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Abstract  

In the future of transportation systems, traditional physical controllers, such as traffic signals, 
will be complemented by the active participation of connected and automated vehicles (CAVs) 
functioning as mobile actuators. This report is concerned with establishing a theoretical 
foundation for this innovative participatory traffic control scheme. In doing so, it is crucial to 
first gain accurate and ample information of the transportation system. Therefore, in the first part 
of the report, we propose a traffic state estimation method using the information from CAVs. In 
the second part of the report, we analytically examine how to control CAVs to indirectly 
influence the behaviors of human-driven vehicles, strategically redistributing traffic demand 
across various time periods and transportation facilities. This research paves the way for the 
practical implementation of participatory traffic control, contributing to the development of 
smarter and more efficient transportation networks in the future. 
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1. Introduction 

In the years to come, the traffic landscape will be a blend of traditional human-driven vehicles, 
connected vehicles, and various forms of connected automated vehicles (CAVs). Our focus is on 
leveraging CAVs to enhance the management and operation of road networks. Specifically, we propose 
a participatory traffic control model in which a community of CAVs is incentivized to contribute to 
traffic management. These CAVs may act as "travel demand distributors" to better allocate commuting 
needs over time and across facilities, or function as "traffic stream regulators" to improve the 
management of signalized intersections and prevent or delay bottlenecks. Our working hypothesis 
suggests that by influencing the behavior of a small, targeted percentage of CAVs (5-10% of total 
traffic), we can positively affect the decisions of a larger number of untargeted drivers, thereby 
improving overall system performance. 

For instance, CAVs can act as moving traffic controllers, influencing traffic flow at intersections by 
regulating their own speed. The presence of CAVs introduces a new spatial control dimension, 
revolutionizing traditional traffic control systems and creating new challenges for integrating CAVs and 
existing infrastructure. 

CAVs are poised to play a significant role in next-generation traffic management, offering promising 
prospects for improving both mobility and fuel economy. This report represents our preliminary efforts 
to implement participatory traffic control. To develop effective control methods, it's crucial to first 
accurately estimate the state of transportation systems. Chapter 2 of this study, led by Xingmin Wang 
of the University of Michigan, focuses on utilizing CAVs for traffic monitoring and state estimation 
through a hidden Markov model. The effort is represented as the left-hand component in Figure 1.1. 

 

 
Figure 1.1: Participatory traffic control with CAVs: new input data and new control scheme 

Once sufficient system information is obtained, CAVs can be used to influence the behavior of human-
driven vehicles (HVs). See Figure 1.1. Chapter 3 explores a distributed, model-free approach to enhance 
system performance by controlling a fraction of CAVs. This is framed within the major-minor mean 
field control (MFC) framework. Reinforcement learning algorithms are applied to compute optimal 
control policies. This chapter documents collaborative findings with Minghui Wu and Ben Wang from 
the University of Michigan, as well as Jerome P. Lynch from Duke University. 
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2. Real-time urban traffic state estimation using connected and automated vehicle observation 

2.1 Introduction 

Compared with traditional traffic monitoring methods that are highly relied on the detectors, 
connected and automated vehicle data is more scalable, economical, and sustainable, which might 
become more prevalent in the future. Connected vehicle data is essentially in the form of vehicle 
trajectory data at a certain penetration rate. Many existing studies have applied statistical estimation 
methods to estimate the overall traffic state with low penetration rate vehicle trajectory data. Other 
than the vehicle trajectory, automated vehicles can also observe the surrounding traffic, which 
could contain much more useful information, particularly for the traffic from the opposing direction. 
In this case, automated vehicles act as moving observers in traffic networks. Researchers have 
noticed this potential and performed certain explorations during past years.  

In this chapter, we utilize data from both connected and automated vehicles for the real-time 
estimation of urban traffic state. The overall estimation problem is formulated through a hidden 
Markov model. The hidden state is the overall traffic state while the observable state is the observed 
data. An existing stochastic traffic flow model is used to model the transition of the hidden state 
while new observation models are developed to connect the hidden state and observable state. A 
simulation environment built on SUMO is used to test the proposed method. This chapter is 
organized as follows: Section 2.2 introduces the problem state and Section 2.3 is the main 
methodology. Section 2.4 shows the numerical experiments based on SUMO simulation 
environment. 

2.2 Problem statement 

Figure 2.1 is an illustration of a road segment with both directions with the time-space diagram of 
northbound direction (from the bottom to the top). In the left figure, the blue color denotes 
automated vehicles while the grey color represents ordinary vehicles. The light blue area is an 
illustration of the detection range. In the corresponding time-space diagram on the right, solid blue 
lines represent vehicle trajectories of automated vehicles while dashed lines represent others. In 
this case, there are two automated vehicles moving in the opposite direction. The light blue color 
in the time-space diagram shows the observation of automated vehicles.  

 
Figure 2.1: Observation of the automated vehicle  
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As illustrated in the figure, the observation coming from automated vehicles can be roughly divided 
into two categories: 1) background vehicles of the same direction and 2) background vehicles of 
the opposing direction. For a specific automated vehicle, the background vehicles of the same 
direction remain relatively unchanged unless the automated vehicle passes or is passed by other 
background vehicles. However, an automated vehicle can observe more vehicles from the opposing 
direction. Ideally, it could see all vehicles passing through from the other direction if its sight is not 
blocked. Therefore, the observation from the opposing information could contain more useful 
information intuitively. This is also the major difference between automated vehicles and connected 
vehicles. Their difference will be marginal if only observation of the same direction is available. 

In this chapter, the objective is to estimate the overall traffic state utilizing data from connected and 
automated vehicles. For connected vehicles, only the trajectory is available while we have 
additional surrounding observation for automated vehicles.  

2.3 Methodology 

2.3.1 Hidden Markov Model 

We formulate the traffic state estimation problem with connected and automated vehicle data 
as a hidden Markov model as illustrated by Figure 2.2. The hidden state represents the overall 
traffic state we try to estimate while the observable state is the observation from connected and 
automated vehicles.  

 

 

Figure 2.2: Hidden Markov model  

 
To get a complete formulation for this hidden Markov model, we need to further specify the 
transition between the hidden state, i.e., a stochastic traffic flow model, and the transition 
between the hidden state and observable state, i.e., an observation model. Given the complete 
observation of such a hidden Markov model, finding the posterior distribution of the hidden 
state given all observations will be a recursive Bayesian estimation problem. Depending on the 
traffic flow model as well as the observation model, different filtering algorithms can be 
applied. For example, if both models are linear Gaussian, the Kalman filter can be utilized [2]. 
For a more complicated nonlinear model otherwise, we might only be able to use sampling-
based method, which is usually more computational costly [3]. The following two subsections 
will introduce more details on the stochastic traffic flow model as well as the observation 
model. 

2.3.2 Stochastic traffic flow model 

We use the stochastic traffic flow model proposed by Jabari and Liu [4]. This stochastic traffic 
flow model is built based on Eulerian coordinates by splitting the roadway into cells. Figure 
2.3 is an illustration of the stochastic traffic flow model. A road segment will be split into cells. 
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For each cell 𝑖𝑖, the length is 𝑙𝑙𝑖𝑖 and the traffic density is 𝜌𝜌(𝑖𝑖, 𝑡𝑡) at time 𝑡𝑡. In this case, the overall 
traffic state of the road segment is denoted by the column vector 𝝆𝝆(𝑡𝑡) which contains traffic 
densities of all the cells. The vector 𝑦𝑦(𝑥𝑥, 𝑡𝑡) is defined as a tuple including the traffic densities 
of two adjacent cells 

 

and 𝜆𝜆(⋅) is the boundary flow between cells.  

 

 

Figure 2.3: Stochastic traffic flow model 

 
The stochastic traffic flow model is a Gaussian approximation model and thereby includes two 
parts: 1) mean dynamics and 2) covariance dynamics. As a Gaussian approximation, the traffic 
state at each time follows a Gaussian distribution with mean value and covariance matrix 
𝚺𝚺(𝑡𝑡). The mean dynamics is given by the following equation: 

 

where the matrix 𝐁𝐁 is determined by: 

 

𝜆𝜆(⋅) is the boundary flow function given the following equation: 

 

where 𝑆𝑆𝑒𝑒(⋅) and 𝑅𝑅𝑒𝑒(⋅) denote the maximum sending and receiving functions accordingly: 
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Figure 2.4 is an illustration of the fundamental diagram as well as the corresponding maximum 
receiving and sending functions. 𝜌𝜌𝑐𝑐  is the critical traffic density. In this study, we use a 
triangular fundamental diagram with free-flow speed 𝑣𝑣𝑓𝑓 and shockwave speed 𝑤𝑤.  

 

 

Figure 2.4: Fundamental diagram, maximum sending and receiving functions 

 
The covariance dynamics is given by the following equation: 

 

where matrix 𝐃𝐃 is determined by: 

 

and the partial derivation of  within this matrix 𝐃𝐃 is given by the 
following: 
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The matrix Γ in the covariance dynamics is determined by: 

 

Although this stochastic traffic flow model seems complicated, the general idea is 
simple. It uses the traffic density of each cell 𝝆𝝆(𝑡𝑡) as the overall traffic model 
shows us how its mean value and covariance change over time.  

2.3.3 Observation model 

Since the stochastic traffic flow model is a Gaussian approximation. We will be 
able to use the more efficient Kalman filter or its variant if the observation is also 
Gaussian. The mathematical formulation of a Gaussian observation model can be 
written as: 

 

where the superscript 𝑖𝑖 is the index of the observation. There will be multiple 
observations that come from different resources. 𝒚𝒚𝑡𝑡𝑖𝑖  denotes the number of 
observed vehicles in each cell. 𝝆𝝆𝑡𝑡 represents the traffic density of each cell.  𝐇𝐇𝑡𝑡

𝑖𝑖  is 
called the observation matrix and 𝚺𝚺𝑡𝑡𝑖𝑖  is the covariance matrix quantifying the 
uncertainty of this observation. 

Figure 2.5 is an illustration of the observation model. In this case, it is assumed that 
we have a road-side detector that can observe all vehicles within cell 3 and cell 4. 
However, instead of having the accurate location of each vehicle, the location is 
given by a uniform distribution. As shown in the illustrated case, we have the entire 
vehicle on the right in cell 4 while the other vehicle is at the boundary between cell 
3 and cell 4. For the vehicle at the boundary, we have probability ¾ that it is in cell 
3 while ¼ it is in cell 4. Given this observation, Figure 2.5 also provides the 
mathematical formulation. In this case, the observation matrix 𝐻𝐻 is determined by: 
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Figure 2.5: Example of the observation model 

 
The reason we call it observation matrix is that it shows us which part of the overall 
traffic state can be observed. For the observed mean and covariance, we have: 

 

 

The diagonal of the covariance matrix is variance of the number of vehicles in each 
cell while other entries denote the covariance. In this case, the covariance is 
negative since the number of vehicles in cell 3 and cell 4 are negatively correlated 
with each other: the vehicle at the boundary is in either cell 3 or cell 4 such that 
their summation is a constant.  

Figure 2.5 shows an example of a fixed-location observation, which is referred to 
as stationary observer. In this study, we focus on the observation coming from the 
automated vehicle, which is essentially a moving observer. Figure 2.6 is an 
illustration of the observation from the automated vehicles. Compared with the 
stationary observer in Figure 2.5, the observable area will change while the 
automated vehicle moving in the roadway. Nevertheless, the mathematical 
formulation of the observation model is similar: instead of a stationary observation 
matrix 𝐇𝐇 for stationary observer, the observation matrix 𝐇𝐇 for automated vehicle 
will need to change over time and cover the area within the detection range. 
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Figure 2.6: Observation from the automated vehicles 

 
To establish the observation model for the automated vehicle, the time-varying 
observation matrix should indicate the location within the detection range. One 
potential issue that will lead to an inaccurate estimation is the block of the sight as 
illustrated by Figure 2.6. The light blue color in the figure shows the ideal detection 
range if it is not blocked by the background traffic while the dark blue color, a 
subset of the light color, shows the actual detection range excluding the blocked 
area. It could lead to an underestimation of overall traffic if the detection range is 
not chosen properly, and a vehicle blocked by the background traffic is ignored. In 
practice, it will be troublesome to model the effective detection range in real time. 
Here we come with a method to avoid bothering by this issue by using a truncated 
observation region illustrated by the red block in Figure 2.6. Instead of using the 
full detection range which could be larger, we only utilize a subset which is near to 
the automated vehicles. The sight block will not be an issue when it is close to the 
automated vehicle.  

This simplification will not be able to fully utilize the observation from the 
automated vehicle but will significantly simplify the observation model without 
considering the sight block issue. Besides, as aforementioned, the most useful 
information comes from the opposing traffic, we will not lose much as long as the 
opposing traffic is not missed. Based on this intuition, we can come up with a 
simple criterion for the minimum length of the truncated region. Let ∆𝑡𝑡 be the 
sample time and 𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚 be the maximum speed for both directions, the length of the 
truncated region 𝐿𝐿 should be: 

𝐿𝐿 > 2𝑣𝑣𝑚𝑚𝑚𝑚𝑚𝑚∆𝑡𝑡 

such that no opposing traffic will be missed between two adjacent sample times.  

Here we will not provide the details of the mathematical formulation of the 
observation model. It will be similar to the example in Figure 2.5. The main 
difference is that the observation matrix should reflect the truncated region 
illustrated by the red block in Figure 2.6. Even if the sight blocking will be 
mitigated by using the truncated region, there are still bad cases that cannot be 
ignored. Figure 2.7 is an illustration of two special cases that need additional 
considerations. For case A, if the opposing traffic is full of stopped vehicles, the 
vehicle in the faraway lane will be likely blocked by the vehicles in the nearby lane. 
In this case, we will assume that both lanes will be full of stopped vehicles if one of 
the lanes is occupied. For case B, if the automated vehicle is within the queueing 
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area, its sight will also be severely blocked by the surrounding stopped vehicles. In 
this case, we will directly assume this automated vehicle observes nothing. It will 
become a connected vehicle without surrounding observation. 

 

  
Case A Case B 

Figure 2.7: Special cases for the observation from automated vehicles 

 
Other than the observation model for the automated vehicle, there are two another 
domain information that can be applied including the stop event and free-flow 
event. Figure 2.8 is an illustration of the stop event. It will be jam density between 
two observed stopped vehicles. The red light will also be regarded as a dummy 
stopped vehicle. Similarly, if one observed vehicle has a speed which is larger than 
a certain threshold, this vehicle will be considered as a free-flow vehicle and the 
density of the corresponding cell will be the critical density. The stop event and 
free-flow event can significantly improve the estimation accuracy, particularly for 
connected vehicles. 

 

 

Figure 2.8: Stop event 

 
Figure 2.9 is an illustration of the overall observation model including 1) automated 
vehicle detection; 2) free-flow event; and 3) stop event. If the vehicle is an 
automated vehicle with surrounding observations, we will apply both AV detection 
and the stop event while ignoring the free-flow event. In this case, the free-flow 
event will be a subset of the AV detection as illustrated in the figure below. If the 
vehicle is only a connected vehicle without surrounding observations, we will 
apply the free-flow event and stop event. This completes the observation model for 
both connected and automated vehicle observations. We will also have the 
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complete formulation for the hidden Markov model. Since both the stochastic 
traffic flow model and the observation model are Gaussian, a Kalman filter can be 
used to estimate the hidden state. The Kalman filter is a standard algorithm, please 
refer to Welch and Bishop [2] for more details.  

 

 

Figure 2.9: Overall estimation model: 1) AV detection, 2) stop event, and 3) free-flow event 

 
2.4 Experiment results 

2.4.1 Simulation setup 

We test the proposed methods in the SUMO simulation environment. The roadway has two 
directions, and each direction has two lanes. There is a signalized intersection at the center of 
the roadway. Connected and automated vehicles are generated according to a certain 
probability, i.e., penetration rate. Here we assume they are either connected or automated, 
which means that there will not be both at the same time.  

 

 

Figure 2.10: Simulation environment setup 

 
2.4.2 AV observation model 

We test the proposed methods in the SUMO simulation environment. The roadway has two 
directions, and each direction 

SUMO itself is a traffic simulator without automated vehicle, not to mention any observation 
model. We design our own automated vehicle observation model as illustrated by Figure 2.11. 
The basic idea is that a background vehicle can be observed by the automated vehicle. if and 
only if it is within the detection range and not blocked by other vehicles. Figure 2.11 show the 
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bird-eye view and each vehicle is assumed to be a rectangular area. We ignore the height of 
the vehicle. All background vehicles can be projected to the polar coordinates system. The 
horizontal and vertical distance will be 𝑠𝑠 and ℎ accordingly. The distance will be: 

 

The range of the angle will be Ψ𝐴𝐴 = [𝛼𝛼,𝛽𝛽] where 𝛼𝛼 and 𝛽𝛽 are determined by: 

𝛼𝛼 = atan
2ℎ − 𝑤𝑤
2𝑠𝑠 + 𝑏𝑏

,       𝛽𝛽 = atan
2ℎ + 𝑤𝑤
2𝑠𝑠 − 𝑏𝑏

 

 

 

Figure 2.11: Added automated vehicle observation model in SUMO 

 
For a specific automated vehicle, let 𝑟𝑟𝑖𝑖  and Ψ𝑖𝑖  be the distance and angle range of the 
background vehicle 𝑖𝑖  in the polar coordinates centered by the automated vehicle. The 
following procedure is used to find observable vehicles for a given automated vehicle: 

(1) Sort the vehicle (within the detection range) by distance to the sensor (𝑟𝑟1 ≤ 𝑟𝑟2 ≤ ⋯ ≤ 𝑟𝑟𝑁𝑁) 

(2) Initiation and preparation: Φ1 = Φ0, Ψ𝑖𝑖 ,  𝑖𝑖 = 1,2, …𝑁𝑁 

(3) Iterate for each 𝑖𝑖 = 1,  2, … ,𝑁𝑁: 

• If |Φ𝑖𝑖−1 ∩ Ψ𝑖𝑖| ≥ 𝜓𝜓𝑚𝑚, set vehicle 𝑖𝑖 as observable, otherwise not. 

• Update the occupied angle range: Φ𝑖𝑖 = Φ𝑖𝑖−1 − Ψ𝑖𝑖 

The general idea of this algorithm is to first sort the vehicle according to the distance to the 
automated vehicle. For all these vehicles within the detection range, starting from the closest 
vehicle, the proposed algorithm above finds the intersection between the available angle range 
Φ and the angle range of this vehicle Ψ𝑖𝑖. If the intersection is larger than a certain threshold 
𝜓𝜓𝑚𝑚, this vehicle will be labeled as an observable background vehicle; otherwise, it will be 
blocked. At last, we subtract Ψ𝑖𝑖 from the overall observable range Φ since it will be occupied. 
In this way, we will be able to find all the observable background vehicles that are not blocked 
for each automated vehicle.  

2.4.3 Numerical example of input data 

Figure 2.12 is an example of the SUMO simulation with the implemented automated vehicle 
observation model. The red vehicle denotes the automated vehicle while the blue vehicle 
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denotes the observable background vehicles. The yellow vehicle is a normal vehicle that cannot 
be observed. In this case, we assume that the automated vehicle can only see the vehicle in 
front of it. This could be changed by using a different initial observable angle range Ψ𝑜𝑜. The 
current Ψ0 is set as . The right-hand-side figure shows the corresponding time-space 

diagram. Correspondingly, the red, blue, and yellow colors denote the automated vehicle, 
observable background vehicle, and unobservable background vehicle. 

 

 

Figure 2.12: SUMO simulation example 

 

The proposed traffic state estimation method is to estimate the traffic density of each cell in 
the spatial-temporal space. Therefore, we need to convert the time-space vehicle trajectories 
to traffic densities. The following figures show converted traffic densities from the time-space 
diagram. Figure 2.13a shows the original time-space diagram, Figure 2.13b is the 
corresponding traffic density of overall traffic, while Figure 2.13c is the traffic density of 
observed traffic. The estimation algorithm is to reconstruct overall traffic density (Figure 2.13b) 
based on the observed traffic density (Figure 2.13c). 
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a. Time-space diagram 

 
b. Traffic density of overall traffic 

 
c. Traffic density of observed traffic 

Figure 2.13: Time-space diagram and the corresponding traffic density diagram 

 

2.4.4 Case studies 

Before we introduce the final estimation results, this subsection will show some case studies 
that can explain how the different observations can contribute to the overall traffic state 
estimation. Figure 2.14 is an illustration of the traffic state estimation with automated vehicles. 
This figure uses the same example in the previous subsection, so the ground truth is given by 
Figure 2.13b. According to the proposed estimation methods, the final estimation result is a 
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fusion of three different parts: prior stochastic traffic flow model, automated vehicle 
observations, and the stop event. On the top left is the prior traffic state, which is the same for 
each cycle since there is no observation with it. The estimation will be improved by adding 
observations to it.  

As shown in Figure 2.14, the traffic density tends to be underestimated only with the automated 
vehicle while overestimated only with the stop event. The underestimation caused by the AV 
observation is mainly due to the sight block issue as aforementioned. If one vehicle is blocked 
but the automated vehicle regards its location to be observable, the traffic density will be 
underestimated. Nevertheless, the stop event sets a lower bound of the queue length, that is, 
the queue length is always larger than the last observable stopped vehicle. As a result, only 
utilizing the stop event will overestimate the traffic density without setting an upper bound on 
the other side. Eventually, we will get a good estimation by combining both AV observations 
and the stop event.  

 

 

Figure 2.14: Traffic state estimation with automated vehicles: AV observation + stop 
event 

 

Figure 2.15 is an illustration of the traffic state estimation with connected vehicles. In this case, 
we will not have the vehicles’ observations but only the stop event and the free-flow event. 
Similarly, the stop event provides a lower bound of the queue length while the free-flow event 
provides the upper bound of the queue length.  
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Figure 2.15: Traffic state estimation with connected vehicles: stop event + free flow event 

 
2.4.5 Overall results 

Figure 2.16 is the results of the traffic state estimation with different penetration rates of 
connected and automated vehicles. Here we assume a biased prior with roughly 10% error 
since the perfect prior is not available in most cases. The metric to evaluate the estimation 
results is the average of the 2-norm (Frobenius norm) difference of the traffic density at each 
time.  

 

 

Figure 2.16: Traffic state estimation with different penetration rates of connected and 
automated vehicles 
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As shown in the figure, both connected and automated vehicles are helpful to improve the 
estimation accuracy. At the same penetration rate, the AV observation will have a better 
performance compared with the connected vehicle, which is consistent with our intuition. 
Specifically, in this case, a 6% automated vehicle has similar estimation performance with a 
12% connected vehicle.  
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3. Leveraging connected and automated vehicles to influence day-to-day traffic dynamics 

3.1 Introduction 

Compared to traditional personal vehicles, one crucial distinction of driving automation is that it 
requires travelers to relinquish part of their travel agency, referring to the capacity to make 
decisions based on their personal volition. In the early stages of development, driving automation 
requires travelers to surrender their agency over driving maneuvers, including velocity control and 
trajectory planning. Utilizing this relinquished agency, we can employ CAVs as traffic stream 
regulators. For instance, Wu et al. [5] focused on ensuring the string stability of mixed traffic within 
a single-lane system by employing AVs. Ge and Gabor [6]  proposed an optimal connected cruise 
controller to enhance the performance of mixed traffic, later combined with an estimation method 
for human drivers [7]. Additionally, Cicic [8] investigated the coordination of CAV platoons to 
mitigate bottlenecks in highway sections by controlling their formation and velocity. These studies 
collectively demonstrate the potential of CAVs as effective tools to improve road performance in 
various local traffic scenarios. 

As driving automation continues to advance, we envision that travelers are willing to surrender 
more travel agency, including their control over route and departure time choices. Under such a 
level of relinquished agency, CAVs can serve as traffic demand distributors, effectively regulating 
traffic flow throughout a network. Typically, HVs are often considered as User Equilibrium (UE) 
users, aiming to minimize their individual travel costs. On the other hand, CAVs operating under 
control are viewed as System Optimal (SO) users, taking into account the overall system cost. 
Zhang and Nie [9] investigated the optimal ratio of these two user types, striking a balance between 
improving the mixed equilibrium and maintaining low control intensity. To solve the complexity 
arising from the bilevel optimization with an equilibrium condition, Sharon et al. [10] and Chen et 
al. [11] reformulated the problem as a linear program. They successfully determined the minimal 
control ratio required to achieve the system optimum. Moreover, Chen et al. [11] demonstrated that 
CAV-based control can be effectively combined with pricing mechanisms to further enhance traffic 
management. 

However, in reality, traffic networks are seldom in an equilibrium state [12]. Instead, the network 
flow experiences day-to-day evolution as travelers make adjustments to their travel choices. This 
dynamic behavior necessitates controlling the evolution process rather than solely developing a 
static demand distributor. To address this issue, one needs a model for the day-to-day traffic 
dynamics of HVs and a control scheme for CAVs to drive the system to equilibrium. For example, 
Li et al. [13] assumed the human driver behavior follows a logit-SUE assignment with inertia, and 
demonstrated that CAVs can be effectively controlled to drive the system toward a desired mixed 
equilibrium. Guo et al. [14] adopted a different approach, assuming that all vehicles, including 
CAVs, act as bounded rational agents and are willing to sacrifice their interests only to a certain 
extent. Under this setting, they adopted the BRUE (Boundedly Rational User Equilibrium)-based 
routing adjustment process introduced in [15] to model HV behavior, and proposed a routing 
scheme for CAVs to drive the system to the best BRUE. 

Nevertheless, these previous studies do not really support real-world implementation of CAVs as 
traffic demand distributors. For one thing, previous model-based methods demand perfect 
information about the underlying day-to-day dynamical process, which is usually not available to 
traffic management agencies. Moreover, the success of these methods largely hinges on the 
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monotone cost property, which ensures the convergence of day-to-day traffic dynamics. However, 
it is crucial to recognize that the real-world flow dynamics do not necessarily converge to 
equilibrium, especially when travelers involve departure time choices, as pointed out in [16].  

In contrast, in this chapter, we propose a distributed, model-free approach to derive an optimal 
control policy of controlling a fraction of CAVs to improve the system performance over an infinite 
horizon. The proposed approach can better support the implementation of CAVs as traffic demand 
distributors as it does not rely on exhaustive knowledge of the underlying day-to-day dynamic 
process. In addition, the control policy will be implemented at the individual level, instructing 
individual CAVs to act based on their local information. Besides being model-free and distributed, 
the proposed scheme also significantly differs from [13] and [14] in terms of the control objective. 
Instead of pushing the process to a desired state, we focus on minimizing the total system cost 
induced by the day-to-day dynamical process. Therefore, unlike previous approaches, our method 
is flexible on the choice of day-to-day dynamical models, irrespective of their convergence property. 

To present our approach, we first consider a scenario with homogeneous travelers and model the 
problem as a finite agent control problem. However, it becomes intractable due to the large number 
of travelers. To overcome this limitation, we shift our focus to the limiting case with an infinite 
number of travelers and formulate the problem within the major-minor mean field control (MFC) 
framework [1]. Each CAV forms a minor agent, which has its state and action, while the entire HVs 
(and uncontrolled CAVs) are aggregately modeled by a single major agent. Furthermore, we 
discuss how to extend the model to accommodate traveler heterogeneity, broadening its 
applicability to real-world scenarios. We then leverage reinforcement learning algorithms to 
compute the optimal control policy. 

Our model-free and distributed control scheme offers a versatile and adaptable solution, capable of 
handling a range of scenarios, including departure time and route choices, while effectively 
accommodating different levels of CAV penetration rates. This broad applicability makes it a 
valuable tool for enhancing traffic management and optimizing day-to-day traffic dynamics in 
mixed traffic scenarios. The remainder of this chapter is structured as follows. Section 2.2 presents 
the model. Section 2.3 discusses the control algorithm and section 2.4 presents numerical examples. 
Lastly, section 2.5 concludes the chapter. 

3.2 Model 

In this section, we present a comprehensive model that encompasses various travel choices, 
including route choices, departure time choices, or both. To better illustrate the proposed method, 
we start by introducing a simplified case where all travelers are homogeneous. Subsequently, we 
discuss the extension of the model to accommodate heterogeneous travelers. 

3.2.1 Finite-agent control model 

Consider a transportation system with multiple travelers, consisting of 𝑁𝑁 controllable CAVs 
and 𝑀𝑀 uncontrollable vehicles (either HV or uncontrolled CAVs). To distinguish whether a 
traveler prioritizes their individual interests or the overall system's efficiency, we refer to the 
controllable CAVs as system users and the uncontrollable vehicles as selfish users.  

We model the process of sequentially choosing travel options as a Markov decision process. 
One's travel choice on a given day is considered as their state at that time. Let 𝑥𝑥𝑡𝑡𝑖𝑖 ∈ 𝒳𝒳 
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represents the travel choice of system user 𝑖𝑖 ∈ [𝑁𝑁]: = {1, . . . ,𝑁𝑁} on day 𝑡𝑡, where 𝒳𝒳 is the finite 
set of all allowable travel choices. For example, the set 𝒳𝒳 corresponds to the path set in route 
choice scenarios. Similarly, 𝑠𝑠𝑡𝑡

𝑗𝑗 ∈ 𝒳𝒳 denotes the travel choice of selfish user 𝑗𝑗 ∈ [𝑀𝑀] on day 𝑡𝑡. 
Each traveler's state contributes to an empirical distribution over the entire population. We 
denote the penetration rate of system users as 𝜃𝜃 = 𝑀𝑀

𝑀𝑀+𝑁𝑁
. 

For the two groups of travelers, we define the empirical distributions 𝜇𝜇𝑡𝑡𝑁𝑁  and 𝜈𝜈𝑡𝑡𝑀𝑀 as follows: 

 

 

where the superscripts, 𝑀𝑀 and 𝑁𝑁, are used to clarify that we are dealing with a finite agent 
model. To provide an illustrative example, 𝜇𝜇𝑡𝑡𝑁𝑁 is equivalent to the path flow for system users 
in route choices. 

For selfish users, we assume that they implicitly follow certain day-to-day traffic dynamics, 
which may not necessarily be revealed to the management agency. Therefore, selfish users can 
be modeled aggregately as a major agent, whose day-to-day dynamical model is denoted as 
𝜈𝜈𝑡𝑡+1𝑀𝑀 ∼ 𝑞𝑞(⋅ |𝜇𝜇𝑡𝑡𝑁𝑁 , 𝜈𝜈𝑡𝑡𝑀𝑀) , where selfish users' behavior on day 𝑡𝑡 + 1  is determined by their 
experience in the previous day, which is further dictated by 𝜇𝜇𝑡𝑡𝑁𝑁 and 𝜈𝜈𝑡𝑡𝑀𝑀.  

On the contrary, since each system user has their own assignment, they are modeled separately 
as many minor agents. The action of a minor agent taken on day 𝑡𝑡 is choosing the travel option 
for the next day, i.e. day 𝑡𝑡 + 1, which is denoted as 𝑎𝑎𝑡𝑡𝑖𝑖 ∈ 𝒜𝒜. In the homogeneous case, we have 
𝒳𝒳 = 𝒜𝒜. The action 𝑎𝑎𝑡𝑡𝑖𝑖  is sampled from an assignment policy provided by the management 
agency, denoted as 𝜋𝜋(⋅ |𝑥𝑥𝑡𝑡𝑖𝑖 , 𝜇𝜇𝑡𝑡𝑁𝑁 , 𝜈𝜈𝑡𝑡𝑀𝑀). This policy is a function of the system user's current 
choice 𝑥𝑥𝑡𝑡𝑖𝑖 and the empirical distributions of both groups. Based on the actions selected, the 
state of the system user evolves according to the transition kernel 𝑥𝑥𝑡𝑡+1𝑖𝑖 ∼ 𝑝𝑝(⋅ |𝑥𝑥𝑡𝑡𝑖𝑖 ,𝑎𝑎𝑡𝑡𝑖𝑖 , 𝜇𝜇𝑡𝑡𝑁𝑁 , 𝜈𝜈𝑡𝑡𝑀𝑀). 
The formulation of the transition kernel is flexible. For example, it can be used to capture the 
following cases: 

• Full compliance: system users are perfectly compliant with the assignment. In such case, 

  

• Partial compliance due to inertia: system users may have reluctance in switching travel choices 
and prefer to stay on their previous choices. This can be modeled by   

 

• Partial compliance due to self-interests: we can also manipulate the transition kernel to model 
the behavior considered in [14], where system users are only willing to sacrifice interest within 
a threshold 𝜖𝜖 
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where Ω𝜇𝜇𝑡𝑡𝑁𝑁,𝜈𝜈𝑡𝑡𝑀𝑀
𝜖𝜖_𝐵𝐵𝐵𝐵  refers to the set of acceptable choices for 𝜖𝜖-bounded rational travelers. 

Denote the travel cost of travel choice 𝑥𝑥 as 𝑐𝑐𝑚𝑚(𝜇𝜇𝑡𝑡𝑁𝑁, 𝜈𝜈𝑡𝑡𝑀𝑀). Additionally, we define the system's 
total travel cost as follows 

 

where 𝜇𝜇𝑡𝑡𝑁𝑁(𝑥𝑥) is the proportion of system users that choose travel choice 𝑥𝑥. It is worth noting 
that the system's total travel cost can also be expressed as 

 

which implicitly reflects the impact of the penetration rate 𝜃𝜃 on the system's total travel cost. 
Moreover, the penetration rate also affects the transition kernels by empowering the CAVs 
with higher influence as the penetration rate increases. 

Here, we make two assumptions regarding the transition kernel and the system cost, which will 
be used in later parts. 

Assumption 1. The transition kernels 𝑝𝑝(⋅ |𝑥𝑥,𝑎𝑎, 𝜇𝜇, 𝜈𝜈) and 𝑞𝑞(⋅ |𝜇𝜇, 𝜈𝜈) are Lipschtiz continuous 
with respect to 𝜇𝜇 and 𝜈𝜈.  

Assumption 2. The system cost function 𝐶𝐶(𝜇𝜇, 𝜈𝜈) is Lipschtiz continuous with respect to 𝜇𝜇 and 
𝜈𝜈. 

These assumptions are mild and are widely used in literature. The control objective of the 
management agency is to find the optimal policy to minimize the total discounted cost 

           

 

 

 

3.2.2 Major-minor mean field control model 

A limitation of the model in the above subsection is that as the number of agents grows large, 
finding the optimal control policy becomes intractable [17]. This complexity is especially 
evident in the application of participatory control, where the number of controlled CAVs is 
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large, even at low penetration rates, due to the high vehicle ownership. As a result, scalable 
methods are essential to efficiently solve the model and overcome the computational challenge. 

To address this issue, we adopt the mean field approximation by considering the limiting case 
with an infinite number of travelers. This approximation technique was first proposed in mean 
field games [18], [19], which leverages the "smoothing" effect to simplify the model and avoid 
complex mutual interactions among agents. Under the homogeneity assumption, the group of 
agents can be effectively abstracted by a representative agent. By employing the mean field 
approximation, we reformulate the model within the major-minor mean field control (MFC) 
framework proposed by Cui et al. [1], [20]. 

To be more specific, consider when 𝑁𝑁  and 𝑀𝑀 → ∞, under the law of large numbers, the 
empirical distribution 𝜇𝜇𝑡𝑡𝑁𝑁  and 𝜈𝜈𝑡𝑡𝑀𝑀  becomes the mean field (MF) distribution 𝜇𝜇𝑡𝑡, 𝜈𝜈𝑡𝑡 ∈ 𝒫𝒫(𝒳𝒳), 
where 𝒫𝒫(𝒳𝒳) refers to the set of all probability mass functions defined on the state space. With 
this mean field approximation, we no longer need to track the state of each individual system 
user. Instead, we can only focus on the representative agent, whose state is now treated as a 
random variable whose distribution matches the MF distribution. To maintain consistency, we 
continue to use the same notations as before. Specifically, 𝑞𝑞(⋅ |𝜇𝜇𝑡𝑡 , 𝜈𝜈𝑡𝑡) represents the transition 
kernel for selfish users, while 𝑝𝑝(⋅ |𝑥𝑥,𝑎𝑎, 𝜇𝜇𝑡𝑡, 𝜈𝜈𝑡𝑡) denotes the transition kernel for system users. 
The assignment policy from the management agency and the system cost are denoted as 
𝜋𝜋(⋅ |𝑥𝑥, 𝜇𝜇𝑡𝑡 , 𝜈𝜈𝑡𝑡) and 𝐶𝐶(𝜇𝜇𝑡𝑡, 𝜈𝜈𝑡𝑡) respectively.  

Due to the homogeneity assumption, every system user follows the same transition kernel. 
Consequently, its mean field (MF) distribution evolves deterministically according to the 
following equation 

 

Here, 𝜇𝜇𝑡𝑡(𝑥𝑥)𝜋𝜋𝑡𝑡(𝑎𝑎|𝑥𝑥, 𝜇𝜇𝑡𝑡, 𝜈𝜈𝑡𝑡) corresponds to the proportion of system users that choose the state-
action pair (𝑥𝑥,𝑎𝑎) on day 𝑡𝑡. By introducing 𝜋𝜋𝑡𝑡(𝜇𝜇𝑡𝑡) = 𝜋𝜋𝑡𝑡(⋅| ⋅, 𝜇𝜇_𝑡𝑡, 𝜈𝜈_𝑡𝑡), we use  𝜇𝜇𝑡𝑡 ⊗ 𝜋𝜋𝑡𝑡(𝜇𝜇𝑡𝑡) to 
denote the joint distribution of states and actions, where ⊗ refers to the element-wise product. 
Then, we can express the evolution of 𝜇𝜇𝑡𝑡 as a function 

 

In this sense, we can consider the entire population as a whole, aggregating their behavior 
using the new state (𝜇𝜇𝑡𝑡, 𝜈𝜈𝑡𝑡). The overall assignment is considered as a new action ℎ𝑡𝑡 = 𝜇𝜇𝑡𝑡 ⊗
𝜋𝜋𝑡𝑡(𝜇𝜇𝑡𝑡) ∈ ℋ(𝜇𝜇𝑡𝑡), where ℋ(𝜇𝜇𝑡𝑡) refers to the joint distribution whose state marginal matches 
𝜇𝜇𝑡𝑡. Consider the action ℎ𝑡𝑡 being sampled from a new policy , then the system is transferred 
to the following problem of a single-agent MFC MDP 
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For the new model, we have the following proposition 

Proposition 1. [Theorem B.4 in [1]] 

Under Assumption 1 and 2, the MFC MDP always exists an optimal stationary policy . 

3.2.3 Relaxing homogeneity assumption 

Under the homogeneity assumption, the control problem was formulated as a major-minor 
MFC model in the previous subsection. However, it is important to acknowledge that travelers 
in real-world transportation systems are often inhomogeneous. Thus, we need to relax this 
assumption to account for heterogeneity in travel choices. 

One way to address this issue is to consider different state spaces between travelers. In the 
previously discussed model, the state (i.e., travel choice) of all travelers was assumed to be 
from a uniform state space. However, in practical scenarios such as routing, travelers can only 
choose from a specific set of route choices corresponding to their origin-destination (OD) pairs.  

To accommodate this heterogeneity, we classify agents into 𝐽𝐽 types, where each type 𝑗𝑗 ∈ 𝒥𝒥 =
{1, . . . , 𝐽𝐽} has its own state space denoted as 𝒳𝒳𝑗𝑗. For ease of notation, we introduce the function 
𝐽𝐽(𝑥𝑥) to indicate the type of state 𝑥𝑥 ∈ 𝒳𝒳. Specifically, if 𝑥𝑥 belongs to the state space 𝒳𝒳𝑗𝑗, then 
𝐽𝐽(𝑥𝑥) = 𝑗𝑗. For instance, in routing scenarios, 𝒳𝒳𝑗𝑗  represents the path set of OD pair 𝑗𝑗. The 
overall state space is defined as 𝒳𝒳 = ⋃ 𝒳𝒳𝑗𝑗

𝑗𝑗∈𝒥𝒥 . The action space is set as 𝒜𝒜 = 𝒳𝒳, and we also 
use 𝐽𝐽(𝑎𝑎) to denote the type of action 𝑎𝑎 ∈ 𝒜𝒜 with minor abuse of notation.  

In this extended model, it is possible for an action executed by an agent to not belong to their 
type. To handle this situation, we introduce the new transition kernel �̂�𝑝(𝑥𝑥′|𝑥𝑥,𝑎𝑎, 𝜇𝜇, 𝜈𝜈), which 
satisfies the following condition 

 

which ensures that an action that does not belong to the type of the current state is considered 
invalid or ineffective. In such cases, the agent is not impacted by the invalid control actions, 
and the state remains unchanged. However, if the control action is valid, the transition is the 
same as in the previous model. Intuitively, it is desirable for the optimal policy 𝜋𝜋 to ensure that 
actions executed for every state are valid, allowing the control effect to be maximized while 
respecting the heterogeneity of travelers. Additionally, we require the transition kernel for 
selfish users, 𝑞𝑞(⋅ |𝜇𝜇, 𝜈𝜈) , to be valid. Specifically, if 𝑞𝑞(𝜈𝜈′|𝜇𝜇, 𝜈𝜈) > 0 , it must satisfy 
∑ 𝜈𝜈′(𝑥𝑥)𝑚𝑚∈𝒳𝒳 = ∑ 𝜈𝜈(𝑥𝑥)𝑚𝑚∈𝒳𝒳𝑗𝑗  for all types 𝑗𝑗, and for all 𝜇𝜇, 𝜈𝜈. Note that the validity of 𝑞𝑞 is typically 
ensured since it is a model-based exogenous kernel, for example, derived from Smith's 
dynamic. Therefore, no explicit revisions are needed to enforce this validity. 

By revising the transition kernel, the heterogeneous model with different state spaces can be 
equivalently represented by the previous homogenous model with the overall state space 𝒳𝒳. 
The only difference is that now the system user's state evolves according to the revised 
transition kernel  �̂�𝑝 . As a result, the consideration of agent types becomes unnecessary. 
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Everything is taken care of by the extended state space and revised transition kernel, which 
results in the following optimal control problem 

 

 

 

 

As before, letting 𝑁𝑁,𝑀𝑀 → ∞, we can get the limiting MFC model 

 

 

 

 

where  . 

Note that the new transition kernel also has the Lipschitz continuity 

Proposition 2. If Assumption 1 holds for every type, then the transition kernel �̂�𝑝 is Lipschitz 
continuous with respect to 𝜇𝜇 and 𝜈𝜈. 

Proof. For each 𝑥𝑥,𝑎𝑎, 𝑥𝑥′ , if 𝐽𝐽(𝑥𝑥) = 𝐽𝐽(𝑎𝑎) = 𝐽𝐽(𝑥𝑥′) , then �̂�𝑝(𝑥𝑥′|𝑥𝑥,𝑎𝑎, 𝜇𝜇, 𝜈𝜈) =
𝑝𝑝(𝑥𝑥′|𝑥𝑥, 𝑎𝑎, 𝜇𝜇, 𝜈𝜈). Since kernel 𝑝𝑝, �̂�𝑝 is also Lipschitz continuous in this case. Otherwise, 
�̂�𝑝(𝑥𝑥′|𝑥𝑥, 𝑎𝑎, 𝜇𝜇, 𝜈𝜈) is a constant, whose value is fixed regardless of the distribution 𝜇𝜇 and 
𝜈𝜈. In such cases, the Lipschitz continuity naturally holds. 

This proposition further leads to the existence of the optimal policy of the new model 

Proposition 3. If Assumption 2 holds for every type, then the MFC MDP with 
heterogeneity in state spaces always exists an optimal stationary policy . 

3.3 Algorithm 

So far, we have obtained a single-agent MDP by formulating the problem as a major-minor MFC 
model, and we have successfully proved the existence of the optimal policy under mild conditions. 
However, to practically solve for the optimal policy, we need an algorithm that meets certain criteria. 
Specifically, the solution algorithm should be decentralized, model-free, and applicable to finite 
agent cases, as the presence of an infinite number of travelers is unrealistic in reality. To address 
these requirements, we turn to the MFC reinforcement learning (RL) approach based on the work 
in [1], which is outlined as follows 

Algorithm 1. MFC-RL algorithm framework 
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 Input: Initialize policy  
1: for iterations 𝑛𝑛 = 1,2, … do 
2:       Sample MFC action  
3:       Retrieve individual policy  from  
4:       for minor agent 𝑖𝑖 = 1, … ,𝑁𝑁 do 
5:             Sample and execute action  
6:       end for 
7:       Observe system cost 𝐶𝐶𝑡𝑡, next MF distributions  
8:       Update policy  
9: end for 

 

Since the MFC action ℎ𝑡𝑡 represents the joint distribution of states and actions, it can be used to 
recover the original individual policy 𝜋𝜋𝑡𝑡, as mentioned in Line 3. Note that the individual policy 
requires only local information, such as the current state, rather than global information like the 
MF distribution. Consequently, the algorithm lies in the paradigm of centralized training 
decentralized execution (CTDE) [21]. In the CTDE paradigm, the management agency broadcasts 
the individual policy 𝜋𝜋𝑡𝑡 to all system users, and each system user independently selects its own 
action. This design effectively relieves the management agency from the burden of managing 
individual assignments, significantly reducing the computation complexity of the process. 
Moreover, the MFC framework does not require knowledge regarding the specific transition 
kernels 𝑝𝑝and 𝑞𝑞. The transition process is essentially induced by the accumulated effect of individual 
behaviors, and as an observer, the management agency can solely observe the results of the 
transition without explicit knowledge of the underlying transition process. Furthermore, the 
proposed model exhibits flexibility in the choice of RL algorithms to update the policy (Line 8). 

3.4 Numerical examples 

In this section, we apply the proposed model and algorithm to two examples: one for route choices 
and the other for departure time choices. In both cases, we use the discrete-time version of the 
Smith dynamic [22] to model human behavior. The Smith dynamic assumes that individuals will 
switch to lower-cost options based on their experience from the previous day, which takes the 
following form 

 

where 𝜈𝜈𝑡𝑡(𝑥𝑥) represents the proportion of individuals choosing travel choice 𝑥𝑥 on day 𝑡𝑡, 
[⋅]+ = max{0,⋅}, and 𝜂𝜂 captures the effect of user inertia. It is worth noting that the model 
can be readily applied to other types of dynamical models as well. 

For both examples, we set the discount factor 𝛾𝛾 to 0.99. Although the cost function in the 
model assumes an infinite horizon, it is impractical to account for an infinite number of 
days in real-world scenarios. Therefore, we truncate the horizon length to 200 days. Thus, 
the training process consists of iterations of 200-day episodes. To ensure robustness and 
adaptability, we initialize the system randomly at the beginning of each episode. It allows 
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our algorithm to be trained on various scenarios, ensuring the capability to handle diverse 
cases. We normalize the system cost by dividing it by the average cost of 10 random 
distributions and set the inertia weight 𝜂𝜂 = 0.02 to make the value problem-independent. 
The value of 𝜂𝜂 matches the experiment setting in [23]. In both examples, we use Proximal 
Policy Optimization (PPO) [24] as the RL algorithm, where the values of 
hyperparameters are given as follows 

Table 3.1: Hyperparameter values 

Hyperparameter Value 

GAE lambda 1 

KL coefficient 0.01 

Clip parameter 0.2 

Learning rate 0.00005 

Training batch size 24,000 

Mini-batch size 4,000 

Gradient steps per batch 5 

 

3.4.1 Route choices 

The first example considers the Baraess network in Figure 3.1 and follows the experimental 
settings outlined in [11]. The total demand is 6 from node 1 to node 9. The link travel time of 
the five links is 

𝑡𝑡1 = 10𝑣𝑣1 

𝑡𝑡2 = 50 + 𝑣𝑣2 

𝑡𝑡3 = 50 + 𝑣𝑣3 

𝑡𝑡4 = 10 + 𝑣𝑣4 

𝑡𝑡5 = 10𝑣𝑣5 

where 𝑣𝑣  represents the link flow. In total, travelers have 3 path choices. The path-link 
relationship is provided in Table 3.2. As demonstrated in Chen et al. [11], the minimal control 
ratio of this network is 1, indicating that the network is highly challenging to regulate. 
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Figure 3.1: Braess network 

 
Table 3.2: Path-link relationship 

Path Link 

1 1, 3 

2 2, 5 

3 1, 4, 5 

 
In this example, we investigate three different system user penetration levels: 𝜃𝜃 = 0, 50%, and 
100%. To evaluate the algorithm's performance, we use the total undiscounted cost sum over 
the 200-day horizon. The training curves of the algorithm under the three penetration levels 
are illustrated in Figure 3.2. The orange curve represents the baseline, which corresponds to 
the scenario with pure human response under the Smith dynamic. Due to random initialization, 
there might be slight fluctuations in the curve. To facilitate comparison, we normalize its 
average to 1. The blue curve corresponds to the scenario where the management agency has 
control over all vehicles. In this case, the trained algorithm converges to the theoretical lower 
bound, represented by the red dotted curve. The theoretical lower bound corresponds to the 
scenario where the system achieves and maintains the SO flow from the second day onward. 
The training results demonstrate that the proposed method has the potential to fully harness the 
control power of the system users, achieving an optimal and efficient traffic flow. The green 
curve represents the penetration rate at 50%. The training result falls between the other two 
experiments, showing a trade-off between the control capabilities and the control intensity. 

 
Figure 3.2: Training curve of the routing experiment 
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To visually demonstrate the trained policy, we conducted 10 experiments with a 100% 
penetration level of system users, and we implemented the trained policy on the system, 
tracking the path flow evolution. The results are plotted in Figure 3.3, where the dark curve 
represents the average path flow, and the light colors represent the range of variation. From 
the figure, it is evident that, regardless of the initial path flow distribution, the path flow on 
paths 1 and 2 roughly converges to 3 on the second day and maintains that level for the 
subsequent days. On the other hand, no travelers use path 3 from the second day onward. This 
result closely aligns with the SO flow, where half of the travelers adopt path 1, and the other 
half choose path 2. The consistency between the experimental results and the SO flow 
demonstrates the capability of the proposed control scheme to effectively manage traffic 
dynamics and direct traffic flow toward an optimal state. 

 
Figure 3.3: Path flow evolution under the trained policy 

 

3.4.2 Departure time choices 

In this example, we apply the model to departure time choices based on the setting outlined in 
[16]. The scenario involves a single bottleneck with a total demand of 6,000 vehicles and a 
bottleneck capacity of 3,000 vehicles per hour. The penalty factors for travel time, early arrival, 
and late arrival are 10, 5, and 15 respectively. The departure time window for each day ranges 
from 0 to 3 hours, and it is further discretized into 60 slices. The desired arrival time for all 
travelers is set at 2 hours. It is noteworthy that Guo et al. [16] demonstrated that the Smith 
dynamic fails to converge to equilibrium in this case, indicating that the day-to-day traffic 
dynamic here is more complex and chaotic compared to the route choice example, which 
makes it more difficult to learn the optimal policy.  

The training curve of the algorithm for the departure time choices example is shown in Figure 
3.4. As usual, the red solid curve represents the baseline scenario without system users, and 
we have normalized its value to 1 for comparison. The red dotted curve shows the theoretical 
lower bound, where the system reaches and maintains the optimal SO departure rate since the 
second day. The blue curve corresponds to the case with a 100% penetration rate. Given the 
complexity of the dynamic and the larger size of the state space compared to the previous 
example, the algorithm becomes more challenging to train. However, it still shows progress 
towards the theoretical lower bound. Although we have not trained the algorithm to full 
convergence, it exhibits remarkable performance. Further improvements are anticipated with 
a longer training duration. Moreover, the figure also includes the training curves for penetration 
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rates of 20% and 50%. As observed from the results, a higher penetration rate leads to better 
overall system performance. 

 

 
Figure 3.4: Training curve of the departure time choice experiment 

 

Based on the training curves in Figure 3.2 and 3.4, another intriguing observation can be made. 
In route choices, when the penetration rate of system users is higher, the performance of the 
initial random policy tends to deteriorate. This is because that pure selfish user will eventually 
converge to an equilibrium, which might not be optimal but still represents a relatively stable 
and predictable behavior. On the other hand, the random initial policy has no performance 
guarantee and lacks optimization, leading to potentially less efficient traffic flow and higher 
system costs. Therefore, as the proportion of random policy increases, the overall system 
performance declines accordingly. Conversely, the situation is different in departure time 
choices, where the Smith dynamic can exhibit chaotic behavior. In such cases, a higher 
proportion of random policy surprisingly improves the system's performance. This could be 
due to the demand redistribution introduced by the initial policy, which promotes more diverse 
and distributed departure time choices, resulting in a more efficient system.  

It is essential to acknowledge that the training process is time-consuming, especially for the 
departure time choice experiment. Considering the practical challenges of real-time policy 
training, we propose an alternative approach for the management agency. We suggest that the 
agency employs a simulator that accurately models the human response dynamics, where the 
agency can conduct extensive policy training and optimization in a controlled virtual 
environment. 

As in the previous case, we proceed to implement the trained policy on a transportation system 
with a 100% penetration rate and random initial departure time profile. We conduct 20 
experiments and track the evolution of the departure time profile over consecutive days. The 
average result is depicted in Figure 3.5. At the beginning of each experiment, the system is 
initialized with a random departure time profile, represented by the blue curve in the figure. 
However, as the trained policy takes effect, the departure time profile quickly transitions to the 
green curve, which closely aligns with the theoretical SO profile. Once the departure time 
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profile reaches the SO state, it remains relatively stable for the subsequent day. This stability 
is a desirable outcome, indicating that the policy has successfully managed the transportation 
system to maintain an optimal departure time distribution, minimizing congestion and travel 
delays. Also, the close resemblance of the resulting departure profile to the theoretical SO 
profile again affirms the effectiveness and accuracy of the participatory control approach. 

 
Figure 3.5: Departure profile evolution under the trained policy 
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4. Findings and Conclusions  

This study has focused on the traffic state estimation with connected and automated vehicles, 
particularly on the automated vehicle with surrounding observation. As a moving observer, the 
automated vehicle could provide much more useful information compared with a connected vehicle. 
Other than the trajectory itself, automated vehicles can observe the surrounding background vehicles, 
especially the vehicle from the opposing direction. In the ideal case, the automated vehicle could see 
every vehicle passing through in the opposite direction, at least the number of vehicles. We formulate 
the traffic state estimation problem as a hidden Markov model: the hidden state is the overall traffic 
while the observable state is all the available observations. An existing stochastic traffic flow model is 
used to predict the traffic flow dynamics. We formulate three different observation models including: 
1) automated vehicle observations, 2) stop event, and 3) free-flow event. The main difficulty of the 
observation model is that we need to consider the change of the observable range of the automated 
vehicle considering the sight blocking. We propose to use a truncated observable range to mitigate this 
effect. Finally, this study uses SUMO simulation environment to test the proposed methods. It is 
demonstrated that both connected vehicle and automated vehicle data can be used to significantly 
improve the estimation accuracy, and intuitively, the automated vehicle data is more useful than the 
connected vehicle.  

In addition, we have proposed a novel traffic control scheme that leverages CAVs to indirectly influence 
the day-to-day adjustment process of human drivers, thereby improving overall system performance. 
Specifically, we first model the problem as a finite agent control problem. To overcome the intractability 
due to the large number of agents, we consider the limiting case with an infinite number of travelers and 
formulate the problem within the major-minor mean field control framework. Under mild conditions, 
we prove the existence of the optimal control policy, which can be computed by leveraging 
reinforcement learning algorithms. The numerical examples demonstrate that the proposed method has 
the potential to fully harness the control power of CAVs, achieving an optimal and efficient traffic flow.  
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5. Recommendations  

This report serves as an initial exploration into the development of a participatory traffic control system. 
It successfully demonstrates that CAVs can be leveraged to accurately assess current traffic conditions 
and subsequently optimize them. There are several avenues for future research that could further 
enhance the effectiveness of participatory traffic control systems. 

Firstly, the estimation techniques used in the initial section of the report are constrained to a two-lane 
roadway in a simulated environment. For a more comprehensive validation, it would be essential to 
evaluate these methods using real-world data. 

Secondly, there is considerable potential for synergy between our newly proposed control scheme, 
detailed in the latter part of the report, and traditional traffic management strategies such as congestion 
pricing. Further investigation into how these varying control measures can be seamlessly integrated 
could lead to even more significant improvements in traffic efficiency. 

 

6. Outputs, Outcomes and Impacts 

This research serves as a proof of concepts for the participatory traffic control. We demonstrate that 
leveraging connected and automated vehicle data can significantly improve the accuracy of traffic state 
estimation. Besides, it is theoretically proved that the connected and automated vehicles can be utilized 
to strategically regulate the traffic demand.  

The proposed model has significant advantages and real-world implementation impacts. This work 
paves the way for the development of an innovative traffic management method. Upon the 
implementation of the participatory traffic control, it has the potential to alleviating traffic congestion, 
and reducing travel time, which will have positive implications for transportation efficiency. 

The following outputs were generated during the performance of this project: 

• Conference presentation at 9th International Symposium on Dynamic Traffic 
Assignment (DTA 2023) 

• A paper submitted for presentation at 2024 TRB Annual Meeting   
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