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Abstract 

Members of the Fluc family of membrane channel proteins, found in all three domains of biological 

classification, allow organisms to prevent the buildup of fluoride ion inside cells and thereby counteract 

fluoride toxicity. Export through these proteins is passive yet extremely selective for the substrate. Like 

nearly all membrane proteins, Fluc protomers exhibit internal repeat symmetry, which is thought to result 

from either the association of structurally similar domains or gene duplication. Gene duplication events are 

of special significance to the Fluc family because duplication is considered the earliest mechanism of major 

genetic variation that allowed for topologically distinct Fluc channels to evolve. In prokaryotes, the Fluc 

channels assemble as proper dimers and may have a dual topology (monomer is equally capable of insertion 

in either of two orientations with respect to the membrane) or a fixed topology (monomer is biased towards 

one orientation). Fixed-topology channels are obligate Fluc heterodimers thought to have arisen due to 

sequence divergence in the two copies of Fluc-encoding gene following a duplication event. In eukaryotes, 

the homologous FEX family proteins are monomeric, but retain a pseudosymmetry suggestive of a gene 

fusion event in an ancestor, joining two previously separate copies of Fluc-encoding gene. Accordingly, 

the dual-topology state is considered the ancestral phenotype; the more subfunctionalized phenotypes 

evolved later. Multiple independent gene duplications in the Fluc family have been retained over 

evolutionary time, and the Fluc/FEX proteins as a whole are thought to have undergone a general, three-

step evolutionary trajectory: (1) gene duplication, (2) sequence divergence, and (3) gene fusion. With 

attention to ease of access and other principles of software development, the present work develops 

computational tools using Python and R for two purposes: evaluating the bias in membrane protein 

orientation for each member of a diverse set of prokaryotic Fluc homologs and quantifying mutational 

tolerance in Fluc residues from computed statistical correlations between likely pairs of co-evolving 

residues. For the latter of these ends, we apply the validated computational framework EVcouplings to 

Fluc-Bpe, the dual-topology Fluc channel found in Bordetella pertussis whose structure and function have 

become well characterized in recent years. We generate a single-site substitution matrix that illustrates the 

effects of amino acid substitution for nearly the entirety of the Fluc-Bpe primary sequence and we describe 

means by which this result may be validated by experiment. Having estimated prima facie the mutational 

lability of the Fluc-Bpe sequence space, we consider paralog dynamics to posit a more detailed yet 

provisional narrative of the evolution of post-duplication Fluc topologies. We stress the importance of 

further studies in the elaboration and testing of this narrative, including efforts to chart the Fluc evolutionary 

pathway in phylogenetic terms. Finally, we draw attention to particular limitations of the adaptationist 

paradigm in evolutionary theory and we advise nuance in the modeling of sequence-fitness relationships 

using the fitness landscape metaphor that is prominently used throughout the discipline. 
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1 Introduction 

Themes that may be considered important for a description of the relationship between phenotype and 

fitness include an organism’s environment, the genotype corresponding to a certain phenotype, and the 

interplay between these factors. In a lab setting that controls for many selective pressures of microbial life, 

features of greater relevance in the investigation of microbial fitness are those operating at the molecular 

scale. It is, for example, easy to control the temperature and medium in which a microorganism is cultivated, 

but a more challenging task to exert similar control over the expression of its genes. Some cases of 

auxotrophy offer simple examples as to whether a microorganism is entirely dependent on some aspect of 

its environment in order to grow or survive: a microbe that normally depends on the trpE gene to synthesize 

tryptophan but is deficient in functional trpE will resort completely to the uptake of tryptophan from its 

environment to survive. However, even in this scenario, fitness is not an all-or-nothing outcome. E. coli in 

turn depends on three different permeases (a class of membrane proteins) to accomplish the active transport 

of tryptophan, with each permease gene residing in its own operon [1] . Beyond that, the intracellular level 

of tryptophan in E. coli is affected by tryptophanase, an enzyme that degrades tryptophan to indole [2]. In 

this work, we consider a family of membrane channel proteins responsible for the export of fluoride ion, 

the Fluc family of proteins, which has representatives in all three domains of biological classification. This 

chapter will introduce key details about the structure and function of Fluc family proteins, as well as the 

genetic contexts that give rise to them. We necessarily introduce questions about the evolutionary history 

of Fluc family proteins (hereafter “Fluc proteins” or “Flucs”). More purposefully, we regard the Flucs as a 

model system for understanding the evolution of certain membrane protein topologies – roughly, the 

number and orientation of a protein’s transmembrane domains – and the extent to which mutation can be 

tolerated in Flucs. To understand these properties, this thesis is guided by a larger inquiry into how 

computational and quantitative methods can shed light on them.  

1.1 Oligomericity and membrane proteins in structural biology 

For the purposes of this work, the terms “oligomeric protein” and “multidomain protein” are used 

synonymously. Although the exact definition of “oligomeric” may vary according to the specific isoforms 

and protein variants considered, it is estimated that 30-50% of all proteins oligomerize [3], while genomic 

analyses have estimated that more than 70% of eukaryotic proteins are multidomain [4]. However, a 2019 

analysis reports that 65.3% of solved structures in the Protein Data Bank (PDB) are of single-domain 

proteins [5], also noting that many computational approaches are optimized for the structural prediction of 

single-domain proteins. The study and characterization of membrane proteins have historically been a 

challenge in structural biology owing to the hydrophobic conditions of the membrane which render its 
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environment very different from that of the cell’s interior and exterior. Such conditions also make 

membrane proteins difficult to crystallize, although it remains an open question as to whether the 

overrepresentation of single-domain proteins in the PDB is entirely due to missing information from 

proteins not amenable to current experimental methods in structural biology. In early 2023, the number of 

experimentally validated structures in the PDB surpassed 200,000. 

Except for plasma membranes and the membranes of intracellular bodies, cell membranes consist primarily 

of glycerophospholipids. Due to their geometry, the arrangement of such lipids in a bilayer is energetically 

favorable in aqueous conditions. Typically, more than half of the mass of most cellular membranes comes 

from membrane proteins [6] . Compared to other proteins, the structure of inner membrane proteins may 

appear simple; they are comprised of alpha-helices threaded successively across the membrane and 

arranged in bundles [7]. This apparent simplicity is belied by the cellular processes responsible for 

expressing a membrane protein, as well as the asymmetry originating from the protein’s topology, the 

specific arrangement of its primary and secondary structure with respect to the membrane. This topology 

in turn affects the protein’s own interactions with the membrane, small molecules, and other proteins. 

Because the structural determination of membrane proteins has been a challenge even for modern 

experimental methods, it is difficult to provide a precise estimate of what fraction of membrane proteins 

are oligomeric. Still, oligomericity is of note to membrane proteins because of the apparent ease with which 

membrane proteins may diffuse along the lipid bilayer compared to the volume of a cell’s interior; all else 

being constant, oligomeric interactions may be more likely to evolve between membrane-associated 

proteins than between soluble proteins in general. Phenomena such as cooperativity and allostery emerge 

from oligomerization. A 2005 analysis on a subset of the PDB suggests that about 65% of membrane 

proteins consist of more than one membrane-spanning subunit [8]. Aside from the consequences of 

membrane protein structure on function – which may implicate such diverse processes as transport, 

signaling, and energy production – investigations of this structure also can offer insights into the 

evolutionary history of membrane protein families, with promise for a more complete description of the 

path taken by the Flucs toward the provenance of extant family representatives. 

1.2 Weak acid accumulation effect and toxicity of fluoride 

Although concentrations of fluoride ion (F-) in natural sources can vary widely according to factors such as 

weathering and deposition in soils, as well as the surrounding geology and climate of areas with natural 

bodies of water, such concentrations have generally increased due to human activity [9]. In developing 

countries as well as industrialized ones such as the United States, there are water supplies where the 
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concentration of fluoride is high enough to cause fluorosis, greater than 1.5 mg/L [9]. In contrast, the U.S. 

Public Health Service recommends a concentration of 0.7 mg/L for the prevention of dental caries [10] .  

Unlike other hydrohalic acids, HF is a weak acid; its short H-F bond is difficult to dissociate. With a pKa 

of 3.4, HF can diffuse easily across cell membranes [11] . For a cell surrounded by conditions that are acidic 

relative to the cytoplasm, HF can dissociate more readily in the interior of the cell than in the cell’s 

surroundings, exemplifying the weak acid accumulation effect [11]. Since F- cannot diffuse back through 

the membrane, this effect traps F- within the cell and contributes to a decrease in cytoplasmic pH. Given a 

fixed total concentration of HF (protonated and deprotonated) across a membrane, we can define a 

proportional relationship to describe this process (Equation 1). For acidic surroundings with pH 5.5 and a 

microbe maintaining a cytoplasmic pH of 7.5, the concentration of fluoride inside the cell is 100 times 

greater than in the environment [11]. 

[F−]ք։
[F−]֊֐֏

=
[H+]֊֐֏
[H+]ք։

 

Equation 1. Proportional relationship of H+ and F- concentrations across a cell membrane. 

Once inside a cell, F- can interfere with all kinds of processes: it can readily associate with metals and 

interfere with metalloenzyme processes, and this is considered the primary means of fluoride toxicity [12]. 

Indeed, fluoride exhibits a high affinity for Mg+2 ions, thus having the effect of inhibiting enzymes that 

carry out phosphoryl transfer [13].  Direct contact with HF or inhalation of HF also can lead to such toxic 

effects as tissue damage, bone demineralization, and respiratory problems [14]. 

The molecular mechanisms by which microorganisms counteract fluoride toxicity were not well understood 

until Baker et al. showed that the absence of the crcB RNA motif in E. coli led to an increase in F- sensitivity 

for tested ΔcrcB strains; the lower sensitivity observed in strains retaining functional crcB was observed 

due to the binding of this motif to F- and the consequently activated expression of crcB genes, leading to 

the correct inference that crcB proteins acted as fluoride transporters [15].   

1.3 Introduction to the structure and function of Fluc family proteins 

In 2015, Stockbridge et al. published the first crystallographic structures for bacterial fluoride transporters 

encoded by crcB, revealing a “double-barreled” architecture housing two tunnels capable of fluoride 

conductance [16]. Such a channel can also be encoded by a crcB variant known as Ec2, occurring in E. coli 

virulence plasmid. The associated family of channel proteins, now known as the Flucs, represents the 

bacterial isoforms of the protein. As orthologs of crcB have been known to occur among bacteria, archaea, 

and eukaryotes, the eukaryotic isoforms of the transporter have become known as the FEX (fluoride 
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exporter) protein family [17]. A Fluc channel is dimeric and the aforementioned double-barreled structure 

stems from the assembly of two polypeptides, arranged in an antiparallel orientation, each bearing four 

transmembrane (TM) alpha-helices [18]. The TM regions correspond to 80-85% of the primary sequence 

[18]. Crystallization of the Fluc encoded by Ec2 (Fluc-Ec2) was assisted by monobodies and achieved by 

R.B. Stockbridge and colleagues under C. Miller; the structure was deposited in the PDB with the identifier 

5A43. In the same group, Last et al. demonstrated that two phenylalanine residues in each Fluc monomer 

are needed for fluoride binding and permeation [18]. Two exposed pores constitute the two tunnels of the 

dimeric channel, as illustrated in Figure 1 below.  

Figure 1. Structural aspects of Fluc-Ec2. Modified from Last et al. (2016) [18]. 

Figure 1b depicts the ribbon diagram for Fluc-Ec2 and its two constituent protomers in different colors 

(yellow and cyan). Figure 1c is a closeup of the interior of the protein, with phenylalanine side chains at 

positions 80 and 83, emphasized as the stick representation. In all three panels of Fig. 1, the spheres 

colored grey and pink represent F- as part of the structure. The two bound fluoride ions within the same 

channel are separated by a distance of 12 Å [19]. Within a single monomer, positions 80 and 83 each 

contribute to a different pore in the complete channel. The Last et al. study also showed that for wild-type 

(WT) Fluc-Ec2, it was possible to abolish fluoride export in both channels through either of the mutations 

F80I or F83I, whereas for concatemeric versions of Fluc-Ec2 consisting of one WT monomer linked to 

one mutated monomer (F80I or F83I), fluoride conductance could be selectively ablated in either pore, 

without blocking conduction in the other [18]. The motif forming the fluoride coordination sphere, of 

which F80 and F83 are an essential part, has been dubbed the “phenylalanine box” [20]; the 

phenylalanine box and several surrounding residues constitute a non-helical segment that disrupts the 

third TM helix and forms part of the dimer interface [15]. Each pore is formed by side chains that are 

contributed by each Fluc monomer. From the observed spatial arrangement of fluoride ion within Fluc, it 

has been proposed that F- coordinates to electropositive edges on the ring systems of each Phe side chain 

in what are known as anion-quadrupole interactions [21]. 

Recordings of current in single FEX channels in S. cerevisiae have been used to estimate the rate of 

fluoride throughput at 106 ions/s, comparable to the estimate for heteromeric Fluc in Lactobacillus 
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acidophilus from bulk liposome flux assays (over 105 ions/s) [22]. Also, Fluc proteins exhibit a 

remarkable degree of selectivity for fluoride (more than 100-fold over chloride ion) [22]. The dehydration 

of F- within the channel pore is important for selectivity and especially the discrimination of F- over Cl-. 

An investigation employing liposome flux assays and electrophysiology experiments as well as X-ray 

crystallography showed that a series of residues (most of them hydrogen-bond donors) line each pore in 

the channel, belong to a part of the fourth TM helix collectively named a “polar track,” and are key actors 

in this desolvation [23]. The means by which Fluc overcomes the enthalpic cost of displacing the F- 

solvation shell (about 125 kcal/mol, among the highest for any species of ±1 formal charge) [24], along 

with other details of the energetics for the fluoride export mechanism, have not yet been elucidated. Still, 

it is most likely that fluoride export through a Fluc protein (and its eukaryotic counterpart, FEX protein) 

proceeds via electrodiffusion, diffusion that is biased by an electric field. That fluoride export is a 

thermodynamically passive process is not surprising given the weak acid accumulation effect and the fact 

that the export of an anionic species such as F- is favored by the negative-inside membrane potential 

maintained by most cells. 

Analysis of electron densities occurring in the crystal structure of the Bordetella pertussis Fluc (Fluc-Bpe, 

PDB: 5NKQ) has found the presence of a sodium ion (which for in vitro purposes, is likely sourced from 

sodium compounds in buffers and crystallization conditions) that helps ensure the conformation of Fluc 

optimal for F- conductance [25]. The Na+ inheres within a tetrahedral, tetradentate complex at a juncture 

of two TM helices, contributed from each monomer’s third TM helix; each of these two helices bears 

Gly77 and Thr80 which coordinate to Na+ via their respective backbone carbonyl oxygens [20]. 

In an investigation of a Fluc-Bpe single mutant (N43S) that exhibits weaker Na+ binding, Ernst. et al. 

found this mutant’s dimerization to be very thermodynamically favorable, calculating a ΔG° of -10.3 ± 

0.4 kcal/mol [26]. 

Another group of proteins that allow bacteria to contend with fluoride stress is a fluoride-specific subclass 

of CLC (chloride channel) proteins which couple F- export to H+ import [27]. Their discovery precedes 

that of the Flucs. 

In the sections to follow, we will draw attention to two concepts pertinent to a better understanding of 

how Fluc structure and function evolved: residue coevolution and sequence conservation. Since a 

functional Fluc must be assembled as a dimer (Fluc monomer in isolation does not support F- transport), 

we also will discuss matters of Fluc assembly and especially the influence of charge bias in the 

orientation assumed by Fluc with respect to the membrane. Apropos, we will examine two types of 
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mutation and their consequences in the Fluc evolutionary trajectory: copy-number mutation (specifically, 

tandem gene duplication) and point mutation. 

1.4 Gene duplication is the putative origin of distinct topologies in Fluc family proteins 

Gene duplication is well appreciated as a source of genetic novelty distinct from that produced by point 

mutations. Yet, one might think of events which cause genetic variation at the molecular level as existing 

in a spectrum ranging from single-nucleotide polymorphisms to short tandem repeats, then to tandem gene 

duplication, and finally to whole-genome duplication. Whole-genome duplication events by definition 

result in the duplication of all genomic segments. However, we will concentrate on tandem gene 

duplication, an example of small-scale duplication that may be caused by, for example, retrotransposition 

or unequal crossing over [28]. Gene duplication is of particular interest to this work because the duplication 

of a gene for an oligomeric protein entails notable structural and functional consequences for the protein, 

the Flucs being no exception. There moreover exists a variety of theoretical accounts aiming to describe 

the processes which lead to the retention of gene duplicates. For the purposes of this work, we will focus 

on a model of divergence that postulates three general types of outcomes, with the understanding that these 

fates are not necessarily mutually exclusive (in fact, they usually are not). Following the discussion put 

forth by Kuzmin et al. and Figure 2, these outcomes are (1) neofunctionalization, (2) subfunctionalization, 

and (3) dosage amplification or back-up compensation [29]. Consider an arbitrary duplication event which 

produces a new copy of some ancestral gene, made to exist in series with respect to the original gene. 

Following this tandem duplication event, the two copies of the gene are considered paralogs. Immediately 

after duplication, the paralogs are identical in sequence. In neofunctionalization, one of the paralogs 

accumulates mutations in such a way that it gains a new biological function not afforded by the ancestral 

gene. Generally, for neofunctionalization to be sustained, any deleterious consequences of these mutations 

must be outweighed by the advantage made possible by this fate. In subfunctionalization, both paralogs 

undergo selection such that the original set of functions previously achieved by the ancestral gene can now 

only be conserved when both paralogs are retained. By contrast, in a scenario that strictly involves dosage 

amplification and/or back-up compensation, effects resulting from the increase in gene dosage are offset by 

the cell (retention of the duplicate is tolerated) and/or there exists some adaptive benefit of having a 

duplicate which could give the organism robustness against loss of function [29]. 
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Figure 2. Divergence subsequent to gene duplication. Modified from Kuzmin et al. (2022) [29]. 

In cases where gene duplication does lead to a net fitness advantage, the extent to which duplication can 

relieve the cell from selective pressures can hardly be overstated. Prior to the duplication event, fitness for 

the ancestral state could have been rather dependent on whatever sequence features were important for 

normal protein function; mutations which obviate these features would not be tolerated by natural selection. 

After gene duplication, fitness becomes less dependent on these features due to, potentially, the robustness 

afforded by a redundant copy; mutation of such features on one paralog is more likely to be tolerated by 

natural selection. In turn, purifying selection may render a mutated paralog nonfunctional (e.g., the gene 

becomes a pseudogene and is eventually deleted) or may allow the paralog to be retained and functional. 

We now turn to the effects of gene duplication on oligomeric proteins. Consider an ancestral, homodimeric 

protein encoded by a single copy of a gene. After a duplication event, it then becomes possible for a 

paralogous heteromer to assemble [30]. At first, the heterodimer is indistinguishable from either of the two 

possible homodimers that can form from either of the two paralogs alone. Should the duplication be 

tolerated, the two paralogs can undergo diversifying mutations, leading to distinct gene products (in this 

scenario, two distinct forms of the protein). However, the new relationship between the paralogs, via the 

oligomeric interactions within the paralogous heteromer, is a bidirectional one. As Figure 3 illustrates, an 

entirely negative effect of sequence divergence could make the paralogous heteromer distinguishable from 

the two possible heteromers, with negligible differences in fitness among the three possible dimers, but an 

entirely positive effect must amount to a coevolution of the two protomers, with a pronounced fitness 

advantage in the heteromer over the two homomers [30]. These effects and their intermediate cases may be 

precipitated by a dominant-negative effect in which function-damaging mutations in one paralog effectively 

“poison” complete oligomers [31]. In our hypothetical scenario, this would diminish function in two out of 
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the three possible dimer assemblies. Selective pressure against these deleterious mutations can enforce the 

aforementioned negative effect of sequence divergence (Figure 3a1) while the positive effect of sequence 

divergence leading to coevolution (Figure 3a2) could be achieved through a continuous selective pressure 

favoring the subfunctionalized heteromer over an evolutionarily significant period of time [30]. The 

foregoing phenomena are all examples of paralog (or paralogue) interference. 

Figure 3. Paralog interference and its effects. Modified from E. Kaltenegger and D. Ober (2015) [30]. 

This monograph is concerned primarily with the effects of mutations in Fluc proteins which enabled the 

subfunctionalization evidenced in the fixed-topology Flucs; however, it is relevant to note other outcomes 

that would result from paralog interference, as Figure 2 and Figure 3 illustrate. Briefly stated, paralog 

interference can be discontinued at which point the cross-interaction between distinct monomers is no 

longer feasible. For example, mutations at the dimeric interface could lead to a situation where only 

homodimers are able to assemble (Figure 3b2). In yet another kind of dominant-negative effect, interface-

damaging mutations in one paralog could disrupt all oligomerization for said paralog (Figure 3b3). 
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For several reasons, it has been suggested that the topologies observed in extant Fluc (and FEX) proteins 

followed an evolutionary trajectory which began with gene duplication and led to subfunctionalization [7]. 

Like almost all membrane proteins comprised of more than one transmembrane helix, Flucs exhibit an 

“internal repeat” structure in which two domains of the same polypeptide are similar in fold. The specific 

type of repeat seen in the Flucs is an inverted repeat architecture; there are domains which not only share a 

tertiary structure, but are oriented in opposite ways with respect to a twofold axis parallel to the membrane 

[32]. This architecture exists in all three types of topologies observed in extant Fluc and FEX proteins: (1) 

dual topology, (2) fixed topology, and (3) inverted monomeric repeat. These are illustrated in Figure 4.  

Figure 4. Distinct topologies of Fluc proteins. Modified from Macdonald and Stockbridge (2017) [20]. 

Also represented in Figure 4 are the three distinct genotypes known to correspond to these topologies. 

The inverted monomeric repeat, which is only found in eukaryotes and includes an additional TM helix, is 

thought to have resulted from gene fusion [7]; sequencing of FEX in S. cerevisiae has shown that the 

entire channel is encoded by a single open reading frame. In the fixed-topology phenotype, there are two 

distinct copies of Fluc gene in series; one encodes Fluc monomer capable of inserting itself in the NIN/CIN 

orientation (called the “in” orientation for short) whereas the other gene encodes Fluc that adopts the 

NOUT/COUT orientation (abbreviated “out”). Fixed-topology Flucs are obligate heterodimers; functional 

dimeric Fluc can only be assembled as a heteromer. The fixed topology phenotype may have arisen due to 
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subfunctionalization. It is conceivable that a subfunctionalization process which gave rise to the fixed 

topology involved the accumulation of complementary mutations in two paralogs of Fluc-encoding gene. 

In contrast, the dual-topology state is considered the ancestral phenotype because it is associated with a 

single gene encoding a Fluc monomer with no preference in orientation. Dual-topology Fluc is equally 

capable of inserting itself in either the “in” or the “out” orientation. The difference in feasible orientations 

between fixed-topology Flucs and dual-topology Flucs can be explained by the tendency for loops with 

excess positive charge to end up facing the cytoplasm, a characteristic discussed further in Section 2.1. 

1.5 Residue coevolution and its implications for structural biology and for Fluc proteins 

Our discussion has reviewed in some detail the concept of a functional link ensuing from the duplication of 

a gene encoding oligomeric protein: the mutual influence between a pair of paralogs due to the interactions 

of their corresponding protomers. We also implied that a causative mechanism of subfunctionalization, 

leading to a fixed topology, is the coevolution of Fluc protomers enabling the optimization of protein-

protein interactions at the dimer interface or the overall function of the protein.  

A first step toward understanding the consequences of sequence divergence in post-duplication Flucs might 

consider sequence conservation. It is not controversial to say that the total absence of sequence divergence 

has neutral consequences for fitness, but the effect of any particular sequence of mutations on fitness is not 

trivial to evaluate. The total number of permutations for a 100-residue protein in which no wild-type amino 

acid positions are conserved is 19100, many orders of magnitude greater than the number of atoms in the 

observable universe. Extensive structural and functional characterization can help researchers narrow down 

to some idea of exactly which residues are essential and for what purposes, but the problem remains a 

daunting one. Gene duplication alone is likely to have relaxed the selective pressure on Fluc protomers 

which previously enforced perfect symmetry: the independent exposure of two paralogs to point mutations 

means that such mutations could have acted to preserve the tertiary folds but allow the primary sequence 

to diverge (thereby generating a pseudosymmetry in post-duplication Flucs), an effect that has also been 

attributed to the kind of divergence seen more generally in membrane protein internal repeats [32]. 

This is a salient example of how sequence homology is not enough to infer structural homology, or, by 

extension, functional homology. Additionally, it is challenging for computational approaches to determine 

from sequence conservation alone which parts of a protein are essential for function. We must therefore 

appeal to a concept more elaborate than sequence conservation: residue coevolution. 

Residue coevolution has been described as the trend that a pair of co-evolving residues for a protein family 

should occur in spatial proximity [33]; however, it may be more precisely defined as a phenomenon in 

which mutation of one residue is, for whatever reason, correlated with a compensatory mutation in some 
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other residue. This correlation may indeed be due to interaction in 3D space, although there may be other 

reasons. Spatial proximity may be reasonably implied, but not assumed, in a case of residue coevolution: 

in fact, a study of more than 4000 protein families found that 25% of coevolving residue pairs were 

separated by more than 5 Å, and 3% of coevolving pairs were separated by more than 15 Å [33]. 

Anishchenko et al. also found that 35% of cases in the latter category occurred at homo-oligomeric 

interfaces [33].  

Advancements in our understanding of residue coevolution have been a boon for protein structural 

prediction. Methods that identify pairs of co-evolving residues, also called evolutionary couplings, have 

been used to accurately represent soluble proteins as well as membrane proteins, including Fluc [34]. Many 

statistical models based on residue coevolution for predicting 3D contacts in protein and nucleic acid 

structures – such as SIFT, PolyPhen-2, and CADD – portray some position i in the protein sequence as a 

target of coevolution independent of background positions j [35]. This approach led to incorrect predictions 

and was superseded around 2017, with the introduction of a new algorithm based on protein epistatic 

interactions, explicitly modeling pairwise interactions between positions i and j and other context [35]. This 

method, named EVmutation, was reported by Hopf et al. under D. Marks and C. Sander and has since 

inspired similar modifications to structural prediction algorithms. EVmutation was eventually incorporated 

into the group’s larger computational framework for identifying and analyzing evolutionarily coupled 

residues, EVcouplings [36], which plays a significant background role in the work presented in Chapter 3. 

An understanding of how mutation at coupled positions influences secondary and tertiary structure is 

especially important for the Flucs given that the ancestral dual-topology phenotype is expressed as a 

homodimer; evolutionary couplings could act over large distances. More concretely, both experimental 

strategies (namely, deep mutational scanning) and computational apparatus deployed to probe evolutionary 

couplings could help explain variations in mutational tolerance within Fluc protein and potentially serve to 

reveal fine-grained steps taken in the Fluc evolutionary pathway. 

1.6 Fitness landscapes model evolutionary fitness as a function of genotype or phenotype 

The concept of a fitness landscape was introduced by Sewall Wright in 1932 [37] to represent evolutionary 

fitness as a function of genotype, with two axes representing two genetic traits and a third axis for fitness. 

In many depictions such as those in Figure 5, this metaphor has been taken to mean that genetic traits can 

be regarded as continuous variables, as can fitness.  
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Figure 5. Example depictions of a fitness landscape. Modified from J. Van Cleve and D.B. Weissman. 

[38]. 

It has been typical to model an evolutionary pathway as a path through the landscape toward some optimal 

level of fitness. The concept has since been refined and expanded in many different ways, such as in the 

consideration of phenotypic rather than genotypic traits, or the depiction of the landscape as a contour map 

or heatmap. Of interest to our present investigation of Flucs is a representation we refer to as a single-site 

substitution matrix, a depiction of the effects due to amino acid substitution at all positions within the 

protein (deleterious, advantageous, or neutral), further defined in Chapter 3. We introduce this device in 

order to reconcile the estimated mutational propensity of Fluc residues with our incumbent, three-step 

evolutionary account and mechanisms of subfunctionalization. 

1.7 Overview of thesis aims 

We surmise that the Flucs have undergone a partial subfunctionalization in which certain overlapping 

functions in Fluc have become partitioned whereas others were retained. Over evolutionary time, 

orientation has been partitioned so that whereas ancestral Fluc monomer is dual-topology, this function 

became divided into two separate and complementary functions, each assumed by a distinct Fluc 

descendant. The Phe box motif, however, is an example of a function that appears to have been retained 

among the fixed-topology Flucs. The investigation documented herein seeks to help answer two questions 

related to this subfunctionalization:  

(1) How can we more closely examine sequence divergence in post-duplication Flucs? 

(2) How can we more closely evaluate mutational tolerance in pre-duplication Flucs? 

We employ computational means to address these and related questions. The first question is considered 

more specifically in the context of charge bias and the differences observed in this property among a 

relatively small set of bacterial and archaeal Flucs, while our treatment of the second question involves the 



13 

 

use of EVcouplings to estimate this tolerance in a larger selection of Fluc homologs, vis-à-vis statistical 

correlations between coevolving residues in Fluc. In Chapter 2, we present a Python script for the simple 

evaluation of charge bias in Fluc loop regions. Following our account of this program and of motivating 

principles of software development, Chapter 3 demonstrates the use of web-based EVcouplings to 

effectively simulate a set of Fluc single-mutant frequencies; Chapter 3 also showcases an R script that was 

used to compute and analyze mutational tolerance in Fluc and its constituent domains. We discuss technical 

challenges associated with the development of both programs, efforts to make these programs accessible, 

and potential for further use. In Chapter 4, we discuss broader theoretical implications for this work in the 

investigation of fitness in the Fluc family and elucidating the Fluc evolutionary pathway. Chapter 4 also 

concludes this thesis with a discussion of theoretical concepts relevant to future work, as well as a 

description of an ongoing experimental project to compare fitness among Fluc variants expressed from a 

set of engineered plasmids in E. coli. 

2 A program for the evaluation of charge bias in Fluc loop regions 

In this chapter, we present a script written to classify among a set of homologous Fluc protein sequences, 

which Flucs in this set assume the “in” orientation, the “out” orientation, or have dual topology. The inputs 

of this program include a FASTA file listing all such sequences along with their unique identifiers, and a 

dataset corresponding to these sequences which also lists important sequence information, as will be 

explained in the following subsections. The output of this program is a new dataset which preserves the 

input and which denotes the applicable orientation for each Fluc sequence. 

Python is a general-purpose language in widespread use and popularity. Python is open-source: it may be 

used, modified, and distributed freely. Its functionality can be extended with the import of libraries and 

modules, as this script demonstrates.  

2.1 Background: Influence of charge bias on membrane protein orientation 

Depending on the organism, Fluc proteins exhibit the dual-topology phenotype or the fixed-topology 

phenotype. As stated in Section 1.4, the former describes Fluc protomers which are equally adept at 

orienting themselves in the “in” orientation as well as the “out” orientation. In the fixed topology phenotype, 

there are qualitatively two different types of Fluc monomer; the bias in orientation emerges from the 

presence of positively charged residues (namely, Arg and Lys) at connecting loops or the termini of the 

polypeptide. The idea that placement of Arg and Lys at such positions is a strong determinant of membrane 

protein orientation, now validated extensively by experiment, was articulated as the positive-inside rule by 

G. von Heijne [39]. Dual-topology membrane proteins, however, are a notable exception [40]. For those 
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proteins which do show an orientation bias, the rule holds: it is likely that there is an excess of positively 

charged residues on cytoplasm-facing loops and termini. The current state of knowledge yet suggests a 

conservative interpretation: except for proteins consisting of a single transmembrane alpha-helix, passing 

through the membrane only once, it is not categorically the case that an excess of negatively charged 

residues occurs in loops and termini exposed to the outside surroundings of the membrane. 

2.2 Applicable principles of software development 

The user audience of primary interest to this work includes structural biology researchers not yet well 

acquainted with uses of computer programming in their activities. Apropos, there are certain principles of 

software development which have guided the development of the script described here and the script 

presented in Chapter 3. These principles are defined briefly here. 

Ease of access: This refers to the ease with which users can access and use a piece of software. Naturally, 

to achieve greater ease of access it is important to remove barriers or difficulties associated with this use. 

Computer programming can be daunting to new users due to an uncertainty about how best to get started. 

Jupyter Notebook is a web-based, interactive computing platform that can be set up in a number of ways. 

To run a notebook from scratch requires several preparatory steps, but certain other platforms already take 

care of these and incorporate heavy use of graphical interfaces that are easy to navigate. The auxiliary 

platform discussed here for hosting and collaboration with Jupyter notebooks is Jovian, a platform which 

also offers learning resources in such areas as data science and machine learning.  

Legibility: As it relates to code, this principle emphasizes the need to make code concise and readable. This 

entails adherence to practices such as consistent formatting (of indentations, spacing, and line breaks, for 

example), modularity, and comments. The scripts discussed in this work have a modular design in the sense 

that the code is organized in discrete, self-contained units, each with its own intended objective. Comments, 

prefaced with a hash symbol in the scripts presented here, also serve the important purpose of clarifying 

code where necessary or presenting other relevant information. 

Inline documentation: Documentation is written text or illustration that accompanies code in order to 

describe its operation or use. Inline documentation refers to that which is somehow embedded within the 

code itself. Comments are a form of such documentation. However, a benefit afforded by the Jupyter 

notebook platform is the ability to add dedicated annotations to provide information without compromising 

legibility; excessive comments can make code more difficult to read. The utilization of Jupyter notebooks 

and the Markdown typesetting language is cast with this functionality in mind.  
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Version control: This concept is concerned with appropriately tracking changes to code over time, in order 

to facilitate collaboration and error correction. The Jovian platform is especially useful for this purpose 

since hosted Jupyter notebooks can also be shared with other Jovian users, with the revision history of these 

notebooks also recorded by the platform. Version control options in Jovian may be used to identify and 

track errors in code, thereby facilitating the correction of this code as needed. 

On a further note, Jupyter notebooks allow for the interactive visualization of data sets and plots, a 

functionality of benefit to bioinformatics and molecular biology. 

2.3 Methods 

2.3.1 Preparation of a multi-sequence alignment file 

A set of homologous Fluc protein sequences already in use was previously harvested from the Joint Genome 

Institute’s GEBA genome project [41]; consisting of 1034 distinct sequences of bacterial and archaeal 

Flucs, this dataset was saved as an unaligned FASTA file entitled geba_crcbs.fasta. On multiple 

occasions, the popular alignment algorithms MAFFT and MUSCLE were deployed in attempts to generate 

multi-sequence alignment (MSA) files from the original FASTA file. These attempts were successful, yet 

it was later discovered that the EVcouplings framework (usage discussed in Chapter 3) could also generate 

an alignment of Fluc homologs. The MAFFT algorithm (Version 7) [42] was run at the command-line level 

using Windows Powershell, whereas a version of the MUSCLE algorithm was run in the open-source 

software Jalview [43].  

2.3.2 View of script and accompanying inline documentation using Jovian and Jupyter notebook 
integration 

Having revealed our means of generating a serviceable MSA file to be a main input for this program, we 

now present a closer look at the use of Jovian and the integration of a Jupyter notebook in which the script 

has been written and annotated. 
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A Jupyter notebook was created to host the script and its annotations, previewed in Jovian as shown in 

Figure 6. Collectively, these annotations offer inline documentation within the program; they are 

recapitulated in the synopsis of the script as presented in Section 2.4. The version of Python used in this 

work is version 3.9.6. 

Figure 6. Screenshot of a recent version of the charge bias script as a Jupyter Notebook, viewed using the 

Jovian online platform and website. 

2.4 Structure and synopsis of program  

The script begins with commands that enable the notebook to be used with Jovian. Although the notebook 

may be initialized independently of Jovian, the Jovian platform offers convenient links to run a notebook 

on such web-based environments as Binder, Google Colab, or Kaggle. Using the platform website, these 

options also automate a handshake between Jovian and the platform of choice. (Note: Whether running the 

notebook locally or on these web-based platforms, it is necessary that all required inputs, including the 

input MSA file, are accessible by the program). For simplicity, we will follow the script as though it were 

being run in a web-based environment already authenticated with Jovian. A flowchart summarizing this 

script is presented in Figure A1 of the Appendix. 

!pip install jovian --upgrade --quiet 
import jovian 

The following line may be executed as frequently as desired to save the notebook with Jovian: 
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jovian.commit(project="geba-genomes-annotation-script") 

 

The next lines of the script serve to import the Python csv module and instantiate several global variables. 

import csv 
inputGenesFileName = 'geba_aligned.fasta' # Can modify to match actual file name 
inputFileName = 'geba_crcb_genes.csv'     # Use output from other program 
outputFileName = 'aligned.csv' 
locusTagIndex = 4      

 

The primary input is the MSA file, the name of which is stored here in the variable inputGenesFileName. 

As mentioned earlier, the MSA file is a FASTA alignment file generated from previous analysis of 

harvested Fluc sequences.  

Serving as another input is a CSV file, stored as inputFileName, containing key information about the 

genomes sampled for the alignment, in the format illustrated as shown in Figure 7.  From left to right, the 

attributes represented in this dataset are chromosome_description, chromosome_id, 

chromosome_name, chromosome_len, locus_tag, translation, strand, start, end, location, and 

protein_id. Exactly 1033 instances of the crcB gene are represented in the dataset of 

geba_crcb_genes.csv. Our particular copy of this CSV file was generated from a prior analysis 

conducted by C. Macdonald in the Stockbridge group, entitled geba_crcb_genes.csv. Notice in Figure 

7 that the fifth column of this CSV file was made to store values for a certain attribute known as the genomic 

locus tag: the script stores the index for this column as the variable locusTagIndex.  

Figure 7. Dataset from geba_crcb_genes.csv as viewed in Microsoft Excel. 

The script then proceeds to declare certain other important variables.  
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lettersToCount = ['R', 'K']     # Arginine and lysine are specified here. 
 
addRanges = [[1, 31], [85, 95], [144, 205]] 
# A list of lists demarcating the regions of a protein sequence that correspond 
# to loop regions occurring inside of the membrane. 
 
subRanges = [[47, 69], [117, 129]] 
# Another list of lists, but for loop regions occurring on outside of membrane. 

 

As the comments indicate, the addRanges and subRanges variables store lists corresponding to loop 

regions occurring within the consensus sequence of the MSA file. In other words, these ranges are specific 

to the consensus sequence recorded in the MSA file. For the purposes of this script, the C-terminal and N-

terminal regions in their entirety are considered loop regions. These regions correspond to the first and third 

lists stored in addRanges. 

There are five functions written in the remainder of the script. We will discuss these in the order that they 

appear in the script.  

def countInRange(string, chars, num_range): 
    runningTotal = 0 
    cropString = string[(num_range[0]-1): num_range[1]] 
    for char in chars: 
        runningTotal += cropString.count(char) 
    return runningTotal 

 

This function consists of three arguments, string, chars, and num_range. There are two local variables: 

runningTotal and cropString. The parameters passed into the function as chars and num_range are 

lists. What is stored in num_range is the result of slicing the string stored as string according to a slicing 

syntax involving the value of the first entry in num_range, having subtracted 1 from this value, as well as 

the second entry in num_range. The for loop iterates over every entry in the chars list, updating the value 

of runningTotal with each iteration. 

The next function includes parameters which evaluate the countInRange function.  

def testCountInRange(): 
    shouldBeOne = countInRange('hello', ['l', 'x'], [1,3]) 
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    print(shouldBeOne) 
    shouldBeTwo = countInRange('hello xx there', ['l', 'x'], [4, 7]) 
    print(shouldBeTwo) 

 

As the name implies, the function testCountInRange does not actually play a role in the analysis but 

serve only as an option for the user to determine whether the function is working as intended. The result of 

calling countInRange for the two sets of parameters shown above will store the values 1 and 2 in the local 

variables shouldBeOne and shouldBeTwo, respectively. For example, passing the string 'hello' and the 

lists ['l', 'x'] and [1,3] into countInRange will result in the slicing string [0:2]. The result of 

slicing the string is 'hel', which is stored as the variable cropString. The for loop serves to count the 

number of times that each value in the chars list appears in cropString. In this case, because there is 

only one instance of 'l', the value of shouldBeOne becomes 1. A similar line of reasoning will show that 

the value of shouldBeTwo will assume a value of 2. 

The next function is defined similarly as countInRange. 

def countInRanges(string, chars, ranges): 
    totalCount = 0 
    for num_range in ranges: 
        totalCount += countInRange(string, chars, num_range) 
    return totalCount 

 

This function returns the total number of instances that a string in the chars list occurs in string, over all 

of the different num_range lists included as the ranges argument. Therefore, the ranges argument is a 

list of lists. Note also that the counter variable totalCount is updated for each iteration of the for loop. 

def getSequenceDictionary(): 
    numPos = 0 
    outDict = {} 
    with open(inputGenesFileName, 'r') as inFile: 
        target = '' 
        line = inFile.readline().rstrip() 
        while True: 
            target = line[1:] 
            readingSequence = True 
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            sequence = '' 
            while readingSequence: 
                line = inFile.readline().strip() 
                if '>' in line: 
                    addScore = countInRanges(sequence, lettersToCount, addRanges) 
                    subScore = countInRanges(sequence, lettersToCount, subRanges) 
                    totalScore = addScore - subScore + 1 
                    print('{}, {}, {}'.format(target, totalScore, sequence)) 
                    if totalScore > 0: 
                        numPos += 1 
                        outDict[target] = 'in' 
                    else: 
                        numPos -= 1 
                        outDict[target] = 'out' 
                    break 
                else: 
                    sequence += line 
                    if not line: 
                        ## first process last line 
                        ##  
                        addScore =  
      countInRanges(sequence, lettersToCount, addRanges) 
                        subScore =  
      countInRanges(sequence, lettersToCount, subRanges) 
                        totalScore = addScore - subScore + 1 
                        print('{}, {}, {}'.format(target, totalScore, sequence)) 
                        if totalScore > 0: 
                            numPos += 1 
                            outDict[target] = 'in' 
                        else:  # if totalScore < 0: 
                            numPos -= 1 
                            outDict[target] = 'out' 
                        print('we had a pos/neg balance of {}'.format(numPos)) 
                        return outDict 

 

This function is defined to include some counter variable numPos and a dictionary named outDict. 

The with statement is accompanied by a file object returned by open(), into which inputGenesFileName 

is passed along with the flag 'r'. This flag selects a mode for open() so as to only read the file in question. 

Other modes enable open() to open a file for writing and editing. 
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The first while loop is preceded by declaration of the variables target and line. The variable target is 

initialized as an empty string whereas a method is invoked in the declaration of the variable line. This 

method, using rstrip(), effectively removes any whitespace that occurs at the end of the string returned 

by readline(). 

Within the first while loop, target is redefined to store the result of slicing the string line as indicated 

by line[1:]. The readingSequence variable stores the Boolean value True, which will allow the nested 

while loop to run. Preceding this nested while loop is an initialization of the variable sequence as an 

empty string. 

The last function in the script, writeSequenceResult, is the most elaborate. 

def writeSequenceResult(sDict): 
    with open(inputFileName, 'r') as inGenesFile: 
        with open(outputFileName, 'w') as outFile: 
            outFile.write(inGenesFile.readline().rstrip())  # copy header 
            newCol = 'direction' 
            outFile.write(',') 
            outFile.write(newCol) 
            outFile.write('\n') 
            #header now updated 
            reader = csv.reader(inGenesFile, dialect='excel', quotechar='"') 
            for inLine in reader: 
                # print(inLine) 
                inLine.pop() #we have an extra/empty item we want to discard. 
                inLine[0] = '"{0}"'.format(inLine[0])  
    # fix first column with space in it 
                outFile.write(','.join(inLine)) 
                outFile.write(',') 
                try: 
                    target = inLine[locusTagIndex] 
                    outFile.write(sDict.get(target.strip(), 'dual'))  
     # strip because they have a space at the start,  
     # use dual as the default 
                    outFile.write('\n') 
                except: 
                    print('error with that line{}'.format(inLine)) 
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This function has a dictionary, sDict, as an argument. The first line of the function opens a file object for 

inputFileName in reading mode using the with statement. The second line opens a file object for 

outputFileName in writing mode. Both files are opened simultaneously using nested with statements. 

The third line of the function writes the first line of the input file, as returned by 

inGenesFile.readline(), to the output file, with any trailing whitespace removed using rstrip(). 

The fourth line defines a new variable, newCol, to store the string ‘direction’, which is then written to 

the output file preceded by a comma but followed by a newline character (‘\n’). 

The fifth line of the function initializes a csv.reader object, called reader, which reads from the input 

file object, inGenesFile, with the dialect and quotechar parameters chosen to optimize the reading of 

the input according to its format. 

For each line in the input file (represented by inLine), the penultimate item is removed from the list using 

the pop() method. The first item of the list is then formatted as a string surrounded by double quotes using 

the format() method. 

After joining all the remaining elements of inLine with commas, the resulting string is written to the output 

file, followed by a comma. The variable target is assigned as the value of the element of inLine at 

locusTagIndex. 

Finally, the value in the sDict dictionary corresponding to the key target is written to the output file, 

with 'dual' as the default value if target is not found in sDict. A newline character is then added to the 

output file. If an exception is encountered, a message is printed to the console stating that there was an error 

with that line.  

The concluding lines of code in the script constitute the entry point of the program.  

if __name__ == '__main__': 
    # testCountInRange() 
    sequenceDict = getSequenceDictionary() 
    writeSequenceResult(sequenceDict) 
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The if statement checks if the module is being run as the main program, as opposed to being imported as 

a module. This is a common Python idiom to ensure that the code within the if statement is only run when 

the module is being executed as the main program. 

The two functions getSequenceDictionary() and writeSequenceResult() are then called, in this 

order. As advertised, the former function returns a dictionary of sequence identifiers and their 

corresponding statuses as either “in” or “out” based on the scores calculated from the countInRanges 

function for each sequence in the input CSV file. Then, the function writeSequenceResult() takes the 

dictionary returned by getSequenceDictionary() as an argument and writes the output to a file whose 

name is stored as outputFileName. In this case, that name is aligned.csv. 

2.5 Discussion of expected output 

The output of this script would be a new CSV file containing all of the input data (represented in 

geba_crcb_genes.csv, in this case) with an additional column named “direction” appended to it, 

denoting the new attribute. As we have seen, the values in the “direction” column are based on a sequence 

dictionary generated from the input file. If a locus tag in the input file is found in the sequence dictionary, 

the corresponding value in the “direction” column will be either “in” or “out” depending on the value 

retrieved from the dictionary. If the locus tag is not found in the dictionary, the value in the “direction” 

column will be “dual,” denoting the dual-topology state as the most likely phenotype. 

If there were relatively more instances of the letters “R” and “K” for a given protein sequence in the regions 

defined by addRanges, the corresponding total score (given as totalScore) will be higher in value, 

which would make it more likely for the protein overall to be labeled as “in” in the new direction 

attribute. This is because the function addRange() checks for the presence of the amino acids Arg and Lys 

in the protein sequence at the specified positions, incrementing the variables addScore and subScore 

accordingly.  

An example output file has not been made available because of several outstanding changes to the script 

that have as yet not been made; these changes and the reasons for implementing them are discussed in the 

next subsection. Collaboration on these changes via Jovian is also advisable. 

2.5.1 Reflection on the development and optimization of the program 

All core functions of the program are drawn primarily from a pre-existing but unoptimized Python script 

formerly in use by the Stockbridge group. The most significant changes ensued from the adaptation of this 



24 

 

script into a Jupyter notebook and made available to other lab members using Jovian. However, one other 

important change solved a potential compatibility issue that would have arisen in the original script. The 

original script named the num_range variable as range; this naming is not ideal because of the built-in 

range() method that has been available in newer versions (3.x) of Python. In light of this problem, the 

script was assessed qualitatively for any other compatibility issues involving the use of reserved keywords, 

although no further issues were identified. As expected, replacing all instances of range with the new 

variable name (num_range) did not change the functionality of the script. 

More generally, there exist several areas for improvement in the program that are likely worth addressing 

before further use. These include (1) handling of errors from an empty input, (2) output file formatting, and 

(3) scalability. 

The code as yet implemented does not account for the case where the line variable has no stored value. 

The first is to modify the getSequenceDictionary() function so that it can test whether the first line 

read from the file is an empty string. If such is the case, the program could return an empty dictionary and 

an optional error message. This could be achieved by inserting a certain if statement ahead of the while 

loops, as shown below.  

def getSequenceDictionary(): 
    numPos = 0 
    outDict = {} 
    with open(inputGenesFileName, 'r') as inFile: 
        target = '' 
        line = inFile.readline().rstrip() 
        if not line:  # handling of empty file 
            return outDict # this dictionary is empty 
   # print('Error: empty first line'.format(inLine)) 
        while True: 
... 

 

The script could be similarly amended to handle problems with reading the protein sequence. Exclusively, 

the program inspects for the characters ‘R’ and ‘K’, but cases in which the protein sequence includes invalid 

characters (e.g., characters which do not represent amino acids) are causes for concern and could be more 

robustly handled. For example, if a protein sequence contains such invalid characters, the code could be 

further modified to recognize them and return a warning message when applicable. 
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Next, the output file format is not clearly defined in the code. The current implementation assumes that the 

output is a CSV file (like the main input), but this is not necessarily the outcome for the code as currently 

written.  To ensure that the output is a valid CSV file, the writeSequenceResult() function can be 

modified to use the csv.writer and csv.reader modules. The code below offers an example of such a 

modification. 

def writeSequenceResult(sDict): 
    with open(inputFileName, 'r') as inGenesFile, open(outputFileName,  
 'w', newline='') as outFile: 
        writer = csv.writer(outFile, dialect='excel') 
        header = inGenesFile.readline().rstrip().split(',')  # copy header 
        header.append('direction') 
        writer.writerow(header) 
        reader = csv.reader(inGenesFile, dialect='excel') 
        for inLine in reader: 
            inLine.pop() # we have an extra/empty item we want to discard. 
            inLine[0] = '"{0}"'.format(inLine[0])  
   # fix first column with space in it 
            target = inLine[locusTagIndex].strip() 
            inLine.append(sDict.get(target, 'dual')) # use dual as the default 
            writer.writerow(inLine) 

 

Finally, the current version of the program processes all gene sequences in memory at once, which could 

be problematic if the input file is very large. The code could be modified to process sequences one at a time 

to improve scalability. 

2.5.2 Utility of program for understanding charge bias characteristics 

Despite there being exceptions to the positive-inside rule, it is generally reliable to determine the orientation 

of most TMDs by the simple counting of positively charged residues in cytoplasmic loops [44], as 

demonstrated by this script. Membrane potential can differ according to species as well as various metabolic 

and environmental conditions, yet our algorithm for evaluating charge bias is robust because we have 

limited our analysis to homologs of the same protein (Fluc), rather than different membrane proteins across 

different species. 

The script could also prove a useful starting point for the annotation of phylogenetic trees for the Flucs: the 

reference genomes represented by the GEBA project were selected to maximize phylogenetic and 

physiological diversity [41]. Further analysis of the program output, along with an understanding of 
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mutational tolerance in Fluc, may be used to inform phylogenetic assignment and refine notions of what 

possible mutations could feasibly have led to the emergence of fixed-topology Flucs. 

3 A program for the quantification and visualization of mutational tolerance 

In this chapter, we present a script to compute a mutational tolerance score according to a definition of 

mutational tolerance as a population variance: this population variance applies to a given position on the 

protein of interest (here, Fluc) and is calculated among the single-mutant frequencies determined for all 

single-mutant Fluc variants with respect to this position. We introduce the use of EVcouplings to generate 

these variant frequencies and produce useful visualizations of Fluc sequence conservation and the simulated 

variant frequencies as a heatmap. The script also is capable of writing the set of computed mutational 

tolerance scores to a new text file; an attempt was made to overwrite a part of the Fluc-Bpe PDB file with 

these scores, although this functionality would have to be implemented in a future version of the program, 

as discussed in subsequent sections. The specific part of the PDB file to be overwritten is the file’s “b-

factor” column, a part of the file denoting a measure of spatial uncertainty, the eponymous b-factor for each 

atom. Section 3.4 includes reference to a pre-existing, open-source Python script which may guide further 

development of the program. 

R was introduced in the 1990s and has since grown in popularity for fields involving data analysis, data 

visualization, and statistical computing. In regard to the latter, base R incorporates a wide range of functions 

for this purpose. Like Python, the functionality of R can be extended through the use of packages, which 

are typically installed from the centralized R repository CRAN (Comprehensive R Archive Network). The 

version of R used in this work is version 4.2.1. 

To date, the most popular development environment for R is RStudio; the version of RStudio used to 

compose the script for this program is RStudio 2022.07.2, build 576. 

3.1 Background: The single-site substitution matrix as a depiction of mutational tolerance 

A single-site substitution matrix is a representation of the effect that single substitutions have on a protein’s 

function, over the entire sequence space of the protein. The matrix is typically depicted as a heatmap with 

position along the horizontal and choice of amino acid on the vertical, as well as coloring to indicate the 

effect of the mutation. The effect chosen may be ligand binding, catalysis, or something else. If the effect 

is the frequency with which a mutant occurs, this in turn could be considered a measure of fitness afforded 

by the mutant, given a certain set of conditions. The results of relatively new experimental methodologies 

which assess thousands of mutations at a time – namely deep mutational scans and MAVEs (Multiplex 

Assays of Variant Effects) – are typically represented as single-site substitution matrices. 
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In a deep mutational scanning (DMS) experiment, one begins with a library of protein variants which can 

be expressed in an appropriate selection system. For example, if the activity of interest was the binding of 

a protein of interest to some ligand, this system could involve a protein display combined with a type of 

competitive binding assay. Most appropriate for understanding the effect of Fluc mutation on fitness would 

be a bacterial cell culture system where growth depends on Fluc activity. In Figure 8, the “selection” graph 

represents the changes in the frequency of each variant due to competitive selection – the actual selection 

occurring, for example, in a single competitive growth assay. The selection pressure could be imposed by 

a fixed concentration of NaF in the growth media. The post-selection library resulting from this selection 

is then subject to high-throughput DNA sequencing, with the resulting data analysis yielding functional 

scores for each variant that would allow one to gauge which mutations prove to be deleterious, neutral, or 

advantageous [45]. The resulting single-site substitution matrix in such an experiment could be more 

generically called a “mutational landscape” or a “fitness landscape,” although the latter term predates this 

technology and has been used in many other senses since its coinage [37]. 

Figure 8. General workflow of a DMS experiment. Modified from D.M. Fowler et al. (2014) [45]. 

Complementary to DMS and related approaches are computational means of modeling the effects of 

mutation. EVcouplings is an example of such an approach, capable even of generating an in silico version 

of a single-site substitution matrix. Moreover, EVcouplings exploits the principle of evolutionary 

conservation to predict mutational effects [35], originating from sequence data across potentially thousands 

of different species, which is generally not an option for a single DMS experiment. We will observe the use 

of EVcouplings for producing a single-site substitution matrix and for purposes more germane to the 

function of a program for quantifying mutational tolerance in Fluc-Bpe. 

3.2 EVcouplings is a model computational framework for evolutionary couplings analysis 

In Chapter 1, we discussed the value of EVcouplings as a tool for the analysis of residue coevolution and 

how it has applications for protein structure prediction. Undergirding the development of EVcouplings is 
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an approach known as direct-coupling analysis (DCA) which invokes maximum entropy modeling to infer 

the probability distribution of pairwise interactions between residues, derived from a large number of 

homologous protein sequences, a method that can even account for coupled residues separated by long 

distances [46]. The computational pipeline encompassed by EVcouplings is represented in Figure 9.  

Figure 9. Stages of the EVcouplings computational pipeline. Modified from T.A. Hopf et al. (2019). [36]. 

Here, we use EVcouplings to evaluate a phenotype of interest (the ability of an organism to survive under 

conditions of fluoride stress) by proxy: the inferred structural and functional changes in Fluc due to a single 

mutation. For any relatively strong coupling between residues, a deleterious mutation in one of these 

residues has a detrimental impact on structure related to that expected from a similar mutation in the coupled 

position. If the user input and subsequent database search performed by EVcouplings produce metadata of 

high quality, EVcouplings can then construct a single-site substitution matrix based on the inferred 

couplings; presented in Figure 10 and Figure 11 are examples of the analyses generated by EVcouplings 

for Fluc-Bpe. 
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Figure 10. Sequence conservation analysis of Fluc-Bpe using EVcouplings. 

The sequence conservation information reported by EVcouplings is consistent with our current 

understanding of Fluc. As discussed further in Section 3.3.1, these visualizations are readily obtained from 

EVcouplings given the Fluc-Bpe protein sequence. However, for the purposes of the script, we instead use 

another output of this analysis for use as an input. The main output of the script is a set of mutational 

tolerance scores and a histogram to summarize their distribution. 
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Figure 11. Single-site substitution matrix of Fluc-Bpe generated with EVcouplings. 

It is noteworthy that, as shown in Figure 11, EVcouplings predicted that all substitutions at positions 82 

and 85 led to a damaging effect: these positions are the locations of Phe in the phenylalanine box motif 

occurring in Fluc-Bpe. 

3.3 Methods 

We emphasize that the specific function of the EVcouplings pipeline used for this program serves to 

transform some protein sequence as input and conduct a homology search through a protein sequence 

database (e.g., from UniProt) to assemble a multi-sequence alignment, based on coupled positions within 

the sequence space of the protein. UniRef90 is the database for which the alignment and homology search 

discussed in the previous sections was executed; web-based EVcouplings also allows for a query performed 

with UniRef100 or with an option denoted “MGnify + UniProt,” yet at the command-line level, the user 

may input virtually any database of interest. 

For a homology search, UniRef90 is an apt choice because it is redundancy-reduced and contains 

isofunctional clusters of homologous protein sequences. Compared to using a database that is not 

redundancy-reduced but generates similar results, a query on UniRef90 is likely to require less running time 

for the computation. As of May 2023, the UniProtKB database contains nearly 250 million sequence entries; 

UniRef90 is approximately 60% the size of the UniProtKB record [47].  

Following our general discussion of how EVcouplings achieves this end, the next few sections will focus 

on how an R script can be applied to an output of the EVmutation algorithm to compute mutational tolerance 

scores. The parameters used by EVmutation to generate this output are described in Section 3.3.1.  
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3.3.1 Generating Fluc variant information and accompanying CSV file with EVmutation 

We present here a walkthrough of our initial analysis on Fluc-Bpe facilitated by EVcouplings and its web-

based GUI (graphical user interface), initially performed May 2022 but recurrently validated in the months 

since. The main input for this analysis can take the form of a UniProt accession number or entry name, a 

FASTA sequence, or a raw protein sequence, to name a few types. Here, we provided EVcouplings the 

UniProt accession code Q7VYU0, which in the database has the associated protein name “Putative fluoride 

ion transporter CrcB” and organism name “Bordetella pertussis (strain Tohama I / ATCC BAA-589 / NCTC 

13251)”.  

From the user submission page, there are also a set of parameters that can be adjusted, but which were left 

unchanged from their default values for the purposes of this work. The parameters for the multi-sequence 

alignment and homology search are noteworthy and include the following: Bitscore, Alignment coverage 

of target, Sequences, Seqs/L, and Quality. Options for changing these parameters are presented is shown in 

Figure 12. We define these terms in the following paragraphs. 

Figure 12. EVcouplings alignment and homology search options. 

Bitscore (or bitscore inclusion threshold): A measure of the quality of an alignment, with a higher score 

representing a better alignment. An alignment can be improved if the length of the alignment can be 

increased or if matches between aligned characters can be improved. The bitscores provided by 
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EVcouplings represent threshold values. Each alignment is assigned a bitscore against each threshold; 

usually, an alignment with a bitscore clearing a higher threshold will have an alignment of better quality 

than an alignment clearing a lower bitscore threshold. Also, an alignment that clears a higher bitscore 

threshold will often be comprised of a smaller set of sequences than an alignment that has cleared a lower 

threshold. According to documentation, it is advisable to select the alignment that clears the highest 

threshold and which also has the highest quality rating reported by EVcouplings (see “Quality”). A 

desirable alignment will offer sufficient coverage of the target sequence and a high enough number of 

sequences that make up the alignment. By default, there are four bitscore thresholds set by EVcouplings: 

0.1, 0.3, 0.5, 0.7. However, values ranging from 0.05 (“very deep”) to 1.50 (“very shallow”) can be used. 

In EVcouplings, bitscore inclusion threshold values are length-normalized, meaning that they are 

comparable between different proteins (therefore, different input sequences) and between different 

databases; length-normalized bitscore thresholds are recommended for use as comparable measures of 

evolutionary distance. 

Alignment coverage of target: As shown in Figure 12, blue bars shown in web-based EVcouplings represent 

the parts of the target sequence for which a reliable alignment could be generated. Positions within the 

target sequence with an excessive number of gaps are represented by a thin black line. In the advanced 

settings, this constraint is specified by a “position filter.” This setting allows the program to only use 

sequence positions with a certain occupancy (measured as a percentage) in statistical inference. For 

example, a filter set to 70% will exclude all sequence positions for which gaps occur in more than 30% of 

sequences at these positions. By default, the position filter is set to 70%. According to EVcouplings 

documentation, “excluding positions with too many gaps helps to avoid spurious correlations between 

positions that lack evolutionary information in most identified homologs.” To yield greater coverage, it is 

suggested to (1) make the criteria for inclusion in the alignment (such as the bitscore inclusion threshold) 

more stringent, (2) make the position filter less stringent, or (3) specify a different input sequence. 

Sequences: The number of identified homologs of the target sequence, after applying the bitscore inclusion 

threshold and after downweighting similar sequences according to the number of effective sequences 

tolerated. Here, the number of sequences reported depends on two filters found in the advanced settings, 

entitled “Removing Similar Sequences” and “Downweighting similar sequences.” As a general principle, 

for two sequences A and B of increasing similarity (that is, highly redundant sequences), Sequence A is 

less likely to contribute any informative value to the alignment than Sequence B (and vice versa). When 

similar enough (set to 80% by default), sequences A and B will be organized by EVcouplings into a cluster 

that is treated as a single, effective sequence; each sequence in a cluster of n sequences is “reweighted to 

contribute with weight 1/n during inference” (n = 2 in this example since there are only two sequences, A 



33 

 

and B; clustering can be performed for n sequences). If a sequence is exceedingly similar (over 90% by 

default) to another in the alignment, it is removed entirely from further consideration. 

Seqs/L: The number of redundancy-reduced identified homologs (i.e., “Sequences”) divided by the number 

of confidently aligned positions, denoted “L”. According to documentation, this metric is better suited for 

comparison between proteins of different lengths. 

Quality: The quality score assigned by a machine-learning model of the evolutionary couplings associated 

with a given alignment. The higher the score, the better the quality of the evolutionary couplings dataset. 

The quality score ranges from 0 to 10. The criteria for quality assessment were discussed extensively by 

Hopf et al. in 2014 [48]. 

A screenshot of the result overview obtained from this job is shown in Figure 13. 

Figure 13. Screenshot of result overview for EVcouplings job on Fluc-Bpe (Uniprot: Q7VYU0). 

As can be seen, EVcouplings executed a total of four analyses, one for each bitscore value and calculating 

high quality scores for all of them. We proceeded with the datasets for the recommended result, the analysis 

obtained with bitscore 0.5. Accessible with other results from the site-provided ZIP file or individually from 

navigating through this analysis on the web platform, we recovered a CSV file described as the “predicted 

single substitution effects,” and named this file 5NKQ_single_mutant_matrix.csv. It is this CSV file 

and dataset, generated by EVmutation, which will serve as the input for the main R script. Also, other 
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outputs of this analysis include the sequence conservation illustration captured in Figure 10 and the single-

site substitution matrix in Figure 11. 

As of the publication of this thesis, web-based EVcouplings can be accessed at the following URL address: 

https://v2.evcouplings.org 

The information generated with EVcouplings for this analysis can be accessed as downloads from the 

following URL address: https://v2.evcouplings.org/results/44570812be4e4227972621393375ad85/  

3.3.2 Use of R, RStudio, and Markdown to write and document an early version of the program 

For the purposes of a related course project, an earlier version of the script was written in R, rather than 

Python. It is this version of the program that is the main subject of discussion, although steps toward a re-

implementation of the same program in Python are described in Section 3.6.5. R was also used in order to 

explore the use of an alternative means of presenting inline documentation: the Markdown markup language 

was used to create an HTML file which follows the script about as closely the synopsis put forth in Section 

3.4, with some visual similarities to the presentation of code in a Jupyter Notebook. Unlike Jupyter 

Notebook scripts shared via Jovian, however, Markdown by itself offers no options for cloud-based 

collaboration and version control. 

3.3.3 Interpretation of population variances among Fluc variant frequencies as mutational 
tolerance scores 

For the dataset we generated to serve as an input for this program, we will observe that the associated CSV 

file contains a column of values for the frequency of each variant, as computed by EVcouplings. Any 

particular frequency is relative; all of the computed variant frequencies for a position i sum to 1. To use 

simple terms, it is reasonable to define mutational tolerance as a population variance 𝜎ք
ϵ as written in 

Equation 2 for a total number of distinct variants 𝑁  given position i. For our purposes, N = 19 for each and 

every (computable) position i because EVcouplings computes a frequency for every possible amino-acid 

substitution at said position. (A caveat is that EVcouplings discards simulated data of poor quality, which 

was observed to happen in the Fluc-Bpe analysis for positions 1 through 8 and for positions 124 through 

128; this is discussed further in Section 3.4). 

𝜎ք
ϵ =

∑ (𝑓ֆ − 𝜇ք)
կ

ֆ=φ

𝑁
 

Equation 2. Definition of population variance at a position i for 𝑁  possible variants at this position. 

To reiterate, 𝑓ֆ denotes a particular variant frequency occurring at position i while 𝜇ք denotes the population 

mean, the mean of all variant frequencies in the set {𝑓φ, 𝑓ϵ, … , 𝑓կ} applicable for a position i.  
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It is worthwhile to question the extent to which interpreting 𝜎ք
ϵ as a mutational tolerance score is valid. 

Although the use of 𝜎ք
ϵ is presented without further justification in our synopsis of the script (Section 3.4), 

an alternative quantification of mutational tolerance is referenced in Section 4.4. 

3.4 Structure and synopsis of program with example output 

A bullet-point outline summarizing this program is presented in Figure A2 of the Appendix. 

First, we introduce code to read the CSV file and inspect elements of the resulting dataframe. 

EVdata <- read.csv("5NKQ_single_mutant_matrix.csv") 
head(EVdata) 

 

Sample output for this code is provided below. Running dim(EVdata), it was found that the dataframe 

EVdata measures 2166 rows and 9 columns in size.  

##   segment mutant pos wt subs    frequency column_conservation 

## 1      NA    F9A   9  F    A 0.0736405551           0.3027515 

## 2      NA    F9C   9  F    C 0.0130725857           0.3027515 

## 3      NA    F9D   9  F    D 0.0000000000           0.3027515 

## 4      NA    F9E   9  F    E 0.0002655288           0.3027515 

## 5      NA    F9G   9  F    G 0.0027184221           0.3027515 

## 6      NA    F9H   9  F    H 0.0002602182           0.3027515 

##   prediction_epistatic prediction_independent 

## 1            -1.718659             -0.2746668 

## 2            -5.009361             -2.0033915 

## 3            -9.630321             -9.4965702 

## 4            -7.145127             -5.8878061 

## 5            -5.146645             -3.5735432 

## 6            -7.226433             -5.9076794 

 

Now, we can consider how to compute the population variance of all individual frequencies. Rows 1 

through 19 of EVdata describe the mutation of position 9 in Fluc-Bpe. The next few lines illustrate how to 
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compute a population variance for all simulated variants generated for position 9. This code constitutes an 

implementation of Equation 2. 

var_data <- EVdata[1:19, 6] 
n <- length(var_data) 
F9_variance <- var(var_data)*(n-1)/n 
F9_variance 

## [1] 0.005432733 

 

Thus, for simulated F9 mutants we have 𝜎ν
ϵ = 0.005432733. To meaningfully compare the extent to which 

the position is susceptible to mutation, it is necessary to compute the variances for all positions represented 

in the dataset. Recall that a population variance of zero indicates that all of the data values in a given 

population are identical. That is, a population variance of exactly zero means that all mutations at a given 

position occur with the same frequency, which ought to correlate with very low conservation at said 

position. By contrast, a relatively high population variance is likely to describe a case where one or a few 

mutants occur with much higher frequencies compared to all other mutants. 

We can introduce a nested loop that will allow us to construct a numeric vector that stores computed 

population variances, for all positions represented by the dataset.  

k <- 1 
variances <- c() 
freq_vec <- c() 
df_pos <- EVdata[k, 6] 
 
while (k <= nrow(EVdata)){ 
  # The ‘while’ condition makes this useable for EVdata of arbitrary length. 
  for (i in 1:19){ 
    # This condition will apply regardless of dataset because EVcouplings  
 # effectively simulates 19 point mutations for each position. However  
 # this code and its execution in command-line EVcouplings may be modified 
 # to change this. 
    freq_vec <- c(freq_vec, df_pos) 
    if (i == 19){ 
      pop_var <- var(freq_vec)*(length(freq_vec)-1)/(length(freq_vec)) 
      variances <- c(variances, pop_var) 
    } 
    k <- k + 1 
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    df_pos <- EVdata[k, 6] 
  } 
} 

 

The resulting numeric vector, variances, stores the computed population variances for all positions 

represented by the dataset. However, we must be careful to note that our analysis is only useful for positions 

9 through 123 along Fluc-Bpe. EVmutation did not report simulated data for positions 1 through 8 or for 

positions 124 through 128, likely because the quality of metadata associated with these positions was too 

low and therefore excluded from the downstream computations and from the CSV file. Consequently, the 

variances computed are applicable only for positions 9 through 123 inclusive. The set of variances for all 

positions represented in the dataset can be written as {𝜎ν
ϵ, 𝜎φЈ

ϵ , 𝜎φφ
ϵ ,… , 𝜎φϵϯ

ϵ }. From the histogram generated 

by hist(variances) and presented in Figure 13 below, we can observe that on a relative scale most of 

these variances are low. This is consistent with the expectation that for most of the positions in the Fluc-

Bpe sequence space, especially those corresponding to the transmembrane regions of the protein, mutation 

is not tolerated. The single-site substitution matrix for Fluc-Bpe presented in Section 3.3.2 (Figure 11) also 

supports this interpretation. 

Figure 14. Frequency distribution of {𝜎ք
ϵ} calculated from Fluc-Bpe single-mutant variant frequencies in 

residues 9-123. For a given position in the Fluc-Bpe sequence, 𝜎ք
ϵ quantifies a mutational tolerance. 

The next lines of code in the script were written to handle the PDB file for Fluc-Bpe so that the information 

in the b-factor column could be overwritten. Note the use of packages bio3d [49] and dplyr [50]. 

library(bio3d) 
library(dplyr) 
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To make the atomic data in the file more tractable for this purpose, we need only initialize the data 

describing the atoms as a dataframe as shown below. 

pdb <- read.pdb("5nkq.pdb") 
protein_df <- as.data.frame(pdb$atom) 
 
head(protein_df, rm.alt = TRUE) 

##   type eleno elety  alt resid chain resno insert       x       y      z o     b 

## 1 ATOM     1     N <NA>   LEU     A     2   <NA> -16.982 -52.101 55.381 1 39.76 

## 2 ATOM     2    CA <NA>   LEU     A     2   <NA> -15.959 -51.186 55.872 1 40.22 

## 3 ATOM     3     C <NA>   LEU     A     2   <NA> -15.378 -50.359 54.728 1 43.47 

## 4 ATOM     4     O <NA>   LEU     A     2   <NA> -15.150 -49.159 54.874 1 40.43 

## 5 ATOM     5    CB <NA>   LEU     A     2   <NA> -14.850 -51.958 56.592 1 39.44 

## 6 ATOM     6    CG <NA>   LEU     A     2   <NA> -13.727 -51.133 57.225 1 44.99 

##   segid elesy charge 

## 1  <NA>     N   <NA> 

## 2  <NA>     C   <NA> 

## 3  <NA>     C   <NA> 

## 4  <NA>     O   <NA> 

## 5  <NA>     C   <NA> 

## 6  <NA>     C   <NA> 

Thus, we observe that column 13 of this dataframe is the b-factor column. As noted earlier, PyMOL settings 

allow for a color-coded visualization of the protein in terms of the b-factor. 

The next lines of code allow the variances to be written into a new text file, with each variance occupying 

its own line. Notice how this is done by coercing the numeric vector into a character vector. 

variances_char <- as.character(variances) 
writeLines(variances_char, con = "newBfactors.txt", sep = "\n", useBytes = FALSE) 
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Inspection of the newly created text file as shown in Figure 15 shows that the file consists of 114 lines, 

which correspond precisely to positions 9 through 123 in Fluc-Bpe, in the order listed. 

Figure 15. View of the newly created text file newBfactors.txt listing mutational tolerance scores, 

computed as population variances of Fluc-Bpe single-mutant variant frequencies. 

At this point, it was recognized that the length of the protein is not equal to the number of atoms in the PDB 

file and it is therefore not trivial to overwrite the b-factor column with the variances we computed earlier. 

To work around this, an attempt was made to work with an additional, open-access Python script (named 

loadBfacts.py) already available from online repository Figshare [51] and documented in the PyMOL Wiki 

[52] which serves to replace b-factor values in a PDB file at the amino acid level.  

The HTML file also documents this attempt, noting that it is necessary to run the outside Python script 

independently; it would be more practical here to employ exclusively R or exclusively Python. (However, 

use of the rpdb package from the CRAN repository may enable the use of PyMOL from an R session). 

Although steps were taken to translate the R script into Python and to integrate the operations of both scripts 

into one script, time constraints did not allow for this script to be fully written and presentable in the form 

of a Jupyter Notebook and made available through Jovian, as was done for the script presented in Chapter 

2. A brief discussion of this progress is offered in Section 3.5.4. 

From the documentation for the open-access Python script [52], it is a simple matter to call the requisite 

function according to the syntax given below: 

loadBfacts mol, [startaa, [source, [visual Y/N]]] 
 

Here, the following parameters apply: startaa allows us to indicate that our text file lists values starting 

with position 9, source refers to the name of the text file containing the replacement values, and source 

redraws the structure as the putty/sausage representation in PyMOL, having a default value of Y (yes). 
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When called without error, this function will replace b-factor values for a continuous amino acid sequence 

starting from the position provided in the parameter startaa. 

3.5 Discussion 

3.5.1 Reflection on the development and optimization of the program 

The Markdown formatting offers the script legibility and inline documentation in a manner comparable to 

that seen with the Jupyter notebook in the previous chapter. To arrive at the logic underpinning the main 

function of the script required forethought and planning with pencil and paper. As noted earlier, some 

progress was made in the development of a newer version of the script written entirely in Python. Use of 

the Jupyter notebook and Jovian integration could be useful should this version come to fruition. Also, since 

typical values of the b-factor are between 15 and 30 Å2, it may be necessary to re-scale the mutational 

tolerance scores so that the spreads in mutational tolerance can be more easily differentiated according to 

color in PyMOL as intended. 

Since EVcouplings plays a significant background role for this program, further development may explore 

the effects of changes to EVcouplings parameters, including the input Fluc sequence and selected protein 

database. More specifically, it may be worthwhile to query the known sequence of a Fluc ancestor (if this 

sequence is readily available or reconstructed) rather than an extant Fluc speculated to resemble such an 

ancestor. In addition, certain challenges were encountered in attempts to run web-based EVcouplings with 

the sequences for FEX proteins in Arabidopsis thaliana and in Saccharomyces cerevisiae. The outcomes 

of these attempts are described in Section 4.2. 

3.5.2 Analysis of mutational tolerance in Fluc transmembrane domains and internal loops 

It is straightforward to slice the variances vector to generate histograms for a subset of residues. In 

addition to the contiguous sequence of positions 9-123, we generated histograms for five additional sets of 

residues in Fluc-Bpe. Four of these correspond to the four TM helices, denoted TM1 through TM4. The 

fifth set encompasses the internal loops of Fluc-Bpe, which here is defined to consist of residues 30-35 and 

residues 60-64. These histograms are presented in Figure 16 below. Note that the histogram shown in Figure 

16a is identical to that in Figure 14. 
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Figure 16. Histograms for Fluc-Bpe residues 9-123 and subsequences corresponding to four TM helices 

(TM1–TM4) and internal loop regions. Emphasis added in Panel (b) to indicate high tolerance values. 

(a) (b) 

(c) (d) 

(e) 
(f) 
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From the bins of these histograms, we can read the spread of mutational tolerance applicable to Fluc-Bpe 

as a whole and to domains of interest. Table 1 summarizes the spreads (i.e., ranges) of mutational tolerance 

computed, with each spread interval corresponding to the histograms in Figure 16 and to the relevant 

positions in the protein sequence.  

Specified positions in Fluc-Bpe Structural domain or feature Spread of mutational tolerance 

Residues 9-123 contiguous Fluc-Bpe sequence [5.0 × 10-3, 1.3 × 10-2] 

Residues 9-29 TM1 [5.0 × 10-3, 1.3 × 10-2] 

Residues 36-59 TM2 [6.2 × 10-3, 7.1 × 10-3] 

Residues 65-96 TM3 [5.4 × 10-3, 6.1 × 10-3] 

Residues 97-123 TM4 [5.3 × 10-3, 5.6 × 10-3] 

Residues 30-35 and  

Residues 60-64 

internal loop regions [6.0 × 10-3, 8.0 × 10-3] 

Table 1. Summary of mutational tolerance spreads computed for structural features of Fluc-Bpe. 

We found that the distribution of tolerance differed when selecting these subsequences. TM1 was found to 

contain several of the highest tolerance scores computed (greater than 1 × 10-2), as emphasized in Figure 

16b; even the mode of this distribution occurs in the interval between 8.0 × 10-3 and 9.0 × 10-3. By 

comparison, the distributions computed for TM2 and TM3 are somewhat more uniform but have 

comparable spreads. TM4 was shown to have the narrowest spread and the greatest number of positions 

with tolerances lower than 5.6 × 10-3. Finally, the internal loop regions are represented by only a few 

positions, yet high tolerance scores (up to 8.0 × 10-3) were calculated here also. 

The distribution for TM1 suggests that the unusually high scores are not due to outliers; exactly half of the 

positions in TM1 yielded scores greater than 7.0 × 10-3. The result appears to contradict the general 

expectation that mutation in TM helices would not be tolerated, as might be interpreted from the single-site 

substitution matrix shown in Figure 10. Such intolerance is most conspicuous for R23, a position for which 

the EVcouplings job found 100% conservation among all Fluc homologs considered. However, a closer 

inspection of the matrix reveals that certain single substitutions in TM1, such as I10L and T17A, are 

predicted to be neutral or even advantageous. Mutation at several positions in the vicinity of R23 appear to 

be associated with a neutral or slightly damaging effect. Indeed, an alignment of Fluc-Bpe TM helices 

against the corresponding domains of representative FEX proteins shows that the TM1 primary sequence 

has greater variation than the sequences of other TM helices [23]; this alignment is shown in Figure 17. We 

therefore consider the high mutational tolerance scores computed for TM1 of Fluc-Bpe an indication that, 

following a duplication event which preceded the fused, monomeric structure of FEX, mutation in TM1 
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(and its paralogous domain) grew less deleterious to function to than did mutation in other TM domains. 

Further justification of this claim is provided in the next subsection. 

3.5.3 Placing computed mutational tolerances in the context of Fluc topology evolution 

We argue that the high mutational tolerance scores computed for TM1 of Fluc-Bpe may be reconciled with 

the greater sequence variation observed in FEX proteins, especially from the viewpoint that Fluc-Bpe is 

likely to resemble an evolutionary ancestor of FEX. Although a more precise and accurate elaboration of 

Fluc evolution must be informed by further studies, we tentatively propose that the three-step account of 

duplication followed by divergence and an eventual fusion event can be reformulated in greater detail. Our 

considerations are based in part on an alignment reported by McIlwain et al. and pictured in Figure 17. 

Figure 17. Sequence alignment of Fluc-Bpe with N-terminal, C-terminal domains of FEX proteins (TM 

helices only). Selected invariant residues are shown in yellow. Modified from McIlwain et al. (2021) [24]. 

First, we suggest that a gene duplication event in an ancestral, dual-topology Fluc led to intermediates in 

which the three-dimensional structure of TM domains was retained, but the selective pressure enforcing 

perfect symmetry and high sequence conservation was relaxed. Evolutionary constraints within TM2, TM3, 

and TM4 precluded the retention of mutations deleterious to fluoride transport; relatively fewer constraints 

in TM1 permitted sequence divergence of a greater extent in TM1 compared to divergence in the other TM 

helices. We can conceive of mutations in the TM domains as having dual effects: (1) preserving or 

damaging the requisite 3D fold of the domain and (2) enhancing or damaging the capacity for fluoride 

transport. Post-duplication selective pressures mediated a tradeoff between these effects according to their 

correlations with mutation at a given position. Controlling for sequence length, the greater sequence 

variation in TM1 seen in extant post-duplication Flucs suggests a larger space of tolerated mutations in 

some precursor TM1 sequence occurring in post-duplication intermediates. If we assume that the primary 

determinant of fitness has been the ability to counteract fluoride stress, increased genetic variation within 
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the tolerated mutational space for TM1 (and its paralogous domain) was likely retained in extant Fluc/FEX 

proteins, precisely because such variation conferred comparable levels of fitness in such intermediates. 

Mutation of a similar extent in other TM domains, it may be argued, could have had more deleterious 

outcomes; the presently observed variation in the sequences of TM2-TM4 of FEX proteins is less 

pronounced. 

In addition, surviving FEX proteins have retained only one functional pore. Note the difference in conserved 

Phe residues in the phenylalanine box indicated in Figure 17. Whereas the fixed-topology Flucs experienced 

a partitioning of the orientation assumed by Fluc monomer in the membrane, a reduced selective pressure 

in post-duplication FEX precursors may also have led to partitioning of the Phe box motif that rendered 

vestigial the capacity for fluoride transport through one of the two pores. It seems plausible that this 

vestigiality emerged from genetic drift following the putative gene fusion event which allowed FEX to be 

monomeric (this monomericity being retained in extant FEX proteins), although this remains unclear. 

Nevertheless, some conservation of the Phe box motif persists: a serine at position 83 in Fluc-Bpe was 

found to be invariant among all Fluc/FEX proteins examined by McIlwain et al. [24]. 

Although our findings based on evolutionary couplings in Fluc-Bpe are ampliative and add detail to a 

provisional account of the Fluc evolutionary trajectory, future work could investigate residue coevolution 

more comprehensively and involve attempts to characterize couplings in FEX proteins. More specifically, 

it may be worth exploring how evolutionary couplings have changed over time and especially in the 

transition of Flucs to eukaryotic organisms. Further relevant considerations are offered in the next chapter. 

3.5.4 Toward a re-implementation of program in Python 

One additional reason for the re-implementation of this script in Python is that R is generally considered 

less intuitive to newcomers than Python. Thus far, we have adapted the code responsible for iterating 

through the input dataset to compute mutational tolerances and store the results in a Python list. The 

suggested Python code for this is presented below.  

import pandas as pd 
import numpy as np 
 
EVdata = pd.read_csv("5NKQ_single_mutant_matrix.csv") 
 
k = 0 
variances = [] 
freq_vec = [] 
df_pos = EVdata.iloc[k, 5] 
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while k < len(EVdata): 
    for i in range(1, 20): 
       freq_vec.append(df_pos) 
        if i == 19: 
            pop_var = np.var(freq_vec) * (len(freq_vec) - 1) / len(freq_vec) 
            variances.append(pop_var) 
        k += 1 
        df_pos = EVdata.iloc[k, 5] 

 

Note that we import the packages numpy and pandas to afford a functionality similar to that afforded by 

dataframes in R. The variable EVdata in this new script is a Pandas dataframe. Since indexing in R begins 

with 1 and indexing in Python begins with 0, we have used the iloc method to select values in a manner 

equivalent to the 0-based indexing in R. 

3.5.5 Suggestions for further development 

A desirable prospect in the further elaboration of this script is to make the program more expansive. For 

example, it would be informative for such a version of the program to parse through the observed relative 

variant frequencies from a competitive growth assay, as measured through next-generation sequencing, to 

create mutational tolerance histograms for potentially thousands of different Fluc variants, all growing 

under the same lab-controlled media and conditions. The frequency distribution for the variation in 

mutational tolerance could in turn be depicted in other modalities available to descriptive statistics, offering 

new and different ways of visualizing mutational tolerance besides single-site substitution matrices. We 

have noted that such matrices are typically considered measures of the fitness that different protein variants 

can afford. However, through experimental methodologies capable of tracking mutation in descendant 

bacterial strains, modeling the distribution of experimentally observed mutational tolerance among variants 

could help assess the extent to which positions in the primary sequence appear susceptible to mutation, 

rather than merely tolerant of mutation. 

An ancillary function of the current version of the program (the R script and associated Markdown 

formatting) is the use of a relatively new package in the CRAN repository, NGLVieweR [53], to demonstrate 

how it is possible to visualize PDB files.  

library(NGLVieweR) 
 
NGLVieweR("5NKQ") %>% 
addRepresentation("cartoon") 
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These lines will initialize visualization of a PDB structure either from the PDB directly (given the 4-

character code) or from a locally stored PDB file, as an HTML device or widget distinct from the main R 

environment or console.  

4 Future directions in the investigation of Fluc variant fitness 

We conclude our disquisition with material relevant to further investigation. This section begins with a 

rationale for the modeling of epistatic interactions in determining evolutionary couplings, an approach 

which underpins EVcouplings and has improved methods of protein structure prediction. Next, we 

summarize obstacles faced in our attempts to use EVcouplings on selected FEX sequences and give advice 

about how to overcome these challenges. Then, we offer a sketch of related experimental work currently in 

progress. Lastly, we present a description of miscellaneous concepts and developments that may be useful 

in representing and testing possible microevolutionary dynamics of the Flucs. It is hoped that our 

investigation and the ensuing discussion will serve as a springboard for future studies that will enhance our 

understanding of the Fluc evolutionary trajectory.  

4.1 On the advantages of modeling epistatic interactions 

The breakthrough in protein structural prediction based on residue coevolution materialized from modeling 

the context-dependent effects of mutation. Previous methods tended to treat such mutation as having an 

effect mostly confined to a certain position along the protein: the position of the mutation. These older 

methods often relied on hidden Markov models (HMMs) that quantified a position’s preference for a 

particular amino acid, but not accounting for interactions between residues. Granted, HMMs are yet very 

useful for homology searches and sequence alignments; the HMM-based software HMMER is a 

dependency of EVcouplings. However, the innovation introduced by newer algorithms for evolutionary 

couplings and their downstream effects on structure took form in models based on Markov random fields 

(MRFs). The pairwise interactions inherent to these fields capture epistasis and are essentially in 

correspondence with pairs of co-evolving residues within a protein of interest. Residue coevolution analyses 

have improved remarkably as a result of MRF-based models [54]. 
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4.2 On challenges encountered when applying EVcouplings to Fluc variants other than 
Fluc-Bpe 

Initial attempts to analyze two eukaryotic Fluc homologs using the web-based EVcouplings tool, in a 

manner similar to the analysis we report for Fluc-Bpe, proved unsuccessful due to lower quality results 

obtained from passing as inputs the sequences for FEX proteins found in A. thaliana and S. cerevisiae. 

These sequences were queried using the Uniprot identifiers Q8RYE2 and Q08913, respectively. Results for 

these queries are shown in Figure 18 and Figure 19. 

Figure 18. Screenshot of result overview for EVcouplings job on FEX found in Arabidopsis thaliana. 

(Uniprot: Q8RYE2) 

Alignment coverage in both of these results is not as extensive as the result obtained with Fluc-Bpe. Also, 

for each bitscore, the number of homologous sequences detected by the homology search is significantly 

lower. 



48 

 

Figure 19. Screenshot of result overview for EVcouplings job on FEX found in Saccharomyces 

cerevisiae. (Uniprot: Q08913) 

To troubleshoot this, it may be beneficial to customize the parameters in EVcouplings and to use a more 

curated database consisting primarily of FEX sequences, rather than one of the larger Uniprot sequence 

databases. That the genotype for FEX represents the fused form of two formerly distinct paralogs, each of 

which can resemble Fluc-encoding gene to a highly variable extent, may not be entirely appropriate for 

the automated alignment and homology search algorithms as they are currently implemented in web-

based EVcouplings. It could even be of benefit to independently perform an alignment treating the N-

terminal and C-terminal domains of FEX as separate proteins; the resulting alignment should then be 

formatted appropriately for the homology search function of EVcouplings. At present, such custom 

settings may only be available from the command-line version of EVcouplings. An attempt to install 

EVcouplings so that this version could be utilized was only partially fulfilled: it was unclear from existing 

documentation how to install a particular external dependency named plmc, the tool used by the pipeline 

to infer evolutionary couplings from MRFs. 

These challenges notwithstanding, a point of reference for future work is a study that examines these two 

FEX proteins, which have a sequence identity of only 25% [55]; researchers provide evidence from 

alignments, mutagenesis experiments, and structural modeling that FEX channels each contain one 

functional pore and one vestigial pore [55]. 
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4.3 Toward a deep mutational scanning methodology for investigating Fluc variant fitness 

A current project in the Stockbridge group seeks to probe Fluc variant fitness using an engineered plasmid 

system containing variants of Ec2, the Fluc-encoding gene found in E. coli virulence plasmid. This project 

seeks to evaluate relative differences in fitness between Fluc variants through a specialized growth assay 

that challenges microbial growth with a fixed concentration of NaF. Two variants of interest are those in 

which one of the two Phe residues in the phenylalanine box motif has been mutated; these are represented 

in two types of plasmids. The plasmid system also includes a vector made to contain two copies of Ec2 in 

tandem, in what is effectively a mimic of an immediate post-duplication genotype. Although cloning 

procedures to engineer more serviceable versions of this system are in progress, it is hoped that growth 

assays of E. coli transformants will reveal noticeable fitness changes due to gene duplication and single-

site substitutions separately. A schematic of this small-scale growth assay is shown in Figure 20. 

Figure 20. Schematic of small-scale growth assay to test relative fitness in Ec2-transformed E. coli. 

This work is in turn intended to prefigure a large-scale DMS experiment (refer to Section 3.1) in which 

saturation mutagenesis or a comparable technique is used to create a library of Fluc single-mutant variants, 

inserted into an appropriate choice of vector to transform into E. coli just as in the small-scale growth assay. 

Since the plasmid system will have made it possible for this vector to contain tandem copies of Ec2, these 

Ec2 variants will also be made to vary according to whether they occur in a single copy of the gene, or as 

part of a tandem duplicated genotype. As part of the mutational scan, a menagerie of E. coli transformed 

with this library will be subjected to a selection condition (again, a fixed concentration of NaF) in a 

competitive growth assay. Next-generation amplicon sequencing will then serve to quantify the abundances 

of Ec2 variants after selection; this data will be the basis for empirically determined single-site substitution 

matrices of Fluc-Ec2. 
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4.4 Prospects for resolving the Fluc evolutionary trajectory in greater detail 

In the first chapter, we introduced the notion of a fitness landscape to represent evolutionary fitness as a 

function of genotype or phenotype. Informed by prior studies as well as our own considerations of 

conservation and residue coevolution, we offered in Chapter 3 a plausible narrative of the Fluc evolutionary 

pathway more detailed than the nutshell account summarized as the three stages of gene duplication, 

divergence, and fusion. Our overarching goal has been to elaborate the phenomena and sequence of events 

which allowed all three topologies in the Fluc family to remain extant into the present day; that is, we aim 

to meaningfully discretize steps in the Fluc evolutionary trajectory at a level more discerning than the three 

aforementioned stages as presently stated. 

Also in Chapter 3, we reported an in silico sequence-function landscape (the single-site substitution matrix) 

of Fluc-Bpe, a Fluc whose topology represents an evolutionary antecedent to the fixed-topology and fused 

monomeric phenotypes. The accurate simulation of amino acid substitutions for an ancestral protein can 

offer a basis for the reconstruction of plausible phylogenetic representations. This task is not at all trivial, 

even while protocols for experimental approaches such as DMS may be sound. We believe it has been 

helpful to model amino-acid substitutions in Fluc using the EVcouplings framework, yet another approach 

recently developed by R. Sloutsky and K.M. Naegle also seems promising; this methodology consists of an 

evolutionary reconstruction algorithm that iterates over different but related input protein sequences to 

quantify the variability associated with these inputs and use this information to optimize the confidence and 

accuracy of phylogeny inferences [56]. Termed ASPEN (Accuracy through Subsampling of Protein 

EvolutioN), the methodology is asserted to be an improvement on prior methods which were 

computationally intensive because they reconstructed many possible versions of sequence divergence, 

rather than those that are most plausible [56]. In a press release from the University of Massachusetts at 

Amherst [57], Naegle is quoted with the following analogy: 

“If one asks 1,000 people to predict what route a driver took on a past multi-stage trip, pieces shared 

most across all 1,000 answers are most likely to be true. One can never know the real path – in this 

case, evolution – but if no predictions agree over 1,000 answers, one has little confidence in their 

accuracy. But if all 1,000 agree on some stages, confidence is higher that a new model based on it 

will be true. It still may not be wholly accurate, but it’s probably closer than any single route 

suggestion,” [Naegle] says. 

Absent from the reporting of this new methodology, however, is a definition of fitness. On this subject, we 

first look toward a 2014 study by Firnberg et al. in which fitness is quantified as a distribution of fitness 

effects (DFE), for the E. coli beta-lactamase gene, TEM-1, and corresponding protein TEM-1 [58]. The 
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fitness of a gene is equated with providing some kind of optimum – a “phenotypic signature” – while the 

fitness of a protein is similarly regarded as “the suitability of a protein to provide a particular function” 

[58]. Conceptual problems with this definition notwithstanding, the study documents such methods as 

growth competition experiments, mRNA stability predictions, and a quantification of mutational tolerance 

as the number of amino acids that are especially likely to occur at a given position [58]. This quantification 

is derived from the Shannon entropy applicable to the distribution of fitness values for a particular set of 

mutants, at some position i [58]. These fitness values follow from an asserted proportionality 𝑤 ∝ 𝑣֏, where 

𝑤 is a raw fitness and 𝑣֏ is the total catalytic activity of this enzyme in the cell. The total catalytic activity 

is in turn given by 𝑣֏ = 𝑣֎֋𝑃 , where 𝑣֎֋ denotes the specific activity of the enzyme and 𝑃  is the abundance 

of the enzyme [58]. Researchers concluded that the deleterious effects of mutation are primarily due to a 

decrease in the specific activity of beta-lactamase rather than a decrease in the abundance of the protein 

[58]. It would be intriguing, for instance, to have an experiment involving Fluc variant libraries quantifying 

a mean protein abundance 〈𝑃 〉 from Western blots and a mean total current 〈𝑣֏〉 so that decreases in Fluc 

fitness, following Firnberg et al., may be compared to changes in either 〈𝑣֏〉 or 〈𝑃 〉, separately. This would 

illustrate the action of mutations which increase stability but undermine fitness, and of mutations which 

decrease stability but appear to confer adaptive benefit. 

To pave the way for future studies, we also find it worthwhile to also examine the concepts of an 

“evolutionary trajectory” and the fitness landscape metaphor more critically. This also entails a reflection 

on aspects of evolutionary theory and the meaning of fitness itself [59]. To hearken back to our introduction, 

we acknowledge that fitness, when equated with the growth rate of an individual microorganism, is the 

outcome of a delicate interplay between genotype, phenotype, and environment. One attractive portrayal of 

these interactions as they play out for the lac operon and pathway in E. coli [60] is offered by Perfeito et al. 

and reproduced in Figure 21. The operon and some environmental concentration of IPTG modulate a 

positive feedback loop in which protein production promotes activity and vice versa. Downstream, there is 

another feedback loop in which, for example, the cost of increased protein production comes at the expense 

of growth rate, and growth rate itself has an inhibitory effect on protein production and activity. 
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Figure 21. Influence of genotype and environment on phenotypes and fitness in the lac expression 

pathway. From L. Perfeito et al. (2011) [60]. 

We highlight this point of view to contend that a precise and fine-grained description of fitness at the level 

of individual phenotypes must account for nonlinearities in the relationship between the biochemical 

intricacies of a phenotype with organism fitness. Furthermore, we argue that this perspective is most useful 

at the fine-grained level; there are other levels of analysis in which other factors must be considered. 

Following relevant contributions from J.F. Wilkins and P. Godfrey-Smith, we ascribe to distinctions in the 

analysis of fitness which set apart the fine-grained view of adaptation from a coarse-grained view, as well 

as an intermediate level of grain [61]; this has been described as an act of “zooming in or out” of a fitness 

landscape. As regards the preceding discussion of the lac pathway, we can conceive of a fitness landscape 

that resembles Figure 22a, in the fine-grained perspective. The position with respect to the vertical axis 

signifies fitness. One important realization that can be gleaned from this perspective is that natural selection 

is not the only process by which adaptive benefit can be achieved. For example, horizontal gene transfer 

can confer adaptive benefit at the level of an individual organism; the bacterial transformations involving 

the engineered plasmid system described in Section 4.3 are tantamount to such gene transfer mechanisms. 

By contrast, constraints in the mechanisms of inheritance at the molecular level (including epistasis) could 

conceivably frustrate adaptation towards some local optimum of fitness. Other relevant processes occur at 

the level of a population: genetic drift owing to a bottleneck event can lead to an overrepresentation in some 

genetic variants which could not be achieved by natural selection alone. In other words, it should not be 

surprising to see that at this level of grain, genetic variation due to processes other than natural selection 

play an outsize role in the distribution of extant species or populations on the adaptive landscape. Natural 

selection by itself would serve to drive evolutionary change toward peaks in a fitness landscape, never away 

from such peaks. 
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Natural selection is arguably most salient in the intermediate-grained perspective of the fitness landscape, 

wherein continuous selective pressures (in an unchanging environment) drive adaptation toward a local 

maximum of fitness, as illustrated in Figure 22b. The net direction of movement on the landscape, for a 

given population and longer timescales, is toward a fitness peak. In this context, it would even be 

appropriate to model evolutionary adaptation with an account that appeals exclusively to natural selection; 

differences in adaptation due to mechanisms at the fine-grained level would be too minute to register at this 

broader level of analysis. Natural selection is the primary means by which evolutionary change concentrates 

populations around a fitness peak, over an evolutionarily significant period of time. 

Finally, with the coarse-grained view depicted in Figure 22c, research can most readily address questions 

about how organisms of extant species and populations are distributed in some much more expansive space 

of possible (even imaginary) organisms that would be capable of successful survival and reproduction in 

the environment represented by the landscape. Points in the landscape viewed from this perspective 

represent the surviving species or populations relatively suited to this environment. These points occur on 

local optima and it is possible to have fitness peaks that are entirely unpopulated; due to history, some 

imaginary and exceptionally fit species may not currently exist (or have ever existed) in this environment. 

Figure 22. Fine-grained (a), intermediate-grained (b), and coarse-grained (c) perspectives of a fitness 

landscape. Points in (a) denote individual organisms, points in (b) are individuals concentrated around a 

local fitness peak, and points in (c) represent extant species or populations. Modified from J.F. Wilkins 

and P. Godfrey-Smith (2008) [61]. 

These caveats to the fitness landscape metaphor call attention to the limitations of adaptationism and the 

metaphor as it is generally presented: the fitness landscape implies that the fitness of a particular phenotype 

results primarily from an unchanging environment. From our mention of gene expression via the lac 

pathway, however, it can be appreciated that nonlinearities in the sequence-function-fitness relationship 

persist even in constant environmental conditions such as a fixed concentration of IPTG. A similar level of 

nuance ought to be recognized in experimental investigations of Fluc survival in the presence of fluoride. 

Moreover, one should exercise discretion about whether or not independent gene duplication, paralog 

divergence, and gene fusions in the history of the Flucs were retained due to some fitness advantage. 
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Caution is also advisable for other events causing genetic variation, although it has been claimed that the 

rate at which mutation is adaptive is generally lower than the rate at which gene duplication is adaptive [7]. 

That being said, we admit that our revised narrative of the Fluc evolutionary pathway (like definitions of 

fitness offered by Firnberg et al. and many others) follows the adaptationist paradigm closely. Criticism 

against what has been regarded as the uncritical attribution of extant traits to natural selection notably took 

form in an influential 1979 paper by S.J. Gould and R.C. Lewontin introducing the term “spandrels” to 

refer to phenotypic features that are best classified not as traits sui generis but as byproducts of the 

adaptation of other traits [62].  

Issues with exaggerating the role of adaptation and natural selection may be avoided by defining traits in 

explicitly phylogenetic terms, as previous phylogenetic studies of Flucs [20] and the ASPEN methodology 

have exemplified, which would allow adaptation to be distinguished from shared evolutionary histories. 

Novel phylogenetic investigations should account for divergence in the genomic sequences and primary 

structures of Flucs subsequent to duplication so as not to overestimate evolutionary distances. Mutational 

scanning and other functional characterization of the Fluc family can also clarify constraints that could 

inform further phylogenetic analyses, as can reconstruction of the sequence and function of Fluc ancestors. 

Examples of structural and functional changes in Flucs which beckon further inquiry include the transition 

from the dual-topology phenotype to the fixed-topology phenotype, the gene fusion event and emergence 

of an additional TM helix in the FEX proteins, escapes from paralog interference, and modifications to 

helix-helix interactions subsequent to gene duplication or fusion. 
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Appendix 

Figure A1. Flowchart of script to evaluate charge bias in Fluc sequences as reported in Chapter 2. 

 

 

Figure A2. Outline of script to compute and handle mutational tolerances as reported in Chapter 3. 

START 
Read the CSV file "5NKQ_single_mutant_matrix.csv" into a data frame "EVdata" using read.csv() 

 A quality control measure: Display the first 6 rows of "EVdata" using head() 
 Extract a vector of data from "EVdata" representing the sixth column of the first 19 rows, and 

store it in "var_data“ 
 Calculate the variance of "var_data" and store it in "F9_variance“, display "F9_variance“ 
 Extract the data from the sixth column of the first row of "EVdata" and store it in "df_pos“ 
 Initialize an empty vector "variances" to store variances calculated later 
 Initialize an empty vector "freq_vec" to store the values of "df_pos" for each position 
 While k is less than or equal to the number of rows in "EVdata", do the following:  

 For i in 1 to 19, do the following: 
 Append "df_pos" to "freq_vec“ 
 If i is equal to 19, calculate the variance of "freq_vec" and append it to "variances“ 
 Increment k by 1 
 Extract the data from the sixth column of the k-th row of "EVdata" and store it in 

"df_pos" 
 Create a histogram of "variances" using hist() 
 Read the PDB file "5nkq.pdb" using read.pdb() from the bio3d package, and store it in "pdb“ 
 Convert the "atom" component of "pdb" to a data frame "protein_df" using as.data.frame() 
 Display the first 6 rows of "protein_df" using head() 
 Convert "variances" to a character vector "variances_char" using as.character() 
 Write the contents of "variances_char" to a file "newBfactors.txt" using writeLines() 

END 
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