
Capturing Political Communication Online Using
Image and Text Data: A Deep Learning Approach

by

Alejandro Javier Pineda

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Political Science and Scientific Computing)

in The University of Michigan
2023

Doctoral Committee:

Professor Walter Mebane, Chair
Assistant Professor Christopher Fariss
Professor Vincent Hutchings
Assistant Professor Mara Ostfeld
Associate Professor Josh Pasek



© Alejandro Pineda 2023

All Rights Reserved

Alejandro Pineda

ajpineda@umich.edu

ORCID iD: 0000-0003-0162-3042

https://orcid.org/0000-0003-0162-3042


For Kilo – we did it, buddy.

Let’s go for a walk.
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ABSTRACT

Social media data enables political scientists to observe phenomena that have been

otherwise difficult to capture. The scale and structure of such data is problematic,

however, as sorting social media posts by hand is a prohibitively costly endeavor. For

instance, there are over 500 million tweets posted per day, consisting of text, image,

gif, and video content. This has created a technology gap between what social scien-

tists want to do, conceptually, and what they can do, computationally. This study

develops text- and multimodal (text and image) classification technology. Such meth-

ods are used to investigate questions in algorithmic bias, election experiences, and

Black Lives Matter protest activity. Multiple machine learning algorithms – called

convolutional neural networks or deep learning models – were developed. These mod-

els were trained on facial images and tweet text. Results indicate that deep learning

achieves high accuracy on training data; performance declines when the machine at-

tempts to predict the previously unseen validation set. These algorithms can lack

predictive power. Deep learning shows promise for automated content analysis, but

more work must be done to curate theoretically motivated training data. Social scien-

tists should focus on features in the data that best differentiate categories of interest.

This study contributes to larger trends in computational social science that seek to

apply machine learning methods to problems in political science. Even the most ad-

vanced methodology, however, must be wrapped in strong theory and substantively

interesting questions.
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CHAPTER I

Introduction: Of Politics and Computers

This project explores subjects at the intersection of politics and computers. The

goal of this work is to use advanced computing techniques to capture concepts relevant

to the academic study of politics. For various reasons, these concepts are difficult to

quantify and difficult to study. The following chapters make innovative use ofmachine

learning methods, text data, and image data, to quantify political phenomena like

elections and protests. As such, this dissertation contributes to two sub-fields in

political science: political methodology and political communication.

Within the field of political methodology, a growing body of research advances

automated content analysis. This is spurred by the availability of politically signifi-

cant content found online. Whether from social media or news sites, parliamentary

or court transcripts, this seemingly infinite supply of content has fueled demand for

efficient methods to extract insight from messy, unstructured data. This data spans

a range of modes, including text, image, audio, and video.

Automated analysis across political communication spans multiple areas of inter-

est. Recent research uses such machine learning methods to characterize protests,

measure crowd size at campaign events, capture candidates’ emotions, and exam-

ine politicians’ social media strategies (Torres , 2018; Zhang and Pan, 2019; Joo and

Steinert-Threlkeld , 2018; Boussalis and Coan, 2020; Peng , 2020). The three studies

that compose the body of this work use image and text data – and a class of algorithms

called deep learning – to explore some element of American politics. Substantively,

these chapters explore racial and ethnic politics, elections, and social movements.

Deep learning algorithms are a type of supervised machine learning, where com-

puters learn by example. The advantage of this approach is that researchers control

how to operationalize their variables (as opposed to the unsupervised learning ap-

proach, where the algorithm’s output must be interpreted and mapped to a previously

un-defined concept). In supervised machine learning, a coding scheme is designed to
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capture the concept of interest; categories are defined, rules for membership in each

category are established. Then a subset of the data is sorted according to this coding

scheme. Finally, this subset is input into the algorithm for training. The end goal is

a piece of code that can replicate human classification, in a fraction of the time and

without the necessity of training and re-training research assistants. Findings indicate

that deep learning models are more than capable of capturing political phenomena

in unstructured, messy data – like image and text content.

The first study examines racial politics in the context of algorithmic bias. This

occurs when a machine learns prejudice somewhere during the training process. As

machine learning applications grow ubiquitous in the real-world, so do the conse-

quences of algorithmic bias; for instance, deep learning models are currently deployed

by surveillance systems used in the United States. This study tests under what con-

ditions these types of models learn racial prejudice.

The second study examines election administration. Specifically, it captures elec-

tion incidents : anecdotes of voters having either a positive or negative voting expe-

rience. When aggregated, these election incidents illustrate when, and where, voters

face difficulty casting a ballot. This study captures election incidents during the 2016

U.S. presidential election.

The third and final study examines political attitudes. Specifically, this chapter

captures attitudes toward the Black Lives Matter (BLM) movement. Capturing at-

titudes toward Black Lives Matter provides scholars with deeper insight into public

opinion on racialized in the United States. Difficulty arises, however, because public

opinion toward BLM – like the movement itself – is too dynamic for scholars to keep

pace. This study captures political attitudes toward BLM during the 2014 and 2020

wave of protests.

This dissertation explores the intersection of politics and computers, using ma-

chine learning to capture concepts relevant to the study of American politics. The

following chapters demonstrate how deep learning methods can analyze text and im-

age data, helping political science scholars examine elections and protest activity.

These methods show promise for automated analysis in political communication.
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CHAPTER II

Algorithmic Bias in Deep Learning:

An Inquiry Into Race Recognition

Surveillance systems fitted with deep learning technology are currently deployed

by both the United States and Chinese governments. Questions have arisen as to the

fairness of these systems, the concern being that governments will use deep learning

technology to target ethnic minorities. Researchers currently seek methods to audit

surveillance systems for algorithmic bias. This study contributes to this effort, using

a sampling experiment to test under what conditions deep learning classifiers exhibit

algorithmic bias. The experiment artificially induces class imbalances in training data,

repeatedly training a race classification algorithm on different subsets of face images.

Results indicate that a highly accurate classifier is not biased via intermediate levels

of imbalance, but does exhibits bias when training data features more extreme levels

of class imbalance. Additionally, the race classifier performs poorly predicting out of

sample data, indicating that ”out of the box” machine learning models deployed in

real-world settings should constantly be monitored, audited, and s(re)tested.

3



2.1 Introduction

Thou shalt not make a machine in

the likeness of a human mind.

Frank Herbert, Dune

When governments abuse power, it can be difficult to combat the abuse without

understanding their tactics and techniques. The Watergate scandal does not make

much sense without the word ”wiretapping.” It is telling that most famous whistle-

blower of the past fifty years, Edward Snowden, was a computer security consultant

working for the National Security Agency (NSA). From wiretapping to email surveil-

lance, technology can be a black box large enough to obscure tyranny. Currently,

both the United States and Chinese governments deploy machine learning in surveil-

lance systems used by law enforcement (Mozur , 2019). Little is understood about

the underlying technology, but concerns among journalists and scholars have arisen

over whether surveillance systems meant to identify demographic information – like

race or ethnic identifiers – can remain impartial.

This paper tests how sensitive machine learning (ML) is to human bias. This study

explores algorithmic bias : ”when seemingly innocuous programming takes on the

prejudices either of its creators or the data it is fed” (Garcia, 2016). Decision making

systems powered by machine learning are pitched to the public as replacing human

bias with objective considerations of data. The reality is that machines are more

than capable of learning human bias. In the United States, loan eligibility software

considers ZIP code data when making decisions, police use facial recognition to decide

what populations to monitor – and both applications have delivered discriminatory

results, despite the promise of computers’ impartiality (Du et al., 2020). As machine

learning becomes more ubiquitous in the real-world, the presence of algorithmic bias

grows more consequential.

The fear is that policy diffusion will normalize the use of race recognition software

by authoritarian governments targeting specific minority groups. Jonathan Frankle,

an artificial intelligence researcher at the Massachusetts Institute of Technology (MIT)

warns race classification poses an existential threat to democracy. Referencing the

Chinese government’s use of race recognition to identify – and intern – ethnic Muslims,

Frankle notes:

Once a country adopts a model in this heavy authoritarian mode, it’s using

data to enforce thought and rules in a much more deep-seated fashion than

4



might have been achievable 70 years ago...To that extent, this is an urgent

crisis we are slowly sleepwalking our way into (Mozur , 2019).

At the intersection of society and technology, political science is uniquely posi-

tioned to investigate the social perils of machine learning.

While machine learning researchers have started exploring algorithm bias from an

ethical, abstract perspective, the larger social implications of this technology requires

input from computational social science. Current research has failed to empirically

capture algorithmic bias, or even consider its real-world implications: ”[studies] have

tried to draw attention to this issue from a conceptual standpoint without much

empirical effort to shed light on its behavioural, organisational, and social impacts”

(Kordzadeh and Ghasemaghaei , 2022, p. 404). This paper takes a step toward that

end, introducing social scientists to the language of algorithmic bias research and

empirically examining the conditions that create racist machines.

While political communication scholars have begun using neural networks – or

deep learning models – to automate content analysis, it is important that the polit-

ical implications of these algorithms also drive discussion (Garcia, 2016; Torres and

Cantú, 2022). The proliferation of this knowledge not only advances applications in

academic political science, but also arm researchers with the language and technical

detail necessary to investigate potential bias.

Questions remain as to where in the process ML practitioners should audit algo-

rithms for bias (Islam et al., 2022). This study uses sampling experiments to show race

recognition classifiers are sensitive to imbalances in training data. Identically config-

ured models were trained – their tuning parameters unchanged – with manipulations

made to the class composition of the training data. Treatment variables include: the

level class imbalance; the sampling method used to achieve the imbalance; and which

racial group was chose as the minority class. The sample is manipulated via the ran-

dom over- and under-sampling of white and non-white observations – this results in

multiple training sets with varying degrees of bias. The paper finds that imbalanced

training samples negatively impact a classifier’s ability to identify underrepresented

classes, even if overall performance appears strong. These results hold across two

different data sets and multiple manipulations to training data.

The rest of the paper is organized as follows. Section 2 details the fairness problem

in ML and the sampling methods researchers use to combat bias. Section 3 reviews

how deep learning is used for race-feature classification. Section 4 details image

processing and experiment design. Section 5 reviews the results and discusses avenues

for future research.
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2.2 Fairness Problems and Sampling Solutions

This study explores how deep learning methods can be manipulated in a way that

has real-world, political consequences. Fairness problems in algorithmic bias research

fall into one of two categories – prediction outcome discrimination and predication

quality disparity. Prediction outcome discrimination refers to the exclusion from re-

sources because of membership in certain groups. For instance, hiring systems have

been shown to discriminate against women because training data featured mostly

men. Prediction quality disparity occurs when a classifier performs poorly at iden-

tifying specific groups, resulting in potentially harmful misclassification error – e.g.,

surveillance systems misidentifying someone’s race (Du et al., 2020).

Algorithmic bias in facial recognition systems will suffer from prediction quality

disparity because of the under-representation problem:

Data may be less informative or less reliably collected for certain parts

of the population...If the model cannot simultaneously fit all populations

optimally, it will fit the majority group. Although this may maximize

overall prediction accuracy, it might come at the expense of the under-

represented populations and leads to poor performance for those groups

(Du et al., 2020, 2).

To combat bias, machine learning practitioners have experimented with strategies

at different stages of the training process. Addressing bias during data pre-processing

– prior to the actual training of the machine-learning algorithm – has been shown

to ameliorate bias at higher rates than post-processing (Islam et al., 2022). Focus

has turned to producing more balanced data sets. Researchers correct imbalances

either by down-sampling from from the majority class (random under-sampling), or

repeatedly re-sampling from the minority class (random over-sampling) (Yu et al.,

2020).

Random over-sampling, or ROS, artificially increases the size of the underrepre-

sented class by duplicating random observations in the sample. When the subsample

is taken from the original data set, the random over sampling draws from the minor-

ity class with replacement (the majority class is sampled without replacement). The

benefit of this approach is that no information is lost prior to training; however, this

method runs the risk of the model overfitting because it sees observations multiple

times.

The second sampling method, called random under sampling, or RUS, decreases

the size of the majority class to equal the size of the minority class. The loss of

6



information from discarding part of the training data results in poorer accuracy per-

formance (Islam et al., 2022). Indeed, when building fair models, researchers often

face a trade-off between overall accuracy and class-specific accuracy (debates over the

definition of fair and what metrics to use to capture the concept are left for other

studies in this field).

2.2.1 Machine Learning in Political Communication

The availability of politically rich, digital content has popularized automated anal-

ysis across political communication. Machine learning applications span multiple

modes and areas of interest. Recent research uses these methods to characterize

protests, measure crowd size at campaign events, capture candidates’ emotions, and

examine politicians’ social media strategies (Torres , 2018; Zhang and Pan, 2019; Joo

and Steinert-Threlkeld , 2018; Boussalis and Coan, 2020; Peng , 2020). The deep learn-

ing models used throughout the rest of this paper are trained to classify facial images

into race-categories. This study explores how these methods can be manipulated in

a way that has real-world, political consequences.

2.3 Deep Learning for Race Classification

This section overviews the deep learning models being tested for algorithmic bias

in race classification tasks. Deep learning models, also called convolutional neural net-

works or CNN’s, are layered structures for processing and classifying high-dimensional

data (Hastie et al., 2009). CNN’s are considered feed-forward networks because data

is passed forward from the input layer to the middle and output layers. An example

of this process is shown in Figure 2.1. Training a CNN requires the use of weights

that differentiate between relevant features in the input data; weights and input data

are combined via matrix multiplication before being fed forward to the next layer.

The network performs different operations on the data to capture important signals,

reduce dimensionality, and find relationships in the data.

There are two phases for a CNN to process content: feature extraction and classi-

fication. During feature extraction, convolutional layers use filters that rotate across

the data, searching for specific patterns and breaking down each individual input

into feature maps. Pooling reduces the dimensionality of the data by either taking

the average or the maximum among clusters of data points, reducing noise in favor

of the strongest signals.

Between the convolutional and pooling operations, a lot of effort is expended
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Figure 2.1: A convolutional neural network architecture. Feature extraction consists
of two operations, convolution and pooling. Filters rotate across the input, breaking
down different local regions into feature maps to create the convolution layer. The
feature maps are downsized via pooling, making the data easier for the final layers to
process. During the classification stage, the fully connected layers detect patterns in
the image data, now represented as feature maps.

reducing images to their most essential features, making data easier to process in the

final layers of the network. After feature extraction, the final layers of a CNN are

concerned with classification. Feature maps are fed into the dense layers – all of the

outputs from one layer connect, as inputs, to all functions in the subsequent layer.

This enables the network to detect non-linear relationships like image patterns that

signal an image’s membership in one class versus another.

2.3.1 Transfer Learning

Spurred by the costliness of training complex CNN’s, machine learning research

has explored transfer learning – a technique where a model’s parameters, trained on

a source task, is applied to a new target task. Transfer learning defies the assumption

that training and target data must come from the same domain; often, researchers

have a target task in one area of interest but use a model pre-trained on data from a

separate, more general domain (Pan and Yang , 2010). This process works well with

image data because images share a feature space. The lower levels of a neural network

learn basic patterns, like edges and shapes, that are not exclusive to any particular

domain, but rather, common to all pictures. Transfer learning seeks to improve

performance by using the parameters of a pre-trained model to extract features from

the target data. More formally:

Definition 1. Transfer Learning. Given a source domain DS and learning task

8



TS, a target domain DT and learning task TT , transfer learning aims to help improve

the learning of target predictive function fT (·) in DT using the knowledge in DS and

TS, where DS ̸= DT , or TS ̸= TT .

Let domain D be defined by a feature space, X, and a marginal probability distri-

bution, P (X). For a domain of interest, D = {X,P (X)}, a task, T , has two parts: a

set of labels Y and a predictive function f(·). A task simply refers to a function that

predicts labels: T = {Y, f(·)}. Much like research assistants, the predictive function

learns from examples. This training data consists of pre-labeled data {xi, yi} where

xi ∈ X and yi ∈ Y . The ultimate goal is to estimate the parameters of f(·) that can
predict the label f(x), given a new instance x.

Assume there are only two domains of interest: a source domain DS and a target

domain DT . Data sampled from the source domain data is denoted DS =

{(xS1 , yS1), ..., (xSn , ySn)} where xSi
∈ XS is a data point and ySi

∈ YS is the corre-

sponding label. Equivalently, the target domain data is denoted DT =

{(xT1 , yT1), ..., (xTn , yTn)} where xTi
∈ XT is the data point and yTi

∈ YT is the corre-

sponding label. Transfer learning is the process of applying knowledge gained from

DS to a task in DT . This study uses parameters frozen from the ResNet50V2 model

(He et al., 2016).

Model Architecture On top of the the frozen parameters of ResNet50V2 model

sit the trainable weights of the adaptation layers. This includes 18 layers whose op-

erations include two-dimensional convolutions (between one and six filters per layer),

max pooling, dense (three layers each with thirty-six, eighteen, and nine nodes re-

spectively) and the final output (decision) layer. The ResNet model performs feature

extraction. The adaptation layers consist of 224,033 trainable weights that update

and learn patterns in the features. For further details on image processing and model

architecture, please see the code overview in Appendix I of this chapter.

Parameter Tuning The overall number of layers, the size of the convolution filters,

the type of activation function, and the type of pooling are all tuning-parameters –

adjustable settings defined by the user that impact both the speed of training and

the accuracy of the model. An enormous amount of time and energy is spent testing

different combinations of tuning-parameters to find what configuration provides the

best performance. The difficulty in parameter tuning is that there are no hard and

fast rules about how to determine the optimal configuration; no two networks are built

the same, as configurations are specific to the problem statement and classification
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scheme. There are certain heuristics that guide experimentation (for instance, it is

generally best to increase depth with the complexity of the image) but this requires

trial and error.

Parameter tuning is a balance between potential improvements and costs to model

performance. Increasing the number of filters helps improve accuracy, but this re-

quires more training data. Increasing the size of the learning rate helps optimization

converge faster, but runs the risk of unstable training and sub-optimal parameters.

A learning rate that is too small will result in a long training process that gets stuck

at a local minimum. Too many filters in a model risk overfitting – when a model

adjusts parameters to accurately classify training data without detecting the relevant

patterns that let it classify unseen data. This is why it is standard practice to set

aside a subset of the pre-labeled data for the purposes of validation. This validation

data is not used as input for training, but rather, to test the model’s predictive power

at the end of each epoch.

Backpropagation During training, optimal weights are found via a process called

backpropagation. This process occurs in three stages – the forward pass, the backward

pass, and the gradient update. During the forward pass, the linear combination of

weights and input data is computed, then fed forward layer-to-layer until the model

outputs the predicted label. During the backward pass, the distance between the

predicted and true labels is calculated using the loss function. The derivative of

the loss function with respect to each weight, the gradient, is computed layer-by-layer

starting from the output layer and going backward. The third step in backpropagation

uses the calculated gradient to adjust the weights toward the steepest decrease of

the loss function. This process of iteratively computing the gradient of the loss

function with respect to each weight and then adjusting weights to minimize loss,

called gradient descent, efficiently decreases error at each training step.

Benchmarks for Training Training performance is measured using three bench-

marks: accuracy, cross-entropy loss, and F1 score. Accuracy, defined formally in

Equation 2.1 below, captures the percentage of images the model correctly classifies.

We define yi as the true value for data point i and ŷi as the model’s predicted label.

The higher the accuracy, the better the model.

accuracy(y, ŷ) =
1

ns

ns−1∑
i=0

1(ŷi = yi) (2.1)
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Categorical cross-entropy loss, defined in Equation 2.2 below, is calculated as a

sum of separate loss for each class label per observation. As probability p diverges from

the true label, cross-entropy increases – loss closer to 1 indicates poor performance,

while a perfectly performing model would have a loss of 0.

loss(y, p) = −
M∑
c=1

yi,c log pi,c (2.2)

In the above equation, we define M as the number of classes, p as the predicted

probability, and yi,c is a binary indicator (0 or 1) that indicates if c is the correct class.

The algorithm uses the loss function to capture prediction error. Gradient descent

then updates weights to minimize loss, thereby reducing error before attempting

to classify another batch of data. Training neural networks is thus framed as an

optimization problem: update weights to reduce error until you arrive at a global

minimum.

F1 =
2

recall−1 + precision−1
= 2

precision · recall
precision + recall

=
2tp

2tp + fp + fn
(2.3)

Equation 2.3 above shows how F1 is computed as the harmonic mean of precision

and recall. Precision, conceptually, is the positive prediction rate and recall is a mea-

sure of sensitivity. The above equation refers to true positives (”tp”), false positives

(”fp”), and false negatives (”fn”). Combining them as F1 gives a single measure of

the model’s ability to predict unseen data (the statistic is between 0 and 1, the higher

the score the better overall performance).

2.4 Image Processing and Experiment Design

To understand how a CNN processes visual data, think of an image as a collection

of pixel values. Images are represented by their pixel values, from 1 to 256, along

three color channels – red, green, and blue (RGB). These values are stored in a three-

dimensional matrix – one dimension per color channel. Data is normalized by dividing

all values by the range (255). This ensures that all of the input data exists on the

[0,1] scale which enables the network to converge faster during training.

During training, the CNN performs a series of matrix transformations on the

data, so there cannot be any variation in dimensionality of the inputs. The training

algorithm expects all images to have a square, uniform size, so all images are resized

to 96 x 96. For data augmentation, pre-processing images can include transformations
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to provide the model more variation from its training input. Training images can be

randomly flipped, zoomed-in, or tilted along different axes; this increases variation in

the features that the machine sees during learning.

MORPH While MORPH was originally used for research into aging, political com-

munication research has used this data, with transfer learning, to build a race classi-

fier for profile pictures on Twitter (Wang et al., 2016). This data set contains 55,000

unique images of over 13,000 individuals from 2003 to 2007 and corresponding meta-

data on gender, age, and ancestry (Ricanek and Tesafaye, 2006). Examples of the

MORPH images are shown in Figure 2.2. The data is longitudinal, so the data fea-

tures multiple images of the same subject over time (the average number of images

per subject is four).

Figure 2.2: Examples of facial images from the MORPH data set. The key feature
that makes the data easier for the machine is the standard positioning and lighting
of each subject.

For this study, the original data set of 55,134 photos were split into a test set (n =

11,026) a validation set (n = 11,026) and a training set (n = 33,082). The Ancestry

categorical variable originally featured designations for white, African-American, His-

panic, Asian, and Native-American. For the simplicity of the study, these categories

were collapsed and the race label was a simple white or non-white binary variable.

The data sets were then balanced so that they have equal proportion of W and NW

labels. For the training set, this resulted in a baseline sample size of 12,622 (each class

had n = 6,311 images). The baseline validation set used in the confusion matrices

below have a sample size of 4,296 (each class had n = 2,148 images). Over the course

of the experiment, the sample size of the training set was manipulated according to

the treatments outlined in Figure 2.3. Validation data was left untouched.
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Figure 2.3: Sample sizes and class proportions for the MORPH data set (majority
class in parentheses). The upper left panel shows the baseline sample sizes, with the
training data initially having an equal ratio of white to non-white subjects in the
sample. The three treatments made to the training data include (1) relative size of
the majority (2) which class composes the majority and (3) the sampling method
used to obtain the imbalance.
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Figure 2.4: Sample sizes and class proportions for the Fair Face data (majority class
in parentheses). The upper left panel shows the baseline sample sizes, with training
data having an equal ratio of white to non-white subjects. The three treatments made
to the training data include (1) relative size of the majority (2) which class composes
the majority and (3) the sampling method used to obtain the imbalance.

2.4.1 Experiment Design

The sampling experiment used three treatments. The first treatment was the

sampling method used to manipulate the training data; random under- and over-

sampling induced artificial imbalances in the data’s class distribution. The second

treatment was which label became the majority class ; data was sampled to feature

a clear majority, either the white (W) or non-white (NW) race-category. The third

treatment was the degree of class imbalance. The training data featured either low,

moderate, or extreme levels of imbalance – this corresponded to the majority class

composing 70%, 85%, and 90% of the overall sample, respectively. The ”baseline”

model had an even split across both classes. The classifier was trained on the resulting

imbalanced training set and then tested on the balanced validation set.
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External validation using FairFace The FairFace data was built specifically

to mitigate bias in image data sets (Karkkainen and Joo, 2021). About 100,000

observations were collected from YFCC-100M Flickr data set, which includes labels

for race, gender, and age (examples from the data set are shown in Figure 2.5). The

FairFace data over-sampled racial minorities to provide deep learning models with

additional examples of a traditionally underrepresented groups (Karkkainen and Joo,

2021). Indeed, the race label consisted of seven categories: White, Black, Indian, East

Asian, Southeast Asian, Middle Easter, and Latino. For the simplicity of the study,

these categories were collapsed and the race label was a simple White or non-White

binary variable.

Figure 2.5: Examples of face images from the FairFace data. Constructed to help
researchers combat algorithmic bias, this data has more variation, both in the diver-
sity of its subjects and in the images themselves. Subjects might be wearing hats,
facing away from the camera, or only partially lit. This data is used to test how well
a CNN can be perform on external data, without any additional fine-tuning to its
hyper-parameters.

Over the course of the study, the original data set of 97,698 photos was split into

a test set (n = 17,348) a validation set (n = 10,954) and a training set (n = 69,396).

The data sets were then balanced so that they have equal proportions W and NW

labels. For the training set, this resulted in a baseline sample size of 26,632 (each

class had n = 13,316 images). The baseline validation set had a sample size of 4,170

(each class had n = 2,085 images). The baseline test set had a sample size of 6,422

(each class had n = 3,211 images). Over the course the experiments, the sample size

of the training set was manipulated according to the treatments in Figure 2.4.
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2.5 Results and Discussion

The race-classification algorithm showed resistance to bias at low and moderate

levels of class imbalance. Once the algorithm was exposed to extreme levels of class

imbalance, however, it showed a predisposition to predict images as belonging to the

majority class, regardless of the true label. This finding holds regardless of which

race-category was the majority class. The classifier initially performed well on the

MORPH data set, as shown in Figure 2.6. It eventually became biased when the

majority class composes ninety percent of the training sample, achieved via random

under-sampling of the minority class. The bias disappears if the imbalance is created

via random over-sampling. These findings indicate that deep learning models are

resistant – but not immune – to algorithmic bias induced via class imbalances in the

training data. As such, when auditing deep learning algorithms in the real-world,

researchers should also audit the training data the algorithms receive as input.

MORPH The baseline model, trained on balanced data, accurately classifies both

training and validation data (F1 score: .96). The baseline gave the experiment an

opportunity to see if a high-performing race classifier becomes biased when sampling

techniques manipulate the training data. The model continued to perform well on

imbalanced data sets, even with majority classes composing seventy or eight-five

percent of the overall training set. On these data sets, the classifier hits about ninety-

five percent accuracy across both W and NW classes, regardless of which class is in

the majority, or the sampling method used to achieve the imbalance.

Predictive performance declines, however, when the model is trained on a highly

imbalanced data set, when either white or non-white subjects compose ninety percent

of the overall sample. As shown in Figure 2.5, extreme levels of imbalance result in

class-specific declines in accuracy; that is, the training sample is so biased toward one

class, the model’s parameters default predictions toward that class. For instance, the

confusion matrix in Figure 2.7(a) features a training sample of ninety-percent non-

white subjects (this imbalance is achieved via the random under-sampling of white

subjects).

The top-left and bottom-right panels of the confusion matrix indicate the pro-

portion of positive identifications for the respective classes. The bottom left panel

indicates the proportion of White subjects that the model misidentified as Non-White.

Its opposite, the top right panel, indicates the the proportion of Non-White subjects

the model misidentified as White.
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Figure 2.6: Training metrics for the MORPH baseline classifier. The model shows
high accuracy on both training and validation data, presenting the experiment with
an opportunity to see how robust these results are to experimental treatments.

When ninety percent of the training data features NW labels, as in Figure 2.7(a),

the model is more likely to misidentify white subjects as being non-white. These

results are reversed when the majority class is reversed, as in Figure 2.7(b). Even

previously high-performing classifiers can become biased if their training data is ma-

nipulated enough. If either of these classifiers were used by law enforcement for sus-

pect identification, for instance, the seemingly objective computer would be biased

toward one race category or another.

FairFace The baseline FairFace classifier performs well on training data, but poorly

on validation sets, as seen in Figure 2.9 (F1 score of .68). This was expected, as no

additional fine-tuning was done after the adaptation layers of the algorithm were

trained on the MORPH data. The FairFace data was brought in as a robustness

check for additional validation. The point of the experiment was to see if the original
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(a) RUS // training set 90% NW (b) RUS // training set 90% W

Figure 2.7: Confusion matrices for the MORPH data, random under-sampling, 90%
majorities. At extreme levels of class imbalance, accuracy declines for the minority,
even in a previously high-performing classifier. F1 score (majority class W

: .92. F1 score (majority class, NW

: .91.

(a) ROS // training sample: 90% NW (b) ROS // training sample: 90% W

Figure 2.8: Confusion matrices for the MORPH data, random over-sampling, 90%
majorities. The decline in performance seems specific to under-sampling. When over-
sampling is used to achieve imbalance, accuracy remains high. Both models trained
on white and non-white majority classes achieve an F1 score of .96
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model could be re-trained on out of sample data, without any additional changes to

the tuning parameters. The answer is no, not to any useful extent.

Figure 2.9: FairFace Baseline

The baseline FairFace classifier performed equally poorly on both class labels,

enabling the study to explore if sampling alone can improve performance. Looking

at the confusion matrix in Figure 2.10, the false positive rate (lower left and upper

right panels) are similar across both the NW and W labels. The FairFace baseline

classifier falsely predicts label W on 33% of the NW data; it predicts label NW on

31% of the W data. This provides the experiment with an opportunity to see if

sampling techniques alone can remedy poor classification performance.

The FairFace results showed that a poorly performing classifier can be improved

via sampling techniques, but at the expense of the minority class. Looking at Figure

2.11(a), this model’s training data under-sampled the images from the White category

such that non-Whites composed 70% of the training set. The results are an improved
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Figure 2.10: The Fair Face baseline classifier, with the training data composed of equal
amounts from each class, makes a poor predictor when classifying the unseen test data.
This provides the experiment with an opportunity to see if sampling techniques can
remedy poor classification performance.

performance (compared to baseline) when the true label is NW, but decreases the

classifier’s ability to accurately predict label W. The model suffers from prediction

quality disparity because of the under-representation problem.

These results hold when the majority and minority classes are switched. When

the non-White images are under-sampled such that the training data is composed

of 70% White images, we find only a slight difference in performance, compared to

the baseline model. As seen in Figure 2.11(b), the classifier’s accuracy rate (.74)

is higher than baseline’s (.69) when classifying White images, but down (.61 from

.67) when attempting to classing non-White images. Without parameter tuning, a

poorly performing classifier will be more susceptible to algorithm bias induced via

class imbalance.

2.5.1 Discussion

This study examined the relationship between algorithmic bias, sampling, and

deep learning. The goal was to see under what conditions a previously unbiased race

classification model would inherit bias. Two different sampling techniques were used

to manipulate class balances in training data, with the same model configuration

being re-trained on different subsets of data. Results indicate that high-performing
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(a) RUS. training set: 70% NW (b) RUS. training set: 70% W

Figure 2.11: Random undersampling using the Fair Face data does not correct al-
leviate an already poor performing baseline classifier. Any improvement in the race
classifier in (b) and (c) is specific to the class who’s become the majority, due to the
undersampled alternative class.

deep learning models are resistant to certain levels of class-imbalance, but eventually

become biased when trained on more extreme levels of imbalance.

Given these results, future research into algorithmic bias should focus less on

abstract, ethical definitions of ”fairness” and instead devote energy on curating bal-

anced data sets. Race recognition models inherit bias from under- or over-represented

groups in the training data. Research should focus on auditing both the training data

and the deep learning algorithms. Just because a machine learning algorithm show

high levels of training accuracy, this does not necessarily translate to high predictive

performance on previously unseen, real-world data. Further, an algorithm’s accuracy

is irrelevant if its application is a violation of human rights.

If police in the United States are already pre-disposed to arresting racial minori-

ties, then the (mis)use of deep learning technology to do so is yet another example

in larger patterns of historical oppression. The methods in this paper can help com-

bat algorithmic bias, but combating systemic racial oppression should be the greater

concern. Perhaps the most disturbing application of machine learning I have read

is the Chinese government’s efforts to identify and intern ethnic Muslisms located in

the country’s Western region. This sets a dangerous precedent: ”A new generation of

start-ups catering to Beijing’s authoritarian needs are beginning to set the tone for

emerging technologies like artificial intelligence. Similar tools could automate biases

based on skin color and ethnicity elsewhere” (Mozur , 2019). If deep learning models

become yet another black box for governments to hide human rights abuses, then

the problem society must confront is not biased algorithms, but rather, authoritarian
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governments.

One question that arises when assessing these models: how do we know that these

results do not stem from improper tuning parameters, or simply poorly performing

models? The motivating question was to explore under what conditions machines

learn racism. The experimental framework helped reveal when machine learning

errors are not random, but rather, systematically tied to imbalances in the training

data. For the most part, the algorithms were resistant to manipulations to the data;

if the algorithms trained on low or moderate levels of imbalance were deployed in

a real-world setting – like law enforcement efforts to identify the racial-identity of a

subject – those models would not be biased toward one category or another. If the

algorithms trained on extremely imbalanced data were deployed in any real-world

setting, however, they would be biased toward over-identifying the majority class.

Perhaps the most important takeaway is that even previously accurate algorithms

gradually become biased when training data shifts toward one class over the other.

This study used three experimental conditions to test for the robustness of these

results. A key experimental treatment was the proportional size of the majority. This

variable was captured as if it were discrete – class imbalance was set to either low,

moderate, and high level of imbalance. Future studies should capture a continuous

variable. This type of measure would enable the creation of confidence intervals.

Bootstrapping could be used to construct confidence intervals around the estimated

test score. In doing so, my results can establish that the bias – or lack thereof –

exhibited by the model is not specific to just one sub-sample.

A second question that arose during this study: how would this experiment be

used to audit real-world software? Researchers would need to purchase a software

license from a vendor – unless the study was trying to test multiple surveillance

systems, then multiple licenses would need to be purchased. The difficulty in this

regard is that, unlike in academia where code and data are shared for the sake of

transparency and replication, proprietary software is not be freely available. In many

instances, the code and training data represent the product being sold. Any testing

of such software would require external data sets and be limited by whatever tuning

parameters the software allows.

Finally, future researchers may be interested in exploring whether or not these re-

sults hold for specific racial-identities, as opposed to the vague ”non-white” class used

throughout this paper. To answer this question, this experiment could be replicated

almost identically, but with original Black, LatinX, and Asian race-identifiers replac-

ing the non-white category. The difficulty would be all of the potential permutations
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such categories would allow in an experimental setting. A comprehensive study would

require that the machine learner be tested for bias across all racial pairings; that is,

the experiment would have to test whether a machine trained on images of mostly

Black subjects would misclassify LatinX as such, and vice versa.

Deep learning models are not immune to imbalances in training data, but they are

resistant. While such algorithms are not easily manipulated once their weights have

been optimized, getting to that point requires an enormous amount of trial and error.

It is not always clear what features are confusing the classifier, or what elements of

the sample are most recognizable as belonging to one class or another. The easiest,

perhaps lowest level of criticism of deep learning is that such models are a ”black

box.” I argue something is only a black box if you are too scared – or too ignorant –

to look inside. The current trend in deep learning is to better understand the middle

layers of the network, where mid-level features are represented by partially trained

parameters. Social scientists should continue to explore machine learning not only

from a methodological standpoint, but also to understand the social implications of

such technology,
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2.6 Appendix I: Code Overview

#!/ usr/bin/env pythons

# coding: utf -8

# Pseudo -code for Race Recognition Model: Algorithmic Bias

in Deep Learning

DOI: 10.13140/ RG .2.2.28514.61126

# For full code , visit:

https :// github.com/apineda91/DeepLearn4PolComm

# python libraries required: tensorflow , numpy , sklearn ,

nlt

k, pandas , keras (part of tensorflow), matplotlib , os, sys

# Define functions to balance (and rebalance) classes

def class_balance(dat):

def new_balance(dat , z, samp_method , majority_class):

# Define function to plot_confusion_matrix

def plot_confusion_matrix(cm, classes , normalize=False ,

title

=’Confusion matrix ’,cmap=plt.cm.Blues):

# Specify data you wanna work with: MORPH or FairFace

# Load training data

# Specify data locations

# Specify cross -validation proportions

#### Split data into train/test/validate ####

# Shuffle data

# Test data (set aside for final model)

# Validation data (for parameter tuning)

# Training data (for training)
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# For FairFace data create race category variable

# Create the dictionary

# Add a new column named ’race_cat ’

# map FairFace values to White or Non -White variable

# Data wrangling:

# Balance datasets as necessary

# Check datatypes

# Check counts for race variable (across all subsets)

# Make sure all images have a valid path and are where

y

ou think they are

# Make sure sample sizes are divisible by batch number

# Specify image size , number of classes , and directory

p

ath

# Initialize data generators

# Create the image data generator

img_datagen = ImageDataGenerator(

#featurewise_center=True ,

#featurewise_std_normalization=True) #

standardizati

on

rescale = 1./255) # normalization

# Use it to load the different datasets

train_generator = img_datagen.flow_from_dataframe(

train_dat ,

directory=train_dat_location ,

x_col=’full_path ’,

y_col=’race_category ’,

#weight_col=None ,

target_size =(img_width , img_height),

color_mode=’rgb ’,
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classes=None ,

class_mode=’categorical ’,

batch_size=batch_size ,

validate_filenames = False ,

shuffle = False)

val_generator = img_datagen.flow_from_dataframe(

val_dat ,

directory=val_dat_location ,

x_col=’full_path ’,

y_col=’race_category ’,

#weight_col=None ,

target_size =(img_width , img_height),

color_mode=’rgb ’,

classes=None ,

class_mode=’categorical ’,

batch_size=batch_size ,

validate_filenames = False ,

shuffle = False)

test_generator = img_datagen.flow_from_dataframe(

test_dat ,

directory=test_dat_location ,

x_col=’full_path ’,

y_col=’race_category ’,

#weight_col=None ,

target_size =(256, 256),

color_mode=’rgb ’,

classes=None ,

class_mode=’categorical ’,

batch_size=batch_size ,

validate_filenames = False ,

shuffle = False)

# Import pre -trained CNN
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from tensorflow.keras.applications import ResNet50V2

### 1. check how many layers are in the base model

### 2. define which layers will be fine -tuned

### 3. freeze the layers you don ’t want trained

# Model Construction

x = image_model.output

x = Conv2D(3, 6, activation ="relu", padding = ’same ’)(x)

#x = Conv2D(1, 1, activation ="relu")(x)

x = MaxPooling2D(pool_size =(2, 2), strides =(1, 1), padding

=’

same ’)(x)

x = Conv2D(3, 6, activation ="relu", padding = ’same ’)(x)

x = Conv2D(3, 6, activation ="relu", padding = ’same ’)(x)

#x = Conv2D(1, 1, activation ="relu")(x)

x = MaxPooling2D(pool_size =(2, 2), strides =(1, 1), padding

=’

same ’)(x)

x = Conv2D(3, 6, activation ="relu", padding = ’same ’)(x)

#x = Conv2D(1, 1, activation ="relu")(x)

x = MaxPooling2D(pool_size =(2, 2), strides =(1, 1), padding

=’

same ’)(x)

x = Flatten ()(x)

x = Dense (36, activation = "relu")(x)

#x = Dropout (0.75)(x)

x = Dense (18, activation = "relu")(x)

#x = Dropout (0.75)(x)

x = Dense(9, activation = "relu")(x)

x = Dropout (0.3)(x)

predictions = Dense(n_classes , activation =" sigmoid ")(x)

print(" Shotgunning beer ...")
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print("Model compiled , beer shotgunned , LET ’S GOOOOOO ")

model_final = Model(image_model.input , predictions)

# Compile the model

model_final.compile(loss = "categorical_crossentropy",

optimizer = optimizers.Adam(lr =0.0001)

,

metrics =[" categorical_accuracy "])

# Summarize model (make sure architecture looks what you

thi

nk it looks like)

# MODEL TRAINING:

### 1. initialize the model

### 2. compile model

### 3. summarize model (make sure architecture is what you

w

ant)

### 4. train model (save output in an object)

### 5. save model (avoid having to train and re-train)

# EVALUATE MODEL AND SAVE METRICS

### plot training and validation scores

### plot confusion matrices

### record Precision , Recall , and F1 score

### use data name , date , and time to save / index metrics

ac

cordingly

### with the number of experimental treatments , it ’s

importa

nt to be detailed and organized here
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CHAPTER III

Multimodal Deep Learning for Detecting Election

Administration Issues on Social Media

A growing body of election research uses social media data to augment information

from national surveys. The volume of such data has spurred the use of machine

learning to process different modes of content (text, image, audio, etc) found online.

This paper uses deep learning to detect election incidents reported on Twitter during

the 2016 U.S. presidential election. The study finds that such algorithms are more

than capable of processing multimodal content, but the accuracy and prediction power

of deep learning relies on the quality of the training data. The architecture introduced

in this paper processes text and image data from thousands of tweets in minutes -

and such models can easily be improved by increasing the scale of the training data.
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3.1 Introduction

One metric to measure the quality of a democracy is to observe the ease with

which its citizens vote. It is at the voting booth that citizens lift leaders to power

and push legislative agendas forward. Obstacles to voting - like the presence of voter

restrictions or the absence of polling place resources - indicate decay in the process.

Election scholars continue to develop new methods to measure voter accessibility in

the United States. Election forensics uses statistical analysis of data to determine

whether an election’s outcome properly reflects the will of voters.

One challenge in this endeavor is determining whether anomalies in election data

result from deliberate fraud (Mebane Jr et al., 2018). Election issues can stem from

logistical or administrative shortcomings, as opposed to direct fraud or tampering.

Such shortcomings dampen voting efforts and distort turnout data, making it diffi-

cult to discern whether unanticipated results indicate more malicious threats to the

electoral process. Contributing to election forensics, this study uses tweets collected

during the 2016 U.S. presidential election to detect election incidents : anecdotal ev-

idence of either a positive or negative voting experience.

Unfortunately, the United States does not have a single, national institution re-

sponsible for monitoring elections or handling voter complaints across the country.

Although most states do have a system for processing election complaints, there are

often multiple, prohibitively complicated avenues for a would-be complainant to pur-

sue. As such, there is little aggregated data capturing voting experiences in the

United States. Researchers have turned to alternative data sources, like the social

media platform Twitter, to capture firsthand accounts of the voting process (Abilov

et al., 2021; Wu and Mebane Jr , 2020).

In this vein, this paper uses convolutional neural networks - called CNN’s or

deep learning models - to process the text and images from thousands of tweets.

The two models, one trained on text-only and the second trained on combined text-

image, achieve high training accuracy on human coded training sets. Performance

declines, however, when the models attempt to classify previously unseen validation

and test data. More work must be done to increase the quality of training data,

so machine learning models can better capture generalizable patterns indicative of

election incidents.

Election Forensics Administrative shortcomings of interest to election researchers

include long wait times and crowded polling places; poorly designed ballots; malfunc-
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tioning or defective election equipment; and the availability of local polling places

(Stewart III and Ansolabehere, 2015; Herron and Smith, 2016; Lausen, 2008; Herrn-

son et al., 2009; Jones and Simons , 2012; Brady and McNulty , 2011). Information

capturing difficulties voters face on election day would be helpful, but is not readily

available.

Election observation reports would seemingly be useful to researchers, as elec-

tions are now regularly observed by international monitors. The lack of international

standards can lead to bias from election monitors (Hyde, 2011; Kelley, 2012). Inter-

national monitoring is not the only source of observation data. Several countries have

domestic institutions where citizens or political parties can formally contest election

processes. Election data from Germany and Mexico reveal that statistics employed by

election forensics are sensitive to the difference between strategic voter behavior and

potential fraud (Mebane and Wall, 2015; Mebane, Klaver, and Miller, 2016). Being

able to automatically detect voting experience would provide invaluable information

in determining whether an election’s process has broken down. This study takes a

step toward that end, using data from the United States.

As training data for the deep learning models, this paper uses tweets scraped from

the Twitter Streaming API during the 2016 U.S. presidential election (Mebane Jr

et al., 2017). One example is seen in Figure 3.1. The tweet illustrates a positive

experience for one voter, who comments how well organized their polling place was

in Clark County, Nevada. The ”Vote Here Today” flag suggests the photograph was

taken outside the polling place and the subject is holding a ”Trump” sign, indicating

partisan affiliation. To properly leverage all this information from text and image

content – and potentially improve performance of automated classifiers – researchers

have started using machine learning classifiers trained on multimodal input Wu and

Mebane Jr (2020). This study finds the promise of multimodal classification depen-

dent on the quality and variation in the training data.

This paper is organized as follows: Section 2 details two election administration

issues that are hard to detect using survey data alone; Section 3 discusses the Twit-

ter data gathered during the 2016 U.S. presidential election, used as training data

for classifiers that could remedy this problem; Section 4 reviews deep learning archi-

tecture and its application for multimodal tweet classification; 5 discusses training

results and avenues for future research in this field.
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Figure 3.1: A sample tweet showing a positive polling place experience:”just voted
today , well organized by @ clarkcountynv . vote early or vote on election day ! its
our duty as american ci & just voted today , well organized by @ clarkcountynv . vote
early or vote on election day ! its our duty as american citizens . # leadright2016”

3.2 Election Administration Issues and Their Impact

As election administration researchers debate the impact voter ID laws and polling

place resources have on turnout, one thing is clear: additional data sources are needed.

While social media helps in this regard, researchers must be armed with the methods

to handle millions of unstructured data points. This paper contributes two models

that can handle both the scale and multimodal content of social media data.

Voter ID Laws Evidence suggests that the appearance and passage of restrictive

voting laws are strategically employed by partisans in states with closer elections and

a higher proportion of racial minorities (Bentele and O’brien, 2013). Voter ID laws

suppress votes either directly or indirectly, but it is difficult to make this distinction

using survey data alone. Indirect voter suppression occurs when voter ID laws intim-

idate citizens into not voting, even when they have proper identification. Potential

voters might decide not to vote because they feel targeted by these laws; this is es-

pecially true among racial minorities, who have historically been subject to polling

place violence. There is debate about whether or not voter ID laws actually suppress

turnout among marginalized communities (Hajnal et al., 2017; Grimmer et al., 2018;

Chen et al., 2019).

One contention is that ”strict voter identification laws substantially alter the
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makeup of who votes and ultimately skew democracy in favor of whites and those on

the political right. These laws have a significant impact on the representativeness of

the vote and the fairness of democracy” (Hajnal et al., 2017). Another argument is

that any estimated effect of voter ID laws on turnout is attributed to measurement

error. National surveys like the Cooperative Congressional Election Study (CCES)

are ill-suited for estimating the effect of state election laws on voter turnout because

they are not representative of hard-to-reach populations (Grimmer et al., 2018). Ac-

cess to social media data gives researchers evidence of voter suppression, but the scale

of such data requires salable methods. According to Twitter’s API documentation,

users produce 500 − 700 million tweets per day. For reference, the two models in-

troduced later in the paper are trained and validated on a corpus of less than nine

thousand tweets.

Questions regarding the effect of voter ID laws revolve around national surveys,

like the CCES, that lack the precision to capture voting patterns in groups most

likely to be impacted by restrictions (Grimmer et al., 2018). Election researchers

continue to look for alternative information sources, as both cell phone and social

media data have been used to examine wait times and experiences during the 2016

U.S. presidential election (Chen et al., 2019; Wu and Mebane Jr , 2020). Research

suggests that mobile phones and social media provide a platform for racial minorities

to voice political grievances (Freelon et al., 2016). This study uses social media data

to supplement information currently available to election scholars, aggregating first-

person accounts of voting experiences posted to Twitter.

Polling Place Resources If time is a resource, then wait-time is a major cost

voters must pay to cast their ballot. Research points to three factors that correlate

with variation in wait-times: demographics, polling place operations, and the presence

of voter ID laws (Stein et al., 2020; Cottrell et al., 2020). The danger with long lines

is not only the increased cost for voters, but also the perception of high costs from

potential voters. Line length has a negative effect on the number of people who arrive

at a polling place and leave without voting because they see the line is too long (Stein

et al., 2020).

There is concern regarding the long-term effects that irregularities have on voter

confidence and behavior. Difficulty at the polling place raises voters’ concerns that

ballots were properly counted, eroding trust in the democratic system and making

participation in future elections less likely. This downstream consequence of long wait

times is well established. Findings indicate a linkage between long wait in the 2012
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U.S. presidential election and turnout in 2016: ”not only are some voters penalized

by waiting in line, but a small number of these individuals appear to be dissuaded

from voting in the future” (Cottrell et al., 2020, 23). For every hour a voter waits in

line, their probability of voting in the next election decreases by one percentage point

(Pettigrew , 2020).

Further still, this downstream effect on voting behavior disproportionately impacts

African-Americans over white voters (Pettigrew , 2020). For example, voters in Florida

during the 2012 election who waited a long time to vote - and ultimately voted

past the official 7:00 p.m. closing time - were disproportionately black, Latino, and

Democratic (Cottrell et al., 2020). The danger in this regard is that historically

disenfranchised groups will grow more cynical as they face greater hurdles to the ballot

box, eventually refusing to participate in elections altogether. Counter arguments

suggests the dampening of voter confidence is limited in scope (King , 2020). The

ability to automatically detect election incidents would illuminate voter sentiment

toward the electoral process.

The first step in remedying polling place inadequacies is identifying them. Survey

data has proved insufficient in this regard. The methods introduced in this paper take

a step toward automatically detecting election incidents online. Large-scale, curated

training data specific to political science research is still scarce, although there is

progress in this regard (Abilov et al., 2021; Torres and Cantú, 2021). To overcome

this data shortage, I use transfer learning and pre-trained CNNs to extract features

from a new data set - in this case, a corpus of tweets.

The use of deep learning models in this study aligns with the assertion that these

methods are ”a transparent, cost-efficient mechanism to record the information” nec-

essary to validate the results in a national election (Torres and Cantú, 2021, 13). If

deep learning can automate this process even partially, not only does this shorten

the waiting time for results but it also increases voter confidence in the election pro-

cess itself. This study contributes to computational social science by exploring deep

learning’s potential to detect election administration issues on social media. Perhaps

most importantly, this paper demonstrates that deep learning is flexible enough to

classify multimodal content. Future election researchers can use these methods across

a variety of classification problems and data types.
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3.3 Twitter Scraping During the 2016 U.S. Election

This section details data collection efforts during the 2016 U.S. presidential elec-

tion (Mebane Jr et al., 2017). The purpose of the original study was to capture

voting problems posted to Twitter and use geolocation to identify ”hot-spots” of

polling place irregularities across the United States. The authors used two platforms

to gather Twitter data over the course of the 2016 election cycle: the Sysomos MAP

archive and the Twitter API. The Sysomos MAP search tool was used to gather data

during the primary/caucus period because the platform supports keyword searches

for tweets going back 12 months (data collection efforts began in the summer of 2016,

after the primaries had been decided). The Twitter API was used to gather data

during the general election period. Note that this actually consists of two different

interfaces: the REST API for downloading past tweets and the Streaming API for

downloading tweets as they are posted in real-time.

The motivation for using Twitter was the inaccessibility of voter complaint data

from election administration officials across the United States. There is no one cen-

tral or national agency responsible for processing polling place irregularities reported

by voters. Individual states may have such departments, but the process of report-

ing complaints can be so convoluted it dissuades voters from doing so, resulting in

little data ever being recorded (Mebane Jr et al., 2017). That said, many of these

departments have a social media presence. The timelines of 493 Twitter accounts

from the REST API were downloaded using a list of election official, party and other

Twitter account names (”twitter handles”). Meanwhile, the Twitter Streaming API

enabled the downloading of tweets as they were posted to Twitter in real-time using

keywords as filters.1 From October 1 through November 8, 2016, 44,329 tweets were

downloaded from timelines and 16,221,304 tweets from the Streaming API.

Retweets were removed, leaving 6,163,890 unique tweets with 4,541,097 unique

1Twitter API Keywords: line to vote, long line to vote, wait to vote, absentee voting, early
voting, problems voting, voting rights, right to vote, election fraud, corruption, voter fraud, stole
election, stolen election, rigged, election stealing, tamper, manipulate, voter id, voter identification,
election complaint, election problem, broken voting machine, election officials, electronic voting,
election audit, election observer, poll watch, vote protection, election protection, disenfranchised,
campaign finance, election system, primary election, general election, voter complaint, polling place,
registration database, statevote, votestate, stateelection, vote count, vote tabulation, voter database,
voter registration, voter suppression, voting machine, voting machine hacked, vote not counted,
vote, US election, American election, not enough ballots, absentee ballot, voter intimidation, voter
harassment, mail in ballot, vote by mail, voter hotline, waiting to vote, precinct, precinct officials,
precinct captain, replacement ballot, ballot selfie, my ballot, my vote, eleccion, fila para votar,
derecho al voto, derecho al votar, fraude electoral, maquina de votacion, funcionarios electorales,
colegio electoral, neo-nazi, white supremacist, white nationalist, alt-right.
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Figure 3.2: Class proportions across the training, validation, and test sets. The
original data is subset, with the ratio of non-incidents (0) to incidents (1) preserved.
The bulk of the data (n=7950) is used for training, while the validation set (n=500)
is used to check for overfitting and the test set (n=500) is used to gauge the final
model’s predictive power.
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tweet texts. As was previously mentioned, the goal of the initial study involved

locating incident observations – at the state, city or neighborhood levels – but not all

tweets have geotags associated with them. Twitter users must change their privacy

settings to have their location automatically recorded at the time a tweet is posted.

As such, only the 598,783 tweets that had geographic information were kept, 505,112

of which contained unique tweet texts. A sample of 19,789 tweet texts were taken

and labeled by hand as containing an incident observation (n = 2, 610) or not (n

= 17, 179). About 8,500 of these coded tweets featured accompanying images that

were downloaded after the tweets were originally pulled from the Twitter API. This

sample of 8,500 are used as the training data for the election incident model.

The intuition behind the supervised learning approach is to provide the deep learn-

ing model with enough training examples so that its weights can detect important

features in unseen images and accurately predict their labels. For the sake of param-

eter tuning and testing, the hand-coded training data is split into three subsets, as

shown in Figure 3.2. Training data (n=7950) gets input into the model so it can learn

major features and optimize weights. To check for overfitting, the model attempts to

classify unseen validation data after each iteration of training (called an epoch). Once

parameter tuning is completed, test data provides performance benchmarks for the

final model. Note that the subsets are sampled such that the ratio of non-incidents

(0) to incidents (1) is preserved across the three samples.

3.4 Deep Learning for Tweet Classification

This section provides an overview of the deep learning methods used to detect

election incidents. Convolutional neural networks are layered structures for processing

and classifying high-dimensional data (Hastie et al., 2009). CNN’s are considered

feed-forward networks because data is passed forward from the input layer to the

middle and output layers. An example of this process, taken from image layers of the

combined text-image model, is shown in Figure 3.3. Training a CNN requires the

use of weights that differentiate between relevant features in the input data; weights

and input data are combined via matrix multiplication before being fed forward to

the next layer. The network performs different operations on the data to capture

important signals, reduce dimensionality, and find relationships in the data.

There are two phases for a CNN to process content: feature extraction and classi-

fication. During feature extraction, convolutional layers use filters that rotate across

the data, searching for specific patterns and breaking down each individual input
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Figure 3.3: Schematic of the image layers from the text-image model. Convolutional
filters create feature maps while pooling layers reduce the size of the data. This visual
is specific to the image side of the architecture. The text side is parallel, with one-
dimensional matrix operations instead of the two-dimensions required for images.

into feature maps. Pooling reduces the dimensionality of the data by either taking

the average or the maximum among clusters of data points, reducing noise in favor

of the strongest signals.

The full architecture of the combined text-image classifier is shown in Figure

3.4. Between the convolutional and pooling operations, a lot of effort is expended

reducing images to their most essential features, making data easier to process in

the final layers of the network. After feature extraction, the final layers of a CNN is

concerned with classification. Feature maps are fed into the dense layers – where all

of the inputs from one layer connect to all functions in the subsequent layer. This

enables the network to detect non-linear relationships like image patterns or keywords

that suggest a tweet’s membership in one class versus another.

3.4.1 Transfer Learning

Spurred by the costliness of training complex CNN’s, machine learning research

has explored transfer learning – a technique where a model’s parameters, trained on

a source task, is applied to a new target task. Transfer learning defies the assumption

that training and target data must come from the same domain; often, researchers

have a target task in one area of interest but use a model pre-trained on data from a

separate, more general domain (Pan and Yang , 2010). This process works well with

image data because images share a feature space. The lower levels of a neural network

learn basic patterns, like edges and shapes, that are not exclusive to any particular

domain, but rather, common to all pictures. Transfer learning seeks to improve
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performance by using the parameters of a pre-trained model to extract features from

the target data. More formally:

Definition 2. Transfer Learning. Given a source domain DS and learning task

TS, a target domain DT and learning task TT , transfer learning aims to help improve

the learning of target predictive function fT (·) in DT using the knowledge in DS and

TS, where DS ̸= DT , or TS ̸= TT .

Let domain D be defined by a feature space, X, and a marginal probability distri-

bution, P (X). For a domain of interest, D = {X,P (X)}, a task, T , has two parts: a

set of labels Y and a predictive function f(·). A task simply refers to a function that

predicts labels: T = {Y, f(·)}. Much like research assistants, the predictive function

learns from examples. This training data consists of pre-labeled data {xi, yi} where

xi ∈ X and yi ∈ Y . The ultimate goal is to estimate the parameters of f(·) that can
predict the label f(x), given a new instance x.

Assume there are only two domains of interest: a source domain DS and a target

domain DT . Data sampled from the source domain data is denoted DS =

{(xS1 , yS1), ..., (xSn , ySn)} where xSi
∈ XS is a data point and ySi

∈ YS is the corre-

sponding label. Equivalently, the target domain data is denoted DT =

{(xT1 , yT1), ..., (xTn , yTn)} where xTi
∈ XT is the data point and yTi

∈ YT is the corre-

sponding label. Transfer learning is the process of applying knowledge gained from

DS to a task in DT . This study uses parameters from three different pre-trained

networks. The text-only classifier makes use of GloVe word embeddings, pre-trained

parameters that measure word similarity via Euclidean distance (more below) (Pen-

nington et al., 2014). As seen in Figure 3.4, the text-image classifier makes use of

these embeddings on the text side and the VGG16 model on the image side - a very

deep CNN whose frozen parameters do not update, but extract features from tweet

images (Simonyan and Zisserman, 2014).

Model Architecture After the images pass through the VGG16 model, their fea-

ture maps are fed to adaptation layers, whose weights are updated over the course of

training. These layers perform various operations on the features to reduce dimen-

sionality and capture relevant patterns. Operations for both the text and image side

of the model include alternating convolutions and max pooling. Features are con-

catenated then fed to X dense layers. The adaptation layers of the text-image model

consist of 26,475 trainable weights that update and learn patterns in the feature data;

the text-only model consists of 21,250 trainable weights. Although this seems like a
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small discrepancy, proportional to the size difference of the data, note that the text-

image model uses 14 million frozen weights for feature extraction, while the text-only

model uses just over 600,000 frozen weights. For further details on image processing

and model architecture, please see the code overview in Appendix I of this chapter.

Parameter Tuning The overall number of layers, the size of the convolution filters,

the type of activation function, and the type of pooling are all tuning-parameters –

adjustable settings defined by the user that impact both the speed of training and

the accuracy of the model. An enormous amount of time and energy is spent testing

different combinations of tuning-parameters to find what configuration provides the

best performance. The difficulty in parameter tuning is that there are no hard and

fast rules about how to determine the optimal configuration; no two networks are built

the same, as configurations are specific to the problem statement and classification

scheme. There are certain heuristics that can guide experimentation (for instance,

it is generally best to increase depth depending on the complexity of the image) but

this requires trial and error.

Parameter tuning is a balance between potential improvements and costs to model

performance. Increasing the number of filters helps improve accuracy, but this re-

quires more training data. Increasing the size of the learning rate helps the optimiza-

tion algorithm converge faster, but runs the risk of unstable training and sub-optimal

parameters. A learning rate that is too small will result in a long training process

that gets stuck at a local minimum. Too many filters in a model runs the risk of

overfitting – when a model adjusts parameters to accurately classify training data

without detecting the relevant patterns that let it classify unseen data. An exam-

ple of overfitting can be seen in the training and validation metrics of the text-only

model, shown in Figures 3.5 and 3.6(b). When transfer learning is employed, as it

is in this study, the choice of what pre-trained model to use is itself a tuning param-

eter. The GloVe and VGG16 model were chosen for transfer learning because they

outperformed other models available in Python’s Keras package.

Backpropagation During training, optimal weights are found via a process called

backpropagation. This process occurs in three stages – the forward pass, the backward

pass, and the gradient update. During the forward pass, the linear combination of

weights and input data is computed, then fed forward layer-to-layer until the model

outputs the predicted label. During the backward pass, the distance between the

predicted and true labels is calculated using the loss function. The derivative of
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the loss function with respect to each weight, the gradient, is computed layer-by-layer

starting from the output layer and going backward. The third step in backpropagation

uses the calculated gradient to adjust the weights toward the steepest decrease of

the loss function. This process of iteratively computing the gradient of the loss

function with respect to each weight and then adjusting weights to minimize loss,

called gradient descent, efficiently decreases error at each training step.

Benchmarks for Training Training performance is measured using two bench-

marks: accuracy and cross-entropy loss. Accuracy, defined formally in Equation 3.1

below, captures the percentage of images the model correctly classifies. We define yi

as the true value for data point i and ŷi as the model’s predicted label. The higher

the accuracy, the better the model.

accuracy(y, ŷ) =
1

ns

ns−1∑
i=0

1(ŷi = yi) (3.1)

Categorical cross-entropy loss, defined in Equation 3.2 below, is calculated as a

sum of separate loss for each class label per observation. As probability p diverges from

the true label, cross-entropy increases – loss closer to 1 indicates poor performance,

while a perfectly performing model would have a loss of 0.

loss(y, p) = −
M∑
c=1

yi,c log pi,c (3.2)

In the above equation, we define M as the number of classes, p as the predicted

probability, and yi,c is a binary indicator (0 or 1) that indicates if c is the correct class.

The algorithm uses the loss function to capture prediction error. Gradient descent

then updates weights to minimize loss, thereby reducing error before attempting

to classify another batch of data. Training neural networks is thus framed as an

optimization problem: update weights to reduce error until you arrive at a global

minimum.

GloVe word embeddings and text processing Originally introduced by Pen-

nington et al. (2014) GloVe is an unsupervised learning algorithm for representing

words as vectors in space. Word embeddings are a natural language processing tech-

nique where words are cast into a geometric space such that distances between words

capture their semantic similarity. The closer the words in space, the more similar

they are to one another. Representing words as these global vectors means represent-
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ing words by their semantic neighbors in geometric space. The location of that word

in the space is referred to as its embedding. The algorithm learns global word-word

co-occurrence statistics from Wikipedia, and the resulting vectors represent linear

relations between words.

Image Processing To better understand how a CNN processes image data, think

of an image as a three-dimensional matrix consisting of pixel values. Images are

represented by their pixel values, from 1 to 256, along three color channels – red,

green, and blue (RGB). Data is normalized by dividing all values by the range (255).

This ensures that all of the input data exists on the [0,1] scale which enables the

network to converge faster during training.

During training, the CNN performs a series of matrix transformations on the

data, so there cannot be any variation in dimensionality of the inputs. The training

algorithm expects all images to have a square, uniform size, so all images are resized to

96 x 96. For data augmentation, pre-processing images can include transformations

to provide the model more variation from its training input. Training images can

be randomly flipped, zoomed-in, or tilted along different axes. This provides the

model with examples that are better representative of the feature space, improving

classification accuracy of unseen data.

3.5 Results and Discussion

Both models perform well on training data, but poorly on validation and test data.

Indeed, as seen in Figure 3.5, the text-only model eventually classifies the training

set perfectly - note the high accuracy and low cross-entropy score - but the accuracy

and loss metrics diverge from the training set. This indicates that the CNN’s are

overfitting the training data. This occurs when models become overly complex, when

there are more parameters than observations, or when there is not enough variation

in the training data for the model to detect generalizable patterns. Over the course

of learning, the CNN’s become overly sensitive to changes in the training data that

are less prominent or meaningful in the validation and test sets. The remedy for

overfitting is more data with more distinct classes and identifiable features.

Confusion matrices help researchers understand where models can be improved

by gauging predictive performance on the test set, across classes. Figure 3.6 demon-

strates that the poor predictive performance for the text-only algorithm comes from

the model only correctly predicting 60% of incidents - the other 40% being mistakenly
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classified as non-incidents.

The text-image model does not perform any better on classifying unseen tweets

from the 2016 Election Twitter data. As Figure 3.7 indicates, the model achieves

higher accuracy and lower cross entropy score on the training data, relative to the

validation set. While the disparity is not as great as in the text-image model, the

confusion matrices in Figure 3.8 show that the text-image model has trouble predict-

ing incidents even on the training data. Although multimodal content classification

remains an important goal for the analysis of social media data, not all classification

schemes are going to benefit from multimodal input.

One potential claim might be that the parameters in the text-image model are

merely suboptimal - perhaps the model requires more time to train or the filters need

to be bigger - but no amount of parameter tuning can make up for inadequacies

in the data. Indeed, the classes are incredibly imbalanced. There simply are not

enough examples of polling place incidents in the 2016 Election data for the text-

image classifier’s parameters to detect a generalizable pattern. To avoid criticisms

of suboptimal parameter tuning, future studies might adopt a method called grid

searching - where tuning parameters are set at random and multiple models are

training and compared until optimal parameters are found. As it is, such a practice

is computationally intensive and beyond the scope of this paper.

The advantage of deep learning is its flexibility and scalability. Indeed, the text-

only model processes tens of thousands of tweets in seconds, the text-image model

does the same in minutes. Both models show the ability to replicate human coded

classification schemes. Note that the tweets in the training sample were scraped from

the Twitter Streaming API, which offers a 1% sample from the 500-700 million tweets

written per day. Future research should aim to increase the scale of training data by

accessing the 10% Decahose API which increases the variation in URL’s, hashtags,

and news topics (Li et al., 2016).

Computational social science has already leveraged machine learning to automat-

ically verify part of the election process, using a CNN to code vote tallies in Mexico’s

2015 federal election (Torres and Cantú, 2021). This intersection between political

science and machine learning is not without difficulty. The benchmark deep learning

models used throughout machine learning literature are trained on generic data sets

which have little bearing on politics. As election forensics moves forward, the larger

goal of this work remains in focus: observing elections can help measure the qual-

ity of democracy. If deep learning helps us detect issues in election administration,

then curating data sets and training deep learning models should be seen by political

43



scientists as worthwhile endeavors.

Performance could be improved by combining the efforts of the text-only and text-

image models. Currently, all tweets in the data set contain images; for the sake of

comparison, both models had to be trained on identical training sets. Only 8,500 of

the 19,789 coded tweets contained images, so the algorithms are only being trained

on a fraction of available knowledge. Note that the combined text-image classifier did

not outperform the text-only model partly because the text-only model performed so

highly on the training set.

To improve predictive power, the simplest way forward would be to re-build the

system to account for tweets that are and are not accompanied by an image. Tweets

that do not contain an image are fed to the text-only model; tweets that do contain an

image are fed to the text-image combined model. Both models are trained, parameters

tuned, until predictive performance is maximized (as evidence by the validation data).

Once the models are trained on their respective data sets,

Shapley values can identify which images most contributed to error and accuracy.

Taken from cooperative game theory, the solution concept traces how much the actions

of any given player contributed to overall result. In this context, it presents the

images that contributed most to changes in training accuracy. This information can

help guide feature selection as training sets are curated.

Currently, this system could be deployed on election day to detect incidents in

real-time; however, because of the error shown during validation, it could only be

done in a semi-automated away. The classification system would inevitably over-

estimate the number of reported incidents. To correct for this, researchers could grab

tweets on election day using a set of keyword filters, feed them to the classifier for

an initial estimate of incidents, and then manually review the results to correct the

algorithm’s overestimation. Final results would be delayed, but the system would at

least enable researchers to detect potential election fraud in-real time. Timeliness is

important for in this regard. If there is no evidence of fraud, the algorithm would

either reassure public confidence in the electoral process. Conversely, if Twitter is

filled with anecdotes of administrative breakdowns, the algorithm would grab the

relevant evidence for further investigation.

When mapping from concept to data, defining features of importance are just

as important as defining the concept itself. The effort to manually label the initial

training data was done in an haphazard way; that is, a lot of debate focused on how

to define the concept election incident in the context of the Twitter corpus. With too

many differences in opinion, the concept lacked cohesion in the training data. Little
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attention was focused on what visual features were vital to this mapping. Curating

a training corpus requires clearly defined concepts, but more importantly, patterns

that are generalizable.

The machine must be exposed to visual and textual themes that it will see else-

where in the data. A tweet being an election incident is a necessary condition for

inclusion into the training corpus; but it should not be a sufficient condition. A

training corpus should include examples that the machine is likely to see beyond the

training data. If a tweet is an election incident – but only weakly so – it is likely

adding to the noise instead of strengthening the signal. Machine learning algorithms

optimize parameters to detect recurring patterns specific to each class. If there is too

much variation in these patterns – if one of the classes is too broad, its components

only loosely connected – there will not be enough information for learning to gain

traction.
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Figure 3.4: The text-image model’s parallel architecture. Content on both sides is
represented in matrix form. A combination of transfer learning (from the VGG16 im-
age classifier and GloVe word embeddings), convolutions, and pooling layers extract
features from a tweet’s content. Once their features have been joined, dense layers
learn patterns from both text and image features, before making a classification de-
cision.
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Figure 3.5: Training and validation metrics for the text-only model. The most striking
element about the text-only model is not its high training accuracy, but rather, the
disparity between training and validation metrics. The model suffers from overfitting.
The remedy for this is to code more training data so the classes become more distinct,
their features more identifiable by the algorithm.
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(a) training data (b) test data

Figure 3.6: Confusion matrices for the text-only model. There is a significant perfor-
mance decline when the text-only algorithm attempts to classify previously unseen
data. The model learns to perfectly classify tweets in the training data (a) but only
manages to detect sixty percent of election incidents in the test set (b).
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Figure 3.7: Training and validation metrics for the text-image model. The text-image
classifier does not perform as well as the text-only classifier on the 2016 Election
Twitter data. Although multimodal content classification remains an important goal
for the analysis of social media data, not all classification schemes are going to benefit
from multimodal input.
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(a) training data (b) test data

Figure 3.8: Confusion matrices for the text-image model. The poor performance on
the training data indicates that a multimodal classifier would require a larger number
ofincidents in the training data to properly distinguish between features.
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3.6 Appendix I: Code Overview

#!/ usr/bin/env python

# coding: utf -8

##################################

##### I. DATA PRE -PROCESSING #####

##################################

# Pseudo -code for Text and Image Tweet Classifier:

Election

Forensics Model

DOI: 10.13140/ RG .2.2.35225.49763

# For full code , visit:

https :// github.com/apineda91/DeepLearn4PolComm

python libraries required: tensorflow , numpy , sklearn ,

nltk ,

pandas , keras (part of tensorflow), matplotlib , os, sys

# Define function to plot_confusion_matrix

def plot_confusion_matrix

### 1. define columns and load data

### 2. make sure ’label ’ var is a string

### 3. check sizes of each class

### 4. drop null values

### 5. make sure sample size is divisible by batch size

### 6. shuffle data

cols = [’tweet_id ’, ’date ’, ’text ’, ’support ’, ’hashtags ’,

’

users ’, ’urls ’, ’media_urls ’, ’nfollowers ’, ’nfriends ’, ’

fil

e_name ’, ’path ’]
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DATA = pd.read_csv (’./ elections_june21.csv ’, dtype = {’

doc_i

d’:str , ’picfiles ’:str ,’label ’:str})

DATA = DATA.sample(frac=1, random_state =1234).reset_index(

dr

op=True)

# Define image size

# Define batch size

# Define path to images

# Check that the images

# 1) exist

# 2) are where you think they are

DATA = DATA[[os.path.isfile(i) for i in DATA[’path ’]]]

# Split data into the following:

### 1. Validation (to check for overfitting)

### 2. Test (set aside until final model evaluation)

### 3. Training (for training)

### spot check class proportions to make sure they ’re

compar

able across sets ###

##### Define data generators that can handle multimodal

inpu

ts #####

def text_generator(a,labs , n):

while True:

for i in range(a.shape [0] // n):

d2 = a[n*i:n*(i+1)]

y_text = labs[n*i:n*(i+1)]

yield d2 , y_text
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def multi_input_generator(df, x_image , y_image , x_txt ,

y_txt

, b_size):

t1 = input_imgen.flow_from_dataframe(

dataframe=df ,

directory = ’./labim_all ’,

x_col = x_image ,

y_col = y_image ,

target_size =(img_width , img_height),

batch_size=b_size ,

class_mode=’categorical ’,

validate_filenames=False)

t2 = text_generator(a=x_txt , labs = y_txt , n=b_size)

while True:

d1 ,y = t1.next()

d1 = np.expand_dims(d1, axis = 0)

d2 , y_text = t2.__next__ ()

yield [d2, d1[0]], [y_text , y]

###### i. TEXT PRE -PROCESSING #####

### 1. Define hyper -parameters

### 2. Subset to only data and labels

### 3. Tokenizers for training text data

### 4. Tokenizers for val text data

##### Initialize the following data generators #####

### 1. train_generator

### 2. val_generator

### 3. test_generator

###### PREPARING GLOVE LAYER #####

### 1. build index mapping words in the embeddings set

to their embedding vector

### 2. compute and prepare embedding matrix
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### 3. load pre -trained word embeddings into an Embedding

la

yer

##### ii. IMAGE PRE -PROCESSING #####

### 1. load pre -trained CNN

### 2. check how many layers are in the base model

### 3. define which layers will be fine -tuned

### 4. freeze the layers you don ’t want trained

##################################

##### II. MODEL CONSTRUCTION #####

##################################

sequence_input = Input(shape=(None , ), dtype=’int64 ’)

embedded_sequences = embedding_layer(sequence_input)

x_text = Conv1D (32, kernel_size = 5, activation ="relu",

padd

ing = ’same ’)(embedded_sequences)

x_text = MaxPooling1D (5)(x_text)

x_text = Conv1D (32, kernel_size = 5, activation ="relu",

padd

ing = ’same ’)(x_text)

x_text = GlobalMaxPooling1D ()(x_text)

x_text = Dense(16, activation ="relu")(x_text)

#x_text = Dropout (0.5)(x_text)

preds = Dense(2, activation=’relu ’)(x_text)

# Adding custom Layers

x_image = image_model.output

x_image = Conv2D(3, 1, activation ="relu", padding = ’same

’)(

x_image)

x_image = MaxPooling2D(pool_size =(2, 2), strides =(1, 1),

pad
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ding=’same ’)(x_image)

x_image = Conv2D(3, 1, activation ="relu", padding = ’same

’)(

x_image)

x_image = MaxPooling2D(pool_size =(2, 2), strides =(1, 1),

pad

ding=’same ’)(x_image)

x_image = Conv2D(3, 1, activation ="relu", padding = ’same

’)(

x_image)

x_image = MaxPooling2D(pool_size =(2, 2), strides =(1, 1),

pad

ding=’same ’)(x_image)

x_image = Flatten ()(x_image)

img_predictions = Dense(2, activation ="relu")(x_image)

merged = Concatenate ()([preds , img_predictions ])

# We stack densely -connected network on top

x = Dense (64, activation=’relu ’)(merged)

x = Dense (32, activation=’relu ’)(x)

x = Dense (16, activation=’relu ’)(x)

x = Dense(8, activation=’relu ’)(x)

x = Dense(4, activation=’relu ’)(x)

#x = Dropout (0.5)(x)

main_output = Dense(2, activation=’sigmoid ’, name = ’

main_ou

tput ’)(x)

# Defining a model with two inputs and one outputs

elections_model = Model([ sequence_input , image_model.input

],

[main_output ])

tbCallBack = TensorBoard(log_dir =’./Graph ’, histogram_freq
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=0

, write_graph=True , write_images=False)

print("ROMA VICTOR !")

sgd = optimizers.SGD(lr=0.01, decay=1e-5, momentum =0.95 ,

nes

terov=True , clipvalue =.5)

elections_model.compile(optimizer=sgd , loss="

categorical_cro

ssentropy", metrics = [’categorical_accuracy ’])

# MODEL TRAINING:

# 1. initialize a model with two inputs and one outputs

# 2. initialize optimizer

# 3. compile model

# 4. train model (save output in an object)

##########################################

##### III. EVALUATION AND VALIDATION #####

##########################################

# For confusion matrix , we need to compute predictions

with

our trained model

# 1. Grab training predictions

# convert to an array of binary values

# 2. Grab validation and testing predictions

# convert to arrays of binary values

# 3. Input predictions and true values into

plot_confusion_m

atrix
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CHAPTER IV

Multimodal Deep Learning for Capturing

Attitudes Toward Black Lives Matter

Capturing attitudes toward the Black Lives Matter movement provides scholars

with deeper insight into public opinion on racialized in the United States. Twitter

data is useful in this regard, but the scale and scope of such data can be prohibitively

large – for instance, data for this study comes from a corpus of 40 million tweets.

Manually coding that many tweets is not a feasible undertaking. Recent social move-

ment research has sought to automate the analysis of social media data, focusing on

sentiment of tweet text. This methodology is limiting because it leaves overall attitude

ambiguous – further it ignores the importance of visual data in expressing political

opinions online. This paper uses convolutional neural networks – called deep learning

models – to classify tweets based on their text and image features. Results indicate

the inclusion of image features helps the model overcome imbalances in the training

data. More work must be done to improve the quality of training data available for

computational social scientists employing machine learning methods.
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4.1 Introduction

I am America. I am the part you

won’t recognize. But get used to

me. Black, confident, cocky; my

name, not yours; my religion, not

yours; my goals, my own; get used

to me.

Muhammad Ali, 1970

When Alicia Garza penned Love Letter to Black Folks in 2013, she ended the es-

say with the assertion: ”We need to love ourselves and fight for a world where Black

lives matter.” The letter was written in response to George Zimmerman’s acquit-

tal, following his shooting and killing of seventeen-year-old Travon Martin. Beyond

sparking a social movement, Ms. Garza’s assertion that Black lives matter sparked

debate over the role of racial frames in discussions of police violence. As the Black

Lives Matter (BLM) movement grew – via offline protests and online dialogue – as

did conversations surrounding BLM protests of police violence. Studying these on-

line conversations can help social movement scholars gain an understanding of the

relationship between protest activity and public opinion.

There is debate among scholars over the effectiveness of social movement protests

in making lasting change on public opinion. Studying attitudes toward BLM would

help clarify this point, providing insight into public opinion toward racialized is-

sues. Just as social movements evolve and change over time, so do attitudes toward

movements and their protest activity. Following the 2020 wave of protests, BLM

successfully shifted public attention toward antiracist issues (Dunivin et al., 2022).

This research fails to account for variation in attitudes toward the movement – not

all attention is positive attention. Data shows that any shifts in public opinion as a

result of the 2020 BLM protests were temporary and negligible (Reny and Newman,

2021). This line of research would benefit from more nuanced measurements of pub-

lic opinion, especially as it relates to social movements. This paper contributes in

this regard, using deep learning algorithms and Twitter data to differentiate between

tweets that support and oppose the Black Lives Matter movement.

The importance of social media data in studying movements cannot be overstated.

Movements uses social media to spread information, raise awareness, and engage pub-

lic discourse; social media platforms are where coalitions are built and meaning is
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collectively cultivated (Bonilla and Rosa, 2015; Mundt et al., 2018). Twitter data

is especially useful in capturing the motivation behind attitudes, providing a deeper

understanding of shifts in opinion. The scale of social media data creates methodolog-

ical problems for social scientists. Recent research into Black Lives Matter employs

Twitter data, but focuses solely on sentiment of tweet text (Patnaude et al., 2021).

In this context, a tweet’s sentiment could relate to either police violence or to the

social movement opposing police violence – overall political attitude is left ambigu-

ous. Political discourse online is exceedingly complex and nuanced. If movements

like Black Lives Matter, MeToo, and the Arab Spring use social media sites to start

a conversation, social movement and public opinion scholars should equip themselves

with the computational tools necessary to study that conversation.

This paper uses deep learning to build an algorithm capable of learning on text

and image data. This enables the algorithm to consider the entirety of a tweet’s con-

tent when deciding whether it signals support or opposition toward BLM. Findings

indicate that image content improves the classifier’s ability to predict previously un-

seen tweets. These types of machine learning algorithms enable researchers to keep

pace with dynamic, contemporary social movements. Social media data helps capture

the public’s short-term reactions protest activity; when aggregated over time, such

data would also give scholars insight into long-term shifts in public opinion toward

social movements.

The rest of the paper is organized as follows. Section 2 discusses the importance

of capturing public opinion as it relates to social movements. Section 3 details data

gathering efforts on Twitter and shows examples of tweets supporting or opposing

BLM. Section 4 reviews deep learning methods and the architectures built for classi-

fication. Section 5 details training results, in addition to avenues for future research.

4.2 Capturing Public Opinion Toward BLM Protests

Studying attitudes toward Black Lives Matter reveals larger trends in public opin-

ion toward racialized issues. These attitudes are ”indicative of what people believe

police violence, and protest against it, tell us about the state of democratic society”

(Leach and Teixeira, 2022, p. 4). Negative attitudes toward civil rights issues can

reveal racial prejudice against the Black community, or Black protest activity (Bobo,

1988). Critics of Black Lives Matter attribute their attitudes not to racial animus,

but rather, to an unwavering support of the police. Evidence from survey data con-

tradicts this claim: “the primary motivation for white opposition to BLM was not
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support for the police but was instead an animus toward Black Americans and com-

mitment to a racial logic that justifies white privilege” (Drakulich et al., 2021, 244).

This paper contends that studying public opinion on social media can supplement –

and add nuance to – information gleaned from survey data alone.

There is debate among scholars regarding the ability of protest to make perva-

sive, lasting shifts in public opinion. Recent research suggests that protest activity

can shape political attitudes beyond the life of social movements; peaceful collec-

tive action events by African-Americans have been shown to garner support among

whites by priming identities beyond race – like being American (Mazumder , 2018).

Indeed, data shows that BLM protests in the summer of 2020 successfully shifted

public attention toward anti-racist issues (Dunivin et al., 2022). This research fails

to account for variation in attitudes toward the movement – not all attention is pos-

itive attention. Indeed, another line of research suggests BLM protest activity only

changed perceptions among low prejudice and politically liberal Americans. Any pub-

lic opinion shift among conservatives following BLM protest activity was ”small and

ephemeral” (Reny and Newman, 2021, 1499). As social media data can be scraped

over time, this enables movement scholars to dynamically capture both protest and

reactions to protest activity.

Social media data makes it possible to not only capture attitudes toward social

movements, but also the motivations behind those attitudes. For instance, opposi-

tional responses to #BlackLivesMatter are identifiable on Twitter because they often

include instances of racism, bigotry, and hate (Yang , 2016). Social media sites pro-

vide digital spaces where political content, expressed via “personal action frames,”

enable users to offer personal motivations for protesting the status quo (Bennett and

Segerberg , 2015). Users can actively shape discussion, instead of just accepting frames

from traditional news media. This has given people, especially youths of color, a

platform to contest mainstream, color-blind ideology that dominates public discourse

and marginalizes Black voices (Cohen and Kahne, 2011; Carney , 2016). Measuring

attitudes toward social movements helps scholars study the effectiveness of protest

activity in changing public opinion.

Studying movements online enables researchers to capture their evolution in a

more nuanced way. The Black Lives Matter movement uses social media to spread

information, raise awareness, and engage public discourse; social media platforms are

where coalitions are built and meaning is collectively cultivated (Bonilla and Rosa,

2015; Mundt et al., 2018). As a platform, Twitter enables a broad audience ”to alter

and manipulate the movement’s construction of meaning” because it is both open
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and participatory (Ince et al., 2017, p. 1827). Counter hashtags like #AllLivesMat-

ter arose as BLM gained prominence, an attempt to reframe conversations of police

violence outside of a racial context; indeed, support for All Lives Matter is correlated

with implicit racism, color-blind ideology, and narrow understandings of discrimi-

nation (Ince et al., 2017; West et al., 2021). As such, the two competing hashtags

represent arguments that are ”socially constructed, historically situated, and con-

stantly changing” (Carney , 2016, 15). The constantly changing nature of discourse

is precisely what makes studying social movements online so difficult.

Limitations & Difficulties in BLM research For scholars interested in the Black

Lives Matter movement, tweets tagged with #BlackLivesMatter offer a potential win-

dow into the movement’s protest strategy, tactics, and policy goals (Freelon et al.,

2016; Ince et al., 2017; Gallagher et al., 2018). The scale and scope of social me-

dia data is a double-edged sword. Capturing attitudes toward Black Lives Matter is

difficult because the openness of social media makes movements – and public opin-

ion towards movements – more dynamic. A hashtag does not signal support for a

cause, but rather, engagement in a conversation. It would be inaccurate to assume

that merely using the hashtag #AllLivesMatter automatically signals support for one

ideology or another.

Black Lives Matter advocates use the #AllLivesMatter hashtag to engage color-

blind ideology directly, keeping that hashtag from derailing the larger conversation

about racial discrimination and police violence (Carney , 2016). The digital debate

over hashtags – ”do Black lives matter or do all lives matter?” – represents a wider

debate over the role of racial frames in public discourse. Recent research into Black

Lives Matter employs Twitter data, but focuses solely on sentiment of tweet text:

One limitation of this research is that the focus was on the overall sen-

timent of a tweet. Meaning, that although tone could be identified, the

opinion conveyed in the tweet was not. In the future, it could be helpful to

know which side of the issue a tweet fell as well as its overall sentiment so

that there can be a better understanding of the public’s opinion regarding

BLM. (Patnaude et al., 2021, 82).

In this context, a tweet’s sentiment could relate to either police violence or to the

social movement opposing police violence – overall political attitude is left ambiguous.

Political discourse online is exceedingly complex and nuanced. The sample tweet in

Figure 4.1 shows how the interplay between text and image manifests on social media.
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Figure 4.1: THIS is how you fight for justice. #Ferguson #PoliceBrutality #Black-
LivesMatter http://t.co/FPIsVeRExR @JNicoleBK

The text reads: ”THIS is how you fight for justice. #Ferguson #PoliceBrutality

#BlackLivesMatter http://t.co/FPIsVeRExR @JNicoleBK.” Accompanying the text

is a nocturnal photo of a protester throwing what looks like a smoke bomb. Ideally,

automated content analysis would be able process both text and image features, as

both modes of content are necessary to understand the attitude being expressed.

Social movements can change the frame of the conversation online to match the

moment. The openness of social media creates fluidity in the collective creation of

meaning (Mundt et al., 2018). This paper the machine learning tools necessary for

scholars to keep pace with the Even among BLM advocates, for instance, the pur-

pose behind the #BlackLivesMatter hashtag is not static. For instance, in August

2014, mentions of Ferguson and police violence, paired with #BlackLivesMatter, were

prominent on Twitter but decreased the rest of the year – while discussions of move-

ment tactics increased (Ince et al., 2017). This conflicts with the claim that the most

shared BLM tweets were were not organizing protests, but rather, spreading news

and information to increase BLM’s visibility (Freelon et al., 2016). Movement goals

develop and change over time: grievances attract activist attention and as protests

increase, so do discussions of how to protest. Discussions of police violence eventually

give way to discussions of policy initiatives (Ince et al., 2017).

The importance of images Visual content is vital to understanding contemporary

social movements. Movements use images to increase attention and spread their

message across social media (Kharroub and Bas , 2016). Visual frames evoke a range
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of emotions that increase online mobilization and offline participation: enthusiasm,

fear, sadness, and anger (Marcus et al., 2000; Williams et al., 2020). The Black Lives

Matter has used images to raise visibility and increase awareness (Freelon et al.,

2016). Not only does an image increase online attention, it can increase diffusion; the

presence of an accompanying image increases the likelihood a tweet will be retweeted

(Casas and Webb-Williams , 2019). If BLM advocates share tweets to foster support

for the movement – and they are using images to do so – then visual themes in

the data should help identify political attitudes being expressed. Evidence suggests

conservative news outlets are more likely than liberal outlets to use nocturnal, dark

visuals of the BLM movement, often depicting protests as dangerous and violent

(Torres , 2018). It follows that images, often sourced from news outlets, would help

differentiate between tweets supporting and opposing BLM.

Multimodal deep learning models, trained on data from the social media site

Weibo, have helped researchers detect violence in collective action events in China

(Zhang and Pan, 2019). While this study does examine protest activity, it examines

attitudes toward BLM, as opposed to characterizing movement protests as violent or

non-violent. Multimodal deep learning models, trained on Twitter data, have been

used to capture election incidents – long lines, broken machines, and other voter

difficulties – that occurred during the 2016 U.S. Presidential Election (Pineda, 2022).

The shortcomings of social media data is that no sample, however large, will be

representative of a country’s population (Zhang and Pan, 2019). That said, social

media data has already helped researchers observe and quantify political phenomena

in real time. This work contributes to similar ends.

4.3 Collecting & Coding Black Lives Matter Tweets

This section reviews data collection and coding efforts. Data for this paper comes

from a corpus of 40,815,975 tweets posted between June 1, 2014 and May 31, 2015 –

originally collected for a comprehensive study on the origins and early development

of the Black Lives Matter movement (Freelon et al., 2016). The original study notes

the power images in raising BLM’s visibility. Most images in the data depict some

combination of police, victims, protesters, slogans, commentary, news media person-

nel, and/or celebrities: ”The Black Lives Matter network is structured to distribute

related content among and between news sites that are in a position to maximize

and amplify visibility” (Freelon et al., 2016, p. 17). This paper develops and vali-

dates tools that will enable researchers to study the massive amounts of social media
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content generated by modern social movements.

To qualify for the original data set, a tweet must contain a keyword referencing a

Black victim of police violence from between 2014 and 2015.1 Tweets were downloaded

in October 2019 and images were scraped in November and December of the same

year. Tweets that had been deleted since the publication of the original study were

excluded. The twarc2 library in Python was used to ”hydrate” the replication data.

Twarc’s hydrate command reads a file of tweet identifiers as input and produces,

as output, the corresponding metadata from Twitter’s lookup API (including the

tweet text and image URL). This process yielded 26 of the original 40 million tweets.

Difficulties arise in manually sorting each of the 26 millions tweets by their resepective

attitudes: ”Determining the proportional sizes of each category with an acceptable

degree of precision would be a prohibitively difficult undertaking, and we did not

attempt it here” (Freelon et al., 2016, p.26).

This paper automates the analysis of text and image content, so future research

can quantify social media data with ”an acceptable degree of precision.” Training and

validation data consists of 1,900 tweets coded for attitude toward BLM – support or

opposed (for the full coding scheme, see the next section). The majority of tweets are

actually retweets with @-mentions, indicating dialogue between users. The inclusion

or exclusion of retweets in training samples is a point of contention among social media

scholars, but the authors of the original study include retweets and thus, this study

does the same. As mentioned, retweets indicate a dialogue, and the conversational

style of Twitter is one of its core features.

1Keywords include: ferguson, michael brown, mike brown, eric harris, ezell ford, black lives
matter, akai gurley, eric garner, kajieme powell, freddie gray, tanisha anderson, walter scott, victor
white, tamir rice, jordan baker, tyree woodson, jerame reid, john crawford, yvette smith, tony
robinson, phillip white, dante parker, mckenzie cochran

2https://github.com/DocNow/twarc
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Figure 4.2: Sample sizes and class proportions across the training, validation, and
test data.
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Coding Scheme for Determining Attitudes Toward BLM

For each of the criteria listed below, the word ”tweet” references both the text

and image, not the text alone. That is, both modes of content were considered when

assessing the attitude being expressed.3

Tweet is classified as “support” if it meets one or more of the following

criteria:

Does the tweet explicitly support the Black Lives Matter movement?

Does the tweet express condolences to African-America victims of police violence

or their families?

Does the tweet share news about Black Lives Matter, instances of police violence

toward the African-America community, or protests against police violence?

Does the tweet offer criticism of institutions and their handling of police violence

against the African-America community? Does the tweet portray the police in a neg-

ative light?

Does the tweet present the perspective of the African-American community, Black

Lives Matter, and/or victims of police violence?

Does the tweet discuss BLM tactics and strategies, or encourage participation in

protests?

Tweet is classified as “oppose” if it meets one or more of the following

criteria:

Does the tweet offer criticism of protests, protest tactics, or BLM tactics more

broadly?

Does the tweet offer criticism of the Black community? Specifically, does the tweet

blame individual victims for their own deaths?

Does the tweet present institutional perspectives like those of the police, or the

Justice Department?

Does the tweet portray BLM, victims of police violence, of the African-American

community in a negative light?

3Tweets that did not feature images were excluded from analysis.
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(a) THIS is how you fight
for justice. #Ferguson
#PoliceBrutality
#BlackLivesMatter
http://t.co/FPIsVeRExR
@JNicoleBK

(b) This is not resisting
arrest This is resisting
DEATH. U say 11 times I
can’t breathe. What is
wrong here. #EricGarner
http://t.co/YKdunc20sJ
@TyroneStevenson

(c) My blackness is not a
weapon. #Ferguson
#HandsUp #DontShoot
@ErikaSlay

Figure 4.3: Tweets supporting Black Lives Matter

Support Figure 4.3 shows the text and images of tweets supporting the Black Lives

Matter movement, taken from the training data. Tweets supporting Black Lives Mat-

ter often called for justice for Michael Brown and Eric Garner, and referenced police

brutality explicitly, as in Figure 4.3(a). They would frequently combat narratives,

propagated by opponents of BLM, that framed Michael Brown as a criminal and

claimed Eric Garner was resisting arrest when he was killed, as in 4.3(b). Supporting

tweets featured images of peaceful protests, candlelight vigils, and protest signs con-

fronting systemic racism, as in 4.3(c). Often, hashtags like #HandsUp, #DontShoot,

and #ICantBreathe clearly identify with a particular aspect of the Black Lives Matter

struggle, whether it be a victim, an issue, or political stance.

Opposed Figure 4.4 shows the text and images of tweets opposing the Black Lives

Matter movement. Tweets opposing the BLM movement often tried to re-frame the

debate over police brutality, and systemic racism more broadly. To do this, opponents

of the movement depict Michael Brown as a criminal and a gang member, as in 4.4(a).

They often feature surveillance footage from the morning Michael Brown was shot,

when he shoved a Ferguson Market clerk and stole a pack of cigarillos, as in 4.4(b).

Additionally, opponents of the movement depict protesters rioting and looting; tweets

in this category tend to criticize protests via sarcasm and memes, as in 4.4(c).

Training data was sampled specifically from November and December 2014, as

these months were the periods of highest activity for Black Lives Matter. This timeline

corresponds with the non-indictments of Michael Brown’s and Eric Garner’s killers

(November 24 and December 3, respectively). The 1,900 coded tweets were randomly

split into training (n=1,650) and validation data (n=250). To test how the model
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(a) Live by the gun, die by
the gun. #Ferguson
#JusticeServed
http://t.co/P82KeMCYGM
NoQuarter Given

(b) .owillis It’s Michael
Brown who needed to be
monitored with a cam-
era at all times. #Ferguson
http://t.co/X66puWkRAW
SamValley

(c) #GivingTuesday? Not
for #MikeBrown
supporters. For his #thug
buds, it’s
#TakingTuesday! #Loot
#Burn #Riot
#shutitdown
http://t.co/RBhSsacd6o
@Monkey Oil

Figure 4.4: Tweets opposing Black Lives Matter

would perform on out-of-sample data, an additional 250 tweets were coded from a

corpus of tweets gathered during the 2020 iteration of the BLM movement, when

protests erupted following the death of George Floyd. The bar graph in Figure 4.2

shows sample sizes and class proportions for each of the three subsets.

4.4 Multimodal Deep Learning for Tweet Classification

The use of both text and image data, called multimodal content analysis, has

shown promise in deep learning applications in political science. This section pro-

vides an overview of deep learning models used throughout this study. Convolutional

neural networks (CNN’s) are layered structures for processing and classifying high-

dimensional data (Hastie et al., 2009). CNN’s are considered feed-forward networks

because data is passed forward from the input layer to the middle and output lay-

ers. An example of this process, taken from image layers of the combined text-image

model, is shown in Figure 4.5. Training a CNN requires the use of weights that

differentiate between relevant features in the input data; weights and input data

are combined via matrix multiplication before being fed forward to the next layer.

The network performs different operations on the data to capture important signals,

reduce dimensionality, and find relationships in the data.
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Conv2D MaxPool Conv2D MaxPool Conv2D MaxPool

3@96x96
3@64x64

9@64x64
9@32x32

27@32x32 27@16x16
1x256

Figure 4.5: Schematic of the image layers from the text-image model. Convolutional
filters create feature maps while pooling layers reduce the size of the data. This visual
is specific to the image side of the architecture. The text side is parallel, with one-
dimensional matrix operations instead of the two-dimensions required for images.

There are two phases for a CNN to process content: feature extraction and classi-

fication. During feature extraction, convolutional layers use filters that rotate across

the data, searching for specific patterns and breaking down each individual input

into feature maps. Pooling reduces the dimensionality of the data by either taking

the average or the maximum among clusters of data points, reducing noise in favor

of the strongest signals.

The full architecture of the combined text-image classifier is shown in Figure 4.6.

Between the convolutional and pooling operations, a lot of effort is expended reducing

images to their most essential features, making data easier to process in the final layers

of the network. After feature extraction, the final layers of a CNN is concerned with

classification. Feature maps are fed into the dense layers - where all of the inputs from

one layer connect to all functions in the subsequent layer. This enables the network to

detect non-linear relationships like image patterns or keywords that suggest a tweet’s

membership in one class versus another.

4.4.1 Transfer Learning

Spurred by the costliness of training complex CNN’s, machine learning research

has explored transfer learning – a technique where a model’s parameters, trained on

a source task, is applied to a new target task. Transfer learning defies the assumption

that training and target data must come from the same domain; often, researchers

have a target task in one area of interest but use a model pre-trained on data from a

separate, more general domain (Pan and Yang , 2010). This process works well with

image data because images share a feature space. The lower levels of a neural network
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Attitude
Toward
BLM?

Figure 4.6: The text-image model’s parallel architecture. Content on both sides is
represented in matrix form. A combination of transfer learning (from the VGG16 im-
age classifier and GloVe word embeddings), convolutions, and pooling layers extract
features from a tweet’s content. Once their features have been joined, dense layers
learn patterns from both text and image features, before making a classification de-
cision.

learn basic patterns, like edges and shapes, that are not exclusive to any particular

domain, but rather, common to all pictures. Transfer learning seeks to improve

performance by using the parameters of a pre-trained model to extract features from

the target data. More formally:

Definition 3. Transfer Learning. Given a source domain DS and learning task

TS, a target domain DT and learning task TT , transfer learning aims to help improve

the learning of target predictive function fT (·) in DT using the knowledge in DS and

TS, where DS ̸= DT , or TS ̸= TT .

Let domain D be defined by a feature space, X, and a marginal probability distri-

bution, P (X). For a domain of interest, D = {X,P (X)}, a task, T , has two parts: a

set of labels Y and a predictive function f(·). A task simply refers to a function that

predicts labels: T = {Y, f(·)}. Much like research assistants, the predictive function
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learns from examples. This training data consists of pre-labeled data {xi, yi} where

xi ∈ X and yi ∈ Y . The ultimate goal is to estimate the parameters of f(·) that can
predict the label f(x), given a new instance x.

Assume there are only two domains of interest: a source domain DS and a target

domain DT . Data sampled from the source domain data is denoted DS =

{(xS1 , yS1), ..., (xSn , ySn)} where xSi
∈ XS is a data point and ySi

∈ YS is the corre-

sponding label. Equivalently, the target domain data is denoted DT =

{(xT1 , yT1), ..., (xTn , yTn)} where xTi
∈ XT is the data point and yTi

∈ YT is the corre-

sponding label. Transfer learning is the process of applying knowledge gained from

DS to a task in DT . This study uses parameters from three different pre-trained

networks. The text-only classifier makes use of GloVe word embeddings, pre-trained

parameters that measure word similarity via Euclidean distance (more below) (Pen-

nington et al., 2014). As seen in Figure 4.6, the text-image classifier makes use of

these embeddings on the text side and the VGG16 model on the image side - a very

deep CNN whose frozen parameters do not update, but extract features from tweet

images.

Parameter Tuning The overall number of layers, the size of the convolution filters,

the type of activation function, and the type of pooling are all tuning-parameters -

adjustable settings defined by the user that impact both the speed of training and

the accuracy of the model. An enormous amount of time and energy is spent testing

different combinations of tuning-parameters to find what configuration provides the

best performance. The difficulty in parameter tuning is that there are no hard and

fast rules about how to determine the optimal configuration; no two networks are built

the same, as configurations are specific to the problem statement and classification

scheme. There are certain heuristics that can guide experimentation (for instance,

it is generally best to increase depth depending on the complexity of the image) but

this requires trial and error.

Parameter tuning is a balance between potential improvements and costs to model

performance. Increasing the number of filters helps improve accuracy, but this re-

quires more training data. Increasing the size of the learning rate helps the optimiza-

tion algorithm converge faster, but runs the risk of unstable training and sub-optimal

parameters. A learning rate that is too small will result in a long training process

that gets stuck at a local minimum. Too many filters in a model runs the risk of

overfitting - when a model adjusts parameters to accurately classify training data

without detecting the relevant patterns that let it classify unseen data.
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Backpropagation During training, optimal weights are found via a process called

backpropogation. This process occurs in three stages – the forward pass, the backward

pass, and the gradient update. During the forward pass, the linear combination of

weights and input data is computed, then fed forward layer-to-layer until the model

outputs the predicted label. During the backward pass, the distance between the

predicted and true labels is calculated using the loss function. The derivative of

the loss function with respect to each weight, the gradient, is computed layer-by-layer

starting from the output layer and going backward. The third step in backpropagation

uses the calculated gradient to adjust the weights toward the steepest decrease of

the loss function. This process of iteratively computing the gradient of the loss

function with respect to each weight and then adjusting weights to minimize loss,

called gradient descent, efficiently decreases error at each training step.

Benchmarks for Training Training performance is measured using three bench-

marks: accuracy, cross-entropy loss, and F1 score. Accuracy, defined formally in

Equation 4.1 below, captures the percentage of tweets the model correctly classifies.

We define yi as the true value for data point i and ŷi as the model’s predicted label.

The higher the accuracy, the better the model.

accuracy(y, ŷ) =
1

ns

ns−1∑
i=0

1(ŷi = yi) (4.1)

Categorical cross-entropy loss, defined in Equation 4.2 below, is calculated as a

sum of separate loss for each class label per observation. As probability p diverges from

the true label, cross-entropy increases – loss closer to 1 indicates poor performance,

while a perfectly performing model would have a loss of 0.

loss(y, p) = −
M∑
c=1

yi,c log pi,c (4.2)

In the above equation, we define M as the number of classes, p as the predicted

probability, and yi,c is a binary indicator (0 or 1) that indicates if c is the correct class.

The algorithm uses the loss function to capture prediction error. Gradient descent

then updates weights to minimize loss, thereby reducing error before attempting

to classify another batch of data. Training neural networks is thus framed as an

optimization problem: update weights to reduce error until you arrive at a global

minimum.
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F1 =
2

recall−1 + precision−1
= 2

precision · recall
precision + recall

=
2tp

2tp + fp + fn
(4.3)

Equation 4.3 above shows how F1 is computed as the harmonic mean of precision

and recall. Precision, conceptually, is the positive prediction rate and recall is a mea-

sure of sensitivity. The above equation refers to true positives (”tp”), false positives

(”fp”), and false negatives (”fn”). Combining them as F1 gives a single measure of

the model’s ability to predict unseen data (the statistic is between 0 and 1, the higher

the score the better overall performance).

GloVe word embeddings and text processing Originally introduced by Pen-

nington et al. (2014) GloVe is an unsupervised learning algorithm for representing

words as vectors in space. Word embeddings are a natural language processing tech-

nique where words are cast into a geometric space such that distances between words

capture their semantic similarity. The closer the words in space, the more similar

they are to one another. Representing words as these global vectors means represent-

ing words by their semantic neighbors in geometric space. The location of that word

in the space is referred to as its embedding. The algorithm learns global word-word

co-occurrence statistics from Wikipedia, and the resulting vectors represent linear

relations between words.

Image Processing To better understand how a CNN processes image data, think

of an image as a three-dimensional matrix consisting of pixel values. Images are

represented by their pixel values, from 1 to 256, along three color channels – red,

green, and blue (RGB). Data is normalized by dividing all values by the range (255).

This ensures that all of the input data exists on the [0,1] scale which enables the

network to converge faster during training.

During training, the CNN performs a series of matrix transformations on the

data, so there cannot be any variation in dimensionality of the inputs. The training

algorithm expects all images to have a square, uniform size, so all images are resized to

96 x 96. For data augmentation, pre-processing images can include transformations

to provide the model more variation from its training input. Training images can

be randomly flipped, zoomed-in, or tilted along different axes. This provides the

model with examples that are better representative of the feature space, improving

classification accuracy of unseen data.
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Figure 4.7: Training metrics for the text-only model. The model’s training and val-
idation metrics immediately diverge. Even though the model shows high training
accuracy, predictive performance on the unseen validation data steadily declines.

4.5 Results and Discussion

Figure 4.7 shows training and validation results for the text-only model. The

model demonstrates high accuracy on training data, successfully classifying about

92% of tweets. Performance declines on validation set, however, suggesting that

the model’s parameters are overfitingt to the tweet text found in the training data.

Indeed, training and validation metrics immediately diverge, suggesting that there is

not enough information in the text alone for the model to accurate classify unseen

data.

Class-specific results are shown in the confusion matrices in Figure 4.8. These

illustrate why the model struggles on validation data. The top left and bottom right

panels of the confusion matrices show what proportion of tweets that were accurately

classified as opposed and support, respectively. The bottom left panel depicts the
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(a) training (b) validation

Figure 4.8: Confusion matrices for the text only model. The text only model suffers
from overfitting, with a noticeable decrease in performance from training to validation.
Note especially the upper left panel in (b). The text only model has trouble identifying
attitudes Opposed to BLM in the validation data.

proportion of opposition tweets that the model misclassified as support. The top

right panel depicts the proportion of supporting tweets that the model misclassified

as opposed. These results indicate that the class imbalance in the training set was

large enough to skew the model’s ability to identify opposition tweets, the minority

class.

Looking at Figure 4.8, the model is able to accurately predict 96% of supporting

tweets in the training data and 95% of supporting tweets in the validation data.

The model has trouble identifying tweets opposed the Black Lives Matter movement.

The model only identifies 78% of opposition tweets in the training data. This number

declines to .08% in validation, with the model misclassifying 92% of opposition tweets

as support.

Training and validation results for the combined text-image classifier are shown

in Figure 4.9. The text-only and combined text-image classifier show comparable

predictive performance on validation data (both models had an F1 score of .67). The

multimodal model achieves a similarly high training accuracy rate as the text-only

classifier (about 92%). The key difference between the two models is performance on

the minority class in the validation set. Although the text-image classifier similarly

suffers from overfitting, this first 10 epochs show training and validation metrics

moving together. This suggests the image data adds information that helps the

neural network differentiate between the two classes.

Figure 4.10 shows the confusion matrices for the text-image classifier. The results
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Figure 4.9: Training and validation metrics for the text-image model. Early results
show parallel accuracy metrics for the training and validation data. The metrics
eventually diverges, however, as the model’s parameters overfit to the training data.

indicate that the text-image classifier is better at predicting opposition tweets, as

performance surpasses the text-only model on validation. Looking at Figure 4.11,

we see similar struggles in the model’s attempt to classify out-of-sample tweets from

the 2020 BLM protests.

Discussion

While it would be tempting to suggest ”more data is necessary,” future research

should strive for data whose features are more identifiable. Computational social sci-

ence should continue developing tools for automated content analysis, as the streams

of data with politically relevant content are only going to grow wider, their oceans

more vast. To that end, social science training sets need to be more theoretically

informed. Samples should be more attuned to the nuances that differentiate classes.

Deep learning models show a high level of accuracy on training data, but predictive
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(a) training (b) validation

Figure 4.10: Confusion matrices for the text-image model. The model demonstrates
high accuracy in identifying supporting tweets even on the validation set. The model
does a decent job of identifying opposition tweets on the training data, but less so
on validation set. Note that the text-image model does a better job of predicting
opposition tweets in the validation set than the text-only model. This suggests that
image features supplements information for minority classes.

power would benefit from balanced, well-defined classes.

One element from machine learning research that is missing from computational

social science is the use of large-scale, standard training data. Training data in

machine learning is standardized, but highly generic and void of context. Social

science requires specialized data, specific to particular sub-fields or threads of research.

Making data available from one study to the next, for the sake of replication, is not

new; the purpose, however, muse be adjusted slightly. If the stated goal of machine

learning is to automate human tasks, this work suggests we are not far from that

goal – both the text and text-image algorithms successfully replicated human coding

efforts. The algorithms need improvement, however, when attempting to predict

previously unseen data. That jump from learning to prediction will require continued

aggregation, coding, and curation of politically rich content.

Avenues for Future Research Future research might examine how online public

opinion to the Black Lives Matter movement fluctuates over time. Such work would

require long term tweet collection via the Twitter Streaming API. The streaming

API gives developers real-time access to approximately one percent of the 500 million

tweets posted daily. The API requires a collection of terms to act as filters – only

tweets that include one or more of the terms will be returned. Previous studies into
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Figure 4.11: Confusion matrix for the text-image model on the 2020 test data. Data
was collected in May and June 2020. Results indicate that, like the validation data,
the model struggles to classify opposing tweets.

BLM have used as filters a combination of keywords relevant to the movement (”black

lives matter”), the names of African-American victims of police violence (”Trayvon

Martin”), and locations of prominent protests (”Ferguson”).

Another way forward in this vein would include collecting data on other websites

and social media platforms – Reddit would certainly be of interest. Different sub-

reddits are geared toward specific audiences, so a simple random sample might be

problematic depending on the population of interest. One could stratify the sample

by mining data from subreddits across the political spectrum. The other difficulty in

this regard is the spontaneity of protest; even if the Black Lives Matter movement

remains salient in American politics, its level of protest activity varies over time.

Variation in activity, in some ways, would be helpful, as scholars can see how public

opinion shifts in periods of high protest and if those shifts endure in periods of low

protest.

Future research might examine how personal frames vary with attitudes toward

Black Lives Matter. For instance, both supporting and opposing tweets reference

justice – do varying attitudes signal varying conceptions of justice? Personal frames

presented on social media are unique in that information is volunteered. Perspectives

on protest activity are not primed, as they might be in a survey; public opinion

on protests is offered unprompted. Future research might use the personal frames

presented on social media to motivate survey questions. One approach might have

respondents look at tweets directly – with different tweets signaling different personal
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frames – and have respondents answer to what extent they agree with the opinions

expressed. A potential treatment variable would be the presence of an image in the

tweet, should research want to further explore the role of visual cues on attitudes;

researchers could have the same frame presented with and without an image to see if

there’s an effect on the data, other variables held constant.

Social movement scholars could move beyond BLM to see how these methods

capture attitudes related to other online movements. Black Lives Matter is hardly

unique in its use of social media to raise awareness, organize, and spread information;

the Arab Spring, #MeToo, and Occupy Wall Street are other examples of contempo-

rary movements with a strong online presence. Capturing real-time response to these

movements would be useful, especially as a short-term measure of the public’s re-

sponse to protest activity. This could be compared to survey data taken after protest

activity declines in the intermediate- and long-term. Such analysis would provide a

more complete understanding of public response to social movements. Further, the

personal frames expressed online can motivate the questions regarding respondent’s

point of view. Beyond that, I imagine future scholarship will depend on the scholar.
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4.6 Appendix I: Code Overview

#!/ usr/bin/env python

# coding: utf -8

##################################

##### I. DATA PRE -PROCESSING #####

##################################

# Pseudo -code for Text and Image Tweet Classifier:

Attitudes Toward Black Lives

Matter

DOI: 10.13140/ RG .2.2.10898.53444

# For full code , visit:

https :// github.com/apineda91/DeepLearn4PolComm

python libraries required: tensorflow , numpy , sklearn ,

nltk ,

pandas , keras (part of tensorflow), matplotlib , os, sys

# Define function to plot_confusion_matrix

def plot_confusion_matrix

# Define columns and load data

cols = [’tweet_id ’, ’date ’, ’text ’, ’support ’, ’hashtags ’,

’

users ’, ’urls ’, ’med

ia_urls ’, ’nfollowers ’, ’nfriends ’, ’file_name ’, ’path ’]

DATA = pd.read_csv(’blm_apsa_sample3.csv ’, names = cols ,

dty

pe = {’tweet_id ’:str , ’text ’:str , ’support ’:str , ’path ’:

str ,

’file_name ’:str})

# Check data types
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# Define ’support ’ as binary variable

conditions = [

(DATA[’support ’] == ’0’),

(DATA[’support ’] != ’0’)

]

values = [’0’, ’1’]

DATA[’support2 ’] = np.select(conditions , values)

# Spot check (always get a visual on your data to make

sure

it looks like what you think it looks like)

# Drop null values

# Define path to images

# Check that the images

# 1) exist

# 2) are where you think they are

DATA = DATA[[os.path.isfile(i) for i in DATA[’path ’]]]

# Shuffle data

DATA = DATA.sample(frac=1, random_state =1234).reset_index(

dr

op=True)

# Test data is set aside until parameter tuning is done

test_data = DATA.sample(n=250, replace=False , weights=None

,

random_state =1234, axis=None)

DATA = DATA.drop(test_data.index)

len(test_data)
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# Spot check

test_data.groupby(’support ’).count ()

# Validation data used to check for overfitting

val_data = DATA.sample(n=250, replace=False , weights=None ,

r

andom_state =1234 , axis=None)

train_data = DATA.drop(val_data.index)

len(val_data)

# Spot check

val_data.groupby(’support2 ’).count()

train_data.groupby(’support2 ’).count ()

os.chdir(’/media/alex/easystore/ids_monthly/BLM_images/

apsa_

sample3 ’)

# Define data generators that can handle multi -modal

inputs

def text_generator(a,labs , n):

while True:

for i in range(a.shape [0] // n):

d2 = a[n*i:n*(i+1)]

y_text = labs[n*i:n*(i+1)]

yield d2 , y_text

def multi_input_generator(df, x_image , y_image , x_txt ,

y_txt

, b_size):

t1 = input_imgen.flow_from_dataframe(

dataframe=df ,

directory = ’./apsa_sample3 ’,

x_col = x_image ,
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y_col = y_image ,

target_size =(img_width , img_height),

batch_size=b_size ,

class_mode=’categorical ’,

validate_filenames=False)

t2 = text_generator(a=x_txt , labs = y_txt , n=b_size)

while True:

d1 ,y = t1.next()

d1 = np.expand_dims(d1, axis = 0)

d2 , y_text = t2.__next__ ()

yield [d2, d1[0]], [y_text , y]

###### i. TEXT PRE -PROCESSING #####

### 1. Define hyper -parameters

### 2. Subset to only data and labels

### 3. Tokenizers for training text data

### 4. Tokenizers for val text data

##### Initialize the following data generators #####

### 1. train_generator

### 2. val_generator

### 3. test_generator

###### PREPARING GLOVE LAYER #####

### 1. build index mapping words in the embeddings set

to their embedding vector

### 2. compute and prepare embedding matrix

### 3. load pre -trained word embeddings into an Embedding

la

yer

##### ii. IMAGE PRE -PROCESSING #####

### 1. load pre -trained CNN
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### 2. check how many layers are in the base model

### 3. define which layers will be fine -tuned

### 4. freeze the layers you don ’t want trained

##################################

##### II. MODEL CONSTRUCTION #####

##################################

# TEXT -SIDE: EMBEDDINGS AND ADAPTATION LAYERS

sequence_input = Input(shape=(None , ), dtype=’int64 ’)

embedded_sequences = embedding_layer(sequence_input)

x_text = Conv1D (32, kernel_size = 5, activation ="relu",

padd

ing = ’same ’)(embedded_sequences)

x_text = MaxPooling1D (5)(x_text)

x_text = Conv1D (32, kernel_size = 5, activation ="relu",

padd

ing = ’same ’)(x_text)

x_text = GlobalMaxPooling1D ()(x_text)

x_text = Dense(16, activation ="relu")(x_text)

preds = Dense(2, activation=’relu ’)(x_text)

# IMAGE SIDE: PRE -TRAINED CNN AND ADAPTATION LAYERS

x_image = image_model.output

x_image = Conv2D(4, 1, activation ="relu", padding = ’same

’)(

x_image)

x_image = MaxPooling2D(pool_size =(2, 2), strides =(1, 1),

pad

ding=’same ’)(x_image)

x_image = Conv2D(4, 1, activation ="relu", padding = ’same

’)(

x_image)

x_image = MaxPooling2D(pool_size =(2, 2), strides =(1, 1),

pad
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ding=’same ’)(x_image)

x_image = Conv2D(4, 1, activation ="relu", padding = ’same

’)(

x_image)

x_image = MaxPooling2D(pool_size =(2, 2), strides =(1, 1),

pad

ding=’same ’)(x_image)

x_image = Flatten ()(x_image)

img_predictions = Dense(2, activation ="relu")(x_image)

merged = Concatenate ()([preds , img_predictions ])

# ADAPTATION LAYERS

x = Dense (64, activation=’relu ’)(merged)

x = Dense (32, activation=’relu ’)(x)

x = Dense (16, activation=’relu ’)(x)

x = Dense(8, activation=’relu ’)(x)

x = Dense(4, activation=’relu ’)(x)

#x = Dropout (0.5)(x)

main_output = Dense(2, activation=’sigmoid ’, name = ’

main_ou

tput ’)(x)

print("ROMA VICTOR !")

# MODEL TRAINING:

# 1. initialize a model with two inputs and one outputs

# 2. initialize optimizer

# 3. compile model

# 4. train model (save output in an object)

##########################################

##### III. EVALUATION AND VALIDATION #####

##########################################

# For confusion matrix , we need to compute predictions

with
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our trained model

# 1. Grab training predictions

# convert to an array of binary values

# 2. Grab validation and testing predictions

# convert to arrays of binary values

# 3. Input predictions and true values into

plot_confusion_m

atrix
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CHAPTER V

Conclusion

This project used computer science methods to explore topics relevant to the

academic study of politics. For various reasons, these concepts are difficult to quantify

and thus, difficult to study. The preceding chapters introduced several innovative

uses of multimodal deep learning to quantify political phenomena that appear online.

As such, this project makes an important contribution to two sub-fields in political

science: political methodology and political communication.

Current trends in political methodology advance automated content analysis. This

is spurred by the availability of politically meaningful content found online. Whether

from social media or news sites, parliamentary or court transcripts, this sudden supply

of content has fueled the demand for methods capable of extracting meaningful insight

from messy, unstructured data. This project, more than most, meets that demand

by concisely traversing an enormous amount of concepts in political and computer

science. The goal was to demonstrate deep learning’s ability to process multimodal

content of interest to political scientists. While the focus was on text and image data,

terabytes of politically significant content flow across the internet, daily, in the form

of text, image, audio, and video.

This dissertation demonstrated deep learning’s capacity to capture nuance in text

and image data. The level of granularity a model can capture depends on the level

of granularity found in the training data. Findings indicate that deep learning algo-

rithms are adept at identifying political phenomena in unstructured, messy data –

like image and text content. Future research should take these methods and equip

them with more nuanced, theoretically informed training data.

The first study examined racial politics in the context of algorithmic bias. This

occurs when a machine learns prejudice somewhere during the training process. As

machine learning applications grow ubiquitous in the real-world, so do the conse-

quences of algorithmic bias. For instance, deep learning models are currently de-
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ployed by surveillance systems used in the United States. This study tested under

what conditions these types of models learn racial prejudice.

The second study examined election administration. Specifically, it captured anec-

dotes of voters having either a positive or negative voting experience at the polling

place. When aggregated, these election incidents identify under what circumstances

voters face difficulty in casting a ballot. This chapter captured election incidents

during the 2016 U.S. presidential election reported on Twitter, finding that image

data provides additional information important for the algorithm to identify minor-

ity classes.

The third and final study examined political attitudes. Specifically, this chapter

captures attitudes toward the Black Lives Matter (BLM) movement. Capturing at-

titudes toward Black Lives Matter provides scholars with deeper insight into public

opinion on racialized in the United States. Difficulty arises, however, because public

opinion toward BLM – like the movement itself – is too dynamic for scholars to keep

pace. This study captures political attitudes toward BLM during the 2014 and 2020

wave of protests.

Taken together, these chapters demonstrate both the promise and difficulties of

applying machine learning methods to the academic study of politics. These tools,

although powerful, are not as infallible as they seem in computer science literature.

That area of research relies too heavily on abstract coding schemes and data divorced

from the messiness of real-world definitions. Social scientists, at present, map directly

from concept to coding scheme; this is an impatient approach. The correct mapping

should be from concept to feature to coding scheme. That way, the coding scheme is

more than just a list of examples, but rather, a coherent set of characteristics.

The project used computers to capture concepts relevant to the study of American

politics. These concepts have been difficult for scholars to quantify, but the preced-

ing chapters demonstrated an innovative method in political science. The project

made use of deep learning to analyze text and image data. The substantive chapters

demonstrated this method by examining components of algorithmic bias, elections,

and protest activity.

The production of knowledge requires the synthesis of knowledge. I have done

that – not as good as some but better than most. It is thus, with great humility and

respect, that I ask my dissertation committee to grant me a Doctorate in Political

Science and Scientific Computing.1

1Thank you and good night.
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