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Abstract
A mutation in a patient's genome can affect a protein in that patient’s body, resulting in either no change in
the health of the patient or a disease experienced by the patient. Assigning terminology, the mutations can
therefore be referred to as benign or pathogenic, respectively. When these benign or pathogenic mutations
occur, there is an associated change in change in free energy (ΔΔG) when the protein folds, which essentially
means the act of the protein folding can become more or less stabilizing. The questions we were interested
in are the following: are pathogenic protein mutations stabilizing or destabilizing when compared to benign
protein mutations and is there a difference between ΔΔG distributions for benign and pathogenic
mutations. In order to analyze the distribution of the ΔΔG’s, we looked at both data from a previous study
and data obtained from an extensive literature search for pathogenic mutations found in patients who
exhibit a disease. We found that there appears to be a statistical difference between the distribution of
benign ΔΔG’s and pathogenic ΔΔG’s when organizing proteins by general function and that pathogenic
mutations appear to be more destabilizing than benign mutations. Furthermore, pathogenic distributions
appear better described by two gaussians, or a bimodal distribution, whereas benign distributions are
adequately described by a single gaussian. Pathogenic distributions also appear to have greater range and
variance. While the causes are not yet entirely understood, these results can play a role in understanding
what, if any, role ΔΔG has on the pathogenicity of a mutation and could be one day used alongside other
methods to generate a model that can help predict the pathogenicity of an arbitrary mutation.

Introduction
Many diseases that are prevalent in society are
caused by protein mutations. Protein mutations
begin at the DNA level when a nucleotide that
helps encode a specific protein is affected. There
are regions of DNA called exons and some of
these regions contain the genetic code required for
cells to produce whatever proteins they may need
to properly function. In order for a cell to be able
to produce a protein, the protein encoding section
of a cell’s DNA must first be translated into RNA,
and then the RNA sequence can be converted into
a chain of amino acids that will fold into a
structured protein. Both the DNA and RNA
sequences are made up of nucleotides, and, when
coding for a protein, each group of three
nucleotides specifies a different amino acid (the
building blocks of proteins). There are various

things that can happen to these nucleotides, namely
a nucleotide can be deleted, added, or swapped out
for a different nucleotide, all of which are
considered DNA mutations. These three
specifically mentioned mutations are known as
deletions, insertions, and base substitutions,
respectively.

Depending on the type of mutation that occurs
and if the mutations occur in a protein encoding
region, there can be downstream effects on the
proteins produced from that region of the DNA.
There is the chance that the mutation can have no
effect, meaning that changing a nucleotide did not
change the amino acid called for at that point in
the sequence. This type of mutation is called a
silent mutation, meaning the mutation would go
unnoticed to the patient. However, there is also the
chance that the mutation can affect the structure
and/or stability of the protein by changing one or
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multiple amino acids that are called for by the
groups of three nucleotides in the DNA sequence.
These are called missense mutations. If the DNA
mutation that occurred causes one of the groups of
nucleotides in the encoding region to call for a stop
codon, then protein production would prematurely
end resulting in an incomplete protein. It is
important to note that in the case of deletion or
insertion DNA mutations an entire chain of amino
acids can be changed because inserting or deleting
a single nucleotide causes the entire coding region
to be offset. However, base substitution DNA
mutations only cause a single point amino acid
missense mutation since only one nucleotide is
being altered, meaning there is no offset. Our study
focused solely on single point amino acid missense
mutations.

It may be important to understand that there are
multiple reasons that these mutations may be
present in a patient. Primarily, these mutations can
be passed genetically. Patients with a pattern of
protein mutation specific diseases in their family
history either have those diseases or are at a genetic
predisposition for those
diseases. Secondly, these
mutations can actually just
occur by random chance. This
happens during the DNA
replication process. Although
these replication errors do not
have a high probability of
occurring (a single error
occurs, on average, every
100,000 nucleotides), when
considering the amount of
DNA replication that occurs in
the human body they become
unavoidable [1]. While the
human body has checks in
place to account for and
correct almost all of the errors
that may occur during the
replication process, some of
these errors fall through the
cracks and can result in
disease. Thirdly, radiation or
chemical factors, known as
mutagens, can interact with
DNA and physically change its
structure. These mutagens can

come from many different places, including the
environment, food, or viruses, to name a few.
These are typically the causes that come to mind
when people think of diseases such as cancer.
Similarly to the DNA replication errors, the human
body has systems to help repair DNA when
breakage or mutation occurs from mutagens, but
not all of them are caught.

As mentioned, these mutations in the DNA can
cause diseases because changing the DNA
nucleotide sequence can change the amino acids
that are called for when the DNA is read to build a
protein. If the amino acids that make up a protein
change, then it is possible that the protein will
physically not be able to fold the same or have a
different stability. This is because different amino
acids are composed of different atoms and are of
different sizes, meaning that the site of change
would not fit as the normal sequence did and
would not interact with the rest of the chain as the
normal sequence did. This process is depicted in
Figure 1. The way a protein folds largely
determines its function since it is the orientation
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and location of the various atoms in the protein
that determine how the protein interacts with the
environment and other molecules around it. Thus,
if the protein is no longer folded the same, there is
a chance that it can no longer properly interact
with its targets, which is the cause of many
diseases. Mutations in the DNA that cause proteins
to change such that a disease occurs are known as
pathogenic mutations. There are, of course, many
mutations that can occur in the DNA that are not
severe enough to change a protein enough to cause
diseases. These mutations are known as benign
mutations.

A chain of amino acids has an associated free
energy, meaning that in the unfolded state a protein
has a certain potential to do work. For our
purposes, this is really just to say that an unfolded
protein has a certain amount of energy associated
with it. As with any system, a protein folding is an
attempt to minimize enthalpy (heat) and maximize
entropy (disorder). The enthalpy is typically
decreased because as a protein folds new bonds
and interactions are made between the atoms in the
amino acid chain, and when these bonds are made
energy (typically in the form of heat) is released. It
is entirely possible that in order for a bond to be
made energy is required, but this would not occur
spontaneously and is beyond the scope of this
introduction. Furthermore, as these new bonds
and interactions are made, water molecules that
were previously bonded to the amino acid chain
are displaced and released which increases the
overall entropy of the system. Both the resulting
change in enthalpy and change in entropy are
summarized as an overall change in free energy,
referred to specifically as a change in Gibbs free
energy and shorthanded as ΔG. If ΔG is negative,
then the reaction is spontaneous because overall
energy was released. This must be true because for
ΔG to be negative it means that whatever system
we are looking at started with more energy than it
ended up with. Energy cannot be created nor
destroyed, so energy was released from the system.
Furthermore, something having a lower energy is
more stable and more favorable than having a
higher energy, which is why a negative ΔG is said
to be spontaneous. If the new state has less free
energy than the old state (meaning ΔG is negative),
the system will naturally move in the direction of
that state (the energy minimizing state). To

summarize, if ΔG is negative then the reaction is
said to be spontaneous and stabilizing. From
similar logic, if ΔG is positive the reaction is said to
be non-spontaneous and destabilizing since it
means energy must have been put into the system
and the system is at a higher energy state. The
discussion on the thermodynamics behind the
folding of a protein can be much more in depth,
but for the understanding of this study nothing
more than what has been discussed needs to be
understood.

We have thus introduced that an unfolded protein
has an associated energy, and this energy changes
when a protein folds. Additionally, a folded protein
is typically of lower energy and more stable than an
unfolded protein. We have also established that
when a mutation occurs the result can be that the
protein no longer folds in the same way. What this
means is that when a mutation occurs there can be
a change in the change in energy (a ΔΔG) that a
protein experiences when folding since the protein
may no longer fold the same. More concisely, when
a mutation occurs there is a ΔΔG when the
mutated protein folds compared to the wild type
protein folding. A ΔΔG value is calculated by
subtracted the energy change from the initial fold,
known as the wild type, from the energy change
from the new fold that results after the mutation
occurs. Depending on the exact details of the
mutation, this ΔΔG can either be positive, negative,
or zero. Recall, as mentioned earlier, that energy
changes from protein folding are typically negative
since they occur spontaneously. If the ΔΔG is zero,
that just means that from an energetic standpoint
nothing has changed with the fold, i.e., there is no
difference between the mutated fold and the
wild-type fold. However, if the ΔΔG is positive,
then that means that the mutated fold is less
negative than the wild type, meaning that the
mutated fold is less stable than the wild type. Thus,
a positive ΔΔG indicates that a mutation was
destabilizing. Following a similar logic, if a ΔΔG is
negative it means that the mutated fold is more
negative than the wild type. Thus, a negative ΔΔG
indicates that a mutation was stabilizing. Another
thing to consider is that the change in free energy,
ΔG, can also be thought of as a measure of the
ratio of the folded and unfolded populations of the
protein [2]. Thus, if the free energy of a protein
changes the relative populations of folded to
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unfolded proteins to each other will change.
Specifically, if ΔΔG is negative the population of
the folded protein to the unfolded protein will
increase, and the opposite is true for a negative
ΔΔG [2]. Either of these situations could be bad
for the human body and result in disease.

The questions that we are interested in are twofold.
Firstly, are pathogenic mutations stabilizing or
destabilizing when compared to benign mutations?
Secondly, is there a statistical difference between
the underlying ΔΔG distributions of pathogenic
and benign mutations? The data obtained from
analyzing these questions could potentially, and
hopefully, be used to create a model that can
predict pathogenicity for a given protein and
mutation pair. Knowing the answers to or thinking
about these questions can be especially helpful in
fields that are currently working with protein
sequences. Such fields include gene therapy,
medicine design for protein therapeutics, various
tissue engineering or biomaterial fields, or protein
modeling in other research settings. In all of these
applications, having access to a model that can help
predict pathogenicity of a protein mutation for a
given protein would be very beneficial. It can also
potentially lead to the discovery of new diseases
and give researchers a new lens with which to
develop treatments for various diseases or analyze
protein mutations.

Methods
The change in energy that a protein experiences
when folding can be computationally predicted.
There are various programs available for this,
including a program called FoldX and a relatively
novel program developed by the Yang Zhang Lab
of the University of Michigan, EvoEF2 [3], [4]. For
this project, EvoEF2 was utilized to conduct
protein folding modeling but some data from a
previous study that utilized FoldX was also
analyzed. However, this will be discussed later. For
now, it is important to understand that these
programs allow the input of a file containing
information about a protein, including its structure,
for example. Alongside the protein, the programs
can also take in a specific mutation at a specific
location in the protein. In order to calculate a
ΔΔG, the change in energy of the wild-type protein
is first calculated, and then mutations can be
simulated and new changes in energy can be

calculated. Then, as mentioned earlier, the ΔΔG
for a given mutation can be calculated by
subtracting the change in energy that occurs in the
wild-type protein fold from the change in energy
that occurs after the mutation has been simulated.
Note that the units for ΔΔG are kilocalories per
mole.

This process was done for a large number of
pathogenic and benign mutations in a previous
study by the Yang Zhang Lab, and the results were
compiled into a database called ADDRESS [5].
ADDRESS contained ΔΔG calculations both from
EvoEF and FoldX. The first part of this study
involved analyzing the ΔΔG calculations from
ADDRESS. This analysis was conducted by first
organizing the data by function by utilizing GOnet
[6]. In particular, GOnet organizes the proteins by
function, and it is important to note that a
particular protein may fall into more than one
category on GOnet. Once the data was organized
by gene function, the pathogenic data points and
benign data points for each function were plotted
as separate histogram distributions and boxplots.
Next, gaussian curves of degrees one and two were
fit for each distribution and various statistical tests
were performed for each distribution.

The datapoints compiled in ADDRESS were
obtained from the UniProt Humsavar database
(version 2020_04) [5], [7]. Thus, it was of interest
to us to gather pathogenic mutations reported in
literature from patients with diseases and
determine their ΔΔG to compare them to benign
mutations of the same protein. In particular, the
literature search was framed around specific
protein function classes, and data points were
gathered from patients with diseases that stem
from mutations in a protein that belong to one of
the protein function classes of interest. The
specific diseases were not as important for this
study as was the specific protein, its class, and the
mutation. For each mutation found, the
information that was gathered included the protein
that the mutation occurred in, the position in the
amino acid sequence that the mutation occurred in,
what the amino acid at that position is in a
wild-type sample, and what the amino acid at that
position mutates to. For this study, two classes were
chosen based on the ADDRESS results,
transporter proteins and methyltransferase activity
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proteins, and both of these classes were analyzed
separately.

This literature search was conducted from multiple
angles. First, a preliminary search was conducted
on Google Scholar and PubMed using key words
like “pathogenic”, “mutation”, or “disease” as well
as words relevant to the class of protein of interest,
such as “transporter proteins”, “channels”, or
“methyltransferase”. In addition to this, sometimes
specific proteins of the interested class were
singled out and searched for in an attempt to pull
more relevant papers, such as glucose transporters
or solute carriers. To supplement this literature
search, a search was also done on UniProt for the
desired class of protein [8]. UniProt then allows
reviewed variants of a specific protein in the class
to be viewed. Conducting a portion of our search
through UniProt was advantageous as it allowed
for a relatively large number of pathogenic
mutations in literature to be viewed while
summarizing the mutation information and
providing a link to the paper that it was reported.

Once a certain number of pathogenic mutations
were obtained for each desired function class (the
threshold for this study was at least 100 mutations),
the lists of proteins were cross referenced to
gnomAD, from which benign mutations for each
protein were obtained [9]. Next, for proteins that
were in Recon3D the PDB was obtained from
there [10], [11]. Recon3D is a genome scale human
metabolic network reconstruction, and it also
contains protein files for a good number of
proteins in the human body. If Recon3D did not
contain a sequence file for a desired protein, then
the PDB was obtained from UniProt or RCSB
through UniProt [12]. The location from where
each PDB was obtained was recorded as well as the
method the PDB was generated, i.e., experimental
or modeled.

As mutations were discovered through the
literature search, the data was stored in a CSV file.
A script was written in MatLab that could read and
validate the information from the CSV file. This
was done by having MatLab open the PDB file and
ensure that the protein was aligned by comparing it
to an alignment file obtained for that protein.
Then, for each mutation for that protein script
verified that the amino acid at the mutation
position was the correct initial amino acid. Any

mutation that had a different initial amino acid
than what was in our PDB file for that protein was
removed from analysis. Then, the script called
EvoEF on the PDB file before any mutations to
calculate the wild type change in energy from
folding. Next, the script called EvoEF to simulate
the mutation and stored the change in energy of
the protein folding after the mutation occurred.
Next, for each mutation a ΔΔG value was
calculated by subtracting the wild type change in
free energy for the protein from the change in free
energy after the mutation had occurred. These
values were stored and used to generate the ΔΔG
distribution analysis. For each protein class, a
histogram and boxplot was plotted for both its
benign and pathogenic ΔΔG distributions and
various statistical tests were run on the
distributions. Additionally, as with the ADDRESS
analysis, gaussian curves of modalities one and two
were fit to the distributions. For context, modality
refers to the number of peaks in a graph, but more
generally this can be understood as monomodal
gaussians being a normal, single gaussian
distribution and bimodal gaussians being a
summation of two gaussian distributions. In simple
terms, something with a bimodal distribution just
has two peaks.

In order to fit the gaussian curves to the
distributions in both the ADDRESS analysis and
the literature search analysis, two scripts were
written in MatLab that could handle plotting
monomodal gaussian distributions and bimodal
gaussian distributions. These scripts mostly
contained built-in MatLab functionality for curve
fitting. For this study, the method used for fitting
was the nonlinear method of least squares. In order
to give the curve fitting scripts a list of points to fit,
points were estimated using the distribution
histograms. More specifically, a list of
x-coordinates was generated by averaging the
x-location of the two edges of each bin and a list of
y-coordinates was generated by taking the height of
each bin, noting that a bin is a bar in a histogram.

These x and y-coordinates were fed into the scripts
to generate both monomodal and bimodal fits and
accompanying R-values which were analyzed to
determine fit quality. Namely, the increase in
R-value from monomodal to bimodal distribution
was used as a measure of which distribution best
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benefited from a bimodal distribution.Once all the
data was collected, histograms, statistical tests, and
gaussian fits were analyzed to determine if any
patterns or differences were discernible.

Results
From the ADDRESS database, 21,251 protein
mutations were analyzed. These mutations were
then organized into 37 different gene function
categories, such as ion binding, transmembrane
transporter activity, and methyltransferase activity,
for example. The full list of gene function
categories can be found in Table 1 or Table 2. For
each of these gene functions, both EvoEF energy
calculations and FoldX energy calculations were
examined. Furthermore, for each gene function, a
benign mutation histogram and a pathogenic
mutation histogram (and boxplots) were created

for each type of energy calculation, which means
there were over 100 plots created. Some
representative plots can be seen in Figure 2, which
will be discussed later. The basic statistical
measures gathered from the histograms and box
plots are summarized in Table 1.

All tests were performed for both the EvoEF data
points and the FoldX data points, but for the
purpose of this paper and because the results
between data sets were very similar, from this point
on we will only show representative images from
the EvoEF data sets and include some discussion
on the FoldX data sets in Discussion. Once the
distributions had been created and plotted, we
began fitting monomodal and bimodal gaussians to
each distribution. Representative plots can be seen
in Figure 3.

As mentioned, something of interest to us was to
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determine if there were any differences in which
gaussian model better described the benign
distributions versus the pathogenic distributions.
To get an idea of this, we looked at each
distribution and determined the increase that
occurred when switching from a monomodal
distribution model to a bimodal distribution model.
These results are shown in Table 2. In addition,

t-tests were conducted between pathogenic and
benign distributions for each gene function
category, and the results can also be seen in Table
2.

Next, the results of the literature search were
obtained. As mentioned, we looked at two gene
categories: transporter proteins and proteins
relating to methyltransferase activity. Transporter
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proteins were chosen because they were of interest
to us, and methyltransferase activity related
proteins were chosen because they had strong
pathogenic bimodal representation from
ADDRESS (Figure 3). Additional proteins could’ve
been chosen and likely will be in the future. For
transporter proteins, we looked at 18 different
genes; across those 18 genes, we identified 262

pathogenic mutations and 3,766 benign mutations.
For methyltransferase activity related proteins, we

looked at 10 genes; across those 10 genes, we
identified 150 pathogenic mutations and 2,113
benign mutations. As previously mentioned,
finding benign mutations was much more trivial
than pathogenic ones since gnomAD already has
tables of benign mutations available. The resulting
histograms (from the process defined in Methods)
can be seen in Figure 4. In addition, a summary of
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the statistical quantities relevant to the distributions
can be seen in Table 3.

Just as was done with the ADDRESS analysis, a
gaussian fit analysis was conducted in order to get
an understanding of the difference in monomodal
and bimodal fit accuracy for the distributions. The
resulting quantities from this analysis can be seen
in Table 4.

Finally, we compared the distributions obtained
from the literature search to the corresponding
category that was in ADDRESS in order to try and
get some kind of idea as to if they statistically come
from the same distribution. We plotted the

histograms for both categories from both sources
by pathogenic and benign mutations. These plots
can be seen in Figure 5. Furthermore, we
conducted a t-test between the corresponding
distributions and those results are summarized in
Table 4.

Discussion
One of the first things that we noticed was that the
pathogenic distributions appeared to be slightly
more positive than their benign counterparts. This
was true for 35 out of 37 gene categories from the
EvoEF data from ADDRESS. The results from
FoldX were very similar. In addition, both of the
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gene categories from the literature search exhibited
this behavior as well. Furthermore, none of the
pathogenic distributions had a mean that was
below zero. This suggests that pathogenic
mutations are more destabilizing than their benign
counterparts. Benign distributions appear to be
more about zero, with some distributions being
destabilizing on average and some being stabilizing
on average. However, the key observation that we
took from this was that the pathogenic
distributions appear to be more destabilizing.

Another thing that we noticed is that the
pathogenic distributions appeared to have a greater
standard deviation than their benign counterparts.
This was true for 36 out of the 37 gene categories
from ADDRESS and both of the gene categories
from the literature. It also appeared that the
pathogenic distributions had a greater spread, with
33 out of 37 categories from ADDRESS and both
categories from the literature search showing this.
This can suggest that pathogenic distributions can
have more extreme outliers, which can mean that
pathogenic mutations have the potential to be
extremely destabilizing. Something else of interest
to note is that FoldX pathogenic distributions
appeared to have the greatest standard deviation.
Although we did not confirm this rigorously, it is
an important observation nonetheless as it brings
to our attention that computational estimation
methods can play a role in the distributions
generated. However, even in FoldX’s case, 36 out
of 37 gene categories showed that pathogenic
distributions had greater standard deviation.

One of the main things that we sought to
determine was whether there was a statistical
difference between the pathogenic and benign
distributions for a protein category. The above
discussion on mean and standard deviation
suggests that they are, in fact, statistically different,
however we wanted to show this further with a
t-test. With a p-value threshold of 0.05, 31 out of
the 37 ADDRESS gene categories and both of the
literature search categories had statistically different
pathogenic and benign distributions. Some
distributions were more different than others, with
the p-values ranging from 1.3E-2 to 5.0E-110. No
p-value adjustments were made, so it is important
to remember that there may be a couple of false
rejections, however the fact remains that a majority

of the distributions would still be statistically
different even if the p-value was corrected for
multiple comparisons. The FoldX data also had 31
out of 37 gene categories marked as statistically
different, but interestingly two of the categories
marked as different by EvoEF were not by FoldX
and vice versa which brings into the light the need
to fully understand the computational difference
between the two programs to better understand
any discrepancies between the results of the two
programs.

Another goal was to see if the pathogenic and
benign distributions were better modeled by
different modalities of gaussian fits. From the
EvoEF data from ADDRESS, it did appear that in
the case of some protein categories the pathogenic
distribution was better described by a bimodal
gaussian fit whereas the benign distribution was
already accurately described by a monomodal
gaussian fit. A prime example of this was shown in
Figure 3. The way we tried to quantify this was by
analyzing the improvement in r-squared values
when going from a monomodal distribution to a
bimodal distribution. The results for this from
EvoEF ADDRESS can be seen in Table 2. Note
that this analysis was not conducted for the FoldX
data. From this table, we can see that for 26 of the
protein categories the pathogenic distributions saw
a greater increase in r-squared value when going
from the monomodal fit to the bimodal fit when
compared to the benign distributions. However,
some of these greater increases were very minimal,
so it is more interesting to see the cases where the
pathogenic distribution benefited by a good
amount and the benign distribution benefited very
little. We did not define numbers that met this
requirement, but some categories that we believe
exhibit this behavior are ligase activity,
methyltransferase activity, nuclease activity,
peptidase activity, some transferase activity, and
transporter proteins. Visually, this can be seen in
Figures 2 and 3. In Figure 2, the pathogenic
distributions of both categories appear to have a
second “spike” which is not as prominent in the
benign distribution. This behavior is more closely
examined in Figure 3 for methyltransferase activity,
which shows that in the case of the benign bimodal
distribution a second peak was not even detected.
Our hypothesis for why this is occurring is that
pathogenic mutations could have multiple different
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routes of causing disease. The distributions could
be bimodal because one group of mutations could
be causing diseases by destabilizing the protein,
causing a secondary peak at higher ΔΔG, whereas
the other proteins cause diseases via other avenues,
such as disrupting the protein fold or altering the
proteins ability to bind to its targets. Verification of
this hypothesis will require further testing.

The results from the literature search distributions
were less clear on the matter. Mathematically, both
categories saw that the pathogenic distributions
benefited from the bimodal distribution greater
than the benign distributions did. However, the fits
that were generated for the distributions did not
correctly pick up the second, more positive spike
that was shown in some of the distributions from
ADDRESS. Interestingly enough, we can visually
see the makings of this second peak in both of the
pathogenic distributions (at about the 2.5
kilocalories per mole mark), so we believe that the
lack of having statistical representation of these
second peaks could be due to the fact that we
simply need more data points for the pathogenic
distributions, because in the case of the each of the
literature search categories the pathogenic
distribution had less data points than their
ADDRESS counterparts. Another reason that our
fit was unable to detect the second peak could be
that we just need to try additional gaussian fit
techniques or perhaps adjust the bin width settings
of the histogram.

Finally, we wanted to compare the distributions
that we obtained from our literature search to the
distributions that we obtained from ADDRESS. It
is important to note that we did not check for
redundancy between the ADDRESS mutation pool
and the literature search mutation pool, which
should be done in the future. Interestingly enough,
when conducting a t-test between the
methyltransferase distributions, with a p-value
threshold of 0.05, the null hypothesis was actually
accepted for both the benign and pathogenic
distributions. As shown in Figure 5, the
distributions from the methyltransferase activity
look incredibly similar. Even though the gaussian
fits do not line up (especially in the case of the
pathogenic distribution), the makings of the
histogram look remarkably similar. Thus, we can
conclude that at the very least separate

distributions of mutations relating to
methyltransferase appear to be very similar. The
results from doing this with the transporter protein
categories were less clear on this since the t-test
suggested that they came from different
distributions. However, the p-value from the
pathogenic distributions was relatively high and
visually the distributions look quite similar, so it
appears that they may be similar, but we were not
able to show this concretely. Discrepancies could
come from the largely differing number of data
points between the two distributions.

Conclusion and Future Directions
Generally, we found that compared to benign
mutations, pathogenic mutations appear to be
more destabilizing and have greater variance.
Furthermore, we found that the underlying ΔΔGs
distributions from pathogenic and benign mutation
do appear to be statistically different. In addition,
for some categories of protein function,
pathogenic mutation ΔΔG distributions appear to
be better described by a bimodal fit whereas this
phenomenon is not seen as clearly with the benign
mutation ΔΔG distributions. Finally, there appears
to be some correlation of ΔΔG distributions by
protein category from different sources, i.e. from
ADDRESS and an independent literature search,
suggesting that for a given protein function the
mutation ΔΔG distribution may have an expected
underlying distribution.

Moving forward, it is of great importance to try
and identify why this bimodal pathogenic
distribution is occurring. It may involve conducting
an analysis in which we try to identify specific
mutations that have a specific effect in the protein,
such as destabilizing the protein, disrupting its fold,
disrupting its binding, etc., and analyzing the
contributions those sub-categories of mutations
contribute to the overall pathogenic ΔΔG
distribution for that protein category. As
mentioned in the discussion, some of the results
are not as clear as desired, so it would certainly be
worthwhile to run this analysis on additional data
sets and to increase the size of the literature search
data sets. Working with more data may be able to
bring out stronger correlations or results. It may
also be necessary to take a closer look at the
underlying differences between different
computational approaches to estimating ΔΔG since
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we saw that while generally EvoEF and FoldX
agreed there were some discrepancies in the fine
details. Understanding why this may be occurring
and furthermore understanding how using the
different computational models can affect the
resulting distributions is an important distinction to
make if these observations are to be applied to real
world models and applications. Other things that
we could look into doing were previously
mentioned, such as trying different fitting
estimation techniques, changing the histogram bin
width settings, and checking for redundancies
between the two data collections (ADDRESS
versus the literature search).

In the future, it would also be interesting to run the
same kind of analysis but instead do multiple
mutations at a time. In real life, it is often the case
that a disease results from multiple mutations. Said
in another way, when patients with diseases are
genotyped, it is often the case that the patient has
multiple mutations, and sometimes it is unknown
which mutation has what effect as far as causing a
disease goes. Furthermore, sometimes a
combination of mutations is required to get the
protein to fold and/or behave a certain way. For
example, sometimes one mutation can cause a large
destabilizing effect and a following mutation can
cause a large stabilizing effect. So, from a ΔΔG
standpoint these mutations “cancel” each other
out. However, if those mutations are believed to be
associated with a disease, then it may be important
to understand both their individual roles and their
combinatory effects. Thus, only running mutations
one at a time could be a potential limitation of this
analysis. However, sometimes it is possible for a
single mutation to cause a protein's binding affinity
to a specific molecule, ligand, nucleic acid, or other
protein, so a future study could include this aspect
in the analysis.

This study has shown that there does appear to be
a difference in how benign and pathogenic
mutations affect a protein from an energy
standpoint. These differences may be enough to
one day allow researchers to better understand and
predict the pathogenicity of certain protein
mutations and potential treatments. Although this
study does not provide concrete models to be used
by researchers, it can act as the foundation upon
which future studies and models can be built.
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