
ARTICLE

Chromatin information content landscapes inform
transcription factor and DNA interactions
Ricardo D’Oliveira Albanus 1, Yasuhiro Kyono1,2,3, John Hensley1, Arushi Varshney 1, Peter Orchard1,

Jacob O. Kitzman 1,2 & Stephen C. J. Parker 1,2✉

Interactions between transcription factors and chromatin are fundamental to genome orga-

nization and regulation and, ultimately, cell state. Here, we use information theory to measure

signatures of organized chromatin resulting from transcription factor-chromatin interactions

encoded in the patterns of the accessible genome, which we term chromatin information

enrichment (CIE). We calculate CIE for hundreds of transcription factor motifs across human

samples and identify two classes: low and high CIE. The 10–20% of common and tissue-

specific high CIE transcription factor motifs, associate with higher protein–DNA residence

time, including different binding site subclasses of the same transcription factor, increased

nucleosome phasing, specific protein domains, and the genetic control of both chromatin

accessibility and gene expression. These results show that variations in the information

encoded in chromatin architecture reflect functional biological variation, with implications for

cell state dynamics and memory.
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Understanding the interactions between transcription fac-
tors (TFs) and chromatin is critical to dissect regulatory
circuits that lead to differences in transcriptional activity

across species, tissues, stimulatory, and genetic contexts. Chro-
matin is the association between DNA, RNA, and diverse nuclear
proteins, including nucleosomes. It enables the ~2-meter human
genome to be packaged inside the nucleus while allowing active
genes and their corresponding regulatory elements to remain
accessible1. Nucleosome positioning is an essential property of
chromatin architecture and has been shown to have both passive
and active roles in TF binding2–4. Information theory provides a
powerful framework to quantify ordered patterns in data5 and has
been successfully used to characterize genome-wide DNA
methylation patterns6.

In this work, we develop information-theoretical tools to study
TF-chromatin interactions in human tissues using chromatin
accessibility data. We show that local chromatin architecture
encodes information-rich signatures of TF interactions. Our
results show that variations in the information patterns encoded
in chromatin architecture reflect functional biological variation,
with implications for cell state dynamics and memory.

Results
Chromatin information reflects TF-chromatin interaction
patterns. We first aimed to quantify patterns of chromatin
accessibility around TF-chromatin interactions. We reasoned that
TF binding creates a localized impact on chromatin architecture,
which may result in TF-specific signatures. To measure chro-
matin architecture, we focused on the assay for transposase-
accessible chromatin using sequencing (ATAC-seq)7, that can
simultaneously quantify both TF and nucleosome signatures,
which are reflected in the ATAC-seq fragment length patterns.
This chromatin architecture can be visualized using V-plots8,
which show the aggregate ATAC-seq fragment midpoints around

TF binding sites and can result in a stereotyped “V” pattern of
points for bound TFs with well-phased adjacent nucleosomes
(Fig. 1a, upper plot). The extent of organization in the V-plot can
be measured using Shannon’s entropy equations5 to quantify
information. We, therefore, calculated the information content of
the ATAC-seq fragment size distribution around TF binding sites
as a way to quantify V-plot organization (Fig. 1a, middle plot). To
adjust for potential bias arising from non-uniform ATAC-seq
fragment coverage across the V-plot, we devised a metric called
chromatin information enrichment (CIE; Methods, Fig. 1a,
middle and lower plots, Supplementary Fig. 1). We summarized
CIE into a single value, named feature V-Plot Information
Content Enrichment (f-VICE), which represents the CIE at
landmark TF and nucleosomal positions across the V-plot. These
positions are expected to have high CIE when the nucleosomes
are well-positioned around the TF binding site (Fig. 1a, lower
plot). Therefore, f-VICE quantifies the degree of chromatin
architecture organization around a TF.

We initially focused on the GM12878 lymphoblastoid cell line,
for which there is high-quality, deeply-sequenced ATAC-seq
data7 and 41 TF chromatin immunoprecipitation followed by
sequencing (ChIP-seq) experiments that pass our inclusion
criteria (Supplementary Data 1)9. To increase our ability to
detect TF-chromatin interactions, we generated an independent
GM12878 ATAC-seq dataset with higher signal-to-noise ratio
(measured by TSS enrichment and fraction of reads in peaks;
Supplementary Fig. 2). Using these datasets, we created V-plots
and calculated f-VICEs centered on bound motif instances for 41
TFs. The ATAC-seq fragment pattern was most ordered around
CTCF, a known chromatin organizer10, where we detected
clusters of fragments distributed periodically in a “V” pattern
indicating nucleosome phasing (Fig. 1b-c, Supplementary Fig. 3).
CTCF f-VICE was highest among the 41 TFs (Fig. 1d). Other TFs,
exemplified by AP-1 and NFKB, had diverse f-VICEs (Fig. 1b-d,
Supplementary Fig. 3). The TF f-VICE values were highly
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Fig. 1 Information content of TF-chromatin interactions. a Upper: TF binding impacts the chromatin architecture and the observed ATAC-seq fragment
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concordant across GM12878 ATAC-seq libraries with distinct
signal-to-noise metrics (Spearman’s ρ range 0.81–0.98, median=
0.96, n= 7 libraries; Supplementary Fig. 4a, b) and downsampled
datasets representing sequencing depths as low as 5 million high-
quality alignments (Spearman’s ρ range 0.89–0.99, median=
0.98; Supplementary Fig. 4c–e). We additionally calculated f-
VICE values separately for motif instances across quintiles of
ChIP-seq signal intensity, chromatin accessibility, and TF affinity.
We found that the f-VICE values were highly correlated across
the motif subsets (Spearman’s ρ range 0.70–0.89, median= 0.85;
Supplementary Fig. 5a-b). We performed a linear regression of f-
VICE controlling for these potentially confounding metrics and
found that the model coefficients for the TF terms were highly
correlated with their respective f-VICEs (Spearman’s ρ= 0.9, p <
1e-323; Supplementary Fig. 5c), which demonstrates the robust-
ness of the f-VICE metric. These results indicate extensive
differences in TF-chromatin interactions, which are captured in
the CIE patterns.

Footprint-free prediction of TF binding and chromatin
information. One alternative to determine f-VICEs for TFs
without ChIP-seq data is to rely on binding predictions using
chromatin accessibility data. This motivated us to first evaluate
the performance of current TF binding prediction algorithms.
Most algorithms search for footprints, which are regions of low
chromatin accessibility embedded within larger accessible
regions, thought to be caused by cleavage protection from bound
TFs11–13. However, a recent report indicated that ~80% of TFs do
not associate with footprints14. Hence, we developed BMO (“Bee
MOdel of TF binding”), an unsupervised method to predict TF
binding using negative binomial models of chromatin accessi-
bility15–17 and co-occurring motifs18, without relying on foot-
prints (Supplementary Fig. 6, Methods). We benchmarked BMO
and other TF binding prediction methods (DNase2TF12, HINT-
ATAC13, PIQ11, and CENTIPEDE19) using TF ChIP-seq data
from GM12878 and HepG2 (n= 41 and n= 59, respectively;
Supplementary Data 1). DNase2TF, HINT-ATAC, and PIQ rely
on footprints to predict TF binding, while CENTIPEDE learns
informative DNA cut patterns indicating TF binding. To compare
methods, we calculated their F1 scores for predicting each TF. We
additionally developed a custom implementation of CENTIPEDE
that does not rely on the DNA cut patterns around the motif,
which we named signal-sum CENTIPEDE (ssCENTIPEDE;
Methods). ssCENTIPEDE allows us to estimate the contribution
of the DNA cut patterns around the TF motif compared to motif
accessibility in CENTIPEDE predictions (Supplementary Note).
BMO had overall higher performance (higher F1 score than the
other methods in 74% of all comparisons; Supplementary Fig. 7).
Importantly, the footprint-agnostic methods (BMO, CEN-
TIPEDE, and ssCENTIPEDE) outperformed the footprint-based
methods (higher F1 scores in 90% of comparisons), particularly
on TFs with low f-VICEs (Fig. 1e, Supplementary Figs. 7-11;
Supplementary Note). To determine if the overall lower perfor-
mance of the footprinting-based methods resulted from only sites
with strong TF affinity being associated with footprints, we
benchmarked all the methods separately for TF binding sites in
the top and bottom 20% of TF occupancy, based on ChIP-seq
signal (Supplementary Figure 12). The footprinting-based
method DNase2TF had higher performance compared to BMO
when predicting the top 20% occupancy binding sites (Supple-
mentary Figure 12a). However, the increase in performance for
DNase2TF was limited to medium and high f-VICE TFs and only
when using the high signal-to-noise GM12878 ATAC-seq dataset
generated for this study (Supplementary Fig. 12a, left). BMO
outperformed DNase2TF in the top 20% binding sites when using

the Buenrostro et al. GM12878 dataset7 (Supplementary Fig. 12a,
right), which had a lower signal-to-noise ratio (Supplementary
Fig. 2). These results are consistent with (1) only a subset of high-
occupancy binding sites from high f-VICE TFs associating with
detectable footprints and (2) footprint detection being sensitive to
sample quality. Together, these findings indicate that
footprinting-based approaches are not the optimal strategy to
predict TF binding. Instead, we show that TF binding is generally
more accurately predicted using a simple chromatin accessibility
model tuned to each TF motif.

Chromatin information varies across TFs. Having determined
that our BMO footprint-agnostic method is among the most
accurate for predicting TF binding regardless of their f-VICE, we
proceeded with BMO predictions to estimate f-VICEs for TFs
without ChIP-seq data. BMO-predicted f-VICEs were sig-
nificantly correlated with f-VICEs calculated from TF ChIP-seq
data across all datasets (Pearson’s ρ range 0.72–0.79, median=
0.76, all p < 9.78e-11; Supplementary Fig. 13). We therefore
concluded that BMO can be used to estimate f-VICEs without
ChIP-seq data and performed BMO TF binding predictions to
calculate f-VICEs for 540 non-redundant TF motifs (Supple-
mentary Data 2-3). We used high-quality ATAC-seq datasets
from four additional human tissues (pancreatic islets20, pan-
creatic islet sorted alpha and beta cells21, and CD4+ cells22;
Supplementary Data 1), selected by applying a strategy that uses
the highly stereotyped chromatin architecture in ubiquitous and
conserved CTCF/cohesin binding sites to measure sample quality
(Supplementary Fig. 14) (Methods). We normalized f-VICEs
within each sample to control for differences in the number of
bound motif predictions and overall chromatin accessibility
(Supplementary Fig. 15). Among the 540 motifs, we observed a
mixture of two f-VICE distributions and therefore used a mixture
of two Gaussians to fit the data. The median percentage of high f-
VICE motifs across datasets was 14% (range 7–18%, Fig. 1f,
Supplementary Fig. 16), which is comparable to the percentage of
motifs associated with DNase footprint protection across datasets
(median= 19%) from another study14 and supports our con-
clusion that footprint-based algorithms will not perform well on
the majority of TFs (median of 86% across datasets). Together,
these results reinforce the use of footprint-agnostic methods like
BMO for accurately calculating f-VICE. Importantly, our results
suggest that only a subset of TFs associate with highly organized
chromatin.

Chromatin information is associated with TF-DNA residence
times. TF residence time, which corresponds to the duration of
DNA binding for a TF, is an important biophysical measurement
that can influence TF activity2,23. Based on the high f-VICEs for
CTCF and AP-1 and low f-VICE for NFKB (Fig. 1c, d), which
agree with the known residence times for these TFs (Supple-
mentary Table 1), we hypothesized that CIE correlates with
residence time. We correlated BMO-informed f-VICEs with
previously measured fluorescence recovery after photobleaching
(FRAP) data from mammalian cell lines (Supplementary Table 1),
which provide an upper bound of TF residence time24,25. Using a
robust linear regression to protect against outlier influence, we
found that f-VICE was significantly associated with FRAP
recovery times in all samples (β range 0.7–1.3, median= 0.98, all
Bonferroni-adjusted p ≤ 0.001; Fig. 2a, Supplementary Fig. 17).
This suggests that TFs associated with high CIE have longer
residence times.

A recent study found that cohesin has a residence time 10- to
20-fold higher than CTCF25. We reasoned this difference could
be reflected in the local chromatin architecture and calculated the
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CIE of the GM12878 lymphoblastoid cell line CTCF binding sites
with and without the presence of cohesin (CTCF/cohesin+

and CTCF/cohesin–), controlling for ATAC-seq coverage,
ChIP-seq signal, and motif quality (Supplementary Fig. 18a).
CTCF/cohesin+ had 1.9-fold higher CIE compared to CTCF/
cohesin– (Fig. 2b, Supplementary Fig. 18b), indicating these
distinct CTCF occupancy classes have different CIE signatures.
We next compared the nucleosome positioning signals inferred
from lymphoblastoid cell line micrococcal nuclease sequencing
(MNase-seq) profiles (Supplementary Data 1). Only the CTCF/
cohesin+ class had phased nucleosomes around the binding site
(Fig. 2c, Supplementary Fig. 18c), consistent with longer
residence times associated with nucleosome phasing. To experi-
mentally validate these results, we generated chromatin accessi-
bility data using a modified ATAC-seq protocol with an
additional sonication step (Methods) to disrupt the fragment
size information (Supplementary Fig. 19). There were no
detectable nucleosome phasing patterns in the motif-flanking
CIE signature (~50 bp from the motif) of the sonicated sample
(vertical arrows in Fig. 2d and Supplementary Fig. 19b), which we
determined was not due to size-selection bias in the library
preparation (Supplementary Fig. 19c). These results are com-
plementary to our residence time results above in that they show
our CIE approach can capture differences in chromatin
organization in subsets of TF binding sites that are associated
with different residence times.

Most high chromatin information TFs associate with nucleo-
some phasing. To systematically characterize the association
between CIE and nucleosome positioning, we compared
GM12878 CIE patterns across TF motifs to the nucleosome

positions obtained both from ATAC-seq using the NucleoATAC
algorithm26 and from lymphoblastoid MNase-seq profiles (Sup-
plementary Fig. 20). High f-VICE motifs had lower nucleosome
occupancy directly at the motif region and phased nucleosomes
directly adjacent to it (Fig. 2e, Supplementary Fig. 20e).
Accordingly, the CIE patterns of high f-VICE motifs were sig-
nificantly more likely to be anti-correlated with the MNase-seq
signal at the motif region (p= 2.18e-13, generalized linear model;
Fig. 2f,g, upper two panels, Supplementary Fig. 20f). We calcu-
lated the degree of nucleosome phasing around the motif region
and found that it was significantly correlated with f-VICE
(Pearson’s ρ= 0.4, p= 3.60e-22; Supplementary Fig. 20g). How-
ever, we observed that 22% of the high f-VICE motifs had high
MNase signal at the motif region (12/54; Fig. 2g, bottom two
panels, Supplementary Fig. 21). This indicates that high CIE
patterns more commonly result from nucleosome phasing
induced by TF binding, but can also result from a well-positioned
nucleosome at the TF binding site. The latter case is consistent
with TFs that bind at the nucleosome dyad4,27 and include a
member of the RFX family4. These results indicate that the CIE
levels reflect the overall level of chromatin organization and can
capture different nucleosomal configurations. Therefore, the CIE
patterns are more general and complementary to nucleosome
positioning data.

Chromatin information asymmetry at TF motifs. Previous
reports suggested that a subset of TFs directionally bind DNA,
with potential effects on gene regulation11,28,29. To investigate
this further, we extended our information content analyses to
quantify CIE asymmetry (Methods). Of the 540 motifs tested, 150
had significantly asymmetric CIE (Bonferroni corrected p < 0.05;
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Fig. 2h, Supplementary Fig. 22a). The direction of CIE asymmetry
was significantly correlated with the direction of the nearest TSS
relative to each motif instance (Spearman’s ρ= 0.66, p= 3.34e-
20; Supplementary Fig. 22b). To determine if asymmetric CIE was
an artifact of TSS proximity, we calculated CIE asymmetry
separately for TSS-proximal (≤1 kb) and TSS-distal (≥10 kb)
motif instances. The TSS-distal and TSS-proximal CIE asym-
metry directions agreed significantly more than expected by
chance (111/150, binomial test p= 3.38e-9, Fisher exact test p=
2.80e-5; Supplementary Fig. 22c-d), suggesting that CIE asym-
metry is intrinsic to the TF motif. The magnitude of asymmetry
was higher in TSS-proximal motifs (Supplementary Fig. 22d),
suggesting that TSS proximity amplifies TF CIE asymmetry.
Accordingly, the correlation between nearest TSS direction and
CIE asymmetry was stronger at TSS-proximal motifs (Spearman’s
ρ= 0.88, p= 1.25e-48; Fig. 2i). These results indicate that a subset
of TFs are associated with asymmetric TF-chromatin interactions.

Chromatin information patterns are tissue-specific and
associate with genetic control of gene expression. We next
aimed to investigate cross-tissue differences in CIEs. We per-
formed an unsupervised hierarchical clustering of motif f-VICEs
and found that it recapitulated the expected tissue grouping
(Fig. 3a). A recent study demonstrated that NF-KB (p65) resi-
dence time is determined by its DNA-binding domain (DBD)30,
which motivated us to ask if DBDs are associated with CIE. We
assigned DBDs and protein domains to motifs and designed a
permutation-based rank test to calculate domain f-VICE
enrichments (Methods). We observed both common and tissue-

specific f-VICE enrichments, including IRF and ETS in blood-
related samples, PAX in islet-related samples, and HMG/SOX
and FOX domains in HepG2 (FDR < 10%; Fig. 3b, Supplementary
Fig. 23). Our findings show the landscape of TF-chromatin
interactions varies across tissues and reflects protein domain-level
TF properties.

The prevalence of tissue-specific differences in CIEs led us to
examine the role of high f-VICE TFs in regulating gene
expression. We calculated the enrichment of the motifs
categorized as high or low f-VICE in GM12878 (Fig. 1f) to
overlap lymphoblastoid cis-expression quantitative trait loci (cis-
eQTLs) datasets31,32, which represent gene expression genetic
control regions. High f-VICE motifs had 15–30% higher (median
= 24%) fold-enrichment in cis-eQTLs compared to low f-VICE
motifs (Fig. 3c, Supplementary Fig. 24a), but no differences in
eQTL effect sizes (Supplementary Fig. 24b). These results indicate
that high f-VICE TFs are more likely to mediate genetic effects on
gene expression, but not their magnitude.

High chromatin information TF motifs are associated with
increased chromatin accessibility. Given that high f-VICE TFs
have highly ordered chromatin (Fig. 1), high predicted residence
times (Fig. 2a, b, Supplementary Fig. 17), and nucleosome
phasing properties (Fig. 2e, Supplementary Fig. 21), we hypo-
thesized that their regulatory effects (Fig. 3c) could result from
acting as or recruiting pioneer factors that induce chromatin
accessibility11,33. Supporting this, we find that motifs belonging to
families associated with known pioneers11,33,34 had some of the
highest f-VICEs in all (e.g. OCT/POU, KLF) or in a subset of
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samples (e.g. FOXA in HEPG2, PAX in islets, IRF and BATF in
GM12878 and CD4+ cells; Fig. 3b, Supplementary Fig. 21, and
Supplementary Data 3). If true, we would expect increased CIE at
single nucleotide polymorphism (SNP) alleles associated with
increased chromatin accessibility (i.e. with ATAC-seq allelic
imbalance; Fig. 3d). We performed a motif-agnostic approach to
calculate the f-VICEs associated with every DNA 6-mer, con-
trolling for differences in chromatin accessibility. This strategy
allows the interrogation of genetic variants by determining all the
possible DNA 6-mers formed by each allele and their corre-
sponding f-VICEs, without incurring in bias from under-
represented sequences in the TF motif library. DNA 6-mers have
a distribution of f-VICEs (Fig. 3e; Supplementary Fig. 25a), and
GC-pure 6-mers had the highest f-VICEs (Supplementary
Fig. 25b), which is consistent with GC-rich sequences driving
enhancer activity35 and suggests that high GC-content regions
represent anchors of nuclear architecture. Notably, a single base-
pair change can lead to large differences in 6-mer f-VICEs
(Fig. 3e-f, Supplementary Fig. 25c-e), suggesting that genetic
variation impacts CIE. To test this, we determined f-VICEs for 6-
mers formed by both alleles at SNPs with significant ATAC-seq
allelic imbalance (binomial test p < 0.05) in GM12878 and pan-
creatic islets (Methods). The preferred ATAC-seq alleles were
significantly biased to form higher f-VICE 6-mers compared to
the less favored allele in all samples (all p < 2.81e-4, permutation
tests; Fig. 3g-h, Supplementary Fig. 26). These findings support a
model where TFs with potential pioneer-like properties book-
mark regions of the genome to allow binding of other migrant-
like TFs11,33. Accordingly, TF motifs that are predictive of
binding without any chromatin accessibility data (based solely on
the motif match score) have significantly higher f-VICEs in
GM12878 and HepG2 (robust linear regression p ≤ 0.001; Sup-
plementary Fig. 27). This suggests that high f-VICE TFs, parti-
cularly CTCF, are more likely to bind any strong motif regardless
of its underlying accessibility, while the remaining TFs require
motifs located in already accessible regions.

“Non-canonical” chromatin information shape patterns reflect
local DNA topology. The f-VICE metric we developed here
summarizes the CIE pattern into a single value, and it was tuned
to detect patterns associated with TF binding, which have higher
information signal proximal to the TF motif (Fig. 1a, Supple-
mentary Fig. 1). However, other genomic features may have
distinct CIE patterns that would not be captured by the f-VICE
equation. This motivated us to investigate if there is a subset of
features associated with “non-canonical” V-plot patterns. We
found a subset of DNA 6-mers that had higher CIE levels at
regions distal to the 6-mer center (Supplementary Fig. 28a-c).
These DNA 6-mers were characterized by stretches of three or
more consecutive A or T nucleotides. This is consistent with these
6-mers overlapping A-tracts, which are regions characterized by
poly(dA:dT) nucleotides and are associated with curvature in the
DNA molecule and nucleosome organization36. The CIE pattern
observed in the poly(dA:dT) 6-mers likely results from low Tn5
integration at the 6-mer region, which was not observed in poly
(dC:dG) 6-mers (Fig. 3i). In addition, we observed that the poly
(dA:dT) 6-mers were generally associated with a phased nucleo-
some pattern in the MNase-seq data (Supplementary Fig. 28e),
consistent with this DNA topology favoring nucleosome exclu-
sion36. Of note, the MNase patterns in the poly(dA:dT) 6-mers
were almost indistinguishable from to the ones associated with
nucleosome phasing at high f-VICE motifs (Fig. 2g, upper panels,
Supplementary Fig. 21), illustrating how the CIE metric is com-
plementary to nucleosome positioning data. We additionally
analyzed a subset of DNA 11-mers (n= 1,248) predicted to have

regulatory properties in GM12878 (Methods) to determine if any
of these features were associated with less common CIE patterns.
We did not find evidence that these 11-mers had CIE patterns
differing from the TF motifs (Supplementary Fig. 28f-h), indi-
cating that sequences associated with regulatory activity have
higher proximal CIE levels. Together, these results demonstrate
how local DNA topology is associated with higher-order chro-
matin organization reflected in the CIE patterns.

Asymmetrical CIE patterns at transcription start sites. While
we focused this study on TF-chromatin interactions, the CIE
framework presented here can be used to study other genomic
features. To illustrate this, we generated V-plots and calculated
CIE for the TSS regions from highly expressed genes in
GM12878. Using this approach, we can observe the highly
asymmetrical accessibility pattern in the TSS, indicating a well-
positioned +1 nucleosome downstream of the TSS (Supplemen-
tary Fig. 29). This demonstrates the versatility of our entropy-
based methodology to characterize genomic features which would
otherwise require laborious experimental approaches or would
not be possible in vivo.

Discussion
In this study, we develop and use entropy-based algorithms to
analyze chromatin accessibility data and quantify the level of
chromatin organization at genomic features of interest. This
chromatin information approach is more general and com-
plementary to analyzing nucleosome positioning, as it captures
additional features such as DNA protection from TF binding and
local DNA topology. We use this entropy-based approach to
dissect TF-chromatin interaction patterns across human cell lines
and tissues. The TF-chromatin interactions are captured in the
information content patterns of chromatin accessibility and
reflect functional properties of TFs, such as TF-DNA residence
times, specific protein domains, and the ability to induce
nucleosome repositioning. We find that a subset of TFs (10–20%)
have high chromatin information and are more highly associated
with the genetic control of both chromatin accessibility and gene
expression. We hypothesize that these TFs define cell state by
potentially acting as pioneers. Future studies are necessary to
experimentally determine the fraction of TFs associated with high
chromatin information that have pioneer properties.

A potential application of the methodology presented here is to
estimate chromatin information patterns in other organisms,
including non-model organisms where less information about
their TF repertoire is available. We reason that the unbiased
estimation of information patterns encoded in DNA substrings
occurring in accessible chromatin, such as we performed using
DNA 6-mers (Fig. 3e), can be used to inform the possible chro-
matin organization configurations associated with that organism.
Such an approach could potentially be used to determine the
appearance of pioneer-like TFs along the eukaryotic tree, which
would be reflected in the emergence of a long right tail in the f-
VICE distribution (Fig. 3e and Supplementary Fig. 25a).

One limitation of our methodology is that it can be affected by
clusters of TFs binding in close proximity, which can potentially
decrease the apparent information of the local chromatin. This
can be circumvented with careful experimental approaches to
separate these TF binding sites, such as the one we used for CTCF
and cohesin. In addition, the f-VICE metric we developed here is
highly tuned to detect patterns associated with TF binding, but
other genomic features may have distinct CIE patterns. Indeed,
we found a subset of DNA 6-mers with “non-canonical” V-plot
patterns, which we hypothesized reflected a specific DNA topol-
ogy (Fig. 3i, Supplementary Fig. 28). Therefore, it is reasonable to
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expect the existence of less common genomic features with “non-
canonical” CIE patterns. One approach to systematically detect
these features is through unsupervised clustering of the CIE shape
patterns.

Finally, we show that footprinting-based algorithms to predict
TF binding, which remain a popular choice in the field, are
sensitive to the TF-chromatin information landscape we describe.
We develop and cross-validate a tool for predicting TF binding
based on chromatin accessibility that outperforms footprinting-
based methods. These findings represent strong evidence that
most TF binding sites do not associate with footprints. Collec-
tively, our results show a dynamic landscape of TF-chromatin
interactions, with implications for gene regulation and cell state
memory.

Methods
GM12878 cell culture. GM12878 cells were obtained from the Coriell Institute for
Medical Research. We cultured cells following the ENCODE GM12878 cell culture
protocol (www.encodeproject.org/documents/1bb75b62-ac29-4368-9855-
68d410e1963a). Cells were cultured at 37 °C (5% CO2) with added plasmocin
(Invivogen, San Diego, CA; 50 μg/mL) to the RPMI 1640 (2 mM L-glutamine, 15%
fetal bovine serum) growth media to prevent mycoplasma contamination.

GM12878 ATAC-seq data generation. We conducted ATAC-seq following the
protocol described in Ref. 37 with two modifications: (1) we used as input 250,000
cells and (2) we used a home-made Tn5 enzyme38 (described in the Tn5 Synthesis
section below). After harvesting and centrifuging GM12878 cells (5 min × 500 g at
4 °C), we incubated a suspension of 250,000 cells with 12.5 μL of 1:1 mix of Tn5
enzyme that carry 5-methylC-MEDS-A oligos and MEDS-B oligos at 37 °C for
30 min in a 50 μL reaction. We column-purified the tagmented DNA using the
Zymo DNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA) and con-
structed Illumina sequencing library using the Kitzman lab custom indexing pri-
mers (barcode plates #5 and #10; Supplementary Table 2). We PCR-amplified a
total of 11 cycles until the amplification curve reached its mid-log phase (1/3 to 1/2
of max signal), and then purified the PCR products using SPRI beads prepared
using a homemade mix39 by combining Carboxyl-modified Sera-Mag Magnetic
Speed-beads (Fisher Scientific, cat. #65152105050250) in a PEG/NaCl buffer (0.1%
beads, 18% PEG-8000 w/v, 1 M NaCl, 10 mM Tris-HCl, pH 8.0, 1 mM EDTA,
pH 8.0) and eluted in 22 μL of TTE8 buffer. Sequencing was performed on an
Illumina HiSeq 4000 platform at the University of Michigan Sequencing Core and
a total of ~33 million paired-end 52 bp reads were generated.

Sonicated GM12878 ATAC-seq data generation. For each replicate we incu-
bated 250,000 cells with three different concentrations of enzyme (0.2X, 1X, and
5X; 1X corresponds to 2.5 μL of Tn5 that carry 5-methylC-MEDS-A oligos) at
37 °C for 30 min in a 50 μL reaction. We column-purified the tagmented DNA
using the Zymo DNA Clean & Concentrator-5 kit (Zymo Research, Irvine, CA),
and sonicated to ~350 bp using the Covaris M220 sonicator (peak incident power -
50W; duty factor - 20%; cycles per burst - 200; treatment time - 60 s). We con-
structed Illumina sequencing library using the ACCEL-NGS Methyl-seq DNA
Library kit (Swift Biosciences #DL-ILMMS-12; revision 160106) with the following
modifications to the manufacturer’s protocol: (1) We skipped “Ligation” and “Post-
ligation SPRI” steps (pg. 10-11), as the 5’ end of the fragments had already been
tagged during the transposition step. Accordingly, we eluted DNA with 20 μL of
TTE8 (10 mM Tris-HCl, 0.1 mM EDTA, 0.05% Tween-20, pH 8) for Post-
Extension SPRI step (pg. 10), instead of 15 μL, to adjust for the difference in
volume before proceeding to the “Indexing PCR” step (pg. 11); (2) We used 2:1
beads:sample ratio for “Post-Extension SPRI” step (pg. 10) and 1.8:1 beads:sample
ratio for “Post-PCR SPRI” step (pg. 12); and 3) For indexing PCR, we used the
Kitzman lab custom primers (barcode plate #5; Supplementary Table 2) to prime
the P5 end and the “IndexD7XX” primers (Swift Biosciences #38096, previously
#DI-ILMMS-48; Supplementary Table 2) to prime the P7 end. We PCR-amplified a
total of 14 cycles for 0.2X, 1X samples and 16 cycles for 5X samples until ampli-
fication curve reached its mid-log phase (1/3 to 1/2 of max signal), and then
purified the PCR products using SPRI beads prepared as in using a homemade39

mix by combining Carboxyl-modified Sera-Mag Magnetic Speed-beads (Fisher
Scientific, cat. #65152105050250) in a PEG/NaCl buffer (0.1% beads, 18% PEG-
8000 w/v, 1 M NaCl, 10 mM Tris-HCl, ph 8.0, 1 mM EDTA, pH 8.0) and eluted in
22 μL of TTE8 buffer. Sequencing was performed on an Illumina HiSeq 2500
platform at the University of Michigan Sequencing Core and a total of ~33 million
paired-end 126 bp reads were generated.

Tn5 synthesis. Tn5 synthesis was performed according to a previously described
protocol38. We used the pTXB1-Tn5 plasmid vector (Addgene #60240, gener-
ously gifted by Dr. Rickard Sandberg) to synthesize the hyperactive Tn5 allele
with E54K and L732P mutations but wild-type at M56 and transformed into T7

Express lysY/Iq Competent E. coli (NEB cat#3013H). We grew in 1 L of LB
culture until it reached A600= 0.9, added IPTG to a final concentration of
0.25 mM, and then incubated for an additional 4 h at 23 °C before harvesting by
centrifugation (20 min at 5,000 rpm) and freezing overnight at −70 °C. After
thawing the cell pellet on the next day, we resuspended it in HEGX buffer
(20 mM HEPES-KOH pH 7.2, 0.8 M NaCl, 1 mM EDTA, 10% glycerol, 0.2%
Triton X-100) containing 1X complete protease inhibitors (Roche; 1 tablet per
50 mL) and lysed them in an ice-cold metal beaker using a metal-tip sonicator at
the Center for Structural Biology core at the University of Michigan (10 cycles of
30 bursts, 50% duty cycle, output 6; output power ~20–40 W). The lysate was
pelleted by centrifugation (15,000 RPM for 30 min at 4 °C in the Beckman JA17
rotor). 2.1 mL 10% neutralized PEI (Sigma P3143) was added to the supernatant
dropwise on a magnetic stirrer. The precipitate was removed by centrifugation at
12,000 rpm for 10 min at 4 °C (JA17 rotor). We assembled the Tn5 transposome
using the on-column transposase assembly method38. First, we transferred the
supernatant to a Kontes Flex protein purification column that contained 8.33 mL
of chitin resin, and then incubated on a nutator for 1.5 h at 4 °C. We drained the
column, and washed the column four times with 25 mL of HEGX buffer for each
wash (i.e. a total of 100 mL wash). The washed resin was transferred to 50 mL
conical tubes and mixed with the Tn5-MEDS-A or Tn5-MEDS-B annealed
oligos (for each mL of resin, we mixed in 200 μL of MEDS duplex oligos at
250 μM). The mixture was incubated at room temperature on a nutator. After
24 h, we washed the resin three times with HEGX buffer to remove unbound
MEDS oligos. After the third wash, we resuspended the resin in HEGX buffer
containing 100 mM DTT, and incubated at 4 °C on a nutator for 41 h. After
incubation, we poured the resin solution to a Kontes flex column, and then
drained it to collect eluates (which contained the released Tn5-MEDS com-
plexes) in a 50 mL conical tube. We transferred the collected eluates to Snake-
Skin Dialysis Tubing (Thermo #68100; 10,000 MWCO; 22 mm × 35 feet dry
diameter) and dialyzed against two changes of 2X Tn5 dialysis buffer (100 mM
HEPES-KOH pH 7.2, 0.2 M NaCl, 0.2 mM EDTA, 2 mM DTT, 0.2% Triton
X-100, 20% glycerol) at 4 °C for 24 h. We measured the protein concentration
using a Bradford assay (Bio-Rad protein assay) and adjusted the concentration to
12.5 μM with 50% glycerol and 1X dialysis buffer.

ATAC-seq data processing. Reads were trimmed for barcodes using cta (v. 0.1.2)
and aligned to the hg19 reference human genome using BWA mem (v. 0.7.15)40

similarly to our previous study41, with additional parameters -I 200,200,5000 to
avoid larger ATAC-seq fragments being discarded. We removed duplicate align-
ments using Picard (broadinstitute.github.io/picard; v2.8.1) and retained properly
paired and uniquely mapped alignments with high mapping quality using samtools
view (v. 1.3.1)42 with flags -f 3 -F 4 -F 8 -F 256 -F 1024 -F 2048 -q 30. We called
broad and narrow peaks using MACS2 (v. 2.1.1.20160309)43 with flags -g hs
-nomodel -shift -100 -extsize 200 -B [-broad] -keep-dup all and kept peaks that did
not intersect blacklisted regions by the ENCODE consortium due to poor mapp-
ability (sites.google.com/site/anshulkundaje/projects/blacklists), using bedtools
(v2.26.0)44, and that reached 5% FDR. All data was processed uniformly using
Snakemake45.

Motif processing. We used the PWM scans from41. Briefly, we used biallelic SNPs
and short indels from the 1,000 Genomes project (release v5)46 to generate com-
prehensive scans with FIMO (v0.5.4)47, using the background nucleotide fre-
quencies from hg19 and a p < 1e-4. We only kept motif instances that intersected
mappable regions and did not intersect blacklisted regions. In order to reduce motif
redundancy, we performed PWM clustering in our motif database using the
matrix-clustering tool from RSAT (v1.0.5)48, with parameters -lth cor 0.7 -lth Ncor
0.7. For each of the 540 clusters obtained, we used the motif with the highest total
PWM information content for downstream analyses.

V-plots, chromatin information enrichments, and f-VICEs. V-plots8 were gen-
erated by determining the size and position of all ATAC-seq fragments within
±500 bp of the genomic feature set of interest (e.g. bound TF motifs). The frag-
ments size and positions were obtained using the script measure_signal, which is
part of atactk, a suite of tools to analyze ATAC-seq data developed for this study
(https://github.com/ParkerLab/atactk). We excluded from the V-plots any instan-
ces of the genomic feature of interest that were closer than 500 bp to each other to
avoid interference, and we also excluded ATAC-seq fragments smaller than 40 bp.
We generated a matrix encoding the fragment counts per position relative to the
feature (–500 to 500 bp) and per fragment size. To decrease sparsity, we summed
the fragment counts corresponding to each fragment size across consecutive
positions using a sliding window of 10 bp width in 8-bp increments between
windows (e.g. [–500,–490], [–492,–482], …). We did not sum fragment counts
across fragment sizes. We then calculated the normalized information content
IðxÞð Þ of the vector of fragment size counts for each 10-bp window using Eq. (1),
where HðxÞ is the maximum-likelihood Shannon’s entropy function implemented
of the entropy R package (v. 1.2.1)49, and Hmax is the maximum Shannon’s entropy
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for a vector of the same length (i.e. the maximum fragment size minus 40).

I xð Þ ¼ 1� HðxÞ
Hmax

ð1Þ

To additionally control for sparsity from low ATAC-seq coverage, we calculated
the expected normalized information content by repeating all the steps described
above using a randomized version of the input ATAC-seq fragment list. The
randomized data from each genomic feature was obtained by randomly permuting
the labels corresponding to the fragment sizes and positions. The null expectation
allowed us to calculate the chromatin information enrichment (CIE), defined as the
log2 of the observed normalized information content divided by the expected
normalized information content. Therefore, the CIE metric allows for a more direct
comparison between distinct genomic features compared to information content
alone because it controls for the differences in coverage between features.

Pseudocode. normalized_info = []
for position i in (i=−500, i ≤ 490, i+= 8):

start = i; end = i+ 10
fragment_sum = []
for fragment_size j in (j = 41, j = max (fragment_size), j+= 1):

fragment_sum[j] = sum j[k] for k in (k = start, k = end, k+= 1)
normalized_info[i] = normalized_information (fragment_sum)

expected_information = permute fragment size labels & re-calculate
normalized_info

CIE = log2 (normalized_info / expected_information)
To summarize the CIE vector of a given genomic feature, we designed a metric

called feature V-plot information content enrichment (f-VICE). We calculated f-
VICE using Eq. (2).

f � VICE ¼ Pi¼25

i¼�25
CIEi þ

Pi¼�50

i¼�70
CIEiþ

Pi¼70

i¼50
CIEi

2 :

CIEi > 1 ! CIEið Þ ^ CIEi ≤ 0 ! 0ð Þ ^ i 2 Zð Þ
ð2Þ

The [−25,25] and [−70,−50 50,70] coordinates correspond to the TF-proximal
and TF-adjacent CIE peaks in the CTCF V-plot, respectively. These landmark
positions are expected to have high CIE values when the TF associates with
nucleosome phasing, due to the abundance of small fragments spanning the TF
binding site (proximal peak) and positioned between the TF and the first pair of
flanking nucleosomes (adjacent peaks; Fig. 1a and Supplementary Fig. 1). To
further control for differences in the number of motif instances and accessibility
between the motifs analyzed in this study, the f-VICE values were normalized
across all motifs using the residuals of the linear model f-VICE ~ log10(m) + log10
(f), where m corresponds to the number of motif instances and f corresponds to the
total number of ATAC-seq fragments at the predicted bound motif instances for
each motif (Supplementary Fig. 15). The residuals for each sample were then
divided by the corresponding CTCF value in the corresponding sample to
normalize it to 1. For simplicity, we refer to the CTCF-normalized residuals as
“normalized f-VICE” and the CTCF-normalized f-VICEs (without linear
regression) as “CTCF-normalized f-VICE” throughout this study. The linear model
normalization step was not performed in any of the ChIP-seq f-VICE analyses due
to lack of data points to accurately fit the linear model. In Fig. 1c, the CTCF, AP-1,
and NFKB V-plots were downsampled to equal number of ATAC-seq fragments
and motifs by selecting the top k motifs ranked by the number of ATAC-seq
fragments within ±500 bp, and then further downsampling to 250,000 fragments,
where k represents the number of bound NFKB motifs (the lowest among the three
TFs in Fig. 1c). These downsampled V-plots were only used for visual comparison
and not used for CIE and f-VICE calculations.

For the analyses in Supplementary Fig. 5, we divided the TF-bound motifs into
quintiles of ChIP-seq signal (signalValue column of the ENCODE narrowPeak file),
ATAC-seq signal (number of ATAC-seq fragments ±100 bp from the bound motif
center), and TF affinity (obtained using Eq. (4) of50, which is a proxy of the
strength of the TF-DNA interaction51). To avoid the TF affinity values being
affected by the haplotype-aware PWM scans in GM12878, we only used bound TF
motif instances detected in the reference genome. We then calculated f-VICEs
using the subset TF binding sites belonging to each metric quintile and compared
the corresponding f-VICE values to the f-VICE values obtained from all binding
sites. To perform the linear regression analysis in Supplementary Fig. 5c, we used
the rank-based inverse normal transformed f-VICE values as dependent variable to
a model that included indicator variables to each TF, to the corresponding signal
type (ChIP, ATAC, TF affinity) from which the quintiles were calculated, and an
ordinal variable corresponding to the quintile.

Additional ATAC-seq samples selection. In addition to the GM12878 ATAC-seq
dataset generated for this study, we analyzed eight additional publicly available
datasets corresponding to pancreatic islets20,21, CD4+ cells22, GM128787, and
HepG252. With the exception of HepG2, these datasets were selected from a survey
of all the public ATAC-seq datasets available until the end of 2017. We selected for
our analyses datasets with at least 20 million high-quality autosomal reads and
transcription start site (TSS) enrichment ≥ 6. In addition, we only retained samples
with the stereotypical chromatin information enrichment indicative of nucleosome
phasing at ubiquitous and conserved CTCF-cohesin binding sites. These CTCF

binding sites provide a reference V-plot with expected high accessibility and per-
iodical chromatin information enrichment patterns in any high-quality sample.
The ubiquitous and conserved CTCF-cohesin sites were defined as CTCF motifs
overlapping ENCODE CTCF and Rad21 ChIP-seq peaks in at least in at least 54/59
(CTCF) and two (Rad21) different human tissues, located in bi-directionally
mappable regions between human and mouse using bnMapper53 that also corre-
sponded to CTCF motif matches in the mm9 reference genome. To quantify
samples, we defined our high-quality GM12878 dataset as a reference and calcu-
lated the CIE correlation ≤ 200 bp from the motif center. Samples with Spearman’s
ρ < 0.8 were discarded (Supplementary Fig. 14). Finally, we only retained tissues/
cells that had at least two samples that passed our stringent selection criteria. A list
of all dataset accessions used in this study can be found in Supplementary Data 1.

BMO transcription factor binding prediction. BMO (“Bee” MOdel of TF bind-
ing) builds on previous reports that the degree of chromatin accessibility around a
motif15–17 and the presence of co-occurring motifs18 positively correlate with TF
occupancy, corresponding to the analogy of TFs behaving as “Brownian bees” in
the genome looking for TF binding sites (“flowers”). The more accessible and the
greater quantity of flowers, the more likely the bee will interact with them. BMO
uses per-TF negative binomial models of the motif accessibility and density signals
to estimate the likelihood of a TF motif instance being bound. BMO performs three
steps: (1) calculate the background ATAC-seq fragment negative binomial dis-
tribution, (2) calculate the co-occurring motifs negative binomial distribution, and
(3) combine the p values from the two distributions (Supplementary Fig. 6).

Using all genomic matches for a given motif PWM, BMO calculates the number
of ATAC-seq fragments overlapping a region ±100 bp from every motif instance,
ignoring fragments that integrate directly in the motif coordinates. The latter step is
performed to mitigate ATAC-seq bias, as the nucleotide sequence in the motif
regions is relatively constant across features and is more subject to assay-specific
bias compared to the motif-flanking regions. BMO uses the ATAC-seq fragment
counts ±100 bp from motif instances occurring outside ATAC-seq peaks to fit a
negative binomial distribution which corresponds to the ATAC-seq background
for that motif. For computational reasons, BMO randomly selects 10,000 motif
instances outside peaks to fit the ATAC-seq background, repeats this step 100
times, and uses the average mean and overdispersion parameters for the ATAC-seq
background. This approach is 1-2 orders of magnitude faster compared to fitting
the ATAC-seq background negative binomial distribution on the entire set of motif
matches outside ATAC-seq peaks and yields identical results. BMO then calculates
the p values for the number of ATAC-seq fragments ±100 bp from every motif
match based on the ATAC-seq background distribution for that motif. Next, BMO
determines the number of additional instances of the same motif PWM within
±100 bp of every motif instance. This is used to fit a second negative binomial
representing the distribution of co-occurring motifs within ±100 bp of each motif
instance.

BMO combines the nominal p values of the ATAC-seq and co-occurring motifs
distributions by summing their Z scores54. This step yields a single p value
representing chromatin accessibility and number of co-occurring motifs. A given
motif instance will have more significant p values if it is located in accessible
chromatin and/or have many instances of the same motif nearby. Multiple testing
correction was performed using the Benjamini-Yekutieli correction procedure55.
Motif instances are reported as bound when the adjusted p value < 0.05. Fitted NB
distributions were obtained using the R packages MASS (v. 7.3-50)56 and
fitdistrplus (v. 1.0-11)57.

CENTIPEDE. For each motif, we generated a strand-specific (relative to the motif
orientation) base-pair resolution matrix encoding the number of Tn5 transposase
integration events in a region ±100 bp from each motif instance using make_-
cut_matrix with parameters -d -r 100. The cut matrix and the vector of motif PWM
scores were used as input for CENTIPEDE (v. 1.2)19. Any motif instance was
considered bound if the CENTIPEDE posterior probability was higher than 0.99.
The make_cut_matrix script was developed as part of atactk (https://github.com/
ParkerLab/atactk).

Signal-sum CENTIPEDE (ssCENTIPEDE). For this study, we developed an
alternative implementation of CENTIPEDE, called signal-sum CENTIPEDE
(ssCENTIPEDE). ssCENTIPEDE differs from CENTIPEDE in that it is blinded to
any positional patterns encoded in the Tn5 cut preferences. To run ssCENTIPEDE,
we performed CENTIPEDE predictions using as input the vector of motif PWM
scores and a vector encoding the sum of Tn5 DNA cuts in the vicinity of each motif
instance (instead of a base-pair resolution matrix encoding the positions of the
DNA cuts relative to the motif). This strategy informs the overall motif instance
accessibility while omitting any positional patterns that can be used by CEN-
TIPEDE to predict TF binding.

DNase2TF. In order to run DNase2TF (v. 1.0)12 on ATAC-seq data, we offset all
the cut points calculated using paired_end_bam2split.r by 4 bp before using them
as input to the software, which was run with default parameters. We intersected the
outputted footprints coordinates with each motif bed file and considered bound
any motif instance that intersected a footprint scored with FDR < 0.05.
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HINT-ATAC. We performed footprinting analyses with HINT-ATAC (RGT v.
1.1.1)13 using as input the broad ATAC-seq peaks and filtered BAM file from each
sample. In their methods, the authors used MACS2 narrow peaks, but we found
that they had lower performance compared to broad peaks (Supplementary Fig. 8),
so we used the latter for the analyses. We intersected the HINT output file with
each motif file and considered bound any motif instance that intersected a
footprint.

PIQ. We performed PWM scans using the pwmmatch.exact.r script included with
PIQ (v. 1.3)11. BAM files were processed with bam2rdata.r due to an error in the
code of pairedbam2rdata.r which prevented any of our BAM files from being
processed. Footprinting was performed using the pertf.r script. Because PIQ per-
forms its own PWM scans, we compared PIQ to BMO only on PWM matches that
were shared between PIQ and BMO (using bedtools intersect).

Dataset downsampling. In order to compare f-VICE calculations or TF binding
prediction methods across multiple sequencing depths, we uniformly down-
sampled BAM files using the -s flags of samtools view (v1.9), which downsamples
files while maintaining read pairs intact (this behavior is not present in version
1.3.1). These downsampled files were used as input to generate V-plots or for peak
calling and all other steps required prior to running each TF binding prediction
method.

TF binding evaluation. We defined as true positives for a given TF all motif
matches that fully intersected a ChIP-seq ENCODE conservative irreproducible
discovery rate (IDR) narrow peak in the respective sample (using the flag -f 1.0 in
bedtools intersect). We only analyzed TFs that had motifs in our database and at
least 1,000 bound motif instances. For TFs with multiple PWMs, we selected the
PWM with the highest total information. For TFs with multiple ChIP-seq
experiments, we selected the one with the highest number of bound motifs. To
evaluate methods, we calculated the area under the precision-recall curve (AUC-
PR), which informs the performance of the classifier in ranking bound and
unbound motif instances, and the F1 score, which takes into account threshold
used to call bound motif instances. We did not use areas under the receiver-
operator characteristic curve (AUC-ROC) given the highly skewed class imbalance
between bound and unbound motifs, which makes AUC-ROCs an unreliable
metric to evaluate TF binding predictions58,59. AUC-PRs were calculated using
packages ROCR (v. 1.0-7) and PRROC (v. 1.3) in R60,61. To rank predictions, we
used the -log10 adjusted p values for BMO, the number of reported tags from
HINT-ATAC, the posteriors calculated by CENTIPEDE and ssCENTIPEDE, the
-log10 p values calculated by DNase2TF, the purity score outputted by PIQ, and
MACS2 -log10 p values for motifs in peaks. F1 scores were calculated using Eq. (3)
at the following thresholds for each method: BMO adjusted p value < 0.05,
CENTIPEDE and ssCENTIPEDE posterior ≥ 0.99, any motif instance overlapping
a HINT-ATAC predicted footprint, any motif instance overlapping a DNase2TF
predicted footprint with FDR value < 0.05, and any motif instance predicted bound
by PIQ.

F1 ¼ 2 � precision � recall
precisionþ recall

ð3Þ

For the analyses in Supplementary Fig. 12, we used the signalValue column of
the ENCODE narrowPeak files to divide the data into quintiles. We used either the
top or bottom quintiles for benchmarking the TF binding prediction methods, after
removing from the analyses any motif instances that intersected the remaining
quintiles.

Mixture models for f-VICE distributions. High and low f-VICE Gaussian mixture
model distributions were fitted using the R package mixtools (v. 1.1.0)62 using as
input the normalized f-VICEs for each ATAC-seq sample, after filtering low signal
motifs where the number of total predicted bound instances for the motif was in
the lowest decile of that sample. The filtering step is to avoid potential bias for
lower f-VICE values due to sparsity. We used a posterior probability of 0.5 as the
threshold to split the high and low f-VICE distributions. We alternatively tried to
fit a single Gaussian distribution to the f-VICEs instead of a mixture model. The
Bayesian information criterion values of the Gaussian mixture models were greater
than the single Gaussian models in all nine samples analyzed in this study, indi-
cating that a mixture model was a better fit for these data. Q-Q plots show that the
Gaussian mixture model and single Gaussian model thresholds can be used to
obtain a similar separation between the low and high f-VICE motifs (Supple-
mentary Fig. 16b), which indicates the robust nature of the chosen thresholds.

FRAP/f-VICE robust regression and CTCF-Cohesin regions comparisons. To
measure the correlation between FRAP recovery times and f-VICE, we performed a
literature search of reported FRAP recovery times, which are referenced in Sup-
plementary Table 1. Robust linear regressions of f-VICE and FRAP recovery times
were performed with the rlm function of the R package MASS (v. 7.3-50)56. For
each TF with FRAP recovery times, we used the f-VICE from the motif with
highest total PWM information content in our database. f-VICEs for these motifs
were normalized using the same linear regression model described earlier, but

including all the motifs in our database (n = 1,850). For each sample, we required
that the gene corresponding to each TF had RNA-seq TPM ≥ 1 in a related tissue in
GTEx (except for pancreatic islets, where we used the RNA-seq data from20).

CTCF-Cohesin regions in GM12878 were obtained by selecting CTCF motifs
that intersected conservative IDR GM12878 CTCF ChIP-seq peaks (ENCODE
accessions ENCFF096AKZ, ENCFF710VEH, and ENCFF963PJY) and the
merged GM1287 RAD21 optimal IDR peaks (ENCODE accessions
ENCFF753RGL and ENCFF002CPK). CTCF regions without cohesin were
obtained similarly as above, but removing CTCF motifs that intersected any of
the GM12878 RAD21 ChIP-seq peaks. All operations were performed with
bedtools (v. 2.26.0). The choice of optimal IDR peaks for RAD21 aimed to
increase the number of RAD21 peaks are included in the CTCF-cohesin+

regions, therefore increasing the stringency of the comparisons. We performed a
quantile-based downsampling approach to make the CTCF/cohesin+ and CTCF/
cohesin- regions comparable regarding ChIP-seq signal, ATAC-seq signal, and
FIMO motif scores. This was done by selecting all CTCF motifs encompassing
the CTCF/cohesin+ and CTCF/cohesin- regions and, for each feature (ATAC-
seq fragments, ChIP-seq signal, or motif scores), calculating quantiles (n = 20).
Then, for every quantile, we counted the number of motifs belonging to the
CTCF/cohesin+ and CTCF/cohesin- regions and randomly downsampled the
group with more motifs instances to have the same number of motifs as the
other in that quantile. This ensured that both regions had the same number of
motifs and comparable distributions of ATAC and ChIP signals and motif scores
(as an example of this normalization, refer to Supplementary Fig. 18a).

Pseudocode. for feature in {ATAC, ChIP, PWM}:
split feature in 20 quantiles
for quantile in {1..20}:

set1 = CTCF/cohesin+ ∈ featurequantile
set2 = CTCF/cohesin− ∈ featurequantile
smallest_set = smallest (set1, set2)
largest_set = largest (set1, set2)
n = size (smallest_set)
randomly select n items from largest_set

For the main figures, we used CTCF and RAD21 experiments ENCFF963PJY
and ENCFF753CPK, respectively (the same comparisons using the other CTCF/
RAD21 datasets are presented in Supplementary Fig. 18). The quantity labeled as
relative chromatin information enrichment in Fig. 2b corresponds to the sum of
positive chromatin information enrichment (above dashed line) in each V-plot,
divided by the CTCF/cohesin- value for normalization.

Clustering. Cross-tissue clustering and dendrograms (Fig. 3a) were calculated
using the Euclidean distances of the pairwise Spearman correlation of f-VICEs
across samples. Normalized f-VICE values were converted to motif-wise Z scores
before clustering.

Nucleosome occupancy analyses. We used NucleoATAC (v. 0.3.4)26 to estimate
the nucleosome positions in Fig. 2e. Briefly, we ran the software with default
parameters using as input the GM12878 ATAC-seq data generated in this study.
We calculated the aggregate density of nucleosome midpoints positions relative to
the BMO predicted bound motif coordinates for each motif (see Supplementary
Fig. 20g for an example density plot). We then converted the nucleosome density
values into Z-scores, binned the motifs into f-VICE quintiles, and calculated the
average nucleosome density Z-score per f-VICE quintile (Supplementary Fig. 20h).

Paired-end MNase unmapped reads from the lymphoblastoid cell line
GM19238 were obtained from SRA, under accession SRR45248363. Reads were
mapped to the hg19 reference using BWA mem and processed in an identical
fashion to the ATAC-seq data, with an additional step to retain only sequenced
fragments of length 147 ± 2 bp, therefore enriching for mononucleosomal
fragments. The MNase aggregate signal plots were generated using ngsplot (github.
com/shenlab-sinai/ngsplot; v. 2.63). For each motif plot, we used as input the BED
files corresponding to the regions that were used to generate the corresponding V-
plot. Motif MNase Z-scores were calculated using the MNase reads per million
mapped reads (RPM) signal tracks outputted by ngsplot and Eq. (4). MNase/CIE
correlations were calculated using positions ≤150 bp from the motif center.

ZðxÞ ¼ x �meanðXÞ
sdðXÞ ð4Þ

Chromatin information enrichment asymmetry. Chromatin information
enrichment asymmetry was calculated as the log2 ratio between the positive
information content enrichment in the left and right of the motif center. To
estimate significance, we used a permutation test where each fragment midpoint
had a 50% chance of changing its direction relative to the motif while keeping the
same distance (i.e. multiply its x-axis value by −1). We calculated the asymmetry of
the permuted V-plots (n = 100,000) to generate a null distribution of asymmetry.
Because the null was normally distributed based on Kolmogorov-Smirnof and
Shapiro normality tests, we were able to estimate p values beyond the number of
permutations by calculating the observed asymmetry Z-score relative to the null
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distribution. To calculate the nearest TSS directionality bias, we counted the
number of active protein-coding TSS (GENCODE V19) (determined with the
presence of LCL Cap analysis gene expression (CAGE) tag clusters, described in the
next session) on the left and right sides of the motif and calculated the log2 ratio of
the two sides. For the proximal and distal motif V-plots, we restricted our analyses
to motifs occurring ≤1 kb or ≥10 kb from the nearest CAGE-supported TSS of any
type (e.g. lincRNAs, pseudogenes; GENCODE V19). Enrichments of the plots in
Fig. 2f were calculated by randomly permuting the signal of the points in the x- and
y-axis (n = 10,000 permutations).

CAGE tag cluster identification. We downloaded CAGE data (fastq files) for 154
LCL samples64 and mapped to hg19 using STAR (version 2.5.4b; default para-
meters)65 and pruned the mapped reads to high quality reads (using samtools view
v. 1.3.1; options -F 4 -q 255). We used the paralu method66 to identify clusters of
CAGE start sites (CAGE tag clusters). We called TCs in each individual sample
using raw tag counts, requiring at least 2 tags at each included start site and
allowing single base-pair tag clusters (‘singletons’) if supported by >2 tags. We then
merged the tag clusters on each strand across samples. For each resulting segment,
we calculated the number of LCL samples in which TCs overlapped the segment.
We included the segment in the consensus TCs set if it was supported by inde-
pendent TCs in at least 10 individual LCL samples, resulting in n = 10 tag clusters.
We then filtered out regions blacklisted by the ENCODE consortium due to poor
mappability using bedtools (v. 2.26.0) to obtain the final set of LCL tag cluster
regions.

DNA binding domain enrichments. DNA binding domains (DBD) enrichments
were performed using a f-VICE rank sum permutation test. We assigned DBDs to
the non-redundant motifs that mapped between our database and the one reported
in67, which has manually curated DBD-motif assignments. In order to map motifs
between databases, we used tomtom68 and selected motif matches with p-value <
0.05 after a conservative Bonferroni adjustment using all comparisons as
denominator (i.e. number of motifs in our database times the number of motifs in
the queried database), which yielded high-confidence DBD assignments for 402 of
540 motifs. We used the f-VICE rank from each motif to calculate the f-VICE rank
sum the DBD and compared the observed value to a null distribution of 100,000
rank sums obtained from randomly permuting gene labels. This approach ensures
that all the DBD retain their sizes during each permutation. We retained DBDs
with at least 5 motifs and calculated the f-VICE enrichments for each DBD using
the log2 of observed f-VICE rank sum divided by the median of the null. FDR was
calculated separately per sample, using the empirical p-value from the 100,000
permutations. We simultaneously performed a similar analysis using InterPro
protein domains (v. 72)69 (Supplementary Fig. 23). In order to assign domains to
motifs, we first mapped our motifs to CIS-BP database (Build 1.02)70, which has
high-confidence motif-gene assignments, and retained genes that mapped to a
single motif using the same approach described above. Each gene was then linked
to a motif f-VICE score (n = 475) and we only retained domains with at least 5
genes after motif-gene mapping. Permutation and enrichments were calculated
identically as described above.

cis-eQTL enrichments. Feature enrichments in eQTLs were calculated using
GREGOR (v. 1.2.1)71 and QTL tools fenrich (v. 1.1)72. We used the lymphoblastoid
cell line (LCL) eQTLs sets from Geuvadis32 and GTEX31 (FDR < 5%). GREGOR
background estimations were performed using SNPs with LD 0.99 for eQTL, with a
maximum distance of 1Mb from the variants of interest. Variants used as input for
GREGOR were pruned to have maximum linkage disequilibrium r2 of 0.8 with any
other variant. For fenrich, we used the most significant SNP per gene as input.

ATAC-seq allelic imbalance analyses. To determine SNP allelic bias in ATAC-
seq data, we used the publicly available data from Buenrostro et al., listed in
Supplementary Data 1, the Parker Lab GM12878 sample discussed here, and the
ABCU196 islet sample20. For GM12878 data, adapters were trimmed using cta (v.
0.1.2), and reads mapped to hg19 using bwa mem (default options except for the
-M flag). Bam files were filtered to high-quality autosomal read pairs using sam-
tools view (v. 1.3.1) with flags -f 3 -F 4 -F 8 -F 256 -F 2048 -q 30. WASP (v. 0.2.1,
commit 5a52185; python version 2.7)73 was used to diminish reference bias; for
remapping the reads as part of the WASP pipeline, we used the same mapping and
filtering parameters described above for the initial mapping and filtering. Dupli-
cates were removed using WASP’s rmdup_pe.py script. We used the phased
GM12878 VCF file downloaded from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/
release/NA12878_HG001/NISTv3.3.1/GRCh37/HG001_GRCh37_GIAB_high
conf_CG-IllFB-IllGATKHC-Ion-10X-SOLID_CHROM1-X_v.3.3.1_highconf_
phased.vcf.gz. To avoid double-counting alleles, overlapping read pairs were clip-
ped using bamUtil clipOverlap (v. 1.0.14; http://genome.sph.umich.edu/wiki/
BamUtil:_clipOverlap). For the Buenrostro et al. data, the bam files from the
samples in Supplementary Data 1 were then merged to create a single GM12878
bam file using samtools merge (v. 1.3.1). For each heterozygous autosomal SNP, we
then counted the number of reads containing each allele, using only bases with base
quality of at least 20. We used a two-tailed binomial test that accounted for
reference allele bias to evaluate the significance of the allelic bias at each SNP (as

described in20; when calculating the expected fracRef, SNPs in the top 25th per-
centile of read coverage were downsampled to the 50th percentile coverage and
SNPs with coverage less than 10 were excluded). When performing the binomial
test, we downsampled the coverage at each SNP such that each SNP had coverage
= 20 (to reduce coverage-related biases). The islet ATAC-seq data was processed
and tested as described in20, except that we also downsampled coverage at each
SNP to 20 reads when performing the binomial test. We did not test SNPs in
regions blacklisted by the ENCODE Consortium because of poor mappability
(wgEncodeDacMapabilityConsensusExcludable.bed and wgEncodeDukeMapabil-
ityRegionsExcludable.bed). We retained for downstream analyses all loci with
nominally significant binomial p values (p < 0.05) and at least 2 reads (10%)
mapped to any allele. After selecting loci that intersected at least one predicted
bound 6-mer (see next section), we obtained 257, 1,449, and 15,802 imbalanced
SNPs for the two GM12878 datasets (this study and Buenrostro) and pancreatic
islets, respectively.

6-mer f-VICE calculations. We generated a list of all possible DNA 6-mers (n =
2016 after filtering reverse complements) and scanned the hg19 reference gen-
ome to obtain the coordinates for all their corresponding matches. Similarly to
motifs, we only retained 6-mer matches that were in mappable regions and did
not intersect blacklisted regions. For each set of 6-mer matches, we used BMO to
determine the subset that was predicted bound. We calculated the normalized f-
VICE for each 6-mer using exactly the same steps as in the motifs, including
using linear regression to control for chromatin accessibility. For each 6-mer, we
determined its immediate neighbors in sequence space (every 6-mer that differed
by exactly 1 letter; Hamming distance = 1) and calculated the f-VICE differences
between each of the neighbors relative to the original 6-mer. We then calculated
the Euclidean distance between the neighbors with highest and lowest f-VICE to
determine what was the f-VICE range associated with that 6-mer.

For each locus with significant allelic imbalance, we calculated the f-VICE
associated with all six 6-mer instances overlapping with each allele. For each
sample, we determined the f-VICE decile changes associated with every SNP tested
for allelic imbalance and determined the matrix of the log2 ratios of each possible
decile change in the imbalanced versus all tested SNPs. To test for significance, we
devised a permutation test where all symmetrical pairs of f-VICE deciles, xij and xji
for i; j 2 f1; 2; ¼ ; 10g, had a 50% chance of switching their log2-ratio values in
each permutation (n = 1,000,000 permutations).

TSS V-plots. To generate the GM12878 TSS V-plots in Supplementary Fig. 28, we
used all the protein coding genes (GENCODE V19) in the highest quintile of gene
expression based on GTEx data (EBV-transformed lymphocytes). We only selected
TSS instances that were more than 500 bp away from each other.

LS-GKM. The V-plots and CIE patterns in Supplementary Fig. 29e-f were obtained
the top-scoring 11-mers from LS-GKM (commit 164a4a4)74 calculated using the
ATAC-seq peaks from the GM12878 sample generated in this study. We analyzed
all 11-mers with scores ≥ 1 (n = 1,248) based on the inflection of the score
distribution of all 11-mers with positive scores (Supplementary Fig. 29f). Because of
the low representation of 11-mers in the genome, which precluded the use of BMO
to predict bound 11-mers, we instead generated V-plots from all the 11-mer
instances overlapping the GM12878 ATAC-seq peaks used as input for LS-GKM.
CIE Z-score clusters were obtained using the R k-means implementation, using
parameters k = 5 and 1,000 random starts.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
GM12878 ATAC-seq data is available at GEO under accession “GSE135074”. All
processed data are available at https://doi.org/10.5281/zenodo.3478583. All other relevant
data supporting the key findings of this study are available within the article and its
Supplementary Information files or from the corresponding author upon reasonable
request.

Publicly available datasets used in this study (detailed in Supplementary Data 1):
ATAC-seq datasets: SRX1497362, SRX1497365, SRX2717887, SRX2717888, E-MTAB-

7543 (rep 3), E-MTAB-7543 (rep 1), SRX298000, SRX2768920, SRX2768919,
SRX2768918, SRX2768917, SRX298001, SRX298002, SRX298003, SRX298004,
SRX298005, and SRX298006.

MNase-seq datasets: SRR452483
ChIP-seq datasets (GM12878): ENCFF784PEF, ENCFF794KET, ENCFF133GHG,

ENCFF969FVF, ENCFF748WOQ, ENCFF006MIL, ENCFF096AKZ, ENCFF850MAC,
ENCFF382VEJ, ENCFF880NTF, ENCFF476RII, ENCFF565SXH, ENCFF742XOI,
ENCFF662JYS, ENCFF343VAG, ENCFF337XDI, ENCFF708VKT, ENCFF762AZG,
ENCFF112CKJ, ENCFF407JNK, ENCFF288RYL, ENCFF811FYS, ENCFF006MAM,
ENCFF138CXP, ENCFF861YUL, ENCFF359EFT, ENCFF269LZJ, ENCFF739VBA,
ENCFF363BLT, ENCFF969EMZ, ENCFF618KHI, ENCFF936XYD, ENCFF147DQK,
ENCFF040ZUY, ENCFF069KRU, ENCFF515HWO, ENCFF759PVA, ENCFF817AOQ,
ENCFF294BZJ, ENCFF369JYP, and ENCFF229WZB.
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ChIP-seq datasets (HepG2): ENCFF841GUR, ENCFF215TZZ, ENCFF510UKU,
ENCFF614HYY, ENCFF502XEV, ENCFF467TLM, ENCFF419CGD, ENCFF996YOX,
ENCFF329MOF, ENCFF786XDZ, ENCFF066MGX, ENCFF811CMJ, ENCFF392RQB,
ENCFF653JVV, ENCFF816PYF, ENCFF860ZQP, ENCFF105NJB, ENCFF722GFS,
ENCFF888ZAZ, ENCFF081YHC, ENCFF682HTY, ENCFF421ZII, ENCFF044GIB,
ENCFF222YCT, ENCFF267YOX, ENCFF916SBW, ENCFF596XCU, ENCFF025GBN,
ENCFF645NAR, ENCFF814UDQ, ENCFF762QHA, ENCFF754RXP, ENCFF634BXB,
ENCFF266HXY, ENCFF249FDQ, ENCFF773PSQ, ENCFF487OSZ, ENCFF920ITW,
ENCFF489SNI, ENCFF180BOV, ENCFF618IBW, ENCFF076BOS, ENCFF859UHG,
ENCFF645MNT, ENCFF907PFI, ENCFF003NDR, ENCFF315DYP, ENCFF942TIQ,
ENCFF164KYP, ENCFF810LYT, ENCFF138XKG, ENCFF263VIF, ENCFF568BTO,
ENCFF834ACA, ENCFF016NAS, ENCFF962DEO, ENCFF858QVH, ENCFF363GGS,
and ENCFF004UHW.
A reporting summary for this Article is available as a Supplementary Information

file. Source data are provided with this paper.

Code availability
Code and scripts used for the analyses performed in this study are publicly available at
http://github.com/ParkerLab/chromatin_information75. BMO and atactk are publically
available at http://github.com/ParkerLab/BMO76 and http://github.com/ParkerLab/
atactk77.
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