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Abstract 

This study presents a unified end-to-end framework for network equilibrium analysis framework. 

The end-to-end framework directly learns model supply- and demand-side components and 

equilibrium states from multi-day traffic state observations. It parametrizes unknown model 

components with computational graphs and embeds them in a variational inequality to enforce 

user equilibrium conditions. Each component can be model-based, model-free (i.e., neural 

network), or hybrid. By minimizing the differences between the estimated and observed traffic 

states, the framework simultaneously estimates the unknown parameters for supply- and 

demand-sides. 

Our study addresses key challenges in modeling and calibrating the unified end-to-end 

framework. We identify a novel neural network architecture that guarantees the existence of 

equilibrium traffic states and accommodates the potential changes in the road network topology 

for future what-if planning analysis. To train the model effectively, we leverage the 

computational power of computational graphs and design auto-differentiation-based gradient 

descent algorithms to handle both link- or path-based user equilibrium constraints. In forward 

propagation, we adopt recent developments in operator-splitting methods and differential 

optimization to solve a batch of VI problems. In backpropagation, iterated differentiation and 

implicit differentiation techniques are used to efficiently differentiate through the equilibrium 

states. The proposed framework and findings are validated using three synthesized datasets. 
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1 Introduction 

Transportation network equilibrium modeling paradigm plays an important role in the 

planning and operations of transportation networks. It has been widely used to compare 

different improvement designs or operation plans and aid the decision-making in selecting 

a better one for implementation. The paradigm was initiated by Beckmann et al. (1956) 

for modeling route choices in a static and deterministic network. Over the past 66 years, 

it has been extended to model other travel choices (e.g., destination and mode), better 

represent travel behaviors (e.g., bounded rationality) and capture traffic dynamics 

(within-day or day-to-day). Static network equilibrium models consist of two key 

elements: supply-side link performance functions, which determine the travel time based 

on link flow, and demand-side travel choice models, which describe the relationship 

between travelers’ choices and travel costs. The latter typically include demand functions, 

which determine the travel demand between origin-destination (OD) pairs, and cost 

functions, which encapsulate travelers’ choice preferences. The cost function can be 

determined once a behavior model is selected, while the link performance functions, and 

demand functions are usually calibrated separately using empirical data. 

To improve the generalizability and accuracy of the equilibrium modeling framework, 

continued efforts have been devoted for over half a century to enhancing the 

representation of the supply- and demand-side components. For recent reviews of 

attempts at improving the behavioral realism of equilibrium models, refer to Xu et al. 

(2011) and Kitthamkesorn and Chen (2013), as an example. Despite the considerable 

progress in model refinement, previous frameworks have been constructed using 

a ”bottom-up” assembly approach. Specifically, the process starts with adopting a 

particular assumption on how travelers make their travel choices (trip generation, 

destination, mode, route, and/or departure time) over a congestible network. By viewing 

the interactions among travelers as a non-cooperative non-atomic game, modelers 

describe the outcome of these interactions, i.e., the traffic flow distribution, as Wardrop 

user equilibrium (Nash equilibrium with infinitely many players) where no traveler would 

be better off by unilaterally changing their travel choice (Wardrop, 1952). This 



  

equilibrium condition is then mathematically defined and subsequently formulated as an 

equivalent mathematical program or variational inequality (alternatively fixed point or 

nonlinear complementarity problem). Lastly, the formulation is solved to obtain the 

equilibrium flow distribution, from which various performance measures can be 

quantified. 

The bottom-up assembly approach is justified when each model component can be 

properly determined and calibrated individually, which, unfortunately, is not the case. For 

one thing, it is difficult to obtain empirical OD demand data and even more so to properly 

calibrate a demand function due to the endogeneity problem (Zhang et al., 2017). It is 

also very challenging to properly specify and calibrate a link performance function 

because congestion does not persist as a steady state in practice. The appropriate 

specification of a link performance function depends on the underlying dynamics, which 

is often unobservable to modelers (Small and Chu, 2003; Cheng et al., 2022). Lastly, 

the travelers’ utility functions are also unobservable and behavior models are selected 

based on modelers’ beliefs or judgments. And the selected models are usually far from 

perfect for representing travel choice preferences (Chen et al., 2016). Recall that different 

supply- and demand-side components will lead to different equilibrium conditions and, 

consequently, different traffic flow distributions. Therefore, observed flows should 

inform the selection of model components in constructing the equilibrium analysis 

framework. However, we have never done so due to the absence of selection 

methodologies and the lack of empirical data. 

Overall, the main limitation of the bottom-up assembly approach is that the selection of 

individual components is separated from the ultimate goal of a network equilibrium 

model: prescribing a equilibrium flow distribution that matches empirical observations as 

closely as possible. To overcome these limitations of the traditional ”bottom-up” 

approach, this study aims to transform the modeling paradigm via an end-to-end 

framework that directly learns model components and the equilibrium state from data. As 

illustrated in Figure 1, the unified end-to-end framework encodes the unknown supply- 

and demand-side model components with parameterized computational graphs and then 



  

embeds them in a VI that enforces user equilibrium conditions. In forward propagation 

(indicated by green arrows), the framework iteratively updates the traffic state via closed-

form rules until reaches user equilibrium. In backpropagation (indicated by blue arrows), 

the loss function compares the estimated and observed traffic states and parameters θ for 

all components are simultaneously estimated via auto-differentiation. 

The unified framework simultaneously integrates model-based and model-free modeling 

approaches within a single pipeline, leveraging both domain knowledge and the 

representational power of neural networks. In a model-free approach, we approximate the 

unknown component functions with neural networks and let the learning process 

automatically discover a good functional specification from empirical data. This end-to-

end framework aligns the selection of behavior models with the ultimate goal of 

replicating flow distributions. Moreover, the end-to-end framework learns an equilibrium 

state of the network, even when real systems never truly reach equilibria and observed 

flows are not in equilibrium states. The learned equilibrium states then served as the 

benchmark to prescribe and compare different design plans. Additionally, the end-to-end 

framework integrates multi-source data into a single stream and addresses the 

inconsistencies among different data sources. 

 



  

Figure 1 Illustration of the unified end-to-end framework. 

To the best of our knowledge, our work is the first to integrate the learning of supply- and 

demand-side models in network equilibrium models into an end-to-end learning 

framework, with neural networks automatically discovering a good specification of route 

choice preferences from empirical data. This report presents our attempt to overcome the 

modeling and algorithmic challenges for enabling such an end-to-end learning. In a 

model-free approach, we identify a novel neural network architecture that guarantees the 

existence of an equilibrium solution and accommodates the changes in the road network 

topology that may arise in subsequent ”what-if” planning analysis. For training, we adopt 

recent developments in operator-splitting methods and differential programming to 

enable scalable solution algorithms for a batch of VI problems in forward propagation. In 

backpropagation, iterated differentiation and inexact implicit differentiation are used to 

the proposed framework to efficiently differentiate through the equilibrium states. 

The rest of this report is organized as follows. Section 2 provides a literature review to 

better position this study. Section 3 formulates the elastic user equilibrium model as a VI 

parameterized by computational graphs. Section 4 presents the unified end-to-end 

framework, along with how to design neural network architecture design in a model-free 

approach. Section 5 details the auto-differentiation-based gradient descent method for 

training. Numerical experiments conducted on three synthesized datasets are reported in 

Section 6 to validate the proposed framework. This is a collaborative work with Fan Bai, 

General Motors Research and Development, and Donald K Grimm, General Motors 

Research and Development. 

2 Background 

2.1  Traffic flow prediction from observations 

In the traditional ”bottom-up” network modeling paradigm, one can calibrate behavioral 

parameters in an equilibrium model from flow observations and then predict traffic flows 



  

at Wardrop equilibrium. The calibration process is usually formulated as a bi-level 

program or a mathematical program with equilibrium constraints. For example, Yang et 

al. (2001) considered a logit-based stochastic user equilibrium and formulated a bi-level 

program to calibrate the dispersion parameter in the logit model and OD demands from 

link flow observations. Later studies extend such a calibration framework to 

accommodate more complex model structures. Wang et al. (2016) considered a dynamic 

dispersion parameter and performed experiments using real-world data gathered from a 

small network in Seattle, WA. Guarda and Qian (2022) considered a multi-criteria linear 

cost function. They analyzed the pseudo-convexity property of the bi-level program and 

developed a hypothesis test framework to examine the statistical properties of calibrated 

parameters. The proposed framework in this report differs from these previous studies in 

that it does not pre-select a behavioral model to represent the route choice preferences.  

Another stream of studies uses deep neural networks, ranging from Long Short-Term 

Memory to Spatial-Temporal Graph Convolution Neural Network (see, e.g., Yao et al., 

2019), to predict short-term traffic flows. These models can capture complex 

spatiotemporal correlations of traffic flows from multi-source data and show satisfactory 

accuracy. However, fundamentally, these models assume future flows will be generated 

by the same process that generated historical flows and then learn a direct mapping from 

input features to traffic flows. As such, the models would likely fail in an ”out-of-

distribution” test where the underlying process changes. For example, in ”what-if” 

analysis, a planning agency may update the road network topology, thereby changing the 

process of generating traffic flows. More recently, some used supervised learning to learn 

a mapping from demands to equilibrium flows (e.g., Rahman and Hasan, 2022; Spana 

and Du, 2022). Such models suffer from the same limitation in ”out-of-distribution” tests. 

Moreover, they don’t use empirical data to learn the equilibrium state or travel choice 

preferences. By contrast, the proposed framework directly learns unknown model 

components from data and captures equilibrium conditions with a parametric VI. The 

learned equilibrium state will then serve as a consistent benchmark to help decision 

makers differentiate various plans. Although the preferences may evolve over time (but 



  

can also be learned over time), it is reasonable to assume the same choice preferences 

when conducting ”what-if” planning analysis. 

2.2 Computational-graph-based transportation network modeling 

Computational graphs and automated differentiation provide powerful tools for 

numerically evaluating gradients and easily scale to very large datasets. In the field of 

transportation, computational graphs have been employed to model and calibrate 

individual components of network equilibrium models. Early explorations start with 

calibrating demand functions. For example, recent studies encoded trip generation, 

distribution, and path-based traffic loading within layered computational graphs in a static  

(Wu et al., 2018)  and dynamic setting studies (Ma et al., 2020). This approach enables 

the estimation of hierarchical travel demands from various data sources. 

Other advancements on the demand side integrate neural networks with discrete choice 

models to enhance the estimation of travel preferences. It has been demonstrated that 

carefully designed neural networks can provide interpretive, rather than ’black-box’, tools 

for choice analysis (Sifringer et al., 2020; Wang et al., 2020). One notable example is 

Sifringer et al. (2020), who decomposed the systematic part of the utility function into a 

knowledge-driven part from classical discrete choice models and a data-driven part from 

neural networks. By maintaining the independence of elasticities from two parts, their 

framework benefits from the predictive power of neural networks while keeping some 

key parameters interpretable. Other similar attempts include Wang et al. (2020), who 

encoded the irrelevant alternative constraints with alternative-specific connectivity. Their 

domain-knowledge-regularized neural network architecture better captures the 

substitution patterns of travel mode choices. Different types of neural networks, such as 

residual networks (Wong and Farooq, 2021), are synergized with discrete choice models 

to allow for similar interpretability as a Multinomial Logit model. These interpretable 

neural-network-based discrete choice models offer a good foundation for us to design the 

neural network architectures in the proposed end-to-end framework, particularly when 

behavior interpretability is desired. 



  

To refine supply-side link performance functions, researchers recently developed a 

physics-informed neural network to approximate density and speed distribution and 

learned traffic states from multi-source data (Lu et al., 2023). To leverage domain 

knowledge and enhance estimation accuracy, they incorporate the violation of flow 

conservation constraints into the loss function as a regularization term. These studies, 

however, have overlooked the interaction between supply- and demand-side components, 

and consequently, fall short of generating an equilibrium state that can serve as a 

benchmark for ”what-if” analysis. 

By contrast, the proposed framework models the interactions among travelers as a routing 

game and captures the equilibrium conditions with an implicit layer in end-to-end 

learning. The output of the implicit layer solves a fixed-point problem. It is called implicit 

because the output of the layer is defined implicitly–there is no analytical formula for it—

and cannot be obtained via explicit computation rules, as the computational graph in 

standard or explicit neural networks (Travacca et al., 2020). The implicit layer was first 

proposed by Bai et al. (2019) and has been applied to various fields such as power flow 

prediction (Fioretto et al., 2020) and auction mechanism design (Feng et al., 2018). Recent 

studies have begun to develop computational-graph-based models that capture the 

interactions among travelers as a routing game and encapsulate equilibrium conditions. 

For instance, recent studies utilized a computational-graph-based framework to 

simultaneously learn supply- and demand-side components (Guarda et al., 2023). Instead 

of directly enforcing equilibrium conditions, they penalized the violation of these 

equilibrium conditions in the loss function, thereby guiding the calibration process to 

generate an equilibrium state. 

Of the most relevant to our study are Li et al. (2020) and Heaton et al. (2021), who 

explored learning the equilibrium states of routing games with implicit layers. 

Specifically, Li et al. (2020) cast the equilibria as an implicit layer and calibrated cost 

parameters in an end-to-end fashion. Their study, however, still follows the 

traditional ”bottom-up” approach and pre-selects a behavior model before calibration. 

They only used computational graphs as a tool to enhance computational efficiency rather 



  

than exploring the representation power of neural networks. Heaton et al. (2021) 

approximated the weather-dependent link performance functions with fully connected 

layers, which take the link flows and weather as input and output link travel time. They 

reformulated the weather-dependent equilibrium conditions as the fixed point of a 

decoupled projection operator and encapsulated the fixed-point problem in the implicit 

layer. They then trained the neural network with link flow observations. However, these 

methods share a common limitation: they still follow a bottom-up assembly approach and 

pre-select the functional form of each modeling component before encoding it as 

computational graphs. 

Our work advances these previous studies by integrating the selection or learning of 

model components into an end-to-end framework, with neural networks automatically 

discovering a good specification of unknown model components from empirical data. It 

integrates model-based and model-free modeling approaches within a single pipeline. In 

addition, we propose a novel neural network architecture that ensures the existence of 

equilibria and accommodates changes in the road network topology to facilitate ”what-if” 

planning analysis. 

2.3 Employing auto-differentiation for bi-level optimization and MPEC 

Parameter calibration in network equilibrium models is typically formulated as a 

Mathematical Program with Equilibrium Constraints (MPEC). The objective function 

seeks to minimize the fitting error by adjusting parameters while adhering to Wardrop 

equilibrium constraints. Continuous model parameters often call for the use of gradient 

descent methods (Yang et al., 2001). However, these methods necessitate implicit 

differentiation, a typically challenging task that involves differentiating the equilibrium 

solution with respect to the parameters. The implicit differentiation usually requires 

equilibrium network sensitivity analysis, which either involves inverting a matrix, an 

operation that scales quadratically with the dimension of VI (Tobin and Friesz, 1988), or 

solving an additional linear VI (Patriksson, 2004). The former struggles with scalability 

issues on large road networks due to the difficulty of storing, not to mention inverting, 



  

such a large matrix. Moreover, repeatedly solving the linear VI is also computationally 

expensive. 

When the equilibrium constraint is equivalent to an optimization problem, the MPEC can 

be structured as a bi-level optimization problem. Recent advancements in computational 

graphs and auto-differentiation have facilitated the development of new bi-level 

optimization algorithms, which broadly fall into two categories. The first, known as 

Iterated Differentiation (ITD), approximates the implicit gradient by backpropagating 

along the trajectory of the lower-level optimization iterations. This method requires 

storing each iteration step of lower-level problems. As the computational graph expands 

proportionally to the number of iterations required to solve the lower-level problem, 

storing or unrolling a long optimization trajectory can be inefficient. The second method, 

known as Inexact Implicit Differentiation (IMD), sidesteps the need to store the lower-

level optimization trajectory. It employs the implicit theorem to approximate the matrix 

inversion by iteratively solving an auxiliary fixed-point problem. Initially proposed for 

hyperparameter optimization and meta-learning (Maclaurin et al., 2015; Franceschi et al., 

2018), both methods have been shown to converge to local optima under appropriate 

conditions when the lower-level is an unconstrained optimization problem (Ghadimi and 

Wang, 2018; Ji et al., 2021). 

Several recent studies have employed auto-differentiation for solving MPECs. A recent 

study used mirror descent to handle path-based user equilibrium constraints (Li et al., 

2022). Despite these advancements in handling equilibrium constraints, the convergence 

of MPEC remains a largely unexplored area. One recent study by (Li et al., 2023) 

demonstrated the asymptotic convergence of two modified ITD methods to a local 

optimum for MPEC when enforcing equilibrium conditions. However, questions remain 

regarding the performance of MPEC when the equilibrium constraint is replaced with a 

single step loading process. To the best of our knowledge, this study is the first to 

investigate these issues under both ITD and IMD methods. 

3 Computational-graph-based VI Formulation of UE 



  

We consider a case where partial aggregate traffic measures, such as link flow and link 

time, at peak periods are observable for a long period. Suppose that a planning agency is 

interested in developing a static network equilibrium model to analyze the network for 

peak periods. The general learning task is to learn the OD demands, travelers’ route choice 

preferences, and link performance functions from multi-day observations. If prior 

knowledge is available, some components can be pre-calibrated, and the end-to-end 

framework only focuses on the remaining components. 

3.1 Path-based formulation 

Mathematically, consider a network 𝒢𝒢 = (𝒩𝒩,𝒜𝒜), where 𝒩𝒩 and 𝒜𝒜 are the set of nodes 

and links. Let ℛ denote the set of OD pairs. Each OD pair 𝑟𝑟 ∈ ℛ is connected by paths 

that form a finite and nonempty feasible path set 𝒫𝒫𝑟𝑟. 𝒫𝒫 represents the set of feasible paths 

for all OD pairs. Let and be the input features observed on day (sample) 𝑚𝑚. The input 

features include traveler characteristics like income, road network attributes like free-flow 

time, and contextual features like weather and gas price. Input features can vary from day 

to day (or sample to sample). Throughout the report, the norm denotes the L2 norm, unless 

otherwise indicated. Superscript 𝑚𝑚 associates sample-dependent variables with the 𝑚𝑚-th 

sample.  

We propose three continuous functions to approximate the unknown supply- or demand-

side model components. The parameter of all components will be jointly learned and thus 

we say all components are parametrized by θ ∈ Θ.  Each component can be model-based, 

model-free (e.g., neural networks), or hybrid (e.g., physics-informed neural networks). 

Therefore θ  represents neural network parameters in a model-free approach, or 

parameters of a given functional form in a model-based approach. 

We will elaborate on the construction of each component, starting from the supply side. 

The link performance function 𝜏𝜏𝜃𝜃 outputs the link travel time 𝑡𝑡[𝑚𝑚] ∈ 𝒯𝒯 as a function of 

path flow ℎ[𝑚𝑚] ∈ ℋ and input features, defined as: 



  

𝜏𝜏𝜃𝜃:ℋ ×𝒳𝒳 → 𝒯𝒯 (1) 

where the input features 𝑥𝑥[𝑚𝑚] ∈ 𝒳𝒳 include contextual features and road network attributes, 

such as link capacity and free-flow time; the feasible region ℋ ⊆ 𝑅𝑅+
|ℙ| requires path flow 

to be nonnegative and is the feasible region of link time. 

On the demand side, travelers are free to switch paths to improve their utilities. Findings 

from travel behavior research suggest that travel choice behaviors are much more 

complicated than just choosing the shortest path. We use the cost function 𝜋𝜋𝜃𝜃 to describe 

the perceived path cost given actual travel time. The cost function 𝜋𝜋𝜃𝜃  outputs the 

(perceived) path cost as a continuous function of link time and input features, defined as: 

𝜋𝜋𝜃𝜃:𝒯𝒯 ×𝒳𝒳 → 𝒞𝒞 (2) 

where input features include traveler characteristics (e.g., income and travel purpose), 

route attributes (e.g., number of left turns), and contextual features. The feasible set 𝒞𝒞 ⊆

𝑅𝑅+
|ℙ| requires path cost as nonnegative. 

In addition to route choice, travelers have the freedom to choose travel or not and switch 

origin and/or destination to improve their utility. We assume the travel demand is upper 

bounded by a maximum possible demand 𝑞𝑞 ∈ 𝑅𝑅+
|ℝ| and introduce the excess demand as 

𝑒𝑒[𝑚𝑚] = 𝑞𝑞 − Γ⊤ℎ[𝑚𝑚]. Here, Γ ∈ 𝑅𝑅|ℙ|×|ℝ| represents the path-OD incidence matrix and Γ𝑝𝑝𝑝𝑝 

equals 1 if path p connects OD pair r and equals 0 otherwise. We use an inverse demand 

function 𝜆𝜆𝜃𝜃 to depict the equilibrium path cost 𝑢𝑢[𝑚𝑚] ∈ 𝒰𝒰 as a function of excess demand 

𝑒𝑒[𝑚𝑚] ∈ ℰ and input features, namely, 

𝜆𝜆𝜃𝜃:ℰ ×𝒳𝒳 → 𝒰𝒰 (3) 

where the feasible region of excess demand is ℰ = {𝑒𝑒 ∈ 𝑅𝑅|ℝ|: 0 ≤ 𝑒𝑒 ≤ 𝑞𝑞} and 𝒰𝒰 ⊆ 𝑅𝑅+
|ℝ| is 

the feasible region of equilibrium path cost. 



  

Assuming rational travelers try to maximize their own travel utilities, the multi-class user 

equilibrium (UE) with elastic demand is formulated as the following parametric VI, the 

solution to which is the equilibrium path flow ℎ∗[𝑚𝑚] and equilibrium excess demand 𝑒𝑒∗[𝑚𝑚] 

for sample 𝑚𝑚:  

 

To simplify notation, we introduce the response variable as 𝑦𝑦 =  (ℎ, 𝑒𝑒)  and the 

generalized cost as 𝑧𝑧 =  (𝑐𝑐,𝑢𝑢). By defining the generalized cost function: 

𝐹𝐹θ:𝒴𝒴 ×𝒳𝒳 → 𝒵𝒵 (5) 

where 𝐹𝐹𝜃𝜃(𝑦𝑦,𝑥𝑥) = [πθ⊤(τθ(ℎ,𝑥𝑥),𝑥𝑥), λθ⊤(𝑒𝑒,𝑥𝑥)]⊤. 

Figure 2 illustrates the computational-graph-based generalized cost function for path-

based elastic UE. Supply- and demand-side components are shown in blue and green 

respectively. The dependence of variables on sample m is omitted to simplify the notation. 

Each parametrized component can be model-based, model-free, or hybrid. Then the 

parametric VI in Eq. (5) can be compactly reformulated as: 

 

To compactly represent the feasible region of the response variable, we introduce the 

augmented path-OD incidence matrix as  and the feasible region 

of the response variable becomes  



  

    

 

 

Figure 2 Illustration of the computational-graph-based generalized cost function for 

path-based elastic UE. 

Theorem 1 (Existence of equilibrium) There exists at least one solution to the multi-

class user equilibrium problem in Eq. (6). 

Proof 1 Response variable 𝑦𝑦[𝑚𝑚] is a solution to  if and only if it is the 

fixed point of the projection operator 𝑃𝑃𝕐𝕐(⋅) for any α > 0, defined as: 

 

 

where the projection operator is defined as 𝑃𝑃𝕐𝕐(𝑦𝑦) = 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑦𝑦′∈𝒴𝒴|𝑦𝑦′ − 𝑦𝑦| 

The generalized cost function is approximated by continuous parametric functions or 

neural networks and thus is continuous. The fixed-point operator is a projection operator 

that is continuous. Because the feasible flow set is convex and compact, as per Brouwer’s 

fixed point theorem, there exists at least one solution to the fixed-point problem in Eq. (6). 



  

If we consider a special case where the OD demands are observable for each sample, the 

proposed framework can handle an inelastic demand setting. Let be the OD demands and 

link flows observed on sample m, where q. Then the multi-class UE with inelastic demand 

for sample m is formulated as a parameterized VI in Eq. (6), the solution to which is the 

equilibrium flow: 

 

In this case, the feasible path flow set becomes sample-dependent, i.e., ℋ[𝓂𝓂] = {ℎ ∈

𝑅𝑅|ℙ|:ℎ ≥ 0,Σ⊤ℎ = 𝑞𝑞[𝑚𝑚]} requires the feasible path flows to be nonnegative and satisfy 

flow conservation. 

3.2  Link-based formulation 

The parametric VI defined in Eq. (6) requires the knowledge of feasible path set. This is 

a common assumption for path-based UE formulation and methods for generating the 

feasible path set are well-developed in the literature (Frejinger et al., 2009). If the 

modelers believe the path cost is link-additive, the link-based elastic-UE formulation can 

be used instead. 

We introduce OD-specific link flows for OD pair r as and the vectorized OD-specific link 

flows as 𝑣𝑣 = {𝑣𝑣𝑟𝑟}𝑟𝑟∈ℛ ∈ 𝒱𝒱 ⊆ 𝑅𝑅+
|𝔸𝔸|×|ℝ|. In this case, the link performance function becomes: 

τθ:𝒱𝒱 ×𝒳𝒳 → 𝒯𝒯. (9) 

We slightly abuse the notation of path cost and define the OD-specific link cost 𝑐𝑐𝑟𝑟 ⊆ 𝑅𝑅+
|𝔸𝔸| 

with its vectorized form as 𝑐𝑐 = {𝑐𝑐𝑟𝑟}𝑟𝑟∈ℛ. The link-based equilibrium condition for sample 

m is formulated as the following parametric VI: 

 



  

slightly adjust the notation for generalized cost and response variable to bring the link-

based and path-based formulations under the same umbrella. For each OD pair r, we 

define the response variable as 𝑦𝑦𝑟𝑟 = (𝑣𝑣𝑟𝑟 , 𝑒𝑒𝑟𝑟)  with its vectorized form given as 𝑦𝑦 =

{𝑦𝑦𝑟𝑟}𝑟𝑟∈ℛ ∈ 𝒴𝒴. The generalized cost for OD pair r is represented as𝑧𝑧𝑟𝑟 = (𝑐𝑐𝑟𝑟,𝑢𝑢𝑟𝑟), and its 

vectorized form is formulated as 𝑧𝑧 = {𝑧𝑧𝑟𝑟}𝑟𝑟∈ℛ ∈ 𝒵𝒵 ⊆ 𝑅𝑅+
(|𝔸𝔸|+𝟙𝟙)×|ℝ|. 

To compactly formulate the feasible region for response variable y, we introduce the 

augmented link-node incidence matrix and vectorized demand constraint as follows. For 

the former, we add a number of |ℛ| dummy links connecting the origin and destination 

of each OD pair, with a number of 𝑒𝑒𝑟𝑟 travelers on each dummy link experiencing the 

equilibrium path cost 𝑢𝑢𝑟𝑟. Then we represent the augmented link-node incidence matrix 

including dummy link as Λ ∈ 𝑅𝑅(|𝔸𝔸|+𝟙𝟙)×|ℕ| where Λ𝑎𝑎𝑎𝑎 = 1 if link a originates from a and 

Λ𝑎𝑎𝑛𝑛 = −1 if link a terminates at node n. For each OD pair, we define a vectorized demand 

constraint, where 𝑑𝑑𝑟𝑟 ∈ 𝑅𝑅+
|𝔸𝔸| ;  𝑑𝑑𝑟𝑟𝑟𝑟 = 𝑞𝑞 if OD pair r originates at node 𝑛𝑛 and 𝑑𝑑𝑟𝑟𝑟𝑟 = −𝑞𝑞 if 

OD pair r terminates at node 𝑛𝑛 and 𝑑𝑑𝑟𝑟𝑟𝑟 = 0 otherwise. Then the feasible region of the 

response variable can be compactly formulated as 𝒴𝒴 = {𝑦𝑦 ∈ 𝑅𝑅(|𝔸𝔸|+𝟙𝟙)×|ℝ|:𝑦𝑦 ≥ 0,Λ⊤𝑦𝑦𝑟𝑟 =

𝑑𝑑𝑟𝑟,∀𝑟𝑟 ∈ ℛ} . It is straightforward to validate that both the path-based equilibrium 

condition in and the link-based equilibrium condition align with the same compact 

parametric VI in Eq. (6). 

4 Framework Formulation 

We consider a smooth loss function 𝑙𝑙:𝒴𝒴 ×𝒴𝒴 → 𝑅𝑅 that measures the distance between the 

estimated equilibrium states and corresponding observations. We also consider a 

regularization function 𝑟𝑟(𝜃𝜃). The training of the end-to-end framework can be formulated 

as the following MPEC. Each training sample 𝑚𝑚  corresponds to the pair 

Consider the dataset  , where each data point is drawn i.i.d. from an 

unknown probability distribution P over 𝒳𝒳 ×𝒴𝒴. 



  

 

  

The end-to-end framework unifies the parameters of supply- and demand-side 

components, either model-based or model-free, into a generalized cost function and 

jointly learns 𝜃𝜃 during training. 

Remark 1 If the cost function is independent of input feature x and equals the sum of link 

travel times and an entropy term, the learning problem will reduce to the logit dispersion 

parameter calibration problem investigated by Yang et al. (2001). If the equilibrium 

constraints are removed, the learning problem would directly learn a mapping from the 

context features x to link flows v. In this case, the problem reduces to neural-network-

based short-term traffic flow prediction investigated in the literature (e.g., Yao et al. 

(2019)). 

The loss function is flexible to accommodate modelers’ needs and available data sources. 

It can include partial aggregate traffic state observations like link flow and travel time, 

path choice probabilities from trajectory data, and benchmark OD demands from planning 

agencies. The framework integrates multi-source data into a single loss function and 

effectively handles inconsistencies among different data sources. 

Remark 2 In network equilibrium models, ’link flow’ refers to link demand or link inflow, 

representing the number of travelers choosing to use a specific link. However, loop 

detectors record only link outflows, which can vary from link inflows when the network 

is congested. Therefore, when data from loop detectors is available, it’s often more 

appropriate to use link travel time as the empirical observation, instead of link outflows. 

4.1 Neural network architecture 

This section discusses the design of the neural network architecture in the proposed end-

to-end learning framework. The architecture needs to accommodate the changes in the 



  

road network topology to facilitate ”what-if” analysis. Moreover, it can be designed to 

ensure that the cost function possesses the desired properties to enable efficient training. 

We will illustrate it with the cost function with inelastic demand as an example. 

Hereinafter, we highlight that features/attributes are the concactation of single 

features/attributes for all elements within one set. For example, the link feature is. The 

design of the cost function requires special consideration. We distinguish ”feature” 

from ”attribute” to avoid ambiguity: features refer to the input data of neural networks 

whereas attributes refer to the learned outputs of neural networks. 

4.1.1 Attribute net 

We propose Attribute Net to learn the (path) attributes considered by travelers in their 

route choice decision process. As shown in Figure 5, attributes 𝑠𝑠[𝑚𝑚] depend on path flows 

ℎ[𝑚𝑚] and road network features 𝑥𝑥𝒢𝒢. Attribute Net 𝐺𝐺θ learns a continuous mapping from 

path flows and road network features to attributes, defined as: 

𝐺𝐺θ:ℋ[𝓂𝓂] ×𝒳𝒳𝒢𝒢 → 𝒮𝒮, 

One may construct the Attribute Net with fully connected layers and learn a global 

mapping from link flows to link costs (e.g. Heaton et al. (2021)). In this case, the input 

and output dimensions of fully connected layers depend on the number of links in the 

road network. However, in ”what-if” analysis, a planning agency may change the road 

network topology by adding or removing links. The fully connected layers — by 

definition with fixed size input and output — are incapable of accommodating the change 

in the number of links. 

Inspired by the ”kernel” concept in Convolution Neural Networks, we propose to learn 

the local attributes on the link, node, and path levels with three parallel, fully connected 

layers. As shown in Figure 3, the feature/attribute subscripts for enumerating the elements 

within a set and the superscripts for a sample m are omitted to facilitate presentation. The 

fully connected layers that learn link, node, and path attributes are called link, node, and 

path block respectively. The parameters of each block are shared among all elements of 



  

the same level to capture repeated patterns. Each block’s input and output dimensions are 

independent of road network topology, allowing for changeable input sizes. To facilitate 

the presentation, the superscripts for a sample m are omitted for the rest of this section. 

We use the superscript 𝒜𝒜,𝒩𝒩, and 𝒫𝒫 to distinguish the notations related to link, node, and 

path block. 

The detailed constructions of link, node, and path block are similar. Hence, we take the 

link block as an example. As opposed to accepting multiple links as input, the link block 

takes the single link flow and single link features of one link 𝑎𝑎 ∈  𝐴𝐴 as input and outputs 

the corresponding link attributes, defined as: 

𝑔𝑔θ𝒜𝒜:𝑅𝑅+ ×𝒳𝒳𝒶𝒶
𝒜𝒜 → 𝒮𝒮𝒶𝒶𝒜𝒜 , 

where  is the feasible set of single link features; |ℐ𝒜𝒜|is the number of features  

 



  

Figure 3 Illustration of Attribute Net. 

associated with one link;  is the feasible set of single link attributes and |𝒮𝒮𝒜𝒜| is 

the number of link attributes considered by travelers. Note the input and output 

dimensions of the link block are independent of link numbers. Example 1 further 

illustrates how the proposed neural network architecture deals with changeable size inputs. 

The link attributes  are the concatenation of single link attributes, defined as: 

 

Similarly, let node flow be the sum of link flows from all approaches at node. To capture 

the interactions among link flows, node block 𝑔𝑔θ𝒩𝒩:𝑅𝑅+ ×𝒳𝒳𝓃𝓃
𝒩𝒩 → 𝑠𝑠𝑛𝑛𝒩𝒩 maps the single node 

flow 𝑢𝑢𝑛𝑛 ∈ 𝑅𝑅+ and single node features of one node to its local node attributes. The node 

attributes are the concatenation of single node attributes, defined as: 

 

And the path block 𝑔𝑔θ𝒫𝒫:𝑅𝑅+ ×𝒳𝒳𝓅𝓅
𝒫𝒫 → 𝑠𝑠𝑝𝑝𝒫𝒫  maps the single path flows and single path 

features one path to its path attributes. The path attributes are: 

 

Finally, the attributes π are the concatenation of link attributes, node attributes and path 

attributes, defined as:  

𝑠𝑠 = {Λ𝑠𝑠𝒜𝒜 ,  Σ𝑠𝑠𝒩𝒩 ,  𝑠𝑠𝒫𝒫}, 

where is Σ the path-node incidence matrix. 

Example 1 (Accommodate changeable input sizes) Consider a road network with a 

single OD pair connected by two parallel paths or links (i.e., link 1 and link 2). Slash 



  

boxes in Figure 4 denote the change in variables when another parallel link is added to 

the road network. The link block takes the link flow, capacity, and free-flow time of link 

1 as input and outputs the link travel time on link 1 (highlighted with red boxes). The 

input dimension is 3 and the output dimension are independent of the number of links in 

the road network. When a new link is added to the original road network, one dimension 

is added to path flows h (denoted as the slash box in Figure 4) whereas the input and 

output dimensions of the link block remain the same. 

 

Figure 4 Illustration of link, node, and path blocks. 

To facilitate training and enhance model performance, we can fully or partially replace 

each block with a pre-calibrated function, if available. For instance, we can replace the 

link block with the link performance functions calibrated by a planning agency. In 

addition, our future study will explore the use of convolution layers to accommodate 

changeable input sizes. The challenge will be to ensure the desired properties of the 

learned cost function. 

4.1.2 Weight net 



  

Weight Net is proposed to capture traveler heterogeneities and learn the OD-specific 

preferences over learned attributes (see Figure 5). We treat all travelers between the same 

OD pair as a single class that shares the same preferences. It is straightforward to further 

classify travelers between one OD pair to be multiple classes to reflect the preference 

heterogeneity among them. Weight Net 𝐿𝐿𝜃𝜃 learns a mapping from traveler characteristics 

to OD-specific weights 𝑤𝑤 ∈  𝑊𝑊, defined as: 

𝐿𝐿θ:𝒳𝒳ℛ →𝒲𝒲, 

OD pairs can be added or removed in ”what-if” analysis thus Weight Net also needs to 

accommodate the change in the number of OD pairs. Weight Net learns a function that 

maps the single traveler characteristics of one OD pair 𝑥𝑥𝑟𝑟ℛ  to its OD-specific weights 

𝑤𝑤𝑟𝑟 , defined as: 

 

The parameters of neural network are shared among all OD-pairs to capture the repeated 

patterns in weights. Recent developments in interpretable neural-network-based discrete 

choice modeling, as discussed in Section 2, can be incorporated into the proposed 

framework and guide the design of neural network architectures, particularly when 

behavior interpretability is desired. 

4.1.3 Cost Function and Regularization 

Subsequently, we assume that travelers choose routes to minimize their perceived path 

costs, which are represented as a weighted sum of attributes: 

 

where ⊙ represents the Hadamard (elementwise) product and is a 𝟙𝟙 ∈ 𝑅𝑅|𝕊𝕊| column vector 

of ones to calculate the sum over the rows. Equivalently, let context features 𝟙𝟙 ∈ 𝑅𝑅|𝕊𝕊| 



  

include traveler characteristics 𝑥𝑥ℛ and road network features𝑥𝑥𝒢𝒢. The cost function maps 

path flows and context features to path costs, defined as: 

 

As shown in Theorem 1, the continuity of cost function ensures the existence of equilibria. 

However, stronger properties of the cost function may be desired to ensure the uniqueness 

of equilibrium or enable an efficient solution algorithm. In this section, we seek to entail 

the cost function with monotonicity and Lipschitz continuity via neural network 

regularization techniques. Both monotonicity, which suggests the path cost is non-

decreasing as more travelers use this path, and Lipschitz continuity, which suggests a 

finite change in path flows results in a finite change in path costs, are mild assumptions 

but will largely enhance computational traceability. 

Theorem 2 shows sufficient conditions to entail the cost function with monotonicity and 

Lipschitz continuity. The proof is shown in Appendix 10. Note that only path flows are 

treated as variables in this case. 

Theorem 2 (Monotonicity and Lipschitz continuity of cost function) The cost function 

πθ (h, x) defined in Eq.(9) is maximal monotone and Lipschitz continuous with respect to 

path flows h if weight w is positive and link block, node block and path block are column-

wise monotone. 

Recall that each block is composed of fully connected layers. Let 𝑦𝑦(𝑙𝑙−1)and σ(𝑙𝑙) represent 

the input and activation function of the l-th layer respectively. The output of the l-th layer 

is calculated as where 𝑊𝑊(𝑙𝑙) and 𝑏𝑏(𝑙𝑙) are learnable parameters of 

linear layers. We constrain the sign of weights as strict positive by using SoftPlus as the 

last layer of Weight Net. The column-wise monotonicity and Lipschitz continuity of 

attribute blocks, however, are more challenging to obtain. Most activation 



  

 

Figure 5 Illustration of the end-to-end learning framework. 

layers, such as ReLU and SoftPlus, are monotone and Lipschitz (Bibi et al., 2019) and 

both monotonicity and Lipschitz continuity are preserved via operator composition. 

Therefore, we only need to regularize the linear layer to entail the block with desired 

properties. Without loss of generality, we design a monotonic and Lipschitz continuous 

architecture that explicitly constrains the weights of the linear layers. More specifically, 

the weight of each linear layer is constrained to be positive to maintain monotonicity. The 

linear layer can be parameterized as with 𝜄𝜄 >  0 if strict monotonicity or 

strong monotonicity are desired. The spectral normalization as proposed by Miyato et al. 

(2018) is applied to constrain the spectral norm of each 𝑊𝑊(𝑙𝑙) and maintain Lipschitz 

continuity. This explicit method is reliable, easy to implement, and shows satisfactory 

performances in our numerical experiments. Other regularization methods, such as adding 



  

heuristic penalty terms to the loss function or solving integral problems in forward 

propagation (Wehenkel and Louppe, 2019; Gouk et al., 2021) are open for exploration in 

our future study. 

5 Framework Training 

We need to deal with two computational challenges to implementing implicit layers in 

the proposed framework. First, it requires efficiently solving a batch of VI problems in 

the forward propagation, as previous methods for solving VI may not necessarily be 

suitable for batch operations. Second, because solving VIs usually entails many iterations, 

explicit backpropagation through each iteration can be computationally expensive. 

Efficient differentiation through the implicit layer, i.e., the VI, is needed. 

This section presents an auto-differentiation-based gradient descent algorithm to solve 

the MPEC in Eq. (11). For simplicity, we explicitly formulate the dependence of the 

parameters while omitting input features. The optimality condition of the parametric VI 

in Eq. (6) can be recast as a fixed point problem as: 

 

where 𝑔𝑔(𝜃𝜃,𝑦𝑦) is the fixed point operator. We define the total loss function 𝑓𝑓 (𝜃𝜃,𝑦𝑦)  =

ℓ(𝑦𝑦(𝜃𝜃),𝑦𝑦)  +  𝑟𝑟(𝜃𝜃) .Using this fixed point operator, the MPEC in Eq. (11) can be 

reformulated as: 

 

 

We consider the generalized cost function is strongly monotone and Lipschitz continuous 

so that the equilibrium state is unique and is a continuous function of parameter θ 

(Dafermos, 1988). In a model-free modeling approach, neural networks can be 



  

regularized to ensure these desired properties. In this case, the proposed algorithm updates 

the parameter with its hypergradient in each training epoch, defined as: 

Definition 1 (Hypergradient) The hypergradient denotes the gradient of the loss function 

with respect to the parameter, defined as: 

 

 

The hypergradient requires differentiating through the equilibrium state y∗(θ) to calculate 

the implicit gradient. To formally define the implicit gradient, we assume the following 

assumption holds. 

Assumption 1 The fixed-point operator 𝑔𝑔(𝜃𝜃,𝑦𝑦)  is continuously differentiable with 

respect to 𝜃𝜃 and 𝑦𝑦 and matrix is invertible. 

Supposing Assumption 1 holds, one can differentiates through the optimality condition 

and calculate the implicit gradient as: 

Definition 2 (Implicit gradient) Supposing Assumption 1 hold, the implicit gradient is 

defined as: . 

Here we proceed to discuss the differentiability assumption in Assumption 1. If we 

assume the travelers follow the logit model when choosing their paths, the fixed-point 

operator is a logit loading function and is indeed differentiable. In a more general setting, 

the solution to VI can always be formulated as the fixed point of a gradient-projection 

operator, defined as: 

Definition 3 (gradient-projection operator) The gradient-projection operator is defined 

as follows for step size α > 0. 

. 

where 𝑷𝑷𝒀𝒀 is the projection operator onto the feasible region. 

 



  

The gradient-projection operator is non-differentiable at the boundary of the feasibility 

set. In this case, Assumption 1 implies that we are focusing on the differential region 

of the gradient-projection operator, thereby keeping it within the differential 

programming region for convergence analysis. This approach is also adopted by Li et 

al. (2022). How to tackle the non-differentiability at the boundary remains to be an open 

question. 

We consider training the end-to-end framework with K epochs. Each epoch handles 

two sub-problems: forward propagation, which finds an approximate optimal response 

variable via N iterations, and backpropagation, which employs auto-differentiation to 

approximate the hypergradient and update parameters. We will then elaborate on each 

subproblem. Subscript script k associates a variable with the 𝑘𝑘-th epoch and superscript 

𝑛𝑛  and 𝑞𝑞  associates a variable to the 𝑛𝑛 -th forward and 𝑞𝑞 -th backward iteration 

respectively. 

5.1  Forward: N-step closed-form updates 

Batched operation is essential for efficiently handling large empirical data sets when 

training the end-to-end framework. Specifically, forward propagation requires solving 

a batch of VIs in parallel, rather than solving a single constrained VI. Previous methods 

for solving VIs require repeatedly calling external optimization libraries to project onto 

the polyhedron constraint set of feasible path flows, and thus may not necessarily be 

suitable for batch operations (Li et al., 2020). To manage batch operations, we require 

a closed-form method for updating response variables so that we can encode this 

iterative process with computational graphs. These closed-form update rules also 

facilitate efficient auto-differentiation through equilibrium states during 

backpropagation. We will discuss two types of solution algorithms, decoupled 

gradient-projection and mirror descent method, to handle link-based and path-based 

formulation respectively. We omit the dependence on sample m in the following 

discussion. 

5.1.1 Decoupled gradient-projection 



  

We apply the decoupled gradient-projection method to deal with link-based 

equilibrium constraints. The forward propagation updates the response variable via 𝑁𝑁-

step gradient-projection operations. The 𝑛𝑛-th forward iteration follows: 

 

In a link-based formulation, the feasibility set is the Minkowski sum of the feasibility 

set for each OD pair, namely, 𝒴𝒴 = ∑ 𝒴𝒴𝓇𝓇𝑟𝑟∈ℛ  where 𝒴𝒴𝓇𝓇 = {𝑦𝑦𝑟𝑟:𝑦𝑦𝑟𝑟 ≥ 0,Λ⊤𝑦𝑦𝑟𝑟 = 𝑑𝑑𝑟𝑟} . 

This allows us to break down the constraints by OD pairs and sequentially handle every 

pair on a large road network. Projecting directly onto the polyhedron constraint set, 

which requires repeatedly solving a batch of quadratic optimization problems. To tackle 

this efficiently, we leverage recent advancements in operator-splitting methods and 

decompose the polyhedron constraint set 𝒴𝒴𝓇𝓇  into two simpler sets: (i) one only 

involves inequality constraint 𝒴𝒴𝓇𝓇1 = {𝑦𝑦𝑟𝑟:𝑦𝑦𝑟𝑟 ⪰ 0}and (ii) another only involves equality 

𝒴𝒴𝓇𝓇2 = {𝑦𝑦𝑟𝑟:Λ⊤𝑦𝑦𝑟𝑟 = 𝑑𝑑𝑟𝑟}. The projection onto two simplier set 𝒴𝒴𝓇𝓇1  and 𝒴𝒴𝓇𝓇2  have closed-

form solutions that can be encoded within computational graphs and then efficiently 

implemented in a batched manner. The convergence of this decoupled gradient-

projection method has been demonstrated by Heaton et al. (2021). 

Starting with an initial point, the decoupled gradient projection repeats 𝑦𝑦𝑛𝑛+1 =

𝑔𝑔(𝜃𝜃𝑘𝑘 ,𝑦𝑦𝑛𝑛)for each step until the iteration step 𝑛𝑛  exceeds the maximum number of 

iterations 𝑁𝑁. The initial point is not necessarily feasible and will be projected onto the 

feasible region during the iteration. The selection of step size is vital. If the step size is 

too large, the iteration may diverge; if too small, the convergence can be extremely 

slow. The optimal step size depends on an unknown Lipschitz constant, the exact 

computation of which is NP-hard (Virmaux and Scaman, 2018). We thus explore two 

variants of decoupled gradient-projection iteration to adjust the step sizes and speed up 

the convergence: Anderson mixing (Walker and Ni, 2011) and weighted ergodic 

iteration (Davis and Yin, 2017). 



  

Anderson mixing updates 𝑦𝑦𝑛𝑛+1  as an optimal linear combination of τ previous 

iterations. The optimal step size solves a quadratic program: 

 

where the objective function is to minimize the sum of optimality gap over τ iterations. 

Here 𝜙𝜙𝑛𝑛−𝑖𝑖+1 represents the optimality gap defined as follows. 

Definition 4 (Optimality gap) The optimality gap measures the absolute change of the 

response variable between two consecutive iterations, defined as ϕ𝑛𝑛 = ||𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛||. 

Another variant, weighted ergodic iteration, heuristically adjusts the step size at each 

iteration and updates response variable as a linear combination of previous steps: 

 

5.1.2 Mirror descent 

Mirror descent method has shown good performance in dealing with path-based 

equilibrium constraints. We define the path choice probability σ𝑛𝑛 = 𝑦𝑦𝑛𝑛

Γ
⊤Γ
𝑦𝑦𝑛𝑛

 as auxiliary 

variables. For the 𝑛𝑛 −th forward iteration, the path choice probability is calculated as 

follows: 

 

The response variable is updated with a closed-form mirror descent operator: 

, 



  

H 
· 

where α > 0 is the step size. The constraint set of response variables becomes a 

probability simplex in path-based formulation and mirror descent has been shown 

efficient to deal with such a constraint set. This update rule can be viewed as a variant 

of the logit loading where the observed cost is scaled by the logarithm of route choice 

probability. The mirror descent iteration converges to the solution to the parametric VI 

in Eq.(2), as demonstrated in Li et al. (2022). 

5.1.3 Root-finding 

Solving for the auxiliary fixed point is equivalent to finding the root of 𝑦𝑦∗ −

𝑔𝑔θ(𝑦𝑦∗,𝑥𝑥) = 0 via a root-finding method. The projection operator is non-differentiable 

at the boundary of a set and thus Newton’s method may diverge. Therefore, we use 

Broyden’s method, a quasi-Netown method that does not require differentiability. 

Broyden’s method approximates Newton’s direction and updates the point as 𝑦𝑦𝑛𝑛+1 =

𝑦𝑦𝑛𝑛 − 𝑠𝑠𝑛𝑛. Let the initial guess be s0 = −I and the direction is updated as: 

𝑠𝑠𝑛𝑛+1 = 𝑠𝑠𝑛𝑛 +
Δ𝑦𝑦𝑛𝑛+1 − 𝑠𝑠𝑛𝑛Δϕ𝑛𝑛+1

Δ𝑦𝑦(𝑛𝑛+1)⊤𝑠𝑠𝑛𝑛Δϕ𝑛𝑛+1 Δ𝑦𝑦
(𝑛𝑛+1)⊤𝑠𝑠𝑛𝑛, 

where Δ𝑦𝑦𝑛𝑛+1 = 𝑦𝑦𝑛𝑛+1 − 𝑦𝑦𝑛𝑛 and Δϕ𝑛𝑛+1 = ϕ𝑛𝑛+1 −ϕ𝑛𝑛.  

5.2 Backward: approximate hypergradient 

In forward propagation, we consider a practical setting where the parametric VI is 

solved with 𝑁𝑁 steps and terminated before reaching perfect equilibrium. Consequently, 

in backpropagation, we need to approximate the hypergradient at a non-optimal 

response variable. 

Definition 5 (Approximate hypergradient) The approximate hypergradient at is defined as 

 

where the approximate implicit gradient is defined as follows. 



  

Definition 6 (Approximate implicit gradient) The approximate implicit gradient at is defined 

as:  

To avoid the computationally expensive matrix inversion in approximating the implicit 

gradient, we present two auto-differentiation-based methods to approximate the 

implicit gradient. 

5.2.1 Iterated Differentiation (ITD) 

ITD memorizes the trajectory of N-step forward iterations and directly backpropagates 

through the equilibrating trajectory. In the N-th forward iteration, the response 

variable 𝑦𝑦𝑘𝑘𝑁𝑁 depends on 𝜃𝜃𝑘𝑘 and 𝑦𝑦𝑘𝑘𝑁𝑁−1, namely: 

𝑦𝑦𝑘𝑘𝑁𝑁 = 𝑔𝑔(𝜃𝜃𝑘𝑘 ,𝑦𝑦𝑘𝑘𝑁𝑁−1) 

Here we use the fixed point operator g as the ”unified” operator that includes both 

gradient-projection operator and mirror descent operator. By applying the chain rule, 

we obtain the following approximation for the implicit gradient under ITD: 

 

By telescoping the definition of1 and using the fact that ITD approximates the implicit 

gradient. 

5.2.2 Inexact Implicit Differentiation (IMD) 

IMD approximates the Hessian-inverse-vector product by solving an auxiliary fixed-

point problem. By defining the auxiliary variable as 

 

the approximate hypergradient can be formulated as: 



  

 

Reformulating the definition of auxiliary variable suggests that it solves an auxiliary 

fixed-point problem: 

 

Then IMD recursively approximates the auxiliary variable using Q-step fixed point 

iteration: 

 

where γ > 0 is the step size. The approximate hypergradient under IMD is: 

. 

The auxiliary fixed-point iteration converges if 𝐼𝐼 − ∇𝑦𝑦𝑔𝑔(𝜃𝜃𝑘𝑘 ,𝑦𝑦𝑘𝑘𝑁𝑁) is a stable matrix with 

a maximum eigenvalue that has a magnitude less than one. Previous studies show that 

these iterations typically are convergent in practice (Bai et al., 2019). 

There are other methods in the literature to reduce the computational difficulty by 

approximating the matrix inversion. First, the Jacobian-free backpropagation replaces 

the matrix inverse with one identity matrix. This method can be viewed as a 

preconditioned gradient and only requires backpropagating through the final forward 

step (Fung et al., 2021). Second, an inverse matrix can be approximated with truncated 

Neumann series, reducing the computational cost from matrix inversion to matrix-

matrix multiplications. 

Remark 4 Calculating the gradients of equilibrium flows with respect to demand or supply-side 

perturbations has been studied as equilibrium flow sensitivity analysis in the transportation 

literature. Tobin and Friesz (1988) showed that the Jacobian exists if the utilized path set remains 

the same with a small perturbation in parameters. Patriksson (2004) further suggested that the 



  

Jacobian exists if all unused paths remain unused with the perturbation. Li et al. (2020) pointed 

out the Jacobian exists if the cost function is strongly monotone in a neighborhood of h∗. These 

conditions may not hold in a general setting. However, the aforementioned numerical methods 

work well in our numerical experiments. 

To sum up, leveraging the hypergradient approximated under ITD and IMD, the 

parameter for epoch k is updated with learning rate 𝛽𝛽 >  0 as: 

 

Here we adopt a warm-start strategy by setting the initialization as the output of the 

preceding training epoch rather than initiating it with random values. 

6 Numerical Examples 

In this section, we validate the proposed end-to-end framework using three synthesized 

datasets from Braess, Sioux Falls, and Chicago Sketch. We use the Braess example to 

validate the approximation guarantee of the end-to-end framework. Through the Sioux 

Falls example, we examine the effect of enforcing equilibrium constraints and provide 

practical guidelines for training. The Chicago Sketch example demonstrates the 

simultaneous learning of supply- and demand-side components. We evaluate the 

framework performance using two key metrics: the empirical optimality gap, which 

measures the convergence of the parametric VI, and the Weighted Mean Absolute 

Percentage Error (WMAPE), which quantifies percentage differences in flow 

predictions. We define the empirical optimality gap as the sample-averaged inner 

product between the generalized cost function and the changes in the response variable 

across two successive. 

6.1 Example 1: learn demand component on Braess 



  

The Braess network has five links, four nodes, and a single OD pair from node 1 to 

node 4 with three feasible paths. With a maximum possible demand of q = 5, the 

ground-truth demand function for OD pair r follows:  

 

where 𝑥𝑥𝑟𝑟  represents OD-specific features; 𝑥𝑥[𝑚𝑚]  is a one-dimensional sample-

dependent contextual feature; is the shortest free-flow time between OD pair r; 𝛼𝛼𝑢𝑢 = 

2 and 𝛽𝛽𝑢𝑢  = 4 are functional parameters. We use the standard BPR function as link 

performance functions and assume travelers only consider travel time when selecting 

their paths. The dataset includes 1024 training, 258 validation, and 258 testing samples. 

We will focus on learning the inverse demand function in this example and assume 

both link performance and cost functions are given. We consider that multi-day link 

flows are observable, and the loss function measures the Mean Square Error (MSE) 

between predicted and observed link flow distributions. The framework is trained using 

the Adam optimizer over 𝐾𝐾 =  500 epochs with early stopping implemented if there 

is no improvement in the training MSE over twenty consecutive epochs. The forward 

propagation uses mirror descent with 𝑁𝑁 =  100  iterations, while backpropagation 

employs the ITD method. 

We evaluate both model-free and model-based end-to-end frameworks under the 

following scenarios, fine-tuning the learning rate and step sizes via grid search for each 

setting. 

• Benchmark: We use a grid search to identify a constant demand that best 

matches all testing samples, which is 2.4 in this case. 

• Functional: Assuming the functional form is known and encoded with 

computational graphs, the framework learns two parameters: 𝛼𝛼𝑢𝑢 and 𝛽𝛽𝑢𝑢. 



  

• Constant: The framework learns a context-independent fixed demand, with 

neural networks using only excess demand and OD-specific features as input. 

• Linear: The neural network includes a single linear layer. 

• Nonlinear: The neural network combines a linear part (as in the Linear scenario) 

and a nonlinear part, comprising three layers with eight neurons each. 

• Residual: The neural network includes three layers with eight neurons each and 

employs a residual strategy between layers. 

Each neural network is designed to accommodate potential changes in the number of 

OD pairs during ”what-if” analyses. The input dimension of these neural networks only 

depends on the number of input features, which in this case, is three. In the Nonlinear 

and Residual scenarios, neural networks are regularized to be monotone and Lipschitz 

continuous. 

Table 1 presents the WMAPE under different learning scenarios. WMAPE is shown in 

percentage and parentheses display the relative reduction in WMAPE. The optimal 

scenario is highlighted with a star. Same for the following tables. In Benchmark 

scenario, the link flow WMAPE is remarkably high at 72.1%. This error drops to 4.2% 

when we embed the ground-truth functional form in the framework and adjust the αu 

and βu. The non-zero error can be attributed to the nonconvexity of the MPEC, which 

can trap the training process at a local minimum. The model-free Constant scenario 

learns context-independent demands and yields an error of 72.3%, comparable to 

Benchmark. The Residual scenario knows contextual information but has no 

information about the functional form of the inverse demand function. By exploring 

the representation power of neural networks, the model-free framework still yields a 

WMAPE of 4.7%, comparable to the Functional scenario. This result confirms that the 

end-to-end framework can generate reliable flow distributions without knowing each 

component’s functional form. The Residual scenario provides the best performance 

since the residual strategy helps avoid the gradient vanishing when N becomes large 



  

  



  

Model # Parameters Link flow Link time Demand 

Benchmark / 72.1 31.2 71.9 

Functional 2 4.2 (-94.1%) 1.6 (-94.9%) 3.9 (-94.6%) 

Constant 109 72.3 (+ 2.8 %) 31.28 (+2.5%) 72.4 (+ 7.0%) 

Linear 4 15.5 (-78.5%) 5.6 (-82.1%) 12.9 (-82.0%) 

Nonlinear 117 6.3 (-91.2%) 4.3 (-86.2%) 6.2 (-91.3%) 

Residual * 112 4.7 (-93.5%) 3.2 (-89.7%) 4.6 (-93.6%) 

Table 1 WMAPE under different scenarios 

6.2 Example 2: learn demand component on Sioux Falls 

Sioux Falls network has 76 links, 28 nodes, and 528 OD pairs. We scaled the default 

demand in Stabler (2023) by a factor of three to serve as the maximum possible OD 

demand q. The rest of the ground-truth setting follows the Braess example. The dataset 

is divided into 1024 training, 258 validation, and 258 testing samples. We consider a 

link-based formulation using the decoupled gradient-projection method in forward 

propagation. With known link performance and cost functions, our focus is on learning 

the inverse demand function. 

We first investigate the framework performance with different forward steps. Figure 6 

shows that increasing 𝑁𝑁 from 1 to 50 enables faster and better training under both IMD 

and ITD. A larger 𝑁𝑁  requires more iterations for both forward and backward 

propagation and notably increases computation time under ITD. By contrast, IMD 



  

avoids the differentiation along the equilibrating trajectory and the computation time 

changes relatively minimally when 𝑁𝑁 varies. 

  

(a) (b) 

Figure 6 Figure 6: Framework performances with different forward iterations under (a) 

ITD and(b) IMD. 

Moreover, Figure 7 shows that the training process under ITD stops prematurely with 

𝑁𝑁 =  1 , resulting in a high training MSE of 4e3. This highlights an iterative 

equilibrium process is necessary to ensure local convergence under ITD. By contrast, 

IMD keeps reducing the training MSE with 𝑁𝑁 =  1 because it uses extra information 

from the implicit function theorem to correct auto-differentiation. Both ITD and IMD 

manage to avoid getting stuck when 𝑁𝑁 increases to 10. ITD outperforms IMD in finding 

better local optima when 𝑁𝑁 increases to 50. 

Next, we examine whether penalizing the empirical optimality gap in the loss function 

can replace the need for enforcing equilibrium conditions during training. As illustrated 

in Figure 8, Scenarios with optimality gap regularization are represented by solid lines, 

while those without are denoted by dotted lines. This pattern applies to Figure 9 as well. 

When the equilibrium constraints are poorly approximated with N = 1, the optimality gap 

regularization indeed steers the parametric VI towards a smaller empirical optimality gap. 

As the training proceeds, the optimality gap MSE converges towards zero (see Figure 8b). 

Similar findings have been found in (Guarda et al., 2023). By contrast, when the 



  

equilibrium constraints are well-approximated with N = 50, the optimality gap 

regularization has little impact on framework performance. 

 

(a) (b) (c) 

Figure 7 Framework performances using different backward method with (a) 𝑁𝑁 =  1, 

(b) 𝑁𝑁 =  10, and (c) N = 50. 
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Figure 8 (a) Testing optimality gap and (b) training optimality gap MSE with respect to 

epochs. 

Despite guiding the training process towards an equilibrium state, the optimality gap 

regularization fails to lead the framework to find suitable parameters. As shown in 

Figure 9, the training MSE with optimality regularization and 𝑁𝑁 =  1 remains 

noticeably higher than that with 𝑁𝑁 =  50. The link flow prediction error with 𝑁𝑁 =  1 

is also significantly larger. This suggests that ”softly” penalizing the optimality gap in 

the loss function is not a viable alternative to the ”hard” enforcement of equilibrium 

conditions. Therefore, it is essential to at least roughly approximate the equilibrium 

conditions to facilitate effective end-to-end learning. 

Finally, we experiment with two enhanced training strategies: 

• Adaptive N (denoted as A): Increases the number of forward iterations linearly 

during training, from 50 to 150 in our case. 

• Two-stages training (denoted as T): Initially, the linear part of the neural 

network is trained while keeping the nonlinear part fixed. Once the linear part 

converges, both parts are trained jointly in the second stage. 
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Figure 9 (a) Training link flow MSE and (b) testing link flow WMAPE with respect to 

epochs. 

In the Benchmark scenario, we proportionally scaled the maximum possible OD 

demands q and use grid search to determine the optimal scale that best matches all 

observations, which is 1.2 in this case. The remaining Functional, Nonlinear, and 

Residual scenarios follow the Braess example with 𝑁𝑁 =  50  and ITD as the 

backpropagation method. Table 2 indicates that the adaptive 𝑁𝑁 strategy improves the 

model’s performance because a rough estimation of equilibria is sufficient when the 

parameters are considerably off-target during the initial training epochs. The two-stage 

training strategy also enhanced performance because it trains a shallow linear network 

in the first stage. On one hand, a linear approximation of the monotone generalized cost 

function is relatively good. On the other hand, shallow neural networks mitigate 

vanishing or exploding gradients during training. Thus, incorporating both strategies, 

our end-to-end framework achieves the best performance of 4.3%, comparable to the 

Functional scenario (i.e., 1.3%). 

In this example, we calculate WMAPE only for flows over 0.001 to avoid infinite 

WMAPE due to zero ground-truth flows in training samples. Thus, despite Sioux Falls’ 

larger size, its WMAPE is numerically smaller than Braess. Since our main concern is 

the relative WMAPE reduction, rendering this should be insignificant to our 

conclusions. 

6.3 Example 3: learn behavior component on Sioux Falls 

In this case study, each OD pair r is assumed to have one continuous feature 𝑥𝑥𝑟𝑟1 

denoting income and one binary feature 𝑥𝑥𝑟𝑟2 denoting travel purpose, which equals 1 if 

the destination of OD pair r is a commercial area and equals 0 otherwise. We assume 

the path travel time includes two parts: link travel times and node delays. The link travel 

time on link a follows the BPR function. The node delay on node c follows an 

exponential form as proposed by Jeihani et al. (2006), Moreover, pavement surface 



  

conditions, such as roughness, are the main feature that decides user comfort (Hawas, 

2004; Yin et al., 2008). We classify the links as good and bad pavement conditions and 

assume travelers experience a non-link-additive discomfort ep on bad-condition links. 

Let 0 ≤ 𝑥𝑥𝑝𝑝 ≤ 1 denote the proportion of bad-condition link length to the total path 

length. The discomfort follows the exponential form and increases with the bad-

condition link proportion, i.e., . We set α = 2 and β = 1 so that the 

discomfort is zero if path p only includes goodcondition links. 

Scenario # Parameters Link flow  Link time Demand 

Benchmark / 50.9 97.6 59.3 

Functional 2 1.3 (-97.4%) 3.7 (-96.2%) 1.3 (-97.8%) 

Linear 4 14.1 (-72.3%) 40.9 (-58.1%) 6.4 (-89.2%) 

Nonlinear 117 10.2 (-80.0%) 12.1 (-87.6%) 6.8 (-88.5%) 

Nonlinear (+ T) 117 9.0 (-82.3%) 24.4 (-75.0%) 5.6 (-90.6%) 

Nonlinear (+ A) 117 7.9 (-84.5%) 22.1 (-77.4%) 4.9 (-91.7%) 

Nonlinear (+ T + A) * 177 4.3 (-91.5%) 9.2 (-90.5%) 2.7 (-95.4%) 

Residual 112 12.8 (-74.9%) 37.8 (-61.4%) 7.2 (-87.9%) 

Residual (+ A) 112 8.3 (-83.7%) 24.4 (-75.0%) 5.2 (-91.2%) 

Table 2 WMAPE under different training settings 



  

    

The ”ground-truth” cost for travelers of OD pair 𝑟𝑟 to use path 𝑝𝑝 is a weighted sum of 

link travel times, node delays, and a discomfort constant: 

, 

This suggests that travelers with higher incomes have higher weights on both node 

delays and discomfort. Travelers traveling to commercial areas have higher weights on 

discomfort yet lower weights on node delays. 

The feasible path set includes the top three paths with the shortest free-flow time. If one 

OD pair has fewer than three feasible paths, its path flows are padded to a dimension 

of three and the padded path flows are nullified with the mask trick during training. 

Three demand levels are considered: (i) base scenario 𝑞𝑞0, (ii) uncongested scenario 

with base demand 𝑞𝑞0 reduced by 50%, and (iii) congested scenario with base demand 

𝑞𝑞0 increased by 50%. For each scenario, we randomly sample travel demands from a 

uniform distribution between 0.5 𝑞𝑞0 and 1.5 𝑞𝑞0. The equilibrium flow is solved for 

each sampled demand given the ground-truth cost. The training and test sets include 1, 

536 and 512 samples respectively. So far, all links are assumed to be observable. 

The link block is replaced with pre-calibrated BPR functions. Weight Net, node block, 

and path block are composed of three fully connected layers with four neurons and with 

LeaklyReLu as the activation function. Normalization layers are added to enhance 

training stability. The input of the node block includes node flows and intersection 

parameters. The proportion of bad-condition links is the input of the path block. The 

input and output dimensions are as follows: Weighted ergodic iteration and IMD are 

used as the default forward and backward methods respectively. The model is trained 

with Adam optimizer with Mean Square Error as the loss function under the learning 

rate of 0.1. Early stop is enabled if no loss descent is observed in five consecutive 

epochs. To illustrate the feasibility and importance of learning route choice preferences, 

we benchmark our model with three well-established network equilibrium models. First, 

the cost function is assumed to be link travel time and travelers choose the paths with 
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minimum travel time, yielding conventional Deterministic User Equilibrium (denoted 

as DUE). The second behavior model assumes travelers’ path choices follow a logit 

model and thus results in a Stochastic User Equilibrium (denoted as SUE). In this case, 

the dispersion parameter is calibrated, similar to Yang et al. (2001). The third model 

keeps the same path choice model but assumes the cost function is a linear combination 

of link travel time and the proportion of bad-condition links (denoted as SUE-2). Two 

linear coefficients are calibrated in this case, similar to Guarda and Qian (2022). 

We compare the efficiency and robustness of different forward algorithms. The first 

type includes decoupled gradient-projection iteration (F) and its accelerated variant: 

Anderson mixing (FA) and weighted ergodic iteration (FW). The second type is 

Broyden’s method (R). We also explore the combinations of two types (denoted as F-

R, FA-R, FW-R), which use decoupled gradient-projection iterations initially and 

switch to the root-finding when the relative residential is sufficiently small. We 

consider two types of tests: in-distribution and out-of-distribution. In in-distribution 

tests, the model is trained on observations from the Sioux Falls network and tested on 

the same road network. By contrast, in out-of-distribution tests, the trained model is 

tested on a partially changed road network. In our experiments, four links are added to 

the original Sioux Falls network and 25% links are randomly selected to increase or 

decrease their capacities by 50%. Decreasing the capacities under congested demand 

generates unreasonable training sets and is excluded in later analysis. 

6.3.1  Performance comparisons 

Table 3 compares the MAPE of different network equilibrium models. The proposed 

end-to-end learning framework is denoted as ”Implicit”. We use DUE as the baseline 

and denote its MAPE as η0. The change in MAPE of other models is denoted as ∆𝜂𝜂 =

 𝜂𝜂 −  𝜂𝜂0. Note that the behavioral assumptions of SUE are different from the ground 

truth. Although SUE can reduce the in-distribution MAPE by 18.2%, it shows inferior 

performance in out-of-distribution tests, increasing the MAPE by 9.2%. This suggests 

inaccurately assuming an SUE behavior model can cause bias in parameter estimation, 



  

misleading the flow prediction in subsequent” what-if” analysis. Similar results have 

been shown in Torres et al. (2011) and Van Der Pol et al. (2014). In comparison, SUE-

2 performs better, because it happens to capture the impact of discomfort from the bad-

condition links. The performance of SUE-2 is still less satisfactory compared with the 

end-to-end framework because the former learns linear combinations by assumption 

whereas the latter can deal with nonlinear patterns. Since neural networks include more 

parameters than baseline models and offer greater flexibility to recover the complicated 

ground truth cost function, the proposed framework has the best performance in both 

in-distribution and out-of-distribution tests as expected, reducing the benchmark 

MAPE by 61.5% and 55.1% respectively. 

In-distribution test 

Demand Capacity DUE 𝜂𝜂0 SUE ∆𝜂𝜂 SUE-2 ∆𝜂𝜂 Implicit ∆𝜂𝜂 

Base Default 20.6 -4.7 -11.8 -15.0 

Uncongested Default 12.5 -3.1 -0.2 -3.4 

Congested Default 13.41 -0.6 -4.4 -10.2 

Mean 15.5 -2.8 (-18.2%) -5.4 (-35.1%) -9.5 (-61.5%) 

Out-of-distribution test 

Demand Capacity DUE 𝜂𝜂0 SUE ∆𝜂𝜂 SUE-2 ∆𝜂𝜂 Implicit ∆𝜂𝜂 

 Default 22.3 -7.3 -14.4 -16.6 

Base -50% 11.3 +13.4 -1.6 -7.9 

 +50% 8.1 +4.8 -1.0 -1.3 

 Default 23.4 -8.5 -15.6 -14.9 

Uncongested -50% 12.1 +12.6 -2.4 -4.1 

 +50% 10.4 +2.5 -3.3 -1.1 



  

Table 3 MAPE of different network equilibrium models.  

Congested 
Default 13.8 -3.5 -6.3 -10.1 

+50% 11.9 -3.5 -5.2 -6.4 

Mean 14.2 +1.3 (+9.2%) -6.2 (-44.0%) -7.8 (-55.1%) 



  

As shown in Table 4, FW and FW-R achieve the smallest MAPE of 5.7% in in-

distribution tests whereas FW-R slightly outperforms FW by 1% in out-of-distribution 

tests. Forward algorithms involving Anderson mixing, such as FA and FA-R, can be 

the most unstable. By contrast, forward algorithms involving weighted ergodic iteration, 

such as FW and FW-R, are more stable as they consistently shrink the step size during 

iterations. 

 

 

Figure 10 Training process of different forward algorithms. 

Figure 11 compares the performance of three backpropagation methods: Jacobian-Free 

(JF) approximation, Newman Approximation (NA), and Inexact Implicit 

Differentiation (FA) under different demand levels. FA has the best performance 

among the three proposed backward methods. JF significantly hurts the learning 

process. Similar results have been found by Huang et al. (2021). 

The effects of spectral normalization are shown in Figure 12. ”w” suggests ”with 

spectral normalization” and ”w/o” suggests ”without spectral normalization”. Although 

requiring additional computation, the spectral normalization constrains the Lipshitz 

constant of the cost function within a reasonable range and speeds up the convergence 

by three to four times under all demand levels. 

6.3.2 Robustness analysis 



  

 

In-distribution test 

Demand Capacity F FA FW R F-R FA-R FW-R 

Base Default 8.4 5.6∗ 5.7 8.0 8.7 6.2 6.0 

Uncongested Default 9.5 9.1 8.1 9.5 8.3 8.5 8.0∗ 

Congested Default 6.1 3.2 3.2 6.2 11.0 4.5 3.1∗ 

Mean 8.0 6.0 5.7∗ 7.9 9.3 6.4 5.7∗ 

Std 1.8 3.0 2.4 1.7 1.4 2.0 2.5 

Out-of-distribution test 

Scenario Capacity F FA FW R F-R FA-R FW-R 

 Default 7.5 5.7∗ 5.8 7.2 7.7 6.4 6.0 

Base -50% 4.5 3.4∗ 3.4∗ 5.0 4.8 3.6 3.4∗ 

 +50% 9.1 6.9∗ 7.0 10.2 9.3 8.8 7.4 

 Default 8.3 8.5 7.6 8.1 8.0 8.2 7.5∗ 

Uncongested -50% 9.5 8.0 7.3 9.9 7.6 14.4 6.9∗ 

 +50% 8.4 9.4 7.9∗ 8.4 8.2 7.9∗ 7.9∗ 

Congested 
Default 5.7 3.6∗ 3.8 5.1 10.2 4.3 3.6∗ 

+50% 8.8 5.5∗ 5.7 6.2 11.9 6.1 5.5∗ 

Mean 7.7 6.4 6.1 7.5 8.5 7.5 6.0∗ 

Std 1.8 2.2 1.7 2.0 2.1 3.4 1.7 

Table 4 MAPE of proposed forward algorithms. 

 



  

In this section, we examine the robustness of the proposed framework by relaxing 

model assumptions. FW, R, and FW-R have the best performance and are thus selected. 

Since in-distribution and out-of-distribution performances have similar trends, all the 

following analyses are based on in-distribution tests. 

 

(a) (b) (c) 

Figure 11 Performances of different backpropagation methods under (a) base, (b) 

uncongsted, (c) congested demand. 

 

`    

(a) (b) (c) 

Figure 12 Effects of spectral normalization under (a) base, (b) uncongested, and (c) 

congested demand. 



  

All links are assumed to be observable in previous analyses. We relax this assumption 

by randomly observing a proportion of links. FW-R is the most stable when only a 

proportion of links are equipped with sensors. For example, Figure 13 shows the MAPE 

of FW-R slightly increases from 8.0% to 11.5% when the proportion of observable 

links decreases from 100% to 20% under uncongested demand. Since approximation 

errors can accumulate in both forward propagation, where iterations terminate with 

residuals, and backward propagation, where the gradients are approximated, the 

training of the proposed framework can stop at local optimums. Previous studies have 

shown the training process and final performances of models involving implicit layers 

can be relatively noisy and require more hyperparameter tuning (Huang et al., 2021; Li 

et al., 2020). 

Usually, there are no direct observations of OD demands in urban road networks. OD 

demands need to be estimated and thus prone to estimation errors. We examine the 

model performances when the input OD demands are different from the ground truth. 

More specifically, random observation noises, which are proportional to the ground 

   

(a) (b) (c) 

Figure 13 Model performances with different sensor coverage rates under (a) base, (b) 

uncongested, and (c) congested demand. 



  

truth, are added to all demands. As shown in Figure 14, FW is the most stable in the 

case of demand noises. Given a noise scale of 100%, the increase in its MAPE ranges 

from 12.5% to 22.2% under different demand levels. Note that if we consider an elastic 

demand user equilibrium, the travel demand function can also be approximated with 

another neural network and learned with the proposed framework. The simultaneous 

learning of route choice preferences and demand functions will be explored in our 

future study. 

  

 

(a) (b) (c) 

Figure 14 Model performances with demand noises under (a) base, (b) uncongested, and 

(c) congested demand. 

The selection of feasible path sets can be tricky when no information about path choices 

is available. We examine the model performances when the selection of feasible paths 

is different from travelers’ actual path choices. There are 1,587 paths in the ground-

truth path set and we consider two scenarios: one with an incomplete path set of 1,058 

paths and the other with a redundant path set of 2,645 paths. FW-R has the best 

performance when the selection of feasible paths is inaccurate. As shown in Figure 15, 

an incomplete path set increases the MAPE by 8.0% under base demand, compared 

with an increase of 2.9% induced by a redundant path set. Since an incomplete path set 

yields more negative effects, one can start with a large feasible set with sufficient 

feasible paths and gradually reduce it during training. 
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(a) (b) (c) 

Figure 15 Effects of inaccurate feasible path sets under (a) base, (b) uncongested, and 

(c) congested demand. 

To sum up, the proposed framework is robust to incomplete observations and input 

noises. More specifically, the combined method (i.e., FW-R) is more robust when only 

a proportion of links are equipped with sensors or no information about path choice is 

available. The fixed-point iteration method (i.e., FW) is preferred when the input OD 

demands are poorly estimated. 

6.4  Example 4: learn demand and supply component on Chicago Sketch 

We consider a path-based formulation on the Chicago Sketch with 2950 links, 933 

nodes, and 2493 OD pairs. Each OD pair has three feasible paths, and the feasible path 

set is assumed as prior information. We scale the default demand in Stabler (2023) by 

a factor of five and use it as the maximum possible OD demand. The following inverse 

demand function is used and the ground-truth BPR function is assumed with a context-

dependent capacity for each link 𝑎𝑎 ∈  𝐴𝐴: 

𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎(𝑥𝑥) = 𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎0 ⋅ (α𝑐𝑐 ⋅ 𝑒𝑒𝑥𝑥 + β𝑐𝑐) 

where 𝑐𝑐𝑐𝑐𝑝𝑝𝑎𝑎0 is the default capacity; 𝛼𝛼𝑐𝑐 = 1.5 and 𝛽𝛽𝑐𝑐 = 1.4. The dataset contains 258 

training, 64 validation, and 64 testing samples. We assume the cost function is known 



  

and focus on learning the inverse demand function and link performance function. 

Mirror descent with a forward step of  𝑁𝑁 =  10 and ITD are used in training. 

The end-to-end framework is set to learn the inverse demand function, the link 

performance function, or both, using either a model-based or a model-free approach. In 

the model-free setting, the inverse demand function is approximated using the residual 

neural networks specified in the Sioux Falls example. We employ a physics-informed 

neural network to learn the link-performance function. We retain the functional form 

of the BPR function and approximate the context-dependent capacities using neural 

networks with three layers and eight neurons each. Additionally, both link time and 

flows are assumed observable, enabling modelers to include either or both of these 

observations in the loss function We consider two benchmarks with fixed capacities in 

the standard BPR function. Benchmark-1 scales the default demand with a factor of 

3.56 and achieves the best match to observed flows (29.5%) with a high time error of 

160.5%. Benchmark-2 scales the default demand with a factor of 1.4 and achieves the 

best match to observed time (5.1%) with a high flow error of 68.9%. 

Table 5 shows the performance of the end-to-end framework with different learnable 

components and loss functions. Scenarios yielding the lowest errors are marked: a 

single star denotes the best model-free scenario, while double stars indicate the best 

model-based one. The joint calibration of supply and demand-side components proves 

important. Both Functional and Residual scenarios, when adjusting both sides, yield 

the lowest time and demand errors. The Functional scenario has the lowest flow error 

of 18.1% and time error of 2.6%, while the Residual scenario generates comparable 

results of 23.3% and 8.2%. Incorporating flow observations into the loss function in 

general outperforms the use of link time. Nevertheless, using link time observations 

can help avoid overfitting when the link performance function can be adjusted. Overall, 

the complexity of training escalates with the size of the road network. The Chicago 

sketch example has higher errors than Sioux Falls and Braess, regardless of the 

approach used. 

 



  

  



  

Component Approach Loss function Link flow  Link time  Demand  

Benchmark-1 / / 29.5 160.5 21.5 

Benchmark-2 / / 68.9 5.1 68.3 

  Flow 22.1 27.1 14.2 

 Functional Time 28.3 9.2 21.9 

𝜆𝜆𝜃𝜃 
 Flow + time 22.1 27.1 14.1 

 Flow 23.5 64.8 15.3 

 Residual Time 23.5 54.2 16.2 

  Flow + time 23.3 * 65.8 15.1 

  Flow 32.9 1751.8 19.6 

 Functional Time 39.3 8.6 19.6 

𝜏𝜏𝜃𝜃 
 Flow + time 32.8 1734.3 19.6 

 Flow 34.1 15.8 19.6 

 Residual Time 36.5 16.0 19.6 

  Flow+ time 32.8 15.9 19.6 

  Flow 18.1 ** 2.6 ** 7.7 ** 

 Functional Time 22.3 5.1 9.5 

𝜆𝜆𝜃𝜃 and  

𝜏𝜏𝜃𝜃 

 Flow + time 18.3 2.6 7.9 

 Flow 26.9 8.2 * 13.6 * 

 Residual Time 37.6 10.4 19.0 

  Flow + time 25.0 193.9 13.9 

Table 5 WMAPE under different training settings. 

  



  

7 Findings and Conclusions 

This study aims to transform the modeling paradigm via an end-to-end framework that 

directly learns model components and the equilibrium state from data. This report 

outlines our solutions to the modeling and algorithmic challenges for implementing 

such an end-to-end learning. The unified end-to-end framework encodes the unknown 

supply- and demand-side model components with parameterized computational graphs 

and then embeds them in a VI that enforces user equilibrium conditions. In forward 

propagation, the framework iteratively updates the traffic state via closed-form rules 

until reaches user equilibrium. In backpropagation, the loss function compares the 

estimated and observed traffic states and then simultaneously estimate parameters for 

all components via auto-differentiation.  

One major advantage of the proposed end-to-end framework is that it integrates model-

based and model-free modeling approaches within a single pipeline, leveraging both 

domain knowledge and the representational power of neural networks the proposed 

framework leverages. The proposed framework automatically discovers a good 

functional specification from empirical data during training and aligns the selection of 

behavior models with the ultimate goal of replicating flow distributions. 

More importantly, the end-to-end framework learns the equilibrium state of the network. 

Because real systems never settle into equilibrium, observed flows are indeed not 

equilibrium flows. The training process essentially yields an equilibrium state that 

matches all the observations as closely as possible. The learned equilibrium state will 

then serve as a consistent benchmark or reference point against which improvement 

plans can be designed and compared. The resulting equilibria are ”perturbed” from the 

learned equilibrium state and will help decision-makers differentiate various plans. In 

this sense, the proposed framework melds the data-decision pipeline by integrating 

learning and decision/optimization into a single end-to-end system. Additionally, the 

end-to-end framework integrates multi-source data into a single stream and addresses 

the inconsistencies among different data sources. 



  

Our study solves the key challenges in modeling and calibrating the unified ”end-to-

end” framework. To facilitate model-free approach, we design a novel neural network 

architecture that can adjust to the changes in the road network topology for 

future ”what-if” planning analysis. We also regularized the neural network to 

guarantees the existence of equilibrium traffic states. To efficiently train the proposed 

framework, we introduced an auto-differentiation-based gradient descent algorithm and 

leverage the computational power of computational graphs. In forward propagation, we 

adopt recent developments in operator-splitting methods and differential optimization 

to solve a batch of VI problems. We employ first-order methods like decoupled gradient 

projection and mirror descent, specifically tailored for link- and path-based equilibrium 

constraints, as well as second-order root-finding methods. In backpropagation, iterated 

differentiation and inexact implicit differentiation are used to efficiently differentiate 

through the equilibrium states. 

To validate the robustness and efficacy of the proposed framework, we conduct a series 

of numerical experiments on synthesized data from various networks, including Braess, 

Sioux Falls, and Chicago Sketch. Our framework achieves a satisfactory accuracy rate 

in predicting link flows when subjected to changes in road network topology. 

Additionally, the model demonstrated robust performance in the face of incomplete 

data and various input noises. 

The outputs, outcomes, and impacts of this study are summarized as follows: 

Research Outputs 

• Publication: "End-to-end learning of user equilibrium with implicit neural 

networks." Transportation Research Part C: Emerging Technologies 150 (2023): 

104085. 

• Poster: End-to-end learning of user equilibrium with neural networks. 

Transportation Research Board 102ed Annual Meeting. Washington, D.C. 2023. 



  

• Presentation: End-to-end Learning of Transportation Network Equilibrium.  

INFORMS Annual Meeting, Indianapolis, IN. 2022. 

• Presentation: A Unified Framework for End-to-End Transportation Network 

Equilibrium Modeling. International Symposium on Transportation Data & 

Modelling. Ispra, Italy. 2023 

Research Outcomes 

• Policy Planning Support: The framework serves as a decision support tool for 

policymakers exploring various improvement schemes like capacity expansion 

and congestion pricing. 

• Network Modeling as a Service: The framework can be deployed as a cloud-

based service, allowing cities and municipalities to access advanced modeling 

capabilities without the need for specialized hardware or expertise. 

Research Impacts 

• Traffic Congestion: The framework can help reduce traffic congestion by 

optimizing transportation network planning for future scenarios. 

• Resource Allocation: Policymakers can make more informed decisions about 

where to allocate resources, potentially saving public money by avoiding 

unnecessary infrastructure development. 

• Operational Efficiency: Automated tools that implement the framework could 

lead to more efficient operations within transportation departments, reducing 

both capital and operational costs. 

 



  

 

8 Recommendations 

This study can be extended in multiple directions. We plan to leverage the established 

end-to-end learning framework to prescribe improvement schemes, such as capacity 

expansion and congestion pricing. We consider that policymakers attempt to perturb 

the equilibrium flow distribution by changing certain continuous decision variables that 

would affect travelers’ route choices. These decision variables can be encoded as 

additional learnable parameters in Attribute Net. By maximizing the expected social 

welfare, the proposed end-to-end framework can be trained to update the decision 

variables and output optimal decisions. The optimization problem becomes more 

challenging when dealing with discrete decision variables, such as the incorporation of 

new roads or lanes. This will be a focus of our future studies. 

Additionally, the proposed framework has been tested on a synthesized dataset. We 

plan to validate the proposed framework with real-world datasets in the next step. 

Vehicle connectivity and automation will make trajectory data more readily available. 

Leveraging this dataset, the proposed modeling paradigm, if successful, can potentially 

help metropolitan planning organizations and traffic authorities in the US better plan 

and manage their traffic networks to reduce traffic congestion and vehicle emissions, 

without requiring new investment in expanding the existing infrastructure. With more 

and more connected vehicles, we believe that the solution would transform the existing 

paradigm of transportation systems planning and management and has a great potential 

for widespread market adoption. The proposed work will use real-world datasets to 

validate the proposed framework. If successful, further development beyond this 

project will be needed to develop a deployable platform or system that can automate 

the proposed processes to provide diagnosis and treatments for various urban traffic 

networks. 
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10 Appendix: Proof of Theorem 2 

To facilitate understanding, this section omits the superscript for a sample 𝑚𝑚 and the 

dependence upon both context features 𝑥𝑥  and neural network parameters 𝜃𝜃 . The 

Jacobian matrix of a vector-to-vector function 𝐹𝐹(𝑥𝑥) :  𝑅𝑅𝑛𝑛  →  𝑅𝑅𝑚𝑚  is denoted as 𝐽𝐽𝐹𝐹(𝑥𝑥) ∈

𝑅𝑅𝑚𝑚×𝑛𝑛. 

We first give the formal definition of monotonicity and Lipschitz continuity of a vector-

to-vector function 𝐹𝐹(𝑥𝑥) and equivalent conditions when the function is a self-mapping 

and differentiable everywhere on its domain. The equivalent conditions are more 

tractable and used in proving the monotonicity and Lipschitz continuity of the cost 

function. 

Definition 7 (Monotonicity) A function 𝐹𝐹(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑚𝑚 is monotone if ⟨F(x) − F(y), x 

− y⟩ ≥ 0, ∀𝑥𝑥,𝑦𝑦 ∈  𝑅𝑅𝑛𝑛. A differentiable function 𝐹𝐹(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛is monotone if and only 

if its Jacobian matrix 𝐽𝐽𝐹𝐹(𝑥𝑥) ∈ 𝑅𝑅𝑛𝑛×𝑛𝑛 is positive-semidefinite. 

Definition 8 (Lipschitz Continuity) A function is L-Lipschitz continuous if there exists, 

such that ∥F(x) − F(y)∥ ≤ L ∥x − y∥ , ∀𝑥𝑥,𝑦𝑦 ∈  𝑅𝑅𝑛𝑛  . A differentiable function 

𝐹𝐹(𝑥𝑥):𝑅𝑅𝑛𝑛 → 𝑅𝑅𝑛𝑛  is L-Lipschitz continuous if and only if its Jacobian matrix 𝐽𝐽𝐹𝐹(𝑥𝑥) ∈

𝑅𝑅𝑛𝑛×𝑛𝑛 has finite spectral norms. 

To begin with, consider a special one-column scenario where Attribute Net has only 

one link block and the output of the link block has one column, i.e., 𝑔𝑔𝒜𝒜(𝑣𝑣𝑎𝑎):𝑅𝑅+ → 𝑅𝑅. 

By assumption, is monotone and Lipschitz continuous with respect to 𝑣𝑣𝑎𝑎 , i.e., 0 ≤
𝑑𝑑𝑔𝑔𝒜𝒜

𝑑𝑑𝑣𝑣𝑎𝑎
≤ 𝐿𝐿. 

Let 𝐺𝐺𝒜𝒜(𝑣𝑣):𝑅𝑅|𝔸𝔸| → 𝑅𝑅|𝔸𝔸| denote the mapping from link flows to link attributes, defined 

as 𝐺𝐺𝒜𝒜(𝑣𝑣) = {𝑔𝑔𝒜𝒜(𝑣𝑣𝑎𝑎)}𝑎𝑎∈𝒜𝒜. Its Jacobian matrix, 

 



  

⊙ 

is a diagonal matrix with nonnegative and finite elements. It is straightforward to show 

that 𝐽𝐽𝐺𝐺𝒜𝒜(𝑣𝑣) is positive-semidefinite with finite spectral norm  

 Recall that the attributes are the product of path-link incidence matrix Λ and link 

attributes. The Attribute Net is now defined as a self-mapping with respect to path flows, 

i.e.,𝐺𝐺(ℎ):𝑅𝑅|ℙ| → 𝑅𝑅|ℙ| . It follows that the Jacobian matrix of 𝐺𝐺(ℎ) = Λ 𝐺𝐺𝒜𝒜(Λ⊤ℎ) is 

symmetric and positive-semidefinite. Path-link incidence matrix Λ is a 0-1 matrix with 

a bounded spectral norm. As per Cauchy–Schwarz inequality, the spectral norm 

|𝐽𝐽𝐺𝐺(ℎ)| ≤ 𝐿𝐿|Λ|2. 

The cost function 𝜋𝜋(ℎ):𝑅𝑅|ℙ| → 𝑅𝑅|ℙ|  is formulated as 𝜋𝜋(ℎ) = Σ 𝑤𝑤⊙𝐺𝐺(ℎ). Suppose 

the weights are positive the Jacobian matrix of the cost function, 𝐽𝐽𝜋𝜋(ℎ) =

𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(Σ 𝑤𝑤) 𝐽𝐽𝐺𝐺(ℎ), is the product of two symmetric positive-semidefinite matrices and 

thus symmetric positive-semidefinite with spectral norm bounded by |(Σ 𝑤𝑤)| |𝐽𝐽𝐺𝐺(ℎ)|. 

It is equivalent to saying the cost function is monotone and Lipschitz continuous with 

respect to the path flows. This proof can be adapted to node block and path block by 

replacing the path-link incidence matrix Λ with the path-node incidence matrix Γ or an 

identity matrix. 

Now we consider a general case. Let 𝑤𝑤𝑖𝑖  denote the i-th column of weights and 

𝐺𝐺𝑖𝑖  denote the i-th column of attributes. The cost function is: 

. 

Suppose each block is column-wise monotone and Lipschitz continuity, is monotone 

and Lipschitz continuous following previous proof for one-column scenarios. 

Monotonicity and Lipschitz continuity are preserved under summation, it follows that 

the cost function is monotone and Lipschitz continuous concerning the path flows. 

Additionally, it is straightforward to show that the Jacobian matrix of the cost function 

is the sum of symmetric matrix and thus is symmetric. Suppose 𝐽𝐽𝜋𝜋(ℎ)  is real 



  

everywhere, there exists a scalar function such that 𝜋𝜋(ℎ) is the gradient of a continuous 

function (Emberton, 2008). Under mild assumptions that the function is closed and 

proper, the monotonicity of 𝜋𝜋(ℎ) is equivalent to maximal monotonicity (Ryu and Yin, 

2021). This completes the proof. 
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