
Final Report #65
September 2023

AI-enabled Transportation Network Analysis,
Planning and Operations
Yafeng Yin, PhD
Zhichen Liu

September 2023 Report No. 65

Project Start Date: 1/1/2022

Project End Date: 8/31/2023

AI-enabled Transportation Network
Analysis, Planning and Operations

Yafeng Yin
Zhichen Liu
University of Michigan

DISCLAIMER

Funding for this research was provided by the Center for Connected and
Automated Transportation under Grant No. 69A3551747105 of the U.S. Department of
Transportation, Office of the Assistant Secretary for Research and Technology
(OST-R), University Transportation Centers Program. The contents of this report reflect the
views of the authors, who are responsible for the facts and the accuracy of the information
presented herein. This document is disseminated under the sponsorship of the
Department of Transportation, University Transportation Centers Program, in the interest
of information exchange. The U.S. Government assumes no liability for the contents or use
thereof.

Suggested APA Format Citation:

Yin, Y., & Liu, Z. (2023). AI-enabled Transportation Network Analysis, Planning and
Operations. Final Report.
DOI: 10.7302/8099

Contacts

For more information:

PI Name: Yafeng Yin
University: University of Michigan
Address: 2120 GG Brown, Ann Arbor, Michigan
Phone Number: (734) 764-8249
Email Address: yafeng@umich.edu
Web Address: https://limos.engin.umich.edu/

CCAT
University of Michigan Transportation Research Institute
2901 Baxter Road
Ann Arbor, MI 48152
umtri-ccat@umich.edu
(734) 763-2498

mailto:u

Technical Report Documentation Page
1. Report No.
CCAT Report No. 65

2. Government Accession No.
Leave blank – not used

3. Recipient’s Catalog No.
Leave blank - not used

4. Title and Subtitle
AI-enabled Transportation Network Analysis, Planning and
Operations
DOI: 10.7302/8099

5. Report Date
August 31, 2023
6. Performing Organization Code
Enter any/all unique numbers assigned to
the performing organization, if applicable.

7. Author(s)
Yafeng Yin, Ph.D.: https://orcid.org/0000-0003-3117-5463
Zhichen Liu: https://orcid.org/0000-0001-6178-9883

8. Performing Organization Report No.
Enter any/all unique alphanumeric report
numbers assigned by the performing
organization, if applicable.

9. Performing Organization Name and Address
Center for Connected and Automated Transportation
University of Michigan Transportation Research Institute
2901 Baxter Road
Ann Arbor, MI 48109

Department of Civil and Environmental Engineering
University of Michigan
2350 Hayward Street
Ann Arbor, MI, 48109

10. Work Unit No.

11. Contract or Grant No.
Contract No. 69A3551747105

12. Sponsoring Agency Name and Address
U.S. Department of Transportation
Office of the Assistant Secretary for Research and Technology
1200 New Jersey Avenue, SE
Washington, DC 20590

13. Type of Report and Period Covered
Final Report (January 2022 – August
2023)
14. Sponsoring Agency Code
OST-R

15. Supplementary Notes
Conducted under the U.S. DOT Office of the Assistant Secretary for Research and Technology’s (OST-R) University
Transportation Centers (UTC) program.
16. Abstract
This study introduces a unified end-to-end framework for analyzing network traffic equilibrium. The framework learns supply and
demand components directly from traffic data, using computational graphs to parameterize unknown elements. It enforces user
equilibrium through variational inequalities and can incorporate various modeling approaches, including neural networks. A novel
neural network architecture is proposed that guarantees equilibrium states and allows for future scenario planning. The model is
trained using advanced gradient descent algorithms and leverages operator-splitting methods for solving variational inequality
problems. The framework's effectiveness is confirmed through tests on three synthesized datasets.

17. Key Words
Network equilibrium, end-to-end learning, computational graph,
and auto-differentiation

18. Distribution Statement
No restrictions.

19. Security Classif. (of this report)
Unclassified

20. Security Classif. (of this page)
Unclassified

21. No. of Pages
62

22. Price
Leave blank –
not used

Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

Abstract

This study presents a unified end-to-end framework for network equilibrium analysis framework.

The end-to-end framework directly learns model supply- and demand-side components and

equilibrium states from multi-day traffic state observations. It parametrizes unknown model

components with computational graphs and embeds them in a variational inequality to enforce

user equilibrium conditions. Each component can be model-based, model-free (i.e., neural

network), or hybrid. By minimizing the differences between the estimated and observed traffic

states, the framework simultaneously estimates the unknown parameters for supply- and

demand-sides.

Our study addresses key challenges in modeling and calibrating the unified end-to-end

framework. We identify a novel neural network architecture that guarantees the existence of

equilibrium traffic states and accommodates the potential changes in the road network topology

for future what-if planning analysis. To train the model effectively, we leverage the

computational power of computational graphs and design auto-differentiation-based gradient

descent algorithms to handle both link- or path-based user equilibrium constraints. In forward

propagation, we adopt recent developments in operator-splitting methods and differential

optimization to solve a batch of VI problems. In backpropagation, iterated differentiation and

implicit differentiation techniques are used to efficiently differentiate through the equilibrium

states. The proposed framework and findings are validated using three synthesized datasets.

Table of Contents

1 Introduction ... 4

2 Background.. 7
2.1 Traffic flow prediction from observations ... 7
2.2 Computational-graph-based transportation network modeling .. 9
2.3 Employing auto-differentiation for bi-level optimization and MPEC .. 11

3 Computational-graph-based VI Formulation of UE ... 12
3.1 Path-based formulation .. 13
3.2 Link-based formulation ... 17

4 Framework Formulation ... 18
4.1 Neural network architecture ... 19

4.1.1 Attribute net .. 20
4.1.2 Weight net .. 23
4.1.3 Cost Function and Regularization ... 24

5 Framework Training .. 27
5.1 Forward: N-step closed-form updates ... 29

5.1.1 Decoupled gradient-projection ... 29
5.1.2 Mirror descent .. 31
5.1.3 Root-finding ... 32

5.2 Backward: approximate hypergradient ... 32
5.2.1 Iterated Differentiation (ITD) ... 33
5.2.2 Inexact Implicit Differentiation (IMD) ... 33

6 Numerical Examples ... 35
6.1 Example 1: learn demand component on Braess .. 35
6.2 Example 2: learn demand component on Sioux Falls ... 39
6.3 Example 3: learn behavior component on Sioux Falls... 43

6.3.1 Performance comparisons .. 46
6.3.2 Robustness analysis.. 49

6.4 Example 4: learn demand and supply component on Chicago Sketch ... 54

7 Findings and Conclusions .. 58

8 Recommendations ... 61

9 References .. 63

10 Appendix: Proof of Theorem 2 ... 69

List of Figures

Figure 1 Illustration of the unified end-to-end framework. ... 7

Figure 2 Illustration of the computational-graph-based generalized cost function for

path-based elastic UE. ... 16

Figure 3 Illustration of Attribute Net. ... 22

Figure 4 llustrations of link, node, and path blocks. ... 23

Figure 5 Illustration of the end-to-end learning framework. ... 26

Figure 6 Figure 6: Framework performances with different forward iterations under (a)

ITD and(b) IMD. .. 40

Figure 7 Framework performances using different backward method with (a) N = 1, (b)

N = 10, and (c) N = 50. ... 41

Figure 8 (a) Testing optimality gap and (b) training optimality gap MSE with respect to

epochs. ... 42

Figure 9 (a) Training link flow MSE and (b) testing link flow WMAPE with respect to

epochs. ... 43

Figure 10 Training process of different forward algorithms. .. 49

Figure 11 Performances of different backpropagation methods under (a) base, (b) un-

congsted, (c) congested demand. ... 51

Figure 12 Effects of spectral normalization under (a) base, (b) uncongested, and (c)

congested demand. ... 51

Figure 13 Model performances with different sensor coverage rates under (a) base, (b)

uncongested, and (c) congested demand. ... 52

Figure 14 Model performances with demand noises under (a) base, (b) uncongested, and

(c) congested demand. ... 53

Figure 15 Effects of inaccurate feasible path sets under (a) base, (b) uncongested, and

(c) congested demand. ... 54

List of Tables

Table 1 WMAPE under different scenarios ..39

Table 2 WMAPE under different training settings ..44

Table 3 MAPE of different network equilibrium models. ...48

Table 4 MAPE of proposed forward algorithms. ..50

Table 5 WMAPE under different training settings..57

1 Introduction

Transportation network equilibrium modeling paradigm plays an important role in the

planning and operations of transportation networks. It has been widely used to compare

different improvement designs or operation plans and aid the decision-making in selecting

a better one for implementation. The paradigm was initiated by Beckmann et al. (1956)

for modeling route choices in a static and deterministic network. Over the past 66 years,

it has been extended to model other travel choices (e.g., destination and mode), better

represent travel behaviors (e.g., bounded rationality) and capture traffic dynamics

(within-day or day-to-day). Static network equilibrium models consist of two key

elements: supply-side link performance functions, which determine the travel time based

on link flow, and demand-side travel choice models, which describe the relationship

between travelers’ choices and travel costs. The latter typically include demand functions,

which determine the travel demand between origin-destination (OD) pairs, and cost

functions, which encapsulate travelers’ choice preferences. The cost function can be

determined once a behavior model is selected, while the link performance functions, and

demand functions are usually calibrated separately using empirical data.

To improve the generalizability and accuracy of the equilibrium modeling framework,

continued efforts have been devoted for over half a century to enhancing the

representation of the supply- and demand-side components. For recent reviews of

attempts at improving the behavioral realism of equilibrium models, refer to Xu et al.

(2011) and Kitthamkesorn and Chen (2013), as an example. Despite the considerable

progress in model refinement, previous frameworks have been constructed using

a ”bottom-up” assembly approach. Specifically, the process starts with adopting a

particular assumption on how travelers make their travel choices (trip generation,

destination, mode, route, and/or departure time) over a congestible network. By viewing

the interactions among travelers as a non-cooperative non-atomic game, modelers

describe the outcome of these interactions, i.e., the traffic flow distribution, as Wardrop

user equilibrium (Nash equilibrium with infinitely many players) where no traveler would

be better off by unilaterally changing their travel choice (Wardrop, 1952). This

equilibrium condition is then mathematically defined and subsequently formulated as an

equivalent mathematical program or variational inequality (alternatively fixed point or

nonlinear complementarity problem). Lastly, the formulation is solved to obtain the

equilibrium flow distribution, from which various performance measures can be

quantified.

The bottom-up assembly approach is justified when each model component can be

properly determined and calibrated individually, which, unfortunately, is not the case. For

one thing, it is difficult to obtain empirical OD demand data and even more so to properly

calibrate a demand function due to the endogeneity problem (Zhang et al., 2017). It is

also very challenging to properly specify and calibrate a link performance function

because congestion does not persist as a steady state in practice. The appropriate

specification of a link performance function depends on the underlying dynamics, which

is often unobservable to modelers (Small and Chu, 2003; Cheng et al., 2022). Lastly,

the travelers’ utility functions are also unobservable and behavior models are selected

based on modelers’ beliefs or judgments. And the selected models are usually far from

perfect for representing travel choice preferences (Chen et al., 2016). Recall that different

supply- and demand-side components will lead to different equilibrium conditions and,

consequently, different traffic flow distributions. Therefore, observed flows should

inform the selection of model components in constructing the equilibrium analysis

framework. However, we have never done so due to the absence of selection

methodologies and the lack of empirical data.

Overall, the main limitation of the bottom-up assembly approach is that the selection of

individual components is separated from the ultimate goal of a network equilibrium

model: prescribing a equilibrium flow distribution that matches empirical observations as

closely as possible. To overcome these limitations of the traditional ”bottom-up”

approach, this study aims to transform the modeling paradigm via an end-to-end

framework that directly learns model components and the equilibrium state from data. As

illustrated in Figure 1, the unified end-to-end framework encodes the unknown supply-

and demand-side model components with parameterized computational graphs and then

embeds them in a VI that enforces user equilibrium conditions. In forward propagation

(indicated by green arrows), the framework iteratively updates the traffic state via closed-

form rules until reaches user equilibrium. In backpropagation (indicated by blue arrows),

the loss function compares the estimated and observed traffic states and parameters θ for

all components are simultaneously estimated via auto-differentiation.

The unified framework simultaneously integrates model-based and model-free modeling

approaches within a single pipeline, leveraging both domain knowledge and the

representational power of neural networks. In a model-free approach, we approximate the

unknown component functions with neural networks and let the learning process

automatically discover a good functional specification from empirical data. This end-to-

end framework aligns the selection of behavior models with the ultimate goal of

replicating flow distributions. Moreover, the end-to-end framework learns an equilibrium

state of the network, even when real systems never truly reach equilibria and observed

flows are not in equilibrium states. The learned equilibrium states then served as the

benchmark to prescribe and compare different design plans. Additionally, the end-to-end

framework integrates multi-source data into a single stream and addresses the

inconsistencies among different data sources.

Figure 1 Illustration of the unified end-to-end framework.

To the best of our knowledge, our work is the first to integrate the learning of supply- and

demand-side models in network equilibrium models into an end-to-end learning

framework, with neural networks automatically discovering a good specification of route

choice preferences from empirical data. This report presents our attempt to overcome the

modeling and algorithmic challenges for enabling such an end-to-end learning. In a

model-free approach, we identify a novel neural network architecture that guarantees the

existence of an equilibrium solution and accommodates the changes in the road network

topology that may arise in subsequent ”what-if” planning analysis. For training, we adopt

recent developments in operator-splitting methods and differential programming to

enable scalable solution algorithms for a batch of VI problems in forward propagation. In

backpropagation, iterated differentiation and inexact implicit differentiation are used to

the proposed framework to efficiently differentiate through the equilibrium states.

The rest of this report is organized as follows. Section 2 provides a literature review to

better position this study. Section 3 formulates the elastic user equilibrium model as a VI

parameterized by computational graphs. Section 4 presents the unified end-to-end

framework, along with how to design neural network architecture design in a model-free

approach. Section 5 details the auto-differentiation-based gradient descent method for

training. Numerical experiments conducted on three synthesized datasets are reported in

Section 6 to validate the proposed framework. This is a collaborative work with Fan Bai,

General Motors Research and Development, and Donald K Grimm, General Motors

Research and Development.

2 Background

2.1 Traffic flow prediction from observations

In the traditional ”bottom-up” network modeling paradigm, one can calibrate behavioral

parameters in an equilibrium model from flow observations and then predict traffic flows

at Wardrop equilibrium. The calibration process is usually formulated as a bi-level

program or a mathematical program with equilibrium constraints. For example, Yang et

al. (2001) considered a logit-based stochastic user equilibrium and formulated a bi-level

program to calibrate the dispersion parameter in the logit model and OD demands from

link flow observations. Later studies extend such a calibration framework to

accommodate more complex model structures. Wang et al. (2016) considered a dynamic

dispersion parameter and performed experiments using real-world data gathered from a

small network in Seattle, WA. Guarda and Qian (2022) considered a multi-criteria linear

cost function. They analyzed the pseudo-convexity property of the bi-level program and

developed a hypothesis test framework to examine the statistical properties of calibrated

parameters. The proposed framework in this report differs from these previous studies in

that it does not pre-select a behavioral model to represent the route choice preferences.

Another stream of studies uses deep neural networks, ranging from Long Short-Term

Memory to Spatial-Temporal Graph Convolution Neural Network (see, e.g., Yao et al.,

2019), to predict short-term traffic flows. These models can capture complex

spatiotemporal correlations of traffic flows from multi-source data and show satisfactory

accuracy. However, fundamentally, these models assume future flows will be generated

by the same process that generated historical flows and then learn a direct mapping from

input features to traffic flows. As such, the models would likely fail in an ”out-of-

distribution” test where the underlying process changes. For example, in ”what-if”

analysis, a planning agency may update the road network topology, thereby changing the

process of generating traffic flows. More recently, some used supervised learning to learn

a mapping from demands to equilibrium flows (e.g., Rahman and Hasan, 2022; Spana

and Du, 2022). Such models suffer from the same limitation in ”out-of-distribution” tests.

Moreover, they don’t use empirical data to learn the equilibrium state or travel choice

preferences. By contrast, the proposed framework directly learns unknown model

components from data and captures equilibrium conditions with a parametric VI. The

learned equilibrium state will then serve as a consistent benchmark to help decision

makers differentiate various plans. Although the preferences may evolve over time (but

can also be learned over time), it is reasonable to assume the same choice preferences

when conducting ”what-if” planning analysis.

2.2 Computational-graph-based transportation network modeling

Computational graphs and automated differentiation provide powerful tools for

numerically evaluating gradients and easily scale to very large datasets. In the field of

transportation, computational graphs have been employed to model and calibrate

individual components of network equilibrium models. Early explorations start with

calibrating demand functions. For example, recent studies encoded trip generation,

distribution, and path-based traffic loading within layered computational graphs in a static

(Wu et al., 2018) and dynamic setting studies (Ma et al., 2020). This approach enables

the estimation of hierarchical travel demands from various data sources.

Other advancements on the demand side integrate neural networks with discrete choice

models to enhance the estimation of travel preferences. It has been demonstrated that

carefully designed neural networks can provide interpretive, rather than ’black-box’, tools

for choice analysis (Sifringer et al., 2020; Wang et al., 2020). One notable example is

Sifringer et al. (2020), who decomposed the systematic part of the utility function into a

knowledge-driven part from classical discrete choice models and a data-driven part from

neural networks. By maintaining the independence of elasticities from two parts, their

framework benefits from the predictive power of neural networks while keeping some

key parameters interpretable. Other similar attempts include Wang et al. (2020), who

encoded the irrelevant alternative constraints with alternative-specific connectivity. Their

domain-knowledge-regularized neural network architecture better captures the

substitution patterns of travel mode choices. Different types of neural networks, such as

residual networks (Wong and Farooq, 2021), are synergized with discrete choice models

to allow for similar interpretability as a Multinomial Logit model. These interpretable

neural-network-based discrete choice models offer a good foundation for us to design the

neural network architectures in the proposed end-to-end framework, particularly when

behavior interpretability is desired.

To refine supply-side link performance functions, researchers recently developed a

physics-informed neural network to approximate density and speed distribution and

learned traffic states from multi-source data (Lu et al., 2023). To leverage domain

knowledge and enhance estimation accuracy, they incorporate the violation of flow

conservation constraints into the loss function as a regularization term. These studies,

however, have overlooked the interaction between supply- and demand-side components,

and consequently, fall short of generating an equilibrium state that can serve as a

benchmark for ”what-if” analysis.

By contrast, the proposed framework models the interactions among travelers as a routing

game and captures the equilibrium conditions with an implicit layer in end-to-end

learning. The output of the implicit layer solves a fixed-point problem. It is called implicit

because the output of the layer is defined implicitly–there is no analytical formula for it—

and cannot be obtained via explicit computation rules, as the computational graph in

standard or explicit neural networks (Travacca et al., 2020). The implicit layer was first

proposed by Bai et al. (2019) and has been applied to various fields such as power flow

prediction (Fioretto et al., 2020) and auction mechanism design (Feng et al., 2018). Recent

studies have begun to develop computational-graph-based models that capture the

interactions among travelers as a routing game and encapsulate equilibrium conditions.

For instance, recent studies utilized a computational-graph-based framework to

simultaneously learn supply- and demand-side components (Guarda et al., 2023). Instead

of directly enforcing equilibrium conditions, they penalized the violation of these

equilibrium conditions in the loss function, thereby guiding the calibration process to

generate an equilibrium state.

Of the most relevant to our study are Li et al. (2020) and Heaton et al. (2021), who

explored learning the equilibrium states of routing games with implicit layers.

Specifically, Li et al. (2020) cast the equilibria as an implicit layer and calibrated cost

parameters in an end-to-end fashion. Their study, however, still follows the

traditional ”bottom-up” approach and pre-selects a behavior model before calibration.

They only used computational graphs as a tool to enhance computational efficiency rather

than exploring the representation power of neural networks. Heaton et al. (2021)

approximated the weather-dependent link performance functions with fully connected

layers, which take the link flows and weather as input and output link travel time. They

reformulated the weather-dependent equilibrium conditions as the fixed point of a

decoupled projection operator and encapsulated the fixed-point problem in the implicit

layer. They then trained the neural network with link flow observations. However, these

methods share a common limitation: they still follow a bottom-up assembly approach and

pre-select the functional form of each modeling component before encoding it as

computational graphs.

Our work advances these previous studies by integrating the selection or learning of

model components into an end-to-end framework, with neural networks automatically

discovering a good specification of unknown model components from empirical data. It

integrates model-based and model-free modeling approaches within a single pipeline. In

addition, we propose a novel neural network architecture that ensures the existence of

equilibria and accommodates changes in the road network topology to facilitate ”what-if”

planning analysis.

2.3 Employing auto-differentiation for bi-level optimization and MPEC

Parameter calibration in network equilibrium models is typically formulated as a

Mathematical Program with Equilibrium Constraints (MPEC). The objective function

seeks to minimize the fitting error by adjusting parameters while adhering to Wardrop

equilibrium constraints. Continuous model parameters often call for the use of gradient

descent methods (Yang et al., 2001). However, these methods necessitate implicit

differentiation, a typically challenging task that involves differentiating the equilibrium

solution with respect to the parameters. The implicit differentiation usually requires

equilibrium network sensitivity analysis, which either involves inverting a matrix, an

operation that scales quadratically with the dimension of VI (Tobin and Friesz, 1988), or

solving an additional linear VI (Patriksson, 2004). The former struggles with scalability

issues on large road networks due to the difficulty of storing, not to mention inverting,

such a large matrix. Moreover, repeatedly solving the linear VI is also computationally

expensive.

When the equilibrium constraint is equivalent to an optimization problem, the MPEC can

be structured as a bi-level optimization problem. Recent advancements in computational

graphs and auto-differentiation have facilitated the development of new bi-level

optimization algorithms, which broadly fall into two categories. The first, known as

Iterated Differentiation (ITD), approximates the implicit gradient by backpropagating

along the trajectory of the lower-level optimization iterations. This method requires

storing each iteration step of lower-level problems. As the computational graph expands

proportionally to the number of iterations required to solve the lower-level problem,

storing or unrolling a long optimization trajectory can be inefficient. The second method,

known as Inexact Implicit Differentiation (IMD), sidesteps the need to store the lower-

level optimization trajectory. It employs the implicit theorem to approximate the matrix

inversion by iteratively solving an auxiliary fixed-point problem. Initially proposed for

hyperparameter optimization and meta-learning (Maclaurin et al., 2015; Franceschi et al.,

2018), both methods have been shown to converge to local optima under appropriate

conditions when the lower-level is an unconstrained optimization problem (Ghadimi and

Wang, 2018; Ji et al., 2021).

Several recent studies have employed auto-differentiation for solving MPECs. A recent

study used mirror descent to handle path-based user equilibrium constraints (Li et al.,

2022). Despite these advancements in handling equilibrium constraints, the convergence

of MPEC remains a largely unexplored area. One recent study by (Li et al., 2023)

demonstrated the asymptotic convergence of two modified ITD methods to a local

optimum for MPEC when enforcing equilibrium conditions. However, questions remain

regarding the performance of MPEC when the equilibrium constraint is replaced with a

single step loading process. To the best of our knowledge, this study is the first to

investigate these issues under both ITD and IMD methods.

3 Computational-graph-based VI Formulation of UE

We consider a case where partial aggregate traffic measures, such as link flow and link

time, at peak periods are observable for a long period. Suppose that a planning agency is

interested in developing a static network equilibrium model to analyze the network for

peak periods. The general learning task is to learn the OD demands, travelers’ route choice

preferences, and link performance functions from multi-day observations. If prior

knowledge is available, some components can be pre-calibrated, and the end-to-end

framework only focuses on the remaining components.

3.1 Path-based formulation

Mathematically, consider a network 𝒢𝒢 = (𝒩𝒩,𝒜𝒜), where 𝒩𝒩 and 𝒜𝒜 are the set of nodes

and links. Let ℛ denote the set of OD pairs. Each OD pair 𝑟𝑟 ∈ ℛ is connected by paths

that form a finite and nonempty feasible path set 𝒫𝒫𝑟𝑟. 𝒫𝒫 represents the set of feasible paths

for all OD pairs. Let and be the input features observed on day (sample) 𝑚𝑚. The input

features include traveler characteristics like income, road network attributes like free-flow

time, and contextual features like weather and gas price. Input features can vary from day

to day (or sample to sample). Throughout the report, the norm denotes the L2 norm, unless

otherwise indicated. Superscript 𝑚𝑚 associates sample-dependent variables with the 𝑚𝑚-th

sample.

We propose three continuous functions to approximate the unknown supply- or demand-

side model components. The parameter of all components will be jointly learned and thus

we say all components are parametrized by θ ∈ Θ.  Each component can be model-based,

model-free (e.g., neural networks), or hybrid (e.g., physics-informed neural networks).

Therefore θ represents neural network parameters in a model-free approach, or

parameters of a given functional form in a model-based approach.

We will elaborate on the construction of each component, starting from the supply side.

The link performance function 𝜏𝜏𝜃𝜃 outputs the link travel time 𝑡𝑡[𝑚𝑚] ∈ 𝒯𝒯 as a function of

path flow ℎ[𝑚𝑚] ∈ ℋ and input features, defined as:

𝜏𝜏𝜃𝜃:ℋ ×𝒳𝒳 → 𝒯𝒯 (1)

where the input features 𝑥𝑥[𝑚𝑚] ∈ 𝒳𝒳 include contextual features and road network attributes,

such as link capacity and free-flow time; the feasible region ℋ ⊆ 𝑅𝑅+
|ℙ| requires path flow

to be nonnegative and is the feasible region of link time.

On the demand side, travelers are free to switch paths to improve their utilities. Findings

from travel behavior research suggest that travel choice behaviors are much more

complicated than just choosing the shortest path. We use the cost function 𝜋𝜋𝜃𝜃 to describe

the perceived path cost given actual travel time. The cost function 𝜋𝜋𝜃𝜃 outputs the

(perceived) path cost as a continuous function of link time and input features, defined as:

𝜋𝜋𝜃𝜃:𝒯𝒯 ×𝒳𝒳 → 𝒞𝒞 (2)

where input features include traveler characteristics (e.g., income and travel purpose),

route attributes (e.g., number of left turns), and contextual features. The feasible set 𝒞𝒞 ⊆

𝑅𝑅+
|ℙ| requires path cost as nonnegative.

In addition to route choice, travelers have the freedom to choose travel or not and switch

origin and/or destination to improve their utility. We assume the travel demand is upper

bounded by a maximum possible demand 𝑞𝑞 ∈ 𝑅𝑅+
|ℝ| and introduce the excess demand as

𝑒𝑒[𝑚𝑚] = 𝑞𝑞 − Γ⊤ℎ[𝑚𝑚]. Here, Γ ∈ 𝑅𝑅|ℙ|×|ℝ| represents the path-OD incidence matrix and Γ𝑝𝑝𝑝𝑝

equals 1 if path p connects OD pair r and equals 0 otherwise. We use an inverse demand

function 𝜆𝜆𝜃𝜃 to depict the equilibrium path cost 𝑢𝑢[𝑚𝑚] ∈ 𝒰𝒰 as a function of excess demand

𝑒𝑒[𝑚𝑚] ∈ ℰ and input features, namely,

𝜆𝜆𝜃𝜃:ℰ ×𝒳𝒳 → 𝒰𝒰 (3)

where the feasible region of excess demand is ℰ = {𝑒𝑒 ∈ 𝑅𝑅|ℝ|: 0 ≤ 𝑒𝑒 ≤ 𝑞𝑞} and 𝒰𝒰 ⊆ 𝑅𝑅+
|ℝ| is

the feasible region of equilibrium path cost.

Assuming rational travelers try to maximize their own travel utilities, the multi-class user

equilibrium (UE) with elastic demand is formulated as the following parametric VI, the

solution to which is the equilibrium path flow ℎ∗[𝑚𝑚] and equilibrium excess demand 𝑒𝑒∗[𝑚𝑚]

for sample 𝑚𝑚:

To simplify notation, we introduce the response variable as 𝑦𝑦 = (ℎ, 𝑒𝑒) and the

generalized cost as 𝑧𝑧 = (𝑐𝑐,𝑢𝑢). By defining the generalized cost function:

𝐹𝐹θ:𝒴𝒴 ×𝒳𝒳 → 𝒵𝒵 (5)

where 𝐹𝐹𝜃𝜃(𝑦𝑦,𝑥𝑥) = [πθ⊤(τθ(ℎ,𝑥𝑥),𝑥𝑥), λθ⊤(𝑒𝑒,𝑥𝑥)]⊤.

Figure 2 illustrates the computational-graph-based generalized cost function for path-

based elastic UE. Supply- and demand-side components are shown in blue and green

respectively. The dependence of variables on sample m is omitted to simplify the notation.

Each parametrized component can be model-based, model-free, or hybrid. Then the

parametric VI in Eq. (5) can be compactly reformulated as:

To compactly represent the feasible region of the response variable, we introduce the

augmented path-OD incidence matrix as and the feasible region

of the response variable becomes

Figure 2 Illustration of the computational-graph-based generalized cost function for

path-based elastic UE.

Theorem 1 (Existence of equilibrium) There exists at least one solution to the multi-

class user equilibrium problem in Eq. (6).

Proof 1 Response variable 𝑦𝑦[𝑚𝑚] is a solution to if and only if it is the

fixed point of the projection operator 𝑃𝑃𝕐𝕐(⋅) for any α > 0, defined as:

where the projection operator is defined as 𝑃𝑃𝕐𝕐(𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑦𝑦′∈𝒴𝒴|𝑦𝑦′ − 𝑦𝑦|

The generalized cost function is approximated by continuous parametric functions or

neural networks and thus is continuous. The fixed-point operator is a projection operator

that is continuous. Because the feasible flow set is convex and compact, as per Brouwer’s

fixed point theorem, there exists at least one solution to the fixed-point problem in Eq. (6).

If we consider a special case where the OD demands are observable for each sample, the

proposed framework can handle an inelastic demand setting. Let be the OD demands and

link flows observed on sample m, where q. Then the multi-class UE with inelastic demand

for sample m is formulated as a parameterized VI in Eq. (6), the solution to which is the

equilibrium flow:

In this case, the feasible path flow set becomes sample-dependent, i.e., ℋ[𝓂𝓂] = {ℎ ∈

𝑅𝑅|ℙ|:ℎ ≥ 0,Σ⊤ℎ = 𝑞𝑞[𝑚𝑚]} requires the feasible path flows to be nonnegative and satisfy

flow conservation.

3.2 Link-based formulation

The parametric VI defined in Eq. (6) requires the knowledge of feasible path set. This is

a common assumption for path-based UE formulation and methods for generating the

feasible path set are well-developed in the literature (Frejinger et al., 2009). If the

modelers believe the path cost is link-additive, the link-based elastic-UE formulation can

be used instead.

We introduce OD-specific link flows for OD pair r as and the vectorized OD-specific link

flows as 𝑣𝑣 = {𝑣𝑣𝑟𝑟}𝑟𝑟∈ℛ ∈ 𝒱𝒱 ⊆ 𝑅𝑅+
|𝔸𝔸|×|ℝ|. In this case, the link performance function becomes:

τθ:𝒱𝒱 ×𝒳𝒳 → 𝒯𝒯. (9)

We slightly abuse the notation of path cost and define the OD-specific link cost 𝑐𝑐𝑟𝑟 ⊆ 𝑅𝑅+
|𝔸𝔸|

with its vectorized form as 𝑐𝑐 = {𝑐𝑐𝑟𝑟}𝑟𝑟∈ℛ. The link-based equilibrium condition for sample

m is formulated as the following parametric VI:

slightly adjust the notation for generalized cost and response variable to bring the link-

based and path-based formulations under the same umbrella. For each OD pair r, we

define the response variable as 𝑦𝑦𝑟𝑟 = (𝑣𝑣𝑟𝑟 , 𝑒𝑒𝑟𝑟) with its vectorized form given as 𝑦𝑦 =

{𝑦𝑦𝑟𝑟}𝑟𝑟∈ℛ ∈ 𝒴𝒴. The generalized cost for OD pair r is represented as𝑧𝑧𝑟𝑟 = (𝑐𝑐𝑟𝑟,𝑢𝑢𝑟𝑟), and its

vectorized form is formulated as 𝑧𝑧 = {𝑧𝑧𝑟𝑟}𝑟𝑟∈ℛ ∈ 𝒵𝒵 ⊆ 𝑅𝑅+
(|𝔸𝔸|+𝟙𝟙)×|ℝ|.

To compactly formulate the feasible region for response variable y, we introduce the

augmented link-node incidence matrix and vectorized demand constraint as follows. For

the former, we add a number of |ℛ| dummy links connecting the origin and destination

of each OD pair, with a number of 𝑒𝑒𝑟𝑟 travelers on each dummy link experiencing the

equilibrium path cost 𝑢𝑢𝑟𝑟. Then we represent the augmented link-node incidence matrix

including dummy link as Λ ∈ 𝑅𝑅(|𝔸𝔸|+𝟙𝟙)×|ℕ| where Λ𝑎𝑎𝑎𝑎 = 1 if link a originates from a and

Λ𝑎𝑎𝑛𝑛 = −1 if link a terminates at node n. For each OD pair, we define a vectorized demand

constraint, where 𝑑𝑑𝑟𝑟 ∈ 𝑅𝑅+
|𝔸𝔸| ; 𝑑𝑑𝑟𝑟𝑟𝑟 = 𝑞𝑞 if OD pair r originates at node 𝑛𝑛 and 𝑑𝑑𝑟𝑟𝑟𝑟 = −𝑞𝑞 if

OD pair r terminates at node 𝑛𝑛 and 𝑑𝑑𝑟𝑟𝑟𝑟 = 0 otherwise. Then the feasible region of the

response variable can be compactly formulated as 𝒴𝒴 = {𝑦𝑦 ∈ 𝑅𝑅(|𝔸𝔸|+𝟙𝟙)×|ℝ|:𝑦𝑦 ≥ 0,Λ⊤𝑦𝑦𝑟𝑟 =

𝑑𝑑𝑟𝑟,∀𝑟𝑟 ∈ ℛ} . It is straightforward to validate that both the path-based equilibrium

condition in and the link-based equilibrium condition align with the same compact

parametric VI in Eq. (6).

4 Framework Formulation

We consider a smooth loss function 𝑙𝑙:𝒴𝒴 ×𝒴𝒴 → 𝑅𝑅 that measures the distance between the

estimated equilibrium states and corresponding observations. We also consider a

regularization function 𝑟𝑟(𝜃𝜃). The training of the end-to-end framework can be formulated

as the following MPEC. Each training sample 𝑚𝑚 corresponds to the pair

Consider the dataset , where each data point is drawn i.i.d. from an

unknown probability distribution P over 𝒳𝒳 ×𝒴𝒴.

The end-to-end framework unifies the parameters of supply- and demand-side

components, either model-based or model-free, into a generalized cost function and

jointly learns 𝜃𝜃 during training.

Remark 1 If the cost function is independent of input feature x and equals the sum of link

travel times and an entropy term, the learning problem will reduce to the logit dispersion

parameter calibration problem investigated by Yang et al. (2001). If the equilibrium

constraints are removed, the learning problem would directly learn a mapping from the

context features x to link flows v. In this case, the problem reduces to neural-network-

based short-term traffic flow prediction investigated in the literature (e.g., Yao et al.

(2019)).

The loss function is flexible to accommodate modelers’ needs and available data sources.

It can include partial aggregate traffic state observations like link flow and travel time,

path choice probabilities from trajectory data, and benchmark OD demands from planning

agencies. The framework integrates multi-source data into a single loss function and

effectively handles inconsistencies among different data sources.

Remark 2 In network equilibrium models, ’link flow’ refers to link demand or link inflow,

representing the number of travelers choosing to use a specific link. However, loop

detectors record only link outflows, which can vary from link inflows when the network

is congested. Therefore, when data from loop detectors is available, it’s often more

appropriate to use link travel time as the empirical observation, instead of link outflows.

4.1 Neural network architecture

This section discusses the design of the neural network architecture in the proposed end-

to-end learning framework. The architecture needs to accommodate the changes in the

road network topology to facilitate ”what-if” analysis. Moreover, it can be designed to

ensure that the cost function possesses the desired properties to enable efficient training.

We will illustrate it with the cost function with inelastic demand as an example.

Hereinafter, we highlight that features/attributes are the concactation of single

features/attributes for all elements within one set. For example, the link feature is. The

design of the cost function requires special consideration. We distinguish ”feature”

from ”attribute” to avoid ambiguity: features refer to the input data of neural networks

whereas attributes refer to the learned outputs of neural networks.

4.1.1 Attribute net

We propose Attribute Net to learn the (path) attributes considered by travelers in their

route choice decision process. As shown in Figure 5, attributes 𝑠𝑠[𝑚𝑚] depend on path flows

ℎ[𝑚𝑚] and road network features 𝑥𝑥𝒢𝒢. Attribute Net 𝐺𝐺θ learns a continuous mapping from

path flows and road network features to attributes, defined as:

𝐺𝐺θ:ℋ[𝓂𝓂] ×𝒳𝒳𝒢𝒢 → 𝒮𝒮,

One may construct the Attribute Net with fully connected layers and learn a global

mapping from link flows to link costs (e.g. Heaton et al. (2021)). In this case, the input

and output dimensions of fully connected layers depend on the number of links in the

road network. However, in ”what-if” analysis, a planning agency may change the road

network topology by adding or removing links. The fully connected layers — by

definition with fixed size input and output — are incapable of accommodating the change

in the number of links.

Inspired by the ”kernel” concept in Convolution Neural Networks, we propose to learn

the local attributes on the link, node, and path levels with three parallel, fully connected

layers. As shown in Figure 3, the feature/attribute subscripts for enumerating the elements

within a set and the superscripts for a sample m are omitted to facilitate presentation. The

fully connected layers that learn link, node, and path attributes are called link, node, and

path block respectively. The parameters of each block are shared among all elements of

the same level to capture repeated patterns. Each block’s input and output dimensions are

independent of road network topology, allowing for changeable input sizes. To facilitate

the presentation, the superscripts for a sample m are omitted for the rest of this section.

We use the superscript 𝒜𝒜,𝒩𝒩, and 𝒫𝒫 to distinguish the notations related to link, node, and

path block.

The detailed constructions of link, node, and path block are similar. Hence, we take the

link block as an example. As opposed to accepting multiple links as input, the link block

takes the single link flow and single link features of one link 𝑎𝑎 ∈ 𝐴𝐴 as input and outputs

the corresponding link attributes, defined as:

𝑔𝑔θ𝒜𝒜:𝑅𝑅+ ×𝒳𝒳𝒶𝒶
𝒜𝒜 → 𝒮𝒮𝒶𝒶𝒜𝒜 ,

where is the feasible set of single link features; |ℐ𝒜𝒜|is the number of features

Figure 3 Illustration of Attribute Net.

associated with one link; is the feasible set of single link attributes and |𝒮𝒮𝒜𝒜| is

the number of link attributes considered by travelers. Note the input and output

dimensions of the link block are independent of link numbers. Example 1 further

illustrates how the proposed neural network architecture deals with changeable size inputs.

The link attributes are the concatenation of single link attributes, defined as:

Similarly, let node flow be the sum of link flows from all approaches at node. To capture

the interactions among link flows, node block 𝑔𝑔θ𝒩𝒩:𝑅𝑅+ ×𝒳𝒳𝓃𝓃
𝒩𝒩 → 𝑠𝑠𝑛𝑛𝒩𝒩 maps the single node

flow 𝑢𝑢𝑛𝑛 ∈ 𝑅𝑅+ and single node features of one node to its local node attributes. The node

attributes are the concatenation of single node attributes, defined as:

And the path block 𝑔𝑔θ𝒫𝒫:𝑅𝑅+ ×𝒳𝒳𝓅𝓅
𝒫𝒫 → 𝑠𝑠𝑝𝑝𝒫𝒫 maps the single path flows and single path

features one path to its path attributes. The path attributes are:

Finally, the attributes π are the concatenation of link attributes, node attributes and path

attributes, defined as:

𝑠𝑠 = {Λ𝑠𝑠𝒜𝒜 ,  Σ𝑠𝑠𝒩𝒩 ,  𝑠𝑠𝒫𝒫},

where is Σ the path-node incidence matrix.

Example 1 (Accommodate changeable input sizes) Consider a road network with a

single OD pair connected by two parallel paths or links (i.e., link 1 and link 2). Slash

boxes in Figure 4 denote the change in variables when another parallel link is added to

the road network. The link block takes the link flow, capacity, and free-flow time of link

1 as input and outputs the link travel time on link 1 (highlighted with red boxes). The

input dimension is 3 and the output dimension are independent of the number of links in

the road network. When a new link is added to the original road network, one dimension

is added to path flows h (denoted as the slash box in Figure 4) whereas the input and

output dimensions of the link block remain the same.

Figure 4 Illustration of link, node, and path blocks.

To facilitate training and enhance model performance, we can fully or partially replace

each block with a pre-calibrated function, if available. For instance, we can replace the

link block with the link performance functions calibrated by a planning agency. In

addition, our future study will explore the use of convolution layers to accommodate

changeable input sizes. The challenge will be to ensure the desired properties of the

learned cost function.

4.1.2 Weight net

Weight Net is proposed to capture traveler heterogeneities and learn the OD-specific

preferences over learned attributes (see Figure 5). We treat all travelers between the same

OD pair as a single class that shares the same preferences. It is straightforward to further

classify travelers between one OD pair to be multiple classes to reflect the preference

heterogeneity among them. Weight Net 𝐿𝐿𝜃𝜃 learns a mapping from traveler characteristics

to OD-specific weights 𝑤𝑤 ∈ 𝑊𝑊, defined as:

𝐿𝐿θ:𝒳𝒳ℛ →𝒲𝒲,

OD pairs can be added or removed in ”what-if” analysis thus Weight Net also needs to

accommodate the change in the number of OD pairs. Weight Net learns a function that

maps the single traveler characteristics of one OD pair 𝑥𝑥𝑟𝑟ℛ to its OD-specific weights

𝑤𝑤𝑟𝑟 , defined as:

The parameters of neural network are shared among all OD-pairs to capture the repeated

patterns in weights. Recent developments in interpretable neural-network-based discrete

choice modeling, as discussed in Section 2, can be incorporated into the proposed

framework and guide the design of neural network architectures, particularly when

behavior interpretability is desired.

4.1.3 Cost Function and Regularization

Subsequently, we assume that travelers choose routes to minimize their perceived path

costs, which are represented as a weighted sum of attributes:

where ⊙ represents the Hadamard (elementwise) product and is a 𝟙𝟙 ∈ 𝑅𝑅|𝕊𝕊| column vector

of ones to calculate the sum over the rows. Equivalently, let context features 𝟙𝟙 ∈ 𝑅𝑅|𝕊𝕊|

include traveler characteristics 𝑥𝑥ℛ and road network features𝑥𝑥𝒢𝒢. The cost function maps

path flows and context features to path costs, defined as:

As shown in Theorem 1, the continuity of cost function ensures the existence of equilibria.

However, stronger properties of the cost function may be desired to ensure the uniqueness

of equilibrium or enable an efficient solution algorithm. In this section, we seek to entail

the cost function with monotonicity and Lipschitz continuity via neural network

regularization techniques. Both monotonicity, which suggests the path cost is non-

decreasing as more travelers use this path, and Lipschitz continuity, which suggests a

finite change in path flows results in a finite change in path costs, are mild assumptions

but will largely enhance computational traceability.

Theorem 2 shows sufficient conditions to entail the cost function with monotonicity and

Lipschitz continuity. The proof is shown in Appendix 10. Note that only path flows are

treated as variables in this case.

Theorem 2 (Monotonicity and Lipschitz continuity of cost function) The cost function

πθ (h, x) defined in Eq.(9) is maximal monotone and Lipschitz continuous with respect to

path flows h if weight w is positive and link block, node block and path block are column-

wise monotone.

Recall that each block is composed of fully connected layers. Let 𝑦𝑦(𝑙𝑙−1)and σ(𝑙𝑙) represent

the input and activation function of the l-th layer respectively. The output of the l-th layer

is calculated as where 𝑊𝑊(𝑙𝑙) and 𝑏𝑏(𝑙𝑙) are learnable parameters of

linear layers. We constrain the sign of weights as strict positive by using SoftPlus as the

last layer of Weight Net. The column-wise monotonicity and Lipschitz continuity of

attribute blocks, however, are more challenging to obtain. Most activation

Figure 5 Illustration of the end-to-end learning framework.

layers, such as ReLU and SoftPlus, are monotone and Lipschitz (Bibi et al., 2019) and

both monotonicity and Lipschitz continuity are preserved via operator composition.

Therefore, we only need to regularize the linear layer to entail the block with desired

properties. Without loss of generality, we design a monotonic and Lipschitz continuous

architecture that explicitly constrains the weights of the linear layers. More specifically,

the weight of each linear layer is constrained to be positive to maintain monotonicity. The

linear layer can be parameterized as with 𝜄𝜄 > 0 if strict monotonicity or

strong monotonicity are desired. The spectral normalization as proposed by Miyato et al.

(2018) is applied to constrain the spectral norm of each 𝑊𝑊(𝑙𝑙) and maintain Lipschitz

continuity. This explicit method is reliable, easy to implement, and shows satisfactory

performances in our numerical experiments. Other regularization methods, such as adding

heuristic penalty terms to the loss function or solving integral problems in forward

propagation (Wehenkel and Louppe, 2019; Gouk et al., 2021) are open for exploration in

our future study.

5 Framework Training

We need to deal with two computational challenges to implementing implicit layers in

the proposed framework. First, it requires efficiently solving a batch of VI problems in

the forward propagation, as previous methods for solving VI may not necessarily be

suitable for batch operations. Second, because solving VIs usually entails many iterations,

explicit backpropagation through each iteration can be computationally expensive.

Efficient differentiation through the implicit layer, i.e., the VI, is needed.

This section presents an auto-differentiation-based gradient descent algorithm to solve

the MPEC in Eq. (11). For simplicity, we explicitly formulate the dependence of the

parameters while omitting input features. The optimality condition of the parametric VI

in Eq. (6) can be recast as a fixed point problem as:

where 𝑔𝑔(𝜃𝜃,𝑦𝑦) is the fixed point operator. We define the total loss function 𝑓𝑓 (𝜃𝜃,𝑦𝑦) =

ℓ(𝑦𝑦(𝜃𝜃),𝑦𝑦) + 𝑟𝑟(𝜃𝜃) .Using this fixed point operator, the MPEC in Eq. (11) can be

reformulated as:

We consider the generalized cost function is strongly monotone and Lipschitz continuous

so that the equilibrium state is unique and is a continuous function of parameter θ

(Dafermos, 1988). In a model-free modeling approach, neural networks can be

regularized to ensure these desired properties. In this case, the proposed algorithm updates

the parameter with its hypergradient in each training epoch, defined as:

Definition 1 (Hypergradient) The hypergradient denotes the gradient of the loss function

with respect to the parameter, defined as:

The hypergradient requires differentiating through the equilibrium state y∗(θ) to calculate

the implicit gradient. To formally define the implicit gradient, we assume the following

assumption holds.

Assumption 1 The fixed-point operator 𝑔𝑔(𝜃𝜃,𝑦𝑦) is continuously differentiable with

respect to 𝜃𝜃 and 𝑦𝑦 and matrix is invertible.

Supposing Assumption 1 holds, one can differentiates through the optimality condition

and calculate the implicit gradient as:

Definition 2 (Implicit gradient) Supposing Assumption 1 hold, the implicit gradient is

defined as: .

Here we proceed to discuss the differentiability assumption in Assumption 1. If we

assume the travelers follow the logit model when choosing their paths, the fixed-point

operator is a logit loading function and is indeed differentiable. In a more general setting,

the solution to VI can always be formulated as the fixed point of a gradient-projection

operator, defined as:

Definition 3 (gradient-projection operator) The gradient-projection operator is defined

as follows for step size α > 0.

.

where 𝑷𝑷𝒀𝒀 is the projection operator onto the feasible region.

The gradient-projection operator is non-differentiable at the boundary of the feasibility

set. In this case, Assumption 1 implies that we are focusing on the differential region

of the gradient-projection operator, thereby keeping it within the differential

programming region for convergence analysis. This approach is also adopted by Li et

al. (2022). How to tackle the non-differentiability at the boundary remains to be an open

question.

We consider training the end-to-end framework with K epochs. Each epoch handles

two sub-problems: forward propagation, which finds an approximate optimal response

variable via N iterations, and backpropagation, which employs auto-differentiation to

approximate the hypergradient and update parameters. We will then elaborate on each

subproblem. Subscript script k associates a variable with the 𝑘𝑘-th epoch and superscript

𝑛𝑛 and 𝑞𝑞 associates a variable to the 𝑛𝑛 -th forward and 𝑞𝑞 -th backward iteration

respectively.

5.1 Forward: N-step closed-form updates

Batched operation is essential for efficiently handling large empirical data sets when

training the end-to-end framework. Specifically, forward propagation requires solving

a batch of VIs in parallel, rather than solving a single constrained VI. Previous methods

for solving VIs require repeatedly calling external optimization libraries to project onto

the polyhedron constraint set of feasible path flows, and thus may not necessarily be

suitable for batch operations (Li et al., 2020). To manage batch operations, we require

a closed-form method for updating response variables so that we can encode this

iterative process with computational graphs. These closed-form update rules also

facilitate efficient auto-differentiation through equilibrium states during

backpropagation. We will discuss two types of solution algorithms, decoupled

gradient-projection and mirror descent method, to handle link-based and path-based

formulation respectively. We omit the dependence on sample m in the following

discussion.

5.1.1 Decoupled gradient-projection

We apply the decoupled gradient-projection method to deal with link-based

equilibrium constraints. The forward propagation updates the response variable via 𝑁𝑁-

step gradient-projection operations. The 𝑛𝑛-th forward iteration follows:

In a link-based formulation, the feasibility set is the Minkowski sum of the feasibility

set for each OD pair, namely, 𝒴𝒴 = ∑ 𝒴𝒴𝓇𝓇𝑟𝑟∈ℛ where 𝒴𝒴𝓇𝓇 = {𝑦𝑦𝑟𝑟:𝑦𝑦𝑟𝑟 ≥ 0,Λ⊤𝑦𝑦𝑟𝑟 = 𝑑𝑑𝑟𝑟} .

This allows us to break down the constraints by OD pairs and sequentially handle every

pair on a large road network. Projecting directly onto the polyhedron constraint set,

which requires repeatedly solving a batch of quadratic optimization problems. To tackle

this efficiently, we leverage recent advancements in operator-splitting methods and

decompose the polyhedron constraint set 𝒴𝒴𝓇𝓇 into two simpler sets: (i) one only

involves inequality constraint 𝒴𝒴𝓇𝓇1 = {𝑦𝑦𝑟𝑟:𝑦𝑦𝑟𝑟 ⪰ 0}and (ii) another only involves equality

𝒴𝒴𝓇𝓇2 = {𝑦𝑦𝑟𝑟:Λ⊤𝑦𝑦𝑟𝑟 = 𝑑𝑑𝑟𝑟}. The projection onto two simplier set 𝒴𝒴𝓇𝓇1 and 𝒴𝒴𝓇𝓇2 have closed-

form solutions that can be encoded within computational graphs and then efficiently

implemented in a batched manner. The convergence of this decoupled gradient-

projection method has been demonstrated by Heaton et al. (2021).

Starting with an initial point, the decoupled gradient projection repeats 𝑦𝑦𝑛𝑛+1 =

𝑔𝑔(𝜃𝜃𝑘𝑘 ,𝑦𝑦𝑛𝑛)for each step until the iteration step 𝑛𝑛 exceeds the maximum number of

iterations 𝑁𝑁. The initial point is not necessarily feasible and will be projected onto the

feasible region during the iteration. The selection of step size is vital. If the step size is

too large, the iteration may diverge; if too small, the convergence can be extremely

slow. The optimal step size depends on an unknown Lipschitz constant, the exact

computation of which is NP-hard (Virmaux and Scaman, 2018). We thus explore two

variants of decoupled gradient-projection iteration to adjust the step sizes and speed up

the convergence: Anderson mixing (Walker and Ni, 2011) and weighted ergodic

iteration (Davis and Yin, 2017).

Anderson mixing updates 𝑦𝑦𝑛𝑛+1 as an optimal linear combination of τ previous

iterations. The optimal step size solves a quadratic program:

where the objective function is to minimize the sum of optimality gap over τ iterations.

Here 𝜙𝜙𝑛𝑛−𝑖𝑖+1 represents the optimality gap defined as follows.

Definition 4 (Optimality gap) The optimality gap measures the absolute change of the

response variable between two consecutive iterations, defined as ϕ𝑛𝑛 = ||𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛||.

Another variant, weighted ergodic iteration, heuristically adjusts the step size at each

iteration and updates response variable as a linear combination of previous steps:

5.1.2 Mirror descent

Mirror descent method has shown good performance in dealing with path-based

equilibrium constraints. We define the path choice probability σ𝑛𝑛 = 𝑦𝑦𝑛𝑛

Γ
⊤Γ
𝑦𝑦𝑛𝑛

 as auxiliary

variables. For the 𝑛𝑛 −th forward iteration, the path choice probability is calculated as

follows:

The response variable is updated with a closed-form mirror descent operator:

,

H
·

where α > 0 is the step size. The constraint set of response variables becomes a

probability simplex in path-based formulation and mirror descent has been shown

efficient to deal with such a constraint set. This update rule can be viewed as a variant

of the logit loading where the observed cost is scaled by the logarithm of route choice

probability. The mirror descent iteration converges to the solution to the parametric VI

in Eq.(2), as demonstrated in Li et al. (2022).

5.1.3 Root-finding

Solving for the auxiliary fixed point is equivalent to finding the root of 𝑦𝑦∗ −

𝑔𝑔θ(𝑦𝑦∗,𝑥𝑥) = 0 via a root-finding method. The projection operator is non-differentiable

at the boundary of a set and thus Newton’s method may diverge. Therefore, we use

Broyden’s method, a quasi-Netown method that does not require differentiability.

Broyden’s method approximates Newton’s direction and updates the point as 𝑦𝑦𝑛𝑛+1 =

𝑦𝑦𝑛𝑛 − 𝑠𝑠𝑛𝑛. Let the initial guess be s0 = −I and the direction is updated as:

𝑠𝑠𝑛𝑛+1 = 𝑠𝑠𝑛𝑛 +
Δ𝑦𝑦𝑛𝑛+1 − 𝑠𝑠𝑛𝑛Δϕ𝑛𝑛+1

Δ𝑦𝑦(𝑛𝑛+1)⊤𝑠𝑠𝑛𝑛Δϕ𝑛𝑛+1 Δ𝑦𝑦
(𝑛𝑛+1)⊤𝑠𝑠𝑛𝑛,

where Δ𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 and Δϕ𝑛𝑛+1 = ϕ𝑛𝑛+1 −ϕ𝑛𝑛.

5.2 Backward: approximate hypergradient

In forward propagation, we consider a practical setting where the parametric VI is

solved with 𝑁𝑁 steps and terminated before reaching perfect equilibrium. Consequently,

in backpropagation, we need to approximate the hypergradient at a non-optimal

response variable.

Definition 5 (Approximate hypergradient) The approximate hypergradient at is defined as

where the approximate implicit gradient is defined as follows.

Definition 6 (Approximate implicit gradient) The approximate implicit gradient at is defined

as:

To avoid the computationally expensive matrix inversion in approximating the implicit

gradient, we present two auto-differentiation-based methods to approximate the

implicit gradient.

5.2.1 Iterated Differentiation (ITD)

ITD memorizes the trajectory of N-step forward iterations and directly backpropagates

through the equilibrating trajectory. In the N-th forward iteration, the response

variable 𝑦𝑦𝑘𝑘𝑁𝑁 depends on 𝜃𝜃𝑘𝑘 and 𝑦𝑦𝑘𝑘𝑁𝑁−1, namely:

𝑦𝑦𝑘𝑘𝑁𝑁 = 𝑔𝑔(𝜃𝜃𝑘𝑘 ,𝑦𝑦𝑘𝑘𝑁𝑁−1)

Here we use the fixed point operator g as the ”unified” operator that includes both

gradient-projection operator and mirror descent operator. By applying the chain rule,

we obtain the following approximation for the implicit gradient under ITD:

By telescoping the definition of1 and using the fact that ITD approximates the implicit

gradient.

5.2.2 Inexact Implicit Differentiation (IMD)

IMD approximates the Hessian-inverse-vector product by solving an auxiliary fixed-

point problem. By defining the auxiliary variable as

the approximate hypergradient can be formulated as:

Reformulating the definition of auxiliary variable suggests that it solves an auxiliary

fixed-point problem:

Then IMD recursively approximates the auxiliary variable using Q-step fixed point

iteration:

where γ > 0 is the step size. The approximate hypergradient under IMD is:

.

The auxiliary fixed-point iteration converges if 𝐼𝐼 − ∇𝑦𝑦𝑔𝑔(𝜃𝜃𝑘𝑘 ,𝑦𝑦𝑘𝑘𝑁𝑁) is a stable matrix with

a maximum eigenvalue that has a magnitude less than one. Previous studies show that

these iterations typically are convergent in practice (Bai et al., 2019).

There are other methods in the literature to reduce the computational difficulty by

approximating the matrix inversion. First, the Jacobian-free backpropagation replaces

the matrix inverse with one identity matrix. This method can be viewed as a

preconditioned gradient and only requires backpropagating through the final forward

step (Fung et al., 2021). Second, an inverse matrix can be approximated with truncated

Neumann series, reducing the computational cost from matrix inversion to matrix-

matrix multiplications.

Remark 4 Calculating the gradients of equilibrium flows with respect to demand or supply-side

perturbations has been studied as equilibrium flow sensitivity analysis in the transportation

literature. Tobin and Friesz (1988) showed that the Jacobian exists if the utilized path set remains

the same with a small perturbation in parameters. Patriksson (2004) further suggested that the

Jacobian exists if all unused paths remain unused with the perturbation. Li et al. (2020) pointed

out the Jacobian exists if the cost function is strongly monotone in a neighborhood of h∗. These

conditions may not hold in a general setting. However, the aforementioned numerical methods

work well in our numerical experiments.

To sum up, leveraging the hypergradient approximated under ITD and IMD, the

parameter for epoch k is updated with learning rate 𝛽𝛽 > 0 as:

Here we adopt a warm-start strategy by setting the initialization as the output of the

preceding training epoch rather than initiating it with random values.

6 Numerical Examples

In this section, we validate the proposed end-to-end framework using three synthesized

datasets from Braess, Sioux Falls, and Chicago Sketch. We use the Braess example to

validate the approximation guarantee of the end-to-end framework. Through the Sioux

Falls example, we examine the effect of enforcing equilibrium constraints and provide

practical guidelines for training. The Chicago Sketch example demonstrates the

simultaneous learning of supply- and demand-side components. We evaluate the

framework performance using two key metrics: the empirical optimality gap, which

measures the convergence of the parametric VI, and the Weighted Mean Absolute

Percentage Error (WMAPE), which quantifies percentage differences in flow

predictions. We define the empirical optimality gap as the sample-averaged inner

product between the generalized cost function and the changes in the response variable

across two successive.

6.1 Example 1: learn demand component on Braess

The Braess network has five links, four nodes, and a single OD pair from node 1 to

node 4 with three feasible paths. With a maximum possible demand of q = 5, the

ground-truth demand function for OD pair r follows:

where 𝑥𝑥𝑟𝑟 represents OD-specific features; 𝑥𝑥[𝑚𝑚] is a one-dimensional sample-

dependent contextual feature; is the shortest free-flow time between OD pair r; 𝛼𝛼𝑢𝑢 =

2 and 𝛽𝛽𝑢𝑢 = 4 are functional parameters. We use the standard BPR function as link

performance functions and assume travelers only consider travel time when selecting

their paths. The dataset includes 1024 training, 258 validation, and 258 testing samples.

We will focus on learning the inverse demand function in this example and assume

both link performance and cost functions are given. We consider that multi-day link

flows are observable, and the loss function measures the Mean Square Error (MSE)

between predicted and observed link flow distributions. The framework is trained using

the Adam optimizer over 𝐾𝐾 = 500 epochs with early stopping implemented if there

is no improvement in the training MSE over twenty consecutive epochs. The forward

propagation uses mirror descent with 𝑁𝑁 = 100 iterations, while backpropagation

employs the ITD method.

We evaluate both model-free and model-based end-to-end frameworks under the

following scenarios, fine-tuning the learning rate and step sizes via grid search for each

setting.

• Benchmark: We use a grid search to identify a constant demand that best

matches all testing samples, which is 2.4 in this case.

• Functional: Assuming the functional form is known and encoded with

computational graphs, the framework learns two parameters: 𝛼𝛼𝑢𝑢 and 𝛽𝛽𝑢𝑢.

• Constant: The framework learns a context-independent fixed demand, with

neural networks using only excess demand and OD-specific features as input.

• Linear: The neural network includes a single linear layer.

• Nonlinear: The neural network combines a linear part (as in the Linear scenario)

and a nonlinear part, comprising three layers with eight neurons each.

• Residual: The neural network includes three layers with eight neurons each and

employs a residual strategy between layers.

Each neural network is designed to accommodate potential changes in the number of

OD pairs during ”what-if” analyses. The input dimension of these neural networks only

depends on the number of input features, which in this case, is three. In the Nonlinear

and Residual scenarios, neural networks are regularized to be monotone and Lipschitz

continuous.

Table 1 presents the WMAPE under different learning scenarios. WMAPE is shown in

percentage and parentheses display the relative reduction in WMAPE. The optimal

scenario is highlighted with a star. Same for the following tables. In Benchmark

scenario, the link flow WMAPE is remarkably high at 72.1%. This error drops to 4.2%

when we embed the ground-truth functional form in the framework and adjust the αu

and βu. The non-zero error can be attributed to the nonconvexity of the MPEC, which

can trap the training process at a local minimum. The model-free Constant scenario

learns context-independent demands and yields an error of 72.3%, comparable to

Benchmark. The Residual scenario knows contextual information but has no

information about the functional form of the inverse demand function. By exploring

the representation power of neural networks, the model-free framework still yields a

WMAPE of 4.7%, comparable to the Functional scenario. This result confirms that the

end-to-end framework can generate reliable flow distributions without knowing each

component’s functional form. The Residual scenario provides the best performance

since the residual strategy helps avoid the gradient vanishing when N becomes large

Model # Parameters Link flow Link time Demand

Benchmark / 72.1 31.2 71.9

Functional 2 4.2 (-94.1%) 1.6 (-94.9%) 3.9 (-94.6%)

Constant 109 72.3 (+ 2.8 %) 31.28 (+2.5%) 72.4 (+ 7.0%)

Linear 4 15.5 (-78.5%) 5.6 (-82.1%) 12.9 (-82.0%)

Nonlinear 117 6.3 (-91.2%) 4.3 (-86.2%) 6.2 (-91.3%)

Residual * 112 4.7 (-93.5%) 3.2 (-89.7%) 4.6 (-93.6%)

Table 1 WMAPE under different scenarios

6.2 Example 2: learn demand component on Sioux Falls

Sioux Falls network has 76 links, 28 nodes, and 528 OD pairs. We scaled the default

demand in Stabler (2023) by a factor of three to serve as the maximum possible OD

demand q. The rest of the ground-truth setting follows the Braess example. The dataset

is divided into 1024 training, 258 validation, and 258 testing samples. We consider a

link-based formulation using the decoupled gradient-projection method in forward

propagation. With known link performance and cost functions, our focus is on learning

the inverse demand function.

We first investigate the framework performance with different forward steps. Figure 6

shows that increasing 𝑁𝑁 from 1 to 50 enables faster and better training under both IMD

and ITD. A larger 𝑁𝑁 requires more iterations for both forward and backward

propagation and notably increases computation time under ITD. By contrast, IMD

avoids the differentiation along the equilibrating trajectory and the computation time

changes relatively minimally when 𝑁𝑁 varies.

(a) (b)

Figure 6 Figure 6: Framework performances with different forward iterations under (a)

ITD and(b) IMD.

Moreover, Figure 7 shows that the training process under ITD stops prematurely with

𝑁𝑁 = 1 , resulting in a high training MSE of 4e3. This highlights an iterative

equilibrium process is necessary to ensure local convergence under ITD. By contrast,

IMD keeps reducing the training MSE with 𝑁𝑁 = 1 because it uses extra information

from the implicit function theorem to correct auto-differentiation. Both ITD and IMD

manage to avoid getting stuck when 𝑁𝑁 increases to 10. ITD outperforms IMD in finding

better local optima when 𝑁𝑁 increases to 50.

Next, we examine whether penalizing the empirical optimality gap in the loss function

can replace the need for enforcing equilibrium conditions during training. As illustrated

in Figure 8, Scenarios with optimality gap regularization are represented by solid lines,

while those without are denoted by dotted lines. This pattern applies to Figure 9 as well.

When the equilibrium constraints are poorly approximated with N = 1, the optimality gap

regularization indeed steers the parametric VI towards a smaller empirical optimality gap.

As the training proceeds, the optimality gap MSE converges towards zero (see Figure 8b).

Similar findings have been found in (Guarda et al., 2023). By contrast, when the

equilibrium constraints are well-approximated with N = 50, the optimality gap

regularization has little impact on framework performance.

(a) (b) (c)

Figure 7 Framework performances using different backward method with (a) 𝑁𝑁 = 1,

(b) 𝑁𝑁 = 10, and (c) N = 50.

(a) (b)

Figure 8 (a) Testing optimality gap and (b) training optimality gap MSE with respect to

epochs.

Despite guiding the training process towards an equilibrium state, the optimality gap

regularization fails to lead the framework to find suitable parameters. As shown in

Figure 9, the training MSE with optimality regularization and 𝑁𝑁 = 1 remains

noticeably higher than that with 𝑁𝑁 = 50. The link flow prediction error with 𝑁𝑁 = 1

is also significantly larger. This suggests that ”softly” penalizing the optimality gap in

the loss function is not a viable alternative to the ”hard” enforcement of equilibrium

conditions. Therefore, it is essential to at least roughly approximate the equilibrium

conditions to facilitate effective end-to-end learning.

Finally, we experiment with two enhanced training strategies:

• Adaptive N (denoted as A): Increases the number of forward iterations linearly

during training, from 50 to 150 in our case.

• Two-stages training (denoted as T): Initially, the linear part of the neural

network is trained while keeping the nonlinear part fixed. Once the linear part

converges, both parts are trained jointly in the second stage.

(a) (b)

Figure 9 (a) Training link flow MSE and (b) testing link flow WMAPE with respect to

epochs.

In the Benchmark scenario, we proportionally scaled the maximum possible OD

demands q and use grid search to determine the optimal scale that best matches all

observations, which is 1.2 in this case. The remaining Functional, Nonlinear, and

Residual scenarios follow the Braess example with 𝑁𝑁 = 50 and ITD as the

backpropagation method. Table 2 indicates that the adaptive 𝑁𝑁 strategy improves the

model’s performance because a rough estimation of equilibria is sufficient when the

parameters are considerably off-target during the initial training epochs. The two-stage

training strategy also enhanced performance because it trains a shallow linear network

in the first stage. On one hand, a linear approximation of the monotone generalized cost

function is relatively good. On the other hand, shallow neural networks mitigate

vanishing or exploding gradients during training. Thus, incorporating both strategies,

our end-to-end framework achieves the best performance of 4.3%, comparable to the

Functional scenario (i.e., 1.3%).

In this example, we calculate WMAPE only for flows over 0.001 to avoid infinite

WMAPE due to zero ground-truth flows in training samples. Thus, despite Sioux Falls’

larger size, its WMAPE is numerically smaller than Braess. Since our main concern is

the relative WMAPE reduction, rendering this should be insignificant to our

conclusions.

6.3 Example 3: learn behavior component on Sioux Falls

In this case study, each OD pair r is assumed to have one continuous feature 𝑥𝑥𝑟𝑟1

denoting income and one binary feature 𝑥𝑥𝑟𝑟2 denoting travel purpose, which equals 1 if

the destination of OD pair r is a commercial area and equals 0 otherwise. We assume

the path travel time includes two parts: link travel times and node delays. The link travel

time on link a follows the BPR function. The node delay on node c follows an

exponential form as proposed by Jeihani et al. (2006), Moreover, pavement surface

conditions, such as roughness, are the main feature that decides user comfort (Hawas,

2004; Yin et al., 2008). We classify the links as good and bad pavement conditions and

assume travelers experience a non-link-additive discomfort ep on bad-condition links.

Let 0 ≤ 𝑥𝑥𝑝𝑝 ≤ 1 denote the proportion of bad-condition link length to the total path

length. The discomfort follows the exponential form and increases with the bad-

condition link proportion, i.e., . We set α = 2 and β = 1 so that the

discomfort is zero if path p only includes goodcondition links.

Scenario # Parameters Link flow Link time Demand

Benchmark / 50.9 97.6 59.3

Functional 2 1.3 (-97.4%) 3.7 (-96.2%) 1.3 (-97.8%)

Linear 4 14.1 (-72.3%) 40.9 (-58.1%) 6.4 (-89.2%)

Nonlinear 117 10.2 (-80.0%) 12.1 (-87.6%) 6.8 (-88.5%)

Nonlinear (+ T) 117 9.0 (-82.3%) 24.4 (-75.0%) 5.6 (-90.6%)

Nonlinear (+ A) 117 7.9 (-84.5%) 22.1 (-77.4%) 4.9 (-91.7%)

Nonlinear (+ T + A) * 177 4.3 (-91.5%) 9.2 (-90.5%) 2.7 (-95.4%)

Residual 112 12.8 (-74.9%) 37.8 (-61.4%) 7.2 (-87.9%)

Residual (+ A) 112 8.3 (-83.7%) 24.4 (-75.0%) 5.2 (-91.2%)

Table 2 WMAPE under different training settings

The ”ground-truth” cost for travelers of OD pair 𝑟𝑟 to use path 𝑝𝑝 is a weighted sum of

link travel times, node delays, and a discomfort constant:

,

This suggests that travelers with higher incomes have higher weights on both node

delays and discomfort. Travelers traveling to commercial areas have higher weights on

discomfort yet lower weights on node delays.

The feasible path set includes the top three paths with the shortest free-flow time. If one

OD pair has fewer than three feasible paths, its path flows are padded to a dimension

of three and the padded path flows are nullified with the mask trick during training.

Three demand levels are considered: (i) base scenario 𝑞𝑞0, (ii) uncongested scenario

with base demand 𝑞𝑞0 reduced by 50%, and (iii) congested scenario with base demand

𝑞𝑞0 increased by 50%. For each scenario, we randomly sample travel demands from a

uniform distribution between 0.5 𝑞𝑞0 and 1.5 𝑞𝑞0. The equilibrium flow is solved for

each sampled demand given the ground-truth cost. The training and test sets include 1,

536 and 512 samples respectively. So far, all links are assumed to be observable.

The link block is replaced with pre-calibrated BPR functions. Weight Net, node block,

and path block are composed of three fully connected layers with four neurons and with

LeaklyReLu as the activation function. Normalization layers are added to enhance

training stability. The input of the node block includes node flows and intersection

parameters. The proportion of bad-condition links is the input of the path block. The

input and output dimensions are as follows: Weighted ergodic iteration and IMD are

used as the default forward and backward methods respectively. The model is trained

with Adam optimizer with Mean Square Error as the loss function under the learning

rate of 0.1. Early stop is enabled if no loss descent is observed in five consecutive

epochs. To illustrate the feasibility and importance of learning route choice preferences,

we benchmark our model with three well-established network equilibrium models. First,

the cost function is assumed to be link travel time and travelers choose the paths with

−

minimum travel time, yielding conventional Deterministic User Equilibrium (denoted

as DUE). The second behavior model assumes travelers’ path choices follow a logit

model and thus results in a Stochastic User Equilibrium (denoted as SUE). In this case,

the dispersion parameter is calibrated, similar to Yang et al. (2001). The third model

keeps the same path choice model but assumes the cost function is a linear combination

of link travel time and the proportion of bad-condition links (denoted as SUE-2). Two

linear coefficients are calibrated in this case, similar to Guarda and Qian (2022).

We compare the efficiency and robustness of different forward algorithms. The first

type includes decoupled gradient-projection iteration (F) and its accelerated variant:

Anderson mixing (FA) and weighted ergodic iteration (FW). The second type is

Broyden’s method (R). We also explore the combinations of two types (denoted as F-

R, FA-R, FW-R), which use decoupled gradient-projection iterations initially and

switch to the root-finding when the relative residential is sufficiently small. We

consider two types of tests: in-distribution and out-of-distribution. In in-distribution

tests, the model is trained on observations from the Sioux Falls network and tested on

the same road network. By contrast, in out-of-distribution tests, the trained model is

tested on a partially changed road network. In our experiments, four links are added to

the original Sioux Falls network and 25% links are randomly selected to increase or

decrease their capacities by 50%. Decreasing the capacities under congested demand

generates unreasonable training sets and is excluded in later analysis.

6.3.1 Performance comparisons

Table 3 compares the MAPE of different network equilibrium models. The proposed

end-to-end learning framework is denoted as ”Implicit”. We use DUE as the baseline

and denote its MAPE as η0. The change in MAPE of other models is denoted as ∆𝜂𝜂 =

 𝜂𝜂 − 𝜂𝜂0. Note that the behavioral assumptions of SUE are different from the ground

truth. Although SUE can reduce the in-distribution MAPE by 18.2%, it shows inferior

performance in out-of-distribution tests, increasing the MAPE by 9.2%. This suggests

inaccurately assuming an SUE behavior model can cause bias in parameter estimation,

misleading the flow prediction in subsequent” what-if” analysis. Similar results have

been shown in Torres et al. (2011) and Van Der Pol et al. (2014). In comparison, SUE-

2 performs better, because it happens to capture the impact of discomfort from the bad-

condition links. The performance of SUE-2 is still less satisfactory compared with the

end-to-end framework because the former learns linear combinations by assumption

whereas the latter can deal with nonlinear patterns. Since neural networks include more

parameters than baseline models and offer greater flexibility to recover the complicated

ground truth cost function, the proposed framework has the best performance in both

in-distribution and out-of-distribution tests as expected, reducing the benchmark

MAPE by 61.5% and 55.1% respectively.

In-distribution test

Demand Capacity DUE 𝜂𝜂0 SUE ∆𝜂𝜂 SUE-2 ∆𝜂𝜂 Implicit ∆𝜂𝜂

Base Default 20.6 -4.7 -11.8 -15.0

Uncongested Default 12.5 -3.1 -0.2 -3.4

Congested Default 13.41 -0.6 -4.4 -10.2

Mean 15.5 -2.8 (-18.2%) -5.4 (-35.1%) -9.5 (-61.5%)

Out-of-distribution test

Demand Capacity DUE 𝜂𝜂0 SUE ∆𝜂𝜂 SUE-2 ∆𝜂𝜂 Implicit ∆𝜂𝜂

 Default 22.3 -7.3 -14.4 -16.6

Base -50% 11.3 +13.4 -1.6 -7.9

 +50% 8.1 +4.8 -1.0 -1.3

 Default 23.4 -8.5 -15.6 -14.9

Uncongested -50% 12.1 +12.6 -2.4 -4.1

 +50% 10.4 +2.5 -3.3 -1.1

Table 3 MAPE of different network equilibrium models.

Congested
Default 13.8 -3.5 -6.3 -10.1

+50% 11.9 -3.5 -5.2 -6.4

Mean 14.2 +1.3 (+9.2%) -6.2 (-44.0%) -7.8 (-55.1%)

As shown in Table 4, FW and FW-R achieve the smallest MAPE of 5.7% in in-

distribution tests whereas FW-R slightly outperforms FW by 1% in out-of-distribution

tests. Forward algorithms involving Anderson mixing, such as FA and FA-R, can be

the most unstable. By contrast, forward algorithms involving weighted ergodic iteration,

such as FW and FW-R, are more stable as they consistently shrink the step size during

iterations.

Figure 10 Training process of different forward algorithms.

Figure 11 compares the performance of three backpropagation methods: Jacobian-Free

(JF) approximation, Newman Approximation (NA), and Inexact Implicit

Differentiation (FA) under different demand levels. FA has the best performance

among the three proposed backward methods. JF significantly hurts the learning

process. Similar results have been found by Huang et al. (2021).

The effects of spectral normalization are shown in Figure 12. ”w” suggests ”with

spectral normalization” and ”w/o” suggests ”without spectral normalization”. Although

requiring additional computation, the spectral normalization constrains the Lipshitz

constant of the cost function within a reasonable range and speeds up the convergence

by three to four times under all demand levels.

6.3.2 Robustness analysis

In-distribution test

Demand Capacity F FA FW R F-R FA-R FW-R

Base Default 8.4 5.6∗ 5.7 8.0 8.7 6.2 6.0

Uncongested Default 9.5 9.1 8.1 9.5 8.3 8.5 8.0∗

Congested Default 6.1 3.2 3.2 6.2 11.0 4.5 3.1∗

Mean 8.0 6.0 5.7∗ 7.9 9.3 6.4 5.7∗

Std 1.8 3.0 2.4 1.7 1.4 2.0 2.5

Out-of-distribution test

Scenario Capacity F FA FW R F-R FA-R FW-R

 Default 7.5 5.7∗ 5.8 7.2 7.7 6.4 6.0

Base -50% 4.5 3.4∗ 3.4∗ 5.0 4.8 3.6 3.4∗

 +50% 9.1 6.9∗ 7.0 10.2 9.3 8.8 7.4

 Default 8.3 8.5 7.6 8.1 8.0 8.2 7.5∗

Uncongested -50% 9.5 8.0 7.3 9.9 7.6 14.4 6.9∗

 +50% 8.4 9.4 7.9∗ 8.4 8.2 7.9∗ 7.9∗

Congested
Default 5.7 3.6∗ 3.8 5.1 10.2 4.3 3.6∗

+50% 8.8 5.5∗ 5.7 6.2 11.9 6.1 5.5∗

Mean 7.7 6.4 6.1 7.5 8.5 7.5 6.0∗

Std 1.8 2.2 1.7 2.0 2.1 3.4 1.7

Table 4 MAPE of proposed forward algorithms.

In this section, we examine the robustness of the proposed framework by relaxing

model assumptions. FW, R, and FW-R have the best performance and are thus selected.

Since in-distribution and out-of-distribution performances have similar trends, all the

following analyses are based on in-distribution tests.

(a) (b) (c)

Figure 11 Performances of different backpropagation methods under (a) base, (b)

uncongsted, (c) congested demand.

`

(a) (b) (c)

Figure 12 Effects of spectral normalization under (a) base, (b) uncongested, and (c)

congested demand.

All links are assumed to be observable in previous analyses. We relax this assumption

by randomly observing a proportion of links. FW-R is the most stable when only a

proportion of links are equipped with sensors. For example, Figure 13 shows the MAPE

of FW-R slightly increases from 8.0% to 11.5% when the proportion of observable

links decreases from 100% to 20% under uncongested demand. Since approximation

errors can accumulate in both forward propagation, where iterations terminate with

residuals, and backward propagation, where the gradients are approximated, the

training of the proposed framework can stop at local optimums. Previous studies have

shown the training process and final performances of models involving implicit layers

can be relatively noisy and require more hyperparameter tuning (Huang et al., 2021; Li

et al., 2020).

Usually, there are no direct observations of OD demands in urban road networks. OD

demands need to be estimated and thus prone to estimation errors. We examine the

model performances when the input OD demands are different from the ground truth.

More specifically, random observation noises, which are proportional to the ground

(a) (b) (c)

Figure 13 Model performances with different sensor coverage rates under (a) base, (b)

uncongested, and (c) congested demand.

truth, are added to all demands. As shown in Figure 14, FW is the most stable in the

case of demand noises. Given a noise scale of 100%, the increase in its MAPE ranges

from 12.5% to 22.2% under different demand levels. Note that if we consider an elastic

demand user equilibrium, the travel demand function can also be approximated with

another neural network and learned with the proposed framework. The simultaneous

learning of route choice preferences and demand functions will be explored in our

future study.

(a) (b) (c)

Figure 14 Model performances with demand noises under (a) base, (b) uncongested, and

(c) congested demand.

The selection of feasible path sets can be tricky when no information about path choices

is available. We examine the model performances when the selection of feasible paths

is different from travelers’ actual path choices. There are 1,587 paths in the ground-

truth path set and we consider two scenarios: one with an incomplete path set of 1,058

paths and the other with a redundant path set of 2,645 paths. FW-R has the best

performance when the selection of feasible paths is inaccurate. As shown in Figure 15,

an incomplete path set increases the MAPE by 8.0% under base demand, compared

with an increase of 2.9% induced by a redundant path set. Since an incomplete path set

yields more negative effects, one can start with a large feasible set with sufficient

feasible paths and gradually reduce it during training.

`

(a) (b) (c)

Figure 15 Effects of inaccurate feasible path sets under (a) base, (b) uncongested, and

(c) congested demand.

To sum up, the proposed framework is robust to incomplete observations and input

noises. More specifically, the combined method (i.e., FW-R) is more robust when only

a proportion of links are equipped with sensors or no information about path choice is

available. The fixed-point iteration method (i.e., FW) is preferred when the input OD

demands are poorly estimated.

6.4 Example 4: learn demand and supply component on Chicago Sketch

We consider a path-based formulation on the Chicago Sketch with 2950 links, 933

nodes, and 2493 OD pairs. Each OD pair has three feasible paths, and the feasible path

set is assumed as prior information. We scale the default demand in Stabler (2023) by

a factor of five and use it as the maximum possible OD demand. The following inverse

demand function is used and the ground-truth BPR function is assumed with a context-

dependent capacity for each link 𝑎𝑎 ∈ 𝐴𝐴:

𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎0 ⋅ (α𝑐𝑐 ⋅ 𝑒𝑒𝑥𝑥 + β𝑐𝑐)

where 𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎0 is the default capacity; 𝛼𝛼𝑐𝑐 = 1.5 and 𝛽𝛽𝑐𝑐 = 1.4. The dataset contains 258

training, 64 validation, and 64 testing samples. We assume the cost function is known

and focus on learning the inverse demand function and link performance function.

Mirror descent with a forward step of 𝑁𝑁 = 10 and ITD are used in training.

The end-to-end framework is set to learn the inverse demand function, the link

performance function, or both, using either a model-based or a model-free approach. In

the model-free setting, the inverse demand function is approximated using the residual

neural networks specified in the Sioux Falls example. We employ a physics-informed

neural network to learn the link-performance function. We retain the functional form

of the BPR function and approximate the context-dependent capacities using neural

networks with three layers and eight neurons each. Additionally, both link time and

flows are assumed observable, enabling modelers to include either or both of these

observations in the loss function We consider two benchmarks with fixed capacities in

the standard BPR function. Benchmark-1 scales the default demand with a factor of

3.56 and achieves the best match to observed flows (29.5%) with a high time error of

160.5%. Benchmark-2 scales the default demand with a factor of 1.4 and achieves the

best match to observed time (5.1%) with a high flow error of 68.9%.

Table 5 shows the performance of the end-to-end framework with different learnable

components and loss functions. Scenarios yielding the lowest errors are marked: a

single star denotes the best model-free scenario, while double stars indicate the best

model-based one. The joint calibration of supply and demand-side components proves

important. Both Functional and Residual scenarios, when adjusting both sides, yield

the lowest time and demand errors. The Functional scenario has the lowest flow error

of 18.1% and time error of 2.6%, while the Residual scenario generates comparable

results of 23.3% and 8.2%. Incorporating flow observations into the loss function in

general outperforms the use of link time. Nevertheless, using link time observations

can help avoid overfitting when the link performance function can be adjusted. Overall,

the complexity of training escalates with the size of the road network. The Chicago

sketch example has higher errors than Sioux Falls and Braess, regardless of the

approach used.

Component Approach Loss function Link flow Link time Demand

Benchmark-1 / / 29.5 160.5 21.5

Benchmark-2 / / 68.9 5.1 68.3

 Flow 22.1 27.1 14.2

 Functional Time 28.3 9.2 21.9

𝜆𝜆𝜃𝜃
 Flow + time 22.1 27.1 14.1

 Flow 23.5 64.8 15.3

 Residual Time 23.5 54.2 16.2

 Flow + time 23.3 * 65.8 15.1

 Flow 32.9 1751.8 19.6

 Functional Time 39.3 8.6 19.6

𝜏𝜏𝜃𝜃
 Flow + time 32.8 1734.3 19.6

 Flow 34.1 15.8 19.6

 Residual Time 36.5 16.0 19.6

 Flow+ time 32.8 15.9 19.6

 Flow 18.1 ** 2.6 ** 7.7 **

 Functional Time 22.3 5.1 9.5

𝜆𝜆𝜃𝜃 and

𝜏𝜏𝜃𝜃

 Flow + time 18.3 2.6 7.9

 Flow 26.9 8.2 * 13.6 *

 Residual Time 37.6 10.4 19.0

 Flow + time 25.0 193.9 13.9

Table 5 WMAPE under different training settings.

7 Findings and Conclusions

This study aims to transform the modeling paradigm via an end-to-end framework that

directly learns model components and the equilibrium state from data. This report

outlines our solutions to the modeling and algorithmic challenges for implementing

such an end-to-end learning. The unified end-to-end framework encodes the unknown

supply- and demand-side model components with parameterized computational graphs

and then embeds them in a VI that enforces user equilibrium conditions. In forward

propagation, the framework iteratively updates the traffic state via closed-form rules

until reaches user equilibrium. In backpropagation, the loss function compares the

estimated and observed traffic states and then simultaneously estimate parameters for

all components via auto-differentiation.

One major advantage of the proposed end-to-end framework is that it integrates model-

based and model-free modeling approaches within a single pipeline, leveraging both

domain knowledge and the representational power of neural networks the proposed

framework leverages. The proposed framework automatically discovers a good

functional specification from empirical data during training and aligns the selection of

behavior models with the ultimate goal of replicating flow distributions.

More importantly, the end-to-end framework learns the equilibrium state of the network.

Because real systems never settle into equilibrium, observed flows are indeed not

equilibrium flows. The training process essentially yields an equilibrium state that

matches all the observations as closely as possible. The learned equilibrium state will

then serve as a consistent benchmark or reference point against which improvement

plans can be designed and compared. The resulting equilibria are ”perturbed” from the

learned equilibrium state and will help decision-makers differentiate various plans. In

this sense, the proposed framework melds the data-decision pipeline by integrating

learning and decision/optimization into a single end-to-end system. Additionally, the

end-to-end framework integrates multi-source data into a single stream and addresses

the inconsistencies among different data sources.

Our study solves the key challenges in modeling and calibrating the unified ”end-to-

end” framework. To facilitate model-free approach, we design a novel neural network

architecture that can adjust to the changes in the road network topology for

future ”what-if” planning analysis. We also regularized the neural network to

guarantees the existence of equilibrium traffic states. To efficiently train the proposed

framework, we introduced an auto-differentiation-based gradient descent algorithm and

leverage the computational power of computational graphs. In forward propagation, we

adopt recent developments in operator-splitting methods and differential optimization

to solve a batch of VI problems. We employ first-order methods like decoupled gradient

projection and mirror descent, specifically tailored for link- and path-based equilibrium

constraints, as well as second-order root-finding methods. In backpropagation, iterated

differentiation and inexact implicit differentiation are used to efficiently differentiate

through the equilibrium states.

To validate the robustness and efficacy of the proposed framework, we conduct a series

of numerical experiments on synthesized data from various networks, including Braess,

Sioux Falls, and Chicago Sketch. Our framework achieves a satisfactory accuracy rate

in predicting link flows when subjected to changes in road network topology.

Additionally, the model demonstrated robust performance in the face of incomplete

data and various input noises.

The outputs, outcomes, and impacts of this study are summarized as follows:

Research Outputs

• Publication: "End-to-end learning of user equilibrium with implicit neural

networks." Transportation Research Part C: Emerging Technologies 150 (2023):

104085.

• Poster: End-to-end learning of user equilibrium with neural networks.

Transportation Research Board 102ed Annual Meeting. Washington, D.C. 2023.

• Presentation: End-to-end Learning of Transportation Network Equilibrium.

INFORMS Annual Meeting, Indianapolis, IN. 2022.

• Presentation: A Unified Framework for End-to-End Transportation Network

Equilibrium Modeling. International Symposium on Transportation Data &

Modelling. Ispra, Italy. 2023

Research Outcomes

• Policy Planning Support: The framework serves as a decision support tool for

policymakers exploring various improvement schemes like capacity expansion

and congestion pricing.

• Network Modeling as a Service: The framework can be deployed as a cloud-

based service, allowing cities and municipalities to access advanced modeling

capabilities without the need for specialized hardware or expertise.

Research Impacts

• Traffic Congestion: The framework can help reduce traffic congestion by

optimizing transportation network planning for future scenarios.

• Resource Allocation: Policymakers can make more informed decisions about

where to allocate resources, potentially saving public money by avoiding

unnecessary infrastructure development.

• Operational Efficiency: Automated tools that implement the framework could

lead to more efficient operations within transportation departments, reducing

both capital and operational costs.

8 Recommendations

This study can be extended in multiple directions. We plan to leverage the established

end-to-end learning framework to prescribe improvement schemes, such as capacity

expansion and congestion pricing. We consider that policymakers attempt to perturb

the equilibrium flow distribution by changing certain continuous decision variables that

would affect travelers’ route choices. These decision variables can be encoded as

additional learnable parameters in Attribute Net. By maximizing the expected social

welfare, the proposed end-to-end framework can be trained to update the decision

variables and output optimal decisions. The optimization problem becomes more

challenging when dealing with discrete decision variables, such as the incorporation of

new roads or lanes. This will be a focus of our future studies.

Additionally, the proposed framework has been tested on a synthesized dataset. We

plan to validate the proposed framework with real-world datasets in the next step.

Vehicle connectivity and automation will make trajectory data more readily available.

Leveraging this dataset, the proposed modeling paradigm, if successful, can potentially

help metropolitan planning organizations and traffic authorities in the US better plan

and manage their traffic networks to reduce traffic congestion and vehicle emissions,

without requiring new investment in expanding the existing infrastructure. With more

and more connected vehicles, we believe that the solution would transform the existing

paradigm of transportation systems planning and management and has a great potential

for widespread market adoption. The proposed work will use real-world datasets to

validate the proposed framework. If successful, further development beyond this

project will be needed to develop a deployable platform or system that can automate

the proposed processes to provide diagnosis and treatments for various urban traffic

networks.

9 References

Bai, S., Kolter, J.Z., Koltun, V., 2019. Deep equilibrium models. Advances in Neural

Information Processing Systems 32.

Beckmann, M., McGuire, C.B., Winsten, C.B., 1956. Studies in the Economics of

Transportation. Technical Report.

Bibi, A., Ghanem, B., Koltun, V., Ranftl, R., 2019. Deep layers as stochastic solvers.

Chen, C., Ma, J., Susilo, Y., Liu, Y., Wang, M., 2016. The promises of big data and

small data for travel behavior (aka human mobility) analysis. Transportation research

part C: emerging technologies 68, 285–299.

Cheng, Q., Liu, Z., Guo, J., Wu, X., Pendyala, R., Belezamo, B., Zhou, X.S., 2022.

Estimating key traffic state parameters through parsimonious spatial queue models.

Transportation Research Part C: Emerging Technologies 137, 103596.

Dafermos, S., 1988. Sensitivity analysis in variational inequalities. Mathematics of

Operations Research 13, 421–434.

Davis, D., Yin, W., 2017. A three-operator splitting scheme and its optimization

applications. Set-valued and variational analysis 25, 829–858.

Emberton, J., 2008. An elucidation of vector calculus through differential forms.

Feng, Z., Narasimhan, H., Parkes, D.C., 2018. Deep learning for revenue-optimal

auctions with budgets, in: Proceedings of the 17th International Conference on

Autonomous Agents and Multiagent Systems, pp. 354–362.

Fioretto, F., Mak, T.W., Van Hentenryck, P., 2020. Predicting ac optimal power flows:

Combining deep learning and lagrangian dual methods, in: Proceedings of the AAAI

Conference on Artificial Intelligence, pp. 630–637.

Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M., 2018. Bilevel

programming for hyperparameter optimization and meta-learning, in: International

conference on machine learning, PMLR. pp. 1568–1577.

Frejinger, E., Bierlaire, M., Ben-Akiva, M., 2009. Sampling of alternatives for route

choice modeling. Transportation Research Part B: Methodological 43, 984–994.

Fung, S.W., Heaton, H., Li, Q., McKenzie, D., Osher, S.J., Yin, W., 2021. Fixed point

networks: Implicit depth models with jacobian-free backprop.

Ghadimi, S., Wang, M., 2018. Approximation methods for bilevel programming. arXiv

preprint arXiv:1802.02246.

Gouk, H., Frank, E., Pfahringer, B., Cree, M.J., 2021. Regularisation of neural networks

by enforcing lipschitz continuity. Machine Learning 110, 393–416.

Guarda, P., Battifarano, M., Qian, S., 2023. Estimating network flow and travel

behavior using day-to-day system-level data: A computational graph approach.

Available at SSRN 4490930.

Guarda, P., Qian, S., 2022. Statistical inference of travelers’ route choice preferences

with system-level data. arXiv preprint arXiv:2204.10964.

Hawas, Y.E., 2004. Development and calibration of route choice utility models:

factorial experimental design approach. Journal of transportation engineering 130,

159–170.

Heaton, H., McKenzie, D., Li, Q., Fung, S.W., Osher, S., Yin, W., 2021. Learn to

predict equilibria via fixed point networks. arXiv preprint arXiv:2106.00906.

Huang, Z., Bai, S., Kolter, J.Z., 2021. Implicit layers for implicit representations.

Advances in Neural Information Processing Systems 34, 9639–9650.

Jeihani, M., Lawe, S., Connolly, J., 2006. Improving traffic assignment model using

intersection delay function. Technical Report.

Ji, K., Yang, J., Liang, Y., 2021. Bilevel optimization: Convergence analysis and

enhanced design, in: International conference on machine learning, PMLR. pp. 4882–

4892.

Kitthamkesorn, S., Chen, A., 2013. A path-size weibit stochastic user equilibrium

model.

Procedia-Social and Behavioral Sciences 80, 608–632.

Li, J., Yu, J., Liu, B., Nie, Y., Wang, Z., 2023. Achieving hierarchy-free approximation

for bilevel programs with equilibrium constraints, in: International Conference on

Machine Learning, PMLR. pp. 20312–20335.

Li, J., Yu, J., Nie, Y., Wang, Z., 2020. End-to-end learning and intervention in games.

Advances in Neural Information Processing Systems 33, 16653–16665.

Li, J., Yu, J., Wang, Q., Liu, B., Wang, Z., Nie, Y.M., 2022. Differentiable bilevel

programming for stackelberg congestion games. arXiv preprint arXiv:2209.07618.

Liu, Z., Yin, Y., Bai, F., Grimm, D.K., 2023. End-to-end learning of user equilibrium

with implicit neural networks. Transportation Research Part C: Emerging Technologies

150, 104085.

Lu, J., Li, C., Wu, X.B., Zhou, X.S., 2023. Physics-informed neural networks for

integrated traffic state and queue profile estimation: A differentiable programming

approach on layered computational graphs. Transportation Research Part C: Emerging

Technologies 153, 104224.

Ma, W., Pi, X., Qian, S., 2020. Estimating multi-class dynamic origin-destination

demand through a forward-backward algorithm on computational graphs.

Transportation Research Part C: Emerging Technologies 119, 102747.

Maclaurin, D., Duvenaud, D., Adams, R., 2015. Gradient-based hyperparameter

optimization through reversible learning, in: International conference on machine

learning, PMLR. pp. 2113–2122.

Miyato, T., Kataoka, T., Koyama, M., Yoshida, Y., 2018. Spectral normalization for

generative adversarial networks. arXiv preprint arXiv:1802.05957.

Patriksson, M., 2004. Sensitivity analysis of traffic equilibria. Transportation Science

38, 258–281.

Rahman, R., Hasan, S., 2022. Data-driven traffic assignment: A novel approach for

learning traffic flow patterns using a graph convolutional neural network. arXiv

preprint arXiv:2202.10508.

Ryu, E., Yin, W., 2021. Large-scale convex optimization via monotone operators

(2020). URL https://large-scale-book. mathopt. com/LSCOMO. pdf.(visited on

03/2021) .

Sifringer, B., Lurkin, V., Alahi, A., 2020. Enhancing discrete choice models with

representation learning. Transportation Research Part B: Methodological 140, 236–261.

Small, K.A., Chu, X., 2003. Hypercongestion. Journal of Transport Economics and

Policy (JTEP) 37, 319–352.

Spana, S., Du, L., 2022. Optimal information perturbation for traffic congestion

mitigation: Gaussian process regression and optimization. Transportation Research

Part C: Emerging Technologies 138, 103647.

Stabler, B., 2023. Transportationnetworks. https://github.com/bstabler/

TransportationNetworks. Tobin, R.L., Friesz, T.L., 1988. Sensitivity analysis for

equilibrium network flow. Transportation Science 22, 242–250.

Torres, C., Hanley, N., Riera, A., 2011. How wrong can you be? implications of

incorrect utility function specification for welfare measurement in choice experiments.

Journal of Environmental Economics and Management 62, 111–121.

Travacca, B., El Ghaoui, L., Moura, S., 2020. Implicit optimization: Models and

methods, in: 2020 59th IEEE Conference on Decision and Control (CDC), IEEE. pp.

408–415.

Van Der Pol, M., Currie, G., Kromm, S., Ryan, M., 2014. Specification of the utility

function in discrete choice experiments. Value in Health 17, 297–301.

Virmaux, A., Scaman, K., 2018. Lipschitz regularity of deep neural networks: analysis

and efficient estimation. Advances in Neural Information Processing Systems 31.

Walker, H.F., Ni, P., 2011. Anderson acceleration for fixed-point iterations. SIAM

Journal on Numerical Analysis 49, 1715–1735.

Wang, S., Mo, B., Zhao, J., 2020. Deep neural networks for choice analysis:

Architecture design with alternative-specific utility functions. Transportation Research

Part C: Emerging Technologies 112, 234–251.

Wang, Y., Ma, X., Liu, Y., Gong, K., Henricakson, K.C., Xu, M., Wang, Y., 2016. A

two-stage algorithm for origin-destination matrices estimation considering dynamic

dispersion parameter for route choice. PloS one 11, e0146850.

Wardrop, J.G., 1952. Road paper. some theoretical aspects of road traffic research.

Proceedings of the institution of civil engineers 1, 325–362.

Wehenkel, A., Louppe, G., 2019. Unconstrained monotonic neural networks. Advances

in neural information processing systems 32.

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks

Wong, M., Farooq, B., 2021. Reslogit: A residual neural network logit model for data-

driven choice modelling. Transportation Research Part C: Emerging Technologies 126,

103050.

Wu, X., Guo, J., Xian, K., Zhou, X., 2018. Hierarchical travel demand estimation using

multiple data sources: A forward and backward propagation algorithmic framework on

a layered computational graph. Transportation Research Part C: Emerging

Technologies 96, 321–346.

Xu, H., Lou, Y., Yin, Y., Zhou, J., 2011. A prospect-based user equilibrium model with

endogenous reference points and its application in congestion pricing. Transportation

Research Part B: Methodological 45, 311–328.

Yang, H., Meng, Q., Bell, M.G., 2001. Simultaneous estimation of the origin-

destination matrices and travel-cost coefficient for congested networks in a stochastic

user equilibrium. Transportation science 35, 107–123.

Yao, H., Tang, X., Wei, H., Zheng, G., Li, Z., 2019. Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction, in: Proceedings of the

AAAI conference on artificial intelligence, pp. 5668–5675.

Yin, Y., Lawphongpanich, S., Lou, Y., 2008. Estimating investment requirement for

maintaining and improving highway systems. Transportation Research Part C:

Emerging Technologies 16, 199–211.

Zhang, C., Osorio, C., Flo¨ ttero¨ d, G., 2017. Efficient calibration techniques for large-

scale traffic simulators. Transportation Research Part B: Methodological 97, 214–239.

→

10 Appendix: Proof of Theorem 2

To facilitate understanding, this section omits the superscript for a sample 𝑚𝑚 and the

dependence upon both context features 𝑥𝑥 and neural network parameters 𝜃𝜃 . The

Jacobian matrix of a vector-to-vector function 𝐹𝐹(𝑥𝑥) :  𝑅𝑅𝑛𝑛  →  𝑅𝑅𝑚𝑚  is denoted as 𝐽𝐽𝐹𝐹(𝑥𝑥) ∈

𝑅𝑅𝑚𝑚×𝑛𝑛.

We first give the formal definition of monotonicity and Lipschitz continuity of a vector-

to-vector function 𝐹𝐹(𝑥𝑥) and equivalent conditions when the function is a self-mapping

and differentiable everywhere on its domain. The equivalent conditions are more

tractable and used in proving the monotonicity and Lipschitz continuity of the cost

function.

Definition 7 (Monotonicity) A function 𝐹𝐹(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑚𝑚 is monotone if ⟨F(x) − F(y), x

− y⟩ ≥ 0, ∀𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛. A differentiable function 𝐹𝐹(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛is monotone if and only

if its Jacobian matrix 𝐽𝐽𝐹𝐹(𝑥𝑥) ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 is positive-semidefinite.

Definition 8 (Lipschitz Continuity) A function is L-Lipschitz continuous if there exists,

such that ∥F(x) − F(y)∥ ≤ L ∥x − y∥ , ∀𝑥𝑥,𝑦𝑦 ∈ 𝑅𝑅𝑛𝑛 . A differentiable function

𝐹𝐹(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛 is L-Lipschitz continuous if and only if its Jacobian matrix 𝐽𝐽𝐹𝐹(𝑥𝑥) ∈

𝑅𝑅𝑛𝑛×𝑛𝑛 has finite spectral norms.

To begin with, consider a special one-column scenario where Attribute Net has only

one link block and the output of the link block has one column, i.e., 𝑔𝑔𝒜𝒜(𝑣𝑣𝑎𝑎):𝑅𝑅+ → 𝑅𝑅.

By assumption, is monotone and Lipschitz continuous with respect to 𝑣𝑣𝑎𝑎 , i.e., 0 ≤
𝑑𝑑𝑔𝑔𝒜𝒜

𝑑𝑑𝑣𝑣𝑎𝑎
≤ 𝐿𝐿.

Let 𝐺𝐺𝒜𝒜(𝑣𝑣):𝑅𝑅|𝔸𝔸| → 𝑅𝑅|𝔸𝔸| denote the mapping from link flows to link attributes, defined

as 𝐺𝐺𝒜𝒜(𝑣𝑣) = {𝑔𝑔𝒜𝒜(𝑣𝑣𝑎𝑎)}𝑎𝑎∈𝒜𝒜. Its Jacobian matrix,

⊙

is a diagonal matrix with nonnegative and finite elements. It is straightforward to show

that 𝐽𝐽𝐺𝐺𝒜𝒜(𝑣𝑣) is positive-semidefinite with finite spectral norm

 Recall that the attributes are the product of path-link incidence matrix Λ and link

attributes. The Attribute Net is now defined as a self-mapping with respect to path flows,

i.e.,𝐺𝐺(ℎ):𝑅𝑅|ℙ| → 𝑅𝑅|ℙ| . It follows that the Jacobian matrix of 𝐺𝐺(ℎ) = Λ 𝐺𝐺𝒜𝒜(Λ⊤ℎ) is

symmetric and positive-semidefinite. Path-link incidence matrix Λ is a 0-1 matrix with

a bounded spectral norm. As per Cauchy–Schwarz inequality, the spectral norm

|𝐽𝐽𝐺𝐺(ℎ)| ≤ 𝐿𝐿|Λ|2.

The cost function 𝜋𝜋(ℎ):𝑅𝑅|ℙ| → 𝑅𝑅|ℙ| is formulated as 𝜋𝜋(ℎ) = Σ 𝑤𝑤⊙𝐺𝐺(ℎ). Suppose

the weights are positive the Jacobian matrix of the cost function, 𝐽𝐽𝜋𝜋(ℎ) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(Σ 𝑤𝑤) 𝐽𝐽𝐺𝐺(ℎ), is the product of two symmetric positive-semidefinite matrices and

thus symmetric positive-semidefinite with spectral norm bounded by |(Σ 𝑤𝑤)| |𝐽𝐽𝐺𝐺(ℎ)|.

It is equivalent to saying the cost function is monotone and Lipschitz continuous with

respect to the path flows. This proof can be adapted to node block and path block by

replacing the path-link incidence matrix Λ with the path-node incidence matrix Γ or an

identity matrix.

Now we consider a general case. Let 𝑤𝑤𝑖𝑖 denote the i-th column of weights and

𝐺𝐺𝑖𝑖 denote the i-th column of attributes. The cost function is:

.

Suppose each block is column-wise monotone and Lipschitz continuity, is monotone

and Lipschitz continuous following previous proof for one-column scenarios.

Monotonicity and Lipschitz continuity are preserved under summation, it follows that

the cost function is monotone and Lipschitz continuous concerning the path flows.

Additionally, it is straightforward to show that the Jacobian matrix of the cost function

is the sum of symmetric matrix and thus is symmetric. Suppose 𝐽𝐽𝜋𝜋(ℎ) is real

everywhere, there exists a scalar function such that 𝜋𝜋(ℎ) is the gradient of a continuous

function (Emberton, 2008). Under mild assumptions that the function is closed and

proper, the monotonicity of 𝜋𝜋(ℎ) is equivalent to maximal monotonicity (Ryu and Yin,

2021). This completes the proof.

	1 Introduction
	2 Background
	2.1 Traffic flow prediction from observations
	2.2 Computational-graph-based transportation network modeling
	2.3 Employing auto-differentiation for bi-level optimization and MPEC

	3 Computational-graph-based VI Formulation of UE
	3.1 Path-based formulation
	3.2 Link-based formulation

	4 Framework Formulation
	4.1 Neural network architecture
	4.1.1 Attribute net
	4.1.2 Weight net
	4.1.3 Cost Function and Regularization

	5 Framework Training
	5.1 Forward: N-step closed-form updates
	5.1.1 Decoupled gradient-projection
	5.1.2 Mirror descent
	5.1.3 Root-finding

	5.2 Backward: approximate hypergradient
	5.2.1 Iterated Differentiation (ITD)
	5.2.2 Inexact Implicit Differentiation (IMD)

	6 Numerical Examples
	6.1 Example 1: learn demand component on Braess
	6.2 Example 2: learn demand component on Sioux Falls
	6.3 Example 3: learn behavior component on Sioux Falls
	6.3.1 Performance comparisons
	6.3.2 Robustness analysis

	6.4 Example 4: learn demand and supply component on Chicago Sketch

	7 Findings and Conclusions
	8 Recommendations
	9 References
	10 Appendix: Proof of Theorem 2
	AI-enabled Transportation Network Analysis, Planning and Operation Final Report Cover.pdf
	Report No. XXXX August 2023
	Project Start Date: 1/1/2022
	Project End Date: 8/31/2023
	Contacts

