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Abstract:
Highly diverse agroecosystems are becoming increasingly of interest to

researchers and government organizations as more light is shed on the invaluable

ecosystem services that these farms support. Accompanying the increased agroecosystem

research is an increased use of uncrewed aerial systems (UAS) in remote sensing

research. UAS allow for finer spatial resolution imagery, and they also have the capacity

to revisit sites faster than traditional satellites. With the combined utility of UAS and

interest in diverse agroecosystems, there exists an opportunity to meld fields of study and

understand the practicality of UAS in highly biodiverse settings.

In this study, we utilized UAS to collect fine-resolution 10-band multispectral

imagery of coffee agroecosystems in Puerto Rico. We then used the imagery to create a

pixel-based supervised classification of each farm. After classifications were completed,

accuracy assessments were performed. The average overall accuracy (53.9%), while

relatively low, was expected for such a diverse landscape with such fine-resolution data,

and does not eliminate the utility of the land-cover classifications for certain actors.

Furthermore, in order to evaluate the land cover classifications, we conducted interviews

with farmers to understand their thoughts on how these maps may be best used to support

their land management. We shared printouts of the multispectral imagery and the land

cover classifications with land managers and found that while the imagery and maps may

have been a point of pride or curiosity for farmers, using the maps as part of farm

management was perceived as inapplicable currently. These findings highlight that while

remote sensing of diverse agroecosystems may provide a quick way of estimating land

cover classes (and subsequent ecosystem services), these maps may only be of use to

those who do not regularly work in these environments.
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Introduction:

Unlike the highly input-dependent monocultures that make up the largest part of the

food production system (Foley et al., 2011), diversified agroecosystems are increasingly

touted as invaluable systems against climate change. Agroecosystems, in the context of this

study, have the capacity to maintain ecosystem services, biodiversity, and farmer livelihoods

indicating that the highly diverse farms of this paper are part of more sustainable practices

(Iverson et al., 2019; Mayorga et al., 2022; Saj et al., 2017). Coffee agroecosystems are

ecologically, economically, and politically significant to the neotropics (Perfecto &

Armbrecht, 2003). Ecologically, coffee is significant because of the species richness it has

the potential to promote. While there exists a gradient from which coffee is grown, ranging

from unshaded monocultures to shaded polycultures and agroforestry systems, many coffee

farms in the neotropics promote biodiversity by planting coffee in the shade of overstory

vegetation. This overstory vegetation and other cultivated plants intercropped with coffee

can provide habitat for wild flora and fauna and regulate ecosystem services necessary for

other plant life (Jha et al., 2014; Moguel & Toledo, 1999; Perfecto et al., 1996).

Economically, roughly a third of the world's coffee production takes place in Latin America

(ITC [International Trade Center], 2011; Rice, 1999). Because of the significant economic

impact that coffee exports have on the neotropics, government policy has frequently

encouraged high-intensity production at the expense of more ecologically sound

agroecosystems (Borkhataria et al., 2012).

Because of the significance coffee agroecosystems carry, there are increased efforts to

study and understand the heterogeneity of farms that have traditionally been classified as

forested (Helmer et al., 2002). The task of understanding coffee agroecosystems becomes
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especially important in the context of Puerto Rico post-Hurricane Maria. Hurricane Maria

highlighted the lack of knowledge about food production in Puerto Rico. When it made

landfall in Puerto Rico as a Category 4 hurricane, flooding, landslides, and overall damage

were prevalent in the coffee-growing mountainous region of Puerto Rico (National Weather

Service & National Oceanic and Atmospheric Administration, 2017). Understanding the

resistance and resilience of coffee agroecosystems to such catastrophic events requires an

understanding of the land change that occurred due to the natural disaster (Perfecto et al.,

2019).

Foundational to understanding land change post-climatic disaster is having accurate

land cover classifications maps before and after such events. The advent of uncrewed

aircrafts (UA), or drones, means that remote sensing imagery can be captured with a much

finer spatial resolution, well under a meter resolution and often on the order of tens of

centimeters (Jay et al., 2019), than that of traditionally used satellites like Sentinel-2A MSI

and Landsat 8 OLI, which have resolutions of 10-20 meters and 30 meters per pixel

respectively (Cerasoli et al., 2018). In addition to the increased spatial resolution, drones do

not have defined return times and can be employed whenever desired, as well as move across

the terrain and around many obstacles. The flexibility and increased spatial resolution of

drones mean that UAs have the potential to create vastly more accurate land cover

classifications.

While the use of auxiliary data and finer-resolution data may aid in improving

classification accuracies, in some cases these classifications only benefit researchers and

other outside actors, who hold implicit biases about the land that they are studying (Laso &

Arce-Nazario, 2023). In order to derive practical tools and analyses from classifications, it is
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necessary that farmers be included in the mapping and classification of their land. This

becomes especially important in such diversified systems, as more nuance can exist in what

does and does not constitute a “crop”. In mapping with farmers, we also affirm that our work

is done in collaboration with the land stewards of what we map (Laso & Arce-Nazario,

2023). Working in partnership with farmers does lend itself to the potential of misestimating

the amount of a certain land cover class in favor of another due to different actors placing

significance on certain land cover types. However, to a large extent, this is considered to be

outweighed in terms of the benefits of including farmers in the mapping process (Laso &

Arce-Nazario, 2023).

This thesis was written with the intention of adding more information to the growing

literature on the classification of diversified coffee agroecosystems, with an emphasis on the

utility of UA and farmer participation in this effort. Our goals were to quantify the accuracy

of classifications performed on fine-resolution multispectral data and to explore how

speaking with farmers may change the methods or results in which classification occurred

initially. It is our hope that should similar research continue, farmer involvement will happen

at an earlier stage, and more often so that a better knowledge exchange can occur.

Methods:

Study area:

Our study took place in the coffee-growing mountainous areas of central-Western

Puerto Rico. More specifically, farms were surveyed in Utuado, Adjuntas, Jayuya, and Yauco

(see Figure 1). Farms in these regions experienced normal, between 177-229 cm of annual

rainfall (National Weather Service, n.d.) and are classified as submontane and lower montane

wet forests (Helmer et al., 2002). Soils present in the coffee-growing region include ultisols,
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inceptisols, and oxisols (Alvarez-Torres, 2020). Farms surveyed were a part of

long-withstanding coffee agroecosystem research in the region and spanned across a gradient

of coffee production intensification (Moguel & Toledo, 1999). Other commonly found crops

in these diverse agroecosystems include citrus trees, bananas, and plantains. The farms

surveyed had an average slope of 15.4 degrees. Farms ranged from 0.8-56.7 hectares in size.

More information can be found in Table 1.

Figure 1. Study sites within the central-Western coffee growing region of Puerto Rico.

Municipalities layer from UN Office for the Coordination of Humanitarian Affairs. The

figure is projected to “StatePlane Puerto Rico Virgin Isl FIPS 5200 (Meters),” a version of

the Lambert conformal conic projection, and has a datum of NAD 1983.
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Table 1. Information on farm size, aspect, slope, and classification based on Moguel
and Toledo’s (1999) coffee growing gradient.

Farm Size (ha) Aspect Median Slope (°) Classification
UTUA2 1.64 West-facing 7 Commercial polyculture
UTUA16 0.96 South-facing 12 Traditional polyculture
UTUA18 2.13 East-facing 16 Traditional polyculture
UTUA20 1.63 South-facing 18 Commercial polyculture
UTUA30 0.82 West-facing 25 Traditional polyculture
YAUC4 2.47 North-facing 12 Traditional polyculture
ADJUCP 3.45 North-facing 12 Commercial polyculture
ADJU8 41.97 East-facing 16 Shaded monoculture
JAYU2_3 56.05 South-facing 17 Shaded monoculture

Uncrewed aircraft (UA) flights occurred in 2021, 2022, and 2023 to collect LiDAR

(Light Detection and Ranging) and 10-band multispectral imagery. Before 2021, numerous

preliminary data-gathering missions occurred with the use of fixed-wing and multirotor UA.

Ground data collection, which includes the GPS and plant characteristic data, occurred in

2021, 2022, and 2023. Interviews with farmers were conducted in May of 2023 and were

subject to review and approval by the Institutional Review Board (IRB) of the University of

Michigan.

Ground data collection:

Ground data collection was conducted over the course of multiple field campaigns

and had multifaceted goals each year. Depending on the field campaign, either ESRI

Collector or ESRI Field Maps was used to capture data. The preferred data capture software

was linked to an external GPS receiver. In earlier campaigns, the Trimble R1 Catalyst was

used, and in later campaigns, a BadElf Flex was used. Both of these external GPS receivers

were placed on a 2-meter tall survey pole in order to ensure an appropriate satellite
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connection. Both external receivers increased GPS accuracy (as compared to integrated GPS

in the smartphones used to capture data), but steep topography meant that strong connections

to satellites were not always met, resulting in decreased GPS accuracy. The Trimble R1

Receiver typically receives submeter accuracy (Trimble R1 GNSS Receiver, n.d.), whereas

the Bad Elf Flex receives 30-60cm accuracy on average (Bad Elf, n.d.). Because of the steep

topography, typically accuracies of below 1 meter were accepted. On very few occasions,

accuracies were accepted at around 1.5 meters if a given surveyor had waited five minutes

with no increase in accuracy.

At a given crop or plant of interest, the survey pole with attached external GPS was

placed as close to the base of the plant as possible. Using a smartphone and either ESRI’s

Field Maps or Collector, a GPS point was recorded. The data capture software recorded

various information for each GPS point. If the plant of interest was coffee, information on the

coffee leaf rust (CLR) and leaf miner level was recorded. Other information collected

included the plant type, specific plant species if relevant, farm code, percent of plant covered

by vines, notes about the surrounding canopy, date and time of point collection, and a photo

of the plant or surroundings if desired. Information collected on CLR, leaf miner levels, and

vine coverage by plants was retained for other studies.

Multispectral and LiDAR data collection with Uncrewed Aircraft Systems (UAS):

UAS work and subsequent methods documentation were done by Embry-Riddle

Aeronautical University in accordance with Federal Aviation Administration’s (FAA) 14

CFR Part 107 regulations. Highly variable topography within the coffee-growing region of

Puerto Rico required significant mission and flight planning in order to collect quality
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multispectral and LiDAR data. Mission planning was completed prior to arrival in Puerto

Rico, and included tasks such as identifying appropriate equipment and sensors for the

specific terrain and creating standardized procedures. Google Earth Pro was first utilized to

identify farm boundaries and areas within farms that may be of special interest. In addition,

Google Earth Pro was used to identify potential divisions for farms that were too large to be

imaged with a single drone flight.

Based on the results of the Google Earth Pro exploratory analysis, a fixed-wing UA

or multirotor UA was selected for a given farm for preliminary data-gathering operations.

After the 2020 data-gather missions, it was decided that fixed-wing UA was no longer a

viable option, and all later missions utilized multirotor UAS. This is predominantly because

multirotor UAs are able to recover vertically, navigate smaller volumes of air, adapt to

changing terrain, hold heavier payloads, and fly discontinuously. The use of multirotor UA in

instances of abrupt topography change ensured that acceptable ground sampling distances

were maintained.

A DJI Inspire 2 was outfitted with a multispectral imaging sensor and a DJI Matrice

600 UA was outfitted with a LiDAR sensor. Multispectral imaging for relevant field

campaigns was done using a MicaSense RedEdge-MX Dual Camera Imaging System, which

included 10 synchronized bands that spectrally overlapped with Sentinel-2A MSI and

Landsat 8 OLI imagery (detailed in Table 2). In addition to the multispectral sensor, a

downwelling light sensor aided in radiometrically calibrating images. Infrared radiation was

pulsed and gathered subsequent returns of up to 400 points per meter from on-the-ground

objects and terrain. Three integrated global navigation satellite system (GNSS) receivers, an

inertial measurement unit (IMU), and internal sequencing and intensity combined to assign
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each return a specific XYZ location, scan angle, and calibration value. Returns were then

processed to create a dense point cloud.

Table 2. Spectral band information for the MicaSense RedEdge-MX Dual Camera
Imaging System as compared to Sentinel-2A MSI and Landsat 8 OLI

Sentinel-2A MSI Landsat 8 OLI

MicaSense RedEdge-MX Dual

Camera Imaging System

Spectral

Region

Wavelength

range (nm)

Spectral

Region

Wavelength

range (nm)

Spectral

Region

Wavelength

range (nm)

Blue 458–523 Blue 435–451 Blue 430-458

Green peak 543–578 Blue 452–512 Blue 459-491

Red 650–680 Green 533–590 Green 524-538

Red edge 698–713 Red 636–673 Green 546.5-573.5

Red edge 733–748 NIR 851–879 Red 642-658

Red edge 773–793 SWIR1 1566–1651 Red 661-675

NIR 785–899 SWIR2 2107–2294 Red Edge 700-719

NIR narrow 855–875 Red Edge 711-723

SWIR 1565–1655 Red Edge 731-749

SWIR 2100–2280 NIR 814.5-870.5

Flight planning, unlike mission planning, occurred on site. Upon arrival at a given

farm, a temporary shelter was established with a generator and charging station. A site survey

was completed by considering persons and property, airspace restrictions, local weather
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conditions, topography, and any obstructions. Site surveys were especially interested in the

specification of the minimum safe altitude (MSA) for each flight, or the lowest altitude the

UA can fly without encountering any obstructions.

After establishing the temporary shelter, a waypoint-defined flight plan was created in

DJI Ground Station Pro on a mobile tablet. The size of the farm, data needs, and underlying

surface were considered in determining whether a single or double grid (cross-hatch) flight

pattern was flown (Figure 2).

Figure 2. Depiction of a single and double grid flight plane (PIX4D, 2019).

Flight plans also took into consideration the speed, altitude, direction, launch,

recovery, and line of sight of the UA. In addition, flight planning included the appropriate

emergency action should a lost link action occur. Emergency planning included a

return-to-home altitude and approach profile. In all emergency and general flight plans, extra

consideration was given to altitude given the steep topography and the effect the altitude had

on data quality. When possible, flight plans were reused across farms assuming that no new

obstructions were present. Lastly, flight plans were created alongside flight schedules.

Schedules ensured that proper image-capturing thresholds were met. For instance,

multispectral imaging is sensitive to sun angle and therefore occurred as close to solar noon

as possible.
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Prior to farm classifications, basic image processing was done in Agisoft Metashape

in order to create a georeferenced orthomosaic (MicaSense RedEdge MX Processing

Workflow [Including Reflectance Calibration] in Agisoft Metashape Professional, n.d.). The

default processing was done utilizing the GPS data generated by the UAS and MicaSense

dual camera data capturing process, with no additional manual ground control point input.

Reflectance calibration was performed, but no reflectance normalization was performed

across flights or farms.

Classifications:

It was decided that in order to produce the most current classification, only 2022

images would be utilized. These images were the most recent imagery pre-processed in time

to interview farmers in 2023. In order to run comprehensive, farm-level classifications, it was

determined that for farms that had multiple multispectral images (UA flights), the various

images should be mosaiced to create one image per farm. All individual images for a given

flight were loaded into ERDAS IMAGINE. Using the MosaicPro tool, each image was

loaded into the view, with an “overlay” overlap function specified. Seamlines were created

using the default “optimal seamline” generation option. After, color corrections were set to

“histogram matching”. The tool was run and the resulting mosaicked image was saved. In

order to run classifications without error, ERDAS IMAGINE’s spatial model editor was used

to change “NODATA” values to “0”.

Pixel-based supervised classifications were run in ArcGIS Pro 3.1. In addition, one

farm (UTUA18) was classified twice, once using the default pixel-based classification, and

then again using object-based classification. The intention in creating a single object-based
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classification was to quickly evaluate if an object-based classification varied significantly

from the pixel-based classification. After loading in the mosaicked farm image, the ground

control points (GCPs) from three field campaigns were also layered on top. A classification

schema was created to encompass relevant crops and land cover types. This schema included

the following ten classes: coffee, citrus, banana, palms, low herbaceous vegetation/grass,

bare earth, pavement, buildings, water, and overstory vegetation. These ten classes were

selected because researchers familiar with the farms indicated that these were the dominant

land cover types across farms. For each class, training site polygons were drawn using GCPs

as a reference. For instance, if creating a training site for coffee, a polygon was drawn around

whichever coffee plant(s) a GCP identified as coffee. For farms that may be larger,

significant areas of land would have no GCPs. In order to create representative training sites

across the entirety of a farm, polygons were drawn in areas without GCPs that were visually

confirmed to match plants with associated GCPs. Prior to running the object-based

classification on UTUA18, segmentation was completed. For more information regarding the

number of training sites and pixels for each class for each farm, see Tables 6-9. After

creating ample training sites for each class within each farm, a support vector machine

(SVM) classifier was run on the entirety of the farm. SVM classifiers assume no assumptions

are made about the data distribution (Mountrakis et al., 2011). The selection of an SVM

classifier was done with the understanding that many farms would have limited training

classes for a given class and that SVM is built to be less susceptible to an imbalance in

training samples (Train Support Vector Machine Classifier (Spatial Analyst)—ArcGIS Pro |

Documentation, n.d.).
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For some farms, the classification was slightly misaligned with the farm boundary. In

order to remedy this, a clip was run to trim the classification down to the farm boundary.

After classifications were completed, accuracy assessments were run. In order to create

testing sites to check for accuracy, the same process for creating training sites was followed.

For each farm, roughly the same number of testing sites and training sites were created for a

given class. As much as possible, testing sites did not overlap with previously created

training sites, with a few exceptions. For instance, farms with water bodies typically only had

one small pond. A training site was created for that land cover classification, and a testing

site was typically made on the same body of water. Testing sites were used as reference data

for the accuracy assessments, which were then run.

After running the initial classifications, principal component analyses (PCAs) were

run for each farm as a means of obtaining more relevant spectral information. The PCAs

were generated in Erdas Imagine and 10 principal components were selected as the output. A

second round of land cover classifications was conducted on farms UTUA2, UTUA16,

UTUA18, AND UTUA20 utilizing all 10 principal components of the previously created

PCAs. In all iterations of classifications, the same training and testing sites were utilized. A

third iteration of classifications was conducted on farms UTUA2, UTUA16, and UTUA18

using a layer stack of the multispectral imagery bands 5, 6, and 7 layered with principal

components 1, 2, and 3. Similarly, on farm UTUA20, a classification was conducted utilizing

a layer stack of multispectral imagery bands 5, 6, 7, and 8 layered with principal components

1, 2, and 3. Two additional classifications were performed on farm UTUA2, including a layer

stack of multispectral bands 5-10 and principal components 1 and 2, and multispectral bands
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5-7 layered with principal components 1-3 and a previously created NDVI. These iterations

are listed in Table 3.

Table 3. Improved classification iterations applied on 2022 farm imagery
Iteration name Multispectral bands Principal components Other layers Farms layer stack was performed on

Iteration A 1-10 一 一 UTUA2, UTUA16, UTUA18, UTUA20, UTUA30,
YAUC4, ADJU8, JAYU2

Iteration B 一 1-10 一 UTUA2, UTUA16, UTUA18, UTUA20

Iteration C 5-7 1-3 一 UTUA2, UTUA16, UTUA18

Iteration D 5-8 1-3 一 UTUA20

Iteration E 5-10 1, 2 一 UTUA2

Iteration F 5-7 1-3 NDVI UTUA2

Interviews:

After each initial classification was run, posters of each farm's multispectral imagery

and classifications were created in ArcGIS Pro 3.1. These posters were then printed on 32” x

40” matte paper. In the 2023 field campaigns, at each farm, a semi-structured interview was

conducted with farmers, land managers, and owners, with references made to the

multispectral imagery and the classifications. (See Appendix A for more information on the

interview script.) These interviews were done with the intention of better understanding land

use history, farmers' spatial relationships with their farms, and how remote sensing or land

cover classifications may improve the management or understanding of such complex

agroecosystems. Interviews were conducted onsite at farms, or at homes on farm property

with teams of 2-3 researchers. Interviewees were asked if they consented to both the

interview itself, as well as being recorded during the interview using an audio recorder.
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Our interviews were based on the assumption that we would be referencing the

printed orthomosaics and classifications, but many interviews included walking areas of the

farm with farmers as they pointed out specific crops or landmarks. Interview length varied

greatly, with some interviews under an hour and others over two and a half hours. This length

variation is primarily because interviews were farmer guided, with respondents addressing

topics they felt relevant. After a series of questions that were intended to orient researchers to

the specifics of a given farm, the multispectral image was shown to the farmers. This was

intended to show the farmers what the UA had collected, as well as compile any preliminary

thoughts the farmers had on the UA itself. In earlier interviews, tracing paper was laid on top

of the multispectral image and farmers were encouraged to annotate any areas they felt

important or of general interest. This was later removed as part of the interview process, as

farmers were often more comfortable speaking generally about the land. After viewing the

multispectral image, the classification image was brought out, and farmers were asked

questions about the utility of the classification in their management. Viewing the

classification map was largely considered to be the conclusion of the interview, and farmers

were asked if they had any questions for the researchers. Both the multispectral imagery and

the classification maps were left with interviewees at the conclusion of the discussions.

After the interviews were completed, they were uploaded into transcription software

and transcribed in Spanish. Researchers then translated the transcriptions from Spanish to

English, making corrections to the transcriptions where the software failed to capture any

regional language differences or language not otherwise captured. A content analysis was run

on the interviews, which included coding each interview transcript individually, as well as

synthesizing notes from interviews that were not recorded. In order to conduct an effective
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content analysis, each theme was clearly defined by researchers. Examples or quotes from

interviews were highlighted and sorted into relevant themes. Each example was again

reviewed by researchers to ensure that a given example fit into the theme it was assigned to.

Each theme was linked to a more generalized research finding from the interviews, and the

relevancy of each theme to the project at large was defined. Results were then summarized

and put into a content matrix.

Results:

Ground data and image capturing:

The results of drone flights for 2022 were largely successful. 10 farms were surveyed

with both LiDAR and multispectral imagery. Table 4 details the number of flights flown per

farm. Of these 10 farms, all but two (ADJUCP and ADJU7) were classified. ADJUCP was

not classified as we were unsure if an interview would occur with land managers, and

ADJU7 was not classified as large amounts of water were highly reflective and changed the

color balance of the farm mosaic.
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Table 4. The number of flights flown for each farm in the 2022 field campaign.
Farms Number of flights

UTUA2 1

UTUA16 1

UTUA18 1

UTUA20 1

UTUA30 2

YAUC4 1

ADJUCP 2

ADJU7 3

ADJU8 7

JAYU2_3 8

The results of the ground data field campaigns are listed in Table 5. In 2021, time

constraints meant that ground control points were not able to be taken in UTUA16. In 2023,

GPS errors on farms UTUA30 and ADJU8 were unable to be resolved in a timely manner,

therefore little to no GPS ground truths were collected. Additionally in 2023, no points were

collected in YAUC4 due to a thunderstorm that made it unsafe for researchers to conduct

ground research. The most points taken occurred in farm JAYU2_3 in 2021. UTUA2 had the

most points taken throughout the field campaigns, seemingly because of its proximity to

researcher housing.
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Table 5. Ground control points collected by year.
Year

Farm 2021 2022 2023 TOTAL

UTUA2 69 112 73 254

UTUA16 - 20 52 72

UTUA18 41 32 21 94

UTUA20 49 41 31 121

UTUA30 51 24 - 75

YAUC4 51 28 - 79

ADJU8 63 44 1 108

JAYU2_3 140 63 30 233

TOTAL 464 364 208 1036

Classifications and accuracy assessments:

As part of the classification workflow, training and testing sites were generated for

each farm. These are detailed in Tables 6-9. “UTUA18_obj” refers to the one object-based

classification done on farm UTUA18. For this farm, different training sites were selected

between classification methods, but the testing site remained consistent between

classifications. Both training and testing sites are quantified in two forms: polygons and

pixels. Polygons designates the number of sites drawn, and pixels refer to the total number of

pixels across all polygons.
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Table 6. Number of training sites for each class in each farm. Each site is a polygon drawn
around one representative site.

Farm sites/polygons

coffee citrus banana palm
grasses/low
herb

bare
earth paved buildings water

overstory
veg total

UTUA2 16 9 3 3 6 6 2 4 0 1 50

UTUA16 3 0 2 5 1 1 1 2 1 2 18

UTUA18 0 0 4 0 3 3 2 2 0 3 17

UTUA18_obj 6 0 2 0 2 3 3 3 0 2 21

UTUA20 4 7 4 0 2 4 2 3 0 2 28

UTUA30 10 0 8 0 2 4 4 4 0 4 36

YAUC4 9 0 6 0 8 5 4 3 0 3 38

ADJU8 14 0 14 0 10 10 3 6 2 7 66

JAYU2_3 22 0 14 11 10 12 7 10 2 11 99

Table 7. Number of pixels in training sites per class in each farm classification.

Farm pixels

coffee citrus banana palm

grasses/
low
herb

bare
earth paved buildings water overstory veg total

UTUA2 15420 89118 17989 148768 60581 47051 20753 185462 0 130191 715333

UTUA16 22218 0 219318 164487 46675 13170 4615 85679 26321 448878 1031361

UTUA18 0 0 29439 0 21740 113898 8102 54437 0 246623 474239

UTUA18_obj 19621 0 14374 0 52909 161456 18481 60649 0 427093 754583

UTUA20 4467 24900 218041 0 28145 20922 13867 176316 0 346139 832797

UTUA30 9420 0 45587 0 37646 18861 23754 55815 0 1339405 1530488

YAUC4 13393 0 74659 0 63188 49843 107538 142527 0 983011 1434159

ADJU8 36804 0 10892 0 96113 48835 23161 99930 45674 424707 786116

JAYU2_3 60510 0 42551 47663 361668 163092 57446 142129 10865 635097 1521021
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Table 8. Number of testing sites per class for each farm. Each site is a polygon drawn around
one representative site.

Farm sites/polygons

coffee citrus banana palm
grasses/low
herb

bare
earth paved buildings water

overstory
veg totals

UTUA2 9 4 4 3 5 5 3 3 0 2 38

UTUA16 0 0 3 3 2 3 2 2 1 2 18

UTUA18 7 1 3 0 4 9 5 5 0 4 38

UTUA18_obj 7 1 3 0 4 9 5 5 0 4 38

UTUA20 6 0 4 1 3 9 5 5 0 3 36

UTUA30 11 0 4 2 3 3 4 3 0 2 32

YAUC4 11 0 5 3 6 7 3 2 0 3 40

ADJU8 16 0 13 0 10 10 3 3 2 4 61

JAYU2_3 22 0 15 4 12 12 7 4 1 5 82

Table 9. Number of pixels in testing sites per class for each farm.

Farm pixels

coffee citrus banana palm
grasses/low
herb

bare
earth paved buildings water

overstory
veg totals

UTUA2 3810 17091 18297 80214 54190 10729 38281 125668 0 203356 551636

UTUA16 0 0 7781 61145 41312 9343 9845 11010 37650 233632 411718

UTUA18 2493 4121 59215 0 28739 22514 32468 80595 0 260498 490643

UTUA18_obj 2493 4121 59215 0 28739 22514 32468 80595 0 260498 490643

UTUA20 2793 0 21690 24840 9667 23540 6096 99500 0 239493 427619

UTUA30 2483 0 2546 38088 35111 22465 22665 31082 0 137590 292030

YAUC4 7746 0 34838 79386 10584 52144 24292 5484 0 367339 581813

ADJU8 18869 0 43640 0 49656 69418 14798 51844 56798 306815 611838

JAYU2_3 14095 0 41412 28680 51561 35116 33236 337495 16366 296676 854637

The following figures (Figures 3-11) are the results of classifications on all farms.

Scales of farms vary widely, as do classes present across farms. Legends present in map

layouts indicate which of the ten potential farm classes were found on each farm. All maps
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shown are projected in the coordinate system “StatePlane Puerto Rico Virgin Isl FIPS 5200

(Meters),” a version of the Lambert conformal conic projection, and have a datum of NAD

1983. This is consistent with the coordinate system utilized by others working in Puerto Rico.
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Figure 3. Land cover classification of farm UTUA2 using 2022 multispectral imagery.

Figure 4. Land cover classification of farm UTUA16 using 2022 multispectral imagery.
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Figures 5 and 6. Land cover classification of farm UTUA18 using 2022 multispectral imagery. The left shows the default
pixel-based classification, right shows the object-based classification.
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Figure 7. Land cover classification of farm UTUA20 using 2022 multispectral imagery.
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Figure 8. Land cover classification of farm UTUA30 using 2022 multispectral imagery.

Figure 9. Land cover classification of farm YAUC4 using 2022 multispectral imagery.
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Figure 10. Land cover classification of farm ADJU8 using 2022 multispectral imagery.
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Figure 11. Land cover classification of farm JAYU2_3 using 2022 multispectral imagery.
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The initial landcover classifications (Figures 3-11) were all assessed for accuracy.

Table 10 details both the overall accuracy of the classification, as well as the Cohen’s

Kappa statistic. The Kappa statistic incorporates errors of commission and omission and

is regarded as more nuanced than that of overall accuracy (Congalton, 1991). Kappa is

reported on a scale of -1 to +1, with values closer to +1 indicating a stronger classifier. A

classifier is considered strong if it has a high accuracy while taking into account the

expected accuracy of a random classifier (Rosenfield & Fitzpatrick-Lins, 1986).

The average overall accuracy across all farms was 53.9% and the average Cohen’s

Kappa statistic across all farms was 0.409. Farm YAUC4 had the highest overall

accuracy, as well as the highest Kappa statistic. The object-based classification had the

lowest overall accuracy and Kappa statistic at 36.8% and 0.221 respectively. Excluding

the object-based classification, the lowest accuracy and Kappa statistic for pixel-based

classification was farm UTUA16. Individual accuracy assessments, including users' and

producers’ error, can be found in Appendix B.
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Table 10. Accuracy of farm classification using 2022 imagery. The table details the
overall accuracy of each farm along with Cohen’s Kappa statistic.

Farm Overall Accuracy (%) Kappa (𝛋)

UTUA2 57.0 0.4625973054

UTUA16 49.4 0.3688443615

UTUA18 58.4 0.4474540204

UTUA18_obj 36.8 0.220849049

UTUA20 52.4 0.3878268491

UTUA30 51.3 0.391198044

YAUC4 74.0 0.5085924504

ADJU8 53.5 0.4634190585

JAYU2_3 52.6 0.4295536256

For the purposes of this thesis, we did not include figures of secondary

classifications as the level of detail was so high that differences in classification maps

were largely not visible at the scale of the initial classification figures and therefore not

perceivable in this paper. However, accuracy assessments are summarized in Table 11,

and in addition, individual accuracy assessments for improved classifications can be

found in Appendix C.

Our secondary classification results were similar to those of the initial

classification. Results showed that Iteration B had an average overall accuracy of 52.7%

and an average kappa statistic of 0.402. Iteration C had an average overall accuracy of

47.8% and an average kappa statistic of 0.354. Averaging all the secondary classifications

(Iterations B-F) resulted in an average overall accuracy of 49.8% and an average overall

kappa statistic of 0.378. Iteration B of farm UTUA18 had the highest accuracy of the

secondary classifications with an accuracy of 55.3% and a kappa statistic of 0.424981.
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Iteration C of farm UTUA2 had the lowest overall accuracy of 45.4% and Iteration C of

farm UTUA18 had the lowest kappa statistic of 0.323879.

Table 11. Accuracy of secondary classifications. The table details the overall accuracy of
each farm along with Cohen’s Kappa statistic.

Iteration Farm Overall Accuracy (%) Kappa

B

UTUA2 51.3 0.399000
UTUA16 51.6 0.389000
UTUA18 55.3 0.424981
UTUA20 52.7 0.395061

C

UTUA2 45.4 0.360941
UTUA16 51.2 0.376000
UTUA18 46.9 0.323879

D UTUA20 50.9 0.371676
E UTUA2 47.3 0.380003
F UTUA2 45.6 0.358437

Farmer interview content analysis:

We conducted a total of nine interviews, six of which were recorded on an audio

recorder. Using the recorded interviews and notes from the interviewees who did not

consent to be recorded, the following content matrix (Table 12) was created.

The themes highlighted included utility, novelty, orientation, biodiversity, clarity,

and land management. Farmers found the maps interesting and exciting, but were on sure

if they were applicable to land management of their farms. Many farmers struggled to

orient themselves, especially when landmarks the farmers were familiar with weren’t

overtly visible in the map. Many farmers noted a lack of biodiveristy or crops present in

the map. Despite the lack of diversity present in maps, it was believed by researchers that

concise formatting supported legibility of maps by farmers who were unfamiliar with the

information displayed in this manner. Lastly, while viewing maps many farmers noted
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current or future management decisions they consider. These were included in the

findings as they may inform future iterations or methodologies of classifications.

Table 12. Content matrix summarizing interview findings.

Themes Quote/Example Research Finding Subthemes
Relevance to land cover classification map and
methodology

Utility
"What is the purpose of us seeing
this?"

Many farmers were
unsure how the
classification maps
could fit into the farm
management but were
excited about the maps,
and being able to keep
them.

Beauty

Landcover maps are created with the intention of better
understanding the makeup of a given area to enhance land
management. However, there were no clear farmer-generated
ideas on the implementation of the maps in their own
management, nor any motivation to implement the ones
suggested by researchers.

Novelty

The majority of farmers provided
excited exclamations when
presented with a map.

Farmers are open to the
use of maps and the
classification and
visuals in their present
form.

Pride, Technology

There is still excitement about the prospect of utilizing drone
imagery and classifications but there still exists a gap in
understanding the applicability of relatively new technology
in these contexts.

"You can think you know
everything. On the contrary, huh.
Technology advances, Knowledge
is continuous."

Orientation

"I don't know where it is."

When relevant personal
landmarks were noted,
farmers often used them
to orient themselves. In
the case that they were
not present, their
absence was noted and
farmers then used other
points or direction from
interviewers to orient
themselves.

Movement,
Landmarks,
Perspectives

In connection to novelty and utility, a lack of orientation
means that the imagery or classification maps may not be
implemented and may instead become a barrier for farmers
engaging with this technology.

"Oh, there's my lake!" or "I let
myself be led by the buildings."

Biodiversity

Many farmers noted that other
food crops and vegetation were
present on the farm but had not
been mapped (i.e. peppers,
guaraguao trees, smaller citrus,
mangoes).

Within diversified
farming, there is a
wealth of food crops
and non-food crops that
farmers prioritize.

Food Crops, Land
Management

While capturing biodiversity present in diverse
agroecosystems is desired, maps created that highlight such
diversity may also be overwhelming or imperceivable to those
who have not yet had an introduction to this type of imagery.

Clarity

"I know the farm, but that's not
exactly it, but it's not because I
really see it there."

While farmers express
wanting representation
of the entirety of crops
and vegetation, a
cursory introduction to
the maps in a simplified
form aids synthesis of
imagery and content.

Digestibility,
Simplification

Understanding the audience of a map is a principal element of
cartography. In a setting such as this study, creating a simpler
iteration may serve as a tool with which to foster connections
and understand where to expound upon classifications or tools
in the future.

Visual representation provided in a
concise formatting supported
outward expressions of map
legibility.

Land
Management

A farmer speaking to the increased
heat noted they needed to plant
more plants to shade coffee.

Land management
techniques often include
practices to address
climatic conditions. By
diversifying crops,
farmers are better
shielded from economic
downturns and a rapidly
changing environment.

Crop Selection,
Crop Placement

Land management may inform classifications by creating
more targeted areas for ground truthing and testing sites. For
example, if a farmer noted that coffee was planted under an
area of dense canopy, it may make sense to ground truth the
area heavily and test the degree to which the coffee in that
area was present in the classification.

Farmers intercropped coffee with
citrus as a means of protecting the
coffee (their primary crop).
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Discussion:

Classifications:

We obtained an average kappa value across all farms of 0.409, meaning that the

classifiers, generally, are fair in comparison to a random classifier (Fleiss et al., 2003;

Landis & Koch, 1977). Many of the farms have a sizeable disagreement between overall

accuracy and the kappa index, like for instance farm YAUC4, which had an accuracy of

74% (or 0.74) and a kappa statistic of 0.51. This disagreement between kappa and overall

accuracy could be because there are classes present that make up a majority of the

classification, and these classes are also accurate in the classification. In the case of my

classifications, the overstory vegetation class often had more training and testing sites

made of larger segments. For YAUC4, the overstory vegetation class made up around

70% of all training pixels, meaning it had a greater effect on the accuracy than other

classes. Even though the overstory vegetation may have skewed overall accuracy, the

kappa statistic takes into account the relative impact of each class, meaning that it is not

skewed by a single well-represented class (Congalton, 1991; Manel et al., 2001;

Rosenfield & Fitzpatrick-Lins, 1986), in this case, overstory vegetation. Relatedly, the

classification results often contained large, uninterrupted patches of the overstory

vegetation land cover class toward the edges of the farm boundary. In addition, because

training and testing sites for the overstory vegetation class were often areas of dense

canopy, there is less of a chance that pixels associated with a different land cover were

misclassified as overstory vegetation. It is worth noting, in this paper and otherwise, that

while overall accuracy and the kappa statistic are common ways to evaluate land cover

classifications in the remote sensing field, more recent literature (Foody, 2002; Olofsson
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et al., 2014) has highlighted that confusion matrices are not entirely reliable and need to

be analyzed with some understanding that the accuracies reported are not absolute.

Somewhat expectedly, many of the vegetation classes (i.e. coffee, citrus, banana,

palm, and overstory vegetation) were misclassified as other vegetation classes. Because

these classes are spectrally similar, and because the initial classifications utilized all ten

bands, including those that have little separation between classes, it can be anticipated

that there would be some confusion amongst these classes. Figure 12 illustrates the

spectral similarities across vegetation training classes. Another area of confusion was

between the pavement and building classes. Across many of the farms, buildings and

pavements were misclassified as one another, but were less often misclassified as bare

earth and vegetation.

Figure 12. The spectral profile of vegetation classes for farm UTUA2.

Throughout farms, vegetation classes considered to be crops (coffee, citrus, and

banana) often had low user’s accuracies. In the case of coffee, the average user’s

accuracy was around 17.7%. Farms that had higher user’s accuracies for coffee than the

average of 17.7% included YAUC4 and ADJU8. Notably, coffee training sites in these

two farms included clusters of coffee plants easily distinguishable from the grasses or
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bare earth surrounding them. Other farms that contained coffee training sites that were

closer to the edges of dense canopies or had less clustered coffee training sites did not

boast the same user’s accuracies. The same phenomenon can be found while viewing the

user’s accuracy for the banana class in farm YAUC4. The average user’s accuracy for the

banana class across all farms was a little under 18%, but farm YAUC4 had a user’s

accuracy of 43.2% with training sites for the class clustered and in an area relatively

distanced from other vegetation classes. Farm UTUA18 also had a higher user’s accuracy

for the banana class, but had training sites for bananas drawn around bananas within an

overstory vegetation canopy. In addition, more conservative drawing of training sites

across farms and given classes (i.e., drawing training sites closer to the edges of a plant or

class) may create better training sites and therefore has the potential to lead to more

accurate classifications. This may indicate that more careful drawing of training sites

leads to less inclusion of pixels unrelated to the class being targeted in the training site.

However, it is worth noting that using an object-based classification instead of a

pixel-based one would in part address this issue within the segmentation step, where

spectrally similar objects are grouped and considered to be a single object (Liu & Xia,

2010; Walsh et al., 2008).

There exists a myriad of reasons why the land cover classifications of this paper

may be considered “inaccurate”, many of which have been alluded to earlier in this

discussion. One reason the accuracies of each farm classification may have been lower

than anticipated was my own bias in testing sites. The creation of training sites and

classification were done prior to my own visit to farms. This meant that my training

classes were built around GCPs and not around my experiences. Testing sites, however,
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were created after visiting the farms, and when creating testing sites I could recall areas

of a farm and be more discerning when utilizing the GCPs. For instance, on farm

UTUA20 I created training classes for citrus based on a GCP labeled as such. However,

while visiting the farm, I noticed that there was very little citrus. We took no GCPs at the

few citrus trees that existed, and I made no testing sites for the citrus class because of

both the lack of GCPs and also the lack of citrus I found on the farm generally. After

running an accuracy assessment, the citrus class had 0% accuracy, driving down the total

accuracy. In future work, I would instead throw out this class within this farm and rerun

the classification entirely.

Another limitation of this study is that no radiometric normalization occurred

prior to the image mosaicking process. Radiometric normalization may have created

more consistency across flights and farms (Tuia et al., 2016). While the histogram

equalization occurred during the mosaicking process, the resulting mosaics still had

visible radiometric differences. Radiometric normalization, if applied earlier, could have

created the opportunity to classify farm ADJU7, which was thrown out due to spectral

imbalances present after histogram equalization, by reducing the bright spots present in

one flight. In addition, if radiometric normalization occurred earlier in the process, it may

have been feasible to train the classifier on only one farm and then apply it across farms.

This would reduce the work to create a large number of training sites across farms, and

instead, more attention could be paid to creating higher-quality training sites on one farm.

Additionally, classifications may be improved by using ground control points in

orthomosaic creation. During the processing of imagery in Agisoft Metashape, only the

internal UA GNSS system was used to georeference raw images. By including ground

34



control points collected with a more precise external GPS receiver in the image

processing methodology, multispectral imagery may have been better aligned with

ground control points collected for building training sites.

To a large extent, many issues could be addressed through another field campaign,

with fewer time constraints and more precise objectives. Training sites were often

generated around the previously collected ground control points, which were often

clustered spatially and were also focused on one or another plant type between field

campaigns. With more time at each study site, more plants across the farm could be

surveyed, across the breadth of the farm. This would create more competitive

opportunities for training sites to be drawn and encompass a greater variety of spectral

properties per class. However, it is worth noting that part of the interest in remote sensing

and land cover classification lies in the fact that remote sensing has the potential to

operate without needing to do a complete land cover survey. Ground truthing each and

every plant on such a highly diversified farm is extremely time-consuming and

labor-intensive, and while the GPS instruments in this study boast sub-meter resolution,

in certain areas of given farms the GPS instrument would require a given researcher to

stand for five to ten minutes to wait for sufficient satellite connectivity to collect a point.

Therefore, surveying more points to increase a given classification’s accuracy may not be

worth the effort and somewhat negate the advantage of a supervised classification.

Secondary classifications were completed using several alternate band

combinations, but overall, the new layer stacks did not lead to an increase in accuracy.

With the exception of three classifications (Iteration B of farm UTUA16, Iteration B of

farm UTUA20, and Iteration C of UTUA16), overall accuracies of secondary
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classifications were lower than the initial classification, although the differences in all

cases were only marginal. When considering Iteration A accuracies alongside Iterations

B-F, the average overall accuracies cannot be directly compared because not all farms

initially classified were used in the secondary classifications. However, when comparing

Iteration A to each of Iterations B, C, and D, and filtering to only the relevant farms, the

accuracy for Iteration A maintained a higher overall average than the respective

secondary classifications. While disappointing, the lowered accuracies of secondary

classifications were somewhat anticipated. It has been documented (e.g. Whiteside et al.,

2011) that ancillary data works well to enhance object-based classifications. Still, the

effects are not as strong as on pixel-based classifications because pixel-based

classifications lack the “objects” that ancillary data can contextualize (Whiteside et al.,

2011).

Interviews:

Analyzing the interview recordings and notes allowed for a more nuanced

understanding of the remote sensing work done in this thesis. It became very apparent

during interviews that farmers and land managers were extremely excited to view, talk

about, and keep the map printouts. Many remarked that the images of their farms were

beautiful and were excited to display the printouts for others to see, but were unsure of

how the maps or products derived from the maps could be implemented in regular

management. One farmer noted that they planned to hang imagery in a cafe for visitors to

see, but when questioned about the utility of the map in their work, they indicated that
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they would instead be more interested in utilizing the drone to evenly distribute

pesticides.

While the beauty and excitement of images and landcover classification maps are

often overlooked as an aspect of utility in the remote sensing field, we understood this

subtheme to be an extremely important one as it became more evident that farmers and

researchers could build further rapport by addressing the beauty of the images and the

farms that land managers work so hard to maintain. Connection building in the context of

this thesis is extremely relevant as land cover classifications are regarded as an iterative

process. By fostering better connections between researchers and farmers, we can more

intimately understand the ways in which our work fits into farmers’ management and

make adjustments to maps accordingly. In many of our interviews, interviewees often

pointed out a lack of diversity or missing landmarks. Without having conversations with

land managers, researchers are limited to making changes that may not be useful to

farmers and instead only serve to increase classification accuracies for schemas that were

flawed themselves.

Farmers who communicated to us that maps were lacking relevant information

also had more difficulty orienting themselves during interviews. One farmer remarked

that he had often regarded his land as a square parcel, and viewing it as the roughly

rectangular shape the imagery was captured as led him to become disoriented. The farmer

also noted that he might have been able to orient himself in spite of his perception of the

parcel, but only if landmarks he passed by daily had been included and labeled as such.

When farmers are not able to orient themselves to the imagery, implementation of the

maps in management becomes even farther-fetched.
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While many farmers indicated absent crop and vegetation diversity in the land

cover classification map, we felt that sharing a more simplistic map first actually

enhanced the feedback we received and farmers' own understanding of the maps. Because

the map shared was simpler, farmers noted specific areas where they were interested in

seeing more detail, where they were practicing a given land management technique, or

where they had a few personally relevant crops. In addition, we believe that the lack of

detail present allowed for quicker orientation and better clarity of understanding of the

maps. This was extremely important as we understood that land managers had not ever

seen their land displayed in this manner and needed some time to relate the imagery to

land they were intimately familiar with.

Future considerations:

Including interviews as part of this project greatly enhanced the findings of this

thesis and would enhance any future work in similar settings. Colloredo-Mansfeld et al.

(2020) found similar results in their work, noting that participatory drone mapping

allowed researchers to ascertain broader and more relevant information about land

management. In addition, the authors found that conducting land cover classification

maps allowed them to understand sensitive areas of farms (e.g. where young plants were

growing) and establish rapport between researchers and farmers. Unlike

Colloredo-Mansfeld et al., (2020) our project did not contain more than one round of

interviews. Nevertheless, it is clear that more knowledge sharing between researchers and

farmers would benefit the work. One farmer noted during our interview that while she

was extremely excited about participating in the research, she was disappointed that she
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had no proof of the drones being on the property to share with a friend. By leaving her

with the printout of the map and a description of the work we had done, the farmer may

be more likely to continue working with researchers. In return, we received valuable

feedback on the crops and vegetation relevant to her on her property. Future iterations of

land cover classifications would incorporate this feedback, and even more iterations of

knowledge-sharing and classifications could continue.

The detailed nature of the high-resolution imagery was seemingly part of the

interest that farmers had in interacting with the printouts. While the pixel-based

supervised land cover classifications were mildly accurate, switching to an object-based

classification would likely increase the overall average accuracy, as it is documented that

object-based classifications perform better, especially at finer resolutions (Baker et al.,

2013). However, fine-resolution data like that present in this thesis comes at a cost.

Through each step of image processing and classification, the processing power required

meant that analyses often took time to run. Whiteside et al., (2011) note that object-based

classifications may require even more computational power, especially at the

segmentation step.

Classification maps may also be enhanced with the addition of elevation or

surface data, like the LiDAR data that was collected together with the multispectral

imagery. Farmers interviewed often noted that they oriented themselves using peaks and

valleys present on farms, something not reflected in the printout of the multispectral

imagery or land cover classification maps. However, including data like this may

mandate a more dynamic format in which to present maps to farmers. While digital

elevation and surface models are something many in remote sensing are intimately
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familiar with, viewing elevation data on a 2D plane may still present some challenges for

those who have not seen maps like it before. This could potentially be remedied by

creating a 3D model of the surface or elevation data and viewing it together with farmers

on a computer.

Conclusion:

This thesis was completed in order to better understand pixel-based supervised

land cover classifications of diverse agroecosystems, and the utility they serve as

management tools. We applied this exploration to coffee agroecosystems in Puerto Rico,

and while this thesis was broad, it contributed to the growing literature on using

fine-resolution imagery collected by UAS in remote sensing. This thesis found that while

our land cover classifications are only moderately accurate they have the potential to

become more accurate by utilizing different methodologies and better ground truths. In

addition, we concluded that while farmers were unsure about using the maps as a farm

management tool, they were still excited about the technology being applied to their land.

In addition, we found that sharing our maps with farmers, even with their flaws,

generated better communication between researchers and farmers and created the

opportunity to “be attentive to the ‘social position of the new map and how it engages

institutions’ ” (Kim, 2015; Laso & Arce-Nazario, 2023).

However, there still exist many opportunities for which this research to be

expanded and improved upon. Improving remote sensing methodologies includes further

exploring object-based classifications in the context of Puerto Rican coffee

agroecosystems, and improving interviews could include viewing more map iterations in
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more dynamic forms. Both remote sensing and interview methodologies would be

improved by visiting farmers and their land more often. We hope this thesis encourages

further exploration of fine-resolution remote sensing in coffee agroecosystems. We also

hope that this thesis encourages more work alongside farmers to create classification

schemes and products better suited to the needs of farmers.
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Appendix A:
English Version of Interview
Note: The interviews will be conducted in Spanish, but we have included the English
version for IRB review purposes.

Hello, my name is Nayethzi Hernandez and this is my colleague Gwen Klenke. We’re
both graduate students at the University of Michigan. And this project is in collaboration
with Ivette Perfecto, who you know. Thank you for taking the time to participate in this
study. As Warren let you know, our team is looking into diverse Puerto Rican coffee
farms and agroecology systems. As someone who is so knowledgeable, I really
appreciate your time.

Through interviews, we’re just looking for generalizable information, and none of this
will be identifiable. If that’s still okay with you it’ll take us roughly 1 hour. Before we
begin I want to confirm that it’s okay that I record our conversation.

Please let me know if anything comes up during the interview you just let me know.
Excellent! Let’s begin talking a bit about your land.

Question group 1: Land history and farm management

Can you tell me a bit about how you started growing coffee?

When it comes to your farm, what are your goals with your crops?

Could you tell me a little bit about how you decided to put which crops where?

What type of knowledge or techniques influence how you manage the farm?

Could you tell me about some of the environmental changes that you’ve experienced
while farming this land?

What are some goals you have for your farm?

Question group 2: Show farmers the map

*Translate what Gwen says about how the maps are made*

When you first look over the map what are some of your thoughts?

Question group 3: Map review
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After looking over the map, what are areas of the map that are of interest to you?

Are there any changes you would like to consider when looking over this map?

If this technology was available to you would it be helpful for farm management?

If it’s helpful to you, how often would you want an updated map?

Closing:
Thank you so much for your insights! We really appreciate your time. We invite you to
keep the map if you’d like it.

Before we finish, is there anything you’d like to ask or say to us regarding the map or the
interview?
I will provide you with my contact information if you have any questions for me about
this study, or anything else.

Spanish Version of Interview

Hola, buenos dias/tardes. Yo me llamo Nayethzi Hernandez y ella es mi colega Gwen
Klenke. Ambas estamos completando nuestras maestrías en la Universidad de Michigan.
Este proyecto es en colaboración con la profesora Ivette Perfecto, que usted conoce. Me
gustaría agradecerle por tomar este tiempo para conversar con nosotras. Como Don
Warren le contó, nuestro equipo está estudiando diversos cafetales y sistemas de
agroecología Puertorriqueños. Como alguien con un gran conocimiento, sinceramente
agradezco su tiempo.

Por medio de entrevistas pretendemos generalizar información, y nada de lo que usted
comparte conmigo será directamente conectado con su identidad. Si aún está de acuerdo,
la entrevista será de una hora a lo más. ¿Antes de iniciar me gustaría confirmar que está
bien si grabo el audio de nuestra conversación?

Si en algún momento durante la entrevista algo se le ocurre una duda, usted me dice.

¡Excelente! Avanzamos con el tema de su terreno.

Grupo de preguntas 1: historia y manejo de granja
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¿Me puede contar un poco de cómo llegó a cultivar café?

Cuando se trata de su cafetal, ¿Cuáles son algunas de sus metas con su granja?

¿Me comparte un poco del proceso tras de cómo decide dónde plantar sus hortalizas y
árboles?

¿Qué tipo de conocimiento y técnicas influyen como maneja la tierra?

¿Me cuenta acerca de los cambios en el medio ambiente que usted ha notado mientras ha
estado trabajando estas tierras?

¿Cuáles son algunas de las metas que tiene para su cafetal?

Grupo de preguntas 2: presentar mapas

*Traducir lo que Gwen dice de cómo se forman los mapas*

¿Cuándo usted ve el mapa cuáles son algunas de sus ideas iniciales?

Grupo de preguntas 3: revisión de mapa

Después de revisar el mapa, ¿Qué áreas del mapa le interesan?

¿Hay cambios que gustaría considerar mientras lo ve?

¿Si esta tecnología estuviera disponible, usted siente que sería útil?

¿Si lo ve útil, a cada cuanto le gustaría un mapa actualizado?

Clausura:

¡Muchísimas gracias por compartir su perspectiva! Le agradecemos su tiempo. Si gusta,
le invito a quedarse el mapa.

Antes de que terminemos la entrevista, ¿hay algo que le gustaría preguntarnos acerca del
mapa o la entrevista?

Bueno, le comparto mi contacto por si tiene una pregunta acerca del estudio o de
cualquier otra cosa.
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Appendix B:

Table 1. Accuracy assessment of farm utua2.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total Users Accuracy Kappa

C_1 - Coffee 7 1 6 14 4 0 0 0 17 49 0.1428571429 0

C_2 - Citrus 1 10 3 12 6 0 2 2 19 55 0.1818181818 0

C_3 - Banana 1 0 5 7 5 3 0 6 2 29 0.1724137931 0

C_4 - Palm 0 2 0 3 4 0 0 0 16 25 0.12 0

C_5 - Grasses/Low Herbaceous

Vegetation 0 2 0 3 24 0 0 0 2 31 0.7741935484 0

C_6 - Bare Earth 1 0 0 1 0 7 3 10 1 23 0.3043478261 0

C_7 - Paved 0 0 0 0 0 0 10 0 0 10 1 0

C_8 - Buildings 0 0 0 1 0 0 0 96 0 97 0.9896907216 0

C_10 - Overstory Vegetation 0 0 3 32 6 0 20 0 127 188 0.6755319149 0

Total 10 15 17 73 49 10 35 114 184 507 0 0

Producers Accuracy 0.7 0.6666666667 0.2941176471 0.04109589041 0.4897959184 0.7 0.2857142857 0.8421052632 0.6902173913 0 0.5700197239 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.4625973054
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Table 2. Accuracy assessment of farm utua16.

Class Value C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total Users Accuracy Kappa

C_1 - Coffee 0 1 15 12 0 0 0 0 62 90 0 0

C_3 - Banana 0 8 16 4 0 0 1 0 67 96 0.08333333333 0

C_4 - Palm 0 1 26 10 0 0 3 0 33 73 0.3561643836 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 0 24 0 0 0 0 1 25 0.96 0

C_6 - Bare Earth 0 0 0 0 11 0 2 0 0 13 0.8461538462 0

C_7 - Paved 0 0 0 0 0 6 1 0 0 7 0.8571428571 0

C_8 - Buildings 0 0 0 0 0 6 5 0 0 11 0.4545454545 0

C_9 - Water 0 0 0 0 0 0 0 46 0 46 1 0

C_10 - Overstory Vegetation 0 0 17 0 0 0 1 0 121 139 0.8705035971 0

Total 0 10 74 50 11 12 13 46 284 500 0 0

Producers Accuracy 0 0.8 0.3513513514 0.48 1 0.5 0.3846153846 1 0.426056338 0 0.494 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.3688443615
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Table 3. Accuracy assessment of farm utua18.

Class Value C_1 C_2 C_3 C_5 C_6 C_7 C_8 C_10 Total Users Accuracy Kappa

C_1 - Coffee 0 0 0 0 0 0 0 0 0 0 0

C_2 - Citrus 0 0 0 0 0 0 0 0 0 0 0

C_3 - Banana 2 0 39 7 5 0 0 84 137 0.2846715328 0

C_5 - Grasses/Low Herbaceous Vegetation 4 6 11 17 11 0 0 27 76 0.2236842105 0

C_6 - Bare Earth 0 0 0 0 5 0 1 0 6 0.8333333333 0

C_7 - Paved 0 0 0 0 0 24 21 0 45 0.5333333333 0

C_8 - Buildings 0 0 0 0 2 9 60 0 71 0.8450704225 0

C_10 - Overstory Vegetation 4 4 10 5 0 0 0 154 177 0.8700564972 0

Total 10 10 60 29 23 33 82 265 512 0 0

Producers Accuracy 0 0 0.65 0.5862068966 0.2173913043 0.7272727273 0.7317073171 0.5811320755 0 0.583984375 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.4474540204

Table 4. Accuracy assessment of farm utua18_obj (object-based classification).

Class Value C_1 C_2 C_3 C_5 C_6 C_7 C_8 C_10 Total Users Accuracy Kappa

C_1 - Coffee 5 1 3 1 8 0 0 22 40 0.125 0

C_2 - Citrus 0 0 0 0 0 0 0 0 0 0 0

C_3 - Banana 4 0 31 7 2 0 0 176 220 0.1409090909 0

C_5 - Grasses/Low Herbaceous Vegetation 0 5 1 8 9 0 0 2 25 0.32 0

C_6 - Bare Earth 0 0 0 0 2 0 15 0 17 0.1176470588 0

C_7 - Paved 0 0 0 0 0 32 22 0 54 0.5925925926 0

C_8 - Buildings 0 0 0 0 0 0 45 0 45 1 0

C_10 - Overstory Vegetation 1 4 25 13 2 0 0 65 110 0.5909090909 0

Total 10 10 60 29 23 32 82 265 511 0 0

Producers Accuracy 0.5 0 0.5166666667 0.275862069 0.08695652174 1 0.5487804878 0.2452830189 0 0.3679060665 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.220849049
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Table 5. Accuracy assessment of farm utua20.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total Users Accuracy Kappa

C_1 - Coffee 1 0 0 2 7 14 0 5 3 32 0.03125 0

C_2 - Citrus 5 0 4 1 1 2 0 0 85 98 0 0

C_3 - Banana 0 0 14 16 2 0 0 0 57 89 0.1573033708 0

C_4 - Palm 0 0 0 0 0 0 0 0 0 0 0 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 0 1 0 7 1 1 0 10 0 0

C_6 - Bare Earth 0 0 1 0 0 5 2 1 1 10 0.5 0

C_7 - Paved 0 0 0 5 0 0 7 2 0 14 0.5 0

C_8 - Buildings 0 0 0 0 0 0 0 105 0 105 1 0

C_10 - Overstory Vegetation 4 0 6 4 0 0 0 2 134 150 0.8933333333 0

Total 10 0 25 29 10 28 10 116 280 508 0 0

Producers Accuracy 0.1 0 0.56 0 0 0.1785714286 0.7 0.9051724138 0.4785714286 0 0.5236220472 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.3878268491

Table 6. Accuracy assessment of farm utua30.

Class Value C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total Users Accuracy Kappa

C_1 - Coffee 4 5 5 7 4 0 0 48 73 0.05479452055 0

C_3 - Banana 0 3 22 42 5 0 0 31 103 0.02912621359 0

C_4 - Palm 0 0 0 0 0 0 0 0 0 0 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 0 1 0 0 0 2 3 0.3333333333 0

C_6 - Bare Earth 0 0 8 2 28 0 0 0 38 0.7368421053 0

C_7 - Paved 0 0 9 1 1 37 15 0 63 0.5873015873 0

C_8 - Buildings 0 0 1 0 0 2 38 4 45 0.8444444444 0

C_10 - Overstory Vegetation 6 2 20 7 0 0 0 151 186 0.811827957 0

Total 10 10 65 60 38 39 53 236 511 0 0

Producers Accuracy 0.4 0.3 0 0.01666666667 0.7368421053 0.9487179487 0.7169811321 0.6398305085 0 0.5127201566 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.391198044
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Table 7. Accuracy assessment of farm yauc4.

Class Value C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total Users Accuracy Kappa

C_1 - Coffee 9 9 0 4 0 0 0 0 22 0.4090909091 0

C_3 - Banana 0 16 2 2 15 0 0 2 37 0.4324324324 0

C_4 - Palm 0 0 0 0 0 0 0 0 0 0 0

C_5 - Grasses/Low Herbaceous Vegetation 1 2 1 4 17 0 0 5 30 0.1333333333 0

C_6 - Bare Earth 0 1 0 0 13 0 0 2 16 0.8125 0

C_7 - Paved 0 0 0 0 0 19 0 0 19 1 0

C_8 - Buildings 0 0 0 0 0 0 8 0 8 1 0

C_10 - Overstory Vegetation 0 2 65 0 0 0 2 307 376 0.8164893617 0

Total 10 30 68 10 45 19 10 316 508 0 0

Producers Accuracy 0.9 0.5333333333 0 0.4 0.2888888889 1 0.8 0.9715189873 0 0.7401574803 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.5085924504

Table 8. Accuracy assessment of farm adju8.

Class Value C_1 C_3 C_5 C_6 C_7 C_8 C_9 C_10 Total Users Accuracy Kappa

C_1 - Coffee 12 6 2 1 0 10 0 10 41 0.2926829268 0

C_3 - Banana 2 14 8 0 0 1 20 41 86 0.1627906977 0

C_5 - Grasses/Low Herbaceous Vegetation 0 6 26 2 0 3 0 35 72 0.3611111111 0

C_6 - Bare Earth 0 1 2 48 3 0 0 0 54 0.8888888889 0

C_7 - Paved 0 0 0 6 9 1 0 0 16 0.5625 0

C_8 - Buildings 0 1 0 0 0 27 0 1 29 0.9310344828 0

C_9 - Water 0 0 0 0 0 0 26 0 26 1 0

C_10 - Overstory Vegetation 1 8 3 0 0 0 0 38 50 0.76 0

Total 15 36 41 57 12 42 46 125 374 0 0

Producers Accuracy 0.8 0.3888888889 0.6341463415 0.8421052632 0.75 0.6428571429 0.5652173913 0.304 0 0.5347593583 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.4634190585
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Table 9. Accuracy assessment of farm jayu2_3.

Class Value C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total Users Accuracy Kappa

C_1 - Coffee 4 2 2 4 1 0 3 0 15 31 0.1290322581 0

C_3 - Banana 3 11 4 1 0 0 1 0 75 95 0.1157894737 0

C_4 - Palm 1 4 7 1 0 0 0 0 23 36 0.1944444444 0

C_5 - Grasses/Low Herbaceous

Vegetation 1 3 1 20 1 0 0 0 13 39 0.5128205128 0

C_6 - Bare Earth 0 0 2 2 16 0 18 0 0 38 0.4210526316 0

C_7 - Paved 0 0 0 0 1 19 29 1 0 50 0.38 0

C_8 - Buildings 0 0 1 0 2 0 132 0 2 137 0.9635036496 0

C_9 - Water 0 0 0 0 0 0 14 9 0 23 0.3913043478 0

C_10 - Overstory Vegetation 1 4 0 2 0 0 0 0 46 53 0.8679245283 0

Total 10 24 17 30 21 19 197 10 174 502 0 0

Producers Accuracy 0.4 0.4583333333 0.4117647059 0.6666666667 0.7619047619 1 0.6700507614 0.9 0.2643678161 0 0.5258964143 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.4295536256
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Appendix C:

Table 1. Accuracy assessment of Iteration B of farm UTUA2.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total

User's

Accuracy Kappa

C_1 - Coffee 6 0 3 12 2 0 0 0 27 50 0.12 0

C_2 - Citrus 1 14 9 6 2 0 0 3 22 57 0.245614 0

C_3 - Banana 2 0 4 13 4 2 0 10 6 41 0.097561 0

C_4 - Palm 1 0 0 7 8 0 0 3 29 48 0.145833 0

C_5 - Grasses/Low Herbaceous Vegetation 0 1 0 3 22 0 0 0 1 27 0.814815 0

C_6 - Bare Earth 0 0 0 0 0 8 0 7 0 15 0.533333 0

C_7 - Paved 0 0 0 0 0 0 9 0 0 9 1 0

C_8 - Buildings 0 0 0 0 0 0 2 91 0 93 0.978495 0

C_10 - Overstory Vegetation 0 0 1 32 11 0 24 0 99 167 0.592814 0

Total 10 15 17 73 49 10 35 114 184 507 0 0

Producer's Accuracy 0.6 0.933333 0.235294 0.09589 0.44898 0.8 0.257143 0.798246 0.538043 0 0.512821 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.399021
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Table 2. Accuracy assessment of Iteration B of farm UTUA16.

Class Value C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total User's Accuracy Kappa

C_1 - Coffee 0 1 9 12 0 0 2 0 57 81 0 0

C_3 - Banana 0 8 21 1 2 0 0 0 70 102 0.078431 0

C_4 - Palm 0 1 20 2 0 0 0 0 25 48 0.416667 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 3 34 1 0 0 0 3 41 0.829268 0

C_6 - Bare Earth 0 0 0 1 8 0 3 0 0 12 0.666667 0

C_7 - Paved 0 0 0 0 0 9 1 0 1 11 0.818182 0

C_8 - Buildings 0 0 0 0 0 3 5 0 0 8 0.625 0

C_9 - Water 0 0 0 0 0 0 0 46 0 46 1 0

C_10 - Overstory Vegetation 0 0 21 0 0 0 2 0 128 151 0.847682 0

Total 0 10 74 50 11 12 13 46 284 500 0 0

Producer's Accuracy 0 0.8 0.27027 0.68 0.727273 0.75 0.384615 1 0.450704 0 0.516 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.38892

Table 3. Accuracy assessment of Iteration B of farm UTUA18.

Class Value C_1 C_2 C_3 C_5 C_6 C_7 C_8 C_10 Total User's Accuracy Kappa

C_1 - Coffee 0 0 0 0 0 0 0 0 0 0 0

C_2 - Citrus 0 0 0 0 0 0 0 0 0 0 0

C_3 - Banana 2 1 34 10 6 0 0 90 143 0.237762 0

C_5 - Grasses/Low Herbaceous Vegetation 5 6 15 19 11 0 0 42 98 0.193878 0

C_6 - Bare Earth 0 0 0 0 6 0 0 0 6 1 0

C_7 - Paved 0 0 0 0 0 30 21 0 51 0.588235 0

C_8 - Buildings 0 0 0 0 0 3 61 0 64 0.953125 0

C_10 - Overstory Vegetation 3 3 11 0 0 0 0 133 150 0.886667 0

Total 10 10 60 29 23 33 82 265 512 0 0

P_Accuracy 0 0 0.566667 0.655172 0.26087 0.909091 0.743902 0.501887 0 0.552734 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.424981
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Table 4. Accuracy assessment of Iteration B of farm UTUA20.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total User's Accuracy Kappa

C_1 - Coffee 0 0 3 2 2 20 0 2 5 34 0 0

C_2 - Citrus 6 0 7 0 6 1 0 1 77 98 0 0

C_3 - Banana 2 0 12 23 0 0 0 0 63 100 0.12 0

C_4 - Palm 0 0 0 0 0 0 0 0 0 0 0 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 0 0 3 2 2 0 1 8 0.375 0

C_6 - Bare Earth 0 0 0 0 0 5 2 1 0 8 0.625 0

C_7 - Paved 0 0 0 0 0 0 5 2 0 7 0.714286 0

C_8 - Buildings 0 0 0 0 0 0 1 109 0 110 0.990909 0

C_10 - Overstory Vegetation 2 0 3 4 0 0 0 1 134 144 0.930556 0

Total 10 0 25 29 11 28 10 116 280 509 0 0

Producer's Accuracy 0 0 0.48 0 0.272727 0.178571 0.5 0.939655 0.478571 0 0.526523 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.395061

Table 5. Accuracy assessment of Iteration C of farm UTUA2.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total

User's

Accuracy Kappa

C_1 - Coffee 6 1 2 8 3 0 0 0 35 55 0.109091 0

C_2 - Citrus 0 11 4 24 4 0 4 1 39 87 0.126437 0

C_3 - Banana 2 2 5 1 11 1 15 2 5 44 0.113636 0

C_4 - Palm 0 0 1 16 6 0 0 0 46 69 0.231884 0

C_5 - Grasses/Low Herbaceous Vegetation 1 1 0 1 20 0 0 0 0 23 0.869565 0

C_6 - Bare Earth 0 0 0 2 0 9 2 18 0 31 0.290323 0

C_7 - Paved 0 0 0 0 0 0 11 0 0 11 1 0

C_8 - Buildings 0 0 0 1 0 0 0 93 0 94 0.989362 0

C_10 - Overstory Vegetation 1 0 5 20 5 0 3 0 59 93 0.634409 0

Total 10 15 17 73 49 10 35 114 184 507 0 0

Producer’s Accuracy 0.6 0.733333 0.294118 0.219178 0.408163 0.9 0.314286 0.815789 0.320652 0 0.453649 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.360941
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Table 6. Accuracy assessment of Iteration C of farm UTUA16.

Class Value C_1 C_3 C_4 C_5 C_6 C_7 C_8 C_9 C_10 Total

User's

Accuracy Kappa

C_1 - Coffee 0 4 20 14 0 0 1 0 41 80 0 0

C_3 - Banana 0 5 11 0 1 0 0 0 51 68 0.073529 0

C_4 - Palm 0 0 23 4 0 0 2 0 45 74 0.310811 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 2 32 0 0 0 0 11 45 0.711111 0

C_6 - Bare Earth 0 0 0 0 8 0 1 1 0 10 0.8 0

C_7 - Paved 0 0 0 0 2 5 6 0 0 13 0.384615 0

C_8 - Buildings 0 0 0 0 0 7 3 0 0 10 0.3 0

C_9 - Water 0 0 0 0 0 0 0 45 1 46 0.978261 0

C_10 - Overstory Vegetation 0 1 18 0 0 0 0 0 135 154 0.876623 0

Total 0 10 74 50 11 12 13 46 284 500 0 0

Producer's Accuracy 0 0.5 0.310811 0.64 0.727273 0.416667 0.230769 0.978261 0.475352 0 0.512 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.375467

Table 7. Accuracy assessment of Iteration C of farm UTUA18.

Class Value C_1 C_2 C_3 C_5 C_6 C_7 C_8 C_10 Total User's Accuracy Kappa

C_1 - Coffee 0 0 0 0 0 0 0 0 0 0 0

C_2 - Citrus 0 0 0 0 0 0 0 0 0 0 0

C_3 - Banana 3 0 28 10 10 0 0 99 150 0.186667 0

C_5 - Grasses/Low Herbaceous Vegetation 4 10 11 18 6 0 0 53 102 0.176471 0

C_6 - Bare Earth 0 0 0 0 4 0 2 0 6 0.666667 0

C_7 - Paved 0 0 0 0 0 19 22 0 41 0.463415 0

C_8 - Buildings 0 0 0 0 3 14 58 0 75 0.773333 0

C_10 - Overstory Vegetation 3 0 21 1 0 0 0 113 138 0.818841 0

Total 10 10 60 29 23 33 82 265 512 0 0

Producer's Accuracy 0 0 0.466667 0.62069 0.173913 0.575758 0.707317 0.426415 0 0.46875 0

Kappa 0 0 0 0 0 0 0 0 0 0 0.323879
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Table 8. Accuracy assessment of Iteration D of farm UTUA20.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total User's Accuracy Kappa

C_1 - Coffee 0 0 1 1 4 15 0 5 2 28 0 0

C_2 - Citrus 4 0 4 1 0 0 0 0 77 86 0 0

C_3 - Banana 0 0 15 23 3 0 0 0 63 104 0.144231 0

C_4 - Palm 0 0 0 0 0 0 0 0 0 0 0 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 1 0 3 5 2 1 2 14 0.214286 0

C_6 - Bare Earth 0 0 1 0 0 8 4 9 0 22 0.363636 0

C_7 - Paved 0 0 0 0 0 0 4 8 0 12 0.333333 0

C_8 - Buildings 0 0 0 0 0 0 0 93 0 93 1 0

C_10 - Overstory Vegetation 6 0 3 4 1 0 0 0 136 150 0.906667 0

Total 10 0 25 29 11 28 10 116 280 509 0 0

Producer's Accuracy 0 0 0.6 0 0.272727 0.285714 0.4 0.801724 0.485714 0 0.508841 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.371676

Table 9. Accuracy assessment of Iteration E of farm UTUA2.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total User's Accuracy Kappa

C_1 - Coffee 7 1 0 4 6 0 0 0 24 42 0.166667 0

C_2 - Citrus 2 10 4 28 4 0 2 1 27 78 0.128205 0

C_3 - Banana 0 1 8 6 7 1 16 8 7 54 0.148148 0

C_4 - Palm 0 0 0 13 3 0 0 0 58 74 0.175676 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 0 1 21 0 0 0 1 23 0.913043 0

C_6 - Bare Earth 1 0 1 2 0 9 0 13 1 27 0.333333 0

C_7 - Paved 0 0 0 0 0 0 16 2 0 18 0.888889 0

C_8 - Buildings 0 0 0 1 0 0 0 90 0 91 0.989011 0

C_10 - Overstory Vegetation 0 3 4 18 8 0 1 0 66 100 0.66 0

Total 10 15 17 73 49 10 35 114 184 507 0 0

Producer's Accuracy 0.7 0.666667 0.470588 0.178082 0.428571 0.9 0.457143 0.789474 0.358696 0 0.473373 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.380003
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Table 10. Accuracy assessment of Iteration F of farm UTUA2.

Class Value C_1 C_2 C_3 C_4 C_5 C_6 C_7 C_8 C_10 Total

User's

Accuracy Kappa

C_1 - Coffee 5 2 3 11 2 0 1 0 17 41 0.121951 0

C_2 - Citrus 1 9 3 21 4 0 1 0 27 66 0.136364 0

C_3 - Banana 3 2 6 4 8 1 18 4 9 55 0.109091 0

C_4 - Palm 1 0 1 11 7 0 0 0 61 81 0.135802 0

C_5 - Grasses/Low Herbaceous Vegetation 0 0 0 6 22 0 0 0 0 28 0.785714 0

C_6 - Bare Earth 0 0 0 5 0 8 5 16 2 36 0.222222 0

C_7 - Paved 0 0 0 0 0 0 8 0 0 8 1 0

C_8 - Buildings 0 0 0 0 0 1 0 94 0 95 0.989474 0

C_10 - Overstory Vegetation 0 2 4 15 6 0 2 0 68 97 0.701031 0

Total 10 15 17 73 49 10 35 114 184 507 0 0

Producer's Accuracy 0.5 0.6 0.352941 0.150685 0.44898 0.8 0.228571 0.824561 0.369565 0 0.455621 0

Kappa 0 0 0 0 0 0 0 0 0 0 0 0.358437
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