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ABSTRACT

Proteins and non-coding RNA are the macromolecules responsible for performing the vast
majority of biological functions in living organisms. These functions are mediated by the diverse
structures adopted by different macromolecules, which in turn are determined by their primary
sequences. Understanding the principles that govern this sequence-structure-function paradigm
has become a hallmark of structural biology. The work presented in this thesis focuses on
elucidating these principles by developing state-of-the-art deep learning and physical models for
computational protein/RNA structure prediction and protein design.

Despite the immense progress witnessed in protein structure prediction through the use of deep
neural networks to predict spatial restraints, the modeling accuracy for proteins that lacked
sequence and/or structure homologs remained to be improved. Thus, we developed an open-source
program, DeepFold, which integrates spatial restraints predicted by multi-task deep residual neural
networks along with a physics-based potential to guide rapid gradient-descent folding simulations.
The results on large-scale benchmark tests showed that DeepFold created full-length models with
accuracies significantly beyond classical folding approaches and other leading, contemporaneous
deep learning methods. Of particular interest was the modeling performance on targets with very
few homologous sequences, where DeepFold achieved an average TM-score that was ~40-45%
higher than deep learning methods such as trRosetta and DMPfold, while being 262 times faster
than traditional folding simulations.

Inspired by the revolutionary advances in self-attention-based structure prediction, we
developed DeepFoldRNA, which is an extension of the DeepFold pipeline that predicts RNA
structures from sequence by coupling deep self-attention neural networks with gradient-based
folding simulations. The method was tested on two independent benchmark datasets, including the
RNA-Puzzles experiment, where DeepFoldRNA constructed models with an average RMSD of
2.72 A, which was significantly better than the best models submitted by the community

XV



(RMSD=6.90 A). Overall, these findings illustrate the major advantage of advanced deep learning
techniques at capturing detailed structural information over human-engineered potentials.

The second area of research that will be covered in the proceeding chapters is protein design,
which is often regarded as the conceptual inverse of protein structure prediction. Protein design
generally consists of two sub-problems, namely sequence design and structure design. For the first
sub-problem, we developed an online server system, EvoDesign, which uses evolutionary profiles
alongside a physical potential to guide the sequence search simulations. EvoDesign demonstrated
advantages over pure physics-based approaches in terms of more accurately designing proteins
that adopt desired target folds. Furthermore, as one of the essential difficulties in computer-based
protein design is the expensive cost of experimental validation, the server aims to provide various
transparent intermediate data to allow for a detailed annotation and analysis of the confidence of
the designed sequences.

Lastly, for the second design sub-problem, we developed FoldDesign to create novel
protein folds from specific secondary structure (SS) assignments through sequence-independent
replica-exchange Monte Carlo simulations. The method was tested on a large-scale dataset of non-
idealized, SS topologies, where FoldDesign outperformed other state-of-the-art methods and
consistently created stable structural folds with local characteristics that closely matched native
structures. Notably, while sharing similar local characteristics, a large portion of the designed
scaffolds possessed novel global folds that were completely different from natural proteins in the
PDB. This highlights FoldDesign’s ability to explore areas of protein fold space through

computational simulations that have not been explored by nature.
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CHAPTER 1

Introduction

Proteins and non-coding RNA are the macromolecules that are nearly ubiquitously responsible for
carrying out the unique and varied functions necessary to sustain life. These diverse functions are
made possible by the unique three-dimensional structures adopted by different molecules. The
landmark study by Anfinsen in the 1970s demonstrated that tertiary structure is dictated by primary
sequence (1), and since then, understanding the sequence-structure-function paradigm has become
a cornerstone of modern biomedical studies. Among the most accurate experimental methods for
determining the structures of macromolecules are X-ray crystallography (2), NMR spectroscopy
(3), and cryo-electron microscopy (4). However, due to the significant human effort and expenses
required for experimental structure determination, the growth in the number of solved structures
has lagged far behind the accumulation of sequence data. So far, the structures of approximately
0.18 million proteins and less than 0.01 million RNA have been deposited in the Protein Data Bank
(5) (PDB), which accounts for ~0.08% of the 230 million protein sequences in the UniProt
database (6) and ~0.03% of the 34 million non-coding RNA sequences in RNAcentral (7).
Therefore, it is apparent that there is a large gap between the number of known sequences, which
by themselves provide only limited functional insight, and the number of experimentally solved
structures.

Nevertheless, due to the tremendous effort made by the community over the last few decades
(8-22), an increasing portion of the genes in organisms have had their tertiary structures reliably
modeled by computational approaches (23-29). In addition, high-quality structural models are
created every day by online structure prediction systems (15, 16, 20, 22, 30-36). These models
have been used to assist various biomedical studies, including structure-based protein function
annotation (37-41), mutation analysis (42-49), ligand screening (50-57), and drug discovery (58-

63). Thus, the development of high-accuracy structure prediction methodologies represents



perhaps the most promising, yet challenging approach to address the disparity between the number
of known sequences and experimentally solved structures, while also elucidating the fundamental
principles that govern the sequence-structure-function paradigm.

Despite the impressive role of natural molecules such as proteins, only a tiny portion of the
total possible amino acid sequences and structures appear in nature, which is most likely due to
the selective pressures exerted by environmental constraints upon organisms (64). For example,
there have been just under 1,500 protein folds classified in the SCOPe database (65) and the
evidence indicates that, for proteins, the current PDB is nearly complete, representing the vast
majority of natural folds (66, 67). Thus, computational protein design, which aims to create
artificial proteins tailored to specific design applications, is a thorough test of our understanding
of the principles that underly the folding paradigm. To date, computational design approaches have
been applied to create proteins with promising therapeutic potential (68-70), novel ligand-binding
activity (71, 72), and complex logical interactions (73). Thus, given the importance of these
problems, the remaining sections of this chapter will cover the fields of protein/RNA structure
prediction and protein design in more depth, with a particular emphasis on the impact brought

about by deep learning for structure prediction and recent progress in de novo protein design.

1.1 Protein and RNA Structure Prediction

The goal of protein and RNA structure prediction is to use computational methods to determine
the spatial location of every atom in a given molecule starting from its primary sequence.
Depending on whether a template structure is used, structure prediction approaches can be
generally categorized as either template-based modeling (TBM) or template-free modeling (FM)
methods. While TBM constructs models by copying and refining structural frameworks of
evolutionarily related protein/RNA molecules, called templates, identified from the PDB, FM aims
to predict structures without using global template information. FM methods have also been
referred to as ab initio or de novo modeling approaches. A general pipeline that illustrates the key

steps involved in TBM and FM methods is depicted in Fig. 1.1.
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Figure 1.1 Typical steps involved in template-free and template-based protein structure prediction
approaches. Starting from a query sequence, a multiple sequence alignment (MSA) is generated by
identifying homologous sequences from a sequence database. The MSA is then converted into a
sequence profile and is also used to predict several structural features such as the secondary
structure, backbone torsion angles and solvent accessibility. For fragment assembly-based template-
free modeling methods, these structural features together with the sequence profile are used to search
a fragment library in order to identify high scoring local fragments. For template-based modeling
methods, they are used by threading protocols to identify global template structures. Meanwhile,
co-evolutionary information is extracted from the MSA and fed into a deep residual neural network
in order to predict important spatial restraints such as inter-residue contacts, distances, hydrogen
bonds and torsion angles. For full-length model construction, structure assembly simulations are
performed under the guidance of a composite force field which usually combines the generic
knowledge- and/or physics-based energy function with deep neural network feature prediction (plus
template-based restraints in the case of template-based modeling). Finally, representative models
are selected typically from the lowest energy conformations or based on structural clustering,
followed by atomic-level refinement to generate the final model.

1.1.1 Classical Approaches to Template Based Modeling

There are four key steps involved in TBM methods: (1) identification of experimentally solved
structures (templates) that are related to the protein/RNA to be modeled, (2) alignment of the
protein/RNA of interest (query) and the templates, (3) construction of initial structural frameworks
by copying the aligned regions of the template structure, and (4) construction of the unaligned

regions and refinement of the global fold.



Depending on the evolutionary distance between the query and template, TBM has been
historically divided into comparative modeling (CM, see Fig. A.1 in Appendix A) and threading
(see Fig. 1.1). CM is designed for targets with close homologous templates where the templates
can typically be identified by sequence-based alignment, while threading is designed for detecting
more distantly homologous templates by combining sequence profiles and/or Hidden Markov
Model (HMM) alignments with local structure feature prediction (74-76). With the progress in the
field, the difference between CM and threading has become increasingly blurred, especially for
protein structure prediction, and most of the modern TBM approaches start with templates
identified by advanced threading programs. Since different threading programs are trained with
different scoring function and alignment algorithms, the template recognition and alignment
results are often diverse for the same query sequence. This has resulted in the prevalence of meta-
threading programs (77, 78), which collect and combine template alignments from a set of
complementary threading algorithms. While rigorous theoretical studies to explain the consistent
improvement brought about by combining multiple structures were not available until many years
later (79), the intuition behind the usage of multiple threading templates is simple. Given that there
are many more ways for threading to generate incorrect alignments than to generate a correct
alignment, it is much easier to get a consensus correct alignment than multiple consistent but
incorrect alignments (80).

Since threading templates only provide gapped traces, which have no practical use for detailed
function annotation and/or virtual ligand screening, many programs have been developed to
assemble and refine full-length atomic structural models starting from the template alignments.
Among the methods for protein-specific TBM, MODELLER (13) was one of the first programs
and builds atomic models by optimally satisfying spatial restraints derived from a threading
alignment, where the restraints are expressed as probability density functions for the restrained
features. One of the most successful classical TBM methods is I-TASSER (17), which is an
extension of TASSER (25). I-TASSER has been consistently ranked as the top automated method
in the community-wide Critical Assessment of Structure Prediction (CASP) experiments, where
the goal of CASP is to benchmark the state of the art in protein structure prediction (81, 82). In the
I-TASSER pipeline, continuous fragments are excised from the template alignments and
reassembled through replica-exchange Monte Carlo (REMC) simulations, where the unaligned

regions (mainly loops) are built ab initio using a lattice-based system in junction with the aligned



fragments. One of the key reasons for the success of [-TASSER is its effective combination of
multiple threading templates (often more than 20-50) under the guidance of an optimal knowledge-
based force field whose parameters were extensively optimized using large-scale structural decoys
(83). Following a similar idea, RosettaCM was developed which assembles global structural folds
by recombining aligned segments of threading templates and building unaligned regions de novo
in torsion space using gradient-based minimization (84).

In comparison to protein structure prediction, the field of RNA structure prediction has
witnessed considerably less progress in TBM modeling (85, 86). This is in part due to the fact that,
compared to proteins, there is much less structural information present in the PDB for RNA, which
makes template-based modeling less effective. For example, of the 4,192 Rfam RNA families,
only 99 families have solved structures (87). This is drastically different from protein structure
prediction, where the PDB is nearly complete, representing the vast majority of single domain
protein folds (66, 67). Nevertheless, there has been some work in template-based RNA modeling.
For example, ModeRNA, which is mainly used for CM, copies the coordinates from the aligned
region of a template and rebuilds the unaligned regions using a cyclical coordinate descent
algorithm guided by a knowledge-based potential to ensure proper loop closure (88). Other RNA-
specific TBM methods, such as RNAbuilder (89), combine restraints from multiple template
structures with a physical potential that accounts for factors such as steric clashes and base-pairing.
Structural minimization is then performed in torsion angle space, where the RNA bond lengths
and angles are kept fixed, and the dihedral angles are optimized with respect to the template- and

physics-based potential.

1.1.2 Classical Approaches to Template-Free Modeling

Unlike TBM, FM approaches predict structures without the use of global template information.
One of the most effective methods for constructing FM models is fragment assembly, where the
idea was pioneered by Bowie and Eisenberg in 1994 for protein structure prediction (90). More
modern protein fragment assembly approaches include Rosetta (14) and QUARK (16). These
methods first identify local fragments, ranging from 1-20 residues long, from solved protein
structures based on the profile-profile similarity and comparison of the local structural features
such as secondary structure, solvent accessibility and torsion angles, either predicted for the query

or extracted from the templates (16). In the next step of the fragment assembly simulations, the



backbone torsion angles for a specific region of the simulated structure are replaced with those
from a selected fragment, either assuming ideal bond lengths and angles (14), or directly taking
these from the fragments themselves (16). Loop closure may also be used, which adjusts the torsion
angles around the substitution site in order to prevent large conformational changes downstream
(91). The rationale for constructing models through fragment assembly is two-fold: it reduces the
size of the conformational search space, while ensuring the local structures of models are well
formed as the fragments are selected from experimentally determined structures, which can help
compensate for inaccuracies in the energy functions used for modeling. To improve the efficiency
of conformational sampling, Rosetta (14) uses simulated annealing Monte Carlo simulations, while
QUARK (16) uses REMC simulations with as many as 11 different conformational moves and
extracts distance-profile restraints from the generated fragments in order to guide the simulations
towards the native structure (92).

Fragment assembly has also been among the most popular methods for RNA structure
prediction given the lack of template information in the PDB for RNA molecules. For example,
FARNA (93), which was introduced in 2007 and later extended to FARFAR (94), is an extension
of the Rosetta fragment assembly protocol, where the altered protocol includes an RNA-specific
fragment library as well as base-pairing and stacking potentials derived from PDB statistics. The
core procedure of FARFAR is similar to the procedure for Rosetta-based protein structure
prediction, where small, evolutionarily related structural fragments are identified from a fragment
library and assembled during the Monte Carlo folding simulations. Other successful fragment
assembly-based approaches to RNA structure modeling include methods such as 3dRNA (95),
RNAComposer (96), and VfoldLA (97).

Fragment assembly methods have consistently been among the top performers in the FM
section of the CASP experiment as well as the RNA-Puzzles challenge by successfully folding
protein and RNA targets that lack identifiable homology templates (86, 98-101). Here, the RNA-
Puzzles challenge is similar to the CASP experiment in that it is a blind modeling challenge whose
aim is to identify the top RNA tertiary structure prediction methods (85, 86, 101, 102). Despite the
success, the Monte Carlo simulation-based fragment assembly process can be time-consuming
compared to TBM approaches, since FM methods need to create models starting from random

conformations. These computational limitations also impose further restrictions on the energy



functions, which typically use coarse-grained representations that account for only a fraction of

the atoms that make up each residue.

1.1.3 Early Effort in Inter-residue Contact Prediction to Assist FM Approaches

Given the inability of threading-based methods to reliably identify high-quality templates for many
targets as well as the sampling and physical energy function limitations, an additional source of
information was needed to guide structure prediction approaches, particularly for FM targets.
Thus, the use of statistical models and machine learning methods to predict pairwise spatial
restraints has become a major area of research in the field. This is because the tertiary structures
of proteins and RNA are formed and stabilized by interactions between the atoms that make up
each residue, and prediction of these interactions provides extremely useful information that can
guide modeling approaches. Initially, these pairwise spatial restraints took the form of contact map
prediction, where a contact map for a protein or RNA with length L is a symmetric, binary LXL
matrix and each element of the matrix indicates whether the distance between two residues falls
below a specific cutoff (typically <8A).

One of the earliest sequence-based contact prediction methods used correlated mutations
observed in multiple sequence alignments (MSAs) to predict inter-residue contact maps (103).
Here, an MSA is an alignment of sequences that are evolutionarily related or share sequence
homology to a given query sequence (104). The hypothesis behind the approach was that if
mutations that occur at two positions in an MSA are correlated, these positions are more likely to
form a contact in 3D space (105). This is because there is evolutionary pressure to conserve the
structures of proteins/RNA and a mutation at one position may be rescued by a corresponding
mutation at a nearby residue. The accuracy of co-evolution-based contact map prediction remained
low for many years due to the inability to distinguish between direct and indirect interactions (106,
107), where indirect interactions occur when residues appear to co-evolve but do not actually form
contacts. For example, if Residues A and B are both in contact with Residue C, A and B often
appear as if they co-evolve even when there is no physical contact between them. There is evidence
that shows such co-evolution may have a functional cause rather than a structural one, which
resulted in the failure of structure-based contact derivation (108).

Progress in contact prediction remained stagnant for some time. However, a leap in contact

prediction accuracy took place when algorithms started utilizing global prediction approaches.



Early methods mainly predicted contacts between residue pairs one-at-a-time using techniques
such as mutual information, thus ignoring the interactions with other residue pairs and the global
context in which the interactions took place (109). This was largely why it was difficult for these
local methods to distinguish between direct and indirect interactions. The introduction of global
statistical models determined through the use of direct coupling analysis (DCA) was more
successfully able to distinguish between these direct and indirect interactions (106, 107). The goal
of such global statistical models is to determine the set of direct interactions that most
harmoniously accounts for the observed sequence co-variation by simultaneously considering the
entire set of pairwise interactions. Since all pairwise interactions are simultaneously considered,
instead of just considering one interaction at a time and ignoring the global context in which the
interactions take place, DCA was able to significantly improve the contact prediction accuracy.
Many DCA techniques fit a Markov random field (MRF), or more specifically a Potts model,
to an MSA (106, 107, 110, 111). An MRF is a graphical model that represents each column of an
MSA as a node that describes the distribution of residues at a given position, where the edges
between nodes indicate the joint distributions of residues between each pair of positions. The
couplings or co-evolutionary parameters can then be determined from the edge weights. Since
fitting an MRF model using its actual likelihood function is computationally intractable due to the
need to calculate the partition function, various approximations have been developed including
those based on message passing (106), Gaussian approximation (111), mean-field approximation
(107), and pseudo-likelihood maximization (110). Another popular method was introduced by
PSICOV (112), which determines the coupling parameters by estimating the inverse covariance
matrix or precision matrix using a graphical LASSO penalty (L1 regularization) instead of directly
fitting an MRF model to an MSA. This was later extended by ResPRE (113), where the inverse
covariance matrix is estimated using L2 regularization instead of L1 regularization. Network
deconvolution has also been used to distinguish direct from indirect interactions determined from

co-evolutionary data (114).

1.1.4 Accurate Restraint Prediction through Deep Residual Neural Networks
Although encouraging progress in contact prediction was made by DCA, the accuracy remained
unsatisfactory in many cases, particularly for targets with few homologous sequences and shallow

alignment depths (115). However, a breakthrough in protein contact map prediction came in 2017



when Xu’s group proposed RaptorX-Contact (19), which reformulated the contact prediction
problem through the introduction of deep residual convolutional neural networks (ResNets (116)).
Here, a ResNet is a convolutional neural network that adds an identity map of the input to the
output of the convolutional layers, allowing gradients to flow smoothly from deeper to shallower
layers and enabling the training of deep networks with many layers. Under this framework, the
contact map prediction problem is considered an image segmentation task, i.e., a pixel-level
labeling problem, where the whole contact map is an image in which each residue pair corresponds
to a pixel. Image segmentation is a task for which ResNets, originally developed for computer
vision, have demonstrated excellent performance. While the features used by RaptorX-Contact,
such as co-evolutionary information obtained through DCA, predicted secondary structures, and
PSSMs, were quite similar to other predictors, the introduction of deep ResNets with
approximately 60 hidden layers enabled RaptorX-Contact to dramatically outperform other
methods. The approach introduced by RaptorX-Contact was adapted by methods such as ResPRE
(113) and TripletRes (117), which used a similar deep learning architecture but with a unique set
of features that included multiple co-evolutionary coupling matrices.

Similar ResNets were later extended to multi-class distance prediction, which predicts the
binned distance between two residues as opposed to a binary contact value (36). The power of
distance map-guided folding was convincingly demonstrated by AlphaFold in the CASP13
experiment, in which the program utilized an ultra-deep neural network composed of 220 ResNet
blocks to predict distance maps for a query sequence (118). The distance maps were then used to
guide rapid gradient descent-based folding simulations (118).

The success of deep learning contact and distance map prediction raised the question of
what other restraints could be accurately predicted using deep learning. As structure modelers have
known for years that knowledge-based energy functions that are dependent only on residue-residue
distances are often not as accurate as those that use both distances and orientations (119), a natural
extension of distance prediction was inter-residue orientation prediction. Orientation-dependent
energy functions are important as certain types of residue-residue interactions require not only
distance proximity but also specific orientations between the residue pairs, e.g. f-strand pairing.
Furthermore, it is not possible to uniquely determine the geometry of a structure without
orientation information, as distance information alone cannot differentiate between a pair of

mirrored structures. Orientation prediction in a deep learning framework was introduced by



NEMO (120) and later refined by trRosetta, which simultaneously predicts both pairwise residue
distances and inter-residue orientations from co-evolutionary features using a unified deep ResNet
(22). As will be discussed in Chapter 2, inspired by these advances, we developed
DeepPotential/DeepFold, which predicts an ensemble of contact, distance, orientation and
hydrogen bonding maps and converts these into a deep learning-based potential that is minimized
using rapid gradient-based folding simulations (121, 122). This approach was found to be highly
effective at modeling non-homologous protein targets in the CASP14 experiment and independent

benchmark analyses (121, 122).

1.1.5 Highly Accurate Protein Structure Prediction by AlphaFold2
The most exciting progress to date in the field of protein structure prediction was recently brought
about by AlphaFold2 (123), the second iteration of AlphaFold developed by DeepMind, which
achieved unprecedented modeling accuracy in the CASP14 experiment. Compared to the first
iteration of AlphaFold in CASP13, which was driven by convolutional neural network-based
distance map prediction, one of the major advancements of AlphaFold2 is the incorporation of a
self-attention-based neural network architecture known as the Transformer. Transformers are a
novel machine learning architecture that was introduced in 2017 by Google, and have significantly
impacted the field of natural language processing, outperforming recurrent and convolutional
networks (124). Briefly, transformers pass inputs through a series of self-attention and feedforward
connections, which allow the network to attend to relevant information from the input and build
up complex representations that incorporate long-range dependencies. Moreover, instead of using
gradient-descent optimization to construct models based on the predicted distance restraints, as
AlphaFold did in CASP13, AlphaFold2 utilizes a full end-to-end training system from sequence
to structure using iterative structural refinement. As part of this, the system replaces traditional
folding simulations with a structure module composed of 3D equivariant transformer neural
networks, which treat each amino acid as a gas of 3D rigid bodies and allows for the direct
generation of structure models.

The accuracy of AlphaFold2 was convincingly demonstrated in CASP 14, where it dramatically
outperformed all other methods. As evidence of this, Fig. 1.2.A depicts the historical modeling
results from CASP7 and CASP11-14 on FM and TBM targets in terms of the mean TM-scores of

the best first submitted model for each target. Here, TM-score is sequence length independent
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metric that ranges from (0, 1], where a score >0.5 indicates the predicted and native structures
share the same global topology and a score >0.914 may be used as a cutoff for low-to-medium
resolution experimental accuracy (125). From Fig. 1.2.A, it can be seen that in the eight years from
CASP7-11 the average TM-score on FM targets improved slowly from 0.38 to 0.47. However,
with the wide-spread adoption of DCA and shallow neural networks in CASP12 and deep ResNets
in CASP13 for restraint prediction, the modeling accuracy for FM targets improved significantly
from 0.47 to 0.65 over the span of four years. Notably, the accuracy on TBM targets remained
largely stagnant during this time (TM-score 0.80-0.83).

In CASP14, most top predictors used deep ResNets to predict distance and orientation maps,
which were then used to guide the folding simulations, where the average performance of the best
submitted models for FM and TBM targets improved to 0.69 and 0.84, respectively. However,
AlphaFold2 alone was able to achieve an average TM-score of 0.84 for FM targets and 0.93 for
TBM targets. From Figs. 1.2.B-C, we can also see a marked increase in the number of models
produced with experimental accuracy when considering a cutoff TM-score of 0.914 (125). In
previous CASP experiments, none of the FM targets could be folded with such high accuracy, but
in CASP14, AlphaFold2 was able to fold ~33% of the FM targets with experimental accuracy, and
almost 80% of the TBM targets. Thus, AlphaFold2 was able to produce FM predictions with
accuracies comparable to TBM models generated by other groups, and their models for TBM

targets had an average accuracy comparable to low-to-medium resolution experimental structures.
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Figure 1.2 CASP modeling results from CASP7 through CASP14. (A) Mean TM-score of the best
first TBM and FM models submitted in the corresponding CASP competitions. (B) Results for the
best first TBM models (including TBM, TBM-easy, TBMA-hard, and FM/TBM) submitted by any
group in CASP7/11-14, where the models are categorized into one of three categories based on their
TM-scores: [0, 0.5), [0.5, 0.914], (0.914, 1.0]. (C) Results for the best first FM models submitted by
any group in CASP7/11-14, where the models are categorized into one of three categories based on
their TM-scores: [0, 0.5), [0.5, 0.914], (0.914, 1.0].

1.1.6 Other Self-Attention-based Networks for Structure Prediction

Inspired by the remarkable performance of AlphaFold2, current state-of-the-art structure
prediction methods have followed suit in using deep self-attention networks. For example,
RosettaFold, which was introduced in the months following CASP14, combines a self-attention-
based MSA trunk network with a structure-based, SE(3)-equivariant graph transformer network to
produce either the predicted coordinates for a given protein sequence (end-to-end version) or the
predicted distance and orientation maps (pyRosetta) (126). For the pyRosetta version, the predicted
restraints are used to guide gradient-based folding simulations to generate a final model.
Interestingly, the authors found that the performance of the end-to-end version was slightly worse
than that of the restraint-based pyRosetta version, which in part reflects the difficulty in end-to-
end structure prediction training. Overall, RosettaFold was able to significantly outperform deep
ResNet-based models in a retrospective benchmark test on CASP14 targets but was less accurate

than AlphaFold2 (126).
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Motivated by such advancements, we introduced DeepFoldRNA (127), which was the first
available self-attention-based network for RNA tertiary structure prediction (Chapter 3).
DeepFoldRNA is an extension of our DeepFold pipeline (122), where the ResNet architecture was
replaced with a deep self-attention-based network that predicts the combined distance and
orientation maps for an RNA molecule. Similar to the trunk network of AlphaFold2,
DeepFoldRNA takes as input the MSA built for a query sequence, which is then processed using
multiple layers of row- and column-wise self-attention to extract the evolutionary and positional
information encoded in an alignment. The processed MSA embedding is then projected to a pair-
wise positional embedding using an outer-product mean operation and refined using a triangular
self-attention scheme as introduced by AlphaFold2 (123). Lastly, the distance and orientation maps
are predicted from the final pair-wise embedding and converted into a deep learning-based
potential that is minimized using gradient descent to produce a full-length model. Benchmark tests
revealed that DeepFoldRNA significantly outperformed other leading RNA folding methods, with

greatly reduced folding simulation times.

1.2 De Novo Protein Design

Having covered the field of protein/RNA structure prediction, we will now turn our attention
toward protein design. Unlike protein structure prediction, which aims to model unknown 3D
structures from known sequences, protein design attempts to identify new amino acid sequences
that fold into specific 3D structures. De novo protein design usually contains two steps, the
construction of a specific tertiary structure (or fold) and the identification/optimization of new
amino acid sequences for that structure.

In addition to its use in protein structure prediction, fragment assembly has been successfully
used to address the first step in de novo protein design, which is the construction of new protein
folds beyond those observed in nature. One of the landmark achievements in de novo protein
design was the design of Top7 in 2003 (128), which is one of the few proteins designed without a
natural structural analog. The design of Top7 and other more recent de novo designed proteins
have expanded on the strategies used by fragment assembly-based structure prediction methods,

where a generic pipeline for such approaches is highlighted in Fig. 1.3.
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Figure 1.3 Typical steps involved in a fragment assembly-based approach to design new protein
structures. Starting from the desired secondary structure together with any user-defined packing
restraints, such as residue-residue contact/distance restraints, the query is searched through a non-
redundant PDB structure library using gapless threading to generate position-specific fragment
structures. High scoring fragments, which may range from 1-20 residues long, are identified based
on the complementarity between the desired secondary structure and a fragment’s secondary
structure and backbone torsion angles. Then during the folding simulations, the top scoring local
fragments are assembled under the guidance of a sequence-independent energy function, which
accounts for fundamental rules that govern protein folding such as secondary structure packing,
backbone hydrogen bonding, favorable backbone torsion angles, steric clashes, radius of gyration,
as well as the artificial contact/distance restraints supplied by the user. As the method is sequence
independent, generic side-chain centers of mass, typically those for valine, are used to evaluate
energy terms such as steric clashes. Following the folding simulations, the final design may be
selected based on clustering of the simulation decoys, by selecting the lowest energy structure, or
through whatever filter the user deems appropriate.

Instead of starting from an amino acid sequence, leading structure design methods such as
Rosetta (129) start from a predefined secondary structure and other user-defined constraints such
as inter-residue distances, which define a target fold. Fragments are then picked with secondary
structures and backbone torsion angles that are compatible with the predefined secondary structure.
The simulation strategy is slightly altered as the amino acid-specific energy function is replaced
with an energy function that is independent of the amino acid sequence and generic side-chain
centers of mass are used to avoid steric clashes (129). Another popular method for designing
backbone structures is to generate them using idealized parametric models (130), although this

approach is typically more useful for designing helical bundle proteins and is not as effective at

designing proteins with more complex topologies or hydrogen bonding networks.
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Following the generation of the initial target folds based on the input constraints, iterative
rounds of sequence and structure optimization are performed for amino acid sequence design
(129). Here, sequence design and structure optimization can be performed using combined physics
and knowledge-based energy functions such as Rosetta (131) or EvoEF2 (132). These approaches
may start from a fixed protein backbone or perform flexible backbone refinement, where the amino
acid side-chain conformation or rotamer of a randomly selected position is substituted for another
rotamer randomly selected from a rotamer library (129). The corresponding energy changes caused
by the mutation are then calculated using the physical energy function, where mutations are
accepted or rejected based on the Metropolis criterion.

While most current protein design methods utilize physical energy functions to search for low
free energy states in sequence space, the design results may be limited by the inability of physical
energy functions to accurately recapitulate inter-atomic interactions or recognize correct folds,
which has also been manifested in various protein folding and structure prediction studies (80,
133). Motivated by these limitations, as will be discussed in Chapter 4, we proposed EvoDesign
(134), which includes evolutionary profiles derived from natural structural analogs in the force
field in order to enhance the folding stability of the designed sequences and accommodate for the
inaccuracies in purely physics-based energy models. For protein-protein interaction (PPI) design,
EvoDesign starts from an input complex structure and identifies both monomeric and interface
structural analogs from databases of solved protein structures. These structural analogs are
converted into PPI evolutionary profiles, which are then combined with a physical energy function

to guide the REMC sequence design simulations.

1.2.1 De Novo Design of Proteins with Complex Structures and Functions

The past few years have seen encouraging progress in de novo protein design, where proteins
with increasingly complex structural characteristics and functions have been created (135-145).
Although many de novo designed proteins have highly idealized structures with a single low
energy conformation, recent work by Wei et al. demonstrated that it is possible to design proteins
that adopt multiple low energy states that assume significantly different conformations (135). In
the study, the authors used Rosetta to design a helical bundle that either adopted a short (~66 A
height) or long (~100 A height) state based on the environmental conditions, which mimicked the

action of membrane fusion proteins. Additionally, new studies have focused on designing proteins
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with more complex logical functions for use in synthetic biology. In this regard, Chen et al. was
able to design logic gates that controlled transcription and enzymatic activity via the association
of different designed coiled-coil heterodimers (136). The backbone structures of each coiled-coil
were designed in a previous study using parametric modeling to generate the helices and loop
fragments to connect them into a single chain (137). The association between different
heterodimers was achieved using the Rosetta HBNet protocol (138), which can be used to
exhaustively enumerate all of the hydrogen bond networks available for a given design space in
order to design highly specific protein-protein interactions.

Rosetta has also been applied to the classical problem of designing proteins with significant 3-
sheet content, which have enriched hydrogen bonding patterns. For example, Dou et al. designed
fluorescence-activated B-barrel proteins using either ideal parametric models or fragment assembly
(139). Interestingly, the authors found that the ideal backbones generated by the parametric models
had unfavorable steric strain and hydrogen bonding interactions. These problems were alleviated
by building backbones using fragment assembly and introducing kinks and bulges into the
structures, producing a stable and functional protein. Another challenging problem in protein
design is the ability to create proteins that can bind to highly functionalized small molecules.
Polizzi et al. tackled this problem by creating a unit of protein structure called the van der Mer,
which directly maps the backbone of each amino acid to preferred positions of interacting chemical
groups (145). The method was then used to design proteins capable of binding the complex drug
apixaban, which has implications for the de novo design of customized biosensors and enzymes,

among other applications (145).

1.2.2 De Novo Design of Therapeutic Proteins

Other studies have focused on designing proteins for therapeutic applications. One strategy to
accomplish this goal is to design proteins that are capable of binding natural targets with high
affinity. For instance, Chevalier et al. described a protocol for generating large pools of mini-
proteins with different backbone scaffolds composed of ~40 residues produced by fragment
assembly (140). The authors demonstrated that given advances in high throughput experimental
techniques and computational modeling, an unprecedented number of designed proteins could be
tested. This resulted in the production of highly stable designs that could bind to influenza

hemagglutinin and provide prophylactic protection without eliciting an adverse immune response
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(140). Another study by Silva et al. used parametric modeling to design mimics of IL-2 and IL-15
capable of binding the IL-2 receptor Py. heterodimer but without binding sites for CD25 and
CD215, producing a potent anti-cancer effect without the toxicity of natural IL-2 therapeutics
(141). Furthermore, methods such as TopoBuilder have been used to generate computationally
designed immunogens with topologies designed to stabilize functional motifs that induce the
production of virus-neutralizing antibodies (142-144). These successes highlight the potential for
de novo protein design to create therapeutics with tailor-made characteristics and superior efficacy
compared to those produced by traditional approaches.

Lastly, during the COVID-19 pandemic, researchers sought to develop new proteins that could
serve as therapeutic treatments. Along this line, in the study by Huang et al., we proposed the
design of de novo peptides to inhibit the association of the SARS-CoV-2 Spike protein with the
human ACE2 receptor (146). The in silico assay experiments showed that the peptide inhibitors
designed by EvoEF2 and EvoDesign had a significantly higher affinity for the binding domain of
the Spike protein than the wildtype hACE2 receptor did. With a similar goal, Cao et al. applied
Rosetta’s fragment assembly design method to design protein inhibitors for the SARS-CoV-2
Spike protein (68). The authors used two design strategies, either incorporating the native helical
interface between ACE2 and the Spike protein or generating novel interfaces de novo by
optimizing the rotamer interaction field. After affinity maturation, they found the second approach

was able to create proteins capable of potently inhibiting SARS-CoV-2 with picomolar affinity.

1.2.3 Recent Advancements in De Novo Protein Design Methodologies

Despite the successes, de novo protein design still remains somewhat of an art form, where
large-scale experimental optimization is often required to generate successful designs (68, 70). In
particular, extensive user-intervention during scaffold creation and selection is frequently
necessary (71, 147). Furthermore, even given the examples in the previous sections, the ability to
consistently design stable structures for non-idealized fold definitions or to create novel folds
remains an outstanding problem in the field (148).

Recently, Anishchenko et al. performed an interesting study that combined deep neural-
network training with structural refinement simulations to ‘hallucinate’ proteins; it could create
novel protein sequences but the structural folds were generally close to PDB structures (with an

average TM-score=0.78) (149). Meanwhile, the resulting protein folds were largely randomized
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depending on the stochastic process of the design iterations, where the method was further
extended to allow for the incorporation of specific functional sites or structural motifs (150). In
another recent approach, Huang et al. combined a neural network-derived, sidechain-independent
potential (SCUBA) with stochastic dynamics simulations and demonstrated an impressive ability
to generate successfully folded designs (151). Notably, the method should be used in tandem with
3D backbone sketches adapted from a ‘periodic table’ of protein structures (152) through manual
manipulation and thus the conformational space of the final structures is limited to the topological
area defined by the initial backbone sketches.

Similarly, extensions of the Rosetta fragment assembly protocol such as the aforementioned
TopoBuilder require pre-definition of a target fold in the form of sketches that specify the 3D
arrangement of the desired secondary structure (SS) elements. Then the sketches are parametrically
optimized based on matching the desired fold with analogous structures in the PDB and assembled
from fragments that match the fold definition using Rosetta (153). Other methods like SEWING
(154) have been successful at producing stable designs by reassembling relatively large helical
substructures identified from the PDB; however, the approach is limited to the conformations
adopted by large substructures present in the PDB and has been benchmarked only on helical folds
(154, 155). Additionally, as mentioned, most of the successful de novo designs have highly
idealized structures with optimized SS compositions that lack the complex irregularities often
present in native proteins, where a significant portion of the designed folds are well represented in
nature or may be described through ideal parametric geometries (148, 156-159). Thus,
development of automated algorithms capable of precisely designing any required fold type,
including those without structure analogs in the PDB or idealized SS compositions, with limited
human intervention is critical to improve the scope and success rate of de novo protein design.

To address this issue, we developed FoldDesign, which will be covered in Chapter 5, to create
novel protein folds from specific secondary structure (SS) assignments through sequence-
independent replica-exchange Monte Carlo (REMC) simulations. Detailed data analyses revealed
that the major contributions to the successful structure design lay in the optimal energy force field,
which contains a balanced set of secondary structure and novel fragment-based energy terms, and
the efficient REMC simulations, which combine fragment assembly with multiple auxiliary
movements to search the conformational space. On a large benchmark dataset of non-idealized,

complex SS topologies, FoldDesign was able to consistently generate stable structure designs,
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where roughly 1/4 of the designs possessed novel folds that were not represented in the PDB,
illustrating an important ability of the program to explore the areas of protein fold space

unexplored by natural evolution.

1.3 Thesis Overview

The goal of my thesis is to develop new state-of-the-art methods for protein/RNA structure
prediction and protein design. In the remaining chapters, I will cover representative works in each
of these areas as follows.

Chapter 2 describes DeepFold, a method for ab initio protein structure prediction. DeepFold
uses deep ResNets to predict the combined contact, distance, and orientation restraints from an
MSA generated for a query sequence. These restraints are then converted to a deep learning-based
potential that is combined with a general physical energy function, where rapid gradient-descent
minimization is used to generate a full-length protein structure model.

Chapter 3 focuses on DeepFoldRNA, an extension of the DeepFold pipeline for ab initio RNA
structure prediction. In DeepFoldRNA, the ResNet architecture of DeepFold is replaced with a
deep self-attention-based network that generates predicted distance and orientation maps. These
are then converted to a potential and minimized using gradient-descent simulations to produce a
full-length RNA structure model.

Chapter 4 describes EvoDesign, an online tool for functional protein sequence design.
EvoDesign combines evolutionary profiles collected from analogous protein folds with an
optimized physics-based potential to generate new amino acid sequences for a given fold.

Chapter 5 describes FoldDesign, a method for de novo protein structure design. FoldDesign
uses a sequence-independent energy function with REMC-based fragment assembly simulations
to design new protein folds given a specific secondary structure topology definition.

Chapter 6 summarizes the findings and presents future directions.
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CHAPTER 2

DeepFold: Fast and Accurate Ab Initio Protein Structure Prediction Using

Potentials from Deep Learning

In this chapter, we will focus on the protein structure prediction problem. As mentioned in the
introduction, depending on whether reliable structural templates are available in the PDB, protein
structure prediction methods have been divided into template-based modeling (TBM) and
template-free (FM) approaches (80). For many years, TBM has been the most reliable method for
modeling protein structures; however, its accuracy is essentially determined by the availability of
close homologous templates and the quality of the query-template alignments. Conversely, FM
methods were designed to use advanced energy functions and sampling techniques to improve the
folding performance for proteins that lack homologous templates in the PDB. However, due to the
inaccuracy in force field design and the limitations of conformational search engines, the
performance of the physics-based FM methods for non-homologous targets has remained
significantly worse than that of the TBM methods for targets with readily identifiable homologous
templates (160, 161).

Throughout the last few years, the use of deep learning techniques to predict spatial restraints
has dramatically improved the accuracy of ab initio structure prediction (125). For example, in
CASPI11 and CASP12, predictors primarily used direct coupling analysis and shallow neural
networks to predict contact maps, where the prediction accuracy largely relied on the identification
of abundant sequence homologs in order to accurately predict contacts based on the information
from correlated mutation patterns (115). In the CASP13 experiment, however, the top-ranked
server groups, Zhang-Server and QUARK, used contact maps predicted by deep convolutional
residual networks (ResNets) (162) to guide the I-TASSER (17) and QUARK (16) folding
simulations, respectively, which greatly improved the contact prediction and folding accuracies

for the physics- and knowledge-based modeling approaches. This was especially apparent for
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targets that lacked homologous templates and high-quality MSAs (115). In the recent CASP14
experiment, multiple deep learning constraints, including distance maps, which are conceptually
similar to contact maps but include inter-residue distance information (36, 163), inter-residue
dihedral angles (22) and hydrogen-bonding networks (164), were integrated with the folding
simulations. The results demonstrated significant improvements over the contact-based structure
assembly approaches, due to the introduction of more precise spatial information to guide the
folding simulations (164).

Despite the improvement in modeling accuracy, the approaches built on traditional
fragment/template assembly folding techniques, such as I-TASSER (17), Rosetta (14) and
QUARK (16), often require lengthy simulation times, especially for longer proteins, which hinders
them from large-scale modeling applications. In fact, the necessity of extensive conformational
sampling required for ab initio modeling is due to the immense structure space and complex energy
landscape associated with protein folding. Although this may still be required when integrated
with sparse spatial constraints from threading alignments and low-resolution experiments (165-
167), the advanced deep learning techniques can now provide abundant high-quality restraints.
These abundant and accurate restraints can significantly smooth the rough protein folding energy
landscape. In this regard, extensive folding simulations may no longer be needed, which partially
explains the remarkable success enjoyed by other teams in the CASP experiments such as the first
iteration of AlphaFold (163) in CASP13 and trRosetta (22), which construct structural models
using local gradient-descent based conformational searching procedures.

Inspired by these advances, we developed a fast open-source protein folding pipeline,
DeepFold, which combines a general physical force field and deep learning-based potential with
rapid L-BFGS folding simulations to improve the speed and accuracy of FM protein structure
prediction. The pipeline was carefully benchmarked on large-scale datasets and showed superiority
over other leading structure prediction approaches, all with greatly reduced simulation times
compared to traditional folding simulation methods. Notably, following the development of
DeepFold, the newest self-attention-based methods, such as AlphaFold2 (123) and RosettaFold
(126), were released and showed greatly improved modeling accuracy compared to deep
convolutional ResNet architectures. Nevertheless, utilizing restraints from these methods,
DeepFold was able to achieve similar or slightly better performance than the newest self-attention-

based networks, demonstrating that it is a versatile platform that can be easily adapted for advances
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in the state of the art. Each component of the program, including the deep learning models and L-
BFGS structure optimization pipeline, is integrated into an easy-to-use, stand-alone package

available at both https://zhanggroup.org/DeepFold and https://github.com/robpearc/DeepFold.

Meanwhile, an online webserver for DeepFold is available at https://zhanggroup.org/DeepFold,

where users can apply the method to generate structure models for their own protein sequences.

2.1 Results and Discussion
2.1.1 Distance and orientation restraints have the dominant impact on global fold accuracy

As shown in Fig. 2.1, DeepFold starts by searching the query sequence through multiple whole-
genome and metagenomic databases using DeepMSA2 (164) to create a multiple sequence
alignment (MSA). Next, the co-evolutionary coupling matrices are extracted from the resulting
MSA and used as input features by the deep ResNet architecture of DeepPotential to predict spatial
restraints, including distance/contact maps and inter-residue torsional angle orientations. These
restraints are then converted into a deep learning-based potential, which is used along with a
general physical potential to guide the L-BFGS folding simulations for full-length model

generation (see Methods).

Query Sequence
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Figure 2.1 Overview of the DeepFold pipeline. Starting from a query amino acid sequence,
DeepMSA?2 is used to search the query against multiple whole-genome and metagenome sequence
databases to create a multiple sequence alignment (MSA). The MSA is then used by DeepPotential
to derive input features based on co-evolutionary analyses for the deep ResNet training.
DeepPotential outputs the probability distribution of CB-CB/Ca-Ca contact and distance maps as
well as the inter-residue orientations. These restraint potentials along with the inherent statistical
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energy function are used to guide the L-BFGS folding simulations for final full-length structure
model construction.

To test DeepFold, we collected a set of 221 non-redundant (<30% sequence identity to each
other) protein domains from the SCOPe 2.06 database and FM targets from CASP9-12. These
proteins were non-homologous (with a sequence identity <30%) to the training dataset of
DeepFold, were solved at 3 A resolution or better by X-ray crystallography, had lengths between
100-500 residues, and were all defined as Hard threading targets by LOMETS (168) after
excluding homologous templates with >30% sequence identity to the query. Here, a Hard target is
a protein for which LOMETS could not identify a significant template, allowing for a systematic
evaluation of the developed method on FM modeling targets. To examine the importance of the
different components of the DeepFold energy function, we ran DeepFold using different
combinations of spatial restraints from DeepPotential for the 221 test proteins, where the modeling
results are summarized in Fig. 2.2 and Table B.1 in Appendix B.

Overall, the baseline potential using just the general physical energy function (GE in Table B.1
and Fig. 2.2) achieved an average TM-score of only 0.184. Furthermore, when considering a cutoff
TM-score >0.5 to indicate a correctly folded model, which would mean the predicted model and
native structure share the same global fold (169, 170), the baseline energy function was unable to
correctly fold any of the test proteins (Table B.1). Given that the coupling of a similar force field
with replica-exchange Monte Carlo simulations in QUARK could fold substantially more proteins
with a much higher average TM-score (16), this result suggests that one major reason for the failure
here is due to the frustration of the baseline energy landscape, which cannot be quickly explored
by gradient-based searching methods. The further inclusion of Ca and CP contact restraints
improved the TM-score to 0.263, where 4 of the 221 test proteins, or 1.8%, were successfully
folded with TM-scores >0.5. The addition of the Ca and Cp distance restraints dramatically
improved the average TM-score on the test dataset to 0.677, representing an increase of 157.4%,
where 76.0% of the test proteins were correctly folded. Lastly, the inclusion of the inter-residue
orientations further improved the average TM-score to 0.751 and the percent of successfully folded
proteins to 92.3%. Overall, as the level of detail in the restraints increased, the energy landscape
became increasingly smooth and thus the L-BFGS folding simulations resulted in increased

average TM-scores across the test proteins.
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Figure 2.2 Contribution of the various spatial restraints and energy terms on the DeepFold modeling
accuracy. The violin plot shows the TM-score of DeepFold using different combinations of energy
terms/restraints on the 221 test proteins, including the general physical energy function (GE),
contact restraints (Cont), distance restraints (Dist), and orientation restraints (Orien).

Although the addition of inter-residue distances to the energy function brought about the
largest improvement in accuracy, one interesting observation is the synergistic effect observed
when combining different components of the restraints. For example, the addition of inter-residue
orientations improved DeepFold’s ability to find structures that optimally satisfied the distance
restraints. As evidence of this, in Table B.2 we present the mean absolute errors (MAESs) for the
top n*L long-range distance restraints, where L is the protein length and # is a chosen scale factor,
which were calculated between the DeepPotential predicted distance maps and the final DeepFold
models with and without the use of the orientation restraints.

The table shows that the introduction of inter-residue orientations helped to significantly
decrease the MAE between the predicted distance maps and the structure models. For example,
when considering the top 2*L distance restraints, which were sorted by their DeepPotential
distance prediction confidence scores, the MAE was 0.74 A when DeepFold was run using the GE
and contact/distance restraints, whereas the MAE was reduced by 17.6% to 0.61 A when the
orientation restraints were added. Therefore, not only do orientations provide useful geometric
information on their own, they also help further smooth the energy landscape and facilitate the L-

BFGS search to identify energy basins that satisfy the ensemble of spatial restraints.
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Furthermore, inter-residue orientations were particularly useful for folding B-proteins. As seen
in Table B.3, the inclusion of orientations increased the average TM-score for B-proteins from
0.590 to 0.706, corresponding to a 19.7% improvement, which was significantly higher than the
10.9% improvement observed on the overall dataset (Table B.1); this makes sense intuitively given
the intricate hydrogen bonding patterns present in -proteins that would require more detailed local
inter-residue dihedral angle restraint information to properly recapitulate. Fig. 2.3 presents an
illustrative example from SCOPe protein d1jqpal, which adopts a B-barrel fold. The model built
without orientations had a low TM-score of 0.313 and an RMSD of 11.43 A, where the MAE
between the top 2*L DeepPotential distances and the model without orientations was 0.87 A. In
contrast, the model built using the orientation restraints had a drastically improved TM-score of
0.800 and an RMSD of 2.74 A. Additionally, the MAE between the top 2*L DeepPotential
distances and the model improved to 0.61 A. Thus, the orientation restraints provide
complementary information to the distance maps and had a particularly important role for folding

B-proteins.

d1jgpal: Model w/o Orientations Model with Orientations

TM-score: 0.313
RMSD: 1143 A

TM-score: 0.800
RMSD: 2.74 A

dijgpal

L/ I DeepFold Model

Figure 2.3 Case study from SCOPe protein dljqpal that demonstrates the importance of inter-
residue orientations for folding B-proteins. The native structure is shown in yellow, and the
superposed predicted models built without (left) and with (right) orientation restraints are shown in
blue.

2.1.2 The general physical energy function improves local structure quality

The rapid improvement in the accuracy of deep learning-based restraint prediction has called
into question the role of the physical energy function in the era of deep learning. Indeed, we saw
that the major contributor to DeepFold’s accuracy is the high number of accurately predicted
restraints generated by DeepPotential, where their addition dramatically improved the average

TM-score from 0.184 to 0.751 (Fig. 2.2). Nevertheless, the physical energy function, which
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accounts for fundamental forces that drive protein folding, such as hydrogen bonding interactions
and van der Waals clashes, plays an important role in improving the physical quality of the
predicted models; this is especially true when the model quality is poor. As evidence, Table 2.1
lists several model quality metrics for models generated with and without the use of the GE
function.

On the overall test set of 221 hard protein targets, the inclusion of the GE potential provided a
modest yet consistent enhancement in the physical model quality, as reflected in the improvement
of the MolProbity score (171) from 1.735 to 1.692 with the addition of the GE function (Table
2.1). Similar trends were observed for the secondary structure quality (SOV score (172)), the
number of Ramachandran outliers, and the steric clash score, all of which improved with the
inclusion of the GE (Table 2.1). The most notable improvement was observed in the clash score,
which improved by 13.3% on the overall dataset.

More significant improvements were witnessed for the 16 targets with poor physical quality,
as measured by a MolProbity score in the 50" percentile or lower from the PDB structures. For
these targets, the physical energy function improved the average MolProbity score from 2.882 to
2.308, representing an improvement of 19.9% compared to 2.5% on the overall dataset. Similarly,
these improvements were consistent across the SOV score, number of Ramachandran outliers, and
the clash score for these targets. Again, the most dramatic improvement occurred for the clash

score, which decreased from 17.5 to 8.6, representing an improvement of 50.9%.

Target Type DeepFold Rama Clash

SS SOV MP-score
(# of Proteins) Energy Function Outliers Score
All Targets w/o General Energy 79.68% 6.52 3.61 1.735
(221) with General Energy 79.71%  5.92 3.13 1.692
MP-score  <50™ | w/o General Energy 58.41% 13.00 17.54 2.882
Percentile (16) with General Energy 61.44%  9.81 8.58 2.308

Table 2.1 Impact of the general energy (GE) function on DeepFold’s modeling performance.
Specifically, the table presents the effect of the GE on the secondary structure SOV score, number
of Ramachandran outliers, the MolProbity clash score, and the total MolProbity score on the overall
dataset and those targets with poor physical model quality.

Fig. 2.4 illustrates a case study from SCOPe protein d1xsza2, where models were generated

with and without the inclusion of the general physical energy function. In the model built without
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the GE function, there are several residues that directly overlap each other leading to severe steric
clashing, as shown in the inset. These clashes among other factors led to a model with a large, and
thus unfavorable, MolProbity score of 3.908 (3™ percentile) along with a very high clash score of
212.8. As shown in the inset in Fig. 2.4, these clashes were resolved with the inclusion of the GE
potential and its term for van der Waals clashes, where the resulting model had a reduced
MolProbity score of 1.624 (92" percentile) and a low clash score of 1.2. Clearly, simply satisfying
the geometric restraints provided by deep learning may lead to models that are physically

unrealistic, where the introduction of physical energy terms may partially alleviate this problem.

d1xsza2: Model w/o GE Model with GE

WY

AJ. '.}’Ai‘
.\
\
\

Figure 2.4 Case study from SCOPe protein d1xsza2, which highlights the importance of the general
energy function for improving the physical quality of the models. The models built without (left)
and with (right) the general physical energy function are depicted in rainbow coloring, where the
clashing region is shown in the inset.

2.1.3 Comparison of DeepFold with other leading modeling methods

To further evaluate the performance of DeepFold, we compared the modeling results on the
221 test proteins with a leading contact map-based folding program (C-I-TASSER (173)), two top
distance (DMPfold (174)) and distance/orientation-based (trRosetta (22)) methods, and the classic
I-TASSER pipeline (17), where the results are summarized in Table 2.2. To provide a fair
comparison, we used the same MSAs that DeepFold used, which were produced by DeepMSA?2
(164) (see Fig. 2.12 in Methods section 3.3.1), for the deep learning restraint prediction by
DMPfold, trRosetta and C-I-TASSER, as well as for template identification by LOMETS in I-
TASSER and C-I-TASSER. Furthermore, templates with >30% sequence identity to the query
were excluded from [-TASSER and C-I-TASSER.

As shown in Table 2.2, the average TM-score of the DeepFold models for the 221 test proteins

was significantly higher than all the control methods. For instance, the average TM-score for the
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models produced by I-TASSER was only 0.383, where DeepFold achieved an average TM-score
(0.751) that was 96.1% higher than I-TASSER with a p-value of 9.4E-80 as determined by a paired,
two-sided Student’s t-test (Table 2.2). This result is understandable as [-TASSER does not use any
deep learning spatial restraints, making the modeling accuracy more reliant on the templates,
while, by design, all homologous templates were excluded for the Hard threading targets. The
inclusion of deep learning contact maps into C-I-TASSER greatly increased the TM-score to
0.584. Nevertheless, DeepFold still achieved an average TM-score that was 28.6% higher than C-
I-TASSER with a p-value of 1.8E-55. This is mainly due to the fact that DeepFold utilizes both
distance and orientation restraints, which contain more detailed information than the contact maps

used in C-I-TASSER (115).

Method TM-score (p-value) RMSD (p-value) Correct Folds” TMDeepFom:
Method
I-TASSER 0.383 (9.4E-80) 15.10 (7.1E-25) 24.0% 95.9%
C-I-TASSER 0.584 (1.8E-55) 8.89 (4.0E-26) 67.0% 95.9%
DMPfold 0.657 (5.6E-37) 7.81 (2.0E-18) 79.6% 92.3%
trRosetta 0.694 (8.3E-24) 6.81 (4.7E-09) 85.5% 87.8%
DeepFold 0.751 5.61 92.3% -

* This column represents the percent of proteins with TM-scores >0.5.
I This column indicates the percent of test proteins for which DeepFold generated a model with a higher TM-score than the control
method.

Table 2.2 Summary of structure modeling results by DeepFold and the control methods on the 221
test proteins. The p-values were calculated between DeepFold and the control methods using paired,
two-sided Student’s t-tests.

Interestingly, there were two targets (dlltrd and dlnova) for which I-TASSER and C-I-
TASSER produced models that were significantly more accurate than DeepFold. To examine the
reason for the discrepancy in performance, Fig. 2.5 depicts the models generated by I-TASSER,
C-I-TASSER, and DeepFold superposed with the native structures along with the top templates
used by I-TASSER and C-I-TASSER for these proteins. For d1ltrd, despite the fact that it was a
hard threading target, LOMETS was able to identify a reliable template from the PDB (1prtl) with
a coverage of 92.6% and a TM-score of 0.553; thus, both -TASSER and C-I-TASSER constructed
accurate models with TM-scores of 0.663 and 0.637, respectively. Conversely for DeepFold, the

generated MSA contained few homologous sequences with a normalized number of effective
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sequences (or Neff, defined in Text D.1 in Appendix D) of 0.42, resulting in inaccurate predicted
restraints with an MAE of 2.60 A for the top 2*L distances. This ultimately lead DeepFold to
produce an inaccurate model with a TM-score of 0.326. Additionally, the contact precision for the
top L/2 contacts used by C-I-TASSER was only 50.0%, which is largely why the C-I-TASSER
model was worse than the I-TASSER model.

Similarly, for dlnova, LOMETS was able to identify a reliable template (PDB ID 1hofC) with
a coverage of 100% and a TM-score of 0.544, which resulted in accurate [-TASSER and C-I-
TASSER models with TM-scores of 0.631 and 0.713 for the two methods, respectively. Again, for
DeepFold, the generated MSA was shallow with a normalized Neff value of 9.40. Nevertheless,
the predicted distance restraints were still accurate with an MAE of 0.90 A for the top 2*L
distances; however, the predicted orientations were inaccurate, particularly the Q orientation,
which had an MAE of 31.3° for the top 2*L restraints. This resulted in a model with a TM-score
of 0.546, which still possessed a correct fold, but was less accurate than the models generated by
I-TASSER and C-I-TASSER. Unlike the previous example, the C-I-TASSER model was more
accurate than the I-TASSER model for dlnova as the predicted contacts were accurate with a
precision of 98.7% for the top L/2 contacts. These two examples highlight that even with the
advances in deep learning methods, template-based modeling still remains important, particularly
given the reliance of deep learning techniques on the generated MSAs, which may be lower quality

than the identified templates for numerous targets.
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TM-score: 0.544 TM-score: 0.631 TM-score: 0.713 TM-score: 0.546

Figure 2.5 Case study from two targets, d11ltrd (A-D) and d1nova (E-H), for which I-TASSER/C-I-
TASSER outperformed DeepFold. A) LOMETS template (blue) superposed with the native
structure for dlltrd (yellow); B) I-TASSER model (blue) superposed with the native structure
(yellow); C) C-I-TASSER model (blue) superposed with the native structure (yellow); D) DeepFold
model (blue) superposed with the native structure (yellow); E) LOMETS template (blue) superposed
with the native structure for d1nova (yellow); F) I-TASSER model (blue) superposed with the native
structure (yellow); G) C-I-TASSER model (blue) superposed with the native structure (yellow); H)
DeepFold model (blue) superposed with the native structure (yellow).

DeepFold also outperformed the two other leading distance (DMPfold) and
distance/orientation-based (trRosetta) methods, where DMPfold achieved an average TM-score of
0.657 and trRosetta obtained an average TM-score of 0.694. Therefore, DeepFold’s average TM-
score was 14.3% higher than DMPfold and 8.2% higher than trRosetta, where the differences were
statistically significant with p-values of 5.6E-37 and 8.3E-24, respectively (see Table 2.2).
Furthermore, Fig. 2.6 presents a head-to-head comparison of DeepFold with the control methods,
where DeepFold outperformed trRosetta and DMPfold on 194 and 204 of the 221 test proteins,

respectively.
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Figure 2.6 Head-to-head TM-score comparisons between DeepFold and other protein structure
prediction methods.A) I-TASSER; B) C-I-TASSER; C) DMPfold; D) trRosetta; E) AlphaFold. (A-
D) are based on the 221 Hard benchmark proteins, while (E) is on 31 FM targets from CASP13.

Compared to DMPfold, an obvious advantage of DeepFold is the use of inter-residue dihedral
angle orientations, which resulted in a substantial TM-score increase for DeepFold as shown in
Fig. 2.2. Compared to trRosetta, since both methods use distance and orientation restraints, the
major advantage of DeepFold is the high accuracy of the restraints generated by DeepPotential.
Therefore, in Table 2.3, we provide an accuracy comparison for the Cf distance predictions by
different programs, where the distance maps by DeepPotential had a significantly lower MAE to
the native structures than those produced by both trRosetta and DMPfold across all cutoff values.

Method L/2 (p-value) L (p-value) 2L (p-value) 5L (p-value) 10L (p-value)
DeepPotential 0.974 (*) 1.018 (*) 1.090 (*) 1.302 (*) 1.613 (%)
trRosetta 1.050 (4.9E-02) 1.154 (5.9E-04) 1.328 (2.8E-06) 1.730 (2.0E-07) 2.241 (1.4E-11)

DMPfold 1.779 (14E-15)  1.930 (7.6E-22) 2.184 (7.5E-28) 2.695 (1.6E-33) 3.488 (1.1E-41)

Table 2.3 MAE:s of the top n*L long-range distances by different distance predictors on the 221 test

proteins. The p-values were calculated using paired, two-sided Student’s t-tests between the
DeepPotential results and the control methods.

In Table B.4, we also list the modeling results of trRosetta using the DeepPotential restraints.

Although trRosettat+DeepPotential resulted in a higher average TM-score (0.735) than trRosetta
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alone, due to the use of the more accurate restraints from DeepPotential, the average TM-score of
DeepFold was still significantly higher than that of trRosetta+DeepPotential with a p-value of
3.9E-09. This is likely due to the unique DeepFold knowledge-based force field and the utilization
of the additional Ca distance maps that are not used by trRosetta. In addition, the simultaneous
optimization of the DeepFold force field with the L-BFGS search engine (see Methods) helped
enhance the structure construction process.

Here, of particular interest is the modeling performance for those hard targets with very few
effective sequences in their MSAs, which are the most difficult targets to fold using deep learning
approaches. For this purpose, we collected a set of 16 targets with normalized Neff values less
than 1 and calculated the TM-scores for the models produced by DeepFold, trRosetta, and
DMPfold. On these targets, DeepFold achieved an average TM-score of 0.494, which was 40.3%
higher than trRosetta (0.352) and 44.9% higher than DMPfold (0.341). In Fig. 2.7, we present a
scatter plot of TM-score vs. the logarithm of the normalized MSA Neff value for the three methods
on all 221 test proteins, where DeepFold demonstrated a lower correlation between the TM-score
and Neff value than trRosetta and DMPfold, which partially explains the superior performance of
DeepFold.
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Figure 2.7 Model TM-score vs. the logarithm of the MSA Neff value for DeepFold, trRosetta, and
DMPfold. The fitted models were obtained by linear regression with Pearson’s Correlation
Coefficients of 0.615, 0.712, and 0.675 for DeepFold, trRosetta, and DMPfold, respectively.

Lastly, we compared the modeling accuracy of DeepFold with the first version of AlphaFold
on the 31 CASP13 FM targets that the AlphaFold human group submitted models for (Table B.5).
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Note, we could not benchmark the performance of AlphaFold on the 221 test proteins as the feature
generation scripts and folding pipelines are not publicly available. It can be seen from Table B.5
that DeepFold outperformed AlphaFold on 20 of the 31 FM targets, where, on average, the TM-
score of DeepFold was 0.636 compared to 0.589 for AlphaFold (p-value=0.025, Table B.5). It is
also important to note that the AlphaFold human group performed thousands of different
optimization runs for the CASP13 targets as reported (163), while DeepFold only used a single

optimization run in this study.

2.1.4 Comparison of DeepFold with AlphaFold2 and RosettaFold

Since DeepFold uses restraints from DeepPotential, which was developed before the advances
made by AlphaFold2 (123) in CASP14, it is also of interest to compare the results against the most
recent self-attention-based neural network methods, namely, AlphaFold2 and RosettaFold (126).
Thus, in Fig. C.1 in Appendix C, we provide a head-to-head comparison of the DeepFold modeling
results utilizing the restraints from DeepPotential with RosettaFold and AlphaFold2 on the 221
test proteins in terms of the model TM-scores, where the results are summarized in Table 2.4.

Overall, the average TM-score of the RosettaFold end-to-end pipeline was 0.812 and the
average TM-score of the Pyrosetta version was 0.838, which were higher than the results by
DeepFold (TM-score=0.751) with p-values of 3.6E-10 and 8.0E-22, respectively. Similarly, the
average TM-score of AlphaFold2 was 0.903, which was higher than DeepFold with a p-value of
1.4E-49. These results were expected given that the advances in deep self-attention neural
networks and end-to-end training by AlphaFold2 and, subsequently, RosettaFold showed greatly
improved modeling accuracy over previously introduced convolutional ResNet architectures, such

as DeepPotential.
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Mean TM-score Correct

Method .
(p-value) Folds

RosettaFold (End-to-End) 0.812 (3.6E-10) 93.7%

RosettaFold (Pyrosetta) 0.838 (8.0E-22) 95.5%

AlphaFold2 0.903 (1.4E-49) 95.0%

DeepFold 0.751 92.3%

* This column represents the percent of proteins with TM-scores >0.5.

Table 2.4 Modeling results of DeepFold using the DeepPotential restraints vs RosettaFold and
AlphaFold2 on the 221 test proteins. For the mean TM-scores, the p-values were calculated using
paired, two-sided Student’s t-tests.

Notably, there were 7 targets for which DeepFold outperformed AlphaFold2. In Fig. 2.8, we
illustrate two examples where DeepFold generated models that were significantly more accurate
than AlphaFold2. The first example is from SCOPe protein d1a34a, for which DeepFold generated
a model with a TM-score of 0.613, while AlphaFold2 generated a model with a TM-score of 0.242.
For this target, DeepMSA2 was not able to identify any sequence homologs, resulting in an MSA
composed of only the query sequence and an extremely low normalized Neff value of 0.08.
Nevertheless, DeepPotential generated accurate restraints with an MAE of 1.10 A for the top 2*L
distances, resulting in a higher quality model than that produced by AlphaFold2.

The second example is from SCOPe protein d1s2xa, for which DeepFold generated a model
with a TM-score of 0.590, while AlphaFold2 generated a model with a TM-score of 0.369. Again,
for this target, DeepMSA2 was only able to identify two sequence homologs, which resulted in a
very low normalized Neff value of 0.15. Additionally, the DeepPotential restraints were fairly
inaccurate with an MAE of 2.54 A for the top 2*L distances and 59.29° for the 2*L Q orientations.
Surprisingly, even though the orientation restraints were inaccurate, their inclusion greatly
improved the modeling accuracy, as the model built using only the contact and distance restraints
possessed a low TM-score of 0.268, while the model built using the full set of contact/distance and
orientation restraints had a TM-score of 0.514. Moreover, the addition of the general knowledge-
based energy function further improved the TM-score to 0.590. This suggests that even when
inaccurate, the combination of various restraints with a general energy function may act
synergistically to filter out inaccuracies in the predictions.

It is noteworthy that the two preceding examples were from proteins with few to no
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homologous sequences. In fact, if we consider the 5 proteins in the benchmark dataset with the
least homologous sequence information (<3 sequence homologs) and normalized Neff values
<0.20, DeepFold generated more accurate models than AlphaFold2 for 4 of these targets, where
the average TM-score of DeepFold was 0.528 compared to 0.398 for AlphaFold2. This suggests
that, while deep self-attention-based protein structure prediction approaches have demonstrated an
improved ability to fold proteins with few sequence homologs, the performance on the most

extreme cases remains to be improved.

TM-score: 0.242

[ Jd1a34a [ Jdla34a
I DeepFold Model I AlphaFold2 Model

" TM-score: 0.369

[ Jdis2xa [ Idis2xa
I DeepFold Model I AlphaFold2 Model

Figure 2.8 Case study from two proteins (d1a34a and d1s2xa) for which DeepFold significantly
outperformed AlphaFold2. The DeepFold/AlphaFold2 models are shown in blue superposed with
the native structures in yellow.

Lastly, given the importance of the most recent advances in protein structure prediction, we
sought to determine whether or not they could be incorporated into DeepFold to further improve
its performance. To answer this question, we utilized the restraints from RosettaFold, including
the CP distances and orientations, as well as the Ca distances/contacts and CB contacts from
DeepPotential to guide the DeepFold simulations. The results of this analysis are depicted in Table
2.5 and Fig. C.2, which present head-to-head comparisons between DeepFold utilizing the
combined restraints with RosettaFold and AlphaFold2 in terms of the model TM-scores on the 221
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benchmark proteins.

With the combined RosettaFold and DeepPotential restraints, DeepFold achieved an average
TM-score of 0.844, higher than that attained by the end-to-end (TM-score=0.812) and Pyrosetta
(TM-score=0.838) versions of RosettaFold with p-values of 2.4E-11 and 1.2E-2, respectively.
These data demonstrate that the DeepFold knowledge-based force field and DeepPotential contact
and Ca distance restraints may improve the results obtained by RosettaFold. Additionally, it shows
that DeepFold is a versatile platform that can be easily adapted for any future advances in state-

of-the-art deep learning restraint predictors.

Mean TM-score Correct
Method .
(p-value) Folds
RosettaFold (End-to-End) 0.812 (2.4E-11) 14.3%
RosettaFold (Pyrosetta) 0.838 (1.2E-02) 95.5%
AlphaFold2 0.903 (4.1E-11) 95.0%
DeepFold 0.844 96.4%

* This column represents the percent of proteins with TM-scores >0.5.

Table 2.5 Modeling results of DeepFold using the combined RosettaFold and DeepPotential
restraints vs RosettaFold and AlphaFold2 on the 221 test proteins. For the mean TM-scores, the p-
values were calculated using paired, two-sided Student’s t-tests.

2.1.5 DeepFold greatly improves the accuracy and speed of protein folding over classical ab
initio methods

Rosetta (14) and QUARK (16) are two of the most well-known fragment-assembly methods
and have been consistently ranked as the top methods for ab initio protein structure prediction in
previous CASP experiments (161, 175, 176). However, a major drawback of the traditional ab
initio folding approaches is that their modeling performance drops as the protein length increases,
making them significantly less reliable for modeling larger protein structures composed of more
than 150 residues (80). To examine the impact of deep learning on ab initio structure prediction
for long protein sequences, we compared DeepFold to both Rosetta and QUARK, where Fig. 2.9.C
depicts the TM-score of DeepFold, QUARK, and Rosetta vs the protein length. The data show that
the performance of DeepFold remained consistent as the protein length increased, where the
average TM-score for large proteins composed of 350-450 residues was in fact higher than that for

the small proteins in the test set with lengths <150 residues (0.809 vs. 0.742), mostly due to the
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more favorable MSAs collected for the set of larger proteins. However, the performance of both
QUARK and Rosetta noticeably decreased as the protein length increased; the average TM-score
for proteins with lengths less than 150 residues was 0.329 for QUARK and 0.304 for Rosetta but
was only 0.190 and 0.196 for QUARK and Rosetta, respectively, on proteins with lengths between
350 and 450 residues. From these results, DeepFold outperformed QUARK and Rosetta
remarkably on the overall dataset and especially on the longest proteins in the dataset, for which
the average TM-score of DeepFold was 325.8% higher than QUARK and 312.8% higher than
Rosetta.

Another major limitation of fragment-assembly approaches is that they require lengthy
simulations to adequately explore the immense structure space available. In Figs. 2.9.A-B, we list
a comparison of the folding simulation time requirement for DeepFold and the QUARK fragment
assembly approach for different protein lengths. The results show that the speed of DeepFold is
orders of magnitude faster than QUARK, especially for large proteins. Note that we ran QUARK
using 5 separate trajectories in parallel and the run time shown in Fig. 2.9.A is the average run
time across all 5 simulation trajectories. Thus, if the simulations were run sequentially, the run
time would be 5 times longer, which further accentuates the cost of fragment assembly. Therefore,
while fragment assembly requires hours to days to fold a protein, DeepFold requires only seconds
to minutes. Overall, the average run time of DeepFold on the test set was 6.98 minutes, while the
average for QUARK was 1830.82 minutes for an average protein length of 188.1 residues. This
indicates that QUARK requires 262.3 times the computing time that DeepFold requires for one
simulation trajectory, and the difference was even greater as the sequence length increased.
Overall, the run time of DeepFold was similar to trRosetta, which required 5.48 minutes to
construct models on the test dataset on average. Of particular importance is that the greatly reduced
folding times did not cause the model quality to deteriorate for larger proteins, demonstrating the
ability of deep learning restraints to effectively smooth the energy landscape, thereby allowing

rapid and accurate optimization across protein lengths.
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Figure 2.9 Dependence of simulation time and TM-score on protein length. A) Simulation runtime
for QUARK, trRosetta, and DeepFold in minutes plotted against the protein length. B) A close up
of the runtime vs protein length for DeepFold and trRosetta. C) Analysis of the average TM-score
for DeepFold, QUARK, and Rosetta across different protein length ranges.

2.1.6 Gradient-based protein folding requires a high number of deep learning restraints

The success of rapid L-BFGS-based protein folding approaches raises the question on what
the role of fragment assembly is in protein structure prediction. As L-BFGS and other gradient-
based methods are essentially local optimization techniques that may be prone to becoming trapped
in local energy minima, the more extensive conformational sampling performed by fragment
assembly may still be necessary in the absence of a high number of deep learning spatial restraints.

To examine this hypothesis, Fig. 2.10 depicts the TM-score for L-BFGS-based protein folding
simulations using different numbers of spatial restraints. Consistent with the data in Fig. 2.2, Fig.
2.10 shows that only using the GE function to guide the L-BFGS simulations resulted in a poor
average TM-score of 0.184. This was significantly lower than that obtained by QUARK (TM-
score =0.274), which uses a similar physical energy function without deep learning restraints (16).
These data indicate the frustration of the baseline physical energy force field used by DeepFold,
which cannot be quickly explored with gradient-based methods. Inclusion of the top L all-range
Cp distances slightly improved the TM-score to 0.186, and at least the top 5*L distances were
required to improve the TM-score to a significant degree. In order to achieve a performance that
was better than QUARK, the L-BFGS simulations required 10*L Cp distance restraints, where the
average TM-score using this number of restraints was 0.323. The inclusion of more distance
restraints, such as the top 15*L and 20*L restraints, steadily improved the average TM-score to
0.392 and 0.453, respectively.

However, our tests showed that setting a specific probability cutoff for the selection of distance
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restraints allowed the method to achieve the best result. In DeepFold, all distances with a
probability >0.55 were selected for inclusion in the L-BFGS optimization procedure, which
corresponded to an average of ~93*L distance restraints on the test set, increasing the TM-score
to 0.668. Overall, the addition of the full set of DeepPotential restraints (including contacts, Car
distance and orientations in addition to the Cf distances) increased the accuracy by an additional
12.4%, resulting in a TM-score of 0.751 for the full pipeline. Thus, it is clear that L-BFGS requires
a high number of spatial restraints in order to adequately smooth the energy landscape and make

gradient-based protein folding feasible.
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Figure 2.10 Evaluation of the modeling accuracy of QUARK and DeepFold guided by different
numbers of spatial restraints. The top n*L distances were selected by sorting the CB distances
according to their predicted probabilities.

2.1.7 Case study reveals drastically different dynamics in Monte Carlo and L-BFGS folding
simulations

To further illustrate the differences in the sampling procedures for the fragment assembly
method, QUARK, and the L-BFGS optimization approach, DeepFold, we present in Fig 2.11 a
case study from the amino terminal domain of enzyme I from E. coli (SCOPe ID: d1zymal). Both
DeepFold and QUARK generated a correct fold for this target, where the TM-score of the model
produced by QUARK was 0.547 and the TM-score for the DeepFold model was very high at 0.923
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with an RMSD of 1.29 A, indicating a close atomic match to the experimental structure.

To show the conformational changes during the QUARK folding simulations, Fig. 2.11.A
depicts the TM-score of the conformation for the last replica at REMC cycle i relative to the
conformation of the previous decoy at cycle i-1. From the figure, it can be seen that large changes
in the conformation occur throughout the simulation due to the global conformational searching
and replica exchange steps. On the other hand, the opposite trend was observed for the L-BFGS
folding simulations shown in Fig. 2.11.B, during which large conformational changes occurred
early on in the simulation, and the global fold of the protein was largely determined by the 100™
L-BFGS step. After that, only small fluctuations in the conformation occurred, where the L-BFGS
optimization quickly converged and did not extensively sample the structure space due to the
nature of the local optimization of the smooth energy landscape produced by the large number of
deep learning restraints. Moreover, Fig. 2.11.C depicts the DeepFold models at L-BFGS steps 100
and 1100 superposed with the experimental structure. While the global fold of the model was
determined by the 100" L-BFGS step, substantial conformational changes occurred during the
later L-BFGS steps at the two regions, namely the highlighted terminal coil and core helix regions,
which were poorly formed at step 100 due to the inconsistency in the spatial restraints in these
sections. For the helix region in particular, the model at step 100 had poorly formed secondary
structure as well as severely clashing segments. These errors were gradually corrected over the
remaining 1000 L-BFGS steps. Therefore, while the global folds of proteins may quickly be
determined by the consensus DeepPotential restraints during the L-BFGS simulations, additional
steps are often needed to precisely fine-tune the model quality under the guidance of the atomic

force field.
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Figure 2.11 Comparison of the simulation dynamics for DeepFold and QUARK. A) Analysis of the
conformational changes that occur during the QUARK fragment assembly simulations. The figure
plots the TM-score of the decoy at REMC cycle i compared to the decoy at the previous cycle i-1.
The right hand side shows the final QUARK model in red superposed with the native structure in
cyan. B) Analysis of the conformational changes that occur during the DeepFold simulations. The
figure plots the TM-score of the decoy at L-BFGS step i compared to the decoy at the previous step
i-1, where the right hand side shows the final DeepFold model in red superposed with the native
structure in cyan. C) Comparison between the DeepFold model at L-BFGS step 100 (blue) with the
model at step 1100 (red) and the experimental structure (cyan). The insets show the areas of the
structure that change the most after the 100" L-BFGS step.

2.2 Concluding Remarks

We developed an open-source program (DeepFold) to quickly construct accurate protein
structure models from deep learning-based potentials. DeepFold significantly outperformed other
ab initio structure prediction methods such as Rosetta, QUARK, I-TASSER, C-I-TASSER,
DMPfold, and trRosetta on the test set of 221 Hard threading targets, and AlphaFold on the
CASPI13 FM targets. The impact of deep learning on DeepFold was best highlighted by the
benchmark test with Rosetta, QUARK and I-TASSER, which represent the top traditional FM and
TBM methods. On the benchmark dataset, Rosetta, QUARK and I-TASSER were only able to
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generate correctly folded models for 0.9%, 2.7% and 24.0% of the proteins, respectively, while
DeepFold successfully folded 92.3% of the test proteins with an average TM-score of 0.751,
compared to 0.260, 0.274, and 0.383 for Rosetta, QUARK and I-TASSER, respectively.

Furthermore, the average TM-score of DeepFold was 7.8% and 13.9% higher than the other
leading deep learning-based methods, DMPfold and trRosetta, respectively, starting from the same
MSAs. It was also 8.0% higher than AlphaFold on the 31 CASP13 FM targets. Of particular
interest is the performance on the hardest targets in the dataset with very shallow MSAs (i.e., with
normalized Neff values less than 1), where the average TM-score of DeepFold was 40.3% higher
than trRosetta and 44.9% higher than DMPfold. On top of the improved accuracy, DeepFold had
a similar running time as other gradient descent-based approaches such as trRosetta, but it was
more than 200 times faster than the traditional fragment-assembly based approaches. The success
of DeepFold is mainly due to the effective combination of the inherent knowledge-based potential
with the high number of accurately predicted spatial restraints that help smooth the energy
landscape, making L-BFGS optimization tractable.

Despite the success, significant improvements may still be made. For example, the use of
attention-based networks (123, 177, 178), especially an end-to-end learning protocol (123), should
help further improve the prediction accuracy of DeepFold. Given that the main input features to
DeepPotential are derived from co-evolutionary analyses, DeepFold often requires the input MSAs
contain a sufficient number of effective sequences to enable determination of the co-evolutionary
relationships between protein residues. Despite the fact that the quality of the DeepFold models
was considerably less dependent on the MSA quality than other methods such as DMPfold and
trRosetta, the use of a transformer architecture should help further enhance the performance of
DeepPotential for those targets with poor MSA quality and few homologous sequences by self-
attention-based, iterative MSA refinement. This can be illustrated by the comparison of DeepFold
with the most recent methods, RosettaFold and AlphaFold2, which achieved higher TM-scores on
the benchmark targets. Nevertheless, when utilizing the combined RosettaFold and DeepPotential
restraints, DeepFold was able to outperform both the end-to-end and distance-based versions of
RosettaFold, demonstrating that it is a versatile platform that can be easily adapted for advances
in the state of the art. Meanwhile, DeepFold outperformed AlphaFold2 on 4 out of the 5 targets
with the least homologous sequence information (normalized Neff <0.2), revealing that there is

significant room for improvement on very difficult modeling targets.
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Furthermore, more efficient and precise MSA construction strategies should be developed to
improve the MSA quality and reduce the time required to search the various sequence databases.
The need to increase the searching efficiency is particularly important as the increase in the size
of the sequence databases, mainly the metagenomics databases, is a double-edged sword. While it
enables the collection of more sequences, it also greatly increases the time and computational
resources necessary to search the sequence databases and the potential for false negative sequence
samples due to the increase in noise. For example, searching a 150-residue protein through
MetaClust, which is approximately 100 GB, using DeepMSA2 requires around 1 hour with 1 CPU;
however, searching the same protein through the 5STB JGI metagenome database is dramatically
more expensive, requiring approximately 4 hours using 50 CPUs. This issue is particularly
important for hard modeling targets, which often require extensive homologous sequence
detection. As evidence of this, in Fig. C.3, we plot the number of times each of the 7 MSAs
produced by DeepMSA2 were selected for the 221 benchmark targets. From the figure, it can be
seen that ~55% of the targets required searching beyond the MetaClust database, while only ~15%
did not require searching through any metagenomics database. Meanwhile, incorrectly collected
MSAs, despite having a high number of homologous sequences, can negatively impact the
modeling results as witnessed in the CASP experiments (20). The use of a targeted MSA
generation protocol that focuses on searching sequences related to the target protein’s biome
represents a promising strategy for improving the speed and quality of the MSA generation and

the accuracy of the final 3D structure modeling (179).

2.3 Methods

DeepFold is an algorithm that can quickly construct accurate full-length protein structure
models from deep learning restraints and consists of three main steps: MSA generation by
DeepMSAZ2, spatial restraint prediction by DeepPotential, and L-BFGS folding simulations, as
depicted in Fig. 2.1.

2.3.1 MSA generation by DeepMSA2
DeepMSAZ2 is an extension of DeepMSA (180) for iterative MSA collection, where the new
components include an additional pipeline to search larger sequence databases and a novel MSA

selection method based on predicted contact maps (see Fig. 2.12 below). Briefly, DeepMSA2
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collects 7 candidate MSAs by iteratively searching whole-genome (Uniclust30 and UniRef90) and
metagenome (Metaclust, BFD, and Mgnify) sequence databases. The first 3 MSAs are generated
using the same procedure as DeepMSA (i.e., AMSA in Fig. 2.12), where the query sequence is first
searched through Uniclust30 (2017 _04) by HHblits2 to create MSA-1. Next, the sequences
identified by Jackhmmer and HMMsearch are used to construct a custom HHblits database, against
which HHblits2 is run starting from the MSA generated in the previous stage to generate MSA-2
and MSA-3, respectively. The four remaining MSAs are generated using a procedure called
quadruple MSA (gMSA in Fig. 2.12), which uses HHblits2 to search the original query sequence
against the Uniclust30 database (version 2020 01) to create MSA-4. Next, the sequences detected
by Jackhmmer, HHblits3, and HMMsearch through the UniRef90, BFD, and Mgnify databases are
used to construct custom HHblits-style databases, against which HHblits2 is used to search starting
from the MSAs generated by the previous stages to create MSA-5, MSA-6, and MSA-7,
respectively. To select the final MSA, a quick TripletRes contact map prediction (181) is run
starting from each of the 7 MSAs, where the MSA with the highest cumulative probability for the
top 10*L all-range contacts is selected as the final MSA.
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Figure 2.12 DeepMSA2 pipeline, which contains three major steps: (A) dAMSA, (B) gMSA, and (C)
MSA selection.

2.3.2 Spatial restraint prediction by DeepPotential

Starting from the selected MSAs, two sets of 1D and 2D features are extracted. The 2D features
include the raw coupling parameters from the pseudo likelihood maximized (PLM) 22-state Potts
model and the raw mutual information (MI) matrix, where the 22 states of the Potts model
represent the 20 standard amino acids, a non-standard amino acid type, and a gap state. As
mentioned in Chapter 1, a Potts model is a specific type of Markov Random Field (MRF) model
that is widely-used in protein structure prediction (106, 107, 182, 183). Briefly, an MRF is a
graphical model that represents each column of an MSA as a node that describes the distribution
of amino acids at a given position (Potts model field parameters), where the edges between nodes
indicate the joint distributions of amino acids at each pair of positions. The 2D coupling parameters
can then be determined from the edge weights, where residue pairs that exhibit correlated mutation
patterns will possess greater edge weights, which can be used to infer positions that should be
closer together in 3D space. This is based off of the intuition that if two residues are in contact
with each other, then when one residue mutates, the contacting residue should also mutate in order
to preserve the interaction. In DeepPotential, CCMpred (183) is used to fit the Potts model. The
corresponding parameters for each residue pair in the PLM and MI matrices are extracted as
additional features that measure query-specific co-evolutionary information in an MSA. The 1D
features contain the Potts model field parameters, Hidden Markov Model (HMM) features, and the
self-mutual information, along with the one-hot representation of the MSA and other descriptors,
such as the number of sequences in the MSA.

Next, these 1D and 2D features are fed into deep convolutional residual neural networks
separately, where each of them is passed through a set of one-dimensional and two-dimensional
residual blocks, respectively, and are subsequently tiled together. The tiled feature representations
are considered as the input of another fully residual neural network which outputs the inter-residue
interaction terms, including Ca-Ca distances, CB-Cp distances, and the inter-residue orientations
(Fig. 2.1). Here, the predicted spatial restraints are represented using various bins that correspond
to specific distance/angle values, where DeepPotential predicts the probability that the spatial
restraints fall within the specific bins. For example, for the Ca and Cf distances, the predictions
are divided into 38 bins, where the first bin represents the probability that the distance is <2A and

the final bin represents the probability that the distance is >20A. The remaining 36 bins represent
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the probability that the distance falls in the range [2A, 20A), where each bin has a width of 0.5 A.
On the other hand, the 3 orientation features, as defined in Fig. 2.13, are predicted using a bin
width of 15° with an additional bin to indicate whether there is no interaction between the two
residues (i.e., Cp-CP distance >20A). The DeepPotential models were trained on a set of 26,151

non-redundant proteins collected from the PDB at a pair-wise sequence identity cutoff of 35%.
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Figure 2.13 Definition of the inter-residue orientations predicted by DeepPotential. 2 and 6 are
inter-residue torsion angles formed by the four indicated atoms and ¢ is an inter-residue angle
formed by three atoms.

2.3.3 DeepFold Force Field

The DeepFold energy function is a linear combination of the following terms:

EDeepFold = (ECBdist + ECadist + ECﬁcont + ECacont + EQ + EB + E(p) + (Ehb + Evdw
+ Eor)  (2.1)

where the first seven terms Ecgaise» Ecaaist> Ecgeont> Ecacont» Eqs Eg, and E,, account for the
predicted CB—Cp distances, Co—Ca distances, Cp—Cp contacts, Co—Ca contacts, and three inter-
residue orientation angles by DeepPotential; and the last three terms Ey;,, E,qy, and E;,, denote
the generic energy terms for hydrogen bonding, van der Waals clashes, and backbone torsion
angles, respectively.

Overall, the DeepFold force field consists of 24 weighting parameters, where the weights given
to each of the deep learning restraints were separated into short (1<|i —j| < 11), medium

(11<|i — j| < 23) and long-range (|i — j| > 23) weights, which were determined by maximizing
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the TM-score on the training set of 257 non-redundant, Hard threading targets collected from the
PDB that shared <30% sequence identity to the test proteins. Briefly, all the weights were
initialized to 0, then the weight for each individual energy term was varied one-at-a-time by an
increment of 0.25 in the range from [0, 25] and the DeepFold folding simulations were run using
the new weights. The weight for each term that resulted in the highest average TM-score on the
training set was accepted. After the initial weighting parameters were determined, 3 more
optimization runs were carried out, where the weight for each energy term was again varied in a
range from [0, 25] using an increment of 0.1 and the weighting parameters that resulted in the
highest average TM-score on the training set were accepted. A final optimization run was carried
out, where the weights were perturbed by [-2, 2] from their previously accepted values using an
increment of 0.02 to precisely fine-tune their values. The details of each energy term are further
explained in Text D.2 in Appendix D. Since DeepPotential provides the bin-wise histogram
probability of the spatial descriptors, these terms are further fit with cubic spline interpolation to
facilitate the implementation of the L-BFGS optimization, which requires a continuously

differentiable energy function.

2.3.4 L-BFGS Folding Simulations
A protein structure in DeepFold is specified by its backbone atoms (N, H, Ca, C, and O), C

atoms and the side-chain centers of mass (Fig. 2.14).
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Figure 2.14 Depiction of the reduced model used to represent protein conformations during the
DeepFold folding simulations. The conformations include the backbone atoms (N, H, Ca, C, and O)
as well as the CB atoms and side-chain centers of mass for each amino acid type.
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The initial conformations are generated from the backbone torsion angles (¢, Y) predicted by
ANGLOR through a small, fully-connected neural network (184), where the cartesian coordinates
of the backbone atoms are determined using simple geometric relationships, assuming ideal bond
length and angle values. The conformational search simulations are performed using L-BFGS,
with bond lengths and bond angles fixed at their ideal values, and the optimization is carried out
on the backbone torsion angles.

Here, L-BFGS is a gradient-descent based optimization method that is a limited memory
variant of the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. At each step k, the search

direction dj, of the simulation is calculated by
dy = _Hk_1 ) vEDeepFold (x) (2.2)

where H;; ! is an estimate for the inverse Hessian matrix and VE peepFold (X) represents the gradient
of Epeeproia () with respect to the backbone torsion angles x = (¢, ). The value of Hy, L at step
k = 0 is set to the identity matrix, I, and the value of Hj}, is obtained following the BFGS
formulation

Hity = V{Hi 'V + pyesicsic

Vi =1 = piyisic (2.3)

Pr = 1/ T

Vi Sk

where S = Xp41 — X and Vg = VEpeeprota (k1) — VEpeeprota (Xi)- Hic#y can be computed
recursively by storing the previously calculated values of s, and yy,. To preserve memory, L-BFGS

only stores the last m values of s, and y;. Thus, Hy 1, is calculated by

k-m+1 k k-m+1 [/ j+1 k
= T ) TT w)e Y ([To)osst([10) o
i=k i=k—-m+1 j=k i=k+1 i=j+1

where M = min(k,m — 1) and m is set to 256 in DeepFold. Once the search direction dj, is

decided, the torsion angles for the next step are updated according to
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{¢k+1 = ¢y + aydy
Y1 = Yr + agdy

(2.5)
The value of a}, is determined using the Armijo line search technique (185) and dictates the extent
to move along the given search direction. In DeepFold, a maximum of 10 L-BFGS iterations are
performed with 2,000 steps each, or until the simulations converge. The final model is selected as

the one with the lowest energy produced during the folding simulations.

2.4 Author Contributions

The findings of this study were published in PLOS Computational Biology (122) with myself
(R.P.) as first author, co-authors Drs. Yang Li (Y.L.) and Gilbert S. Omenn (G.S.0.), and
corresponding author Dr. Yang Zhang (Y.Z.). R.P. developed DeepFold, performed the
experiments, analyzed the data, developed the stand-alone package, and drafted the text and

figures; Y.L. developed DeepPotential; R.P., G.S.O., and Y.Z. finalized the manuscript.
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CHAPTER 3

DeepFoldRNA: 4b Initio RNA Tertiary Structure Prediction at Atomic

Resolution Using Geometric Potentials from Deep Learning

Having covered our work in protein structure prediction, we will now turn our attention towards
the related field of RNA structure prediction. Like proteins, RNAs are vital macromolecules that
play a fundamental role in many cellular processes in living organisms, including mediating gene
translation, serving as catalysts of important biological reactions, and regulating gene expression
(186). Again, as is true for proteins, RNA functions are determined by their unique three-
dimensional structures, which in turn are dictated by their nucleic acid sequences. Although
understanding RNA structures is fundamental to elucidating their functions, there is an enormous
discrepancy between the number of known RNA sequences and the number of solved structures.
For example, while ~34 million RNA sequences have been deposited in the RNAcentral database
(7), there are <500 non-redundant RNA structures solved in the Protein Data Bank (PDB) at a
resolution of ~2 A and <30 are composed of >70 nucleotides. Furthermore, only 99 of the 4,192
Rfam families have members with solved structures (87). Thus, there is an urgent need to develop
computational RNA structure prediction methods capable of addressing this stark disparity.

Like with protein structure prediction, the goal of RNA structure prediction is to determine the
spatial location of every atom in an RNA molecule starting from its nucleic acid sequence. Some
state-of-the-art methods take a physics-based approach to model RNA structures by identifying
low free-energy states through Monte Carlo simulations (187), while others approach the problem
by assembling homologous fragments for a given nucleic acid sequence guided by knowledge-
based energy functions (94). However, even with the assistance of human expert intervention and
experimental data, these methods struggle to produce accurate folds for larger, more complex RNA
molecules, rarely achieving RMSDs lower than 8-12 A in blind RNA structure prediction studies

(86, 101). Moreover, the results are typically worse for automatic modeling methods, which may

50



produce models with around 20 A RMSDs for complex folds (187). Progress has been made by
using deep learning to predict secondary structure and contact information to guide the folding
simulations (188-191); however, the improvements remain unsatisfactory and current state-of-the-
art methods rarely achieve atomic resolution models, i.e., <2A RMSD (192), for complex RNA
folds (86, 94, 101, 102). Recently, deep learning approaches have been successfully applied to the
problem of model selection (193). Nevertheless, the success of these methods is predicated on
generating conformations that are close to the native structures, where atomic resolution was only
obtained after utilizing restraints from native structures, which are not available in practical
modeling applications.

To improve the performance of RNA structure prediction methods, we drew inspiration from
our work with DeepFold and the dramatic advances in protein structure prediction made by
AlphaFold2 and other self-attention-based methods (115, 123, 125). Toward this goal, we
developed DeepFoldRNA, which uses a self-attention-based neural network architecture to predict
geometric restraints, where 3D RNA structures are then built using L-BFGS minimization
simulations. Across multiple test experiments, DeepFoldRNA drastically outperformed other
state-of-the-art modeling methods and consistently achieved atomic-level resolution for complex
RNA folds. In addition, due to the rapid gradient-based folding simulations, RN As could be folded
in a tiny fraction of the time required by current methods. The speed and accuracy of
DeepFoldRNA will allow for large-scale elucidation of RNA structure and function, addressing a
fundamental problem in structural biology. Each component of the program, including the deep
learning models and L-BFGS optimization pipeline, is integrated into a stand-alone package at

https://github.com/robpearc/DeepFoldRNA and an online webserver 1is available at

https://zhanggroup.org/DeepFoldRNA, from which users can generate structure models for their

own RNA of interest.

3.1 Results and Discussion

DeepFoldRNA is a method for fully-automated RNA structure prediction that consists of two
consecutive modules (Fig. 3.1). In the restraint generation module (Fig 3.1.A), multiple sequence
alignments (MSAs) of RNAs are collected by iteratively searching through multiple nucleic acid
sequence databases using tMSA (194), where spatial restraints, including pairwise distance and

inter-residue/backbone torsion angles maps, are predicted using self-attention neural networks that
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are built on two transformer elements with information encoded from the sequence, MSA, and

pairwise positional embeddings. In the structure construction module (Fig 3.1B), the predicted

geometric restraints are converted into composite potentials by taking the negative log-likelihood

of the binned probability predictions, which are then used to guide the L-BFGS folding

simulations.
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Figure 3.1 Overview of the DeepFoldRNA pipeline. A) Starting from a nucleic acid sequence,
multiple RNA sequence databases are searched to create a multiple sequence alignment (MSA) for
the query RNA, which is embedded into the network to initialize the MSA representation. The raw
MSA is also used to derive the secondary structure prediction and initialize the pair embedding. The
MSA and pair embeddings are then processed by the MSA Transformer layers, which use multiple
self-attention mechanisms to refine the initial embeddings, where communication is encouraged
between the two to ensure consistency. Next, the sequence embedding is extracted from the row in
the final MSA embedding corresponding to the query sequence, which is further processed using
self-attention mechanisms by the Sequence Transformer layers. Finally, the distance and inter-
residue torsion angle maps are predicted from a linear projection of the final pair embedding, while
the backbone pseudo-torsion angles are generated by a linear projection of the sequence embedding.
B) The geometric restraints are converted into a negative-log likelihood potential to guide the L-
BFGS simulations for final RNA model construction.

Two datasets were constructed to test DeepFoldRNA. The first was collected from Rfam

families (87) with experimentally solved structures, where we curated a set of 4082 Rfam

structures with complex folds and lengths between 70-250 nucleotides. From this set, we obtained

105 non-redundant RNA structures from 32 Rfam families after using a sequence identity cutoff

of 80%. The second dataset was taken from the community-wide RNA-Puzzles experiment (85,
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86, 101, 102) and consisted of 17 non-redundant, monomeric RNA structures where the models

predicted by all groups were available to be downloaded at https:/github.com/RNA-

Puzzles/standardized_dataset. All targets in the test sets, together with those at >80% sequence

identity to them, were held out from training the DeepFoldRNA pipeline.

3.1.1 DeepFoldRNA accurately predicts geometric restraints

Two central geometric restraints are predicted by DeepFoldRNA, including distance and
orientation maps. The distance maps include the pairwise distances between the nitrogen atoms of
the base bonded to the ribose sugar (N1 for pyrimidines and N9 for purines) as well as the backbone
C4’ and P atoms (Fig. 3.2.A), while the inter-residue orientations include Q =< C4; — N1/N9, —
N1/N9j —C4; >, 4; =< P; — C4; — N1/N9, — N1/N9j >, and 4; =< P; — C4; — N1/N9j -
N1/N9 i > where i and j are the nucleotide indices along the sequence (Fig. 3.2.B). The network

of Module-1 generates probability distributions for each of the geometric restraints, where the

distances and orientations are divided into 40 and 25 bins, respectively (see Methods).
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Figure 3.2 Definition of the geometric restraints predicted by DeepFoldRNA. These restraints
include (A) inter-residue distances, (B) inter-residue torsion angles, and (C) backbone pseudo-
torsion angles.

To assess the accuracy of the predicted restraints, we list in Table 3.1 the Mean Absolute Errors
(MAESs) for the top L, 5L and 10L medium/long-range (]i — j|>12) distance and orientation
restraints predicted by DeepFoldRNA for the 122 RNAs in the two test sets. Here, MAE =
(1/n) Y=, |x; — vi|, where x; is the value of the predicted restraint with the maximum probability
score for a selected residue pair, y; is the corresponding value in the native structure, and n is the

number of restraints considered. As a control, we also list the distance/orientation parameters taken
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from the predicted models by two state-of-the-art modeling methods: SimRNA (187) and Rosetta
FARFAR?2 (94), which have been among the most accurate automatic modeling servers in previous
RNA-Puzzles experiments (86, 101, 102). To provide a fair comparison between the methods, the
predicted secondary structures used by DeepFoldRNA were used as constraints during the
SimRNA and FARFAR?2 simulations, where the exact procedures used to run both programs are
provided in Texts F.1 and F.2 in Appendix F. Overall, DeepFoldRNA produced accurate distance
and orientation predictions, where the average MAEs for the top L, 5L and 10L N1/N9 distances
were 0.72, 0.83 and 0.93 A, respectively, which were ~9-11 times lower than those extracted from
the SIMRNA and FARFAR2 models. For the ()/4 orientations, the average L, 5L and 10L MAEs
were 0.17/0.14, 0.20/0.16 and 0.23/0.17 radians, respectively, which were around 4-6.5 times
lower than those obtained from the SImMRNA and FARFAR2 models. These data demonstrate the
ability of DeepFoldRNA to create very accurate restraint predictions, which are crucial to its
modeling performance.

It is noted that since the SimRNA and FARFAR2 models do not have confidence scores
associated with each distance/orientation, we selected restraints based on the DeepFoldRNA
confidence scores alone in the above comparisons. To remove the bias in restraint selection, we
present a comparison for all medium/long-range restraints at the last column of Table 3.1. As
expected, the MAE was much larger for the DeepFoldRNA restraints when all residues were
considered, suggesting the sensitivity of the DeepFoldRNA confidence scores and the rationality
for the 3D model construction based on a limited number of high-ranking restraints. Interestingly,
the MAEs of the SImRNA and FARFAR2 models were also typically smaller (except for the A
orientation) for the top-ranked residues than for all residues; this is probably because
DeepFoldRNA tends to have higher confidence scores in conserved regions where SimRNA and

FARFAR?2 could also generate slightly better models.
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Restraint Type Method

Top-L (p-value)

Top-5L (p-value) Top-10L (p-value) All (p-value)

SimRNA Model 6.52 (2.7E-27) 7.47 (5.4E-30)  8.06 (2.9E-27) 10.71 (5.1E-10)
N1/N9 Distance
MAE (A) FARFAR2 Model  8.17 (1.6E-25) 9.34 (7.0E-32)  9.91 (1.1E-32) 12.01 (5.6E-20)
DeepFoldRNA 0.72 () 0.83 () 0.93 () 6.37 (-)
SimRNA Model 9.29 (1.8E-30) 9.38 (4.0E-35)  9.44 (9.2E-33) 10.86 (4.8E-11)
c4 Distance
MAE (A) FARFAR2 Model 11.37 (2.4E-29) 11.40 (2.8E-35) 11.27 (2.2E-36) 12.00 (1.5E-20)
DeepFoldRNA 0.88 (-) 0.97 (- 1.06 (-) 6.80 (-)
SimRNA Model 8.37 (7.0E-36) 8.61 (3.3E-38)  8.87 (3.4E-33) 11.49 (1.1E-12)
P Distance
MAE (A) FARFAR2 Model  10.25 (1.3E-28) 10.76 (7.6E-37) 11.13 (2.8E-38) 14.27 (8.6E-28)
DeepFoldRNA 0.87 () 0.98 (-) 1.1(-) 6.84 (-)
SimRNA Model 0.83 (1.9E-52) 0.87 (2.1E-61)  0.88 (4.9E-61) 0.94 (4.7E-55)
Q Orientation
FARFAR2 Model  0.90 (2.4E-62) 0.91 (2.0E-73)  0.91 (1.0E-74) 0.98 (2.3E-65)
MAE (radians)
DeepFoldRNA 0.17 () 0.20 () 0.23 () 0.43 (-)
SimRNA Model 0.88 (2.3E-38) 0.82 (1.2E-47)  0.78 (1.2E-51) 0.77 (6.3E-48)
A Orientation
FARFAR2 Model  0.85 (2.2E-38) 0.81 (1.7E-52)  0.79 (1.1E-56) 0.79 (1.8E-51)
MAE (radians)
DeepFoldRNA 0.14 () 0.16 () 0.17 () 0.37 ()

Table 3.1 Summary of the accuracy of the DeepFoldRNA predicted restraints. The accuracy is
analyzed in terms of the Mean Absolute Errors (MAEs) for the top medium/long-range (|i — j|>12)
restraints, where L is the RNA length. The p-values were calculated between DeepFoldRNA and

the control methods using paired, two-sided Student’s t-tests.

3.1.2 DeepFoldRNA dramatically outperforms state-of-the-art methods on the Rfam dataset

To evaluate the modeling performance of DeepFoldRNA, Table 3.2 presents a summary of the
3D modeling results on the 105 RNAs from the Rfam dataset in terms of the average/median
RMSDs and TM-scores relative to the experimental structures along with the results by SImRNA
and FARFAR2. As a reminder, TM-score is a length-independent metric for assessing structural
similarity that takes a value in the range (0, 1], where a TM-score=1 corresponds to an identical
structural match and a TM-score >0.45 indicates that two RNAs share the same global fold (170,
195).
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RMSD Avg/Median TM-score Avg/Median Correct RMSDbpeepFoldrNA
Method

(p-value) (p-value) Folds"  <RMSDwethod*
SimRNA 19.37/17.23 (6.2E-44) 0.228/0.222 (1.0E-66) 0.0% 100.0%
FARFAR2 21.07/19.17 8.4E-52)  0.228/0.219 (6.6E-64) 0.0% 100.0%
DeepFoldRNA 2.68/2.11 (-) 0.757/0.779 (-) 99.0% -

* This column represents the percent of RNAs with TM-scores >0.45.
I This column indicates the percent of test RNAs for which DeepFoldRNA generated a model with a lower RMSD than the
control method.

Table 3.2 Summary of the structure modeling results by DeepFoldRNA compared to the control
methods on the 105 test RNAs from the Rfam dataset. The RMSDs and TM-scores were calculated
using the RNA-align program(195) based on sequence-dependent superposition of the C3’ atoms.
The p-values were calculated between DeepFoldRNA and the control methods using paired, two-
sided Student’s t-tests.

On average, DeepFoldRNA achieved a TM-score of 0.757, which was 232% higher than that
attained by SImRNA and FARFAR?2 (0.228); the differences were highly statistically significant
with p-values of 1.0E-66 and 6.6E-64 for the comparison with SImMRNA and FARFAR?2,
respectively. Meanwhile, the average RMSD of the DeepFoldRNA models was 2.68 A compared
to 19.37 A and 21.07 A for SimRNA and FARFAR2, respectively; the differences were again
statistically significant with p-values of 6.2E-44 and 8.4E-52. When considering the median
values, DeepFoldRNA produced models with a median RMSD of 2.11 A (SimRNA: 17.23 A;
FARFAR2: 19.17 A) and a median TM-score of 0.779 (SimRNA: 0.222; FARFAR2: 0.219),
corresponding to close atomic matches between the predicted and native structures.

In Fig. 3.3, we present head-to-head RMSD and TM-score comparisons of DeepFoldRNA with
SimRNA and FARFAR2. Overall, DeepFoldRNA generated models with lower RMSDs and
higher TM-scores than the control methods for all of the test RNAs. Furthermore, Fig. 3.3.C and
3.3.F list the number of models produced below a specific RMSD or above a given TM-score
threshold. When considering a cutoff TM-score of 0.45, for example, DeepFoldRNA generated
correct global folds for 99% or all but one of the test RNAs, while the control methods were unable
to generate correct global folds for any of the targets. DeepFoldRNA also consistently generated
models with atomic-level accuracy, where 46 of the 105 models (43.8%) had RMSDs <2 A to their
experimental structures. When considering a more permissive RMSD cutoff of <4.0 A to define a
native-like structure, 86.7% of the DeepFoldRNA models met this criterion, while none of the

models by the control methods did so.
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Figure 3.3 Head-to-head RMSD and TM-score comparisons of DeepFoldRNA with the selected
state-of-the-art methods on the 105 Rfam RNA strucures. A) RMSD comparison with SImRNA, B)
RMSD comparison with FARFAR2, C) Number of targets below a given RMSD threshold, D) TM-
score comparison with SInRNA, E) TM-score comparison with FARFAR2, F) Number of targets
above a given TM-score threshold.

Importantly, the success of DeepFoldRNA modeling was not limited to any specific fold type.
Fig. 3.4 plots representative models across all 32 Rfam families in the test set. For 14 of the 32
families (43.8%), DeepFoldRNA generated atomic resolution models with <2A RMSD and 100%
of the models possessed correct global folds with TM-scores >0.45. Highly accurate models could
be constructed for well represented families such as RFO0001 (composed of 5S ribosomal RNAs)
and RF00005 (made up of tRNAs), where the DeepFoldRNA models had RMSDs of 1.08 A and
1.09 A, respectively, corresponding to very close atomic matches between the predicted and
experimental structures. Accurate models were also constructed for families with few sequence
homologs. For instance, RF01689 (PDB ID 4frg, chain B, residues 1-83) is composed of AdoCbl
variant RNAs and the generated MSA had relatively few homologous sequences with a Neff value
(number of effective sequences) of 3.65, where DeepFoldRNA created an accurate model for this

family with an RMSD of 2.12 A and a TM-score of 0.709.
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Figure 3.4 Representative models generated by DeepFoldRNA for each of the 32 Rfam families.
The modeled structures in blue are superposed with the native structures in yellow. The PDB IDs,
chain ids, and residue numbers are shown below each RNA together with the TM-scores and
RMSDs.

Interestingly, for models with higher RMSDs, the modeling errors were often localized in
flexible or unstructured regions of the RNAs. For instance, for RF02678 (PDB ID 6jq5, chain A,
residues 1-81) the model generated by DeepFoldRNA had an RMSD of 8.02A, where the deviation
between the modeled and native structures was mainly confined to the unpaired region of the
structure from residues 64-81 (Fig. E.1 in Appendix E). In the core region of the RNA (residues
1-63), in contrast, the RMSD between the modeled and native structures was only 1.40 A, resulting
in a correct global fold with a TM-score of 0.667. Overall, the results demonstrate that
DeepFoldRNA is able to consistently generate correct global folds, frequently with atomic-level
resolution, for RNAs across various complex fold types, drastically outperforming the leading

Monte Carlo simulation methods.

3.1.3 DeepFoldRNA outperforms the best models by the RNA-Puzzles community by a large
margin
To further examine DeepFoldRNA with the state of the art, we tested it on 17 challenging,

monomeric RNA targets from the community-wide RNA-Puzzles experiment, where many of the

58



targets lacked structural and sequence homologs (85, 86, 101, 102). The experiment is split into
Human and Server Sections, where each group is allowed to submit up to 10 models for each
target. Traditionally, the automated Server methods, which are given 48 hours to model a target,
have been unable to achieve the same performance as Human groups, who are typically given 3-6
weeks and often utilize extensive expert intervention during the modeling process and restraints
from fast-track experimental data (86, 101, 102). Fig. 3.5 summarizes the modeling results of

DeepFoldRNA compared to all RNA-Puzzles participants.
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Figure 3.5 DeepFoldRNA modeling results on the 17 RNA-Puzzles targets compared to the
participants. (A) TM-score; (B) RMSD; (C) Same as (B) but only for models with RMSDs below
12 A. (D) Z-score of the TM-score for DeepFoldRNA compared to the participating groups. The
RMSDs and TM-scores were calculated using the RNA-align program(195) based on sequence-
dependent superposition of the C3” atoms.
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Overall, DeepFoldRNA achieved an average TM-score of 0.654, which was 77.7% higher than
the average TM-score of the first models generated by the best-performing group in RNA-Puzzles
(Das Group, TM-score=0.368). If we select the best model submitted for each target by all of the
RNA-Puzzles participants, the DeepFoldRNA TM-score was still 55.0% higher than that of the
best models by the community (TM-score=0.422). Similarly, the average RMSD of
DeepFoldRNA (2.72 A) was 4.18 A lower than the average RMSD of the best models (6.90 A)
generated by all RNA-Puzzles groups. When considering a cutoff TM-score of 0.45,
DeepFoldRNA generated correct global folds for 15 of the 17 Puzzles (88.2%), while correct
global folds could only be constructed for 5 of the 17 targets (29.4%) by the RNA-Puzzles
community. Meanwhile, DeepFoldRNA generated models with <2.5 A RMSD for 10 of the 17
cases (58.8%), while this accuracy was achieved for only one target (Puzzle 25) by the community.

Since many of the RNA-Puzzles targets lack sequence homologs, it is of interest to examine
the modeling performance in relation to the quality of the generated MSAs. In Fig. 3.6.A, we plot
the TM-score of the DeepFoldRNA models against the logarithm of the MSA Neff value on the
RNA-Puzzles dataset. From the figure, it can be seen that there is essentially no correlation (p=-
0.001) between the model TM-score and the MSA Neff value, suggesting that DeepFoldRNA is a
robust method for the hardest class of RNA targets, which lack homologous sequence information.
Furthermore, Fig. 3.6.B plots the model TM-scores vs. the MSA Neff values across the targets in
both the RNA-Puzzles and Rfam datasets. Again, only a very weak correlation (p=0.013) existed
between the Neff value and the model quality by DeepFoldRNA. Overall, these results
demonstrate that DeepFoldRNA is capable of accurately folding very challenging modeling targets
using a fully automated pipeline, significantly outperforming approaches from the RNA-Puzzles
challenge, where many of the predictions were guided by human expert intervention and

experimental restraints.
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Figure 3.6 Model TM-score vs. the logarithm of the MSA Neff value for DeepFoldRNA on the
RNA-Puzzles dataset (A) and the overall dataset (B). The fitted models were obtained by linear
regression.

3.1.4 Case studies reveal DeepFoldRNA’s ability to fold challenging targets with complex
structures

A closer examination of Fig. 3.5 shows that DeepFoldRNA achieved the best models with the
highest TM-scores and lowest RMSDs for 15 out of the 17 RNA targets. If we define a Z —
score = (TMp — (TM)) /o, where TMp is the TM-score of the DeepFoldRNA model, (TM) is the
average TM-score of all groups and o is the standard deviation, DeepFoldRNA generated a model
that was better than any other submitted model by a large margin for 10 cases (i.e., Puzzles 1, 5,
6,7, 11,12, 13, 21, 22, and 23) with Z-scores above 5 (Fig. 3.5.D). There were only two targets
(PZ9 and PZ25) for which the DeepFoldRNA model was marginally worse with RMSDs that were
0.2 and 0.66 A higher than the best models from the RNA-Puzzles community, respectively.

In Fig. 3.7, we present four case studies for which DeepFoldRNA achieved near-native quality
models with RMSDs <2.5 A, while all models submitted by the RNA-Puzzles community had
RMSDs above 10 A.

First, Puzzle 5 is a 188-nucleotide long lariat-capping ribozyme (PDB ID: 4p9r) that catalyzes
reactions involving the formation of a 3 nucleotide 2°,5’ lariat (196). The RNA possesses a unique
open ring structure formed by the interaction between the two peripheral helical regions. The
highest TM-score model submitted by the RNA-Puzzles community had a TM-score of 0.426 and
an RMSD of 10.61A, where the open ring structure was not reproduced by any of the submitted
models (102). For this target, the generated MSA by rMSA contained 17 sequence homologs,
where only 3 sequences were aligned to the query with a coverage >50%, resulting in a low Neff

value of 0.65. Nevertheless, the deep learning module generated accurate spatial restraints with
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MAEs for the top 5L N-N distances and /A orientations of 0.99 A and 0.17/0.14 radians,
respectively. Additionally, the structure produced by the folding simulations closely converged to
the predicted restraints with an MAE of 0.72 A between the predicted top 5L N-N distances and
the model distances. This resulted in a high-quality 3D structure with a TM-score of 0.851 and
RMSD of 2.43 A, accurately recapitulating the open ring structure and again highlighting the
ability of DeepFoldRNA to model challenging targets with few homologous sequences.

Second, Puzzle 6 is a 168-nucleotide adenosylcobalamin riboswitch (PDB ID: 4gxy), which
possesses a large ligand binding pocket that binds the adenosyl moiety to control gene expression
(197). The models submitted by the RNA-Puzzles community had a wide range of TM-scores
(~0.142-0.424) and RMSDs (~38.02-11.89 A), where the best model (TM-score=0.424) was
produced with the assistance of experimental SHAPE data to help elucidate important secondary
structure and contact information (102). For DeepFoldRNA, a reliable MSA was collected with a
high Neff of 517.9, which resulted in accurate predicted restraints with MAEs for the top 5L N-N
distances and /2 orientations of 0.94 A and 0.22/0.17 radians, respectively. Moreover, the folding
simulations produced a structure that closely matched the predicted restraints with an MAE of 0.73
A between the top 5L predicted N-N distances and the model distances. Thus, the generated model
possessed a near-native structure with a TM-score of 0.846 and RMSD of 2.23 A. Importantly, the
ligand binding site, which is essential to the RNA’s function, was accurately recapitulated without
any explicit provisions or simulations that accounted for the ligand position.

Third, Puzzle 7 is the Varkud satellite ribozyme (PDB ID: 4r4v), which is composed of 185
nucleotides and mediates rolling circle replication of a plasmid in the Neurospora mitochondrion
(198). The highest TM-score RNA-Puzzles model was constructed with the assistance of hydroxy
radical footprinting experiments as well as mutate-and-map measurements used to determine
contact information (101). Nevertheless, the resulting model had a low TM-score of 0.295 and a
high RMSD of 25.33 A, where the model possessed incorrect helical orientations and an overly
compact structure. For this target, DeepFoldRNA generated a poor MSA containing only 3
sequence homologs, all of which were nearly identical to the query sequence, resulting in an
extremely low Neff of 0.07, making the prediction essentially a single sequence prediction
problem. Nevertheless, the deep learning module produced accurate restraints with MAEs for the

top 5L N-N distances and /A orientations of 0.77 A and 0.16/0.14 radians, respectively. This
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resulted in a DeepFoldRNA model with a TM-score of 0.875 and RMSD of 2.40 A, corresponding
to a 196.6% higher TM-score than the best model submitted during RNA-Puzzles.

Last, Puzzle 12 is a medium-size (108 nucleotides) ydaO riboswitch (PDB ID: 4qlm) with a
novel structural topology that contains two binding pockets for cyclic-di-AMP (199). It is involved
in a number of important cellular functions, including sporulation, osmotic stress responses, and
cell wall metabolism (199). The best RNA-Puzzles model was produced with the assistance of
fast-track experimental SHAPE data and multidimensional chemical mapping (101) and had a TM-
score of 0.347 and RMSD of 14.35A. Notably, the bubble region in the structure was unable to be
correctly predicted by any of the submitted models and is partially unresolved in the crystal
structure, likely due to its flexibility and lack of base pairing (101). For DeepFoldRNA, the
generated MSA was reliable with a Neff value of 135.5 and the resulting predicted restraints were
accurate with MAEs of 0.70 A and 0.15/0.20 radians for the top 5L N-N distances and Q/A
orientations, respectively. Again, the folding simulations closely converged to the predicted
restraints with an MAE of 0.72 A between the predicted top 5L N-N distances and the model
distances. These resulted in a high-quality model by DeepFoldRNA with an RMSD of 2.38 A and
a TM-score of 0.796 to the experimental structure, corresponding to a 129.4% improvement in the
TM-score over the best model produced during the RNA-Puzzles challenge.

The results on these case studies demonstrate that DeepFoldRNA is able to produce accurate
structural models for challenging RNAs that could not be folded by any traditional approach even
with expert intervention and experimental restraints. It is practically encouraging that medium to
higher resolution structures could be created for complex folds with few homologous RNA
sequences, which has been one of the most challenging problems for deep learning-based protein
structure modeling methods (123, 125, 164). This is probably due to the fact that, compared to
proteins whose structural patterns are often buried in deep evolutionary profiles, RNA structures
are more explicitly encoded in the individual nucleic acid sequences (e.g., the tertiary structures
are highly dependent on the Watson-Crick pairing of the RNA sequence), which can be readily

captured by advanced deep learning models even with relatively shallow sequence profiles.
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Figure 3.7 Case studies from difficult RNA-Puzzles targets. The native structures are shown in
yellow, and the structures by DeepFoldRNA and the best RNA-Puzzles models are shown in blue
and red, respectively.

3.1.5 DeepFoldRNA improves the speed and accuracy of RNA folding simulations for large
RNAs

Monte Carlo sampling is a widely used approach in structural folding simulations and has been
proven to be efficient at identifying global free-energy minima for cases with frustrated
knowledge-based energy landscapes (14, 25, 187). However, these simulations typically require
lengthy runtimes, which partially limits their application to large-scale modeling experiments.
Given that the DeepFoldRNA energy landscape is significantly simplified by accurate and
abundant spatial restraints, gradient-based L-BFGS sampling is sufficient to quickly fold RNA
molecules and drastically reduce the simulation runtime.

As evidence, we plot in Fig. 3.8.A the simulation time required for DeepFoldRNA, SimRNA
and FARFAR?2 against the RNA length, where both SImRNA and FARFAR2 are based on Monte
Carlo sampling. Overall, SIMRNA required 379.3 minutes on average to fold the RNAs in the
Rfam dataset, while DeepFoldRNA required 1.1 minutes, corresponding to a 345-fold reduction
of the folding simulation time. The difference was even more significant when compared to

FARFAR2, which required 4547.1 minutes for its folding simulations on average. Notably,
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DeepFoldRNA could fold the largest RNA in the dataset, which was composed of 237 nucleotides,
within 7 minutes, while SImMRNA and FARFAR2 required 1146 and 11615 minutes, respectively.
Thus, DeepFoldRNA can be used to fold RNA molecules in seconds to minutes, significantly
improving the speed at which RNAs can be modeled.

Crucially, the modeling performance of DeepFoldRNA did not deteriorate as the sequence
length of the RNA increased. In Fig. 3.8.B, we plot the TM-score values for the models generated
by DeepFoldRNA, SimRNA, and FARFAR?2 against the RNA sequence length. As expected, there
was a negative correlation between the RNA length and model TM-score for both SimRNA and
FARFAR?2, as larger RNAs often have more complex folds that require sampling from wider-
ranging conformational space, which is more difficult for Monte Carlo sampling to cover when
guided by low-resolution energy force fields. For DeepFoldRNA, however, there was actually a
slight positive correlation, where the method was able to generate on average more accurate spatial
restraints and reliable folds for longer RNAs in the test set. These data demonstrate that the rapid
simulations do not lead to unreliable results for larger and more complex folds, making
DeepFoldRNA a robust method for generating accurate models independent of the fold

complexity, which is critical for applications to large-scale RNA structure modeling.

104
.E 0.8
€ 103
g [
O DeepFoldRNA i 0.6
= 102 Y SimRNA 8
]
g FARFAR2 2' ) ©) O DeepFoldRNA
S X 0.4 Y SimRNA
g 10 - © v FARFAR2
5 S
£
7 10° 0.2

75 100 125 150 175 200 225 250 75 100 125 150 175 200 225 250
RNA Length RNA Length

Figure 3.8 Dependence of the simulation runtime/modeling performance on the RNA length for
DeepFoldRNA, SimRNA, and FARFAR2. A) Log-scale simulation runtime for DeepFoldRNA,
SimRNA, and FARFAR?2 in minutes plotted against the RNA length. B) Model TM-score versus
RNA length for DeepFoldRNA, SimRNA, and FARFAR?2. Lines are plotted to guide the eye.

3.2 Concluding Remarks
Inspired by our work with DeepFold and the latest advances in protein structure prediction, we
developed a fully-automated method, DeepFoldRNA, to model RNA structures starting from

sequence alone. The approach is built on deep self-attention neural networks to deduce high-
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accuracy spatial restraints from multiple RNA sequence alignments, followed by full-length 3D
model construction through restraint-guided L-BFGS folding simulations.

The method was tested on two independent benchmark datasets. The first consisted of 105
non-redundant RNAs from 32 Rfam families with complex global folds. For these targets,
DeepFoldRNA generated models with<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>