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Abstract 

Participation in competitive sports is on the rise, and along with this comes an increase in sports-

related injuries. While these injuries can happen to any part of the body, some of the most 

common are lower limb injuries, particularly to ligaments, with one of the most common being 

the anterior cruciate ligament (ACL). Within this work, we examined soft tissue overuse injury 

mechanisms using a novel tool for identifying potentially injurious loading cycles that occur in 

adolescent athletes (predominantly female athletes) with the long-term goal of prevention of this 

unintentional injury. We used a commercially available inertial measurement units (IMUs) to 

develop post-collection equations that could accurately and reliably estimate ground reaction 

force, knee moments, and knee angles; each a crucial factor in determining potential ACL injury. 

We partitioned this study into two distinct stages, each with specific purposes and goals. In the 

first stage, we used in vitro models to estimate our required metrics. Here, we used two IMUs 

and machine learning algorithms and compared the estimates to values measured by a motion 

capture and load cell system. We determined that the equations could estimate ground reaction 

force, knee moments, and knee angles with moderate accuracy and reliability. We additionally 

found that a tuned quaternion conversion method provided more accurate knee angle 

measurements than a commercially available sensor fusion algorithm. These findings allowed us 

to proceed to the second stage, human subject testing, where we developed modifications to the 

first-stage equations. Here we used four IMUs (two on each limb), the models developed in the 

first stage, and machine learning to construct a modified model; we then compared the estimates 

for these modified models to measurements of a motion capture system and force plate 



xv 

measurements. These modified models could estimate metrics with moderate accuracy; however, 

the knee moment reliability was not satisfactory. We then developed a confusion matrix to 

examine if these estimates could distinguish between low-risk and potentially damaging events, 

and results showed high classification accuracy, precision, specificity, and sensitivity. We also 

adjusted the quaternion conversion method for human subject use and found the tuned algorithm 

provided more accurate and reliable knee angle measurements. Our results show the potential of 

IMUs for tracking gameplay events and distinguishing between low-risk and potential-risk 

events. While we acknowledged several limitations within our work, we ultimately believe that 

IMUs may be able to aid coaches and sports physicians in preventing some athletes from 

sustaining ACL injuries. 
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Chapter 1: The Purpose of the Study 

Over the last two decades, the participation of adolescents and children in organized sports has 

experienced a boom in popularity, with involvement occurring at younger ages and expectations 

of individuals being higher [1, 2]. While organized sports have many benefits for those who 

regularly engage in them, such as improved physical and mental health, negative effects such as 

an increased risk of injuries can also occur [3]. Nearly 30 million people are injured every year 

while participating in some sports [4]. And while injury can happen to any part of the body, 

some of the most common are those to the lower limbs, which include stress fractures, 

tendinopathy, ligament tears, and, depending on the sport, joint dislocations [5]. However, 

among these possible lower limb injuries, some of the most debilitating are those to ligaments, 

specifically, to the ACL. In the United States, some 100,000 to 200,000 ACL ruptures are 

reported every year [6, 7]. To address this concern, it is important to understand the mechanics 

involved in ACL injuries. In this chapter, we will begin with an introduction to the structure of 

the ACL, including its mechanical properties, and other defining characteristics. This will be 

followed by a discussion of the potential injury mechanisms, how tracking of kinematics and 

kinetics of the knee may help prevent injuries, the technology used as well as their drawbacks, 

and finally discuss the various gaps in knowledge that this research was designed to address. 

 

1.1 The Anterior Cruciate Ligament 

The primary function of the ACL is to resist anterolateral displacement and internal rotation of 

the tibia relative to the femur [8]. It’s also one of the most injured ligaments in sports, and once 
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ruptured, surgical intervention is often required [8-10]. With its origin on the posteromedial 

aspect of the fossa on the lateral femoral condyle and its insertion on the anterolateral aspect of 

the intercondylar fossa of the tibia, the ACL runs anteromedially and distally from the femur 

toward the tibia [11-13]. In an adult the typical length of this ligament is 32 mm with a typical 

width range of 7 to 12 mm [13]. At the site of insertion, the ACL passes beneath the transverse 

(also known as anterior) mensicomeniscal ligament (the ligament that attaches the anterior horn 

of the lateral meniscus to the anterior horn of the medial meniscus), and in some cases the 

posterior fascicles of the ACL it may blend with the posterior attachment of the lateral meniscus 

and become indistinguishable [11].  

 

Although the ACL has been modeled as a single bundle and even three-bundle structure, in 

general, it is considered a two-bundle system that includes the anteromedial bundle (AMB) and 

the posterolateral bundle (PLB) [11, 14]. The AMB is comprised of the fascicles on the 

anteromedial aspect of the insertion site of the ACL, and under relaxed conditions, exhibits a 

more vertical orientation than that of the PLB (approximately 70° from the tibial head compared 

to 55°) [15, 16]. The PLB fascicles are located on the posterolateral aspect of the insertion of the 

ligament, and during extension, experience more stress, leaving the AMB slacker [15, 16]. As 

the knee flexes, the ACL begins to become parallel to the superior tibia, and while experiencing 

rotation, tends to exhibit a greater lengthening under internal rotation than external; a 

discrepancy that is more prominent while the joint is in flexion [16]. However, it is worth noting 

that, because it’s composed of differing fascicles and in different orientations, various parts of 

the ACL are stretched in different directions throughout the knee’s total range of motion [17]. 

Therefore, while the two-bundle is widely accepted and indicates that the AMB is active during 
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flexion and the PLB is active during extension, this is an oversimplification of the system; at any 

position of the knee, some tension will be present on both bundles due to leg muscle activity. 

While the ACL’s primary function is to resist anteroposterior movement of the tibia to the femur, 

studies have also illustrated that its secondary function is resisting internal rotation during knee 

extension [18-20]. 

 

The stress/strain curve associated with most biological tissues is unique when compared to other 

materials in that three distinct regions are readily observed; 1) the toe region, 2) the linear region, 

and 3) the yield/failure region [20]. For most activities of daily living (ADL), ligaments remain 

in the in toe or in the linear region [20, 21]. In the toe region of the relaxed ligament, the 

collagenous fibers of the ligament/tendon are in what is called a crimped state due to 

disorganized fibers [22]. Within the stress strain curve, this first region is distinct and exhibits a 

lower stiffness compared to the other regions [20, 21]. This is important because, when a load is 

applied and collagen fibers begin straightening, a portion of that stress is dissipated in a process 

known as uncrimping [22]. The toe region accounts for about 2% of the strain, after which point, 

the ligament enters the linear region [22]. Within the linear region, the uncrimped collagen 

fibers, in response to continued strain, start to stretch, and begin to deform in a linear manner as 

inter-molecular sliding of collagen triple helices begin to occur [20, 21]. Generally, if the strain 

is below 4% , the tissue will return to its original, uncrimped state once the load is removed with 

no damage to the fibers; this portion is thus elastic and reversible [22]. Beyond this 4% limit, 

some fibrils begin failing as the intramolecular cross-links between collagen fibers breaks. 

Continuing to strain the ligament can cause an accumulation of these micro failures, ultimately 
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reducing the stiffness of the tissue. When strain is greater than 8% of its original length, 

macroscopic failures are observed until ultimate failure of the ligament is reached [22].  

 

During biomechanical testing of the ACL, various testing conditions such as pre-conditioning 

and the age of the specimen can affect the outcome. During loading-unloading cycles in tissues, 

the stress-strain curve differs in the initial few iterations; each new iteration shifts the curve 

rightward [20, 23]. Along with shifting, subsequent cycles decrease the peak stress achieved in 

the ligament during the same applied load [23]. These characteristic changes of the tissue can 

occur even while the tissue is under viscoelastic recovery, and it’s these characteristic changes 

that are termed the hysteresis of the system [20, 23]. To address the effect of these changes, 

preconditioning is frequently used in the testing of biological tissues [23]. While there is no 

standardized method through which preconditioning is conducted, most studies that have 

examined the use of some tissue preconditioning report that a state of stability (the point at which 

subsequent testing causes no characteristic changes) can be achieved after 3-10 testing cycles 

[24-26]. Although standardized preconditioning methods do not exist, various studies have 

presented generalized guidelines that should be followed. During tissue preconditioning, it has 

been suggested that the load in the preconditioning protocol should be similar to the testing 

protocol; [27, 28].  The overall structural and mechanical properties of the ACL are heavily 

influenced by the age of the individual; older persons have been shown to have decreases in the 

upper limits of important properties associated with the ACL and the femur-ACL-tibia complex 

(FATC) such as linear stiffness, ultimate load, and the energy the system can withstand before 

failure [29-31]. Cadaveric testing has shown the average linear stiffness of ACLs belonging to 

young specimens (22-35 yrs.) to be 242 ± 28 N/mm, with a 26% decrease when observing ACLs 
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of older (60-97 yrs.) specimens [29]. Woo et al. observed that the mean ultimate load in younger 

ACL specimens was 2160 ± 157 N and decreased with age to a mean value of 1160 ± 104 N 

when testing older specimens, representing a 46% decrease [29]. Energy absorption, defined as 

the area beneath the stress-strain curve to the point of failure, was observed to be 11.6 ± 1.7 Nm 

in young specimens and decreased sharply to 1.8 ± 0.5 Nm when observing older specimens 

[29]. 

 

1.2 Mechanism of ACL Injury 

ACL injury can fall into one of two distinct categories: 1) contact (30% of all cases); 2) non-

contact (70% of all cases) [32-35]. Contact injuries are the result of a transfer of a force onto the 

knee from an external source (usually from another player or player equipment), which causes an 

abnormally large anteroposterior knee displacement to occur [32, 33]. Given the functional role 

of the ACL, it’s theorized that under these conditions, the ACL experiences a significant strain as 

it attempts to resist the movement which causes failure of the tissue [32, 33]. Because these 

injuries transpire acutely during gameplay, the only means through which they can be addressed 

is either through the introduction of additional protective equipment (affecting player 

capabilities) or the implementation of additional rules (affecting gameplay). However, because 

these injuries are less than half as common as non-contact injuries, it is non-contact injures that 

should be focused upon. 

 

As the name suggests, non-contact injuries involve no contact or load transfer from an external 

source save the ground reaction and/or moment under the foot, so the load on the knee is 

generated internally by the player in response to that reaction force or moment. Non-contact 
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ACL injuries can be further subdivided into two distinct categories: 1) acute, and 2) those that 

may be the result of possible tissue fatigue [36]. Recent studies using cadaveric specimens have 

suggested that some non-contact ACL injuries may be attributable to overuse of the ligament, 

where repetitive high stress/strain-inducing activities result in micro-failures of the tissue, and 

continued performance without adequate rest leads to propagation of these failures which 

ultimately leads to an ACL rupture [36]. If this is the case, then the prediction of some ACL 

failures may be possible. In the next sections, we will discuss the knee kinematics through which 

a non-contact ACL injury can occur, followed by a discussion on the methods through which 

knee kinematics are measured.  

 

1.2.1 Kinematics of the Knee During Non-Contact ACL Injuries 

Various studies have examined the kinematics of the knee during non-contact ACL injuries using 

a combination of data captured on-field, in laboratory testing, and computer simulations, and 

have been able to note the typical kinematics [37, 38]. Generally, it has been reported that during 

non-contact injuries, the knee is in an externally rotated and more extended position (20° or less 

in flexion); slight valgus may also be present [37, 38]. It’s been theorized that once these 

conditions are met, and load (ground reaction force) is applied across the knee, a powerful 

quadriceps contraction causes anterior displacement of the tibia to the femur [37, 38]. This 

displacement may lead to increases in ACL strain to above the tolerable threshold as the ACL 

attempts to resist the movement [37, 38]. Although, this is one of many possible mechanisms 

other studies have reported that a fully extended knee, in neutral internal rotation and valgus 

orientation, subjected to high loading (such as landing from a jump) can significantly strain the 

ligament [37]. Some studies have also noted the effect of strong muscle actions, such as an 
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eccentric contraction of the quadriceps during high-speed sudden stopping actions has also been 

linked to non-contact injuries [39]. 

 

While the above-mentioned theory emphasizes the load and knee orientation or the contractile 

strength of the muscle groups in the thigh, many studies have also shown a correlation between 

knee moments and stress/strain of ACL, particularly internal rotation and valgus; thus, the ability 

to track knee moments may also be important [16, 40-42]. Increases in the valgus moment in 

conjunction with an increase in the antero-tibial shear have been shown to increase the stress 

sustained by the ACL; it’s also been noted that the stress due to this combination is greater than 

that of either component acting individually  [16, 40]. With the addition of a load (ground 

reaction force), the effect of valgus moment grows considerably, causing significant increases in 

the strain of the ligament to or above its threshold limits [41]. A meta-analysis conducted by 

Hewett et al. examined six different studies that focused on non-contact ACL injuries throughout 

a normal season of play across differing sports, to determine potential predictive factors that 

could be used in understanding the risk factors for female athlete non-contact ACL injuries [32, 

33]. They found that athletes that sustained an ACL injury had up to a 2.5x greater knee valgus 

moment at the time of injury (p < 0.01) and that  the magnitude of knee valgus moment was able 

to predict ACL injury status (73% specificity and 78% sensitivity) [32, 33]. Though, they 

remarked on ACL injuries having a multifactorial etiology, with various contributing factors. 

They also add to this that the subject they observed had been playing sports for multiple years, 

and that it may take years of excessive valgus moments before an ACL injury occurs. This poses 

the question of whether it was valgus moments that led to the injuries, or if another of these 
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contributing factors is responsible for the injury and changes in valgus are the results of an 

already damaged ACL.  

 

Internal rotational moments have also been linked to increases in the stress sustained by the 

ligament, and when combined with antero-tibial shear and a valgus moment, this stress further 

increases; the addition of a load has also been observed as contributing to the stress of the ACL 

while under an internal rotational moment [40-42]. Shin et al. utilized in vivo human data and 

computer simulation to quantify theoretical ACL strain experienced during a single-legged 

landing and noted the correlations of the valgus and internal rotational moment increases with 

increases in the ligament’s strain [42]. A combination of maximum physiological valgus and 

internal rotational moments was observed to produce peak strains of 0.105 [42]. The reported 

range for ACL rupture due to strain is 0.09 to 0.15 [42]. When Shin et al. expanded the 

parameters to include conditions akin to game scenarios, they recorded peak strains as high as 

0.115 [42].  However, when examining overuse as a possible ACL injury mechanism, Wojtys et 

al. found that high internal rotation moments contributed to failure, whereas abduction moment 

did not place large strains on the ACL [36]. 

 

The importance of the ground reaction force (GRF), the knee orientation, and the internal 

rotational and valgus moments in the quantification of stress/strain in ACL can be easily 

understood, but other, non-kinematic/kinetic factors may also influence potential overuse 

injuries. And while we will not be considering them during our study, it is important to recognize 

and briefly discuss their influence. 
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1.2.2 Non-Kinematic/Kinetic Factors That Also Contribute to Overuse Injuries 

While both males and females are susceptible to ACL injuries, females on average are 3x more 

likely to be affected [32, 33]. The exact reason for this difference between the sexes is still being 

researched, but to date, various possible explanations have been discussed. The smaller, slightly 

narrower shape of the intercondylar notch of the female femur may cause the ACL to sustain 

greater degrees of strain when subjected to similar conditions as their male counterparts [37, 43-

45]. Alternatively, the wider pelvis of females causes their quadriceps angle (q-angle) to be 

larger, thus, forcing the femur into a larger valgus angle toward the knee [46]. Various studies 

have shown that this larger angle decreases the muscular support of the knee, and thus, the 

stability of the joint is more heavily influenced by the ligaments [47, 48]. There are also 

hormonal differences between the sexes, and these differences may affect the laxity and other 

mechanical properties of the ligament [49]. Other factors include the type of footwear and the 

surface of play, with various studies reporting that certain shoes, designed to improve a player’s 

on-field effectiveness through providing additional field traction, have the unintended effect of 

increasing stress on the ligament and have been correlated with a higher incidence rate [37, 38, 

50, 51]. While the anatomical reason for the increased risk of ACL injury cannot be controlled, 

other factors relating to kinematics and volume of exposure are controllable factors.  

 

1.3 Measuring the Forces and Moments Placed on the Knee, and Knee Angles Involved 

Traditionally, lower limb joint kinematics/kinetics have been quantified in laboratory settings 

using camera-based motion capture systems (MCS) combined with force plates. During a 

session, a subject can be asked to perform various actions that are recorded. This data is then 

processed using a combination of force and marker positional data, which allows for the 
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determination of ground reaction force, joint moments, and angles. In general, this system is not 

ideal to capture on-field kinematic and kinetic data as this system is bulky and there is an 

inability to measure rotations accurately due to the presence of soft tissue. However, in recent 

years the development of wearable sensors has emerged as an alternative to motion capture and 

has been employed in various applications such as gait analysis and rehabilitation assistance [52-

58]. Wearable sensors are smart electronic devices that can be directly worn by a person to allow 

for the detection and transmission of various signals concerning the body such as vital signs or 

pedometers for health purposes. In more recent years, growing interest in IMU technologies, a 

particular type of wearable sensor, has emerged in the field of sports medicine as a possible 

means to track subject data without the cost and hindrances of MSCs. 

 

1.3.1 Inertial Measurement Units 

IMUs are small, wearable sensors that consist of orthogonal accelerometers, rate gyroscopes, and 

magnetometers that allow for the direct measurement of a body segment’s linear acceleration, 

angular velocity, and environmental magnetic field strength. Three-dimensional joint angles can 

be obtained through sensor fusion algorithms; these algorithms use knowledge of their dynamics 

to estimate orientation changes based on gyroscope information and fuse these estimates with 

orientations determined through a combination of accelerometer and magnetometer information. 

However, there are limitations in the direct measurements of certain data, and because of this, 

post-collection equations are required if IMUs are to be used for the assessment of the forces 

and/or moments that could lead to injuries like ACL ruptures.  
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1.4 Summary of the Problem and Purpose of the Study 

The increase in the frequency of ACL injuries is a growing concern, and the need to be able to 

prevent them has garnered much attention in sports medicine. Most ACL injuries are non-contact 

in nature, and in some cases may be due to ligament overuse. Fortunately, if overuse is the 

reason, there is a way to prevent them through the tracking of certain kinematic/kinetic data: 

GRF, moments, and angles, especially during training and practices. While traditional methods 

have limited practical use outside the laboratory, the emergence of IMUs may be a viable on-

field approach to tracking these parameters. We propose to study soft tissue overuse injury 

mechanisms using these novel tools for identifying potentially injurious loading cycles that occur 

in adolescent athletes (predominantly female athletes) with the long-term goal of preventing this 

unintentional injury. 

 

Various studies have reported upon the correlation between linear acceleration and GRF and 

have used IMU data to estimate GRF with varying success [59-61]. However, many of these 

studies have focused on linearly modeling the relationship. Other factors, such as angular 

acceleration, skin laxity, as well as landing angle, may influence the relationship. It may be that 

the relationship between linear acceleration and experienced GRF is not purely linear, but instead 

a more complex, affected by multiple variables either directly or indirectly. Thus, the first 

purpose of our study was to develop a model that can be applied to an IMU’s data to obtain the 

magnitude GRF. 

 

While a set of adjacent IMUs can report tibiofemoral angles, such angles may be questionable. 

Because IMUs have been extensively used in rehabilitation and gait analysis, it’s hypothesized 
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that the sensor fusion algorithm’s specific parameters are tuned for these less intense activities 

and, as such, may be less accurate when employed in more dynamic ones such as sports, where 

larger changes in joint angles and velocities may occur. The widespread and proven success of 

sensor fusion algorithms is known, but it may be that certain parameters need to be fine-tuned for 

dynamic actions. Thus, the second purpose of this study was to fine-tune specific parameters of a 

sensor fusion algorithm and determine if these modified parameters demonstrate improved 

accuracy and reliability in angle measuring capabilities over those used by a sensor. 

 

The correlation between increases in valgus and/or internal rotational moments and stress 

experienced by the ACL has been noted previously. Studies have attempted to correlate IMU 

data with moments but have done so utilizing gyroscope data and single-variable, linear 

modeling [62, 63]. Examining moments in terms of rigid body dynamics states the moments are 

related to some force acting some distance from the point of rotation as well as some angular rate 

acting upon the mass moment of inertia. Therefore, a multivariable model may be needed to 

determine moments more accurately.  Furthermore, other variables such as skin laxity may also 

contribute to the relationship in live subjects. Thus, the third purpose of this study was to develop 

a mathematical model that can be applied to IMU data to obtain moments, specifically, those of 

valgus and internal rotation.  

 

The fourth and final purpose of this study was to determine if the estimates obtained for force 

and moments could be used to classify an event as either low-risk or potentially injurious. This 

ability to classify events may be crucial for injury-tracking purposes as we are not necessarily 
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concerned with the values for force/moments, but instead, if the force/moment experienced is 

sufficient to potentially be injurious or not.  

 

1.5 Dissertation Overview 

With the understanding of what we wished to achieve, we developed our study to answer several 

important scientific questions: Can linear and angular accelerations and/or angles measured at 

the lower leg and upper leg indicate ground reaction force, knee internal tibial torque, and 

flexion moment values? How can IMUs be used to identify potentially dangerous loading 

conditions in a laboratory setting in vivo? And can the fine-tuning of specific parameters in a 

sensor fusion algorithm lead to more accurate and reliable tibiofemoral angle measurements? 

The study was separated into two distinct stages, each with specific purposes and goals. Stage 1: 

Identify injurious loading cycles using a wearable IMU based on kinematic inputs of impact 

force, knee moments, and angles in an in vitro model. Stage 2: Estimate various parameters such 

as GRF and knee moments to IMU measurements and examine errors due to soft tissue motion. 

Models and algorithm parameters developed in Stage 1 were applied to Stage 2 data and 

modified to account for the effects of tissue artifact and different dynamic movements. 

Following the modification of our models, a final assessment of the practicality of our models 

and algorithm to estimate GRF, knee moments, and knee angles was examined, along with our 

ability to distinguish between low-risk and potentially injurious events. How these models may 

be implemented in the field, and possible limitations were also discussed. 
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Chapter 2: A Literature Review & Preliminary Work 

In this chapter, we examined previous works that have utilized IMUs to correlate or estimate the 

GRF, knee moments, and knee angles. A brief synopsis of each study is given, along with how 

their results informed our current work. Together with the literature review portion, a summary 

of our preliminary work on using IMUs to track high forces and knee moments in cadaveric 

specimens is presented, along with the pitfalls and limitations we determined and how we 

addressed them in this new work. 
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2.1 Estimating GRF: Mathematical Model Development 

Table 2-1 Overview of studies that have utilized IMUs to estimate GRF. The model used by each study, the fit 
between measured and estimate (R2), root mean square error (RMSE), and mean absolute percent error (MAPE) are 
presented when possible. RMSE is presented in terms of either newtons (N) or normalized via body weight (BW). 

Studies using IMUs to estimate GRF 

Study IMU Model Type R2 RMSE MAPE 

Elvin et al. 
[1] - Linear 

Regression 
(0.75, 
0.90) - - 

Meyer et al. 
[2] 

ActiGraph 
GT3X+ 

Linear 
Regression 0.62 - - 

Meyer et al. 
[2] GENEA 

Linear 
Regression 0.65 - - 

Gurchiek et 
al. [3] 

YOST Data 
Logger 3-

Space Sensor 
(SS) 

Linear 
Regression 0.24 466.3 N - 

Gurchiek et 
al. [3] 

YOST Data 
Logger 3-

Space Sensor 
(COD) 

Linear 
Regression 

0.24 600.4 N - 

Thiel et al. 
[4] SABELSense 

Multivariable 
Linear 

Regression 
0.50 - (3.29%, 

33.32%) 

Neugebauer 
et al. [5] 

BioTrainer 
AM 

Linear 
Regression 0.88  9.0 ± 4.2% 

Neugebauer 
et al. [5] 

BioTrainer 
AM MEM 0.97  5.2 ± 1.6 % 

Alcantara 
et al. [6] IMeasureU 

Multivariable 
Linear 

Regression 
- 0.14 BW 4.0 ± 2.6% 

Alcantara 
et al. [10] IMeasureU Machine 

Learning 
 0.16 ± 0.04 BW  

 

Various studies have constructed mathematical models through either linear regression 

modeling, implementation of mix effect modeling (MEM), or complex machine learning 

algorithms to predict GRF using only data that could be obtained from an IMU and have done so 
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with a wide range of correlations, though in most cases, a strong correlation was observed [1-6]. 

Studies such as those by Elvin et al. and Meyer et al. found strong correlations between IMU 

data and GRF when using linear regression modeling, but failed to report some measure of 

model accuracy, such as RMSE or MAPE [1, 2]. Without this key piece of information, it is 

unknown how close estimated forces were to measured. The use of individually developed 

models is also troublesome as it presents the potential to skew correlations toward stronger fits; 

important subject-specific parameters may have been ignored. Thus, for our study, to develop 

robust and universally applicable models, data across multiple specimens/subjects was used to 

account for potential specimen/subject variations.   

 

Gurchiek et al. and Thiel et al. also used some type of regression modeling, but reported some 

measurement of accuracy for their models, albeit correlations between their estimated and 

measured values ranged from low to moderate [3, 4]. Gurchiek et al. using linear regression 

modeling, reported low correlations and RMSE values of up to 600 N, indicating a poor degree 

of accuracy [3]. However, what makes the Gurchiek et al. study interesting is their 

implementation of change-of-direction (COD) actions. In theory, COD actions would produce 

more artifact as the directional changes would cause more soft tissue motion. Theil et al. reported 

moderate correlations and MAPE values up to 33%, illustrating poor estimated force accuracy 

[4]. However, unlike the previously discussed studies which used simple, single-variable linear 

regression, Thiel et al. used a multivariable linear regression model which assumed vertical GRF 

was a function of the IMU’s linear acceleration components, with least square coefficients of the 

model being adjusted through the number of previously recorded strides (i.e., the coefficients 
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where adjusted based on the number of steps the subject had taken) [4]. However, this study also 

had an extremely small sample size (N=3) [4].  

 

Neugebauer et al. developed a model to estimate peak vertical GRF (pVGRF) in youth gait [5]. 

The IMU sensor was placed over the iliac crest of their hip, participants were asked to perform 

several walking actions at differing speeds across a force plate-embedded floor [5]. GRF was 

modeled using a generalized regression model (GRM) as well as a MEM. MEMs can be thought 

of as a more complex version of a regression model in which interactions between terms are 

noted as well as possible grouping term effects (random effects). In both cases, they reported 

strong correlations between predicted and measured pVGRF (R2=0.97 MEM; R2=0.88 GRM) 

[5]. They also reported that when using the MEM, the MAPE between measured and predicted 

pVGRF was 5.2 ± 1.6% while that for a GRM was 9.0 ± 4.2% [5]. This may indicate that other 

variables, not directly related to GRF measurement, should be considered to account for possible 

subject variation (such as sex of subject, leg circumference, etc.). Furthermore, there was a 

significant dependence on mass as a fixed effect (predictor variable) and subject as a random 

effect (grouping variable) (p < 0.05) [5]. However, this study only used accelerometers, and thus 

could not consider the possible contribution(s) of angular motion(s) [5]. Neugebauer et al. 

factored in the speed of action as a fixed effect within their MEM and found it to be statistically 

significant (p<0.01) [5]. This study by Neugebauer et al. indicates that a more complex modeling 

technique such as MEM may be useful.  

 

In 2021, a study conducted by Alcantara et al. quantified the accuracy of a linear regression 

model to estimate GRF via sacral-mounted accelerometers across multiple running speeds [6]. In 
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this study, they used a training set (N=28) to develop the model and a testing set (N=9) to test the 

model’s validity [6]. This is crucial, as the results presented by Alcantara et al. are not subject to 

potential bias. They constructed the model using linear acceleration obtained via the IMU, 

subject’s body mass, step frequency, and running speed as predictor variables [6]. Alcantara et 

al. reported their model produced predicted values with an RMSE of 0.139 BW and a MAPE of 

4.04 ± 2.57% [6]. However, several limitations should be mentioned concerning this study, chief 

among them were the trends reported by Alcantara et al.; It was noted that the model tended to 

overestimate lower pVGRF while underestimating higher ones [6]. This may problematic if 

implementing this model on-field. However, their use of an independent testing set to test model 

validity was noteworthy and was therefore implemented throughout our study.   

 

2.1.1 Use of Neural Networks to Estimate GRF 

Recently, various studies have created neural networks, or machine learning algorithms, to 

estimate GRF via IMU data [7-11]. Neural Networks have numerous advantages over traditional 

regression modeling such as increased flexibility (due to integration of approximation functions 

in the algorithm) as well as being able to deal with nonlinear data with multiple inputs and layers 

[12]. However, disadvantages with neural networks do exist, such as an inability to quantify the 

influence of independent variables on dependent ones (the “black box” phenomenon), 

computational expense, and the dependence on the training data [12]. This latter disadvantage is 

particularly important as dependency on training data may lead to problems of over-fitting and 

generalization in which the neural network is highly tuned to the training data [12]. However, 

implementing an independent validation set may alleviate this issue of the training set 

dependence [6]. And while the “black box” phenomenon prevents us from quantifying the 
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influence of a variable, F-tests may allow us to circumvent this issue by illustrating the influence 

of a variable in estimates compared to all other variables.   

 

In 2021, Alcantara et al. again evaluated the performance of a model’s ability to estimate GRF 

but used feedforward neural networks, non-level ground running (up/downhill) conditions, and 

sacral and shoe-mounted IMUs [7]. Here, they reported an RMSE of 0.16 ± 0.04 xBW [7]. They 

also noted a proportional relationship between running speed and RMSE, with low-speed actions 

resulting in lower RMSE values [7]. This should be expected, as speed increases, the effects of 

soft tissue artifact causing noise contamination may be magnified. However, Alcantara et al. also 

noted the neural network’s inability to account for changes in impact peaks across inclines as a 

possible contributing factor to the poorer performance of their machine learning algorithm 

compared to their previously developed regression model; impact peak was a significant feature 

in their algorithms [6, 7]. The authors also mentioned that the inclusion of acceleration of the 

lower leg in the neural network may improve the accuracy of the predictions, as impact peak in 

GRF waveforms may be affected by subject-specific lower extremity kinematics, an observation 

supported by the studies conducted by Gottschall and Kram, and Vernillo et al. [7, 13, 14]. 

Several limitations were noted such as the method of attaching the IMUs to the subjects, noting 

that using tape may introduce movement artifact in the measured signal. Johnson et al. observed 

affixing IMUs to the lower leg using commercial straps produced a peak acceleration of 1.2 g 

greater than when utilizing a combination of athletic tape/elastic wrap [7, 15]. This meant we 

needed to consider the method by which our sensors were secured on a subject; both subject 

comfort as well as mitigation of sensor movement needed to be ensured. A study conducted by 

Baggaley et al. in 2019 reported that the lower leg experiences larger accelerations than the 
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sacrum (where a sensor was placed by Alcantara et al.), which may mean an increased sensitivity 

to motion artifact [16]. Other factors to consider include the placement of the IMU. Tan et al. 

found that placement/orientation error could reduce accuracy by as much as 20.8%. Therefore, a 

method to quantify sensor placement differences across subjects could be important. 

 

2.2 Estimating Moments 

Table 2-2 | Overview of studies that have utilized IMUs to estimate knee abduction/adduction moments (KAM) or 
knee rotation moments (KRM). The model used by each study, the fit between measured and estimated (R2), and 
RMSE normalized via BW and height (H) is presented.  

Studies using IMUs to estimate KAM & KRM 

Study IMU Model Type R2 RMSE 

KAM 

Favre et al. [27] Physiolog Linear Regression 0.18  

Konrath et al. [28] Xsens Awinda 
(Stair Ascent) Linear Regression 0.73 1.0% BW*H 

Konrath et al. [28] Xsens Awinda 
(Stair Descent) Linear Regression 0.55 1.4% BW*H 

Konrath et al. [28] Xsens Awinda 
(Sit-to-Stand) Linear Regression 0.96 0.6% BW*H 

Lee et al. [30] Trigno Avanti Feedforward neural 
network 0.46 17.2 ± 9.85 % 

BW*H 

KRM 

Favre et al. [27] Physiolog Linear Regression < 0.01  

Karatsidis et al. 
[29] Xsens MVN Link Linear Regression 0.67 0.2% ± 0.1% 

BW*H 

Lee et al. [30] Trigno Avanti Feedforward neural 
network 0.20 21.5 ± 11.5 % 

BW*H 
 

Numerous studies have examined the relationship between knee moments and the strain 

experienced by the ACL and found that increases in KAM and/or KRM correlate with 
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proportional increases in strain [17-20]. Because of this correlation, there has been an emergence 

of studies that have used IMU data in the development of models for KAM and KRM estimates, 

with varying degrees of success [21-24]. Konrath et al. estimated KAM using regression 

modeling and IMU data obtained from commonly performed rehabilitation activities [22]. Three 

participants were fitted with two IMUs placed on the thigh and shank and asked to perform a 

stair ascent/descent (SA/SD) as well as a sit-to-stand (StS) action. They reported a strong to very 

strong correlation between their estimated and measured values and low normalized root mean 

square errors (NRMSE) (normalized in terms of the subject’s body weight and height) (NRMSE: 

SA: 0.01; SD: 0.014; StS: 0.006) [22]. It’s important to note that this study examined only slower 

actions and not more dynamic movements such as those observed during participation in a sport 

[22] These less dynamic actions would presumably result in less soft tissue artifact and in turn 

lead to better results. Because the purpose of our study was to track potential injurious cycles on-

field, where highly dynamic actions are enacted, we needed to ensure that all testing actions were 

highly dynamic. 

 

Karatsidis et al. estimated KRM during walking using a full body inertial motion capture (IMC) 

method [23]. Strong correlations between their estimated and measured values were reported (R 

= 0.82) and an NRMSE value of 0.002 ± 0.001 BW*H [23]. While this was highly accurate, the 

use of an IMC system on-field may not be practical in a real-world application because it would 

likely hinder the performance of athletes. Within our study, optimization of the number of IMUs 

was considered such that the minimum number of IMUs was used whilst maintaining an 

estimate’s accuracy and reliability. A study by Lee et al. used machine learning to develop 

algorithms to estimate joint torques of the lower limbs during normal walking using only 
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feedforward neural networks. It was not clear whether other algorithms were considered [24]. 

Negligible fits between estimated and measured KAM and KRM were reported., with NRMSE 

values of more than 20%, illustrating poor levels of accuracy [24]. Whether this poor accuracy 

was due to the modeling method or due to the sensors they selected is unknown; within our 

study, various modeling types were examined per parameter (GRF, KAM, or KRM) as we 

theorized that different parameters may require different models. While both Lee et al. and 

Alcantara et al. found feedforward models were able to estimate GRF accurately, Lee et al. found 

them to be insufficient for KAM or KRM estimates [7, 24]. 

 

2.3 Our Previous Laboratory Work Using IMUs To Estimate Force & Moments 

In 2020, we published work correlating data obtained by an IMU to measured forces and 

moments during cadaveric testing to determine whether the selected IMUs hold the potential for 

field testing and tracking potential fatigue levels of the ACL [25]. Ten cadaveric knee specimens 

were instrumented with two wearable IMUs (APDM Opal, APDM Wearable Technologies, 

Portland, OR) and placed into a custom-built testing apparatus designed to simulate a one-legged 

landing of approximately 3-4x BW; this apparatus, which includes simulated trans-knee muscle 

forces, has been validated and used in other studies (Figure 2-1) [26, 27].  
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Figure 2-1 | Schematic of the testing rig. IMU placement and digital marker location labeled. Reproduced with 
permission.  
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Figure 2-2 | BA plots relating the average GRF to the percent difference between estimated and measured GRF for 
the linear (blue), logarithmic (yellow), exponential (green), and power (red) models. Average GRF is the average 
between measured GRF and estimated. 
 

While GRF could not be directly obtained during cadaveric testing, peak tibial force was used as 

a proxy; in theory, peak tibial force would be most like GRF [25]. Four unique regression models 

were applied to the data to obtain correlations: linear, exponential, logarithmic, and power (Table 

2-3). Given the relationship between linear acceleration and force (i.e., one that is linearly 

dependent), we understood that a linear regression model may be the most appropriate. However, 

it was theorized that other models could account for various other variables indirectly such as 

height, specimen rigidity, age, etc. [25]. Surprisingly, the power model was the only one to 

exhibit a very strong fit (R2=0.96), though strong fits were observed in the other three model 

types (Table 2-3) [25]. Similarly, the RMSE and MAPE were lowest within the power model. 

This corroborates our initial theory that the relationship between force and IMU data is not so 

simple as to be modeled via a single variable linear regression model, but instead, is more 
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complex and may require additional variables and higher order regressions. In the Bland-Altman 

(BA) plots, both the linear and exponential models exhibited upward trends; as the magnitude of 

the measured GRF increased, the percent difference increased as the IMU’s overestimations 

increased (Figure 2-2) [25]. This trend is particularly important for injury tracking as it may lead 

to greater instances of false positives. No discernable trends were observed in either the power or 

logarithmic models (Figure 2-2) [25].   

 

Table 2-3 | Results of our preliminary work in using an IMU to estimate GRF, KAM, and KRM. The model types 
used, the fit between measured and estimated (R2), RMSE, and MAPE are presented.  

Results of our preliminary work 

Model Type R2 RMSE MAPE 

GRF 

Linear 0.88 86.9 N 6.49% ± 4.81% 

Exponential 0.87 140 N 9.04% ± 9.13% 

Power 0.96 76.4 N 6.46% ± 3.30% 

Logarithmic 0.89 83.5 N 7.25% ± 3.49% 

KAM 

Linear 0.44 3.60 Nm 36.7% ± 28.8% 

Multivariable Linear 0.65 2.93 Nm 35.5% ± 32.7% 

KRM 

Linear 0.78 13.5 Nm 16.4% ± 14.0% 

Multivariable Linear 0.45 5.10 Nm 7.05% ± 4.40% 
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Comparing IMU data to measured KAM a moderate fit level was reported when using 

multivariable first-order regression modeling (R2=0.65) (Table 2-3) [25]. While fitting a similar 

model to KRM resulted in a low fit level (R2=0.45), the implementation of a single variable 

linear regression in which only angular velocity about the vertical axis was considered, saw a 

strong fit level (Table 2-3) (R2=0.78). However, while fit levels are important in determining 

possible relationships, in both KAM and KRM, the use of the multivariable first-order regression 

model resulted in smaller RMSE and MAPE values, indicating a greater degree of accuracy 

(Table 2-3) [25]. Bland-Altman (BA) plots showed that the multivariable first-order regression 

model resulted in more trials falling within the preestablished ±10% Bland Altman Limits of 

Agreement (LoAs) for both KAM and KRM estimates, thus, illustrating a better degree of 

reliability (Figure 2-3). However, in both cases, clear trends were observed in KAM and KRM 

estimates – as the moment decreased in magnitude, variation between measured and estimated 

values increased (Figure 2-3).  
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Figure 2-3 | BA plots relating the average KAM or average KRM to the percent difference between estimated and 
measured KAM or KRM. Average KAM/ KRM is the average between measured KAM/KRM and estimated. 
 

2.3.1 Previous pitfalls To Be Avoided 

We acknowledge several limitations in our preliminary work, which may have influenced our 

results or their application to future endeavors. Among these limitations is our exclusive use of 

in-vitro models, which omit soft tissue motion that could affect the coupling of the sensor to a 

body segment in vivo. We also did not have two independent data sets to develop the equations 

first and then test the accuracy and reliability of our models when applied to new data; this may 

mean the preliminary models skew toward higher accuracy and reliability. Limitations of the rig 

prevented observing actions that were not jump-landings; this may mean these models do not 

apply to events beyond this particular action. Furthermore, our preliminary work exclusively 

observed high-loading cycles. While our goal is to identify high-loading conditions by using 

IMU data, we must also be able to distinguish between low-loading (low injury risk) and those 

that carry some potential for ACL damage; we can accomplish this by observing multiple 
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loading condition intensities and develop the models accordingly. All models developed within 

our preliminary work are simple, and while we were able to obtain high accuracy and reliability, 

their simplicity may mean they are insufficient for on-field event tracking. The quadriceps 

tendon freezing cycle also potentially hindered our results; with no set number of trials between 

freezings, we used our best judgment to determine whether the tendon thawed, thus opening our 

testing to inconsistencies between “groups” (tests between subsequent freezings), as the thaw 

level of the tendon may have varied. The lower sampling rate of the sensor may have led to 

missed information and potential aliasing.   
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2.4 Estimating Angles from IMUs 

Table 2-4 | Overview of studies that have compared IMU obtained angles to those of a MCS. The method through 
which IMU angles were obtained, the fit between IMU and MCS angles (R2) and the RMSE is presented when 
possible. Note: the results of Zügner et al. were presented in terms of interclass correlation (ICC). 

Studies comparing IMU-obtained angles to an MCS 

Study IMU Method R2 RMSE 

Tong et al. [112] ENC-05EA 

Integration 
& 

Inclination 
Subtraction 

0.86 6.42° 

Watanabe et al. [111] 
WAA-006 
Wireless 

Technologies 
Integration  (3.00°, 

4.00°) 

Bakhshi et al. [113] SparkFun 
Electronics Integration   

Bell et al. [115] 
3-Space Bluetooth 

Sensor 
Yost Labs 

Sensor Fusion 
Algorithm 

 (2.00°, 
2.90°) 

Zügner et al. [114] GaitSmart Sensor Fusion 
Algorithm 

  

Ajdaroski et al. [116] APDM Opal 
(Flexion) 

Sensor Fusion 
Algorithm 0.34 8.11° 

Ajdaroski et al. [116] APDM Opal 
(Abduction) 

Sensor Fusion 
Algorithm 0.08 4.61° 

Ajdaroski et al. [116] APDM Opal 
(Rotation) 

Sensor Fusion 
Algorithm 0.24 4.60° 

 

Various studies have calculated joint angles, particularly those of the knee, through IMU-derived 

data [28-35]. However, the focus of many of these studies has been on examining differences in 

flexion angles; possibly due to the knee flexion angle exhibiting the largest change during an 

action, and subsequently easiest to measure reliably. But while that may be the case, it precludes 

the potential effects that knee abduction and rotational angles may play in knee injuries, 

specifically, in ACL injuries. Many studies have proposed there is a correlation between ACL 
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strain and the abduction/adduction and rotational orientation of the joint [18-20, 36-40]. Because 

of this possible correlation, to improve knee injury tracking, it is important to estimate all three 

tibiofemoral angles. Furthermore, the method by which joint angles are determined through 

IMUs also varies widely from study to study, with some integration of angular rates while others 

used Euler angles. 

 

Studies such as those by Watanabe et al., Tong et al., and Bakhshi et al. have calculated knee 

joint angles by integrating angular rates, though without the conversion to Euler angles and 

limiting themselves to only determining flexion angles [30-32]. This process may be problematic 

as angles obtained do not describe the orientation of the joint with respect to a fixed coordinate 

system, but rather to some arbitrary coordinate system. As such, each study’s estimated angles 

may not represent the knee’s true orientation, and comparisons between estimated and MSC-

measured values may not be accurate. However, these studies have shown their methods to be 

accurate in knee flexion estimates as the least accurate of these studies (Tong et al.) 

demonstrated a low RMSE value (RMSE of 6.4°) [31]. These studies observed actions associated 

with rehabilitation and would not necessarily translate to more dynamic actions. Various studies 

have noted the potential effects soft tissue artifact may have on the validity of results [41-43].   

 

Bell et al. and Zügner et al. compared angles estimated via a sensor’s proprietary sensor fusion 

algorithm (Euler angles) and those of an MCS [33, 34]. In the study by Bell et al., the range of 

RMSE values between estimated and measured knee flexion angles were low (RMSE between 2° 

and 2.9°) [34]. While this shows high accuracy for flexion angle estimates, neither the accuracy 

for abduction/adduction nor rotational estimates were reported. For Zügner et al., while RMSE 
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values were not examined, ICC was determined as well as the statical significance in the 

difference between estimated and measured angles [33]. Zügner et al. reported that they found no 

significance in the mean difference between estimated and measured knee flexion angles (p=0.7) 

and determined, a high ICC was observed (ICC>0.8) [33]. Because they did not report RMSE, it 

is not possible to determine the accuracy of these angle estimates. Mean difference comparisons 

and ICC compare data sets as groups, and as such, mitigate the effects of gross differences; if the 

algorithm over- and underestimates angles similarly, the mean difference would be relatively 

small, and could be misleading as to the performance of an algorithm. Approaches such as 

RMSE or MAPE remove this pitfall and may be much better indicators of accuracy.  

 

In a previous study performed using APDM OpalTM IMUs, highly dynamic activities (jumps) 

were observed in all three knee angles [44]. A moderate relationship between the IMU and MCS 

was reported when examining flexion/extension at pVGRF (R=0.58), while those of 

abduction/adduction and internal/external rotation were low to negligible. It was concluded that 

for both abduction/adduction and rotation, the APDM OpalTM algorithm was able to perform 

well under certain conditions, particularly those of smaller angle displacements, and experienced 

greater variability as the magnitude of the measured angle increased [44]. This trend in 

abduction/adduction and internal/external rotation may mean that the sensor fusion algorithm of 

APDM OpalTM may be tuned toward smaller angle measurements; this is understandable given 

the use of IMUs in rehabilitation where small angles are common. Thus, this allowed us to pose 

the hypothesis that commercially available IMUs employ sensor fusion algorithms that may not 

necessarily be accurate when used in more dynamic activities such as sports, where larger 

changes in joint angles, angular velocities, and linear accelerations occur and that a new 
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algorithm, tuned for these activities, is needed. However, we should note that increases in 

abduction movements/orientation may the result of injury and not the cause of it.  

 

2.5 Literature Review Summary  

As stated at the beginning of the chapter, a review of other studies that have utilized IMUs for 

the tracking of knee kinematic/kinetics becomes central, as each study gives important insight 

into potential modeling techniques, methods of data collection, and significant parameters that 

could be considered in model development. Particularly, each study helped in narrowing down 

the potential parameters to be considered, as we could only use those that could be quantified 

during on-field usage from data obtained solely from the IMU. This meant that parameters such 

as step count could not be considered. Also, from the studies, we saw that across most cases, 

multi-variable models (models of increased complexity) provided better overall correlations and 

lower RMSE values, however, there is a delicate balance; as model complexity increases there is 

also an increase in the likelihood of training data dependence, something we considered carefully 

throughout our study. For GRF, multiple studies reported moderate to strong correlations with 

IMUs. Our previous work also showed there to be a strong correlation, and smaller RMSE and 

MAPE values demonstrated the possibility that a commercially available IMU can estimate force 

from inertial data. KAM and KRM estimates proved slightly more difficult, as most studies 

found there to be only moderate or poor correlations. While we found implementing a linear 

regression model to KRM allowed for a strong correlation between estimated and measured, an 

additional examination into possible ways to estimate KAM/KRM accurately and reliably is 

needed. It may be that the modeling techniques employed by various studies were insufficient, 

and terms of importance were not considered. Previous studies tended to focus on flexion and 
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ignored abduction/adduction and rotation. Because of our focus on injury prevention, our 

emphasis is on ab/adduction and rotational angle measurements.  

 

In the following chapters, we will present the results of this current study, beginning with Stage 

1: the development of in vitro models. This will begin with examining work where the goal was 

to tune a quaternion conversion (QC) method for calculating the three orthogonal knee angles 

during the high velocities associated with a jump landing using commercially available IMUs. 

We then developed models using IMU data to estimate key parameters that could identify 

possibly injurious loading cycles to the ACL. Following this, we examined our results in Stage 1 

and applied this to human subjects’ data to develop potential modifications that may reduce the 

effects of soft tissue artifact and account for a variety of dynamic movements that could not be 

replicated in vitro. Following this, the final comment on the practical use of our findings, 

possible pitfalls, future directions, and considerations is presented. 
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Chapter 3: Testing a Quaternion Conversion Method to Determine Human 3D 

Tibiofemoral Angles During an In Vitro Simulated Jump Landing 

This chapter is published in the ASME Journal of Biomechanics and should be referred to as: 

M. Ajdaroski, J. A. Ashton-Miller, S. Y. Baek, P. M. Shahshahani, and A. Esquivel, 
"Testing a Quaternion Conversion Method to Determine Human 3D Tibiofemoral Angles 
During an in Vitro Simulated Jump Landing," (in eng), J Biomech Eng, Sep 22, 2021, 
doi: 10.1115/1.4052496. 

 

3.1 Abstract 

Lower limb joint kinematics have been measured in laboratory settings using fixed camera-based 

motion capture systems; however, recently IMUs have been developed as an alternative. The 

purpose of this study was to test a QC method for calculating the three orthogonal knee angles 

during the high velocities associated with a jump landing using commercially available IMUs. 

Nine cadaveric knee specimens were instrumented with APDM Opal IMUs to measure knee 

kinematics in one-legged 3-4x BW simulated jump landings, four of which were used in 

establishing the parameters (training) for the new method and five for validation (testing). We 

compared the angles obtained from the QC method to those obtained from a commercially 

available sensor and algorithm (APDM Opal) with those calculated from an active marker 

motion capture system. Results showed a significant difference between both IMU methods and 

the motion capture data in most orthogonal angles (p<0.01), though the differences between the 

QC method and Certus system in the testing set for flexion and rotation angles were smaller than 

the APDM Opal algorithm, indicating an improvement. Additionally, in all 3 directions both the 
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limits of agreement and root mean square error between the QC method and the motion capture 

system were smaller than between the commercial algorithm and the motion capture. 

 

3.2 Introduction 

Over the last 20 years in the United States, the rate of ACL tears in young athletes has seen an 

annual increase of 2.3%, accounting for nearly half of all knee injuries [1, 2]. Additionally, 

young female athletes sustain ACL injuries at a higher rate, with anatomic, hormonal, and 

biomechanical differences between the sexes being potential risk factors [3-6]. While anatomical 

and hormonal factors are not easily modifiable, identifying and modifying the biomechanical 

factors may be possible. ACL tears are generally divided into two categories: contact or non-

contact in nature, with the latter defined as involving no direct contact with another player or 

equipment. These non-contact ACL injuries can be caused by a singular event (an acute failure), 

but recently repetitive, high stress- and strain-inducing activities have also been shown to lead to 

non-contact ACL injuries (a material fatigue failure) [7].  

 

The majority (75%) of reported ACL injuries are non-contact injuries [8, 9]. In one injury 

scenario, the knee is externally rotated with a slight flexion and a slight valgus angle at the time 

of injury [3, 10]. It has been theorized that once these conditions are met and the ground reaction 

force is applied across the knee, a powerful quadriceps contraction can cause sufficient anterior 

displacement of the tibia relative to the femur that increases ACL strain above its injury 

threshold [3, 10].  So, the magnitudes of the ground reaction and quadriceps forces, along with 

the 3D tibiofemoral angles are important factors [3, 11]. 
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Traditionally, lower limb joint kinematics have been observed in laboratory settings using fixed 

camera-based motion capture systems; however, in recent years wearable sensors worn on 

selected body segments have been developed as an alternative and employed in various 

applications such as gait analysis and rehabilitation assistance [12-18]. One type of wearable 

sensor, an IMU, consisting of 3 orthogonal accelerometers, rate gyroscopes, and magnetic field 

sensors, provides direct measures of body segment linear acceleration, angular velocity, and 

magnetic field strength. Additionally, 3D joint angle kinematics can be determined through 

methods similar to those of camera-based systems and have been evaluated and confirmed in 

previous studies [16, 19]. IMUs provide the opportunity to monitor joint kinematics in real-world 

settings.  

 

A commercially available IMU, APDM Opal (APDM Wearable Technologies, Portland, OR), 

uses a proprietary sensor fusion algorithm, whereby the orientation of the device can be tracked 

in inertial space. The algorithm uses knowledge of its dynamics to propagate the orientation 

changes based on gyroscope data and fuses the estimate with orientation estimates determined 

through its accelerometer and magnetometer information, thereby determining the orientation of 

the sensors in space. However, because this algorithm was developed for gait analysis, we 

hypothesized that it may not necessarily be accurate when used in more dynamic activities such 

as sports when larger changes in joint angles, velocity, and acceleration occur. So, the purpose of 

this study was to develop an algorithm to calculate the 3D tibiofemoral angles and compare those 

calculated angles as well as those obtained through the APDM fusion algorithm, to those from a 

standard motion capture system at a specific moment in time. Our goal was to determine if the 

new algorithm demonstrated improved accuracy and reliability in the ability to measure angles 
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during more dynamic activities. Improvements in the ability to measure tibiofemoral angles 

accurately and reliably during dynamic actions could be vital in identifying and tracking 

potentially injurious loading cycles during on-field activities and help prevent catastrophic 

failures such as ACL ruptures.  

 

3.3 Materials and Methods 

3.3.1 Subjects and Instrumentation 

Nine cadaveric knee specimens were used for this study (Table 3-1). Each specimen was 

dissected leaving the ligamentous capsular intact as well as the muscle tendons of the quadriceps, 

hamstrings, and gastrocnemius. After dissection, the distal tibia/fibula and proximal femur were 

cut to a standard length of 20 cm from the center of the knee joint, then potted in 

polymethylmethacrylate cylinders. Once prepared, each specimen was rigidly fixed in a custom-

built testing rig that was designed to simulate a one-legged jump landing of 3x-4x bodyweight 

(Figure 2-1). This testing rig, which includes simulated trans-knee muscle forces, has been 

validated in previous studies [20, 21]. 
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Table 3-1 | Specimen Demographics. The total number of testing trials denotes how many trials the specimen was 
able to undergo before failure occurred, while trials analyzed consist of all trials in which refreezing of the tendon 
clamps was not performed nor any other noted deviations from the normal testing procedures occurred. 

 

A Certus optoelectronic tracking system (Optotrak Certus; Northern Digital Inc, Waterloo, 

Ontario, Canada) was used to track the changes in 3D tibiofemoral angles during the jump 

landing. A total of 20 Certus markers were used. Two sets of 3 “real” markers (physical markers 

affixed to a rigid body) were placed on the tibial and femoral load cells. An additional 14 

“imaginary” markers were used that represented the anatomic landmarks of the knee being 

tested. This allowed for the capture of tibiofemoral kinematics such as 3D translation and 

rotation of the tibia with respect to the femur. The use of a 3D digitizing wand allowed for the 

defining and tracking of each imaginary marker. The sampling rate for the Certus system was set 

to 2 kHz. An APDM Opal sensor was rigidly attached to the medial aspect of the mid-tibia and 

another to the lateral aspect of the mid-femur using Co-flex bands and elastic ties (Figure 2-1). 

Demographics of the Specimens Used in the Testing Algorithm 

Specimen # Sex Age Side Weight (kg) Total Testing 
Trials 

Trials 
Analyzed 

1 F 20 L 86.6 100 80 
2 M 32 R 68.0 100 96 
3 M 32 R 88.4 100 98 
4 M 25 R 86.2 100 96 
5 M 33 R 49.9 100 96 

 
Demographics of Specimens Used for Determining QC Method Parameters 

Specimen # Sex Age Side Weight (kg) Total Testing 
Trials 

Trials 
Analyzed 

6 M 39 L 54.4 100 96 
7 F 30 R 82.1 53 50 
8 M 29 R 74.8 100 96 
9 F 28 R 63.5 100 98 
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The sampling rate for the APDM Opal sensors was 256 Hz but was expanded through linear 

interpolation to have a sampling rate of 2048 Hz to compare with the Certus system.   

 

3.3.2 Testing Procedure 

Before testing began, the IMU sensors were calibrated through the predefined calibration 

conditions used by the Moveo Mobility software developed by APDM. This initialization 

process was used by the software to establish initial conditions and minimize the influence that 

drift may have on data validity. Once initialized, the sensors continuously recorded data. After 

initialization, the quadriceps, hamstring, and gastrocnemius muscles were pre-tensioned to 180 

N, 70 N, and 70 N, respectively, the initial knee angle adjusted to 15 degrees, and clamped 

securely in place with mechanical grips cooled by liquid nitrogen. This last step had to be 

repeated periodically throughout the testing, so knee angle and muscle tensions were recorded 

before each test and adjusted back to the above values, if necessary.  

 

Drop height and weight were adjusted to match the target tibial ground reaction impact force of 

4x BW (for larger specimens, this was reduced to 3x BW so as not to exceed test rig capacity). 

Once established, impacts were initiated by releasing a large weight to impact the distal end of 

the tibial load cell (Figure 2-1) guided via two parallel linear bearings. At least 5 preconditioning 

trials were conducted before the activation of the tibial torsional device to allow for any 

adjustments and potential uncrimping of collagen fibers. The tibial torsional device allowed for 

some of the impact force to be converted to internal tibial torque, as can happen in a live subject 

when the ground reaction causes internal tibial rotation at the knee [20, 21]. After the activation 

of the tibial torsional device, each specimen was subjected to up to 100 trials or until knee failure 
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occurred, clinically defined as anterior tibial displacement above 3 mm. Peak impact force was 

typically reached around 70 ms, so each trial consisted of 200 ms of data.  

 

3.3.3 Data Analysis 

In this study, we compared changes in tibiofemoral flexion, abduction, and internal rotation 

angles at peak impact with the three measurement modalities: 1) the Certus measurements which 

we considered the ‘gold standard’ for this study, and APDM wearable sensors - 2) using their 

proprietary algorithm and 3) our proposed algorithm. It was assumed that maximum vertical 

linear acceleration as measured by the APDM Opal sensors occurred at the same time as the 

maximum vertical force as measured by the Certus system. This assumption was made based on 

previous studies that showed a strong correlation between ground reaction force and linear 

acceleration [22]. 

 

3.3.4 Calculating the Euler Angles 

A nine-axis indirect Kalman filter using the quaternion conversions of the IMU accelerometer, 

gyroscope, and magnetometer data was used in this study. This process is detailed at greater 

length in the paper by Stanley et al. [23]. Briefly, data were filtered using a fourth-order, zero-

lag, low-pass Butterworth filter. The optimum cutoff frequency for the Butterworth low-pass 

digital filter was obtained by applying Winters’ method to the sum squared difference between 

the unfiltered data and filtered data at a given frequency lying within the range of 1 ≤ x < 

!"#$%&'(	*"+,
-

, divided by the sum squared difference between unfiltered data and the unfiltered 

mean; this process is outlined further by Yu et al. [24]. Average optimal cutoff frequencies were 

determined as: 12 Hz for the accelerometer (X=19 Hz; Y=11 Hz; Z=7 Hz); 20 Hz for the 
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gyroscope (X=10 Hz; Y=42 Hz; Z=9 Hz); and 8 Hz for the magnetometer (X=5 Hz; Y=10 Hz; 

Z=10 Hz). After filtering, a predicted orientation, v&, for the current frame from the angular 

change of the previous frame, v&./, was obtained and subsequently converted to a quaternion 

such that: 

 v& = R&0H⨂v&./ (3-1) 
   

where R&0H is a rotation matrix from the inertial frame to the body frame using quaternion 

elements. Initially, the predicted orientation was estimated to be north-east-down (NED). 

Additionally, the previous orientation estimate q., was updated by rotating it by v& such that: 

 q. = q1((v')
&

'2/

 (3-2) 

   
Using the quaternion conversions, estimations of gravitational and magnetic field measurements 

were obtained using the linear acceleration and angular velocity. These estimates were used to 

correct the gravitational and magnetic field data obtained by the previous orientation and 

magnetometer. These corrected estimates became the innovation, y3, for the indirect Kalman 

filter. As mentioned by Stanley et al., the indirect Kalman filter attempts to track errors rather 

than orientation as the data is updated through a recursive process [23]. Additionally, because the 

process is recursive, the a priori estimates of the error process and the state transition models are 

always zero [23]. Therefore, the Kalman equations utilized in this study were reduced to: 
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 P3. = Q3 (3-3) 
   
 S3 = R3 − H3P3.H34 (3-4) 
   
 K3 = P3.H34(S3)./ (3-5) 
   
 x31 = K3y3 (3-6) 
   
 P31 = P3. − K3H3P3. (3-7) 
   

where S3 is defined as the innovation covariance, R3 is the covariance of the observation model 

noise, H3 is the observation model, P3. is the predicted estimate covariance, K3, is the Kalman 

Gain, P31 is the updated estimate covariance, and x31 is the a posteriori state estimate. The a 

posteriori state estimate’s orientation was corrected by the previous estimation such that: 

 q31 = (q3.)(x31) (3-8) 
   

Because the orientation was still in quaternion format, subtraction of the data from two adjacent 

segments is mathematically valid. Therefore, the data attributed to the tibial IMU sensor was 

subtracted from the femoral IMU sensor. The resulting values were then converted into Euler 

angles through: 

 ϕ = 	atan272(q/q- + q-q5), 1 − 2(q-- + q5-); (3-9) 
   
 θ = asin72(q/q5 − q6q-); (3-10) 
   
 ψ = 	atan272(q/q6 + q-q5), 1 − 2(q5- + q5-); (3-11) 
   

where ϕ is the internal/external rotation, θ is the valgus/varus angle, and ψ is the 

flexion/extension angle [25]*. 

 

 
* Amended from original published manuscript 
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3.3.5 Establishing the Parameters 

The covariance of the observation model noise, R3, as well as the predicted estimate covariance, 

P3., consisted of several parameters unique to a sensor. These unique parameters included 

accelerometer noise (variance of accelerometer signal noise), linear acceleration noise (variance 

of linear acceleration noise; akin to gyroscope drift noise), gyroscope drift noise (variance of 

gyroscope offset drift), gyroscope noise (variance of gyroscope single noise), magnetic 

disturbance noise (variance of the magnetic disturbance noise), magnetometer noise (variance in 

the magnetometer signal noise), linear acceleration decay factor (decay factor for the linear 

acceleration), and magnetic disturbance decay factor (decay factor for the magnetic disturbance) 

[23]. APDM Opal documentation provided the values associated with accelerometer noise, 

gyroscope noise, and magnetometer noise. The parameters of gyroscope drift noise, linear 

acceleration noise, and magnetic disturbance noise were not detailed by the documentation, and 

instead default values based on the FRDM-FXS-Multi family of sensor boards (as used by the 

Freescale Toolbox of MATLAB) were used. The use of these default values was implemented 

due to the potential value ranges being theoretically infinite such that a process of trial and error 

would not be possible. Linear acceleration decay factor (LADF) and magnetic disturbance decay 

factor (MDDF) were unknown parameters that could be adjusted as their theoretical values 

ranged from 0 to 1. Therefore, of the nine specimens in this study, four were selected to establish 

the values of these parameters (training set) (Table 3-1). A trial-and-error approach was taken 

where adjustments to the LADF and/or MDDF were performed to minimize the difference in 

maximum angle between the QC method and the Certus system. These adjustments were 

performed on each of the three orthogonal angles resulting in 3 unique LADF and 3 unique 

MDDF values per specimen. An average for both LADF and MDDF was determined and used 
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when calculating the angles of the remaining five specimens (testing set). A trial-and-error 

approach was used as it requires no assumed knowledge of the system and allows for the 

determination of some valid working solution. MATLAB scripts were used to calculate 

specimen angles using the QC method for both the training set and testing set 

(MATLAB_R2019b; MathWorks, Natick, MA). 

 

3.3.6 Statistical Analysis 

Since the intermittent freezing of the patellar ligament clamp led to significant changes in linear 

acceleration and angular velocity and had the potential to affect the mechanical properties of the 

specimen immediately post-freezing, these trials were omitted from any analysis. A repeated 

measures ANOVA with a pairwise comparison was performed on both training and testing 

specimen sets to determine whether there was a difference between the QC method and the 

Certus data, the QC method and the APDM algorithm, and the APDM algorithm and the Certus 

data (IBM SPSS Statistics v 24.0). A Bonferroni correction was used to correct for multiple 

comparisons. Differences were considered significant if p < 0.05. LoA were constructed for the 

testing specimen set to examine each method’s reliability; lower LoA values indicated a better 

degree of reliability [26]. Linear mixed effect models for both sets were constructed where the 

angle as measured by Certus was a linear function of the IMU angles (the QC method or the 

APDM algorithm) with a random intercept per specimen. The root mean square of the residuals 

of the linear mixed effect model was used as the RMSE between Certus and one of the IMU 

angle methods.  

 



 55 

3.4 Results 

The angles of interest were those that occurred at maximum vertical tibial force (Certus system) 

or at maximum vertical tibial linear acceleration (APDM Opal and QC method) during the 

simulated jump ‘landing’. Figure 3-1 illustrates the representative signals measured by the three 

systems as well as the timestamp of the angle of interest. The APDM Opal algorithm exhibited a 

phase lag, whereby the peak angle appeared later than the peak angle of either the Certus system 

or the QC method.  
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Figure 3-1 | Average time histories of the three orthogonal knee angles as measured by APDM algorithm (red 
curve), Certus (black curve), and QC method (blue curve) for a single knee specimen for (a) flexion, (b) abduction, 
and (c) rotation. The vertical green line indicates the time of the peak impact force. Note that the APDM algorithm 
(red) exhibited a phase lag relative to the Certus data and QC method. 
 

3.4.1 Training Set 

There was a significant difference in all three angles between the Certus and APDM Opal 

algorithm. The training set showed a mean difference in flexion/extension between the Certus 
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system and APDM Opal algorithm of 0.9° (95% CI: 0.6° to 1.2°)) (Table 3-2). For 

abduction/adduction, a mean difference of -1.1° (95% CI: -1.1° to -0.5°) between the Certus 

system and APDM Opal algorithm was observed, while the mean difference between the Certus 

system and the QC method was 0.2° (95% CI: 0.1° to 0.3°) (Table 2). The mean difference in 

rotation between the Certus system and the APDM Opal algorithm was 2.7° (95% CI: 2.1° to 

3.3°) (Table 3-2). In each case both the LoA and RMSE associated with the QC method vs. 

Certus were observed to be smaller, indicating an increase in accuracy and reliability when using 

the QC method (Table 3-3). 
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Table 3-2 | Values of the pairwise comparison analysis performed for (a) flexion, (b) abduction, and (c) rotation in 
degrees. Mean (SD) and 95% confidence interval (CI) are based on the difference in angle measurement between 
compared systems for specimens in the training algorithm set (left) and for those in the testing algorithm set (right). 
*Statistically significant p<0.05 

Repeated Measures ANOVA with Pairwise Comparison 
  Training Set Testing Set 

 Comparison Mean Diff. 
(SD) 95% CIa 

Mean 
Diff. 
(SD) 

95% CIa 

Flexion 

Certus v 
APDM 

algorithm 
0.9° (2.8°)* (0.6°, 

1.2°) 
2.5° 

(0.2°)* 
(1.9°, 3.1°) 

Certus v QC 
Method -0.1° (0.9°) (-

0.2°,0.0°) 
-0.7° 

(0.1°)* (-1.1°, -0.4°) 

QC Method v 
APDM 

algorithm 
-0.8° (2.8°)* (-1.1°, -

0.5°) 
3.2° 

(0.3°)* (2.6°, 3.8°) 

      

Abduction 

Certus v 
APDM 

algorithm 
-1.1° (2.8°)* (-1.4°, -

0.8°) 
-4.1° 

(0.1°)* (-4.3°, -3.9°) 

Certus v QC 
Method 0.2° (0.7°)* (0.1°, 

0.3°) 
-1.2° 

(0.1°)* (-1.4°, -1.0°) 

QC Method v 
APDM 

algorithm 
0.9° (2.7°)* (0.7°, 

1.2°) 
-2.9° 

(0.1°)* (-3.2°, -2.6°) 

      

Rotation 

Certus v 
APDM 

algorithm 
2.7° (5.9°)* (2.1°, 

3.3°) 
6.7° 

(0.4°)* (5.8°, 7.6°) 

Certus v QC 
Method 0.1° (1.5°) (-0.1°, 

0.2°) 
1.0° 

(0.2°)* (0.6°, 1.4°) 

APDM 
algorithm v 
QC Method 

-2.8° (5.9°)* (-3.4°, -
2.2°) 

5.7° 
(0.4°)* (4.8°, 6.5°) 

a. Adjustment for multiple comparisons: Bonferroni 
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Table 3-3 | Comparison of the calculated knee angles between IMU-based methods (APDM Opal or QC Method) 
and the Certus motion capture system for specimens in the training algorithm set (left) and for those in the testing 
algorithm set (right). 

Comparison of IMU Methods to Certus Values 
  Training Set Testing Set 
 Comparison RMSE LoA RMSE LoA 

Flexion 

Certus v APDM 
algorithm 1.0° (-6.3, 4.6) 3.1° (-12.1°, 

7.0°) 
Certus v QC 

Method 0.7° (-1.9, 1.8) 2.6° (-4.5°, 
5.8°) 

 

Abduction 

Certus v APDM 
algorithm 2.0° (-4.4, 6.7) 1.1° (0.2°, 8.0) 

Certus v QC 
Method 0.7° (-1.3, 1.7) 0.8° (-2.1°, 

4.4°) 
 

Rotation 

Certus v APDM 
algorithm 

3.4° (14.2, 8.8) 6.0° (-22.5°, 
9.2°) 

Certus v QC 
Method 1.5° (-2.9, 3.1) 2.4° (-8.6°, 

6.6°) 
 

3.4.2 Testing Set 

There was a statistically significant difference between the Certus measurements and both the 

QC Method and APDM Opal algorithm for all three angles. There was a mean difference in 

flexion/extension of 2.5° (95% CI: 2.0° to 3.1°) between the Certus system and APDM Opal 

algorithm while the mean difference between the Certus system and the QC method was -0.7° 

(95% CI: -1.1° to 0.4°) (Table 3-2). For abduction/adduction, the mean difference between the 

Certus system and APDM Opal algorithm was -4.1° (95% CI: -4.3° to -3.9°) while the mean 

difference between the Certus system and the QC method was -1.2° (95% CI: -1.4° to -1.0°) 

(Table 3-2). For rotation, the mean difference between the Certus system and APDM Opal 

algorithm was 6.7° (95% CI: 5.8° to 7.6°) while the mean difference between the Certus and the 

QC method was observed to be 1.0° (95% CI: 0.6° to 1.4°) (Table 3-2). 
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The Bland-Altman plot for flexion/extension of APDM algorithm vs. Certus cases showed a 

downward trend, indicating that the APDM algorithm method tended to overestimate the angle at 

lower angles and underestimate it at higher ones while no such trend was observed in the QC 

method vs. Certus (Figure 3-2a). Most trials for the APDM algorithm vs. Certus fell below the 

zero-difference line, indicating a tendency for underestimation while QC Method vs. Certus 

demonstrated a tendency for overestimation. For abduction/adduction, both the APDM algorithm 

vs. Certus and QC method vs. Certus showed a downward trend, however, the trend associated 

with the QC method vs. Certus was less pronounced (Figure 3-2b). Both APDM vs. Certus and 

QC Method vs. Certus exhibited most trials above the zero-difference line indicating a tendency 

for underestimation of the Certus absolute angle, though APDM algorithm vs. Certus exhibited a 

greater propensity (3.4% vs. 23.0%).  In the Bland-Altman plot for rotation, both the APDM 

algorithm vs. Certus and QC method vs. Certus showed similar downward trends with both 

exhibiting most of their trials falling below the zero-difference line indicating a tendency of 

underestimation in both methods (Figure 3-2c). Though again, the APDM algorithm vs. Certus 

exhibited a greater propensity for underestimation (79.4% vs. 63.4%). Additionally, in each case, 

both the LoA and RMSE associated with the QC method vs. Certus were observed to be smaller 

than the opal algorithm, indicating an increase in accuracy and reliability when using the QC 

method and the training set LoA and RMSE were lower than the testing set. (Table 3-3) 
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Figure 3-2 | Bland-Altman plot associated with the difference between the (a) flexion, (b) abduction, and (c) rotation 
angles using the QC method and Certus (left), and the APDM algorithm and the Certus system (right). The colors 
represent different knee specimens. The y-axis shows the difference in the measured angle. 



 62 

3.5 Discussion 

The purpose of this study was to determine whether the QC method could provide improved 

accuracy and reliability measurements of the changes in 3D knee angles during a dynamic 

activity consisting of a jump landing. In this study, we observed that across all cases and 

specimen sets, the QC method produced smaller differences than the APDM algorithm when 

compared to the ‘gold-standard’ Certus motion capture system. Although in the majority of 

cases, the difference between the QC method and Certus was statistically significant (p < 0.01), 

the mean difference for flexion (-0.7°) and rotation (1.0°) in the testing set between the two 

systems is clinically insignificant. For example, a review paper that examined the difference in 

knee flexion angles during documented ACL tears in male and female athletes reported 

differences in 10°-21.7° in knee flexion between injured and uninjured athletes and a laboratory 

study found a correlation of increased abduction angle of 8° in female athletes who went on to 

injure their ACL [27, 28]. Only the mean difference between the QC method and Certus for 

flexion (-0.1°) and rotation (0.1°) in the training set were observed as not being statistically 

significant, though this may be due to the algorithm being overly tuned for the training set. 

Furthermore, in every instance, the RMSE values associated with the difference between the QC 

method and the Certus system were smaller than those for the APDM algorithm, with the largest 

difference occurring in the testing set for rotation (2.4° compared to 6.0°). In every case the LoA 

associated with the difference between the QC method and the Certus system was smaller than 

those of APDM Opal, indicating a smaller range in differences and a better degree of reliability. 

A particular point of interest is the observation that the APDM Opal algorithm exhibited a phase 

lag compared to the Certus system, whereas the QC method did not (Table 3-2). This was also 

observed by Takeda et al. where a phase lag in peak flexion angle between the IMU and camera 
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system is visible [29]. Takeda et al. attributed this phase lag in their study to the use of a moving 

average filter to remove noise from the raw acceleration and angular velocity data [29]. 

 

Several studies have calculated joint angles using IMU sensors and compared the results to those 

from a motion capture system [29-32]. However, most focus has been on examining differences 

in knee flexion, the knee angle that exhibits the largest change. While determining an IMU’s 

ability to measure flexion angles is important when observing knee injuries, several studies have 

noted the relationships between knee injuries (particularly ACL stress/strain) and valgus and 

rotational angles, rather than flexion angle [6, 33-38]. So, to improve knee injury prevention, it is 

important to be able to accurately measure all three tibiofemoral angles, not just flexion. 

Determining Euler angles from only linear acceleration and angular velocity is common practice 

because this process can smoothly measure rotation in 3D space. However, because it can only 

yield orientation to some random horizontal global frame of reference, it lacks a sense of 

magnetic north and thus cannot accurately measure angles perpendicular to that horizontal global 

frame [23]. Furthermore, in many of these studies, direct conversion of angular velocities into 

Euler angles through the implementation of a rotation matrix was performed [29, 30]. This 

approach poses several problems. First, rotation matrices do not commute and the order in which 

they are applied is important. Additionally, there is a possibility that during rotation, alignment 

of two of the axes may occur resulting in gimbal lock and loss of data. And finally, there is a 

potential distortion of the data that can occur. It should also be noted that Euler angles are not 

vectors. This poses the issue that, mathematically, subtraction of the Euler angles of adjacent 

segments to determine joint angles is not justifiable. 
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Studies such as those by Watanabe et al. and Tong et al. calculated knee flexion joint angles but 

did not convert these to Euler angles [31, 32]. This poses the problem that angles obtained by 

either study do not describe the orientation of the joint to a fixed coordinate system and thus may 

not represent the knee’s true 3D angular orientation. In the study conducted by Tong et al., the 

difference between adjacent segment inclinations was determined which, when compared to their 

camera system, resulted in a RMSE value of 6.4°. This is larger than that observed within our 

study for either the APDM Opal (3.1°) or our QC Method (2.6°) [32]. Watanabe et al. performed 

a similar process to that of Tong et al. in that they used the difference in integrated angular 

velocity between two adjacent segments, however, they also made use of a Butterworth low-pass 

filter as well as a Kalman filter, as we used in our QC Method [31]. Watanabe et al. observed an 

RMSE between 3° and 4°, smaller than that reported by Tong et al. and comparable to that of the 

APDM Opal (3.1°), however, the RMSE associated with our QC Method was observed to be 

smaller (2.6°). Both studies examined gait, which has lower velocities and accelerations than the 

present jump landing activity. Slower movements, such as in gait may not have the same levels 

of movement artifact as those that are more dynamic such as those in the present study. 

Additionally, Tong et al. used a limited sample size (N=3) which is unlikely to suffice to 

establish a reliable methodology [32]. While the sample size used by Watanabe et al. was 

comparable to our study (N=6), they had significantly fewer total trials (N=18 compared to 

N=466) which may not capture the inter-trial variations and trends [31]. In addition, these studies 

calculated knee flexion angle only.  

 

Takeda et al. used the angular velocity of an IMU to estimate the translational acceleration; this 

translational acceleration was subtracted from the IMU linear acceleration to obtain gravitational 



 65 

acceleration which was then used to determine the flexional orientation of the joint [29]. Unlike 

the studies of either Watanabe et al. or Tong et al., Takeda et al. applied rotational matrices to 

obtain the Euler angles [29]. The process resulted in an observed RMSE between their method 

and camera system of 6.8°, comparable to that observed by Tong et al. and larger than that 

observed within our study for either the APDM Opal (3.1°) or our method (2.6°) [29]. The lag 

observed by Takeda et al. between their method and camera system is similar to the lag observed 

in our study between APDM Opal and Certus system: their method’s peak flexion angle fell 

between 10-15% after the peak flexion angle of the camera system, and in our study, the average 

APDM Opal peak flexion angle was 40 ms (~20%) after the peak flexion angle of the camera 

system [29].  

 

One previous study used APDM Opal sensors and compared the results to a camera system, but 

unlike many other studies made use of both highly dynamic activities (jumps) as well as live 

subjects [39]. Additionally, all three angles of the knee were measured and compared. The 

APDM Opal sensors performed well under certain conditions, primarily those of smaller angular 

displacement and in the ability to measure abduction/adduction and internal/external rotation 

[39]. This was not what was observed in our study which found abduction/adduction and 

internal/external rotation of either method exhibiting larger RMSE values. In nearly every case 

RMSE values observed in this study were smaller than those previously reported [39]. The only 

exception was in the comparison of internal/external rotation for APDM Opal vs. Certus which 

had the largest RMSE values among all comparisons (RMSE: 6.7° compared to 3.9° observed by 

Ajdaroski et al.) [39]. While artifact due to skin/muscle laxity of live subjects may have 

contributed to why the RMSE values observed were larger, in the case of internal/external 
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rotation of APDM Opal vs. Certus it may be drift and error accumulation due to the longer 

testing durations in the present study that could account for its larger RMSE value. The QC 

method has the potential for measuring more accurate and reliable angles than the method 

employed by the APDM Opal algorithm, although the application of the QC method on live 

subjects is still needed to confirm this. 

 

3.5.1 Limitations 

The present study examined a new algorithm for calculating knee angles in a ‘best case scenario’ 

without the ever-present soft tissue motion that affects the coupling of the sensor to the bone in 

vivo. That means that the present measurements of knee angle changes were conducted under the 

best possible conditions and future studies should examine how soft tissue motion can affect 

accuracy. Additional pre-/post filtering may be necessary for live subjects using the QC method. 

Additional variation may also be expected in live subjects because each individual will have 

more varied landing kinematics than the present instrumented apparatus provided. It is also true 

that limited ranges in flexion, abduction, and rotation angles were observed in the present study. 

Testing with smaller and larger knee angle changes will be required to understand the possible 

error that could occur in the full range of motion of the knee. Furthermore, maneuvers other than 

jump landings have been observed to lead to non-contact ACL injuries and as such, it may be 

possible that the QC method developed in this study is overly tuned for a jump landing scenario 

[11-13]. The trial-and-error approach used in the determination of LADF and MDDF values may 

be a source of potential error. A more robust method such as nonlinear programming with 

specific constraint conditions could have been used, although it should be noted that this can be 

expensive to perform and given the very small differences between the QC method and Certus, 
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the added precision in value may not be needed. The limited number of specimens (n=4) used to 

establish the parameters for the QC method is also a potential limitation. The lower sampling rate 

of the IMU may also be a limitation as this may have led to missed information and/or aliasing 

when compared to higher sampling rates. Finally, the presence of iron in the frame of the present 

apparatus might have affected the accuracy of the IMU magnetometer readings, a situation that 

would not exist on a large outdoor field.  

 

3.6 Conclusions 

The QC method was able to estimate knee angles more accurately during a simulated one-legged 

landing than the APDM Opal algorithm across all three tibiofemoral angles. The improvements 

in accuracy provided by the QC method demonstrate that it may be feasible to use IMUs to 

identify and track knee angle measurements that may be associated with ACL injury given the 

reported association between ACL stress/strain and knee valgus and internal rotation angles and 

moments. Further testing of the QC method is needed in live subjects and a variety of scenarios.  
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Chapter 4: Predicating Leg Force and Knee Moment Using Inertial Measurement Units: 

An In Vitro Study  

This chapter has been submitted for publication in the ASME Journal of Biomechanics 

 Mirel Ajdaroski, So Young Baek, James A. Ashton-Miller, Amanda O. Esquivel 

 

4.1 Abstract  

We compared the ability of seven machine learning algorithms to use wearable IMU data to 

identify the severe knee loading cycles known to induce microdamage associated with ACL 

rupture. Sixteen cadaveric knee specimens, dissected free of skin and muscle, were mounted in a 

rig simulating standardized jump landings. One IMU was located above and the other below the 

knee, the applied 3-D action and reaction loads were measured via 6-axis load cells, and the 3-D 

knee kinematics also recorded by a laboratory motion capture system. Machine learning 

algorithms were used to predict the knee moments and the tibial and femur vertical forces; 13 

knees were utilized for training each model, while 3 were used for testing its accuracy (i.e., 

normalized root mean square error) and reliability (Bland-Altman limits of agreement). The 

results showed the models predicted force and knee moment values with acceptable levels of 

error and, although several models exhibited some form of bias, acceptable reliability. Further 

research will be needed to determine whether these types of models can be modified to attenuate 

the inevitable in vivo soft tissue motion artifact associated with highly dynamic activities like 

jump landings.  
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4.2 Introduction 

In the United States, approximately 100,000 to 200,000 ACL ruptures are reported every year [1, 

2]. Several studies have examined the mechanisms by which an ACL may be injured, usually 

during sports like basketball, football, soccer, and volleyball, including so-called ‘contact’ (30% 

of all cases) and ‘non-contact’ (70% of all cases) injuries [3-6].  Non-contact injuries involve no 

load transfer from another player but rather loads on the knee generated by limb muscles and 

passive structures as well the ground reaction force beneath the foot. Recent studies have 

suggested that some non-contact ACL injuries may be due to overuse of the ligament, whereby 

repetitive high stress/strain-inducing activities result in ACL collagen unravelling and multiscale 

damage thereby weakening the ligament;  without adequate built in rest periods for repair, ACL 

rupture can occur [7-10]. So, counting the accumulated number of these potentially injurious 

loading cycles over a given period could have considerable clinical import, as we shall discuss 

later.  

 

Older studies have reported the circumstances of non-contact ACL injury. These include landing 

with an externally rotated knee in an extended position (20° or less of flexion) in slight valgus, or 

with a powerful quadriceps contraction; this can cause anterior displacement of the tibia with 

respect to the femur via the patella-femoral mechanism, thereby increasing the ACL strain above 

its tolerable threshold [11, 12]. Other studies suggest that landing a jump with a fully extended 

knee in neutral, or internal rotation with valgus orientation, can excessively strain the ligament 

[11], with ACL stress being correlated with the magnitude of internal rotation and valgus knee 

moments [13-16].  
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Traditionally, lower limb joint kinematics and kinetics are measured in laboratory settings using 

camera-based motion capture systems and force plates. However, such systems are large and 

bulky, making them impractical for regular usage in the field. In recent years the development of 

wearable sensors has emerged as an alternative to camera-based motion capture systems, and 

they have usefully been employed in various applications including gait analysis and assistive 

rehabilitation [17-23]. IMUs are small, wearable sensors generally consist of orthogonal 

accelerometers, rate gyroscopes and magnetometers allowing direct measurement of a body 

segment’s linear acceleration, angular velocity, and environmental magnetic field strength.  

IMUs, of course, can be used as a system to capture information about multiple body segments to 

provide information about physiological angles of various joints. Some studies have also 

examined the correlation between linear acceleration and GRF with varying degrees of 

agreement [24-28]. Various techniques ranging from regression modeling to developing machine 

learning algorithms have been applied, though often using variables that may be difficult to 

capture on-field, such as step count and speed of action. To develop models that can be used to 

track events on-field, one might focus on factors that can be obtained from IMU data, and 

perhaps combine them with variables measured prior to testing (i.e., weight, height, etc.). In 

addition to GRF, knee moments are also measurements of interest. For example, many actions 

that can cause non-contact ACL injuries are those in which a change of direction or sudden 

deceleration occurs thereby applying significant orthogonal moments to the knee in the sagittal, 

coronal and/or  transverse planes; forces in such cases may be less important than certain 

combinations of moments experienced by the knee [29-31]. Few studies have attempted to 

correlate IMU readings with knee moments; those that have primarily focused on gyroscope data 
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and single variable linear modeling [31, 32]. However, a multivariable model may be needed to 

determine knee moments more accurately.  

 

So, the purpose of this study was to develop multivariate models using data that are available 

from two wearable IMU sensors, one located above and the other below the knee, in order to 

predict GRF and knee moments in cadaveric specimens. The rationale for using whole knees in 

vitro was that they allow us to focus on developing models to estimate impulsive forces and 

moments using IMUs under ideal conditions - without the inevitable soft tissue movement 

artefact present in vivo - in order to determine whether we can classify loading cycles as 

potentially injurious (should they be repeated enough times to cause fatigue failure of the ACL) 

or non-injurious. This advance, in turn, could encourage athletes, coaches, and trainers to make 

changes in athletic training loads in order to permit adequate rest and recovery; they could also 

adjust a training regimen to prevent an ACL rupture from occurring due to possible overuse. 

 

4.3 Methods 

4.3.1 Specimens, Instrumentation, & Testing Procedures 

Sixteen cadaveric knee specimens were used to develop and test each constructed multivariate 

model (Table 4-1). Each specimen was cut to a standard length of 20 cm, dissected of tissue 

while leaving the ligamentous capsule and key tendons intact and then potted in 

polymethylmethacrylate cylinders. Prepped specimens were mounted in a custom-built and 

validated testing apparatus designed to simulate a one-legged landing in the presence of 

simulated trans-knee muscle forces (Figure 2-1) [33, 34]. Specimens were instrumented with two 

wearable IMUs (APDM Opal, APDM Wearable Technologies, Portland, OR), one rigidly 
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attached to the medial aspect of the mid-tibia and the other to the lateral aspect of the mid-femur 

using a combination of CobanTM and elastic ties. Two 6-axis load cells (MC3A-1000, AMTI, 

Watertown, MA) were used to measure action and reaction forces and moments applied to the 

knee. A Certus optoelectronic tracking system (Optotrak Certus; Northern Digital Inc, Waterloo, 

Ontario, Canada), which served as the motion capture system, was used to measure knee 

kinematics, and to determine the moment arms for individual knee specimens about each 

orthogonal axis. For the flexion moment, the moment arm was the distance from the lateral 

epicondyle to the tibial load cell; for the abduction moment it was the distance between the 

medial and lateral epicondyles, while for the rotation moment it was directly measured by the 

tibial load cell.  All models that we developed were based on the data of the Certus/load cell 

system (CLS). The CLS sampling rate was 2 kHz while that of the IMUs was 200 Hz.  
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Table 4-1 | Specimen Demographics. Total number of testing trials denotes how many trials the specimen was able 
to undergo before failure or completion of 100-cycle testing occurred. Trials analyzed are the number of trials where 
proper testing was performed; these are the trials that were used in model development/testing. Specimens denoted 
with “P” are paired specimen; total testing trials and trials analyzed are the sum of the pair’s testing sessions. 

Demographics of the Specimens Used in Model Training 
Specimen ID Sex Age Mass (kg) Total Testing Trials Trials Analyzed 

P1 M 33 72.6 216 200 
P2 M 25 68.9 118 200 
P3* M 32 64.4 136 119 
P4 M 19 71.7 226 200 
P5 M 20 69.9 214 200 
P6 M 25 80.3 221 100 
S1 M 39 60.8 98 88 
S2 M 37 77.1 110 100 
S3 M 38 69.9 126 96 
S4 M 33 80.3 120 100 
S5 M 15 68.9 105 99 
S6 F 25 86.2 105 100 
S7 F 39 54.4 105 100 

Demographics of the Specimens Used in Model Testing 
Specimen ID Sex Age Mass (kg) Total Testing Trials Trials Analyzed 

T1 M 23 72.6 105 100 
T2 M 23 72.6 108 100 
T3 F 26 68.9 105 96 

*. Specimens that experienced a failure before the completion of 100-cycle testing 

 
After each specimen was positioned, the IMU sensors were calibrated and initialized through the 

predefined calibration conditions used by the Moveo Mobility software developed by APDM, 

after which, the sensors continuously recorded data until testing concluded. The quadriceps, 

hamstring, and gastrocnemius muscles were pre-tensioned to 180 N, 70 N and 70 N, respectively 

(mimicking real-world values), the initial knee flexion angle adjusted to 15 degrees, and the 

quadriceps tendon was clamped securely in place with mechanical grips cooled by liquid 

nitrogen. This last step was repeated every 25 cycles to prevent tendon thawing and slippage 
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from the clamp; it was only during these instances that corrections of the knee angle and/or 

muscle tension occurred. 

 

Landing force magnitude was fine-tuned by adjusting drop height/weight to achieve the desired 

sub-maximal impulsive knee loading, ranging from one to four BW applied to the tibia. A 

combination of paired and single knee specimens was used. Paired knee specimens had one side 

(either left or right) tested under lower BW conditions (1-2x BW) and the other at higher (3x+ 

BW), whereas single knee specimens were all tested under high sub-maximal loading conditions 

(3x-4x BW). Impacts were initiated by releasing a weight, guided via two parallel linear 

bearings, to impact the load cell at the distal end of the tibia (Figure 2-1). Based on previous 

studies, at least five preconditioning trials were conducted before the activation of the tibial 

torsional device. This allowed for any test rig adjustments and for potential uncrimping of 

ligament collagen fibers [33, 34].  

 

After the preconditioning trials the tibial torsional device was then activated allowing for some 

of the impact force to be converted to an internal tibial torque, as can happen in a live subject 

when the GRF causes internal tibial rotation at the knee [33, 34] (Figure 2-1). Each specimen 

was then subjected to up to 100 simulated landing trials or until knee failure occurred, the latter 

clinically defined as anterior tibial translation (aTT) exceeding 3 mm. Peak impact force was 

typically reached at around 70 ms, so each trial recording consisted of 200 ms of data to ensure 

the peak was captured. It was assumed that the maximum vertical force, as measured by the load 

cells, and the maximum vertical linear acceleration, as measured by the tibial IMUs, occurred 

synchronously. This assumption was made based on previous studies that showed strong 
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correlation between GRF and linear acceleration [24]. Because both training and testing the 

validity of our models were needed, we separated our specimen pool to a training set (use in the 

development of our model; N=13) and a testing set (used in the testing of model validity; N=3). 

 
4.3.2 Data Processing 

Processing began with the removal of trials in which muscle forces and/or drop height or weight 

needed adjustment, where some component of the testing rig broke or malfunctioned, or where 

the CLS showed missing marker data (either “real” or “imaginary”). IMU data were then 

interpolated using the spline algorithm to match the frame rate of the sensors to the CLS. A 

fourth order, zero-lag, low pass Butterworth filter was applied to the data from both the tibial and 

femoral IMUs (linear acceleration and angular velocity). Only the training set was utilized in 

determining the optimal frequencies. Optimum cutoff frequency for the Butterworth low-pass 

digital filter was obtained by applying Winter’s method as used in previous work [35, 36]. 

Average optimal cutoff frequencies were determined as: 9 Hz for the accelerometer (X = 9 Hz; 

Y= 9 Hz; Z= 9 Hz); 8 Hz for the gyroscope (X=8 Hz; Y= 8 Hz; Z= 8Hz) and were the same for 

the tibial and femoral IMU.  

 

4.3.3 Model Development 

We used the “Regression Learning” app developed by MATLAB to apply several types of 

machine learning algorithms to each metric (tibial or femoral forces; knee moments).  To address 

the potential of overfitting and bias, a 5-fold cross-validation was performed during each model’s 

construction; this method is like the ‘leave-one-out’ method but was applied five times on 

smaller subsets of the training set. Various adjustable modeling parameters (i.e., basis function, 

kernel function, isotropic nature of kernel function, number of layers, and activation function) for 
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each model were tuned to obtain models with the lowest root mean square error (RMSE) values 

with respect to the training set. Following that, a Bayesian optimization with an “expected 

improvement per second” acquisition function was applied for 30 iterations to tune numerical 

parameters (i.e., kernel scale, sigma value, epsilon value, box constraint, and layer size). We 

determined the best model based on two criteria: NRMSE and LoAs for the testing set. NRMSE 

was constructed as the RMSE value between predicted and measured values over the 

interquartile range of the measured value; these served as a measure of a model’s accuracy as 

used elsewhere [27]. Based on the work of others NRMSE was limited to 20%, so only models 

that exhibited values at or below 20% were deemed accurate enough for further consideration 

[27]. LoAs were the measure of a model’s reliability, and while often established a priori based 

on clinical/researcher specifications, in this study we utilized the 95% CI of the residuals. Hence 

the smaller the 95% CI, the more reliable the model. The model with an acceptable level of 

accuracy and smallest LoAs was then determined as the best fitting model. To further our 

analysis, BA plots were developed for descriptive analysis purposes to illustrate trends or bias 

that may be present. We recognize that our dependency on machine learning algorithms may 

preclude the development of a prediction equation (i.e., a simple model with defined variables 

and coefficients) and result in the “black-box” phenomenon. So, F-test graphs were used to 

determine the significance of each parameter to metric prediction. 

 

A confusion matrix was constructed to determine the specificity, precision, recall, and accuracy 

in correctly classifying ‘potentially injurious’ from and ‘non-injurious’ loading cycles. Two 

matrixes were developed to compare the measured values (true class) to the predicted values 

(estimated class). The first compared events classified based on the vertical femoral force (Low 
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Risk: <3x BW; High Risk: >3x BW). The second compared events classified based on the 

rotation moment (Low Risk: <45.5 Nm; High Risk: >45.5 Nm). These values were determined 

based on previous studies examining non-contact ACL injuries [7, 37]. 

 
4.4 Results 

Application of the “Regression Learning” app to each of the metrics generated a unique machine 

learning algorithm. These differed by: type (gaussian process regression (GPR), neural network, 

or support vector machine (SVM)); basis function for GPR only (zero, constant, or linear); kernel 

function for GPR or SVM (rational quadratic, exponential; isotropic or non-isotropic); or number 

of layers for neural network only (single layer, bilayer) (Table 4-2). A Gaussian process 

regression (GPR) model had the lowest RSME for both the vertical and resultant tibial force and 

flexion and abduction moment, though each had different basis and kernel functions (Table 4-2). 

For the vertical tibial force, a GPR with constant basis function and rational quadratic kernel 

function was best, whereas a GPR with zero basis function and exponential kernel function was 

best for resultant tibial force. A GPR with a quadratic kernel and a constant basis function was 

also best for abduction moment predictions, though here the kernel was non-isotropic (i.e., not 

Euclidean distance dependent). The optimal model to predict knee flexion moment was a GPR 

with a non-isotropic 3/2 Matérn kernel function and zero-basis function. 

 

Feed forward neural networks were the best model type to predict both the vertical and resultant 

femoral forces, though with differing layer structures (Table 4-2). Vertical femoral force was 

best modeled through a single hidden layer, narrow neural network. Resultant femoral force was 

best modeled through a bilayer neural network that uses two hidden layers instead of one. In both 

cases, layer size was set to 10 nodes. Both neural networks’ activation function was a rectified 
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linear unit (ReLU). The rotation moment was best predicted using a support vector machine 

algorithm (SVM), more specifically a non-linear SVM regression with a gaussian kernel function 

(Table 4-2).  

 

Table 4-2 | Complete overview of the best performing models for each of the seven metrics. GPR model type is a 
gaussian process regression model, while SVM indicates a support vector machine learning algorithm. The 
activation type ReLU is the rectified linear unit. 

Machine Learning Models 

Model Type Kernel 
Function 

Layers 
(Size) 

Basis 
Function Activation 

Vertical Tibial Force GPR 
Isotropic 
Rational 

Quadratic 
- Constant - 

Vertical Femoral 
Force 

Narrow 
Neural 

Network 
- 1 (10) - ReLU 

Resultant Tibia Force GPR Isotropic 
Exponential - Zero - 

Resultant Femoral 
Force 

Bi-layered 
Neural 

Network 
- 2 (10) - ReLU 

Flexion Moment GPR Non-isotropic 
3/2 Matern - Zero - 

Abduction Moment GPR 
Non-isotropic 

Rational 
Quadratic 

- Constant - 

Rotation Moment SVM Gaussian - - - 

 
All force models developed exhibited a very strong level of fit (R2 range: 0.95 to 0.98) and had 

NRMSEs below our pre-established conditions, with the resultant femoral force model having 

the lowest of these values (Table 4-3; Figure 4-1). There were no discernable trends as force 

increased in magnitude, illustrating that at any given measured value, a predicted value has 

consistent variability (Table 4-2). The resultant force model tended to overestimate force; this 
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was evidenced by the upper bound condition being larger than the lower bound (Table 4-2). 

Vertical force models showed near equal tendencies for overestimations as underestimations. 

LoAs for the tibial models fell within ±15% while the femoral force models exceeded 20% 

(Table 4-3).  
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Table 4-3 | Results of model application for both training and testing sets across all seven metrics. RMSE, mean 
square error (MSE), mean absolute error (MAE), MAPE, NRMSE, LoAs are presented 

Training Results (5-fold Cross-Validation) 

Model RMSE R-Squared MSE MAE 

Vertical Tibial Force 26.2 N 0.99 687 14.8 N 

Vertical Femoral Force 102 N 0.97 10505 70.9 N 

Resultant Tibial Force 28.2 N 0.98 796 13.9 N 

Resultant Femoral Force 80.4 N 0.98 6468 56.8 N 

Flexion Moment 1.51 Nm 0.99 2.28 0.85 Nm 

Abduction Moment 1.12 Nm 0.98 1.25 0.63 Nm 

Rotational Moment 1.48 Nm 0.97 2.12 0.84 Nm 

Testing Results 

Model RMSE R-
Squared MAE MAPE NRMSE LoA 

Vertical 
Tibial Force 37.9 N 0.97 29.4 N 4.42 % 11.6 % (-70.6, 77.7) N 

Vertical 
Femoral 
Force 

202 N 0.95 159 N 9.14 % 12.4 % (-413, 375) N 

Resultant 
Tibial Force 49.6 N 0.97 40.4 N 5.34 % 13.2 % (-53.9, 109) N 

Resultant 
Femoral 
Force 

145 N 0.98 111 N 6.18 % 8.93 % (-171, 321) N 

Flexion 
Moment 

1.99 Nm 0.97 1.55 Nm 3.97 % 17.2 % (-4.08, 3.69) Nm 

Abduction 
Moment 0.82 Nm 0.93 0.64 Nm 6.77 % 19.9 % (-1.41, 1.74) Nm 

Rotation 
Moment 2.62 Nm 0.95 2.07 Nm 5.42 % 17.1 % (-5.77, 3.61) Nm 
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Knee moment models all exhibited strong levels of fit (R2 range: 0.93 to 0.97), and had NRMSE 

values below our pre-established condition, however, compared to the force models, the NRMSE 

values of the knee moment models were larger (Figure 4-1; Table 4-3). The BA plots showed 

varying degrees of bias and some trends. The knee flexion moment model tended to slightly 

underestimate the moment, and a linear slope was observed between the residuals and measured 

flexion moment; lower measured values tended to be overestimations, while higher values 

tended to be underestimations (Figure 4-2). The knee abduction moment model had an overall 

tendency to overestimate the value, however there was no discernable trend throughout the range 

of measured values; it should be noted however, that as the magnitude of the knee moment 

increased, variation also increased (Figure 4-2)  The knee transverse plane rotation moment 

model tended to slightly underestimate predicted values, and a negative linear relationship 

between the residual and measured value was observed (Figure 4-2). The LoAs for all the 

moment models fell below ±20% (Table 4-3). 
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Figure 4-1 | Relationship between the predicted and measured value for each of the seven parameters 
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Figure 4-2 | Constructed BA-Plots for each of the parameters in where the residual difference between predicted and 
measured is located on the y-axis and the measured value on the x-axis. Red lines represent the LoA for the 
parameter, while the black line indicates the locations of the zero-difference line. 
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Classification of events as either “potentially injurious” or “non-injurious” was performed with a 

99.7% accuracy for force classification and a 99.3% accuracy for rotation moment classification 

(Figure 5). In both cases, recall was 100% with no instances of false negatives. Precision for 

force classification was 99.0% while that of the rotation moment classification was 97.9%. 

Specificity for the force classification was 99.5% and 99.0% when using the rotation moment 

classification (Figure 4-3). 

 

 

Figure 4-3 | Confusion matrixes comparing the measured classification to the estimated one. The femoral measured 
force (true class) is on the left and compared to the estimated femoral force (estimated class). On the right is the 
measured rotation moment (true class) compared to estimated rotation moment (estimated class). Column and row 
normalization of instances of correctly classified events are presented either to the right (column) or bottom (row) of 
each matrix. 

 

4.5 Discussion: Parameter Significance & Model Performance 

In the introduction we reviewed studies that utilized regression modeling techniques to establish 

correlations between data obtained from an IMU and metrics measured by a camera-based 

motion capture system. In this study, however, our goal was to develop models to predict those 
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metrics. To that end, we used machine learning, and considered all parameters measured by an 

IMU as well as mass to predict forces and knee moments during one-legged landing. We 

recognize that the added complexity of machine learning carries with it the benefits of increased 

accuracy at the cost of computational speed and potential training set dependency but given that 

our models are to be applied post-collection, computational speed is not a factor of concern. We 

applied our model to a testing set to examine their performance, thereby addressing the 

possibility of training set dependency. Finally, we examined whether we could accurately 

classify loading cycles as potentially injurious using information from a wearable sensor. 

 

The vertical (x-axis) tibial linear acceleration was the largest contributing feature for both the 

tibial and femoral force models (Figure 4-3) . This was expected because of the relationship 

between force and acceleration. In the vertical and resultant tibia force models, other features 

that contributed included the flexion (z-axis) angular velocity of the tibia, x-axis femoral linear 

acceleration, and z-axis angular velocity of the femur. Z-axis angular velocity is correlated to 

ground reaction force during landing – an increase in angular velocity has been reported to 

decrease ground reaction force [24, 38]. As mentioned in the Results, the vertical models showed 

near equal tendencies for overestimations as underestimations as opposed to the resultant models 

which tended to overestimate the predicted value. This may be due to the more complex nature 

of resultant forces; while vertical force is uniaxial, resultant forces are triaxial.  

 

Several human subjects’ studies have predicted GRF from the data obtained from an IMU using 

different techniques and sensors [27, 39, 40]. We used cadaveric specimens to rigidly fix the 

sensors to the segments thereby minimizing any soft tissue artefacts that are usually present 



 90 

when wearable sensors are fixed to human subjects. Even with no soft tissue, the predicted 

values had some error, indicating that this error may be caused by factors other than soft tissue 

movement. Thiel et al correlated IMU data (triaxial linear acceleration) and stride count of the 

subject with force using multivariable linear regression models [39]. In that study 15 subjects ran 

five 50 m sprints from a block start on a instrumented running track [39]. They constructed 

models for each individual subject, not a group, which may potentially limit the model’s 

effectiveness for universal use on-field [39]. They reported moderate correlations between 

predicted and measured GRF with MAPE values ranging from 3.29% to 33.3% for each 

individual [39]. Although we measured tibia and femur force, not ground reaction force, in our 

study all force-related models had average MAPEs that were lower than these values. This may 

be the result of using machine learning or the mitigation of soft tissue artefact.    

 
A study conducted by Neugebauer et al. reported strong correlations (similar to ours) in GRF 

(R2=0.97) between predicted and measured values when applying mixed effect models to IMU 

data during gait [40]. They reported a MAPE of 5.2 ± 1.6% [40]. This study produced more 

accurate results than previously reported, possibly due to the added complexity of mixed effect 

models over generalized regression models. However, Neugebauer et al. only used linear 

accelerometer data; this does not consider potential angular movement contributions to forces. 

Angular rates were among the largest contributing factors to our models.  

 

Lee et al. used machine learning to develop algorithms that predicted GRF as well as joint 

torques of the lower limbs, during normal walking using only feedforward neural networks. It 

was not clear whether other algorithms were considered [27]. In our study, a wide variety of 

learning algorithms were applied as we assumed different metrics may exhibit different 
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relationships with the IMU data. Lee et al. observed a very strong fit between predicted and 

measured GRF (R2 = 0.93), which is comparable to what we found [27]. They also presented 

NRMSE values, normalized to the amplitude of the output for each stance phase. In the case of 

average GRF, a NRMSE of 6.70% was reported which is lower than any NRMSE of our study 

[27]. Although, the lower value could be attributable to differing normalization techniques or the 

lack of an exclusive testing set, they used the leave-one-out method [27]. While common in 

practice, the leave-one-out method may be optimistic in its accuracy when compared to the k-

fold cross-validation, particularly in larger sets of data [41].  

 

The contributions of each IMU feature to prediction differed across the moment models. Flexion 

moment showed the least clear divide between those of more and those of lesser importance, 

however the top three features were the x-axis and z-axis tibial linear accelerations and as well as 

the y-axis femoral linear acceleration (Figure 4-3). This shows a potentially more dependent 

nature of flexion moments on tibial components. Abduction moment showed a clear divide 

between the upper six features and the lower seven, with z-axis and x-axis tibial linear 

accelerations, x-axis angular velocity of both the tibia and the femur, and the z-axis and y-axis 

femoral linear accelerations being the largest contributing features (Figure 4-3) . Unlike most 

other models, the abduction moment model was equally dependent on the data from the femur 

IMU as the tibia IMU. The greatest divide between the importance of the features was for the 

rotation moment model, where y-axis angular velocity of the femur was the largest contributing 

feature for prediction, having an F-score nearly twice that of the next most contributing feature, 

mass (Figure 4-3) . This observation was counterintuitive to what we initially theorized which 

was that the x-axis angular velocities of both segments would be the greatest contributing 
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feature, however, both were ranked among the least contributing. This may be due to anatomical 

constraints of the knee that do not allow a significant amount of rotation.  

 

As noted in the results, moment models exhibited larger NRMSE than those of the force models; 

this may be due to a larger range in force measurements, which in turn would mean an increased 

IQR value and ultimately a lower NRMSE value. Thus, while moment models all appear to have 

large NRMSE, it may be simply due to the nature of moments having smaller observed ranges. 

Of interest when discussing moments are the MAEs. Moment differences between predicted and 

measured values less than 1 Nm may effectively be negligible for clinical relevance. Studies 

conducted by Shin et al., Levine et al. and Kiapour et al. have tested the strain response of the 

anterior cruciate ligament to both abduction and rotational moments, and have reported that knee 

abduction moments up to 51 Nm and internal rotation moments up to 30 Nm during non-

injurious landing [16, 42, 43]. High-risk injurious moments can be up to 3 times those [44, 45]. 

Therefore, while abduction moments illustrated the largest NRMSE, because the associated 

MAE was below 1 Nm, this may be clinically insignificant, as we would be able to differentiate 

between non-injurious and potentially “at-risk” moments. 

 
Numerous studies have used IMU data in the development of prediction models for abduction 

and rotation moments, with varying success, though in most cases, low correlations were 

reported [27, 31, 32]. Konrath et al. created regression models using IMU data obtained from 

commonly performed rehabilitation activities for abduction moments. Three participants were 

fitted with two placed on the thigh and shank and asked to perform a stair ascent/descent as well 

as a sit-to-stand action. Strong, to very strong correlations between their predicted and measured 

values were reported which were comparable to ours [32]. They also reported very low NRSME 
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values, (NRMSE: SA: 0.01; SD: 0.014; StS: 0.006), though direct comparison between our 

NRMSE and theirs cannot be done due to our differing normalization techniques [32]. Sit-to-

stand is a slower action that is not as dynamic as a jump landing and may have also contributed 

to the low NRMSE values. Karatsidis et al. predicted rotational moments during walking of the 

knee using a full body internal motion capture (IMC) method [31]. Strong correlations between 

their predicted and measured values were reported (R = 0.82), which were slightly lower than 

that observed by our study [31]. The IMC system is made up of many individual IMUs and 

provides information on the kinematics of the entire body, rather than the limited view of a two 

IMU system. However, use of an IMC system on-field may not be practical in a real-world 

application.   

 

Previous studies did not present a measure of reliability. Measuring and reporting the accuracy of 

a model is important, but arguably of equal importance is the model’s reliability of measurement. 

Poor reliability would indicate predications are random in nature; while some instances may be 

highly accurate, others could be gross over/under estimations. Using an IMU to estimate whether 

landing techniques could possibly be injurious requires consistency. We also note that no study 

applied their model to data outside of a training set. Error presented through training set 

predictions will be smaller than the true error, and thus may be misleading with respect to the 

generalizability of the model to new points. Exclusive testing data to validate a model’s 

accuracy/reliability is needed.   

 

In recent years, IMUs have be used as tool in risk assessment and event classification, though 

this has been mostly limited to lifting tasks [46, 47]. A study by Brandt et al. used a tri-axial 
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accelerometer and a Linear Discriminate Analysis algorithm to classify events as risky based on 

the Danish Working Environment Authority guidelines and reported event classification 

accuracy reaching 65.5% [47]. Donsis et al. also examined lifting tasks using IMUs and the 

NIOSH (National Institute of Occupational Safety and Health) standard to distinguish between 

“at risk” and “no risk” events [46]. They reported high accuracy (82.8%), sensitivity (84.8%), 

and specificity (80.9%) [46]. We demonstrated a 99.7% accuracy in classifying events as either 

“potentially injurious” or “non-injurious”, which is comparable.  

 
4.5.1 Limitations 

There are several limitations in this study including the use of cadaveric specimens. If the models 

developed during this stage were directly applied to human subjects, there would likely be errors 

between predicted and measured values due to noise pollution produced by motion of the soft 

tissue. We also acknowledge the potential over-tuning of our models to a specific action. Due to 

the limitations of the rig, we were only able to simulate a one-legged jump landing. Other 

actions, such as cutting and sudden decelerations have also been linked to non-contact ACL 

injuries [4]. More types of actions would be required to develop models robust enough to predict 

kinematics under any on-field condition. In addition, we acknowledge that risk assessment and 

classification of an event as either potentially injurious or not is not based on a single variable, 

but instead a combination of multiple variables. While in this work we focused on correctly 

assessing the risk based on force and rotational moments, we did so by treating each variable 

separately. In reality, risk assessment could be based on the combination of the force, rotational 

moment, abduction moment, and the orientation of knee at the time of loading. Future testing 

should focus on constructing a classification system that incorporates all these variables when 

assessing risk.  
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4.6 Conclusion 

For these in vitro studies, each model demonstrated an acceptable level of accuracy with 

NRMSE values less than 20% in a testing set independent of the data used for training the model.  

While several models exhibited some bias, most models exhibited LoAs below 20%. The 

femoral force models exhibited LoAs that exceeded 20%. Classification based on either force or 

rotation moment yielded high levels of accuracy, precision, specificity and recall force correctly 

classifying whether an event was potentially injurious if repeated a sufficient number of times to 

cause ligament fatigue failure. Future studies should examine whether such models can be 

applied to in vivo movement data that will inevitably include unavoidable soft tissue movement 

artefacts. 
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Chapter 5: Can Wearable Sensors Identify Potentially Injurious Loading of the ACL? 

This chapter was submitted for publication in the ASME Journal of Biomechanical Engineering 
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5.1 Abstract  

This research explored whether IMUs could accurately and reliably estimate metrics related to 

non-contact ACL injuries in humans. These included GRF, KAM, and KRM. Nine current or 

former athletes were recruited to perform nine sport-related movements. Four IMUs were placed 

on the shank and thigh of each leg. A motion capture system with a 46 retro-reflective marker 

schema and force plates was used to obtain measured values of each metric. Machine learning 

algorithms were used to analyze the IMU and subject-specific data and generated estimates for 

GRF, KAM, and KRM. These estimates were compared to the motion capture system’s 

measurements and evaluated for accuracy (normalized root mean square), and reliability (Bland-

Altman limits of agreement).  A confusion matrix was also constructed to examine if these 

estimates could be used for distinguishing between low-risk and potentially injurious events. 

Results showed high classification accuracy, precision, specificity, and sensitivity, but poor 

reliability for KAM and KRM estimates. Nonetheless, the high classification accuracy and 

specificity may mean that IMUs can distinguish between low-risk and potentially injurious 

events with few false positives or negatives. 
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5.2 Introduction 

Despite prevention efforts, the non-contact ACL injury rate continues to increase [1, 2]. It has 

been estimated that each year approximately one ACL tear occurs in every 50-70 female athletes 

[3]. The incidence of ACL tear in female high school and collegiate athletes is 2-6 times higher 

than in male athletes in sports involving abrupt stops, turns, and jumps [1, 2, 4] While many risk 

factors have been identified, sex differences in the kinematics and kinetics of the lower extremity 

during jump and squat tasks have been noted [5-10]. Thus, the ability to track and identify any 

high-risk loading conditions to the ACL could be clinically important. 

 

ACL injury mechanisms have been categorized as 1) contact (30% of all cases) and 2) non-

contact (70% of all cases) [11-14]. Non-contact ACL injuries involves the internal generation of 

forces and moments in response to ground reaction force and moments at the foot at the time of 

impact. It is not clear whether these non-contact injuries tend to be acute or fatigue failure. 

However, in a controlled laboratory environment, ligamentous structures have been shown to be 

vulnerable to fatigue failure under cyclic loading conditions [15]. Submaximal repetitive loading 

is known to cause cumulative micro-damage in soft tissues, most notably in the elbow [15-17]. 

Recognition of this injury mechanism has led to the formation of rules regarding pitch counts in 

youth baseball to decrease these injuries in young athletes. Recently, laboratory research has 

indicated that some noncontact ACL injuries that occur in female athletes may be overuse 

injuries due to repeated strain on the ACL [18]. A simulated jump landing at 3-4 times body 

weight was applied to cadaveric knees while the knee was in 15° flexion with internal tibial 

torque. After 100 of these severe loading cycles, mechanical failure occurred in many of the 

knees, providing the first evidence that the ACL is indeed susceptible to fatigue failure [19-21]. 
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If some of these injuries are due to cyclic loading, tracking loading conditions to prevent injury 

may be possible. And while ground reaction force has been linked to non-contact ACL injuries, 

KAM and KRM have also been correlated to these injuries. [22-25]. 

 

Lower limb joint kinetics have traditionally been examined in laboratory settings using camera-

based MCS and force plates. However, this system is impractical for regular usage on the field. 

In recent years the development of wearable sensors has emerged as an alternative to motion 

capture and has been employed in various applications such as gait analysis and rehabilitation 

assistance [26-37]. One type of sensor is the IMU, which contains accelerometers, rate 

gyroscopes, and magnetic field sensors which can provide information about the acceleration, 

velocity, and position of one body segment with respect to another and has been used to estimate 

various limb angles, joint moments, and GRF [27, 28, 38-46]. Wearable IMUs provide the 

opportunity for non-obtrusive activity monitoring in a real-world setting, however, estimates for 

joint moments and GRF require post-collection equations. Being able to estimate GRF and knee 

moments (particularly KAM and KRM) could potentially lead to the identification of high-risk 

loading cycles to the ACL and thus, could allow athletes, coaches, and trainers to make changes 

that permit for rest and recovery before a rupture can occur.  

 

We previously developed algorithms that accurately and consistently estimated leg forces and 

knee moments during a simulated one-legged landing using cadaveric specimens [47]. However, 

due to the omission of soft tissue and the limitations of our testing rig, we theorized that these 

cadaveric models may not have the same level of accuracy and reliability when applied to human 

subjects. The present study was designed with three goals in mind: 1) test the accuracy and 
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reliability of the previously developed models when applied to human subjects; 2) modify the 

previously developed models and determine if accuracy and reliability are significantly improved 

when compared to unmodified models; 3) develop a classification system distinguishing 

“possible” and “low” risk event.  

 

5.3 Methods 

5.3.1 Subjects, Instrumentation, & Testing Procedures 

 

Figure 5-1 | Marker and sensor locations on participant 
 

Before the commencement of the study, IRB approval was acquired (HUM00150719). Nine 

healthy volunteers (5 females, 4 males) who currently play soccer or basketball or have played in 

the last two years were recruited (Table 5-1). Exclusion criteria included a current lower 

extremity injury and BMI over 29 kg/m2. All subjects underwent informed consent and were 

fitted with 46 retro-reflective spherical markers (Figure 5-1). The first 30 markers were placed 

based on the 30 item Rizzoli lower body protocol: (right and left) anterior and posterior superior 

iliac spine, greater trochanter, thigh, lateral femoral condyle, head of the fibula, anterior tibial 
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tuberosity, shin, lateral malleolus, calcaneus, the fifth metatarsal, first metatarsal, medial femoral 

epicondyle, medial malleolus, and second metatarsal head. The remaining markers were placed 

in clusters of four on the lateral thigh and gastrocnemius. Motion and force data were collected 

using a 12-camera (200 Hz) motion capture system (Prime 13 Optitrack, Corvallis, OR) and two 

2000 lbf force plates (1 kHz) (FP4060-05-PT, Bertec, Columbus, OH). APDM wearable sensors 

(APDM OpalTM, APDM Wearable Technologies, Portland, OR) were attached to the medial 

aspect of the tibia and the lateral aspect of the thigh of both legs using a combination of double-

sided skin tape and CobanTM. Data for these sensors were collected at 200 Hz and a sync device 

was used to synchronize these sensors with the MCS.  Height, weight, thigh circumferences and 

distance from the midpoint of the knee to the femoral and the tibial IMUs were recorded. 

Participants performed seven related movements three times: a jog with a pivot, an extension 

leap, a sidestep cut, a crossover cut, dominant shooting, a vertical jump onto two feet and one 

foot (Table 5-2). These movements were selected because they are frequently performed in 

sports and have been linked to non-contact ACL injury [5, 7, 8, 48-51]. To quantify possible soft 

tissue artifact, subjects were also asked to stand still and contract their thigh muscles while still 

fitted with the femoral IMUs. To validate the model modifications, our population was randomly 

divided into a training set (N=5) and a testing set (N=4).  
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Table 5-1 | Subject Demographics. Sport denotes the sport a subject participated in, with dual denoting a subject had 
played both soccer and basketball. 

Demographics of the Subjects Used in Amendment Training 
Subject ID Sex Mass (kg) Height (m) Sport 

TR1 F 79.0 1.85 Soccer 
TR2 F 69.0 1.78 Basketball 
TR3 F 63.2 1.63 Soccer 
TR4 M 78.5 1.83 Soccer 
TR5 M 70.3 1.78 Soccer 

Demographics of the Subjects Used in Amendment Testing 
Specimen ID Sex Mass (kg) Height (m) Sport 

TE1 F 75.4 1.75 Dual 
TE2 M 74.9 1.85 Soccer 
TE3 F 63.7 1.73 Basketball 
TE4 M 85.8 1.83 Soccer 

 

Table 5-2 | Action performed by subjects along with descriptions. Note: dominant shooting was only performed by 
individuals who have played soccer 

Movement Description 

Jog with pivot 
Participant jogs a few steps and pushes off 
dominant leg to turn body towards the 
opposite side. 

Extension Leap 

Participant pushes off dominant leg while 
fully extending the non-dominant leg to land 
on force plate more than two comfortable step 
lengths away. 

Sidestep Cut Subject accelerates toward the direction 
opposite of the planted leg 

Crossover Cut 
Participant crosses one leg over the planted 
leg and accelerates in the same direction of the 
push off leg 

Dominant Shooting 

Non-dominant foot takes a firm step onto 
force plate to support the dominant leg swing 
through a “shooting” motion. (Soccer or Dual 
subjects only) 

Jump – Land on One Foot Subject stands with feet together, jumps 
maximum height and lands on one foot. 

Jump – Land on Two Feet 
Subject stands with feet together, jumps and 
lands on two feet at maximum height, 50% of 
maximum and 25% of maximum. 
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5.3.2 Data Processing 

Force plate data (forces and moments) and both the tibial and femoral IMU data (linear 

accelerations and angular velocities) were filtered using a fourth-order, zero-lag, low-pass 

Butterworth filter. Optimum cutoff frequencies for the Butterworth low-pass digital filter were 

obtained by applying Winter’s method; this method has been used in previous work [52, 53]. 

Only the training set was utilized in determining the optimal frequencies (Table 5-3). It was 

theorized that because an individual traveling at different speed in each direction, differing filter 

frequencies would be needed; this method has been used in previous works [53]. A 6-degree-of-

freedom kinematic model of the lower extremity was created for each participant using Visual 

3D software (C-motion, Germantown, MD). A motion was quantified at the knee using a Cardan 

angle sequence. Maximum vertical GRF was determined from the force plates. Knee joint 

moments were calculated using inverse dynamics and recorded at maximum vertical GRF. 
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Table 5-3 | The optimal cutoff frequencies determined through the application of Winter’s method, for each 
direction. Averages of both the right and left legs are presented. All filtering frequencies are in Hz and based on a 
sampling rate of 200 Hz. 

Optimal Cutoff Frequencies Determined for the Force Plates and IMUs 

Parameter X Y Z 

Force Plate 
Forces 15 14 13 

Moments 11 11 17 

Tibial IMU 
Linear Acceleration 19 20 18 

Angular Velocity 18 18 22 

Femoral IMU 
Linear Acceleration 17 14 16 

Angular Velocity 17 19 15 

 

5.3.3 Previous Model Application 

Previously developed models were applied to the data using all subjects and tested for accuracy 

(NRMSE) and reliability (LoAs). Normalization of the RMSE was calculated by dividing the 

RMSE value by the IQR. Based on the work of others, NRMSE was limited to 20%, so only 

models that exhibited values at or below 20% were deemed accurate [43]. Reliability was judged 

based on the LoA range, where smaller ranges indicated greater reliability. The previously 

developed models were not constructed to estimate GRF directly, but instead to estimate the 

tibial or the femoral forces [47]. Therefore, the estimated values for both were compared to the 

measured GRF individually and in combination.  

 

5.3.4 Creation and Selection of Model Modifications 

We used the Regression Learning app developed by MATLAB to apply several types of machine 

learning algorithms to estimate GRF and moments; this app was used previously to develop 
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cadaveric-based models [47]. Features used included height, mass, thigh circumference, distance 

from the knee midpoint to the femoral and tibial IMUs, the linear accelerations and angular 

velocities due to thigh muscle contraction, and the estimated values obtained by the models 

previously developed or the difference between the estimated value and those measured by the 

MCS of this study. A 5-fold cross-validation was performed during each model’s construction. 

Various adjustable modeling parameters (such as isotropic kernel nature, activation type, etc.) for 

each model were tuned based on obtaining the lowest RMSE values for the training set. 

Following that, a Bayesian optimization where the acquisition function was expected 

improvement per second for 30 iterations was applied to tune numerical parameters (kernel scale, 

layer size, etc.). GRF was normalized using the subject’s weight while the raw values for 

moments were used. As previously stipulated, NRMSE was limited to 20%. If a modified model 

was unable to fall below this limit, then the model with the lowest NRMSE was considered the 

most accurate. LoAs were also used to gauge estimation reliability. F-test graphs were developed 

to determine the significance of each parameter to metric prediction. BA plots were created to 

analyze trends/biases that may be present.  

 

5.3.5 Classification Development for At-Risk Events  

Because one of the goals of our study was to distinguish between low- and high-risk events, a 

confusion matrix was constructed to gauge the sensitivity, specificity, and accuracy in correctly 

identifying a class. Events were classified based on a combination of ground reaction force (Low 

Risk: <3x BW; High Risk: >3x BW), abduction moments (Low Risk: <150 Nm; High Risk >150 

Nm), and rotation moments (Low Risk: < 45.5 Nm; High Risk: >45.5 Nm). These values were 

selected based on previous studies examining non-contact ACL injuries [18, 54]. Column-
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normalization of the matrix was performed to determine the class-wise precision (positive 

predictive values) while row-normalization was performed to determine the class-wise recalls 

(true positive rates). Only the most accurate and reliable models were considered during the 

construction of the confusion matrix as their estimates would be closest to the measured risk 

value.  

 

5.4 Results 

5.4.1 Cadaveric (Unmodified) Models 

Application of the unmodified models resulted in negligible levels of fit (R2 range: 0.00 to 0.01), 

with NRMSEs exceeding our pre-established conditions and large LoAs (Table 5-4). When 

estimating the force, the estimated values resulted in linear trends where lower measured forces 

were overestimations while those higher in magnitude were underestimations (Figure 5-2). When 

using the tibial or femoral unmodified models separately, there was an overall tendency for 

underestimation, represented by the lower bound being larger than the upper bound (Figure 5-2). 

When adding the estimates of both models together, the upper and lower bounds were similar in 

magnitude, indicating equal tendencies for over/underestimation. For both the KAM and KRM 

unmodified models, as the magnitude of the measured moment increased, estimated moment 

values decreased, leading to greater underestimations; this is represented in a downward linear 

trend. 
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Table 5-4 | Results of the unmodified model applied to human subjects. NRMSE and LoA are presented. Note, all 
results are based on the normalized data. Because of an inability to directly compare the force related estimates of 
our previous work, equations developed to estimate tibial and femoral forces were compared to the measured GRF 
along with various combination of the two to determine the model that best estimated GRF. 

Application of Cadaveric Models to Human Subjects 

Model NRME LoA 

GRF v. Tibial Force Estimates 152 % (-2.58, 0.32) xBW 

GRF v. Femoral Force Estimates 199 % (-3.89, 2.68) xBW 

GRF v. Femoral + Tibial Estimates 193 % (-3.23, 3.53) xBW 

GRF v. Femoral – Tibial Estimates 238 % (-4.57, 1.85) xBW 

Abduction Moment 102 % (-138, 118) Nm 

Rotational Moment 133 % (-36.8, 67.3) Nm 
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Figure 5-2 | Constructed BA-plots comparing the estimates of the unmodified models to the measured for GRF, 
KAM and KRM. Note: because unmodified models did not directly measure GRF, estimates using the tibial force 
model, femoral force model, and combinations of the two were compared to GRF 
 

5.4.2 Modified Models 

The Regression Learning app's application to each feature generated a unique machine learning 

algorithm. These differed by: type (GPR, coarse tree); kernel function for GPR (exponential, 

rational quadratic, 5/2 Matérn); or how the cadaveric-based models were incorporated (feature; 

residuals) (Table 5-5). For GRF, the estimations of both the tibial and femoral cadaveric models 

were incorporated as features in a GPR with a zero-basis function and an isotropic exponential 
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kernel function. Of all the models, this was the only one to incorporate previous models as a 

feature (Table 5-5). KAM and KRM models were all developed based on the residuals between 

MCS values and those estimated from the previously developed model. KAM was best estimated 

by adding a kernel approximation model with a support vector machine learner to the estimates 

of the unmodified abduction moment model. For KRM, a GPR with a zero-basis function and an 

isotropic exponential kernel function added to the estimates of the unmodified rotation moment 

model yielded the best estimations. Application of these modified models resulted in very strong 

fits (R2 range: 0.92 to 0.96) with NRMSEs below our pre-established conditions (Table 5-6). 

However, in all models, large LoAs were observed in the KAM and KRM estimations. The BA 

graphs of the GRF modified model showed no discernable trend for estimations (Figure 5-3). 

Both the KAM and KRM modified models showed slight trends - as the magnitude of the 

measured moment increased, the variability of the estimation increased.   

 

Table 5-5 | Overview of the best performing models for GRF, flexion, abduction, and rotation moments. GPR model 
type is a Gaussian process regression model while SVM indicates a support vector machine learning algorithm.   

Machine Learning Models 

Model 
Unmodified 

Model 
Application 

Type Kernel 
Function 

Basis 
Function 

Learner 

GRF Feature GPR Isotropic 
Exponential Zero - 

KAM Difference Kernel - - SVM 

KRM Difference GPR Isotropic 
Exponential Zero - 
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Table 5-6 | Results of amended model application for both training and testing sets across GRF, flexion, abduction, 
and rotation moments. RMSE, MAE, MAPE, NRMSE, LoA, and model fit (R-squared) are presented. Note, all 
results are based on the normalized data. 

Training Results (5-fold Cross-Validation) 

Model RMSE R-Squared MAPE MAE 

GRF 0.19 xBW 0.95 7.91 % 0.14 xBW 

KAM 8.94 Nm 0.99 10.3 % 6.30 Nm 

KRM 4.24 Nm 0.98 43.7% 3.08 Nm 

Testing Results 

Model RMSE R-
Squared MAE MAPE NRMSE LoA 

GRF 0.20 xBW 0.92 0.15 xBW 8.90 % 18.2 % (-0.35, 0.40) 
xBW 

KAM 10.7 Nm 0.96 7.82 Nm 34.7% 19.6% (-21.8, 21.9) Nm 

KRM 4.71 Nm 0.95 3.53 Nm 53.5% 17.8% (-9.78, 9.39) Nm 
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Figure 5-3 | Constructed BA-Plots for modified models for force (GRF), knee abduction, and knee rotation moments 
in where the residual difference between estimated and measured is located on the y-axis and the measured value on 
the x-axis. Red lines indicate the limits of agreement and black line the location of the zero-difference line 
 

5.4.3 Classifying Risk Based on Estimations 

Because the modified models yielded more accurate estimates (lower NRMSE), construction of 

the confusion matrix was done using the modified model estimations. Classification as either 

“possible” or “low” risk was performed with a 96.5% accuracy. Both the precision and recall of 

classifying a possible risk event was 78.6%. while that of a low-risk event was 98.1% (Figure 

5-4). 
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Figure 5-4 | Confusion matrix comparing the measured classifications to the estimated classifications. Right columns 
are the column-normalized instances of correctly classified events by the estimated class. Bottom rows are the row-
normalized instances of correctly classified events by true class 
 

5.5 Discussion 

Various studies have utilized some form of modeling technique to correlate IMU data to the 

forces/moments measured by an MCS [41-46]. While this is important, the overall goal of this 

study was to determine whether IMU data could be used to reliably estimate forces and moments 

and classify loading cycles as potentially injurious or benign.  

 

Previously, cadaveric specimens were used to estimate metrics where the effect of soft tissue was 

mitigated [47]. We had theorized that, due to the absence of soft tissue, the application of our 

cadaveric model to human subject data would result in estimates that were not acceptably 

reliable or accurate. Our theory was supported when all cadaveric models yielded high NRMSE 

and large LoAs, indicating questionable accuracy and reliability. Thus, model modifications to 
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account for a variety of dynamic movements and possible soft tissue artifact were examined. 

Machine learning was used to develop these modifications using the estimates of the previously 

developed models, along with the subject’s thigh circumferences, linear accelerations, and 

angular velocities associated with thigh muscle contractions, mass, height, and IMU placements. 

This resulted in improved NRMSE values and smaller LoAs than that of the unmodified models 

across all measurements. Studies by Hossain et al. and Lee et al. have both estimated GRF for 

several activities of daily living (ADL), such as walking at various speeds on a level surface and 

stair ascending, with levels of accuracy exceeding that of our study using either machine learning 

(Lee et al.; feedforward neural networks) or deep learning (Hossain et al.; Kinetics-FM-DLR-

Ensemble-Net) [43, 55]. KAM and KRM were also examined in these studies. The method by 

Lee et al. estimated KAM and KRM with low fit levels and NRMSE values greater than our 20% 

limits; however, this may be attributed to the use of the feedforward neural network, as we 

previously found that algorithm to be among the worst performing for moment predictions [43]. 

The deep learning method used by Hossain et al. estimated KAM with greater accuracy than our 

modified algorithm (KAM NRMSE: 8.27% compared to 19.6%), however, this may be due to 

their examination of activities representative of daily life and not sports[55]. Application of the 

Hossain et al. method to the more rigorous activities common in sports may yield poorer results 

as the algorithm may not be equipped to handle factors such as excess noise contamination due 

to soft tissue artifact. Neither the Hossain et al. or the Lee et al. studies presented a measure of 

reliability. While the accuracy of a model is important, neither study presented a method to 

measure reliability; reliability is of equal importance, because poor reliability would indicate 

predictions are random in nature. If IMUs are to be implemented to track injuries on-field, 

consistency is required. 
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Due to the “black box” phenomenon, F-tests were performed to gauge the contribution of each 

feature. The femoral force was the largest contributing feature to the GRF model (Figure 5-5). 

This was expected because, during cadaveric testing, the force measured by the femoral load cell 

was what was used when establishing xBW testing conditions [47]. Tibial force estimates also 

significantly contributed to GRF estimates (Figure 5-5). All other features used in GRF 

estimations did not significantly contribute (Importance Score < 20; p > 0.05). In both moment 

models, no one feature significantly contributed to the estimations. However, this may be due to 

the limitations of F-scoring. F-scores evaluate the importance of each feature independently from 

all other features. Thus, F-scoring does not account for the combined effect of multiple features 

[56].  

 

Figure 5-5 | F-test graphs used in determining the significance of a variable to a prediction model. On the y-axis are 
the differing features used in the construction of the model while on the x-axis are the importance scores. Larger 
scores indicate a more significant feature. 
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The third, and arguably most vital purpose of our study was to assess the ability to correctly 

distinguish between possible and low-risk events. Because of the poor performance of all the 

unmodified models, only the modified model estimates were used to estimate risk. Risk value 

was correctly identified with a high level of accuracy, precision, and recall which may mean we 

can correctly distinguish between possible and low-risk events. In recent years, the use of IMUs 

as a tool in determining biomechanical risk classification has grown, though, with most of these 

studies focusing on lifting tasks [57, 58]. Brandt et al. used a combination of surface 

electromyography and tri-axial accelerometer measurements in a Linear Discriminant Analysis 

algorithm to classify lifting events as risky or not based on The Danish Working Environment 

Authority guidelines [58]. They were able to reach accuracies of up to 65.5%, lower than that 

observed in our classification model [58]. Donsis et al. constructed a confusion matrix based on 

the estimations of a binary logistic regression model to assess the risk class based on the NIOSH 

(National Institute of Occupational Safety and Health) standard and demonstrated a good ability 

to distinguish between “risk” and “no risk” NIOSH classes with high accuracy (82.8%), 

sensitivity (84.8%), and specificity (80.9%); while our algorithm had a higher accuracy (96.5%), 

sensitivity was similar (78.6%) [57]. Although the tasks evaluated in these two studies are not 

like the dynamic actions of our study, they do reinforce the potential that IMUs must classify 

risk.  

 

5.5.1 Limitations 

This study has several limitations, including the use of a controlled laboratory setting. Due to the 

limited space to perform the required tasks, data collected may not be indicative of on-field 

conditions. The floor, being stiffer than common surfaces in sports may have also limited our 
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results as studies conducted have tracked the effects of surface stiffness on energy absorption and 

biomechanics, and it may be possible that greater errors would be present if our models were 

used to track on-field activities [59, 60]. The low instances of “risky” events is another 

limitation, as this may mean the precision determined in our study is skewed, and the addition of 

more “risky” events may see the precision for this classification lowered. Our use of multiple 

sensors may also be a hindrance to on-field application, as athlete’s comfort and ability to 

perform needs to be considered. This may mean that IMU placement and/or the number of IMUs 

available would change during on-field application; as such, new models may be needed to 

account for these changes. The effects of dermal thickness and tissue composition is another 

limitation of this work, as various works have alluded to the potential effects each may have on 

sensor measurement reliability [61, 62]. Measuring skin fold thickness, or subcutaneous fat 

levels under where the IMUs were placed should be examined as to understand their effects and 

develop possible filtering algorithms to account for possible sensor movement. 

 

5.6 Conclusion 

There were three goals for this study. The first was to assess the performance of our cadaveric 

models when applied to human subject data. This yielded a poor level of accuracy (high 

NRMSE) and reliability (large LoA), which may have been due to testing limitations and the 

absence of soft tissue during model construction. Model modifications to account for dynamic 

movements and possible soft tissue artifact were needed. Thus, the second purpose of our study 

was to develop these modifications to our original models. These consisted of subject-specific 

data (thigh circumferences, muscle contraction, mass, and height), IMU placements, and our 

unmodified model estimates. All modified models demonstrated NRMSE below 20% and 
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therefore had acceptable levels of accuracy. However, the large LoAs associated with KAM and 

KRM estimates may mean a possible lack of consistency. While it was challenging to 

consistently estimate knee moments, the accuracy and consistency of a risk estimate may be 

more important for injury tracking purposes. Hence, the third purpose of our study was to 

develop a classification system distinguishing “possible” and “low” risk estimated events. High 

levels of accuracy, precision, specificity, and sensitivity indicated that while the individual 

estimated values may be questionable, estimated risk is near that of measured risk. This ability to 

classify events may be crucial for injury tracking purposes. Future studies should examine the 

effect that different surfaces may have on model estimates, and the potential use of these models 

to track GRF and knee moments on the field. 
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Chapter 6: Can Wearable Sensors Provide Accurate and Reliable 3D Tibiofemoral Angle 

Estimates During Dynamic Actions? 

This chapter has been accepted for publication in Sensors and should be referred to as: 

Ajdaroski M, Esquivel A. Can Wearable Sensors Provide Accurate and Reliable 3D 
Tibiofemoral Angle Estimates during Dynamic Actions? Sensors. 2023; 23(14):6627. 
https://doi.org/10.3390/s23146627 

 

6.1 Abstract 

The ability to accurately measure tibiofemoral angles during various dynamic activities is of 

clinical interest. The purpose of this study was to determine if IMUs can provide accurate and 

reliable angle estimates during dynamic actions. A tuned quaternion conversion (TQC) method 

tuned to dynamics actions was used to calculate Euler angles based on IMU data and these 

calculated angles were compared to a motion capture system (our “gold” standard) and a 

commercially available sensor fusion algorithm. Nine healthy athletes were instrumented with 

APDM Opal IMUs and asked to perform nine dynamic actions; five participants were used in 

training the parameters of the TQC method with the remaining four used to test validity. 

Accuracy was based on the RMSE and reliability was based on the LoA. Improvement across all 

three orthogonal angles was observed as the TQC method was able to more accurately (lower 

RMSE) and more reliably (smaller LoA) estimate an angle than the commercially available 

algorithm. No significant difference was observed between the TQC method and the motion 

capture system in any of the three angles (p < 0.05). It may be feasible to use this method to track 
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tibiofemoral angles with higher accuracy and reliability than the commercially available sensor 

fusion algorithm.  

 

6.2 Introduction 

There has been a discernible rise in non-contact ACL injuries among athletes, despite the 

implementation of preventive measures [1, 2]. These injuries are of particular concern among 

young female athletes, with rates higher than their male counterparts in similar sports [1-3]. 

These injuries can be expensive to treat, with ACL reconstruction procedures ranging from 

$27,000 to $35,000 in cost, in addition, there is an increased risk of early-onset osteoarthritis of 

the knee following these operations [4-6]. Studies have identified sex-based differences in 

anatomy, hormones, and movement patterns as possible risk factors for ACL injury susceptibility 

[7-16]. While anatomical and hormonal factors cannot be controlled, identifying, and modifying 

movement patterns that may contribute to ACL injury or reducing exposure to severe loading 

cycles is possible.  

 

Traditionally, camera-based MCS in laboratory are used to measure kinematics. These systems 

are comprised of multiple cameras and load cells which make them difficult to use ‘in the field’. 

An IMU is a wearable sensor made up of accelerometers, rate gyroscopes, and magnetic field 

sensors that measure the linear acceleration, angular velocity, and magnetic field strength of a 

particular body part. By using a specialized sensor fusion algorithm, the device can track the 

orientation of the body part in inertial space. Additionally, combining the IMU data of two 

adjacent body segments can be done to determine the Euler angles of a joint. These sensors have 
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been utilized in different scenarios, including gait analysis, and rehabilitation assistance with 

success [17-28].  

 

Research conducted in laboratory settings on cadaveric models has suggested that some ACL 

injuries are due to overuse and repetitive strain placed on the ACL [29]. Numerous scenarios can 

lead to these high-strain conditions, however, one theory that is commonly accepted suggests 

that such injuries occur when the knee is externally rotated with a slight flexion and a slight 

valgus angle at the time of the incident [13, 30]. In theory, once these specific conditions are 

fulfilled, and the knee is subjected to a ground reaction force, a strong quadriceps contraction 

might occur, resulting in the tibia moving anteriorly to the femur; this movement could 

potentially cause the ACL to experience strain beyond its injury threshold [13, 30]. The ground 

reaction and quadriceps forces, as well as the orientation of the knee, are crucial factors in this 

scenario [13, 31]. Recently, a study has explored and created algorithms for calculating ground 

reaction forces with IMUs, with encouraging results [32]. However, accurately estimating 3D 

tibiofemoral angles has been more challenging. [33-37] and we believe that commercially 

available IMU algorithms may not be accurate for more dynamic activities like sports, where 

larger changes in joint angles, velocities, and accelerations can occur; this theory was 

corroborated through the results of our previous work [38]. Through testing with cadaveric 

specimens, we discovered that adjusting the settings of a sensor fusion algorithm led to improved 

performance compared to a commercially available version [38]. However, the use of cadaveric 

specimens excludes the effect soft tissue artifact may have on estimated angle accuracy. Thus, 

our goal in this study was to use the algorithm previously developed, but to adjust it for use in 

live human subjects and determine if the tuned algorithm demonstrates improved accuracy and 
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reliability when measuring tibiofemoral (knee) angles in all three orthogonal directions during 

more dynamic activities.  

 

6.3 Materials and Methods 

6.3.1 Subjects, Instrumentation, & Testing Procedures 

Before the commencement of the study, we received IRB approval (HUM00150719). Nine 

healthy (5 females, 4 males) current or former (within two years) soccer or basketball athletes 

were recruited (Table 5-1). Participants with a BMI over 29 kg/m2 or who had a current lower 

extremity injury were excluded. Instrumentation and testing procedures have been described 

previously [32]. Briefly, informed consent was obtained before a participant was fitted with 46 

retro-reflective spherical markers; the first 30 markers were placed according to the 30 Rizzoli 

lower body protocol, with the remaining placed in clusters of fours on the lateral thigh and 

gastrocnemius (Figure 5-1). Motions were collected using a 12-camera motion capture system 

(Prime 13 Optitrack, Corvallis, OR) and two APDM wearable sensors (APDM Opal, APDM 

Wearable Technologies, Portland, OR); the wearable sensors were placed similarly to previous 

works [32, 38]. All data were collected at 200 Hz and a sync device was used to synchronize the 

recordings. IMUs were calibrated before each session through the predefined calibration 

conditions used by the Moveo Mobility software (version 1.0.0) developed by APDM. 

Participants were asked to complete seven related tests three times: a jog with a pivot, an 

extension leap, a sidestep cut, a crossover cut, dominant shooting, a vertical jump onto two feet, 

and a vertical jump onto one foot (Table 5-2). Because both training and testing the validity of 

our tuned algorithm were needed, we randomly separated our subject pool based on average 
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subject weight, into a training set (used in tuning; N=5) and a testing set (used in the testing of 

validity; N=4). 

 

6.3.2 Data Processing 

For the MCS, a six-degree-of-freedom kinematic model of the lower extremity was created for 

each participant, including the pelvis, thigh, shank, and foot, using Visual 3D software (C-

Motion, Germantown, MD). A static trial was collected to determine the participant’s anatomic 

neutral. Joint angles at maximum ground reaction force were calculated in Visual 3D using a 

Cardan rotation sequence (CRS). Joint angles are the relative orientation of one local coordinate 

system to another and can be represented by three rotations about a unique axis. Emphasis is 

placed on the order of these rotations. Within this study, a CRS XYZ was implemented, with a 

lateral rotational matrix determined first, followed by an anterior, and finally a vertical rotational 

matrix; this process has been used in previous work [33]. Angles obtained through this kinematic 

model were normalized to the femur through the Visual 3D software. For the IMU, two methods 

were used to obtain the tibiofemoral angles: 1) APDM proprietary algorithm (denoted as the 

IMU method); 2) a tuned quaternion conversion algorithm (denoted as the TQC method). Angles 

obtained through the IMU method were not subjected to additional processing.  

 

IMU data were filtered using a fourth-order, zero-lag, low-pass Butterworth filter. Optimum 

cutoff frequencies for the Butterworth digital filter were obtained by applying Winter’s method; 

this method has been used in previous works [38, 39]. Only the training set was utilized in 

determining the optimal frequencies (Table 5-3). Following filtering, a nine-axis indirect Kalman 

filter using the quaternion conversion of the IMU accelerometer, gyroscope, and magnetometer 
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data was used. This process is detailed at greater length in our previous work and the paper by 

Stanley et al [38, 40]. Briefly, this process began through the estimation of a sensor’s current 

orientations from the angular changes of the previous orientation with the initial alignment 

estimated to be NED. Once obtained, this estimated orientation was converted to a quaternion 

format. Next, quaternion conversion estimations of the gravitational and magnetic field 

measurements were obtained using linear acceleration and angular velocity. These estimates 

were used to correct the gravitational and magnetic field data obtained from the previous 

orientation and magnetometer. The corrected orientation and magnetometer estimates became 

the innovation for the indirect Kalman filter. As mentioned by Stanley et al., the indirect Kalman 

filter attempts to track errors rather than orientation as the data is updated through a recursive 

process [40]. Additionally, this process being recursive meant that the a priori estimates of the 

error process and the state transitions models were set to zero, thereby allowing for the 

application of the reduced Kalman equations [40]. Because orientation was in a quaternion 

format, the subtraction of the data from adjacent segments was mathematically valid. Therefore, 

the data attributed to the tibial IMU sensor was subtracted from the femoral IMU sensor. The 

resulting values were then converted into Euler angles, similar to what was done before [38]. 

 

6.3.3 Parameters Used in the TQC Method 

Parameter adjustment followed what was previously done [38]. Briefly, several unique 

parameters used in the covariance of the observation model noise and predicted estimate 

covariance were required; all the required parameters can be viewed in greater length in the work 

by Stanley et al [40]. APDM Opal documentation provided the values for accelerometer noise, 

gyroscope noise, and magnetometer noise. Gyroscope drift noise, linear acceleration noise, and 
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magnetic disturbance noise were not detailed in the documentation, so the default values based 

on the FRDM-FXS-Multi family of sensor boards (as used by the Freescale Toolbox of 

MATLAB) were used; this was done in our previous work [38]. The use of these default values 

was implemented due to the potential value range being theoretically infinite such that a process 

of trial and error would not be possible. 

 

The LADF and MDDF were unknown parameters that accounted for the effects of drift in either 

the linear acceleration or magnetic disturbance. Because their theoretical values ranged from 0 to 

1, and because through previous testing, differences less than 0.0001 resulted in no 

distinguishable change between subsequent LADF/MDDF, values for the LADF/MDDF were 

theoretically finite. Using the training set of data, a trial-and-error approach was taken where 

adjustments to the LADF and/or MDDF were performed in increments of 0.0001 from 0.0001 to 

0.9999 to minimize the difference in angles between the TQC method and the MCS. These 

adjustments were performed on each axe, resulting in 3 unique LADF and 3 unique MDDF 

values per trial. An average for both the LADF and MMDF was determined and used when 

calculating the angles of the testing set for validation. A trial-and-error approach has been used 

in previous work [38].  

 

6.3.4 Statistical Analysis 

A repeated measured ANOVA with a pairwise comparison was performed on both the training 

and testing sets to determine whether there was a difference between the TQC method and MCS 

and the IMU method and MCS. A Bonferroni correction was used to correct for multiple 

comparisons. Differences were considered significant if p < 0.05. LoAs were constructed for the 
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testing set to assess each method’s reliability. LoAs were taken as the 95% confidence interval of 

the residual difference between a sensor method (either the TQC or IMU) and the MCS. To 

assess each method’s accuracy, the RMSE was determined between the MCS and either the IMU 

or TQC methods. BA plots were developed for descriptive analysis and used to comment on 

trends/biases that may exist; this was based on whether angles estimated using the IMU exhibited 

a tendency to over/underestimate true angles or whether there was an increase or decrease in 

variability as the angle increased in magnitude. 

 

6.4 Results 

6.4.1 Training Set 

Among all comparisons within the training set, flexion angle differences between the MCS and 

IMU as well as IMU and TQC were the only ones that were statistically significant (Figure 6-1). 

The training set showed a mean difference in flexion/extension between the MCS and IMU of -

9.94° (95% CI: -13.9° to -5.96°) while that between the MCS and TQC was -0.18° (95% CI: -

4.16° to -3.80°). For abduction/adduction, a mean difference of -0.47° (95% CI: -2.71° to 1.77°) 

between the MCS and IMU was observed, while the mean difference between the MCS and TQC 

was -0.13° (95% CI: -2.37° to 2.11°) (Figure 6-1). The mean difference in rotation between the 

MCS and IMU was -0.71° (95% CI: -4.01° to 2.60°); between the MCS and TQC, the difference 

was -0.10 (95% CI: -3.41° to 3.21°). Across all cases, the LoA and RMSE of MCS vs TQC were 

determined to be smaller, indicating increases in both accuracy and reliability in the TQC (Table 

6-1). 
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Figure 6-1 | Box-and-whisker plots comparing the values of the motion capture system (MCS), the sensor fusion 
algorithm of the IMU (IMU), and the tune quaternion conversion method (TQC) for flexion (top), abduction 
(middle), and rotation (bottom). Differences that were determined to be significant are denoted by *. 
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Table 6-1 Comparisons of the angles estimated using either the IMU or TQC method to those of the MCS. Presented 
are the RMSE and LoA bound (taken as the difference between upper and lower bound). Diff. is taken as the 
difference of MCS vs. TQC values or MCS vs. IMU. 

Comparisons of the IMU and TQC Methods to MCS 

 Training Set Testing Set 

 Comparison RMSE 
LoA 

(Upper – 
Lower) 

RMSE 
LoA 

(Upper – 
Lower) 

Flexion 

MCS v IMU 16.6° 52.0° 19.0° 68.1° 

MCS v TQC 7.48° 29.3° 8.00° 32.9° 

Diff. -9.08° -22.6° -11.0° -35.2° 

Abduction 

MCS v IMU 11.9° 46.6° 8.59° 33.4° 

MCS v TQC 3.51° 13.8° 3.14° 12.9° 

Diff. -8.37° -32.8° -5.44° -22.4° 

Rotation 

MCS v IMU 25.5° 100° 29.7° 121° 

MCS v TQC 4.39° 17.2° 3.63° 15.0° 

Diff. -21.2° 82.9° -26.1° 105° 

 

6.4.2 Testing Set 

Flexion and rotation angles between the MCS and IMU as well as IMU and TQC were 

determined to be statistically significant (Figure 6-1). A mean difference in flexion/extension of -

9.96° (95% CI: -14.3 to -5.64) was determined between the MCS and IMU, while that between 

the MCS and TQC was determined to be 0.80° (95% CI: -3.52 to 5.12). For abduction/adduction, 

the mean difference between the MCS and IMU was -0.68° (95% CI: -2.58 to 1.23) while the 

mean difference between the MCS and TQC was -0.49° (95% CI: -2.39 to 1.42) (Figure 6-1). 
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For rotation, the mean difference between the MCS and IMU was 5.42° (95% CI: 1.68 to 9.17) 

and 0.04° (95% CI: -3.70 to 3.79) between the MCS and TQC. Across all comparisons, 

differences between the MCS and IMU resulted in larger RMSE values as well as larger LoA 

(Table 6-1). 

 

The BA plots comparing the MCS and IMU differences showed varying degrees of bias and 

trends. For flexion/extension, there tended to be an underestimation of the angle by the IMU, and 

a linear slope was observed between the residuals and the measured flexion/extension angle; 

lower measured values skewed towards overestimations while higher values tended to be 

underestimations (Figure 6-2). Within the abduction/adduction BA plot between the MCS and 

IMU, as the magnitude of the measured angle increased (regardless of whether abduction or 

adduction), estimated values by the IMU decreased (Figure 6-2) . For rotational angles between 

the MCS and IMU, the IMU tended to overestimate the magnitude of the angle, regardless of 

whether it was internal or external rotation. Comparing the MCS and the TQC, differences in 

flexion/extension as well as rotation showed no discernable trends. With the abduction/addiction 

BA plot between the MCS and IMU, as the magnitude of the measured angle increased, there 

was an increase in the variability of TQC estimates. 
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Figure 6-2 | Bland–Altman plots associated with the residuals for flexion (top), abduction (middle), and rotation 
(bottom) between the motion capture system (MCS) and either the sensor fusion algorithm (IMU; left) or the tuned 
quaternion conversion method (TQC; right). Residuals were plotted against the measured values of the MCS. Limits 
of agreement (LoAs) are shown in red while the line of zero difference is shown in black. 

 

6.5 Discussion 

We hypothesized that, the sensor fusion algorithm employed by commercially available wearable 

sensors may not necessarily be accurate when used in dynamic activities such as sports where 

larger changes in joint angles, velocities, and accelerations occur. Previous cadaveric testing 

supported this theory, as the tuning of certain parameters of a quaternion conversion algorithm 
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resulted in more accurate and reliable angle estimates over an IMU’s sensor fusion algorithm 

[38]. However, we recognized several limitations in this previous work, such as a lack of soft 

tissue and a lack of variability in the motion. The purpose of this study was to use the algorithm 

previously developed but retune it for use in human subjects in a variety of action types and 

determine if this tuned algorithm demonstrated improved accuracy and reliability in angle 

estimations. In all cases for the testing set, differences between the TQC and MCS were 

determined to be statistically insignificant, while differences between the IMU and MCS were 

observed as being significant in both flexion and rotation. Whether or not these differences are 

clinically relevant is dependent on the particular scenario. A review paper examining ACL tear 

in athletes reported flexion angle differences of 10°-21.7° between injured and un-injured knees 

and a laboratory study observed abduction angle increases of 8° in athletes who went on to injure 

their ACL [8, 41]. Therefore, while differences between the IMU and MCS were observed as 

being statistically significant in flexion, clinically this may be negligible. Across all 

comparisons, the RMSE values associated with the differences between the TQC and MCS were 

smaller than those between the IMU and MCS, with the largest difference occurring in the 

testing set rotational angles (3.63° compared to 29.7°); this was similarly observed during our 

cadaveric testing [38]. In every case, the LoA associated with the difference between the TQC 

and MCS were smaller than those between the IMU and MCS, indicating a smaller range in 

differences and a better degree of reliability. 

 

Various studies have calculated joint angles, particularly those of the knee, using IMU-derived 

data, and then compared the results to those obtained through an MCS [34-37, 42-45]. However, 

the focus of many of these studies has been on examining differences in flexion angles, possibly 
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due to the knee flexion angle exhibiting the largest change during an action, and consequently 

being easiest to measure reliably. However, being able to accurately measure abduction and 

rotation angles is important because of the potential effects these angles may play in knee 

injuries, specifically, ACL injuries. Many studies have proposed there is a correlation between 

ACL strain and the abduction/adduction and rotational orientation of the joint [16, 46-52]. 

Because of this possible correlation, to improve knee injury tracking, it becomes important to 

track all three knee angles. Furthermore, the method by which joint angles are determined 

through IMUs also varies widely from study to study, with some taking the integration of angular 

rates while others using Euler angles. Studies such as those by Watanabe et al., Tong et al., and 

Bakhshi et al calculated knee joint angles by taking the integration of angular rates, without the 

conversion to Euler angles and limiting themselves to only determining flexion angles [35, 36, 

42]. This process may be problematic as angles obtained do not describe the orientation of the 

joint to a fixed coordinate system, but rather to some arbitrary coordinate system. As such, each 

study’s estimated angles may not represent the knee’s true orientation, and comparisons between 

estimated and MSC-measured values may not be accurate. However, these studies have shown 

their methods to be accurate in knee flexion estimates as the least accurate of these studies (Tong 

et al.) demonstrated an RMSE value below that which we reported between the MCS and TQC 

(our best case within flexion comparisons) (RMSE of 6.4° compared to 7.48°) [36]. This 

comparison may warrant criticism, as these studies observed actions associated with 

rehabilitation, which can be less dynamic than those in our study, but it may be that, due to 

possible increases in both angular velocities and linear accelerations, the results of our study 

were more prone to noise pollution and thus inaccuracies.  Various studies have noted the 

potential effects of soft tissue artifact on the validity of results [53-55].  
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Bell et al and Zügner et al compared angles estimated via a sensor’s proprietary sensor fusion 

algorithm and those of an MCS [43, 44]. In these cases, the sensor fusion algorithm was used to 

calculate the Euler angles of the knee joint. In the study by Bell et al, RMSE values between 

estimated and measured knee flexion angles were lower than any previously mentioned study 

and lower than that of our study (RMSE of between 2° and 2.9° compared to 7.48°) [44]. While 

this shows a high accuracy for flexion angle estimates, the accuracy of abduction/adduction or 

rotational estimates was not reported which are important if IMUs are to be used for injury 

prevention. Zügner et al reported that they found no significance in the mean difference between 

estimated and measured knee flexion angles (p=0.7) and determined a high ICC (ICC>0.8) [43]. 

Mean difference comparisons and ICC compare data sets as groups, and as such, mitigate the 

effects of gross differences; if the algorithm over- and underestimates angles similarly, the mean 

difference would be relatively small and may be misleading to the performance of an algorithm. 

Approaches such as RMSE or mean absolute percent errors remove this pitfall and may be much 

better indicators of accuracy.   

 

In a previous study done using APDM Opal sensors, highly dynamic activities (jumps) were 

observed and comparisons of all three knee angles were reported [38]. It was concluded that for 

both abduction/adduction and rotation, the APDM Opal algorithm was able to perform well 

under certain conditions, particularly those of smaller angle displacements, and experienced 

greater variability as the magnitude of the measured angle increased [38]. We observed a very 

similar trend when comparing the IMU to the MCS across both abduction/adduction and rotation 

angles, but only within the abduction/adduction comparison between TQC and MCS was a 

similar trend noted, however, the extent of this increase in the variability of the increase in angle 
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magnitude was not as prominent. In both this and our previous study, the mean difference 

between the IMU estimated abduction/adduction angle and that of the MCS was not significant, 

although, the RMSE reported in our study was greater (RMSE of 8.59° compared to 4.91°) [38]. 

Several factors may have influenced this, however, such as the limited range of action previously 

observed (limited to only vertical jumping). Differing action types, including cutting maneuvers 

that induce more abduction/adduction and rotation, were examined in this study. Normalization 

of both RMSE values may provide a better means of comparison. Across all cases, the RMSE 

values between the TQC and MCS were smaller than those reported by our previous study, 

illustrating that perhaps the TQC may estimate angles more accurately. Furthermore, comparing 

the BA plots showed that the TQC demonstrated an overall greater degree of reliability as both 

lesser trends and smaller LoAs were observed.  

 

6.5.1 Limitations 

This study has several limitations, including the use of a controlled laboratory setting. Due to the 

limited space and potential lack of comfort, participants may not have been able to perform 

actions exactly as they would on-field. The floor, being stiffer than common surfaces in sports 

may have also impacted our results as several studies have tracked the effects of surface stiffness 

on energy absorption and biomechanics; it may be possible that greater errors/variations would 

be present to track in on-field activities where surface stiffness may vary greatly [56, 57]. The 

small population size (N=9) of our study is a limitation. Additional participants with more 

varying age, weight, height, etc. may be needed to assess the true accuracy and reliability of the 

TQC. The way our sensors were affixed may also be a limitation, to using this in the field, as on-

field use of these sensors may preclude them from being similarly placed on athletes. Either due 
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to game rules or athlete comfort, sensor placement may need to be adjusted. Studies conducted 

have correlated the relationship between sensor position and orientation with errors in 

estimations, showing a reduction of accuracy up to 20.8% [58]. Thus, while using the current 

sensor placement, we reported high levels of accuracy and reliability when implementing the 

TQC, changes in either sensor orientation/placement may adversely affect our results. 

Additionally, the duration of each test may have omitted, or greatly reduced, the potential effect 

drift and error accumulation may have on angle estimates. While the TQC accounts for 

gyroscopic drift in a recursive process, test actions were performed in several seconds. During 

on-field implementation, the sensor may need to be recording for upwards of two hours, 

depending on the sport being examined. The effects of prolonged recording on the 

accuracy/reliability of the TQC warrants additional research. 

 

6.6 Conclusions 

Our goal in this study was to ascertain the potential improvement in accuracy and reliability of a 

tuned quaternion conversion algorithm when compared to the sensor fusion algorithm often 

provided by the manufacturers. The theory was, that due to their popularity in rehabilitation 

settings, various parameters within the sensor fusion algorithm are tuned to less dynamic actions 

and therefore may not be robust enough for implementation in sports-related activities. Tuning a 

quaternion conversion algorithm and using dynamic actions, we recorded improvement across all 

three angle types, as the TQC was able to more accurately (lower RMSE) and more reliably 

(smaller LoA) estimate an angle than the IMU. It may be feasible to use this algorithm to identify 

and track knee angle measurements that may be associated with ACL injury. However, further 

testing into the effect surface-of-play may have, optimal placement of sensors to ensure 
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adherence to rules and player comfort, and the effects drift may have on the prolonged recording 

will be needed before an on-field application is possible.     
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Chapter 7: Summary, Pitfalls, and Future Directions 

7.1 Summary of Our Work 

The increase in the incidence of ACL injuries is a growing concern, and the need to be able to 

prevent them has garnered much attention in sports medicine. By nature, most ACL injuries are 

non-contact and, in some cases, possibly due to ligament overuse. Fortunately, if overuse is the 

reason, the tracking of parameters such as ground reaction force, knee moments, and knee angles 

may provide a means to prevent them. While traditional tracking methods have limited use 

outside the laboratory, IMUs may be a viable on-field approach to monitor kinematics in athletes 

during gameplay events. However, IMUs only record linear acceleration and angular velocity of 

a segment and therefore require the application of post-collection equations to estimate relevant 

parameters.  

 

The first stage of this study used in vitro models to estimate the values of GRF, knee moments, 

and angles during single-legged simulated landings. A QC method estimated the 3D tibiofemoral 

angles using data obtained from the IMUs. We utilized nine cadaveric knee specimens during the 

training (N=4) and validation (N=5) of the method. We compared the estimated angles using our 

new method to those obtained from a commercially available sensor fusion algorithm (APDM 

OPAL) and those calculated from the active marker motion capture system. We found significant 

differences in some orthogonal angles when comparing the QC method and commercially 

available algorithm to the MCS data (p<0.01). However, differences between the QC method and 

the MCS in the testing set for flexion and rotation angles were less than those of the 
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commercially available algorithm and the MCS, indicating improvement. Smaller limits of 

agreement between the QC method and the MCS indicate improved reliability in angle 

estimations. We used machine learning algorithms in the next stage to estimate the values of the 

forces and moments. Here, we used 24 specimens; 21 were used for training each model, while 

three were used for testing accuracy (normalized root mean square error) and reliability (Bland-

Altman limits of agreement). The results showed that the models estimated the forces and knee 

moments with acceptable levels of error and reliability, although several exhibited some form of 

bias. Our Stage 1 testing showed the potential of IMUs to estimate forces, knee moments, and 

knee angles accurately and reliably in cadaveric models, thus allowing us to proceed to Stage 2: 

estimating various parameters such as GRF, KAM, KRM, and knee angles using IMU data for 

human subjects.  

 

In the second stage of this study, we recruited nine healthy volunteers (five females, four males) 

who currently play soccer or basketball or have played in the last two years. We fitted four IMUs 

on each subject (placed on the shank and thigh of either leg) and instructed them to perform nine 

sport-related movements three times each. A motion capture system including force plates 

allowed us to measure kinematics and force, we used Visual 3D software to calculate knee joint 

moments using inverse dynamics. We recorded KAM, KRM, and knee angle measurements at 

the maximum vertical GRF; a sync box allowed for taking IMU data at this same time frame. 

The second stage used a similar method found in the first to estimate knee angles; however, we 

returned to the QC method for human subjects. We used the data of five participants to re-tune 

the algorithm, with the remaining four used to test the algorithm's validity. The results of the new 

algorithm were then compared to those of the commercially available algorithm and the MCS. In 
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all three angle types, the new algorithm was more accurate (lower RMSE) and more reliable 

(smaller LoA) in angle estimation than the commercially available software. In the second stage, 

we again used machine learning to estimate the forces and moments; however, the models here 

used the first-stage model estimations and subject-specific metrics to develop modified models. 

We compared the modified models' estimated values to the MCS and tested for accuracy 

(normalized root mean square) and reliability (Bland-Altman limits of agreement). We also 

developed a confusion matrix to examine if these estimates could distinguish between low-risk 

and potentially injurious events. Results showed high classification accuracy, precision, 

specificity, and sensitivity but poor reliability for the KAM and KRM estimates. Nonetheless, the 

modified models show promise in distinguishing between low-risk and potentially injurious 

events. 

 

Over both stages of our study, we found that IMUs can be used to estimate ground reaction 

forces, knee moments, and knee angles with moderate levels of accuracy, and even though we 

found some poor reliability during our human subject testing, estimated values could still 

distinguish between low-risk and potentially injurious events with high accuracy. Our results 

show that we may be able to use IMUs to track these conditions on-field, inform coaches and 

team doctors of potentially injurious events, and have athletes rest and recover appropriately. 

However, over the course of our work, several limitations have been noted that could warrant 

further research. 

 

 



 155 

7.2 Pitfalls, Limitations, and Future Pursuits 

We discovered several limitations during testing in either stage that may have skewed our results 

or impeded our ability to develop robust models. During the first stage, we recognized that our 

use of cadaveric specimens meant we developed the algorithm and models under ideal 

circumstances; omitted were the possible effects of soft tissue. However, this was less of a 

limitation and more of designing this stage with a particular goal: developing models that related 

the IMU data to the mechanics of a performed action. If we proceeded directly toward the second 

stage and performed human testing, we would be unable to state with any certainty if errors 

between measured and estimated values were due to the inability of IMU data to model a 

phenomenon or if other factors (such as soft tissue artifact) were to blame. Stage one showed that 

it was possible to use IMU data to model an action; thus, we were confident that errors arising in 

the second stage were attributable to other factors. Cadaveric specimen use was not the only 

limitation of the first testing stage, as a lack of action variability can also be a potential 

limitation. This lack of variability may have meant the models were overly tuned for jump-

landing actions. However, our modifications during the second stage accounted for both soft 

tissue and included a variety of actions. Although, which factor (the soft tissue or actions 

variation effects) these modifications more heavily account for is unclear. Reperforming stage 

one testing with a different rig that can mimic various actions would give us insight into this 

question. Though the high performance in the second stage may mean additional testing is not 

warranted.  

 

During the second stage, the limited space and potential lack of inability to perform tasks in the 

‘natural setting’ may have meant participants did not perform actions exactly as they would on-
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field. Therefore, the models developed during this second stage may provide less accurate and 

reliable estimates when applied on-field. The stiffer floor of the laboratory may also skew our 

models' abilities, as several studies have related the effects of floor stiffness to energy absorption 

and biomechanics [1, 2]. Reperforming the second stage on softer surfaces more akin to field 

conditions, such as turf, may alleviate this issue. Likewise, adding a third stage in which we 

develop modifications based on differing play surfaces may also be a research avenue to pursue. 

How we affixed our sensors onto a participant during stage two is also an issue of concern, as 

on-field rules and regulations and an athlete's comfort may preclude placing them similarly 

during gameplay. We may need to adjust sensor placement or find different ways to integrate the 

sensors without violating rules or compromising comfort. For example, additional research into 

developing a sensor-embedded shin guard for soccer athletes may allow for tracking of injurious 

events while unaffecting the core gameplay. However, this would mean we would need to 

develop new models based on the data of these new sensors. Though, the procedure and results 

of this study would provide a framework for how to model the new sensor data. In terms of 

basketball, sensor-embedded shoes may be the alternative to how our sensors were placed, 

though again, we would need to construct new models.  

 

The possible effects of prolonged recording were never examined during human subject testing, 

thus proving to be another limitation of this study. The actions participants performed during our 

human subject testing were done so in quick secession; all actions lasted no longer than a minute. 

This small duration of each test may have omitted or reduced the effects of gyroscopic drift and 

possible error accumulation within the sensor readings. We understand that implementing a 

sensor to record events during gameplay may require the sensor to be active for hours, depending 
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on the sport. How this continuous activation affects sensor recording is unclear and warrants 

additional research. A possible avenue to pursue is to observe how the sensor recordings are 

affected by the time when left within a neutral environment (i.e., placed on a level surface and 

free of any outside movement). Examining the effects of time independently from any other 

factor may provide a means to develop additional model modifications to account for its 

influence. Another pursuit may be to implement our sensors during game practice events. Not 

only would the effects of time be present, but without game rules and regulations, we would be 

able to place our sensors as we did during our human subject testing. Pursuing this course would 

allow for modifications based on the duration and the surface of play and allow for observing 

actions more comparable to those during competitive gameplay. As we did not account for the 

effects of dermal thickness and tissue composition during human subject this, this may pose 

another limitation of our work. Various works have alluded to the potential effects tissue may 

have on sensor measurement reliability [3, 4]. Measuring skin fold thickness, or subcutaneous fat 

levels where the IMUs were placed should be examined to understand their effects and develop 

possible filtering algorithms to account for possible sensor movement. 

 

7.3 Final Conclusions 

Over the course of our work, we have demonstrated that IMUs can be used to estimate ground 

reaction force, knee moments, and knee angles with some accuracy. And though during the 

human testing, we determined a deficiency in reliability in knee moment estimates, we used our 

models' estimates to classify the risk of an event with high accuracy, precision, specificity, and 

sensitivity. Our results show the potential of IMUs for tracking gameplay events and 

distinguishing between low-risk and potentially-risky events. While we acknowledged several 
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limitations within our work, we also provided several research avenues to pursue in addressing 

and correcting them. Ultimately, we believe that IMUs may be used to aid coaches and clinicians 

in preventing some athletes from sustaining ACL injuries. 
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