the number of Blast 

hits that were detected from the nr sequence database (E-value <1E-5) when starting from either a 

single designed sequence or from jumpstarting the Blast search using an alignment of all 100 

designed sequences for each FoldDesign scaffold. As shown in Fig. I.7.A, no Blast hits were 

detected when starting from a single EvoEF2 sequence design and jumpstarting the Blast search 

from the alignment of designed sequences only picked up 1-2 hits for 4 of the 354 designs. For the 

RosettaFixBB designs, neither the single designed sequence searches nor the jumpstarted Blast 

searches yielded any detectable homologs (Fig. I.7.B).  
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In Table H.1 in Appendix H, we also list the structure prediction results by AlphaFold2 for the 

354 native protein structures starting from the MSAs generated by the DeepMSA program (180) 

compared to the results starting from the single designed sequences. As expected, AlphaFold2 

created excellent models with an average TM-score of 0.913 when starting from the native MSAs; 

but starting from the single designed sequences by either EvoEF2 or RosettaFixBB produced 

significantly less accurate models, where the average TM-scores were only 0.506 and 0.482 for 

the EvoEF2 and RosettaFixBB sequence designs, respectively, and nearly (or more than) half of 

the cases had TM-scores below 0.5. This result is in line with previous studies that have indicated 

that single sequence-based modeling using deep learning approaches for non-ideal folds is 

significantly less accurate than that for idealized de novo designed folds (251). This is likely due 

to the fact that most of the computationally designed structures have relatively simple global folds 

with optimized SS compositions that lack the irregularities that exist in native proteins (148, 157, 

159). Since the 354 SS topologies in the benchmark dataset were derived from native protein 

structures, which contain numerous irregularities, the above results indicate that single sequence 

based AlphaFold2 modeling may not be reliable for the FoldDesign and Rosetta scaffolds. 

Interestingly, when starting from artificial MSAs collected from the 100 designed sequences for 

the native structures, AlphaFold2 could generate reasonable folding results, where more than 97% 

of the cases had TM-scores >0.5, which was close to the modeling results obtained when starting 

from the DeepMSA MSAs (see Table H.1). This demonstrates that the MSAs collected from 

sequence design simulations contain some level of evolutionary information that can facilitate 

deep learning-based structure prediction. 

Thus, given the lack of natural sequence homologs and the difficulty of AlphaFold2 to model 

complicated folds from single sequence designs, we constructed the input MSAs for AlphaFold2 

by taking the 100 sequences designed by EvoEF2 and RosettaFixBB for each of the 

FoldDesign/Rosetta scaffolds. As shown in Table 5.3, when starting from the sequences designed 

by EvoEF2, the average TM-score between the AlphaFold2 models and the FoldDesign scaffolds 

was 0.714 compared to 0.663 for the Rosetta scaffolds, where the difference was statistically 

significant with a p-value of 4.6E-09. In Fig. 5.7.C, we present a head-to-head TM-score 

comparison, where the FoldDesign scaffolds had higher TM-scores than the corresponding Rosetta 

scaffolds for 211 cases, while Rosetta did so for 133 of the 354 cases. If we consider the number 

of designs with TM-score ≥0.5, 324 (or 91.5%) of the FoldDesign scaffolds shared the same global 
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folds as the AlphaFold2 models compared to 301 (or 85.0%) of the scaffolds by Rosetta. These 

results demonstrate that the FoldDesign scaffolds more closely resembled the AlphaFold2 models 

than the Rosetta scaffolds did, indicating their enhanced stability/foldability. Similar patterns were 

observed for the sequences designed by RosettaFixBB, where the average TM-score between the 

FoldDesign scaffolds and AlphaFold2 models was 0.696 compared to 0.670 for Rosetta with a p-

value of 3.0E-04 (Table S3). Moreover, 208 of the 354 FoldDesign scaffolds had higher TM-scores 

than the Rosetta scaffolds and 315 (or 89.0%) of the designs had TM-scores ≥0.5 (Fig. 5.7.D). 
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Method TM-score (p-value) RMSD (p-value) # TM-score ≥ 0.5 

Sequences designed by EvoEF2 

FoldDesign 0.714 (*) 3.66 (*) 324 

Rosetta 0.663 (1.1E-07) 5.10 (4.6E-09) 301 

Sequences designed by RosettaFixBB 

FoldDesign 0.696 (*) 4.13 (*) 315 

Rosetta 0.670 (0.004) 4.95 (3.0E-4) 310 

 

Table 5.3 Results of AlphaFold2 modeling starting from the designed sequences for the FoldDesign 
and Rosetta scaffolds. P-values were calculated using paired, two-sided Student’s t-tests. 

Fig. 5.8.B presents three examples from some of the closest matches between the FoldDesign 

scaffolds and AlphaFold2 models, where each had a TM-score greater than or close to 0.9 and 

RMSDs below 2.25 Å, indicating close atomic matches between the designed scaffolds and 

predicted models. Notably, these cases came from designs with some level of analogous structural 

information in the PDB, although the TM-scores between the designed scaffolds and their closest 

native analogs (0.517-0.611, see Fig. I.8) were much lower than those between the designed 

scaffolds and the AlphaFold2 predicted models (0.889-0.909, Fig. 5.7.B).  

To further examine the foldability of the novel structures produced by FoldDesign, Fig. I.9 

plots the AlphaFold2 TM-score distributions for the FoldDesign scaffolds that lacked or possessed 

native analogs, where the novel designs (with TM-score=0.723/0.718 for the 

EvoEF2/RosettaFixBB sequences) were found to be as foldable or even more so than those with 

native analogs (with TM-score=0.711/0.689 for the EvoEF2/RosettaFixBB sequences). Overall, 

these tests demonstrated that the FoldDesign scaffolds more closely matched the predicted models 

than the Rosetta scaffolds did, and the overwhelming majority of the designs shared the same 

global folds as the AlphaFold2 models. This structural consistency may suggest that FoldDesign 

captures some structural characteristics that have been integrated in the AlphaFold2 learning 

process. 

 

5.1.7 Assembling uncommon structural motifs is essential to produce novel fold designs  

Given the high population of novel folds produced by FoldDesign starting from native SS 

compositions, it was of interest to quantitatively examine the structural characteristics of these 

folds and determine how they deviate from native protein structures. Toward this goal, we first 
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examined their local structural quality using MolProbity (MP) (252), where the results are 

summarized in Table H.2. It was observed that the novel designs possessed favorable MP-scores, 

with an average MP-score of 1.66 compared to 1.57 for the designs that had identifiable native 

analogs, where both scores were comparable to (or only slightly higher than) those of the 

corresponding native structures (Table H.2). Meanwhile, the novel folds had very few 

Ramachandran outliers, atomic clashes, or deviations in bond lengths and angles, largely 

comparable to (or slightly better than) the native and analogous designs. This result provides 

support that the novel folds possessed favorable local geometries and physical realism that 

resembled native proteins, although they had completely different global folds. 

To further probe the source of the distinct structural folds adopted by the novel designs, 

following the idea of previous studies (253-255), we investigated the local geometries of the 

associated super-SS elements by decomposing the global folds into their local structural motifs 

(Smotifs). Briefly, a Smotif is composed of two adjoining regular SS elements, either helices or 

strands, that are linked by a loop region (253). As shown in Fig. 5.9, the geometry of a Smotif is 

specified by four spatial characteristics, including the distance (D) between the bracing SS 

elements and the three angles formed between them (hoist δ, packing θ, and meridian ρ). The 

overall fold of a protein can then be broken down into the basic SS building blocks, where a total 

of 540 Smotif types can be obtained by splitting the 4-dimensional (D-δ-θ-ρ) space into 4-3-3-6 

intervals and only ~320-330 Smotif geometries can be used to describe all existing protein 

structures (254). In Fig. 5.10, we present the relative frequency of Smotifs in the 79 novel folds 

and 354 native proteins in the test set versus the normalized background frequency of the Smotifs 

calculated from 51,094 non-redundant full-chain structures in the I-TASSER template library (17, 

256), where the relative frequency values were normalized for each protein across the four 

background frequency bins in the plot (see Text J.10). 
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Figure 5.9 Smotif geometry definition. The axis for an α or β secondary structure is defined as the 
shortest of the principal moments of inertia of that structure, where V1 and V2 are the axis vectors 
of the secondary structure. The geometry of each motif is defined by four geometric features: (1) D, 
the distance between the ending points of the two secondary structure elements, (2) Hoist angle, δ, 
the angle between axis V1 and vector D; (3) Packing angle, θ, the angle between V1 and V2; and 
(4) Meridian angle, ρ, the angle between V2 and the plane that contains the vector V1. 

It can be observed from Fig. 5.10 that compared to the native proteins, the novel designs by 

FoldDesign were highly enriched for rare or uncommon Smotifs, where 24.5% and 70.8% of the 

Smotifs in the novel designs had normalized background frequencies in the range [0, 1E-3] and 

(1E-3, 1E-2], respectively, compared to just 4.5% and 29.7% for the 354 native proteins. 

Additionally, 50.6% of the Smotifs from the native folds were common with background 

frequencies >1E-1, while just 4.1% of the Smotifs from the novel designed folds were commonly 

found. Of note, the vast majority of the Smotifs in the novel designs were found in nature, with 

the exception of one geometry that did not appear in the proteins from the PDB as shown in Fig. 

I.10. Thus, the novelty of the designed folds by FoldDesign may largely be a consequence of the 

combination of rare/uncommon local super-SS geometries, rather than the creation of new local 

geometries or a unique arrangement of common structural motifs. Furthermore, given the 

computationally assessed stability of the novel folds, these results support the claim that 

FoldDesign is able to produce stable designs for non-idealized SS elements, as the majority of the 

super-SS geometries were rarely observed in nature. 
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Figure 5.10 Relative frequency of Smotifs found in the 354 native protein structures and 79 novel 
folds produced by FoldDesign. The x-axis plots the normalized background frequency of the 
Smotifs calculated from the 51,094 non-redundant full-chain structures in the I-TASSER template 
library (see Text S10 in the SI). Two motifs are considered as identical if they fall into the same bin 
in the 4-dimensional (D-δ-θ-ρ) space (254). The mean values of the distributions are shown by the 
white circles, where a point with 0-frequency indicates that a Smotif with the indicated background 
frequency did not appear in one of the tested structural folds. 

Fig. 5.11 highlights two design cases with novel folds whose SS compositions were taken from 

the PDB proteins 1id0A and 2p19A, where the designed scaffolds are shown superposed with their 

AlphaFold2 models and closest native analogs from the PDB. It can be observed that the 

AlphaFold2 models closely resembled the designed scaffolds with TM-scores of 0.809 and 0.811 

for the 1id0A and 2p19A designs, respectively, indicating they were foldable by the deep learning 

program. Interestingly, the clusters that these designs were selected from were highly conserved 

with average TM-scores of 0.769/0.826 between the cluster members and 1id0A/2p19A, pointing 

to a clear evolutionary relationship between the SS topologies and the native folds. Despite this, 

FoldDesign generated novel scaffolds for these two topologies, which had low TM-scores (0.467 

and 0.451) to their closest structures in the PDB, again demonstrating an ability to explore structure 

space unexplored by nature even for highly conserved clusters. 

In the right column of Fig. 5.11, we illustrate the Smotifs that the two designs were composed 

of, where the Smotifs for the two native structures are shown in Fig.I.11. For the 1id0A topology 
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design, the global structure was composed of 8 Smotifs, where all 8 were rare with a background 

frequency ≤1E-3, while the corresponding native structure was composed of 7 common Smotifs 

with a high background frequency of ~3E-1 and 1 Smotif that was less common with a background 

frequency of ~1E-2. Similar trends were observed for 2p19A, where the designed structure was 

composed of 8 uncommon Smotifs with a background frequency ≤1E-2, while the native structure 

was composed of 8 common Smotifs with a background frequency of ~3E-1. Thus, from these 

cases, it can be seen that the combination of rare or uncommon local super-SS geometries gave 

rise to new global folds, which was observed across the 79 novel designs. 

 

 
Figure 5.11 Case study of two novel designed folds for the SS topologies taken from 1id0A (A) and 
2p19A (B). The designed structures are shown on the left-hand side of the figure in yellow 
superposed with their AlphaFold2 models and closest native analogs in blue. Additionally, each 
native structure in the same SS cluster as 1id0A (A) and 2p19A (B) are shown aligned with their 
respective cluster centers, where the average TM-scores were calculated based on the alignment of 
each structure in the cluster to the cluster center. Lastly, the right-hand side of the figure illustrates 
the Smotif geometries found in the novel folds, where the depicted frequencies for each Smotif 
represent the relative background frequencies calculated from the representative structures in the 
PDB. 
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5.2 Concluding Remarks 

Protein design generally consists of two steps of structural fold design and sequence design. Many 

protein design efforts have focused on the second step of sequence design with input scaffolds 

taken from existing protein structures in the PDB. Despite the success, such experiments constrain 

design cases to the limited number of folds adopted by natural proteins, while curtailing the 

exploration of novel areas of protein structure and biological function. 

In this work, we developed a pipeline, FoldDesign, for de novo protein fold design. Different 

from traditional protein folding simulations which start from native sequences and therefore, as 

expected, often result in folds that are similar to what exists in the PDB library, FoldDesign starts 

from structural restraints (e.g., SS assignments and/or inter-residue distance restraints) and 

performs folding simulations under the guidance of an optimized sequence-independent energy 

function. Large-scale tests on a set of 354 unique, non-ideal fold topologies demonstrated that 

FoldDesign could create protein-like folds with a closer Q3 score similarity to the desired 

structural restraints than the state-of-the-art design program, Rosetta. Meanwhile, the FoldDesign 

scaffolds had well-compacted core structures with buried residue rates and solvent exposed areas 

that more closely matched those of native proteins, while MD simulations showed that the folds 

were more stable than those produced by Rosetta. Importantly, FoldDesign is capable of designing 

folds that are completely different from the native structures in the PDB, highlighting its ability to 

explore novel areas of protein structure space despite the high fidelity to the input restraints and 

the native-like local structural characteristics. Detailed data analyses showed that the major 

contributions to the success of fold design lie in the optimal energy force field, which contains a 

balanced set of energy terms that account for fragment and SS packing, as well as the efficient 

exploration of conformational space through REMC simulations assisted with a composite set of 

efficient movements. It was also found that the ability to identify and assemble less common super-

SS geometries from the PDB, rather than creating new motifs or the unique arrangement of 

common SS motifs, represents the key for FoldDesign to create novel fold designs. 

Although the FoldDesign server outputs both the designed fold and the lowest energy designed 

sequences when combined with the EvoDesign/EvoEF2 programs (132, 134), the validation of the 

designed sequences remains to be experimentally examined. However, complete experimental 

validation requires both designed structures and designed sequences, where the latter is out of 

scope of the present study, and we leave this important work to future investigation. Nevertheless, 
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the findings presented here have shown that FoldDesign can be used as a robust tool for generating 

high-quality, stable structural folds when applied to the very challenging task of completely de 

novo scaffold generation without human-expert intervention. This therefore provides a strong 

potential for the experimental protein design to effectively explore both structural and functional 

spaces which natural proteins have not reached despite billions of years of evolution. 

 

5.3 Methods 

FoldDesign aims to automatically design desired protein structure folds starting from user-

specified rules such as SS composition and/or inter-residue contact and distance maps. The 

pipeline consists of three main steps, including fragment generation, REMC folding simulations, 

and main chain refinement and fold selection (see Fig. 5.2). 

 

5.3.1 Fragment generation  

Starting from a user-specified SS, high-scoring fragments are identified from a fragment library, 

which consists of structural fragments collected from a non-redundant set of 29,156 high-

resolution PDB structures used by QUARK (16, 92). The fragments were collected from structures 

deposited on or before 4/3/2014 and shared <30% sequence identity to each other (16, 92). 

Notably, this library has been extensively validated in the related field of protein structure 

prediction in the most recent CASP experiments (98, 164). Gapless threading through the library 

is performed to generate 1-20 residue fragments, where the fragments are scored based on the 

compatibility of their torsion angles and SS similarity to the desired SS at each position. The top 

200 fragments are generated for each overlapping 1-20 residue window. The information for each 

fragment includes the backbone bond lengths, bond angles, and torsion angles, as well as other 

useful data such as the position-specific solvent accessibility and Cα coordinates, which are later 

used to derive distance and solvation restraints. 

 

5.3.2 REMC folding simulations and refinement  

Following fragment generation, REMC folding simulations are performed in order to assemble 

full-length structural models, where each simulation uses 40 replicas and runs 500 REMC cycles 

(see Text J.1 for a full description of the REMC parameters and movements). The protein 

conformation in FoldDesign is represented with a coarse-grained model, which specifies the 
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backbone N, Cα, C, H, and O atoms as well as the Cβ atoms and an atom that represents the side-

chain center of mass (Fig. 5.12). To allow for a less biased exploration of structure space, the 

energy terms used by FoldDesign are sequence-independent, where the side-chain center of mass 

for Valine is used as the generic center of mass for each residue to minimize steric clashes. 

 

 
Figure 5.12 Depiction of the reduced model used to represent protein conformations during the 
FoldDesign simulations. The conformations include the backbone atoms (N, H, Cα, C, and O) as 
well as the Cβ atoms and side-chain centers of mass (SC). The center of mass for Valine is used in 
this study to evaluate steric clashes. 

The initial conformations are produced by randomly assembling different high-scoring 9 

residue fragments and then minimized using a set of 11 movements. Here, the major 

conformational movement is fragment substitution, which involves swapping a selected region of 

a decoy structure with the structure from one of the fragments randomly selected from the fragment 

library. Next, cyclical coordinate descent loop closure (91) is used to minimize the structural 

perturbations downstream. Since FoldDesign uses 1-20 residues fragments, larger fragment 

insertions are typically attempted during the initial REMC cycles, while smaller ones are attempted 

during the later steps of the simulations to improve its acceptance rate when the protein is more 

globular and well-folded. In addition to fragment insertion, 10 other conformational movements 

are attempted throughout the course of the simulations, including perturbing the backbone bond 

lengths, angles or torsion angles, segment rotations, segment shifts, and movements that form 

specific interactions between different SS elements, where these are described in Text J.1 and Fig. 

5.13. 
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Figure 5.13 Depiction of the conformational movements used by FoldDesign, with explanations in 
Text J.1 in Appendix J. 

The movements are accepted or rejected using the Metropolis criterion (231), where the energy 

for each conformation is assessed by the following energy function: 

 

𝐸CDDEFGHI = 𝐸_` +	𝐸++_+[,*+Z[.,*%/ + 𝐸7[=[ + 𝐸33#[.8 + 𝐸++#[.8 + 𝐸oPEpqr + 𝐸"5

+ 𝐸l"/"7*._'*+, + 𝐸Z7[l_'*+,_#7%Z*&" +	𝐸Z7[l_+%&5 +	𝐸7l

+ 𝐸.%/,[.,_/^=																																																(5.1) 

 

Here, 𝐸_`, 𝐸++_+[,*+Z[.,*%/, 𝐸7[=[, 𝐸33#[.8, 𝐸++#[.8,  𝐸oPEpqr, 𝐸"5, 𝐸l"/"7*._'*+,, 𝐸Z7[l_'*+,_#7%Z*&", 

𝐸Z7[l_+%&5, 𝐸7l, and 𝐸.%/,[.,_/^= are terms that account for backbone hydrogen bonding, the 

satisfaction rate of the input SS, Ramachandran torsion angles, helix-helix packing, strand-strand 

packing, helix-strand packing, excluded volume, generic backbone atom distances, fragment-

derived distance restraints, fragment-derived solvent accessibility, radius of gyration, and expected 

contact number, respectively. A more detailed explanation of these terms is given in Text J.2. After 

the REMC simulations are completed, the design with the lowest energy is selected for further 
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atomic-level refinement, for which sequence design and structural refinement are performed 

iteratively using EvoDesign (134) and ModRefiner (257), respectively. 

 

5.3.3 Training and test dataset collection  

To test FoldDesign’s ability to perform de novo protein fold design, we collected a non-redundant 

set of SS sequences. This was accomplished by extracting the 3-state SSs from 76,166 protein 

domains in the I-TASSER template library (17, 256) using DSSP (239). All of the pairwise SS 

alignments were obtained using Needleman-Wunsch dynamic programming to align the 3-state 

SS sequences. The target sequences were then clustered based on the distance matrix defined by 

their SS identities, i.e., the number of identical SSs divided by the total alignment length, where 

an identity cutoff=70% was used to define the clusters. 

The identified clusters were further refined by eliminating atypical SS topologies (clusters with 

less than 10 members) and by selecting only those clusters where a clear relationship existed 

between the SS and the tertiary structure adopted by the cluster members. The latter requirement 

was accomplished by using TM-align (220) to perform structural alignment between each cluster 

member and the cluster center, where conserved clusters were required to have an average TM-

score ≥0.5 between the members and cluster center. Finally, we obtained 461 clusters; 107 and 

354 SS sequences were used for the training and test sets, respectively. The training set was 

composed of 22 α, 25 β, and 60 α/β topologies, while the test set was composed of 24 α, 55 β, and 

275 α/β topologies.  

 

5.3.4 FoldDesign energy function optimization  

In order to ensure proper structure generation, each energy term must be carefully weighted in the 

FoldDesign energy function. This was done on the 107 training topologies. Briefly, a grid 

searching strategy was used to optimize the weights, where all weights were initially assigned as 

0, except for the weight for the steric clash term, which was set to 1.0. Then the values for each 

weight were adjusted one-at-a-time around the grid values and the FoldDesign simulations were 

run to produce scaffold structures using the new weight set. After structure generation, the 

sequences for each scaffold were designed using EvoEF2 (132) and the designed structures were 

assessed based on: 

𝐸[.."#, = −Δ𝐸𝑣𝑜𝐸𝐹2 + 100 ∗ Δ𝐵𝑢𝑟𝑖𝑒𝑑𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠 + 100 ∗ Δ𝑄3𝑆𝑐𝑜𝑟𝑒																	(5.2) 
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where, Δ𝐸𝑣𝑜𝐸𝐹2, Δ𝐵𝑢𝑟𝑖𝑒𝑑𝑅𝑒𝑠𝑖𝑑𝑢𝑒𝑠, and Δ𝑄3𝑆𝑐𝑜𝑟𝑒 are the changes in the average EvoEF2 

energy, percent of buried residues, and SS Q3 score, respectively, between the structures produced 

by the old and new weight sets. If the new weighting parameter increased the value of 𝐸[.."#,, the 

weights were accepted. Once the initial weights for each energy term were determined, many more 

iterations were conducted to precisely fine-tune their values based on Eq. (5.2) as well as by hand 

inspection of the structures. Although time-consuming, the process of directly optimizing the 

weights based on the results of the folding simulations resulted in high quality scaffolds with 

physical characteristics that resembled native proteins. 

 

5.3.5 Molecular Dynamics simulation for examining fold stability  

To examine the stability of the FoldDesign scaffolds, we performed MD simulations starting from 

the designed structures. For each simulation, a dodecahedron box was constructed with a distance 

of 10 Å from the solute and filled with TIP3P water molecules, where Na+ and Cl- ions were used 

to neutralize the charge of the system. Following this, energy minimization was carried out using 

steepest descent minimization with a maximum force of 10 kJ/mol. The system was then 

equilibrated at 300 K using 100 ps NVT simulations and 100 ps NPT simulations with position 

restraints (1000 kJ/mol) on the heavy atoms of the protein. After the two equilibration phases, the 

system was well-equilibrated at the desired temperature and pressure, and unconstrained MD 

simulations were performed at 300 K for 20 ns. During the simulations, non-bonded interactions 

were truncated at 12 Å and the Particle Mesh Ewald methods was used for long-range electrostatic 

interactions. Lastly, the velocity-rescaling thermostat and Parrinello-Rahman barostat were used 

to couple the temperature and pressure, respectively. 1000 structures were collected from the MD 

trajectories during the final nanosecond of the simulations. This ensemble was then clustered using 

the GROMOS method with an RMSD cutoff of 2 Å, and the final MD structure for each simulation 

was collected from the cluster center. 

 

5.4 Author Contributions 

The findings of this study were published in the Proceedings of the National Academy of Sciences 

(258) with myself (R.P.) as first author, co-authors Drs. Xiaoqiang Huang (X.H.) and Gilbert S. 

Omenn (G.S.O.), and corresponding author Dr. Yang Zhang (Y.Z.). R.P. developed FoldDesign, 

performed the experiments, analyzed the data, developed the stand-alone package, and drafted the 
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text and figures; X.H. assisted with the MD simulations; R.P., X.H., G.S.O., and Y.Z. finalized the 

manuscript. 
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CHAPTER 6  
 

Conclusion 

 
6.1 Summary 

In this thesis, we have explored several topics surrounding the sequence-structure-function 

paradigm, which is the cornerstone of structural biology. Specifically, we have covered methods 

for the prediction of protein and RNA structures from sequence and the design of new protein 

molecules. 

 For protein/RNA structure prediction, we covered two methods, namely, DeepFold 

(Chapter 2) and DeepFoldRNA (Chapter 3). Starting from an MSA identified for a protein 

sequence of interest, DeepFold uses deep ResNets to accurately predict an ensemble of contact, 

distance, and orientation restraints, which are then converted into a potential and minimized using 

gradient-descent simulations. DeepFold demonstrated significant improvements in modeling 

accuracy compared to contemporaneous deep learning restraint-based approaches. Of particular 

importance was the modeling performance for targets with shallow MSAs, where DeepFold 

achieved an average TM-score that was ~40-45% higher than methods such as trRosetta and 

DMPfold, while being 262 times faster than traditional folding simulations. 

Following the groundbreaking introduction of self-attention-based networks, we extended the 

DeepFold pipeline to DeepFoldRNA, which was the first available self-attention-based RNA 

structure prediction method. Similar to DeepFold, DeepFoldRNA generates predicted distance and 

orientation maps, which are converted to a potential and minimized using gradient-descent. 

DeepFoldRNA significantly outperformed other lead RNA modeling methods across the 

benchmark datasets, including the RNA-Puzzles dataset, achieving an average RMSD that was 

4.18 Å lower than the best models submitted by any group (2.72 Å vs 6.90 Å). These methods 

demonstrate the advantage of deep neural network over human-engineered potentials at capturing 

the fundamental principles that underly the folding paradigm. 
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 For protein design, we covered two approaches, EvoDesign (Chapter 4) and FoldDesign 

(Chapter 5). EvoDesign is an online webserver for functional protein sequence design. The method 

combines evolutionary monomer/interactions profiles with a physics-based energy function. The 

webserver is freely available to the community and aims to provide various transparent 

intermediate data to allow for detailed annotation and analysis of the confidence of the designed 

sequences. Lastly, FoldDesign is a program for de novo protein structure design through sequence-

independent fragment assembly simulations. On a large benchmark dataset of non-idealized, 

complex SS topologies, FoldDesign was able to consistently generate stable structure designs, 

where ~1/4 of the designs possessed novel folds that were not represented in the PDB. This 

illustrates FoldDesign’s ability to explore areas of protein fold space unexplored by natural 

evolution. 

 

6.2 Future Directions 

6.2.1 End-to-End Protein-RNA complex structure prediction 

In Chapters 2 and 3, we covered the fields of protein and RNA structure prediction for monomeric 

input sequences. However, the functions of these molecules often involve interactions with 

different chains and the formation of complex structures. Therefore, the prediction of protein-

protein, protein-RNA, and RNA-RNA complex structures is a critical problem in the field. 

Recently, AlphaFold2 was extended to AlphaFold2-multimer for the prediction of protein complex 

structures (259). The overall network architecture of AlphaFold2-multimer is nearly identical to 

that of the original AlphaFold2 pipeline for monomeric structure prediction. The main differences 

are the authors include an extra embedding that indicates the relative chain positions and which 

chains are homomers vs heteromers, as well as updating the pair embedding prior to the MSA 

embedding in the trunk layers in order to allow the processed intra-chain features to evolve 

independently. Besides these minor changes, the existing architecture was readily adapted to 

protein complex prediction and demonstrated excellent accuracy (259).  

 Currently, no such methods exist for RNA or protein-RNA complexes. Thus, we are working 

on developing these through the inclusion of a structure module in DeepFold/DeepFoldRNA. As 

with AlphaFold2, the structure module, which replaces the gradient-descent folding simulations, 

is composed of 3D equivariant transformer neural networks that treat each amino acid as a gas of 

3D rigid bodies and allows for the direct generation of structure models. The network is trained 
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end-to-end using the Frame-Aligned Point Error (FAPE) loss (123). The preliminary data are 

promising, and we hope to provide a method for atomic-level RNA and protein-RNA complex 

prediction. 

 

6.2.2 Development of pretrained RNA language models 

Although the use of the latest self-attention-based networks has reduced the influence of the MSA 

alignment depth on the structure modeling accuracy, there is still a noticeable effect. This is 

particularly apparent for orphan sequences with no homologous sequence information, or at least 

very little information (123). We witnessed this in Chapter 2, where DeepFold was able to achieve 

higher structure modeling accuracy than AlphaFold2 for the five targets in the dataset with 

normalized Neff values <0.2. For these targets, the average TM-score of DeepFold was 0.528 

compared to 0.398 for AlphaFold2. Thus, the modeling performance of deep self-attention-based 

models remains to be improved for such cases. 

One method to address this issue is through the incorporation of self-attention-based pre-

trained language models into prediction approaches. Pre-trained language models are a powerful 

tool as they may be pre-trained for a task, i.e., masked token prediction, for which abundant data 

are available, and then effectively applied to another task for which little data exist. This has 

already been demonstrated for protein structure prediction, where methods such as the ESM 

models developed by Facebook AI Research were pretrained on large sequence databases to 

predict the masked amino acid identities, and then successfully applied to the problem of contact 

map prediction (177, 178). Although these models were not trained to perform contact map 

prediction, structural features like inter-residue contacts and distances are inherently encoded in 

the pairwise attention weights (177, 178). Recently, the ESM language models were incorporated 

into ESMfold, which is able to predict protein structures from single sequences with high accuracy 

(260). However, the ESM models were specifically trained for proteins, thus, the development of 

such networks for RNA may help greatly improve the modeling accuracy for orphan sequences or 

very shallow alignment depths. 

 

6.2.3 Deep Learning-based Protein Design 

Although protein design has witnessed less involvement of deep learning-based methods compared 

to structure prediction, this is beginning to change. For example, as mentioned in Chapter 1, 
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Anishchenko et al. set out to answer the question if the information stored in deep neural networks 

used to predict inter-residue distances and orientations could be applied to design new protein 

sequences and structures (149). To address this, they used deep network hallucination, where they 

performed Monte Carlo sampling in sequence space, at each step feeding the sequences into the 

trRosetta deep neural network architecture in order to predict distance maps and comparing them 

against a background distance map distribution. Mutations were accepted or rejected based on the 

Metropolis criterion, where the objective of the simulations was to maximize the information gain 

(Kullback-Leibler divergence) between the predicted distance maps and the background 

distribution. The developed method was then extended in two additional studies, where the 

procedure was either completely constrained to design sequences for a fixed fold (261) or to design 

sequences that recapitulated native interfaces (150), while allowing the remainder of the protein 

to be hallucinated freely. The newest iteration of the approach incorporates RosettaFold into a 

diffusion model in order generate new protein sequences and structures (262). 

These studies demonstrate that the information encoded in structure prediction networks may 

be applied to design new protein sequences and structures. Thus, we are currently working on 

developing deep generative models for protein design, specifically variational auto encoders. The 

networks are composed of an encoder-decoder scheme, where the backbone of each layer is an 

equivariant structure module similar to that used by AlphaFold2. During training, the encoder takes 

as input the sequence and structure of a native protein monomer or complex and projects it to a 

latent space dimension, the decoder then samples from the latent space and tries to recover the 

input. During inference, the latent space can be randomly sampled from for unconditional design 

or conditioned on a specific binding partner or other factor for functional protein design. The latent 

vector is then fed to the decoder and a new protein sequence/structure is generated, allowing for 

the robust generation of artificial proteins in a deep learning framework.  
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APPENDICES 

APPENDIX A 

 

Supplementary Figures for Chapter 1 

 
 

 
Figure A.1 Typical steps in a homology-based modeling pipeline. Starting from a query sequence, 
templates are identified using sequence-based alignment algorithms. Then the structural 
framework of the best template alignment is copied, and the unaligned regions are constructed to 
produce the final model. 
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APPENDIX B 

 

Supplementary Tables for Chapter II 

 
Table B.1 Impact of the different components of the DeepFold energy function on the structure 
modeling accuracy. The accuracy is measured in terms of the average TM-score and the percent 
of correctly folded models (TM-scores ≥0.5) for the 221 benchmark proteins. The p-values were 
calculated using paired, two-sided Student’s t-tests.  

 

Energy Function TM-score (p-value) Correct Folds 

GE 0.184 (8.4E-127) 0.0% 

GE+Cont 0.263 (1.3E-118) 1.8% 

GE+Cont+Dist 0.677 (1.9E-14) 76.0% 

GE+Cont+Dist+Orien 0.751 (*) 92.3% 

 

 

Table B.2 Impact of orientation restraints on folding convergence. Mean absolute error (MAE) 
between the distance maps predicted by DeepPotential and the distance maps of the 3D models 
built without (GE+Cont+Dist) and with (GE+Cont+Dist+Orien) inter-residue orientations. Here, 
the top n*L long-range distance restraints were sorted by their DeepPotential confidence scores. 
The p-values were calculated using paired, two-sided Student’s t-tests. 
 

Method L/2 (p-value) L (p-value) 2L (p-value) 5L (p-value) 10L (p-value) 

GE+Cont+Dist 0.692 (2.3E-09) 0.707 (5.9E-10) 0.738 (1.0E-10) 0.857 (9.1E-10) 1.074 (1.5E-06) 

GE+Cont+Dist+Orien 0.562 (*) 0.577 (*) 0.606 (*) 0.704 (*) 0.887 (*) 
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Table B.3 Impact of the orientation restraints on β-protein folding. DeepFold results on the 38 β-
proteins in the test set with and without orientation restraints in terms of the average TM-
score/RMSD and the percent of correctly folded models (TM-scores ≥0.5) for the 221 benchmark 
proteins. The p-values were calculated using paired, two-sided Student’s t-tests. 
 

Method TM-score (p-value) RMSD (p-value) Correct Folds 

GE+Cont+Dist 0.590 (1.5E-04) 8.42 (3.4E-04) 60.5% 

GE+Cont+Dist+Orien 0.706 (*) 6.12 (*) 86.8% 

 

 

Table B.4 Modeling results for trRosetta using DeepPotential’s spatial restraints vs DeepFold. The 
p-value for the mean TM-score was calculated using a paired, two-sided Student’s t-tests. 
 

Method 
Mean TM-score  

(p-value) 
Correct Folds 

trRosetta+DeepPotential 0.735 (3.9E-09) 90.5% 

DeepFold 0.751 (*) 92.3% 

 

 

Table B.5 Modeling results for DeepFold and AlphaFold on the 31 CASP13 FM targets which the 
AlphaFold team submitted models for. The p-value for the mean TM-score was calculated using a 
paired, two-sided Student’s t-tests. 

 

Method 
Mean TM-score 

(p-value) 
Correct Folds 

AlphaFold 0.589 (0.025) 64.5% 

DeepFold 0.636 80.6% 
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APPENDIX C 

 

Supplementary Figures for Chapter II 

 

 
Figure C.1 Head-to-head TM-score comparisons between DeepFold using the restraints from 
DeepPotential (A-C) or the combined restraints from RosettaFold and DeepPotential (D-F) with 
other protein structure prediction methods on the 221 Hard benchmark proteins. A/D) RosettaFold 
(End-to-End); B/E) RosettaFold (Pyrosetta); C/F) AlphaFold2.  
 

 

 
Figure C.2 Head-to-head TM-score comparisons between DeepFold using the restraints from 
DeepPotential (A-C) or the combined restraints from RosettaFold and DeepPotential (D-F) with 
other protein structure prediction methods on the 221 Hard benchmark proteins. A/D) RosettaFold 
(End-to-End); B/E) RosettaFold (Pyrosetta); C/F) AlphaFold2.  
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Figure C.3 Histogram distribution of the number of times each of the 7 MSAs were selected by 
DeepMSA2 for the 221 benchmark targets. The MSA numbers correspond to those depicted in 
Fig. 2.12. 
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APPENDIX D 

 

Supplementary Texts for Chapter II 

 
Text D.1 Calculation of the MSA Neff value. 

In order to quantify the quality of an MSA, we define the number of effective sequences (Neff) 

as follows: 

 

𝑁𝑒𝑓𝑓 =
1
√𝐿

`
1

1 + ∑ 𝐼[𝑆=,/ ≥ 0.8]f
=?:,=s/

f

/?:
 

 

where L is the length of a query protein, N is the number of sequences in the MSA, Sm,n is the 

sequence identity between the m-th and n-th sequences, and I[ ] represents the Iverson bracket, 

which means 𝐼�𝑆=,/t@.v  = 1 if 𝑆=,/ ≥ 0.8 or 0 otherwise. 

 

Text D.2 DeepFold energy function. 

The energy function used to guide the DeepFold simulations is a combination of 10 energy 

terms: 

 
𝐸!""#$%&' = (𝐸()'*+, + 𝐸(-'*+, + 𝐸().%/, + 𝐸(-.%/, + 𝐸0 + 𝐸1 + 𝐸2) + (𝐸34 + 𝐸5'6 + 𝐸,%7)											(𝐷. 1) 

 

where 𝐸()'*+,, 𝐸(-'*+,, 𝐸().%/,, and 𝐸(-.%/, are the predicted Cβ–Cβ distances, Cα–Cα distances, 

Cβ–Cβ contacts, and Cα–Cα contacts generated by DeepPotential; 𝐸0, 𝐸1, and 𝐸2 are the predicted 

inter-residue orientations by DeepPotential as defined in Fig. 2.13; and 𝐸34, 𝐸5'6, and 𝐸,%7 are 

the hydrogen bonding, van der Waals and backbone torsion angle potentials. All of the energy 

terms are based on pairwise interactions between residues i and j in a protein molecule, with the 
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exception of  𝐸,%7, which is a single-body potential. Thus, the cumulative terms are derived from 

the summation over all residue pairs i and j as follows: 

 

𝐸()'*+, =`𝑤:𝐸'[\(𝑖, 𝑗)
*,A

																																																																(D. 2) 

 

𝐸(-'*+, =`𝑤w𝐸'[\(𝑖, 𝑗)
*,A

																																																																(D. 3) 

 

𝐸().%/, =`𝑤x𝐸.%/[\(𝑖, 𝑗)
*,A

																																																											(D. 4) 

 

𝐸(-.%/, =`𝑤x𝐸.%/[\(𝑖, 𝑗)
*,A

																																																										(D. 5) 

 

𝐸0 =`𝑤N𝐸0[\(𝑖, 𝑗)
*,A

																																																																						(D. 6) 

 

𝐸1 =`𝑤y𝐸1[\(𝑖, 𝑗)
*,A

+`𝑤y𝐸1\[(𝑗, 𝑖)
A,*

																																					(D. 7) 

 

𝐸2 =`𝑤z𝐸2[\(𝑖, 𝑗)
*,A

+`𝑤z𝐸2\[(𝑗, 𝑖)
A,*

																																			(D. 8) 

 

𝐸oT =`𝑤{𝐸34[\(𝑖, 𝑗)
*,A

																																																																		(D. 9) 

 

𝐸5'6 =``𝑤v𝐸5'6(𝑖, 𝑗, 𝑖𝑖, 𝑗𝑗)
**,AA*,A

																																														(D. 10) 

 

𝐸QG| =`𝑤}𝐸~[(𝑖) + 𝑤}𝐸�[(𝑖)
*

																																																	(D. 11) 
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Note, the inter-residue 𝜃 and 𝜑 orientations are not symmetric, thus they must be summed over 

residues pairs i, j as well as the opposite direction j, i. Furthermore, the van der Waals potential 

also involves the interactions between each atom ii and jj from residues i and j. The detailed 

description of each energy term is described below. 

 

𝐸'[\(𝑖, 𝑗) = £− log ¦
𝑃�𝑑*A� + 𝜖
𝑃(𝑑.^,) + 𝜖

¨ , 𝑑*A < 𝑑.^,

0, 𝑑*A ≥ 𝑑.^,
																																				(𝐷. 12) 

 

where 𝑑*A is the distance between two Cβ atoms for the Cβ distance restraints or two Cα atoms for 

the Cα distance restraints from residues i and j, 𝑃�𝑑*A� is the predicted probability by 

DeepPotential associated with the distance 𝑑*A, and 𝑃(𝑑.^,) is the probability for the final distance 

bin which corresponds to a distance between 19.5Å and 20Å. The pseudo count 𝜖 = 1𝐸 − 4 is 

used to avoid issues when 𝑃(𝑑.^,) is small. Cubic spline interpolation is used to interpolate 

between the energy at the different distance bins in order to make the potential differentiable for 

L-BFGS optimization.  

 

𝐸.%/[\(i, j) =

⎩
⎪⎪
⎨

⎪⎪
⎧−𝑈*A , 																																																𝑑*A < 8Å

− :
w
𝑈*A ±1 − 𝑠𝑖𝑛 ¦

'[\9(
]^_
` )

'a
𝜋¨³ , 8Å ≤ 𝑑*A < 𝐷

:
w
𝑈*A ±1 + 𝑠𝑖𝑛 ¦

'[\9(
_^]b
` )

(v@9!)
𝜋¨³ ,			𝐷 ≤ 𝑑*A ≤ 80Å

𝑈*A ,																																																			𝑑*A > 80Å

            (D.13) 

 

where 𝑑*A is the Cβ or Cα distance between the residue pair i and j. The depth of the potential, 𝑈*A, 

is the predicted contact probability by DeepPotential. Overall, the potential is centered with a 

negative well at an 8 Å cutoff, with a strong force from 8 Å to 𝐷 (=8	Å + 𝑑4), followed by a 

weaker force from 𝐷 to 80 Å, which is used to push the target residue pairs towards the well when 

they are far apart. Here, the gradient width (𝑑4) of the contact well is the only free parameter of 

the potential, which depends on the protein size and determines the convergence speed and 
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satisfaction rate of the contact maps. 𝑑4 is typically narrow, e.g., 6 Å, when the length of the target 

is relatively small, e.g. < 100 residues. On the other hand, the well width increases to 12 Å when 

the length is >200 amino acids, since residue pairs from larger proteins are more difficult to draw 

together, a wider well is used to draw the candidate residue pairs that are further apart in distance 

close together. It is important that the contact potential is designed in a way that the potential curve 

is continuous and smooth (with 𝜕𝐸/𝜕𝑑 = 0) at all three transition points of 𝑑*A = 8, 𝐷 and 80	Å, 

so that the contact restraints can guide the gradient-based folding simulations. 

 

𝐸0[\(𝑖, 𝑗) = µ− log�𝑃�Ω*A� + 𝜖�																																																																								(𝐷. 14) 

 

𝐸1[\(𝑖, 𝑗) = µ− log�𝑃�𝜃*A� + 𝜖�																																																																								(𝐷. 15) 

 

𝐸1\[(𝑗, 𝑖) = µ− log�𝑃�𝜃A*� + 𝜖�																																																																								(𝐷. 16) 

 

𝐸2[\(𝑖, 𝑗) = µ− log�𝑃�𝜑*A� + 𝜖�																																																																								(𝐷. 17) 

 

𝐸2\[(𝑗, 𝑖) = µ− log�𝑃�𝜑A*� + 𝜖�																																																																								(𝐷. 18) 

 

where Ω*A, 𝜃*A, and 𝜑*A are the inter-residue orientations predicted by DeepPotential between 

residues i and j defined in Fig. 2.13. Furthermore, given that 𝜃 and 𝜑 are not symmetric for a 

residue pair, 𝜃A*, and 𝜑A* are the inter-residue orientations between residues j and i. The pseudo 

count 𝜖 = 1𝐸 − 4 is used to avoid issues when the predicted probability is small. Cubic spline 

interpolation is used to interpolate between the energy at the different orientation bins in order to 

make the potential differentiable for L-BFGS optimization. 

𝐸34(𝑖, 𝑗) was adapted from EvoEF (132) and is used to calculate the hydrogen-bonding 

interactions between potential hydrogen bond donor/acceptor pairs for atoms 𝑖 and 𝑗, one of which 

should be a polar hydrogen. 𝐸34(𝑖, 𝑗) is a linear combination of three energy terms that depend on 

the hydrogen-acceptor distance (𝑑*A_c), the angle between the donor atom, hydrogen and acceptor 

(𝜃*A!_c), and the angle between the hydrogen, acceptor and base atom (φOa_c`): 
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𝐸34(𝑖, 𝑗) = 𝑤'cd𝐸�𝑑*A
_c� + 𝑤1_cd𝐸�𝜃*A

!_c� + 𝑤2cde𝐸�𝜑*A
_c`�													(𝐷. 19) 

 

where: 

 

⎩
⎪⎪
⎨

⎪⎪
⎧
𝐸�𝑑*A_c� = T

−𝑐𝑜𝑠 ¶
𝜋
2 �𝑑*A

_c − 1.9� (1.9 − 𝑑=*/)⁄ ·,											𝑑=*/ ≤ 𝑑_c ≤ 1.9																

−0.5 𝑐𝑜𝑠�𝜋 �𝑑*A_c − 1.9� (𝑑=[d − 1.9)⁄   − 0.5,					1.9	Å < 	𝑑_c ≤	𝑑=[d
0	,																																																																													𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																									

				

𝐸�𝜃*A!_c� = −𝑐𝑜𝑠N�𝜃*A!_c�,			𝜃*A!_c 	≥ 90°
𝐸�𝜑*A_c`� = −𝑐𝑜𝑠N�𝜑*A_c` − 150°�,					𝜑*A_c` ≥ 80°

(𝐷. 20) 

 

 

𝐸!"#(𝑖, 𝑗, 𝑖𝑖, 𝑗𝑗) = ((𝑣𝑑𝑤(𝑖𝑖) + 𝑣𝑑𝑤(𝑗𝑗))
$ − 𝑑%&,%%,&&

$, 𝑖𝑓	𝑑%&,%%,&& < 𝑣𝑑𝑤(𝑖𝑖) + 𝑣𝑑𝑤(𝑗𝑗)	
0,			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

					(𝐷. 21) 

 

Here, 𝐸5'6(𝑖, 𝑗, 𝑖𝑖, 𝑗𝑗) is the van der Waals energy between atoms ii and jj from residues i and j, 

respectively, where 𝑣𝑑𝑤(𝑖𝑖) and 𝑣𝑑𝑤(𝑗𝑗) are the van der Waals radii of atoms ii and jj and 𝑑*A,**,AA 

is the distance between atoms ii and jj from residues i and j, respectively. The atoms ii/jj that are 

accounted for are the backbone atoms (N, Cα, C, and O) and the Cβ atoms/side-chain centers of 

mass. 

 

𝐸~[(𝑖) = 1 − cos�𝜙* − 𝜙*,#7"'� 	𝑎𝑛𝑑	𝐸�[(𝑖) = 1 − cos�𝜓* − 𝜓*,#7"'�																				(𝐷. 22) 

	 

𝐸~[(𝑖) and 𝐸�[(𝑖) are the energy for the backbone torsion angles, where 𝜙* and ψ* are the phi/psi 

torsion angles at residue i and  𝜙*,#7"' and ψ*,#7"' are the predicted torsion angles by Anglor (238).  

Overall, the DeepFold force field consists of 24 weighting parameters, where the weights given 

to each of the deep learning restraints were separated into short (|𝑖 − 𝑗| > 1 and |𝑖 − 𝑗| ≤ 11, 

where 𝑖 is the residue index for residue 𝑖 and 𝑗 is the residue index for residue 𝑗), medium (|𝑖 − 𝑗| >

11 and |𝑖 − 𝑗| ≤ 23) and long-range (|𝑖 − 𝑗| > 23) weights, which were determined by 

maximizing the TM-score on the training set of 257 non-redundant, Hard threading targets 

collected from the PDB that shared <30% sequence identity to the test proteins. Briefly, all the 
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weights were initialized to 0, then the weight for each individual energy term was increased one-

at-a-time and the DeepFold folding simulation were run using the new weights. Following this 

initial optimization, the weights were carefully fine-tuned by adjusting their values using a grid-

searching technique around the optimized values. 
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APPENDIX E 

 

Supplementary Figures for Chapter III 

 
 

 
 

Figure E.1 Case study from Rfam RNA RF02678 where the DeepFoldRNA predicted model (blue 
cartoons) is superimposed on the experimentally solved structure (PDB ID: 6jq5, chain A, 
nucleotides 1-81). The unpaired region in the experimental structure is shown in red and the paired 
region in yellow. 
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APPENDIX F 

 

Supplementary Texts for Chapter III 

 
Text F.1 SimRNA procedure. 

SimRNA was run using the following command:  

 

<SimRNA_Directory>/SimRNA -s seq.fasta -c config.dat -S SecondaryStructure.txt 

 

The default configuration file was used which runs 16,000,000 folding iterations, where the 

contents of the file are below: 

 
 NUMBER_OF_ITERATIONS 16000000 

 TRA_WRITE_IN_EVERY_N_ITERATIONS 16000 

 

 INIT_TEMP 1.35 

 FINAL_TEMP 0.90 

 

 BONDS_WEIGHT 1.0 

 ANGLES_WEIGHT 1.0 

 TORS_ANGLES_WEIGHT 0.0 

 ETA_THETA_WEIGHT 0.40 

 

The final model was selected from the lowest energy decoy generated from each simulation. 

 

Text F.2 FARFAR2 procedure. 

FARFAR2 was run using the following command: 
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<Rosetta_bin>/rna_denovo.static.linuxgccrelease -fasta seq.fasta -native native.pdb -out:file:silent out.txt -

nstruct 100 -minimize_rna true -fragment_homology_rmsd 1.2 -secstruct <Secondary Structure> 

 

The default number of cycles were run for each simulation (10,000) and the final model was 

selected following clustering of the 100 generated structures using the default cluster radius of 3 

Å and selecting the first cluster as the representative model.  

 

Text F.3 DeepFoldRNA energy function. 

The energy function used to guide the DeepFoldRNA simulations is a linear combination of 7 

energy terms: 

 

ECDDEFGHIJKL = EMN!IOPQ + EKIOPQ + ERIOPQ + E0 + ES + ETTU + ETTV																												(𝐹. 1) 

 

where EMN!IOPQ, EKIOPQ, ERIOPQ, E0, ES, ETTU, and ETTV are energy terms derived from the predicted 

C4’–C4’ distances, N1/N9-N1/N9 distances, P-P distances, Ω orientations, 𝜆 orientations, 

backbone η torsions, and backbone θ torsions, respectively. All of the energy terms are based on 

pairwise interactions between residues i and j in an RNA molecule, with the exception of ETTU and 

ETTV, which are single-body potentials. Thus, the cumulative terms are derived from the 

summation over all residue pairs i and j as follows: 

 

𝐸MN!IOPQ =`𝐸'[\(𝑖, 𝑗)
*,A

																																																																								(F. 2) 

 

𝐸KIOPQ =`𝐸'[\(𝑖, 𝑗)
*,A

																																																																										(F. 3) 

 

𝐸RIOPQ =`𝐸'[\(𝑖, 𝑗)
*,A

																																																																												(F. 4) 

 

𝐸0 =`𝐸0[\(𝑖, 𝑗)
*,A

																																																																																	(F. 5) 



 142 

 

𝐸� =`𝐸�[\(𝑖, 𝑗)
*,A

+`𝐸�\[(𝑗, 𝑖)
A,*

																																																						(F. 6) 

 

𝐸TTU =`𝐸TTUf(𝑖)
*

																																																																														(F. 7) 

 

𝐸TTV =`𝐸TTVf(𝑖)
*

																																																																														(F. 8) 

 

Note, the inter-residue 𝜆 orientation is not symmetric, thus it must be summed over residues pairs 

(i, j) as well as the opposite direction (j, i).  

 

The detailed description of each energy term is defined as: 

 

𝐸'[\(𝑖, 𝑗) = £− log¦
𝑃�𝑑*A� + 𝜖
𝑃(𝑑.^,) + 𝜖

¨ , 𝑑*A < 𝑑.^,

0, 𝑑*A ≥ 𝑑.^,
																																									(𝐹. 9) 

 

where 𝑑*A is the distance between two C4’ atoms for the C4’ distance restraints, two N1/N9 atoms 

for the N1/N9 distance restraints, or two P atoms for the P distance restraints from residues i and 

j, 𝑃�𝑑*A� is the predicted probability by DeepFoldRNA associated with the distance 𝑑*A, and 

𝑃(𝑑.^,) is the probability for the final distance bin which corresponds to a distance between 39-

40 Å. The pseudo count 𝜖 = 1𝐸 − 4 is used to avoid issues when 𝑃(𝑑.^,) is small. Cubic spline 

interpolation is used to interpolate between the energy at the different distance bins in order to 

make the potential differentiable for L-BFGS optimization.  

 

𝐸0[\(𝑖, 𝑗) = µ− log�𝑃�Ω*A� + 𝜖�																																																																								(𝐹. 10) 

 

𝐸�[\(𝑖, 𝑗) = µ− log�𝑃�𝜆*A� + 𝜖�																																																																									(𝐹. 11) 
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𝐸�\[(𝑗, 𝑖) = µ− log�𝑃�𝜆A*� + 𝜖�																																																																										(𝐹. 12) 

 

where Ω*A and 𝜆*A are the inter-residue orientations predicted by DeepFoldRNA between residues 

i and j defined in Figure S1. Furthermore, given that 𝜆 is not symmetric for a residue pair, 𝜆A* is 

the inter-residue orientation between residues j and i. The pseudo count 𝜖 = 1𝐸 − 4 is used to 

avoid issues when the predicted probability is small. Cubic spline interpolation is used to 

interpolate between the energy at the different orientation bins in order to make the potential 

differentiable for L-BFGS optimization. 

 

𝐸44U(𝑖) = {− log(𝑃(bbηO) + 𝜖) 	𝑎𝑛𝑑	𝐸TTV(𝑖) = {− log(𝑃(bbθO) + 𝜖)																				(𝐹. 13) 

	 

where bb𝜂* and bb𝜃* are the backbone pseudo-torsion angles predicted by DeepFoldRNA for 

residue i. The pseudo count 𝜖 = 1𝐸 − 4 is used to avoid issues when the predicted probability is 

small. Cubic spline interpolation is used to interpolate between the energy at the different torsion 

bins in order to make the potential differentiable for L-BFGS optimization. 
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APPENDIX G 

 

Supplementary Texts for Chapter IV 

 
Text G.1 EvoDesign monomer evolutionary energy calculation. 

The monomer evolutionary energy, 𝐸"5%X%/%="7, is calculated as the best match between the 

designed sequence and the scaffold structure using the Needleman-Wunsch dynamic programming 

(DP) algorithm (263). More specifically, a 2D DP matrix, 𝐷(𝑖, 𝑗), is defined where i and j are the 

positions along the designed and scaffold sequences, respectively. The value of 𝐷(𝑖, 𝑗) is equal to 

the ending value of the best path with the highest matching score towards the lattice (𝑖, 𝑗). Here, a 

path in the matrix corresponds to an alignment between the designed and scaffold sequences. Thus, 

the 𝐸"5%X%/%="7 is the value at 𝐷(𝐿:, 𝐿w), where 𝐿: and 𝐿w are the lengths of the designed and 

scaffold sequences, respectively. Note, in EvoDesign 𝐿: and 𝐿w are equivalent. The DP procedure 

allows gaps in the alignment between the designed and scaffold sequences, depending on the 

alignment score. 

Given a gap penalty scheme of 𝑤(𝑘) = 𝑔% + (𝑘 − 1)𝑔", where k is the gap length, and 𝑔% and 

𝑔" are the gap opening and gap extension penalties, respectively, the initialization of the DP matrix 

can be written as 

 

£
𝐷(0,0) = 0
𝐷(0, 𝑗) = 𝑗 ∗ 𝑤(𝑗)						𝑓𝑜𝑟	0 < 𝑗	 ≤ 𝐿w
𝐷(𝑖, 0) = 𝑖 ∗ 𝑤(𝑖)						𝑓𝑜𝑟	0 < 𝑖	 ≤ 𝐿:										

																													(𝐺. 1) 

 

The remaining elements in the DP matrix are calculated by the recurrence equation: 
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𝐷(𝑖, 𝑗) = maxT

𝐷(𝑖 − 1, 𝑗 − 1) + 𝐸=[,.3(𝑖, 𝑗)
max
:�8�*

[𝐷(𝑖 − 𝑘, 𝑗) + 𝑤(𝑘)]

max
:�8�A

[𝐷(𝑖, 𝑗 − 𝑘) + 𝑤(𝑘)]
																																	(𝐺. 2) 

 

where the matching score between i and j is defined by 

 

𝐸=[,.3(𝑖, 𝑗) = 𝑀(𝑗, 𝑎𝑎*) + 	𝑤:Θ]](𝑖, 𝑗) + 𝑤wΘ]c(𝑖, 𝑗) + 𝑤xΘ~(𝑖, 𝑗) + 𝑤NΘ�(𝑖, 𝑗)							(𝐺. 3) 

 

Here, 𝑎𝑎* is the amino acid for the 𝑖,3 residue of the designed sequence and 𝑀(𝑗, 𝑎𝑎*) is the 

structural profile, represented by an 𝐿w × 20 matrix, specifically, 𝑀(𝑗, 𝑎𝑎*) =

∑ 𝐵(𝑎𝑎* , 𝑥)𝐻(𝑗, 𝑥)w@
d?: . Here, 𝐵(𝑎𝑎* , 𝑥) is the BLOSUM62 mutation score for mutating 𝑎𝑎* to 

amino acid 𝑥 (264). Additionally, 𝐻(𝑗, 𝑥) = ∑ ℎ(𝑚)Zg
\

=?: , where 𝑓d
A is the frequency with which 

amino acid x appears at the 𝑗,3 position of the multiple sequence alignment (MSA) that was 

constructed by TM-align (220) by structurally searching the scaffold against the PDB library. 

Lastly, ℎ(𝑚) is the Henikoff weight of the 𝑚,3 template sequence in the MSA. The higher (more 

positive) the value of 𝑀(𝑗, 𝑎𝑎*), the more favorable the mutation is between residue i of the 

designed sequence and residue j of the scaffold protein. 

The terms in Eq. G.3 measure the local structural similarities between the designed sequence 

and the scaffold protein. The secondary structure (SS), solvent accessibility (SA), and backbone 

torsional angles (𝜙,𝜓) for the designed sequence are predicted using the fast machine learning-

based methods described previously (214), while those for the scaffold structure are assigned by 

DSSP (239). More specifically, these terms are defined as follows:  
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⎩
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎧
Θ]](𝑖, 𝑗) = £

1,							if	𝑆𝑆(𝑖) = 𝑆𝑆(𝑗)
0,							else	if	𝑆𝑆(𝑖)	𝑜𝑟	𝑆𝑆(𝑗)	is	coil
−1,				otherwise

Θ]c(𝑖, 𝑗) = £
1,							if	𝑆𝐴(𝑖) = 𝑆𝐴(𝑗)
0,							else	if	𝑆𝐴(𝑖)	𝑜𝑟	𝑆𝐴(𝑗)	is	intermediate
−1,				otherwise

Θ~(𝑖, 𝑗) =
−|𝜙(𝑖) − 𝜙(𝑗)|

180
	

Θ�(𝑖, 𝑗) =
−|𝜓(𝑖) − 𝜓(𝑗)|

180

																(𝐺. 4) 

 

Here, SS is divided into three states: 𝛼-helix, 𝛽-strand or coil. Additionally, SA is categorized into 

three states: buried, intermediate or exposed based on its depth in the protein structure. The values 

for the weights 𝑤:,	𝑤w, 𝑤x, and 𝑤N are 1.58, 2.45, 1.00, and 1.00, respectively, which are 

proportional to the relative accuracy of the SS, SA, and 𝜙/𝜓 feature predictors for a set of 625 

non-redundant training proteins (215). 

 

Text G.2 Interface evolutionary energy pseudocount. 

To offset the smaller size of the interface library, a pseudocount was introduced into the 

evolution-based interface potential by the BindProfX approach (216): 

 

𝑁#+"^'%(𝑎𝑎* , 𝑖) = 𝑁Z*d + 𝑁l[# + 𝑁"5% = 5 + 15𝑛l[#(𝑖) + 5`
𝑁%4+(𝑥, 𝑖)
𝑁,%,

𝑀(𝑥, 𝑎𝑎*)	
w@

d?:

		(𝐺. 5) 

 

where the first term,  𝑁Z*d, is a constant parameter whose value is set to 25. The second term, 𝑁l[#, 

is a gap dependent pseudocount that is proportional to the number of gaps, 𝑛l[#(𝑖), at the 

𝑖,3	position of the iMSA. The final term  is the evolutionary pseudocount, 𝑁"5%, which takes into 

account amino acids that are related to the wild-type and mutant residues in the interface 

alignment.	fhai(d,*)
fjhj

 is the frequency with which an amino acid 𝑥 appears at position 𝑖 in the iMSA 

and 𝑀(𝑥, 𝑎𝑎*) is the interface probability transition matrix score for amino acid 𝑥 mutating to 

residue 𝑎𝑎*. 
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Since the iMSA contains homologous sequences only from the PDB, its depth depends on the 

number of interface structural homologs detected. We previously found (216) that the average 

number of interface structural homologs was around five. This is much smaller than the size of the 

pseudocounts, indicating that the pseudocounts are quite important to calibrate the amino acid 

occurrence probabilities. The overall Pearson correlation coefficient (PCC) between experimental 

and predicted ΔΔ𝐺4*/'*/lj<→=^, values was 0.685 for the BindProfX benchmark on the overall dataset. 

However, for those targets with only one or two structurally similar interfaces, the PCC was 0.207 

without pseudocounts, indicating that the amino acid occurrence probabilities were unreliable 

when there were too few interface homologs. With pseudocounts applied, the PCC increased from 

0.207 to 0.323.  

 

Text G.3 Dataset construction and EvoEF parameter optimization. 

To compute the energy of a protein, EvoEF splits the total energy into the sum of three parts: 

the non-bonded atomic interactions within a residue (𝐸*/,7[h"+*'^"), between different residues 

within the same chain (𝐸*/,"7h"+*'^"][="(3[*/), and between different residues from different 

chains (𝐸*/,"7h"+*'^"!*ZZ(3[*/), i.e., 

 
𝐸m5%m$ = 𝐸*/,7[h"+*'^" + 𝐸*/,"7h"+*'^"][="(3[*/ + 𝐸*/,"7h"+*'^"!*ZZ(3[*/ − 𝐸7"Z
														= {𝐸5'6 + 𝐸"&". + 𝐸_` + 𝐸+%&5}*/,7[h"+*'^"
																	+{𝐸5'6 + 𝐸"&". + 𝐸_` + 𝐸+%&5}*/,"7h"+*'^"][="(3[*/
																	+{𝐸5'6 + 𝐸"&". + 𝐸_` + 𝐸+%&5}*/,"7h"+*'^"!*ZZ(3[*/
																	−𝐸7"Z

												(𝐺. 6) 

 

where 𝐸5'6, 𝐸"&"., 𝐸_` and 𝐸+%&5 are the same as defined in Eqs. (4.3-4.8) in Chapter 4. Overall, 

EvoEF uses eight energy terms each for 𝐸*/,"7h"+*'^"][="(3[*/ and 𝐸*/,"7h"+*'^"!*ZZ(3[*/, and 

only six terms for	𝐸*/,7[h"+*'^", as intra-residue 𝐸_`++ and 𝐸_`44 do not exist. Thus, there are a 

total of 56 parameters that need to be optimized in EvoEF, including 8 weights for 𝐸*/,7[h"+*'^", 

14 weights for 𝐸*/,"7h"+*'^"][="(3[*/, 14 weights for 𝐸*/,"7h"+*'^"!*ZZ(3[*/, and 20 amino acid 

reference energies. 
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G.3.1 Dataset construction. 

We used two types of experimental data, based on the mutation-induced protein stability and 

binding affinity changes, to train and test EvoEF. The mutation-induced protein stability change 

data were collected from the FoldX (228) and STRUM (44) datasets, which contain 1,056 and 

3,421 mutants, respectively. After filtering out the duplicated mutants in identical structures, a 

total of 3,989 non-redundant mutants from 210 proteins were retained, where 3,978 were single 

mutations and 11 were multiple mutations. Half of the 3989 mutants were randomly selected as 

the training set (with 1995 mutants) and the other half as the testing set (with 1994 mutants). 

Here, we note that the FoldX dataset has an overrepresentation of mutations from larger 

residues to smaller ones. Out of the 1,056 data samples, 1,015 are from larger-sized amino acids 

to smaller ones, while only 41 are from smaller to larger-sized amino acids. This trend is much 

less obvious in the STRUM dataset, where 2,568 out of 3,421 mutation samples are from larger to 

smaller amino acids and 853 are from smaller to larger amino acids. The bias present in the FoldX 

dataset results in overestimation of the mutation correlations. For example, the Pearson correlation 

coefficient between the predicted and experimental stability change data for the FoldX potential 

on the FoldX dataset is 0.688, which is reduced to 0.446 for the STRUM dataset. 

For the second set of benchmark data, experimental mutation-induced binding affinity changes 

were collected from the SKEMPI v2.0 database (229), which contains 7,085 mutation entries in 

total. The training and test datasets were constructed as follows. First, we discarded mutants whose 

corresponding structures contained three or more chains. Second, we removed mutants with non-

interface residues. Here, an interface residue is defined as a residue that has at least one heavy 

atom within 5.0 Å of the other chain in a protein complex. When there were multiple entries for 

the same mutant, the average	ΔΔ𝐺4*/'*/lj<→=^, value was calculated. After filtering the dataset, a total 

of 2,204 mutants from 177 protein-protein interfaces were retained. Again, half the 2,204 mutants 

were randomly selected as the training set (with 1102 mutants) and the other half as the test set 

(with 1102 mutants).  

In order to predict the binding affinity and stability change upon mutation, the native structures 

were minimized, and the mutant models were generated using the following steps (the information 

for each command can be found in Text G.5): 
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Step 1: For ΔΔ𝐺+,[4*&*,ij<→=^, and ΔΔ𝐺4*/'*/lj<→=^, predictions, we extracted the single target chain or 

the two target amino acid chains, respectively, from the PDB file of the crystal structure and 

discarded water molecules and ligands that were not amino acids. 

 

Step 2: We optimized the structure of the wild-type protein/complex using EvoEF’s 

“RepairStructure” command as follows: 

  

./EvoEF --command=RepairStructure --pdb=wildtype.pdb 

 

Following this command, the minimized wild-type protein/complex was output into a file 

named ‘wildtype_Repair.pdb’ and this minimized model was used as the initial structure to 

build the mutant model. 

 

Step 3: We built a structural model of the mutant protein/complex using EvoEF’s 

“BuildModel” command as follows: 

 

./EvoEF --command=BuildMutant --pdb=wildtype_Repair.pdb --mutant-

file=individual_list.txt 

 

The file “individual_list.txt” contained the list of mutation(s). Following this command, a new 

file “wildtype_Repair_Mutant_1.pdb” was generated, which contained the modelled mutant 

structure.  

 

Step 4: We computed the stability of the wild-type and mutant proteins using EvoEF’s 

“ComputeStability” command as follows: 

 

./EvoEF --command=ComputeStability --pdb=wildtype_Repair.pdb 

./EvoEF --command=ComputeStability --pdb=wildtype_Repair_Mutant_1.pdb 

 

Or 
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We computed the binding affinity of the wild-type and mutant complexes using EvoEF’s 

“ComputeBinding” command as follows: 

 

./EvoEF --command=ComputeBinding --pdb=wildtype_Repair.pdb 

./EvoEF --command=ComputeBinding --pdb=wildtype_Repair_Mutant_1.pdb 

 

The above steps were used to minimize/construct the models and predict either the stability or 

binding affinity during EvoEF’s training/testing. However, to benchmark EvoEF against FoldX 

and to avoid potential bias in the scoring, for the FoldX tests, we minimized the structures using 

FoldX. The following steps were used to build the structural models and predict the 

stability/binding affinity energies for FoldX: 

 

Step 1: For ΔΔ𝐺+,[4*&*,ij<→=^, and ΔΔ𝐺4*/'*/lj<→=^, predictions, we extracted the single target chain or 

the two target amino acid chains, respectively, from the PDB file of the crystal structure and 

discarded water molecules and ligands that were not amino acids. 

 

Step 2: We optimized the structure of the wild-type protein/complex using FoldX’s 

“RepairPDB” command:  

 

./foldx --command=RepairPDB --pdb=wildtype.pdb 

 

After this step, the minimized wild-type protein/complex was output into a file named 

‘wildtype_Repair.pdb’ and this minimized model was used as the initial model to build the 

mutant model. 

 

Step 3: We built a structural model of the mutant protein using FoldX’s “BuildModel” 

command: 

  

./foldx --command=BuildModel --pdb=wildtype_Repair.pdb --mutant-

file=individual_list.txt 
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Here, “individual_list.txt” was a text file that contained the specified mutation(s). After this 

step, two files “WT_wildtype_Repair_1.pdb” and “wildtype_Repair_1.pdb” were generated. 

The former file was the wild-type structure with additional structural optimization, while the 

latter one was the mutant structure. Normally, “WT_wildtype_Repair_1.pdb” was the same as 

“wildtype_Repair.pdb”, and if not, their difference were quite small. 

  

Step 4: We computed the stability of the wild-type and mutant proteins using FoldX’s 

“Stability” command: 

 

./foldx --command=Stability --pdb=WT_wildtype_Repair_1.pdb 

./foldx --command=Stability --pdb=wildtype_Repair _1.pdb 

 

Or 

 

We computed the binding affinity of the wild-type and mutant complexes using FoldX’s 

“AnalyseComplex” command: 

 

./foldx --command=AnalyseComplex --pdb=WT_wildtype_Repair_1.pdb 

./foldx --command=AnalyseComplex --pdb=wildtype_Repair_1.pdb 

 

 

The stability and binding affinity change datasets, as well as the predicted ΔΔGs by FoldX and 

EvoEF can be found at: 

https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEFBenchmark.tar.gz.  

 

G.3.2 Optimization of reference energies and weights for 𝐸*/,"7h"+*'^"][="(3[*/ and 𝐸*/,7[h"+*'^". 

The amino acid reference energies and the weighting factors for 	𝐸*/,7[h"+*'^" and 

𝐸*/,"7h"+*'^"][="(3[*/ were determined based on the stability change data (ΔΔ𝐺+,[4*&*,ij<→=^,) of 

monomeric proteins upon mutation. The protein stability change due to mutation is computed by 

ΔΔ𝐺+,[4*&*,ij<→=^, = Δ𝐺+,[4*&*,i=^, − Δ𝐺+,[4*&*,ij< = 𝐸m5%m$=^, − 𝐸m5%m$j< 																																(𝐺. 7) 
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where the wild-type and mutant structural models are required to compute the physical energies. 

To this end, we first performed local energy minimization on the native crystal structures using 

the EvoEF energy minimizer and then built mutant models based on the minimized wild-type 

structures using the steps described above. For doing so, EvoEF first scans the wild-type structure 

in the order of amino acid occurrence and then optimizes the amino acid side-chains one-by-one. 

Several minimization cycles can be performed for the sake of convergence, but the default number 

of cycles is set to one. Based on our test, there’s not a large difference in the minimized structures 

when we set the number of cycles to two or more. To remove the possible steric clashes during the 

minimization procedure, EvoEF searches alternative rotameric conformations from a backbone-

independent rotamer library obtained from Xiang and Honig (265). The rotamer library contains 

984 rotamers for the 20 amino acid types, and 1,007 rotamers if two tautomers of histidine are 

considered. In the library, the hydroxyl groups of serine, threonine and tyrosine are rotated to 

expand their rotamers by six, six, and two folds, respectively. Asparagine, histidine and glutamine 

are also flipped to construct better hydrogen bonding networks during energy minimization. The 

details of energy minimization, model building and ΔΔ𝐺 computation can be found in Text G.5. 

Finally, the reference energies and parameters for	𝐸*/,7[h"+*'^" and 𝐸*/,"7h"+*'^"][="(3[*/ 

were optimized by minimizing the objective function 𝐹 = ∑ �ΔΔ𝐺*,+,[4*&*,i,#7"'j<→=^, −*

ΔΔ𝐺*,+,[4*&*,i,"d#j<→=^, �w over a set of experimental protein stability change data, where 

ΔΔ𝐺*,+,[4*&*,i,#7"'j<→=^,  and ΔΔ𝐺*,+,[4*&*,i,"d#j<→=^,  were the predicted and experimental data for the 𝑖,3 

mutation in the dataset. More specifically, the objective function can be written as: 

 

𝐹 =`�∆∆𝐺*,+,[4*&*,i,#7"'j<→=^, − ∆∆𝐺*,+,[4*&*,i,"d#j<→=^, �w

*

				= `Ç[`𝜔A∆∆𝐺*,+,[4*&*,i,#7"'j<→=^, (𝑗) + 𝐸7"Zj< − 𝐸7"Z=^,
A

] − ∆∆𝐺*,+,[4*&*,i,"d#j<→=^, È

w

*

												(𝐺. 8) 

 

where ∆∆𝐺*,+,[4*&*,i,#7"'j<→=^, (𝑗) was the EvoEF predicted stability change upon mutation for the 𝑗,3 

energy term, not considering the reference energy. 𝐸7"Z(𝑊𝑇) was the summed reference energy 

for the wild-type sequence and 𝐸7"Z(𝑚𝑢𝑡) was the summed reference energy for the mutant 
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sequence. This is essentially a least squares optimization problem, which can be easily solved 

using simple algorithms such as least squares fitting, gradient descent and conjugated gradient 

methods. However, we found that the optimal weights for some terms decided by these methods 

could be negative and theoretically meaningless. Therefore, we implemented a Metropolis Monte 

Carlo procedure to re-optimize the parameters. During the procedure, the movement consisted of 

random changes to the parameters while the weights were restricted to be greater than or equal to 

zero. Parameter changes were accepted and rejected based on the Metropolis criterion, where F 

was the energy. The final reference energies and weights were chosen from the parameter set with 

the lowest F value over the training set. 

 

G.3.3 Optimization of weights for 𝐸*/,"7h"+*'^"!*ZZ(3[*/. 

One of the major goals of the work described in Chapter 4 was to extend the EvoDesign 

pipeline to design protein-protein interactions. To achieve the best performance in computing the 

physical interactions in protein-protein interfaces, we used experimental binding affinity change 

(ΔΔ𝐺4*/'*/lj<→=^,) data to train the weights for 𝐸*/,"7h"+*'^"!*ZZ(3[*/. In EvoEF, the binding energy 

of a protein complex for scaffold A and its binding partner B is computed by 

 

Δ𝐺4*/'*/l = 𝐸c` − 𝐸c − 𝐸` 																																																(𝐺. 9) 

 

where	𝐸c`, 𝐸c and 𝐸` are the stability scores for the complex and component monomers, 

respectively. The binding free energy change due to mutation is then written as 

 

ΔΔ𝐺4*/'*/lj<→=^, = Δ𝐺4*/'*/l=^, − Δ𝐺4*/'*/lj< 																																		(𝐺. 10) 

 

The parameters for 𝐸*/,"7h"+*'^"!*ZZ(3[*/ were decided by minimizing the objective function 

∑ �ΔΔ𝐺*,4*/'*/l,#7"'j<→=^, − ΔΔ𝐺*,4*/'*/l,"d#j<→=^, �w*  over the training set of experimental binding affinity 

change data, where ΔΔ𝐺*,4*/'*/l,#7"'j<→=^,  and ΔΔ𝐺*,4*/'*/l,"d#j<→=^,  were the predicted and experimental 

data, respectively, for the 𝑖,3 mutation in the SKEMPI training set described above. The same 

Metropolis Monte Carlo procedure was used to decide the parameters for 𝐸*/,"7h"+*'^"!*ZZ(3[*/ as 

was used to train the parameters for 𝐸*/,"7h"+*'^"][="(3[*/ and 𝐸*/,7[h"+*'^" as well as the 
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reference energies. During the Monte Carlo search, the 42 previously optimized parameters were 

fixed. 

 

Text G.4 EvoEF decoy discrimination. 

In order to further validate EvoEF, we assessed its ability to discriminate native structures from 

decoy structures for the 200 non-redundant monomeric proteins in the 3DRobot Decoy Set (245). 

For each protein, 300 decoys were generated by 3DRobot. The root mean squared deviations 

(RMSDs) of the structural decoys to the native ranged from 0 to 12 Å. We did two types of decoy 

discrimination tests: (1) discriminating the native structures from decoys according to the folding 

stability energy, and (2) discriminating near-native decoy structures (low RMSD decoys)  from 

those with high RMSDs.  

In the first test, EvoEF correctly ranks the native protein as the lowest energy for each of the 

200 individual decoy sets, while FoldX does so in 198 cases. We also computed the Z-score of the 

native structure in each decoy set: 

 

𝑍/[,*5" =
⟨m⟩9mklj[mn

�m
																																																								(𝐺. 11)  

 

where 𝐸/[,*5" is the energy of the native structure, and ⟨𝐸⟩ and 𝛿𝐸 are the average and standard 

deviation of the energy function for all the structures in the decoy set. For EvoEF, the average Z-

score was 4.434 with value ranging from 2.25 to 8.09 for the 200 structures, while the average Z-

score for FoldX was 4.484 with value ranging from 2.41 to 7.60. Since the Z-score was >1 for all 

the cases, both FoldX and EvoEF were able to discriminate the native from non-native decoys with 

a sufficient gap for all the decoy sets, although FoldX had a slightly higher average Z-score.  

For the second test, we computed the Z-score of the near-native decoy structures, i.e., those 

with low RMSDs: 

 

𝑍//[,*5" =
⟨𝐸⟩3 − ⟨𝐸⟩&

𝛿𝐸3
																																																					(𝐺. 12) 

 

where ⟨𝐸⟩& is the average energy for the 10% of decoys that have the lowest RMSD; ⟨𝐸⟩3 and 𝛿𝐸3 

are the average and standard deviation of the energy function for all the rest of the structures in the 
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decoy set. Since both low and high RMSD decoys are generated in silico and thus have similar 

local structural errors, it is much harder to recognize the near-native structures than to recognize 

the native structure which was determined experimentally and usually has idealized local structural 

features and side-chain packing. The average 𝑍//[,*5" for EvoEF was 1.959 with values ranging 

from 0.32 to 3.57, while that for FoldX was 1.844 with values ranging from 0.40 to 2.83. In 198 

cases, EvoEF has a 𝑍//[,*5" > 1, while FoldX has a 𝑍//[,*5" > 1 in 193 of the cases. These data 

suggest that EvoEF has a relatively better ability to recognize near-native structures from high 

RMSD structural decoys. 

Here, the decoys datasets were taken directly from the work of Deng et al. (245), which can be 

downloaded at: https://zhanggroup.org/3DRobot/decoys/. The decoy recognition data for EvoEF 

and FoldX can be found at: 

https://zhanglab.ccmb.med.umich.edu/EvoDesign/EvoEFBenchmark.tar.gz.  

 

Text G.5 Commands in EvoEF. 

We have implemented several commands such as “RepairStructure”, “BuildMutant”, 

“ComputeStability”, “ComputeBinding”, and “OptimizeHydrogen”, to make it easy to use 

EvoEF’s functions. Generally, these commands are performed using the following syntax: 

 

EvoEF --command=commandName --pdb=your.pdb [other options] 

 

Here, we describe the details of each of these commands. 

 

G.5.1 Energy minimization. 

Energy minimization in EvoEF is performed using the command “RepairStructure”. Usually, 

the user-provided structural model or even the crystal structure can have steric clashes or bad 

hydrogen bonding networks. Moreover, sometimes side-chain atoms can be missing from the 

structural model. Therefore, it is important to fix the structure and do energy minimization to 

optimize the rotameric side-chain conformations for the clashed amino acids. Essentially, the 

global optimization of the amino acid side-chain conformations requires complete repacking of 

the side-chains, but this is not trivial. Instead of doing full side-chain repacking, EvoEF does fast 

local optimization of the initial model, either a crystal structure or a model predicted by structure 
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modeling software, to remove steric clashes as much as possible. To do so, EvoEF first scans the 

user-input structure in the order of amino acid occurrence and then optimizes the amino acid side-

chains one-by-one. To remove the possible steric clashes in the user-provided structural model, 

EvoEF searches rotameric conformations from a backbone-independent rotamer library obtained 

from the work of Xiang and Honig (265). The rotamer library contains 984 rotamers for 20 amino 

acid types, and 1,007 rotamers if two tautomers of histidine are considered. In the library, the 

hydroxyl groups of serine, threonine and tyrosine are rotated to expand their rotamers by six, six, 

and two folds, respectively. The asparagine, histidine and glutamine amino acids are also flipped 

for better hydrogen bonding evaluation. Several cycles of energy minimization can be performed 

for the sake of convergence and the best minimization results, but the default number of cycles is 

set to one. Based on our benchmarking, the difference between one or two or more minimization 

cycles is not that significant. The syntax to do energy minimization in EvoEF is: 

 

EvoEF --command=RepairStructure --pdb=model.pdb 

 

Successful execution of this command will generate a new structure file named 

“model_Repair.pdb”. In the minimized model, the optimized polar hydrogen coordinates are also 

shown. 

 

G.5.2 Model builder. 

To compute the protein stability and binding affinity changes due to mutation, we need the 

experimental structure and the mutant model. Here, the experimental structure should be 

minimized as mentioned in the above section. We build a mutant model starting from the 

minimized wild-type structure and mutate the amino acids at the specified positions one-by-one. 

During the mutation process, the amino acid side-chain conformations within 6 Å of each mutated 

position are repacked to alleviate possible steric clashes and optimize the local energies. The 

rotameric conformations for repacking and mutation are also taken from the above Xiang and 

Honig rotamer library (265). The mutated structure is first built, then three cycles of local energy 

minimization are performed. The syntax to build mutant models in EvoEF is: 

 

EvoEF --command=BuildMutant --pdb=model_Repair.pdb --mutant-file=individual_list.txt 
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where “model_Repair.pdb” is the minimized initial model, and “individual_list.txt” is a text file 

that specifies the desired mutation(s). In “individual_list.txt”, the mutations must be presented in 

the following format: 

 

 CA171A,DB180E; 

 

Each mutation is written in one line ending with “;”, and multiple mutants are divided by “,”. Note 

that there are no gaps/spaces between single mutations. For each single mutation, the first letter is 

the native amino acid, the second is the identifier for the chain that the amino acid appears on, the 

number is the amino acid’s position in the chain, and the last letter is the mutant amino acid. 

Running the command successfully should generate a new structure file named 

“model_Repair_Mutant_1.pdb”. In the mutant model, the optimized polar hydrogen coordinates 

are also shown. 

 

G.5.3 Energy computation. 

In EvoEF, the protein stability energy can be calculated using the following command: 

 

EvoEF --command=ComputeStability --pdb=your.pdb 

 

Furthermore, binding affinity for protein-protein complexes can be calculated using the command: 

 

EvoEF --command=ComputeBinding --pdb=complex.pdb 

 

The energies for each term and the total energy will be output if the command is run successfully. 

G.5.4 Other commands 

In the initial protein structures, such as the crystal structure or models obtained by different 

structure modelling software, polar hydrogens are usually not provided. However, the positions of 

polar hydrogens are important to model and calculate hydrogen bonding energy, which is crucial 

for the structural specificity that underlies protein folding, function, and interactions. Although 

backbone or side-chain polar hydrogens of some amino acid types can be determined by standard 
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topologies from force fields such as CHARMM19 (224) and AMBER (266), the hydroxyl groups 

of serine, threonine and tyrosine are rotatable and the hydrogen positions cannot be decided by the 

topologies. In EvoEF, we implemented another command “OptimizeHydrogen” to find the 

hydrogen positions that optimize the hydrogen bonding network. Specifically, we build the 

rotamers for serine, threonine and tyrosine using their native conformations and expand the 

number of rotamers considered by rotating the hydroxyl groups. 
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APPENDIX H 

 

Supplementary Tables for Chapter V 

 
Table H.1 Results of AlphaFold2 modeling using different MSA generation methods for the 354 
native protein structures. P-values were calculated using paired, two-sided Student’s t-tests 
between the results by DeepMSA and the other approaches.  In the table, the ‘DeepMSA MSA’ 
option refers to the results obtained by AlphaFold2 starting from the MSAs identified by searching 
the original native sequences using the DeepMSA program, the ‘Designed MSA’ option refers to 
the results obtained by AlphaFold2 when starting from the alignment of 100 designed sequences 
by EvoEF2 or RosettaFixBB, and the ‘Single Sequence’ option refers to the results for AlphaFold2 
modeling starting from the single lowest energy designed sequence produced by EvoEF2 or 
RosettaFixBB. 
 

AlphaFold2 Input 
TM-score  

(p-value) 

RMSD Å 

(p-value) 

#TM-score ≥ 

0.5a 

Native sequences 

DeepMSA MSA 0.913 (*) 1.99 (*) 350 

Sequences designed by EvoEF2 

Designed MSA 0.852 (3.8E-13) 2.48 (1.8E-02) 345 

Single Sequence 0.506 (7.7E-113) 12.45 (3.4E-91) 179 

Sequences designed by RosettaFixBB 

Designed MSA 0.837 (2.5E-18) 2.72 (3.3E-04) 344 

Single Sequence 0.482 (1.3E-120) 12.08 (5.4E-94) 161 
aThis column indicates the number of AlphaFold2 models with correct global folds (i.e., TM-score ≥0.5). 
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Table H.2 Local structure characteristics of the designed folds by FoldDesign. The table illustrates 
the overall Molprobity scores (MP-score) and additional structure quality metrics output by the 
Molprobity program for the 354 native structures (Native) as well as the 354 FoldDesign scaffolds 
(All Designs), the 79 novel designs (Novel Designs), and the 275 designs with native fold analogs 
(Analogous Designs). 
 

Structures 
MP-

Score 

Rama 

Outliers (%) 

Rama 

Favorable (%) 

Rotamer 

Outliers (%) 

Clash 

Score 

RMS 

Bonds 

RMS 

Angles 

Native 1.19 1.19 93.95 5.53 0.00 0.01 1.48 

All Designs 1.59 0.46 96.91 0.05 0.00 0.04 3.43 

Novel Designs 1.66 0.42 96.58 0.06 0.00 0.04 3.43 

Analogous Designs 1.57 0.47 97.00 0.04 0.00 0.04 3.43 

 

 

Table H.3 Empirically observed acceptance probabilities for swaps between adjacent replicas 
during the FoldDesign simulations for the 354 test proteins. 
 

Replica 

Number 

Fraction of 

Accepted Swaps 

1 0.771 

2 0.767 

3 0.759 

4 0.742 

5 0.728 

6 0.716 

7 0.695 

8 0.686 

9 0.680 

10 0.687 

11 0.690 

12 0.697 

13 0.708 

14 0.714 

15 0.718 

16 0.723 
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17 0.733 

18 0.735 

19 0.739 

20 0.749 

21 0.754 

22 0.758 

23 0.762 

24 0.769 

25 0.770 

26 0.776 

27 0.778 

28 0.780 

29 0.778 

30 0.776 

31 0.777 

32 0.773 

33 0.771 

34 0.762 

35 0.755 

36 0.737 

37 0.720 

38 0.689 

39 0.643 
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Table H.4 Feature values 𝜇8&/𝛿8& for each hydrogen bonding restraint type, Tk, in Eq. J.4. The 
features are presented as averages/standard deviations.  
 

Restraint 

Type 
Secondary Structure 

𝒇𝟏:	𝑫(𝑶𝒊, 𝑯𝒋) 

(Å) 

𝒇𝟐:	𝑨(𝑪𝒊, 𝑶𝒊, 𝑯𝒋) 

(degrees) 

𝒇𝟑:	𝑨(𝑪𝒊, 𝑶𝒊, 𝑯𝒋) 

(degrees) 

𝒇𝟒:	𝑻(𝑪𝒊, 𝑶𝒊, 𝑯𝒋, 𝑵𝒋) 

(degrees) 

T1 Helix,  𝑗 = 𝑖 + 4 2.00/0.53 147/10.58 159/11.25 160/25.36 

T2 Helix, 𝑗 = 𝑖 + 3 2.85/0.32 89/7.70 111/8.98 -160/7.93 

T3 Parallel Strand 2.00/0.30 155/11.77 164/11.29 180/68.96 

T4 Antiparallel Strand 2.00/0.26 151/12.38 163/11.02 -168/69.17 
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APPENDIX I 

 

Supplementary Figures for Chapter V 
 

 

 
 

Figure I.1 Structure and FoldDesign energy for the native 1ec6A fold. 
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Figure I.2 Comparison of the physical characteristics and energies for the designed folds by 
Rosetta with and without ABEGO bias on the 354 test proteins, where the sequence for each 
scaffold was designed by EvoEF2 and RosettaFixBB. A) Proportion of buried residues is plotted 
for each design, where a buried residue was defined as having a relevant solvent accessible surface 
area <5%. B) Solvent accessible surface area (SASA) for each design. C-D) Energies for each 
design calculated by GOAP and ROTAS. 
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Figure I.3 Comparison of the physical characteristics and energies for the designed folds by 
FoldDesign and Rosetta on the 354 test proteins, where the sequence for each scaffold was 
designed by RosettaFixBB with (RosettaFixBB Extra Rotamers) or without (RosettaFixBB) sub-
rotamer sampling for the 𝜒: and 𝜒w angles. The native designation represents the proteins from 
which the secondary structures of the designed folds were derived. A) Proportion of buried 
residues is plotted for each protein, where a buried residue was defined as having a relevant solvent 
accessible surface area <5%. B) Solvent accessible surface area (SASA) for each protein. C-D) 
Energies for each protein calculated by GOAP and ROTAS. 
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Figure I.4 Comparison of the amino acid distributions for the native proteins as well as the 
FoldDesign and Rosetta scaffolds whose sequences were designed by EvoEF2 (A) and 
RosettaFixBB (B), respectively. The native designation represents the 354 proteins from which the 
secondary structures of the designed folds were derived. 
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Figure I.5 Ramachandran plot derived from the 354 FoldDesign scaffolds. Favored/allowable 
torsion angles are plotted using black circles and outliers are plotted using red circles. 
 

 

 
Figure I.6 Assessment of the stability of the novel folds generated by FoldDesign. A) TM-score 
distribution between the FoldDesign scaffolds and their final MD structures on the 354 test 
topologies. B) TM-score distribution between the 79 novel FoldDesign structures and their final 
MD structures. 
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Figure I.7 Sequence homologs detected by searching the FoldDesign designs through the nr 
database using Blast. The sequences were designed by EvoEF2 (A) or RosettaFixBB (B). Two 
search strategies were used, either searching the single lowest energy sequence produced by 
EvoEF2/RosettaFixBB (Single Sequence) or jumpstarting the Blast search from the alignment of 
all 100 designed sequences (Designed MSA). The x-axis shows the number of Blast hits detected 
below an E-value threshold of 1e-5, while the y-axis shows the number of FoldDesign designs 
with the corresponding number of Blast hits. 
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Figure I.8 Structural alignment between the designed proteins shown in Fig. 5.7.B and their closest 
native analogs in the PDB. The FoldDesign structures are shown in yellow, while the closest native 
analogs are shown in blue. 
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Figure I.9 AlphaFold2 structure prediction results for the 79 FoldDesign scaffolds with novel folds 
(Novel) and the 275 scaffolds with natural analogs (Not Novel). The y-axis depicts the TM-scores 
between the AlphaFold2 models and the designed scaffolds, while the x-axis separates the EvoEF2 
and RosettaFixBB sequence designs. 
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Figure I.10 Novel Smotif geometry. The novel Smotif produced by FoldDesign is shown in the 
inset and highlighted in red, while the remainder of the structure is shown in gray.  
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Figure I.11 Smotif geometries found in the native folds. A) Native fold for 1id0A as well as each 
Smotif in the structure. B) Native fold for 2p19A as well as each Smotif in the structure. The 
frequencies for each Smotif are the background frequencies calculated from the PDB. 
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Figure I.12 Illustration of the features used to calculate the energy for packing two secondary 
structure elements. Note, here a helix and strand are used, but the parameters are the same for two 
helices or two strands. The y-axis is defined along the direction of the strand, where the origin is 
set at the center. D is a vector that represents the distance between the center of the strand and the 
center of the helix, and the x-axis is defined as the cross product between the y-axis vector and the 
D vector. The z-axis is defined as the cross product of the y-axis and the x-axis. H is the helical 
axis and H0 is the helical axis translated to the origin. Hxz is the projection of H0 onto the xz-plane. 
Lastly, 𝜓, 𝜙, and 𝜃 are the angles between the y-axis and the D vector, the x-axis and Hxz, and the 
y-axis and H0, respectively. 
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APPENDIX J 

 

Supplementary Texts for Chapter V 

 
Text J.1 Replica-exchange Monte Carlo simulation parameters and movements. 

The conformational landscape is explored in FoldDesign using replica-exchange Monte Carlo 

(REMC) simulations. Within REMC, four parameters need to be carefully considered. First, the 

highest temperature (Tmax) should be high enough to enable the simulation to overcome energy 

barriers, while the lowest temperature (Tmin) should be low enough to ensure the simulation 

sufficiently scans the low-energy states. Second, the number of replicas (Nrep) should be large 

enough to ensure sufficient chances for the adjacent replicas to communicate with each other. 

Third, the number of local movements (Nsweep) before the global swaps should be selected to 

make the local Metropolis search achieve satisfactory equilibrium. After successive rounds of 

optimization, the final parameters were selected as: 𝑇=[d = 𝑚𝑖𝑛(20 ∗ (1 + (𝐿 − 100) ∗

0.004), 20 ∗ 2.5), 𝑇=*/ = 𝑚𝑎𝑥(1 ∗ (1 + (𝐿 − 100) ∗ 0.001), 1 ∗ 0.5), Nrep = 40, and Nsweep = 

30*√𝐿, where L is the sequence length and a total of 500 REMC simulation cycles are carried out 

for each design. 

Given the maximum and minimum temperature settings, the temperature at each replica i is 

determined using an inverse linear temperature scheme (267, 268). Briefly, the temperature for 

replica 1 is set to  𝑇=[d, i.e., 𝑇: = 𝑇=[d, and the temperature for the ith replica (i >1) is determined 

by the following equation: 

𝑇* =
1

3 ∗ ∆𝛽=*/_=[d + 𝛽*9: + 12 ∗ ∆𝛽�O�	 _=[d ∗
𝑖

𝑁7"# − 2
																																	(𝐽. 1) 
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Here, 𝛽 refers to an inverse temperature, where ∆𝛽=*/_=[d =
()o[k9)olg)

fpnq9:
, 𝛽=*/ =

:
<o[k

, 𝛽=[d =

:
<olg

, and 𝛽*9: =
:

<[9:
. To illustrate the communication between replicas, Table H.3 presents the 

empirically observed acceptance probabilities for swaps between adjacent replicas during the 

design simulations for the 354 FoldDesign scaffolds. As can be seen from the table, the fraction 

of accepted swaps was similar across each of the adjacent replicas, where the average acceptance 

probability was 0.738, demonstrating a high degree of communication between the replicas. 

During the REMC simulations, 11 different conformational movements are used by 

FoldDesign, as show in Fig. 5.13, to sample the structural space. Movements are accepted or 

rejected using the Metropolis Criterion (231) based on the associated changes in energy calculated 

by the energy function described in Text J.2. The major conformational movement is fragment 

substitution, where the decoy conformation in a selected region of the protein is replaced with the 

conformation from one of the highest scoring fragments. In order to perform this movement, it is 

first necessary to identify local fragments from a fragment library that match the input secondary 

structure topology. The fragment library is composed of 1-20 residue fragments from 29,156 high-

resolution PDB structures used by QUARK (16, 92). The fragments were collected from structures 

deposited on or before 4/3/2014 and shared <30% sequence identity to each other (16, 92). 

Notably, this library has been extensively validated in the related field of protein structure 

prediction during even the most recent CASP experiments (20, 164). The information present for 

each fragment includes the position-wise backbone torsion angles (𝜙,𝜓,𝜔), secondary structure, 

bond lengths, bond angles, solvent accessibility and Cα coordinates. During the movement, the 

backbone torsion angles (𝜙,𝜓,𝜔) and backbone bond lengths and angles in the decoy structure are 

swapped with those present in the selected fragment. Next, cyclical coordinate descent loop closure 

(91) is used to connect the anchor points and prevent large downstream perturbations. Larger 

insertions are attempted at the beginning of the simulation, when the protein is largely unfolded, 

and smaller insertions are attempted as the protein become more compact. 

In addition to fragment assembly, FoldDesign uses 10 auxiliary movements. The first of the 

auxiliary movements involves changing the length of one of the backbone bonds, including the N-

Cα, Cα-C, or C-N bonds, by a random value in the range [-0.24 Å, 0.24Å], which is sampled from 

using a uniform probability distribution. The second movement involves randomly changing one 

of the backbone angles by a uniform random value in the range [-10°, 10°], including the Ni-Cαi-
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Ci, Cαi-Ci-Ni+1, and Ci-Ni+1-Cαi+1 angles, where i corresponds to the residue position. The third 

auxiliary movement changes one or more of the backbone torsion angles (𝜙,𝜓,𝜔). The 𝜙 and 𝜓 

angles are updated by sampling from the allowed regions in the Ramachandran plots based on the 

input secondary structure at a given position. The 𝜔 angle is changed by a uniform random value 

selected from the range [-8°, 8°], where the movement is automatically rejected if it would result 

in the 𝜔 angle falling outside of the range of (170°, 190°). The fourth movement is LMProt 

perturbation (269), which randomly changes the positions of the backbone atoms in a selected 

region and then attempts to restrict all bond lengths and bond angles to physically allowable values. 

The fifth movement is segment rotation, which rotates the backbone atoms by a uniform random 

value in the range of (-90°, 90°) for a 2-12 residue segment along the axis defined by the Cα atoms 

of the first and last residues of the selected region. The sixth movement is similar to the fragment 

substitution movement but is based on fragment consensus from the 10 residue long fragments. To 

perform this movement, the 10 residue long identified fragments are clustered based on the 

distance matrix defined by their 𝜙/𝜓 angle pairs. Then during the simulations, the 𝜙/𝜓 angle pairs 

for a 10 residue segment in the decoy structure are swapped for the corresponding angles from the 

consensus fragments. The seventh movement is a segment shift. It involves shifting the residue 

numbers in a segment forward or backwards by one residue, which means that the coordinates of 

each residue are copied from their preceding or subsequent residues in the segment. We then delete 

the unused coordinates of one residue at the selected terminal region and insert new coordinates 

for another residue at the other terminal based on physically allowable bond lengths and angles. 

This movement can easily adjust the β-pairing in two well-aligned β-strands. The eighth auxiliary 

movement is β-turn formation, which attempts to form a β-turn in regions of the protein whose 

input secondary structure is defined as coiled. The final two movements are β-strand and α-helix 

formation. For these two movements, two regions that are defined as β-strands or α-helices are 

moved closer together based on distance and torsion angle distributions collected from the PDB. 

 

Text J.2 FoldDesign energy function. 

The energy function used to guide the FoldDesign simulations is a combination of 10 energy 

terms: 
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𝐸!""#$%&' = 𝐸_` +	𝐸++_+[,*+Z[.,*%/ + 𝐸7[=[ + 𝐸33#[.8 + 𝐸++#[.8 + 𝐸oPEpqr + 𝐸"5 																	

+ 𝐸l"/"7*._'*+, + 𝐸Z7[l_'*+,_#7%Z*&" +	𝐸Z7[l_+%&5 +	𝐸7l +		𝐸.%/,[.,_/^=								(𝐽. 2) 

 

where 𝐸_`, 𝐸++_+[,*+Z[.,*%/, 𝐸7[=[, 𝐸33#[.8, 𝐸++#[.8,  𝐸oPEpqr, 𝐸"5, 𝐸l"/"7*._'*+,, 𝐸Z7[l_'*+,_#7%Z*&", 

𝐸Z7[l_+%&5, 𝐸7l, and 𝐸.%/,[.,_/^= are terms for backbone hydrogen bonding, secondary structure 

satisfaction, Ramachandran torsion angles, helix-helix packing, strand-strand packing, helix-

strand packing, excluded volume, generic backbone atom distances, fragment-derived distance 

restraints, fragment-derived solvent accessibility, radius of gyration, and expected contact number, 

respectively. The equations for each energy term are detailed below. 

 

𝐸_` is calculated as follows: 

 

𝐸_` = ` 𝐸34rnlj(𝑖, 𝑗, 𝑇8)
*,A,<s

																																																		(𝐽. 3) 

 

where i and j are the residue indices and Tk is the kth type of hydrogen bonding restraint. In 

FoldDesign, there are 4 types of hydrogen bonding restraints: hydrogen bonds between residues i 

and i+4 in regions defined as helical by the input secondary structure (T1), virtual hydrogen bonds 

between residues i and i+3 in regions defined as helical by the input secondary structure (T2), and 

hydrogen bonds between residues i and j in parallel β-strands (T3) or antiparallel β-strands (T4) for 

regions defined as strands by the input secondary structure. The energy for each type of hydrogen 

bonding restraint is calculated using the following equation: 

 

𝐸34rnlj(𝑖, 𝑗, 𝑇8) =`
(𝑓&(𝑖, 𝑗) − 𝜇8&)w

2𝛿8&w
/s

&?:
,					𝑛8 = d4			𝑘 = 1,2

3			𝑘 = 3,4																												(𝐽. 4) 

 

where 𝑓&(𝑖, 𝑗) is the value of the lth feature from the decoy structure, 𝑛8 is the number of features 

considered for the kth type of hydrogen bond restraint, 𝜇8& is the average value of the lth feature for 

the kth type of hydrogen bond restraint calculated from the PDB library, and 𝛿8& is the standard 

deviation of the lth feature for the kth type of hydrogen bond restraint. For hydrogen bonding, we 

consider four features: the distance, D(Oi,Hj), between backbone atom Oi from residue i and the 
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backbone hydrogen, Hj, from residue j, the angle, A(Ci,Oi,Hj), between backbone atoms Ci and Oi 

from residue i and the backbone hydrogen, Hj, from residue j, the angle, A(Ci,Oi,Hj), between 

backbone atom Oi from residue i and the backbone hydrogen, Hj, and nitrogen, Nj, from residue j, 

and the torsion angle, T(Ci,Oi,Hj,Nj), between atoms Ci and Oi from residue i  and the backbone 

hydrogen, Hj, and nitrogen, Nj, from residue j. Note for hydrogen bonding in strand regions, T3 

and T4 restraints, T(Ci,Oi,Hj,Nj) is not considered as there is a large standard deviation for this 

feature in strand regions. The values of 𝜇8& and 𝛿8& are shown in Table H.4.  

  

𝐸++_+[,*+Z[.,*%/ is calculated as follows: 

 

𝐸!!_!#$%!&#'$%() = −$

⎩
⎨

⎧
−2					𝑖𝑓	𝑠𝑠% = ℎ𝑒𝑙𝑖𝑥	𝑎𝑛𝑑	𝑖𝑛𝑝𝑢𝑡!!% = 𝑠𝑡𝑟𝑎𝑛𝑑	𝑜𝑟	𝑠𝑠% = 𝑠𝑡𝑟𝑎𝑛𝑑	𝑎𝑛𝑑	𝑖𝑛𝑝𝑢𝑡!!% = ℎ𝑒𝑙𝑖𝑥	

1					𝑖𝑓	𝑠𝑠% = 𝑐𝑜𝑖𝑙	𝑎𝑛𝑑	𝑖𝑛𝑝𝑢𝑡!!% = 𝑐𝑜𝑖𝑙
2					𝑖𝑓	𝑠𝑠% = ℎ𝑒𝑙𝑖𝑥	𝑎𝑛𝑑	𝑖𝑛𝑝𝑢𝑡!!% = ℎ𝑒𝑙𝑖𝑥	𝑜𝑟	𝑠𝑠% = 𝑠𝑡𝑟𝑎𝑛𝑑	𝑎𝑛𝑑	𝑖𝑛𝑝𝑢𝑡!!% = 𝑠𝑡𝑟𝑎𝑛𝑑

−1					𝑒𝑙𝑠𝑒	

%*+

%*,
												(𝐽. 5) 

 

where 𝑠𝑠* is the secondary structure of the decoy at position i and 𝑖𝑛𝑝𝑢𝑡_𝑠𝑠* is the input secondary 

structure at the corresponding position. If the input secondary structure is defined as helical and 

the secondary structure of the decoy structure is a strand or if the input secondary structure is 

defined as a strand and the secondary structure of the decoy structure is helical, then a penalty of 

-2 is assigned to penalize opposite secondary structure assignments more heavily. Similarly, if the 

helical or strand regions are correct in the decoy structure, then a stronger bonus is assigned. 

Mismatches in coiled regions are penalized less heavily, and correctly generated coiled regions are 

also rewarded to a lesser degree as they are more flexible and lack regular hydrogen bonding 

patterns. 

 

𝐸7[=[ is calculated as follows: 

 

𝐸7[=[ = −` log�𝑃(𝜙* , 𝜓*)	Î	𝑖𝑛𝑝𝑢𝑡++*�
*?g9:

*?w
																									(𝐽. 6) 

 

where 𝜙* and 𝜓* are the backbone torsion angles at position i and 𝑖𝑛𝑝𝑢𝑡_𝑠𝑠* is the input secondary 

structure at position i. The probabilities for each backbone torsion angle pair were determined from 

the I-TASSER (17) PDB library based on the secondary structure at a given position. 
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𝐸33#[.8, 𝐸++#[.8, and 𝐸3+#[.8 are calculated as follows: 

 

⎩
⎪
⎪
⎨

⎪
⎪
⎧𝐸33#[.8 = −`log�𝑃33�𝜓*A , 𝜃*A , 𝛷*A�	Î 𝑠𝑒𝑞_𝑠𝑒𝑝)

*,A

−`log�𝑃33�𝐷*A , 𝜃*A�	Î 𝑠𝑒𝑞_𝑠𝑒𝑝)
*,A

𝐸++#[.8 = −`log�𝑃++�𝜓*A , 𝜃*A , 𝛷*A�	Î 𝑠𝑒𝑞_𝑠𝑒𝑝)
*,A

−`log�𝑃++�𝐷*A , 𝜃*A�	Î 𝑠𝑒𝑞_𝑠𝑒𝑝)
*,A

𝐸3+#[.8 = −`log�𝑃3+�𝜓*A , 𝜃*A , 𝛷*A�	Î 𝑠𝑒𝑞_𝑠𝑒𝑝)
*,A

−`log�𝑃3+�𝐷*A , 𝜃*A�	Î 𝑠𝑒𝑞_𝑠𝑒𝑝)
*,A

						(𝐽. 7) 

 

where 𝜓*A , 	𝜃*A , 	𝛷*A are the angles between two secondary structure elements (either two helices, 

𝐸33#[.8, two strands 𝐸++#[.8, or a helix and a strand, 𝐸3+#[.8) defined in Fig. I.12, 𝐷*A is the 

distance between the centers of the two secondary structure elements, and 𝑠𝑒𝑞_𝑠𝑒𝑝	is the number 

of residues between two secondary structure elements along the sequence. The potential is split 

into three different groups depending on the sequence separation, including short, medium, and 

long-range interactions. Here, short, medium, and long-range refers to residue pairs (i,j) that fall 

in the following ranges, respectively:  6 ≤ |𝑖 − 𝑗| < 12, 12 ≤ |𝑖 − 𝑗| < 24, and |𝑖 − 𝑗| ≥ 24. The 

secondary structure specific probabilities distributions for the features were derived from PDB 

structures in the I-TASSER library and were fit using kernel density estimation to smooth the 

potentials. 

For the estimation of 𝑃(𝜓, 𝜃, 𝛷), the periodic von Mises probability distribution was used as 

the kernel function (kangle); specifically 𝑘[/l&"(𝑥, 𝜅) =
:

w�Yb(8)
exp	(𝜅 ∗ 𝑐𝑜𝑠(𝑥)), where x is an 

angle value, κ is a tunable concentration parameter, and I0 is the modified Bessel function of the 

first kind of order zero. Thus, the probability distribution, 𝑃(𝜓, 𝜃, 𝛷), for each of the three 

interaction types and sequence separation categories was estimated by 𝑃(𝜓, 𝜃, 𝛷|𝜅) =
:
f
∑ 𝑘[/l&"(𝜓 − 𝜓* , 𝜅)𝑘[/l&"(𝜃 − 𝜃* , 𝜅)𝑘[/l&"(𝛷 − 𝛷* , 𝜅)f
*?: . Here, 𝛷 was computed over the 

range [0°, 360°), while 𝜃 and 𝛷 were computed over the range [0°, 180°], where a bin size of 1° 

was used for each angle. Additionally, 𝑖 denotes the index of the datapoint derived from the PDB 

dataset for observed values of 𝜓,	𝜃, and 𝛷, where the summation was carried out over the 𝑁 

datapoints in the dataset for each interaction type and sequence separation category. Lastly, the 

concentration parameter, 𝜅, may be tuned, where the larger the value of 𝜅 is, the narrower the 
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kernels will be. To optimize this parameter, the dataset was randomly divided into 10 equal subsets 

and the value of 𝜅 was varied from 0° to 180° by an increment of 1°, where the value that resulted 

in the maximum mean log-likelihood for the observed angles across the 10 subsets was used for 

each interaction type and sequence separation. 

For the estimation of 𝑃(𝐷, 𝜃), the same periodic von Mises function was used as the kernel for 

𝜃. However, for the distance, D, a non-periodic gaussian distribution was used as the kernel 

function (kdist), specifically 𝑘'*+,(𝐷, ℎ) =
:

√w�3
exp	(9!

`

w3`
), where D is a distance and h is the 

bandwidth parameter. Thus, the probability distribution, 𝑃(𝐷, 𝜃), for each of the three interaction 

types and sequence separation categories was estimated by 𝑃(𝜓, 𝜃, 𝛷|𝜅, ℎ) = :
f
∑ 𝑘'*+,(𝐷 −f
*?:

𝐷* , ℎ)𝑘[/l&"(𝜃 − 𝜃* , 𝜅). Here, 𝜃 was computed over the range [0°, 180°] with a bin size of 1°, 

while 𝐷 was computed over the range [0, 20Å] with a bin size of 0.1 Å. As before, 𝑖 denotes the 

index of the datapoint derived from the PDB dataset for observed values of 𝐷 and	𝜃, where the 

summation was carried out over the 𝑁 datapoints in the dataset for each interaction type and 

sequence separation category. Again, 𝜅 and ℎ are tunable parameters, where 𝜅 was varied from 0° 

to 180° by an increment of 1°, while ℎ was varied from 0.1 Å to 20 Å using an increment of 0.1 

Å. As before, the optimal values of these parameters were determined by randomly splitting the 

dataset into 10 subsets and selecting the values that resulted in the highest mean log-likelihood 

across all 10 datasets for the observed values. 

 

𝐸"5 is calculated as follows: 

 

𝐸"# =. . ..�(𝑣𝑑𝑤(𝑖, 𝑖𝑖) + 𝑣𝑑𝑤(𝑗, 𝑗𝑗))
? − 𝑟00,>>? 				𝑖𝑓	𝑟00,>> < 𝑣𝑑𝑤(𝑖, 𝑖𝑖) + 𝑣𝑑𝑤(𝑗, 𝑗𝑗)

0		𝑒𝑙𝑠𝑒>>00

>21

>20t3

021

023
				(𝐽. 8) 

 

where clashes are calculated between each atom ii from residue 𝑖 and atom 𝑗𝑗 from residue 𝑗 and 

𝑟**,AA is the distance between the two atoms. For the side-chain center atoms, the center of mass of 

valine is used to assess steric clashes. All atoms presented in Fig. 5.12 are considered except for 

hydrogen. 

 

𝐸l"/"7*._'*+, is calculated as follows: 
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𝐸l"/"7*._'*+, =` ` ``−𝑅𝑇 ∗ log ¦
𝑁%4+�𝑖𝑖, 𝑗𝑗, 𝑟**,AA�

𝑟**,AA- 𝑁%4+(𝑖𝑖, 𝑗𝑗, 𝑟.^,)
¨

AA**

A?g

A?*;:

*?g

*?:
									(𝐽. 9) 

 

where L is the protein length, i and j are the two residue indices and ii/jj are the atoms N, Cα, C, 

O and Cβ. 𝑁%4+(𝑖𝑖, 𝑗𝑗, 𝑟**,AA) is the observed number of pairs between atoms ii and jj with distance 

𝑟**,AA determined from the I-TASSER PDB library. A cutoff, 𝑟.^,, of 15Å is used and the distances 

for the observed atom pairs is divided into 0.5Å bins from 0Å to 15Å. The potential is similar to 

DFIRE, where 𝛼 = 1.61 and 𝑁%4+(𝑖𝑖, 𝑗𝑗, 𝑟.^,) is used to calculate the background probability.  

 

𝐸Z7[l_'*+,_#7%Z*&" is calculated as follows: 

 

𝐸Z7[l_'*+,_#7%Z*&" = − ` log Ò𝑁*A�𝑑*A�Ó
(*,A)⊆]uq

																									(𝐽. 10) 

 

where 𝑑*A is the distance between the Cα atoms of residues i and j in the decoy structure and 𝑁*A 

is the distance profile for residues i and j extracted from the 10 residue long fragments where d 

falls in the range [0Å, 9Å] with a bin width of 0.5 Å. 𝑆'# is the set of residues that have fragment-

derived distance profiles. To derive the distance profiles, we first analyze each of the 10 residue 

fragments that originate from the same PDB structure and are aligned to different residues, i and 

j. Then we calculate the distance between the Cα atoms for the two positions from the fragments 

based on their corresponding positions in their PDB structure. If the distance between the two 

residues in the PDB structure is <9Å, then these positions may be encouraged to from contacts in 

the designed structure. This procedure is repeated for each query residue pair (i, j) to construct a 

histogram of distances. If the histogram for a given pair of residues has a peak <9Å, then the 

histogram is saved to calculate the distance profile energy and the residue pair is added to the set 

𝑆'#. 

 

𝐸Z7[l_+%&5 is calculated as follows: 
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𝐸Z7[l_+%&5 =` Î𝑠* − 𝑠*mÎ
*?g

*?:
																																																(𝐽. 11) 

 

where L is the protein length, 𝑠* is the solvent accessibility of residue i in the decoy structure, and 

𝑠*m is the expected solvent accessibility derived from the 20 residue fragments. The following 

formula is used to calculate 𝑠*: 

 

𝑠* = 1 − 0.007 `
𝐴[[(A)

𝑑w�𝐺* , 𝐺A�'��[,�\��}Å

																																									(𝐽. 12) 

 

Here, 𝐴[[(A) is the maximum solvent accessible surface area for the given residue 𝑎𝑎 at position j. 

Since polyvaline sequences are used in FoldDesign, the maximum solvent accessible surface area 

for Valine is used. 𝐺* and 𝐺A are the geometric centers of residues i and j, 𝑑�𝐺* , 𝐺A� is the distance 

between the two geometric centers, and 𝑑w(𝐺* , 𝐺A) is the squared distance. A cutoff of 9Å is used 

as residues that are further apart contribute little to the solvent accessibility. As mentioned above, 

𝑠*mis the expected solvent accessibility calculated from the overlapping 20 residue fragments. For 

each fragment, the solvent accessibility of the residue in its native PDB structure is recorded, and 

the estimated solvent accessibility is calculated by averaging the solvent accessibility of each 

fragment residue aligned to position i.  

 

𝐸7l is calculated as follows: 

 

𝐸7l = £
0									𝑟=*/ ≤ 𝑟 ≤ 𝑟=[d
(𝑟=*/ − 𝑟)w					𝑟 < 𝑟=*/
(𝑟 − 𝑟=[d)w					𝑟 > 𝑟=[d

																																												(𝐽. 13) 

 

where 𝑟 is the radius of gyration for the decoy structure calculated from the Cα positions produced 

during the FoldDesign simulations and 𝑟=*//𝑟=[d are the estimated minimum and maximum radii 

of gyration calculated from the PDB based on the protein length and secondary structure 

composition. More specifically, the minimum and maximum radii of gyration are estimated 

following previous work in protein structure prediction by QUARK (16), where 𝑟=*/ =
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2.316𝐿@.xyv − 0.5 and 𝑟=[d = 𝑚𝑎𝑥µ𝑟=*/ + 8.0, 0.5Ô3/5𝑁=[d3Õ. Here, 𝑁=[d3 is the length of the 

longest helix in the structure and 𝐿 is the protein length. Using these values, 95% of the 

experimental structures in the PDB have a radius of gyration within [𝑟=*/, 𝑟=[d] (16). 

 

𝐸.%/,[.,_/^= is calculated as follows: 

 

𝐸.%/,[.,_/^= = Î𝑛𝑢𝑚+3%7,_.%/, − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚+3%7,_.%/,Î

+ Î𝑛𝑢𝑚="'_.%/, − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚="'_.%/,Î

+ Î𝑛𝑢𝑚&%/l_.%/, − 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚&%/l_.%/,Î																														(𝐽. 14) 

 

where 𝑛𝑢𝑚+3%7,_.%/,, 𝑛𝑢𝑚="'_.%/,, and 𝑛𝑢𝑚&%/l_.%/, are the number of short, medium, and long-

range contacts in the decoy structure. Here, short, medium, and long-range contacts refer to residue 

pairs (i,j) that fall in the following ranges, respectively:  6 ≤ |𝑖 − 𝑗| < 12, 12 ≤ |𝑖 − 𝑗| < 24, and 

|𝑖 − 𝑗| ≥ 24. 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚+3%7,_.%/,, 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚="'_.%/,, and 𝑒𝑥𝑝𝑒𝑐𝑡𝑒𝑑_𝑛𝑢𝑚&%/l_.%/, 

are the expected short, medium, and long-range contacts calculated from PDB structures in the I-

TASSER library based on protein length. 

 

Text J.3 Rosetta protocol used to generate designed folds. 

The following command was used to generate backbones by Rosetta: 
 

<rosetta_bin>/main/source/bin/rosetta_scripts.static.linuxgccrelease -database <rosetta_bin>/main/database/ -s 

./input.pdb -parser:protocol ./backbone_generation.xml -nstruct 250 

 

The contents of the backbone_generation.xml files are detailed below, which were adapted 

from a representative recent publication (270).  
 

<ROSETTASCRIPTS> 

        <SCOREFXNS> 

           <ScoreFunction name="SFXN1" weights="fldsgn_cen_omega02.wts" /> 

        </SCOREFXNS> 

        <FILTERS> 

                <ScoreType name="cen_total" scorefxn="SFXN1" score_type="total_score" threshold="1000000" /> 

                <ScoreType name="vdw" scorefxn="SFXN1" score_type="vdw" threshold="1000000" /> 



 184 

                <ScoreType name="rg" scorefxn="SFXN1" score_type="rg" threshold="1000000" /> 

                <ScoreType name="cen_rama" scorefxn="SFXN1" score_type="rama" threshold="1000000" /> 

                <ScoreType name="sspair" scorefxn="SFXN1" score_type="ss_pair" threshold="1000000" /> 

                <ScoreType name="rsigma" scorefxn="SFXN1" score_type="rsigma" threshold="1000000" /> 

        </FILTERS> 

        <TASKOPERATIONS> 

        </TASKOPERATIONS> 

        <MOVERS> 

                <Dssp name="dssp"/> 

                <SwitchResidueTypeSetMover name="fullatom" set="fa_standard"/> 

                <SwitchResidueTypeSetMover name="cent" set="centroid"/> 

                <MakePolyX name="polyval" aa="VAl" keep_pro="1" /> 

                <BluePrintBDR name="bdr1" scorefxn="SFXN1" use_abego_bias="1" blueprint="blueprint.xml"/> 

                <MinMover name="min1" scorefxn="SFXN1" chi="1" bb="1" type="dfpmin_armijo_nonmonotone_atol" 

tolerance="0.0001"/> 

                <ParsedProtocol name="cenmin1" > 

                  <Add mover_name="cent" /> 

                  <Add mover_name="min1" /> 

                  <Add mover_name="fullatom" /> 

                </ParsedProtocol> 

                <ParsedProtocol name="bdr1ss" > 

                  <Add mover_name="bdr1" /> 

                  <Add mover_name="cenmin1" /> 

                  <Add mover_name="dssp" /> 

                </ParsedProtocol> 

        </MOVERS> 

        <PROTOCOLS> 

                <Add mover_name="bdr1ss" /> 

                <Add mover_name="fullatom" /> 

                <Add filter_name="cen_total" /> 

                <Add filter_name="vdw" /> 

                <Add filter_name="rg" /> 

                <Add filter_name="cen_rama" /> 

                <Add filter_name="sspair" /> 

                <Add filter_name="rsigma" /> 

        </PROTOCOLS> 

</ROSETTASCRIPTS> 

 

The contents of the weights file (fldsgn_cen_omega02.wts) were as follows, which were also 

adapted from the previous study (270): 
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vdw 1.0 

rg 1.0 

rama 0.1 

hs_pair 1.0 

ss_pair 1.0 

rsigma 1.0 

omega 0.5 

hbond_lr_bb 1.0 

hbond_sr_bb 1.0 

 

STRAND_STRAND_WEIGHTS 1 11 

 

Here, for each input topology, 250 designs were generated using Rosetta, where the final 

designs were selected from the lowest energy structures as assessed by the Rosetta centroid energy 

function. In terms of the total number of conformational movements, the average number of 

movements attempted by Rosetta per design was 8,291,689.9, not including the L-BFGS-based 

minimization, which was slightly higher than the 6,000,000 movements attempted by FoldDesign 

for each design. This protocol follows the standard, widely used fragment assembly-based design 

procedure by Rosetta, where topologies are defined by the BluePrintBDR mover and built using 

stepwise Monte Carlo fragment assembly simulations guided by the Rosetta centroid energy 

function (271). Following this, the designs were minimized using L-BFGS optimization of the 

internal coordinates and filtered using a combination of score thresholds. Since the purpose of the 

benchmark tests was to perform fully automated de novo protein design, no user-provided 

restraints were utilized other than the 3-state secondary structure sequences. An example of the 

Rosetta blueprint files without and with ABEGO bias are provided in Texts J.8 and J.9 (see below), 

respectively. 

 

Text J.4 Analysis of the results with ABEGO bias and sub-rotamer sampling. 

In Chapter 5, Rosetta was run without ABEGO bias, which divides the Ramachandran plot 

into 4 regions (A,B,E,G) and restricts the fragment selection to the region defined by the specified 

bias for each residue (249). This bias allows for more control over the fragment selection process 

and fold definition; however, given that the benchmark dataset was composed of just the 3-state 

SS sequences from the native proteins, the proper ABEGO definition for each position is 
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ambiguous as the same SS type can be sampled from multiple regions of the Ramachandran plot, 

e.g., right-handed (ABEGO region A) vs. left-handed alpha helices (ABEGO region G). 

Nevertheless, given that this bias is often used, we reran Rosetta and restricted helical regions to 

the A region of the Ramachandran plot and strands to the B region of the Ramachandran plot (249). 

We then calculated the percent of buried residues/SASA and the GOAP/ROTAS energies for the 

Rosetta designs that utilized ABEGO bias, where the results are summarized in Fig. I.2. This 

analysis showed that there was not a significant difference in the percent of buried residues/SASA 

or the GOAP/ROTAS energies between the designs that utilized ABEGO bias and those that did 

not (with p-values >0.05). 

Additionally, similar to EvoEF2, RosettaFixBB was run without sub-rotamer sampling (see 

Text J.6 for the RosettaFixBB protocol). To examine if enabling additional rotameric sampling 

during the sequence design impacted the results, we reran RosettaFixBB with 𝜒: and 𝜒w sub-

rotamer sampling enabled for the FoldDesign and Rosetta scaffolds (see Text J.7 for the 

RosettaFixBB protocol with sub-rotamers enabled), where the results are depicted in Fig. I.3. 

Overall, only the ROTAS energy improved significantly (p-values <0.05) with the addition of sub-

rotamer sampling, which may be expected as ROTAS places special emphasis on the rotameric 

conformations adopted by the side-chains (248). Nevertheless, the FoldDesign scaffolds still had 

significantly lower ROTAS energies (-10684.5) than the Rosetta scaffolds (-9446.4) with a p-value 

of 7.7E-08. Thus, enabling sub-rotamer sampling and including ABEGO bias did not alter the 

conclusions drawn in the text, where it would be expected that any improvements in the sequence 

design protocol would benefit both FoldDesign and Rosetta. 
 

Text J.5 Analysis of the amino acid compositions of the designed scaffolds. 

Given that Valine is used as the generic center of mass in FoldDesign and Rosetta (see 5.3 

Methods), one important issue is to examine whether the designed scaffolds exhibited any 

systematic bias against particular amino acids, such as smaller non-polar residues like Glycine and 

Alanine as well as bulkier aromatic amino acids or Proline. In Fig. I.4, we plot the frequency of 

each of the 20 amino acids in the EvoEF2/RosettaFixBB designed sequences for the FoldDesign 

and Rosetta scaffolds compared to the frequency from the corresponding native protein sequences. 

As expected, the specific amino acid preferences varied depending on the sequence design method 

that was used; however, it can be observed that there was no bias towards Valine for FoldDesign 
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or Rosetta, and smaller non-polar amino acids such as Glycine and Alanine were well represented 

in the designed sequences, as well as bulkier amino acids like Tryptophan, Tyrosine, and Proline, 

with some variation for Proline and Alanine depending on the sequence design method. 

Quantitatively, the Kullback-Leibler (KL) divergence between the native amino acid distribution 

and the distributions for the EvoEF2/RosettaFixBB sequence designs for the FoldDesign scaffolds 

was 0.236/0.122, which was slightly lower than the KL divergence for the Rosetta scaffolds 

(0.352/0.123). In addition, since FoldDesign does not include any chirality restraints on the 

backbone torsion angles during the folding simulations, the designed folds contained structures 

with both right- and left-handed helices and covered the full diversity of the torsion angle space 

adopted by natural proteins as highlighted in the Ramachandran plot (Fig. I.5). 

 

Text J.6 RosettaFixBB protocol without sub-rotamer sampling. 

The following command was used to generate sequence designs by RosettaFixBB without sub-

rotamer sampling: 

 
<rosetta_bin>/main/source/bin/fixbb.static.linuxgccrelease -database <rosetta_bin>/main/database/ -s ./design.pdb -nstruct 100  

 

Text J.7 RosettaFixBB protocol with sub-rotamer sampling. 

The following command was used to generate sequence designs by RosettaFixBB with 𝜒: and 

𝜒w sub-rotamer sampling: 

 
<rosetta_bin>/main/source/bin/fixbb.static.linuxgccrelease -database <rosetta_bin>/main/database/ -s ./design.pdb -nstruct 100 -

ex1 -ex2 

 

Text J.8 Example Rosetta blueprint file without ABEGO bias. 

The following illustrates the contents of the Rosetta blueprint file without ABEGO bias for the 

secondary structure topology derived from 2jx8A. 
 

1 V L R 

2 V L R 

0 V H R 

0 V H R 

0 V H R 

0 V H R 
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0 V H R 

0 V H R 

0 V L R 

0 V L R 

0 V L R 

0 V E R 

0 V E R 

0 V E R 

0 V E R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V E R 

0 V E R 

0 V E R 

0 V E R 

0 V E R 

0 V E R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V E R 

0 V E R 

0 V E R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 

0 V L R 
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Text J.9 Example Rosetta blueprint file with ABEGO bias.  

The following illustrates the contents of the Rosetta blueprint file with ABEGO bias for the 

secondary structure topology derived from 2jx8A. 

 
1 V L    R 

2 V L    R 

0 V HA R 

0 V HA R 

0 V HA R 

0 V HA R 

0 V HA R 

0 V HA R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V EB R 

0 V EB R 

0 V EB R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 
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0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

0 V L    R 

 

Text J.10 Relative frequency of Smotifs for the test protein structures. 

In Fig. 5.10, we first split the Smotifs into 4 bins based on the normalized background 

frequency of the Smotifs that appear in the PDB structures, i.e., [0, 1E-3], (1E-3, 1E-2], (1E-2, 1E-

1], and (1E-1, 1], where the normalized background frequency of a Smotif is equal to the number 

of times that the Smotif appeared in the 51,094 non-redundant full-chain structures in the I-

TASSER template library divided by the total number of Smotifs in the structural library. 

For a given protein 𝑖 in the test set of the 79 novel folds or the 354 native structures, the 

relative frequency of Smotifs for one of the 4 bins, 𝑗, is calculated by 

 

𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒	𝐹𝑟𝑒𝑞𝑢𝑒𝑛𝑐𝑦	(𝑖, 𝑗) =
𝑁𝑢𝑚_𝑆𝑚𝑜𝑡𝑖𝑓*,A

∑ 𝑁𝑢𝑚_𝑆𝑚𝑜𝑡𝑖𝑓*,A
A?N
A?:

																																					(𝐽. 15) 

 

where 𝑁𝑢𝑚_𝑆𝑚𝑜𝑡𝑖𝑓*,A is the number of Smotifs from the i-th protein that fall into the j-th bin.  
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