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SUMMARY
Single-particle cryoelectron microscopy (cryo-EM) continues to grow into a mainstream structural biology
technique. Recent developments in data collection strategies alongside newsample preparation devices her-
ald a future where users will collect multiple datasets per microscope session. To make cryo-EM data pro-
cessingmore automatic and user-friendly,wehave developed an automatic pipeline for cryo-EMdata prepro-
cessing and assessment using a combination of deep-learning and image-analysis tools.We have verified the
performance of this pipeline on a number of datasets and extended its scope to include sample screening by
the user-free assessment of the qualities of a series of datasets under different conditions. We propose that
ourworkflowprovides adecision-free solution for cryo-EM,makingdata preprocessingmore generalized and
robust in the high-throughput era as well as more convenient for users from a range of backgrounds.
INTRODUCTION

Single-particle cryoelectron microscopy (cryo-EM) is becoming

a mainstream technique for structural biology (K€uhlbrandt,

2014). In the past few years, cryo-EM has seen a 20%–40%

year-to-year growth in structures deposited in the Protein Data

Bank. This growth is due to continued developments in sample

preparation (Arnold et al., 2017; Cheng et al., 2018; Darrow

et al., 2019; Jain et al., 2012; Ravelli et al., 2019; Zivanov et al.,

2018), data collection (Fernandez-Leiro and Scheres, 2016;

Lyumkis, 2019), and algorithms for data processing (Punjani

et al., 2017; Scheres, 2012; Tegunov and Cramer, 2019; Zivanov

et al., 2018). These developments have greatly accelerated the

speed of data collection for cryo-EM, and have also led to wide-

spread adoption of users across a range of expertise, among

whom experts represent a continually shrinking fraction of

cryo-EM users.

With the fast pace of cryo-EM development, several

challenges have emerged. First, with new imaging and sample

preparation technologies, including the increased frame-rate

detectors, beam-image shift data collection (Cheng et al.,

2018; Zivanov et al., 2018), and robotic sample preparation

(Arnold et al., 2017; Darrow et al., 2019; Jain et al., 2012; Ravelli

et al., 2019), a single cryo-EM instrument can easily generate

5,000–8,000 movies of data per day. These technologies have

enabled cryo-EM to become a more high-throughput technique,

with more than one dataset collected per day per instrument.

Second, although a number of improvements have been made

in software development, cryo-EM data processing remains

computationally expensive. High-performance computing re-

sources and graphics processing units (GPUs) are typically

used (Baldwin et al., 2018; Cianfrocco and Leschziner, 2015).

However, since each project requires multiple rounds of human
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trial and error in the preprocessing steps, these human-driven

choices can slow down a project due to a lack of computing

resources.

Third, cryo-EM frustrates many users because of its

complexity in data processing. The manual and subjective deci-

sions involved in solving a structure, such as the programs,

parameters, and determination of good micrographs and good

two-dimensional (2D) class averages, can affect the final result

significantly (Lawson and Chiu, 2018). While an expert can

make the correct decisions after a few trials, new users typically

find it problematic to perform such monitoring and evaluations.

Moreover, due to the variety of samples in the cryo-EM field, it

is nearly impossible to create a general guideline for the new

users to follow.

Despite the increasing throughput of cryo-EM data collection,

the cumbersome nature of cryo-EM preprocessing slows scien-

tists’ ability to ask biological questions from their dataset. For

example, during cryo-EM sample screening, scientists may

want to assess sample integrity or complex formation. However,

to compare and contrast multiple grids the scientist will have to

manually interact with the data to perform movie alignment, par-

ticle picking, contrast transfer function (CTF) estimation, and 2D

classification. Modern cryo-EM needs a tool to streamline data

quality assessment and data preprocessing automatically and

robustly.

Many approaches have been proposed and developed to

address these challenges. For example, Appion (Lander et al.,

2009), cryoSPARC (Punjani et al., 2017), SPHIRE (Moriya et al.,

2017), Warp (Tegunov and Cramer, 2019), and RELION-3.0 (Fer-

nandez-Leiro and Scheres, 2017; Zivanov et al., 2018) provide

preprocessing tools that can be stitched together into pipelines.

Despite this ability, easy computation access to these remains

an issue. To address the computation resource problem,
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Figure 1. Conventional Cryo-EM Prepro-

cessing versus Automatic Preprocessing

Pipeline

Left panel: current workflow describing the

preprocessing of cryo-EM datasets, with all the

user decisions needed in red. Right panel: the

automatic pipeline introduced in this paper. All

user decisions are replaced by the new tools

developed in blue.
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COSMIC2 (Cianfrocco et al., 2017), a science gateway for cryo-

EM, has been developed with the philosophy of bringing popular

cryo-EM tools and resources to all scientists in the field,

removing the practical limitations that accessing those

resources would otherwise entail.

Many algorithms have also been developed to accelerate

cryo-EM data preprocessing and minimize subjective decisions

and tedious human annotations. Notably, deep learning, espe-

cially convolutional neural networks (CNNs), has greatly changed

and improved the step of particle picking (Al-Azzawi et al., 2019;

Bepler et al., 2019; Nguyen et al., 2019; Tegunov and Cramer,

2019; Wagner et al., 2019; Wang et al., 2016; Xiao and Yang,

2017; Zhang et al., 2019; Zhu et al., 2017). Nevertheless, the field

still lacks a robust tool that will make decisions by evaluating the

output from data preprocessing steps so that human interven-

tion can be removed, making an automatically streamlining

workflow possible.

Here, we introduce several deep-learning and image-analysis

tools for automated preprocessing and assessment of cryo-EM

datasets. By connecting these tools with state-of-the-art data

preprocessing algorithms, we make a general workflow that

can achieve expert-level performance on a number of different

cryo-EM datasets without any user intervention. Our workflow

takes movies or motion-corrected micrographs as the input

and outputs a particle stack that contains high-resolution parti-

cles that will be used in the following three-dimensional (3D)

reconstruction steps without any user decisions. Specifically,

our workflow can automatically detect bad micrographs using

MicAssess, determine the best parameters for particle picking

and 2D classification, and identify the good class averages

that can be used in 3D reconstruction using 2DAssess. In the

workflow, the subjective user decisions are replaced with statis-

tical models based on the features extracted with image-pro-

cessing methods and CNNs, along with the expert knowledge.

We believe that our automatic pipeline helps to establish a

framework to accelerate data preprocessing and to perform

data assessment at multiple levels in the high-throughput era

of cryo-EM.
RESULTS

Overview of the Method
The current routine of cryo-EM data

preprocessing consists of a number of

subjective user decisions (Figure 1). First,

many users will manually go through all

the motion-corrected micrographs to

pick out the bad micrographs and then

select an estimated resolution threshold
to remove the remaining bad micrographs based on the results

of CTF estimation. Next, most particle pickers will require the

users to manually pick a few particles, set the estimated particle

diameter, and determine the picking threshold before automatic

particle picking. The particles will then be extracted with the

user-defined box size and pixel size used for 2D classification,

whereby the users need to determine the class number and

the diameter of the mask. Finally, the users need to select the

good 2D class averages based on their own judgment, and the

particles in the selected 2D class averages will be re-extracted

and used in the downstream 3D reconstruction steps.

Our general workflow streamlines the preprocessing steps to

take either movies or motion-corrected micrographs as the input

and output a stack of clean particles that can be used as the

input in the subsequent 3D analysis (Figure 1). During this

process, we built statistical models in order to capture human

decision making during the preprocessing steps. Instead of

developing new preprocessing tools and algorithms, our

workflow takes advantage of these developments and provides

evaluations so that expert-level decisions can bemade automat-

ically. In the following subsections we provide an overview of the

method.

MicAssess: Automatic Micrograph Assessment

First, we developed a tool that can assess the quality of motion-

corrected micrographs even before CTF estimation:MicAssess.

Unlike EMPIAR (Electron Microscopy Pilot Image Archive)

datasets, which consist of mostly usable micrographs, many

real-world data generated from the microscopes are dirty and

noisy. Researchers often undertake significant effort to manually

eliminate bad micrographs to obtain a clean dataset to work

within the downstream preprocessing steps. Although the differ-

ence between good and bad micrographs is unambiguous, it is

still difficult to find a universal and robust criterion. Many scien-

tists have been using the resolution outputs from CTF estimation

for micrograph cleaning; however, a publicly accepted resolu-

tion cutoff is lacking, and there are still a number of bad

micrographs that will make it through using this metric for

decision making.
Structure 28, 858–869, July 7, 2020 859



Figure 2. Deep-Learning-Based Tools for Cryo-EM Micrograph and 2D Class Average Assessment

(A) The architecture of MicAssess. The motion-corrected micrograph will be inputted to a feature extraction convolutional network (a standard ResNet34 in the

paper), and after one dropout layer, one fully connected layer, and another dropout layer, output the prediction of the micrograph.

(B) Examples of the labeled good and bad micrographs in the training set. The good class contains partially good images (e.g., images with small or very large

proteins). The bad class contains all different kinds of unusable micrographs, including micrographs that are empty or too dense, contaminated, or with protein

aggregates.

(C) The architecture of CNN-based model in 2DAssess. The input class average image will be inputted to a feature extraction convolutional network (a standard

ResNet50 in the paper), and after one dropout layer, output the prediction of the 2D class average to be one of the four classes.

(D) Examples of the labeled 2D class averages in the good, clip, edge, and noise classes in the training set.
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CNNs have been changing the field of computer vision as well

as biology in recent years and have been widely applied to image

classification, object detection, and image segmentation (Moen

et al., 2019). In cryo-EM, a number of CNN-based particle-pick-

ing models have been developed and widely used, including

Warp (Tegunov and Cramer, 2019), crYOLO (Wagner et al.,

2019), and Topaz (Bepler et al., 2019). With a similar idea, we

developed a CNN-based micrograph assessor, MicAssess.

The architecture of MicAssess is described in Figure 2A. Similar

to many CNNmodels, our model consists of a feature extraction

convolutional network and a classification network. For the

feature extraction network, we used a standard ResNet34 (He

et al., 2016), which is a deep and lightly weighted fully convolu-

tional residual network with 34 layers. Following the feature

extraction, the convolutional network is the classification

network, which consists of one fully connected layer with 512

nodes. Dropout layers with a 0.5 dropout rate and batch normal-

ization are also applied, and LReLU (leaky rectified linear unit) is

used as the activation function. Finally, the last layer uses a

sigmoid function as the activation function and performs predic-

tion, which is the probability that the input micrograph is consid-

ered ‘‘good.’’

Most image classification problems are considered as super-

vised learning, which means that they need to be trained on
860 Structure 28, 858–869, July 7, 2020
labeled datasets. We have collected andmanually labeled a total

of 4,644 micrographs (2,372 good micrographs and 2,272 bad

micrographs) from several EMPIAR datasets in addition to in-

house datasets (Table 1). Our good micrograph dataset consists

of proteins and complexes ranging from 50 kDa to 4 MDa (Fig-

ure 2B, upper row), while our bad micrograph dataset consists

of a variety of unusable micrographs including micrographs

that are either empty or too dense, contaminated, or with protein

aggregates (Figure 2B, lower row). The dataset was randomly

split into a training set (80%) and a validation set (20%). Data

augmentation was applied before training to increase the

amount of training data and reduce overfitting. The trainedmodel

was evaluated on the validation set, and an accuracy of about

97% was achieved. A detailed description is presented in

STAR Methods.

To test the effectiveness of MicAssess, we analyzed a pub-

lished dataset collected by our lab on the phosphatidylinositol

3,4,5-trisphosphate-dependent Rac exchanger 1 (P-Rex1)

(Cash et al., 2019). This dataset contains 6,736 micrographs

and is a combination of untilted and tilted series. Importantly,

the training data inMicAssess did not include any P-Rex1 micro-

graphs. As a comparison, we also classified the micrographs

using the CTF maximum-resolution outputs from CTFFIND4,

with determination thresholds being 4 Å for untilted micrographs



Table 1. Sources of the Micrographs and the 2D Class Averages

Used for Developing MicAssess and 2DAssess

MicAssess 2DAssess

Particle Name

EMPIAR

ID Particle Name EMPIAR ID

26S proteasome EMPIAR-

10072

26S Proteasome EMPIAR-10072

AAV EMPIAR-

10202

AAV EMPIAR-10202

E. coli 70S-SelB

ribosome

EMPIAR-

10077

E. coli 70S-

SelB ribosome

EMPIAR-10077

Rag complex EMPIAR-

10049

Rag complex EMPIAR-10049

NOMPC EMPIAR-

10093

NOMPC EMPIAR-10093

GluDH EMPIAR-

10217

GluDH EMPIAR-10217

RNA Pol III EMPIAR-

10190

RNA Pol III EMPIAR-10190

Spliceosome EMPIAR-

10160

Spliceosome EMPIAR-10160

In-house dataset:

160 kDa

NA Betagal EMPIAR-10061

In-house dataset:

480 kDa

NA TMEM16 EMPIAR-10241

In-house dataset:

180 kDa

NA In-house dataset:

180 kDa

NA

In-house dataset:

168 kDa

NA In-house dataset:

apoferritin

NA

In-house dataset:

80 kDa

NA

AAV, adeno-associated virus; NA, not available.

ll
Resource
and 10 Å for tilted micrographs. To quantify the performance of

both CTF-basedmicrograph cleaning andMicAssess, wemanu-

ally labeled the total 6,736 micrographs and used the labels as

the ‘‘ground truth’’ with which to compare.

A comparison of CTF maximum-resolution cutoff with the

ground truth highlighted a number of discrepancies. As is typical,

the distribution of CTF maximum-resolution values for tilted or

untilted micrographs does not show a bimodal distribution (Fig-

ure 3A). Therefore, even though 4-Å and 10-Å resolution cutoff

thresholds are considered reasonable, such numbers are not

obvious from the distribution of the data, but rather arbitrary.

Compared with human-labeled ‘‘ground truth,’’ CTF-based

micrograph cleaning reached an overall accuracy of 77.5% (Fig-

ure 3B). This indicates that while CTF maximum resolution is a

convenient method to remove bad micrographs, there is room

for improvement in obtaining more accurate micrograph

assessment.

Compared with CTF maximum resolution,MicAssess showed

higher accuracy for identifying both good and bad micrographs.

To highlight the power ofMicAssess, it was also able to correctly

classify many bad micrographs with <4-Å CTF maximum resolu-

tions (Figure 3C). Such micrographs will not be captured by the

CTF-based micrograph cleaning approach. Overall, MicAssess

found 1,388 bad micrographs (Figure S2) and had an accuracy
of 93.0%, with a notably very low false-negative rate (0.12%)

(Figure 3D). In other words, only eight good micrographs were

misclassified to the bad category.

This analysis indicates the MicAssess performs nearly as well

as human assessment for the P-Rex1 test dataset. More impor-

tantly, MicAssess does not need any arbitrary threshold, and

both tilted and untilted micrographs were predicted with the

exact same procedure, providing a completely ‘‘hands-off’’

tool for micrograph assessment, which enables automatic

cryo-EM data preprocessing and assessment at the very

beginning.

Automatic Particle-Diameter Estimation

Since our workflow aims for decision-free preprocessing, the

suitable particle picker should not need any human picking be-

forehand. Therefore, any template-based particle picker or

CNN-based particle picker that needs to be trained on manually

prelabeled particles cannot be used in the workflow. Fortunately,

we are able to use the general model of crYOLO (Wagner et al.,

2019), which is a CNN-based particle picker pretrained on a

number of EMPIAR and in-house datasets. The two parameters

needed for particle picking in crYOLO are box size and

threshold.

Optimally, the box size should be the size of the particle.

Since this information is usually unclear for a new protein, our

workflow will first perform particle picking on a subset of the

micrographs with different box sizes. The picked particles will

be extracted, low-pass filtered, and averaged without any

alignment. We then find the edge of this averaged image using

a Canny edge detector, and the size of the particle is deter-

mined based on the edge detected and dilated by an empirical

factor of 1.5 (Figure S3). Thereafter, the workflow uses crYOLO

to pick the particles from all micrographs. The threshold

parameter controls the strictness of the decision of a particle.

The workflow uses a very low threshold of 0.1, since many false

positives can be removed in the following 2D classifica-

tion step.

2DAssess: Automatic Selection of Good 2D Class

Averages

After particles are picked and extracted from micrographs

with CTF information, particles are subjected to 2D classifica-

tion, whereby good 2D averages are identified using 2DAs-

sess. Similar to the micrograph classifier, our CNN-based

classifier model (Figure 2C) also requires a labeled dataset

for training. We have obtained the 2D class averages

from ten different datasets from a range of diameters used

in 2D classification, providing 2D averages for optimal

masks, masks that are too tight, and masks that are too large

(Table 1).

The 2D class averages are preprocessed and labeled in four

different classes (Figure 2D): good, clip, edge, and noise. The

good class includes all the good class averages that will be

selected and used in the downstream processing steps. The

clip class includes the class averages that are clipping the neigh-

boring particles, usually a sign that the diameter is too large.

The edge class includes the class averages with ‘‘barcode’’-

like patterns, which means that some particles are on the edge

of the micrograph or the carbon. The noise class includes all

the other bad class averages that are not covered by the clip

and edge classes, and contains pure noise, overaligned, and
Structure 28, 858–869, July 7, 2020 861



Figure 3. MicAssess Performs Equivalently to CTF Resolution Cutoff on Micrograph Assessment
(A) Histograms of the CTF maximum resolutions outputted by CTFFIND4 of the test set. Vertical lines indicate the selected hard thresholds for tilted and untilted

micrographs (4 Å and 10 Å, respectively). Micrographs higher than the thresholds are considered bad.

(B) Confusion matrix and evaluation metrics for CTF resolution threshold versus human assessment on P-Rex1:Gbg dataset.

(C) Histograms of the CTF maximum resolutions outputted by CTFFIND4 of the test set, color labeled according to the predictions by MicAssess. Vertical lines

indicate 4 Å and 10 Å, respectively.

(D) Confusion matrix and evaluation metrics of MicAssess on the P-Rex1 test set.
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low-resolution class averages. The dataset was downsampled

to account for the class imbalance and then randomly split into

a training set (80%) and a validation set (20%). We noticed that

when the diameter of the mask becomes large, one class

average might contain two particles. The CNN-based classifier

failed to detect this and would misclassify such 2D class

averages to the ‘‘good’’ class. To prevent this, we checked the

saliency map (Hou and Zhang, 2007) of the 2D class averages

in the predicted ‘‘good’’ class and reclassified the class averages

with two or more objects to the correct ‘‘clip’’ class. The combi-

nation of the CNN-based classifier and the saliency map check

made up the complete 2D class average assessor, which we

named 2DAssess.

To further enrich the number of good class averages, we

used deep convolutional generative adversarial networks

(DCGAN) (Radford et al., 2015) to generate artificial good

class averages using the true good class averages in the
862 Structure 28, 858–869, July 7, 2020
training set. We then carefully selected 66 artificial good class

averages generated by DCGAN (Figure S4) and added them to

the training set. Although the selected images are not from 2D

class averages of real proteins, they will most likely be labeled

as good class averages without any prior knowledge of the

protein. Adding these DCGAN-generated images as a data-

augmentation approach improves the generalizability of the

classifier when the good 2D class average samples are

limited. Some simple data augmentation (elaborated in

STAR Methods) was applied in training and validation.

Notably, the good class reached a precision of 94% and a

recall of 97%.

Testing on EMPIAR Datasets
T20S Proteasome (EMPIAR-10025)

First, we tested our workflow on a subset of the published

T20S proteasome cryo-EM dataset (EMPIAR-10025)



Figure 4. High-Resolution Cryo-EM Structure of T20S Proteasome from Automatic Preprocessing Pipeline

(A) Overview of the intermediate results of automatic pipeline on EMPIAR-10025 dataset.

(B) Histogram showing the fractions of the good particles identified by the pipeline with different diameters used in 2D classification. The diameter with the highest

number of good particles (195 Å) is selected (darker blue) to be the best diameter, and the corresponding 2D classification result is used to output the final

particle stack.

(C) 2DAssess achieves 100% prediction accuracy on the EMPIAR-10025 dataset. All the good 2D averages (86.4% of the picked particles) and a subset of the

bad 2D averages predicted by 2DAssess are shown.

(D) 3D electron density volume using the particle stack outputted by the pipeline as the input for 3D reconstruction steps.

(E) Fourier shell correlation (FSC) curve of the electron density map in (C), showing a resolution of 3.1 Å.
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(Campbell et al., 2015) (Figure 4). This subset contains 87 mi-

crographs, all of which were all being classified as good by

MicAssess. Subsequently, the diameter was estimated to be

195 Å. Using this diameter, crYOLO picked 52,153 particles

that were used to search a range of diameters during 2D clas-

sification (Figures 4A and 4B). For each diameter used in

RELION 2D classification, 2DAssess was used to estimate

the number of good particles. Finally, comparison across all

diameters used in 2D classification indicated that the best

diameter for T20S was 195 Å (Figure 4B). For the 195-Å diam-

eter, the good 2D class averages selected by 2DAssess had a
100% prediction accuracy (Figure 4C), correctly identifying all

good and bad 2D averages.

Using the stack of particles associated with good averages,

we then performed 3D refinement to obtain a 3.0-Å structure of

the T20S proteasome (Figures 4D and 4E, Table 2). The resolu-

tion is slightly lower than in the original paper (Campbell et al.,

2015) because we used only a small subset of the EMPIAR data-

set, and the results were obtained without extensive classifica-

tion or CTF refinement. This structure demonstrates that the

automatic preprocessing pipeline provided a high-resolution

stack of particles of T20S without user intervention.
Structure 28, 858–869, July 7, 2020 863



Table 2. Overview of Cryo-EM Structures

T20S Proteasome (EMPIAR-10025) HA Trimer (EMPIAR-10175) Aldolase

Microscope Titan Krios Titan Krios Talos Arctica

Detector Gatan K2 Gatan K2 Gatan K2

Voltage (kV) 300 300 200

Electron exposure (e�/Å2) 53 73.24 44.13

Defocus range (mm) 0.9–2.4 1.0–2.1 0.8–2.0

Original pixel size (Å) 0.66 0.85 0.91

Symmetry imposed D7 C3 D2

No. of initial particle images 52,153 167,788 536,520

Final pixel size (Å) 0.88 1.275 1.22

No. of final particle images 45,066 150,684 425,087

FSC threshold 0.143 0.143 0.143

Map resolution (Å) 3.0 3.2 3.2

B factor (Å2) �94 �151 �110

Workflow CPU core hours (Intel Xeon E5-

2660 v3)

1,600 2,353 8,293

Workflow GPU hours (NVIDIA GTX 1080 Ti) �2 �2 �2

FSC, Fourier shell correlation.
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Hemagglutinin Trimer (EMPIAR-10175)

After successfully analyzing T20S, we next wanted to try a

more challenging sample. To this end, we selected the influ-

enza hemagglutinin (HA) trimer dataset (EMPIAR-10175) (Noble

et al., 2018) due to its extreme orientation differences: end-on

views have a diameter of 55 Å whereas the side-on views

have a diameter of 140 Å. After running MicAssess on 1,099 mi-

crographs, MicAssess identified 205 micrographs as bad (ex-

amples are shown in Figure S5), and the rest of 894 micro-

graphs were preprocessed by the downstream pipeline. After

2D classification, the best diameter to be used in 2D classifica-

tion was selected to be 150 Å (Figures 5A and 5B). The good

and bad class averages were all correctly classified by 2DAs-

sess (Figure 5C).

Using the output stack of good particles, we performed a 3D

refinement with the selected 150,684 particles. This allowed us

to determine a structure at 3.2-Å resolution (Figures 5D and 5E,

Table 2), comparable with what was published previously for

HA trimer (Noble et al., 2018). This structure confirmed that

the automatic pipeline is capable of handling datasets of vary-

ing size and shape, setting the stage for real-world data

analysis.

Analysis of Real-World Data
Aldolase

To extend our preprocessing pipeline, we analyzed an aldolase

dataset collected in-house. This dataset contains 1,118 micro-

graphs, in which 1,075 micrographs were predicted as good

byMicAssess. The examples of badmicrographs being selected

byMicAssess are shown in Figure S6. After estimating the parti-

cle diameter, the 2D classification showed an optimal mask

diameter of 108 Å (Figures 6A and 6B). 2DAssess correctly pre-

dicted all the good class averages. In this dataset, there were

two falsely identified good averages that were actually bad,

which only accounted for 1.53%of the total particles (Figure 6C).
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Using the particle stack generated by the pipeline (including all

of the false positives), we performed a 3D refinement to obtain a

final structure of aldolase at 3.2 Å (Figures 6D and 6E, Table 2).

This demonstrates that the preprocessing pipeline successfully

handles more realistic data, as expert users also determine a

structure to the same resolution.

P-Rex1: A Sample-Screening Case Study for High-

Throughput Cryo-EM

Finally, to demonstrate the effectiveness of the pipeline, we

automatically analyzed multiple datasets to simulate a sample-

screening experiment. The datasets we used were collected

from six cryo-EM sessions of P-Rex1 under different conditions

(Figure 7A, Table 3), including apo P-Rex1 on different types of

grids (18sep06b and 18sep28b), with different additives

(18jan09b and 18jan09d), and with a binding partner Gbg at

different concentrations (18jul14a and 18jan18c). The goal of

this sample-screening case study is to verify that our pipeline

provides a robust and user-free approach for automatic data

quality assessment at different levels, considering that only

one dataset (18jan18c) is amenable for high-resolution cryo-

EM (Cash et al., 2019).

All six datasets were analyzed with the pre-defined automatic

pipeline,where nouser inputwas requiredother thanmicroscope

settings. The outputs of the automatic pipeline were the 2D class

averages selected by 2DAssess for each dataset (Figures 7A and

S7). The datasets were assessed at different levels, from the

micrographs to the 2D class averages, throughout the pipeline

(Table 3). At the first step, MicAssess quickly captured that one

of the datasets, 18sep28b, contained mostly bad micrographs

(70%) (Figure 7B). All of the other five datasets contained mostly

good (above 50%) micrographs (Figure 7B). The particle picker

picked 170–350 particles per micrograph for all five datasets,

except 18sep28b, which only had an average of 85 picked parti-

cles per micrograph, confirming the bad quality of this dataset

(Figure 7C). After 2D classification, the class averages were



Figure 5. High-Resolution Cryo-EM Structure of HA Trimer from Automatic Preprocessing Pipeline

(A) Overview of the intermediate results of automatic pipeline on EMPIAR-10175 dataset.

(B) Histogram showing the fractions of the good particles identified by the pipeline with different diameters used in 2D classification. The diameter with the highest

number of good particles (150 Å) is selected (darker blue) to be the best diameter, and the corresponding 2D classification result is used to output the final

particle stack.

(C) 2DAssess achieves 100% prediction accuracy on the EMPIAR-10175 dataset. All the good 2D averages (89.8% of the picked particles) and a subset of the

bad 2D averages predicted by 2DAssess are shown.

(D) 3D electron density volume using the particle stack outputted by the pipeline as the input for 3D reconstruction steps.

(E) Fourier shell correlation (FSC) curve of the electron density map in (C), showing a resolution of 3.2 Å.
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classified by 2DAssess, wherebywe found that four datasets had

over 50% of the picked particles to be good particles outputted

by the automatic pipeline (Figure 7B), and there were 100–200

good particles per micrograph (Figure 7C).

Although many of the datasets showed promising statistics of

good micrograph and good particle fractions, the good 2D class

averages selected by 2DAssess revealed that apo P-Rex1 alone

and with additives had a very strong preferred orientation on the

cryo-EMgrids (Figure 7A). On the other hand, one of the datasets

of P-Rex1 with Gbg (18jul14a) exhibited sample heterogeneity

whereby we found Gbg oligomers in the good 2D class averages

(Figure 7A), indicating that the concentration of Gbg added was

too high. Finally, the 2D class averages output by the automatic

pipeline from the last dataset (18jan18c) showed the P-Rex1 and
Gbg interactions, and new orientations were also seen as a result

(Figure 7A). This case study demonstrated that our automatic

preprocessing pipeline is an objective, fully automatic approach

to sample screening for high-throughput cryo-EM.

DISCUSSION

Cryo-EM is on the verge of becoming a high-throughput tech-

nique due to its ability to collect multiple datasets per micro-

scope session. This new era requires consistent and reproduc-

ible methods to assess and preprocess the micrographs

directly from the microscopes in a timely manner. Our workflow

provides a robust way to assess and preprocess cryo-EM data

automatically without any user intervention and takes advantage
Structure 28, 858–869, July 7, 2020 865



Figure 6. High-Resolution Cryo-EM Structure of Aldolase from Automatic Preprocessing Pipeline

(A) Overview of the intermediate results of automatic pipeline on the aldolase dataset.

(B) Histogram showing the fractions of the good particles identified by the pipeline with different diameters used in 2D classification. The diameter with the highest

number of good particles (108 Å) is selected (darker blue) to be the best diameter, and the corresponding 2D classification result is used to output the final

particle stack.

(C) 2DAssess achieves very high prediction accuracy on the aldolase dataset. All the good 2D averages (79.2% of the picked particles) and a subset of the bad 2D

averages predicted by 2DAssess are shown. The two false positives (blue shaded) only account for 1.53% of the total picked particles.

(D) 3D electron density volume using the particle stack outputted by the pipeline (including the false positives) as the input for 3D reconstruction steps.

(E) Fourier shell correlation (FSC) curve of the electron density map in (C), showing a resolution of 3.2 Å.
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of pre-existing software and preprocessing algorithms. We

maintained the flexibility to incorporate any preprocessing algo-

rithms, as long as no subjective user decisions are required.

Notably, our workflow also worked on a dataset that used delib-

erate crowding as a strategy to achieve thinner ice, as shown in

our test on EMPIAR-10181 (Herzik et al., 2017) (Figure S8). While

the good results might be expected for the highly curated EM-

PIAR datasets, our workflow performed equally well on our in-

house datasets of aldolase and P-Rex1 screening, indicating

that the workflow is likely robust for a variety of sample types.
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To our knowledge, this is the first fully automatic and generic

workflow for cryo-EM data preprocessing.

Instead of competing with state-of-the-art software packages,

our workflow uses the deep-learning-based assessment tools

we developed and provides a platform to streamline all the pre-

processing steps. For example, Warp (Tegunov and Cramer,

2019) is user-friendly preprocessing software that enables the

users to interact directly with their data. However, manual

inspections and user decisions are still needed in the whole pre-

processing operation with Warp. The assessment tools



Figure 7. Automatic Analysis of Multiple P-

Rex1 Cryo-EM Datasets to Assess Sample

Quality

(A) The six datasets analyzed by the automatic

pipeline in this case study, including different sam-

ple preparations, different additives, and whether a

binding partner was added. 2D class averages were

predicted by 2DAssess and the five good and

representative 2D class averages for each dataset

are shown for assessment.

(B) Fractions of the good micrographs in all the

micrographs (orange) and fractions of the good

particles outputted by the automatic pipeline in all

the picked particles (purple) for each dataset.

(C) The numbers of picked particles (blue) and the

numbers of good particles (purple) outputted by the

automatic pipeline for each dataset.
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introduced in this paper can be used in the Warp workflow to

help with automatic data preprocessing.

As the initial step in our workflow, it is important that

MicAssess can efficiently identify most bad micrographs while

keeping, ideally, all the good micrographs. Therefore, MicAs-

sess was tuned to tolerate more false positives, reducing the

risk of a good micrograph being misclassified. The P-Rex1

benchmark result showed that it can effectively identify most

of the bad micrographs from a large real-world dataset.

Furthermore, MicAssess also has the potential to be incorpo-

rated into the data-acquisition step. With the new K3 camera,

which can collect as many as 8,000 movies per day, it is impos-

sible to manually assess the quality of the newly collected

micrographs. MicAssess provides a way to assess these micro-

graphs on the fly even before CTF estimation so that the user

can obtain real-time feedback on the qualities of the

micrographs.

In our workflow, we only used 2DAssess to predict whether a

class average is good or bad, but it is capable of predicting four

different classes (clip, edge, good, and noise), which contain a

lot more information. For example, a large percentage of

particles being classified as ‘‘clip’’ usually indicates that the

mask diameter is too large because neighboring particles are

being included in some 2D class averages. This gives
2DAssess the potential to improve 2D

classification by performing automatic

diameter searching. Specifically, since

most 2D classification algorithms are iter-

ative, intermediate 2D class averages are

generated after each iteration. It is

possible to apply 2DAssess on the 2D

class averages in the early iterations and

use the outputted predictions to guide

the automatic diameter searching.

Given that MicAssess and 2DAssess are

deep-learning-based models, both models

will continue to improve with more repre-

sentative training data. Moreover, as

deep-learning models these tools can be

tuned for specific samples, users, or facil-

ities to aid in sample assessment. Sample
tuning could be extended into other parts of the pipeline,

including particle picking and, likely, 3D analysis. Further work

in this area promises to help streamline the initial phases of

cryo-EM data processing.

An important aspect of our pipeline centers on creating a

workflow that does not depend on user-defined thresholds.

These thresholds are typically CTF maximum-resolution and

particle-picking thresholds, but could also apply to how 2D class

averages are selected. By developing statistical tools to assess

the data, we developed tools that more closely mirror user-

based decisions instead of fixed-value thresholds.

While this pipeline provides an important first step for

automated preprocessing, there remains room for improvement.

Namely, we continued to use 2D classification as a tool in order

to measure particle quality, where belonging to ‘‘good’’ class av-

erages was a criterion for subsequent 3D analysis. Moreover, 2D

classification is the bottleneck of the speed of this pipeline,

where about 99%of the central processing unit (CPU) core hours

were spent in the 2D classification step. Future research into par-

ticle sorting promises to provide a quick readout of particle qual-

ity to enable faster preprocessing routines.

Overall, this work demonstrates that user-free preprocessing

is capable of performing in a manner comparable with that of

an expert. Future work may extend to automated 3D analysis
Structure 28, 858–869, July 7, 2020 867



Table 3. Details of the Automatic Assessment of Multiple P-Rex1 Cryo-EM Datasets

18sep06b 18sep28b 18jan09b 18jan10d 18jul14a 18jan18c

P-Rex1 concentration (mM) 3.0 3.0 3.0 3.0 3.0 3.0

Additive (mM) – – DDM (80) Lubrol (40) DDM (80) DDM (80)

Gbg concentration (mM) – – – – 60 6.0

Grid type Quantifoil

1.2/1.3

Lacey

carbon

Quantifoil

1.2/1.3

Quantifoil

1.2/1.3

Quantifoil

1.2/1.3

Quantifoil

1.2/1.3

Microscope Titan Krios Talos

Arctica

Talos

Arctica

Talos

Arctica

Titan Krios Titan Krios

Original pixel size (Å) 1 0.91 0.91 0.91 1 1

Total no. of micrographs 1,716 1,491 1,206 1,110 1,352 5,011

No. of good micrographs 986 445 841 790 1,217 4,157

Estimated diameter (Å) 144 144 135 132 138 151

Total no. of picked particles 178,483 37,946 177,086 205,682 424,213 921,403

No. of good particles 94,514 9,535 114,630 141,982 145,941 492,883

Pixel size for 2D classification (Å) 4 3.59 3.64 3.67 3.94 3.97

Best diameter for 2D

classification (Å)

129 216 108 105 110 120

Workflow CPU core hours (Intel

Xeon E5-2660 v3)

3,945 4,166 13,712 7,516 4,347 1,251

Workflow GPU hours (NVIDIA

GTX 1080 Ti)

�2 �2 �2 �2 �2 �2

DDM, dodecyl-b-D-maltoside.
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to enable cryo-EM users to quickly analyze multiple datasets in

parallel.
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STAR+METHODS
KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Chemicals, Peptides, and Recombinant Proteins

Rabbit muscle aldolase Sigma Aldrich 89933139

Deposited Data

Raw, electron micrographs, T20S

proteasome

Campbell et al. 2015 EMPIAR-10025

Raw, electron micrographs, HA Trimer Noble et al. 2018 EMPIAR-10175

Raw, electron micrographs aldolase This paper EMPIAR-10379

Cryo-EM map of T20S proteasome

(Figure 4D)

This paper EMD-21491

Cryo-EM map of HA Trimer (Figure 5D) This paper EMD-21490

Cryo-EM map of aldolase (Figure 6D) This paper EMD-21492

Software and Algorithms

Python Anaconda https://www.anaconda.com/distribution

Leginon Suloway et al., 2005 https://emg.nysbc.org/redmine/projects/

leginon

Appion Lander et al., 2009 https://emg.nysbc.org/redmine/projects/

appion

CTFFIND4 Rohou and Grigorieff, 2015 http://grigoriefflab.janelia.org/ctffind4

MotionCor2 Zheng et al., 2017 https://emcore.ucsf.edu/ucsf-motioncor2

RELION3 Zivanov et al., 2018 https://www3.mrc-lmb.cam.ac.uk/relion

UCSF Chimera Goddard et al., 2007 https://www.cgl.ucsf.edu/chimera

cryoSPARC Punjani et al., 2017 https://cryosparc.com

Tensorflow Abadi et al., 2016 https://www.tensorflow.org

Other

Vitrobot Mark IV Thermo Fisher Scientific
LEAD CONTACT AND MATERIALS AVAILABILITY

Further information and requests for resources should be directed to and will be fulfilled by the Lead Contact, Michael A Cianfrocco

(mcianfro@umich.edu).

This study did not generate new unique reagents.

METHOD DETAILS

MicAssess
Motion corrected micrographs in MRC format were low-pass filtered and cropped to downscale to the network input image size of

494x494. Micrographs were then normalized to a mean of zero. A circular mask with diameter 494 pixels was applied to each micro-

graph, and then rotations and flipping were applied randomly in the training and validation dataset. Themodel was a 34-layer ResNet

connected to two fully connected layers with leaky ReLU as the activation function and 0.5 dropout rate. The final predicting layer

used a sigmoid function as the activation function. The loss function used was the binary cross-entropy loss. We used the ADAM

optimizer with 0.0001 learning rate in training for optimization. In the real prediction, in order to tolerate more false positives than false

negatives, we set the threshold as 0.1 (i.e. only micrographs with probabilities of being good lower than 0.1 will be classified as bad).

MicAssesswaswritten in Python and employed Keras with Tensorflow as the backend. It has been optimized for GPU, but it can be

run onCPU-only machines as well, and is compatible with all platforms (Linux,Windows, andmacOS). It currently supports data from

both K2 and K3 cameras.
e1 Structure 28, 858–869.e1–e3, July 7, 2020

mailto:mcianfro@umich.edu
https://www.anaconda.com/distribution
https://emg.nysbc.org/redmine/projects/leginon
https://emg.nysbc.org/redmine/projects/leginon
https://emg.nysbc.org/redmine/projects/appion
https://emg.nysbc.org/redmine/projects/appion
http://grigoriefflab.janelia.org/ctffind4
https://emcore.ucsf.edu/ucsf-motioncor2
https://www3.mrc-lmb.cam.ac.uk/relion
https://www.cgl.ucsf.edu/chimera
https://cryosparc.com
https://www.tensorflow.org


ll
Resource
CTF Estimation
CTF estimation is performed using CTFFIND4 (Rohou and Grigorieff, 2015), with all the parameters, including pixel size, spherical

aberration, magnification, and voltage, are related to the experiment given earlier.

2D Classification
Picked particles were scaled to about 3 Ångstrom/pixel and extracted using RELION3 (Zivanov et al., 2018). After that, all the particles

will be processing with 2D classification in RELION3. Theworkflow uses themaximumclass number, 200, for the best performance in

the sacrifice of speed. Multiple 2D classification jobs for one dataset will be submitted, with different diameters of the mask, ranging

from 0.5 to 2 times the particle size estimated earlier.

2DAssess
Training and validation data consist of the RELION (Zivanov et al., 2018) outputs of 2D classification from 12 different datasets (Table

1). The EMPIAR datasets were preprocessed by the pipeline, and the outputted 2D class averages were manually labeled to the

correct classes. Classes with significantly more samples were downsampled to eliminate the possible problems caused by class

imbalance. The final dataset has 527, 550, 898, 1002 images for good, clip, edge, and noise classes respectively, and was randomly

split into a training set (80 %) and a validation set (20 %).

Given that the output averaged images from RELION (Zivanov et al., 2018) already contained a mask with diameter d, we cropped

all average images to remove mask edges. To do this, we first cropped the images to size dxd which only keep the centers of the

images. Images were then normalized to a mean of zero, and resized to 256x256 using Lanczos resampling. Random rotations

and flipping were applied in the training and validation dataset.

We used a simple DCGAN (Radford et al., 2015) model to artificially generate images that belong to the good class as a data

augmentation approach. The training data used for DCGAN is the 527 images in the good class. The generator of DCGAN was a

convolutional neural network implementing upsampling convolutions, organized as input (100-d) -> transpose conv3x3 1024-d,

stride 2, batch normalization, ReLU activation -> transpose conv1x1 1024-d, stride 1, batch normalization, ReLU activation -> trans-

pose conv3x3 512-d, stride 2, batch normalization, ReLU activation -> transpose conv1x1 512-d, stride 1, batch normalization, ReLU

activation -> transpose conv3x3 256-d, stride 2, batch normalization, ReLU activation -> transpose conv3x3 256-d, stride 2, batch

normalization, ReLU activation -> transpose conv3x3 1-d, stride 1, tanh activation -> generated image. The discriminator of DCGAN

was a simple convolutional neural network, organized as input -> conv3x3 32-d, stride 2, batch normalization, leaky ReLU activation,

dropout rate 0.25 -> conv3x3 64-d, stride 2, batch normalization, leaky ReLU activation, dropout rate 0.25 -> conv3x3 128-d, stride 2,

batch normalization, leaky ReLU activation, dropout rate 0.5 -> conv3x3 128-d, stride 2, batch normalization, leaky ReLU activation,

dropout rate 0.5 -> fully connected layer with a single output with sigmoid activation. 10,000 epochswere used in training and only the

images generated from the last 2,000 were saved. We then carefully selected 66 images and added them to the training set. All the

selected images generated by DCGAN are shown in Figure S4.

The CNN-based classifier failed to correctly classify class averages containing two particles, which is a situation that occurs when

the 2D classification mask is too large. Therefore, we confirmed that all images predicted to be in the good class did not have two

particles by calculating a saliency map of the 2D class averages. A saliency map is a representation of an image that can highlight the

unique features of the image. In our application, we calculated the saliencymapwith the spectral residual approach and based on the

object detected by the saliency map, we checked 1) the number of the object, and 2) whether the center of mass of the detected

object is around the center of the image. Only the 2D class averages with one centered object detected will pass this saliency

map check. The other class averages, with either more than one object or the object, are typically not well centered (usually due

to the case that there aremore than one particle but the particles are too close to be differentiated by the saliencymap), will bemoved

to the correct clip class.

2DAssesswas written in Python and employed Keras with Tensorflow as the backend. It has been optimized for GPU, but it can be

run on CPU-only machines as well, and is compatible with all platforms (Linux, Windows, and macOS).

The number of the good particles that belong to the good 2D class average groups are calculated across all the diameters used in

the 2D classification jobs, and the diameter with the best particles is being selected as the best diameter.

T20S Single-Particle Analysis
3D refinement. After the preprocessing pipeline, 45,066 particles were re-extracted to a pixel size of 0.88 Å/pixel with a box size of

390 Å. Using EMD-6287 as an initial model, we performed a 3D refinement in RELION-v3.0 (Zivanov et al., 2018) usingD7 symmetry to

obtain a structure at 3.0 Å resolution and B-factor of -94 Å2.

HA Trimer Single-Particle Analysis
3D Refinement

After the preprocessing pipeline, 150,684 particles were re-extracted to a pixel size of 1.275Å/pixel with a box size of 250Å. Using

EMD-7792 as an initial model, we performed homogenous 3D refinement in cryoSPARC v2.11.2-live_privatebeta using C3 symmetry

to obtain a structure at 3.2 Å resolution and a B-factor of -151 Å2.
Structure 28, 858–869.e1–e3, July 7, 2020 e2



ll
Resource
Aldolase Single-Particle Analysis
Sample Preparation

Pure aldolase isolated from rabbit muscle was purchased as a lyophilized powder (Sigma Aldrich) and solubilized in 20 mM HEPES

(pH 7.5), 50 mM NaCl at 1.6 mg/ml. Sample as dispensed on freshly plasma cleaned UltrAuFoil R1.2/1.3 300-mesh grids (Electron

Microscopy Services) and applied to grid in the chamber of a Vitrobot (Thermo Fisher) at �95% relative humidity, 4�C. The sample

was blotted for 4 seconds with Whatman No. #1 filter paper immediately prior to plunge freezing in liquid ethane cooled by liquid

nitrogen.

Cryo-EM Data Acquisition

Data were acquired using the Leginon automated data-acquisition program (Suloway et al., 2005). Image preprocessing (frame align-

ment with MotionCor2 (Zheng et al., 2017) and CTF estimation) were done using the Appion processing environment (Lander et al.,

2009) for real-time feedback during data collection. Images were collected on a Talos Arctica transmission electron microscope

(Thermo Fisher) operating at 200 keV with a gun lens of 6, a spot size of 6, 70 mmC2 aperture and 100 mm objective aperture. Movies

were collected using a K2 direct electron detector (Gatan Inc.) operating in counting mode at 45,000x corresponding to a physical

pixel size of 0.91 Å/pixel. The dose rate was 4.413 e/pix/sec for a 10 second exposure, which makes for a total dose of 44.13 e/Å2 for

the 1118 images collected at a defocus range of 0.8-2 mm.

3D Refinement

After the preprocessing pipeline, 425,087 particles were re-extracted to a pixel size of 1.22 Å/pixel with a box size of 271 Å. Using

EMD-8743 as an initial model, we performed a 3D refinement in RELION-v3.0 (Zivanov et al., 2018) using D2 symmetry to obtain a

structure at 3.2 Å resolution and B-factor of -110 Å2.

P-Rex1 Screening Single-Particle Analysis
P-Rex1 samples were prepared as described (Cash et al., 2019) with the exception of details described in Table 3.

QUANTIFICATION AND STATISTICAL ANALYSIS

The cryo-EM single-particle analysis was performed with published software and tools developed in this study as described in

Method Details section.

DATA AND CODE AVAILABILITY

Cryo-EM structures have been deposited to the EMDB under accession codes EMD-21491 (T20S), EMD-21490 (HA Trimer), and

EMD-21492 (Aldolase). Aldolase dataset has been deposited to EMPIAR under EMPIAR-10379.

Software tools capable of running MicAssess and 2DAssess arebe available at https://github.com/cianfrocco-lab/Automatic-

cryoEM-preprocessing under theMIT license. The preprocessing pipeline will also be incorporated into the freely available COSMIC2

science gateway: https://cosmic2.sdsc.edu:8443/gateway/.
e3 Structure 28, 858–869.e1–e3, July 7, 2020
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