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Abstract 

 
Since its initial discovery in Drosophila nearly forty years ago, the Hedgehog (HH) 

signaling pathway has been demonstrated to directs certain aspects of development and 

maintenance of nearly every organ system across invertebrate, vertebrate, and mammalian animal 

models. In summary, HH ligands binds to the receptor Patched1 (PTCH1) to relieve the inhibition 

on Smoothened (SMO), promoting activation of HH target genes through the family of GLI 

transcription factors. The cerebellum relies on proper HH signaling to control the size and 

complexity of the tissue. One of the HH ligands, Sonic Hedgehog (SHH) promotes proliferation 

of cerebellar granule neural progenitors (CGNPs), which gives rise to cerebellar granule neurons 

(CGNs), the most abundant cell type in the central nervous system. 

A key organelle that regulates HH signaling is the primary cilium, a microtubule-based 

projection from the cell membrane that serves as signaling centers for multiple pathways, including 

the HH pathway. Several HH pathway components localize to the primary cilia, and cilia are 

required for proper GLI processing. Kinesin-2 motor proteins are responsible for anterograde 

transport of cargo through primary cilia. There are three motor complexes in the kinesin-2 family: 

heterodimeric motor KIF3A/KIF3B, homodimeric KIF17, and heterodimeric KIF3A/KIF3C. In 

mice, KIF3A/KIF3B is required for ciliogenesis and therefore proper HH signaling. Kif3a deletion 

results in an inability to respond to SHH ligand, leading to a reduction in cerebellar granule neural 

progenitors (CGNP) proliferation. KIF17 and KIF3C do not have clear roles in mammalian 

embryogenesis or ciliogenesis, so these motors are known as accessory kinesin-2 motors. 

Furthermore, the role(s) of accessory kinesin-2 motors in HH signaling transduction or cerebellar 
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development are unknown. The goal of this dissertation is to investigate the contribution of 

accessory kinesin-2 motors in HH-dependent cerebellar development. 

In chapter 2, I investigate the role of homodimeric KIF17 in cerebellar development. Kif17 

expression was detected in SHH-producing Purkinje cells and HH-responsive CGNPs. Deletion of 

Kif17 in Purkinje cells phenocopies germline Kif17 deletion – reduced EGL thickness due to 

decreased CGNP proliferation and reduced HH target gene expression. Reduced levels of SHH 

protein are observed within Purkinje cells in Kif17-/- cerebella, demonstrating KIF17 is required in 

Purkinje cells to promote CGNP proliferation. These data suggest reduced SHH protein levels in 

Kif17-/- cerebella results in reduced HH signaling levels and decreased CGNP proliferation, 

resulting in cerebellar hypoplasia. On the contrary, CGNP-specific Kif17 deletion increased HH 

target gene expression and EGL thickness due to increased CGNP proliferation. Levels of GLI3 

repressor are significantly reduced with Kif17 deletion, suggesting KIF17 additionally restricts 

CGNP proliferation in a cell autonomous fashion. This work identifies dual and opposing roles for 

KIF17 in HH-dependent cerebellar development– first, as a positive regulator of HH signaling 

through regulation of SHH protein levels within Purkinje cells, and second, as a negative regulator 

of HH signaling through regulation of GLI transcription factors in CGNPs. 

In chapter 3, I explored the contribution of KIF3C to the postnatal cerebellum. Differing 

from Kif17, Kif3c expression was detected ubiquitously in the cerebellum. Germline Kif3c mutants 

displayed cerebellar hypoplasia, albeit less severe than Kif17 deletion animals. Notably, even with 

reduced CGNP proliferation, HH signaling remains intact in Kif3c-/- cerebella. In addition to 

decreased expression of Notch target, Hes1, we observed abnormal patterning of Bergmann glia 

in Kif3c mutants. Collectively, these data demonstrate KIF3C’s requirement in the cerebellum and 

suggest a novel role in regulating Notch signaling during development. Collectively, this 
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dissertation demonstrates essential roles for both KIF17 and KIF3C in cerebellar development. 

First, I identified dual and opposing roles for KIF17 in HH signaling at the level of SHH ligand 

and GLI processing, and second, I explored a role for KIF3C in Bergmann glia patterning. 
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Chapter 1 Introduction 

1.1 Abstract 

The cerebellum is part of the central nervous system, classically known for its roles in 

coordination and movement. Recent work has uncovered an important role for the cerebellum in 

higher level processes such as cognitive function, including attention, language, and regulating the 

fear response. Dysfunction in development or homeostasis can result in diseases such as cerebellar 

hypoplasia, medulloblastoma, and cerebellar ataxia. Elucidating the molecular mechanisms of 

proper cerebellar development is vital for developing treatments for developmental cerebellar 

defects and adult cerebellar diseases in the future. A better understanding of normal developmental 

processes can be applied to investigating when these processes go awry. One signaling pathway 

demonstrated to be essential in cerebellar development and disease is the Hedgehog (HH) signaling 

pathway. In this chapter, I will review the known molecular mechanisms of HH signaling, with an 

emphasis on cerebellar development, including 1) an overview of HH signal transduction, 2) the 

mechanisms regulating HH ligand production, processing and release, 3) transcriptional control of 

HH pathway activity through the regulation of GLI processing and function, 4) primary cilia and 

kinesin-2 motors as regulators of HH pathway activity, and 5) the role of HH signaling specifically 

in cerebellar development. This introduction will also provide the rationale for my doctoral work 

investigating accessory kinesin-2 motor functions in HH-dependent cerebellar development. 
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1.2 HH Pathway Overview 

Hedgehog (HH) signaling was initially discovered through Drosophila genetic screens 

over forty years ago (Nusslein-Volhard and Wieschaus, 1980). This screen identified the hedgehog 

(hh) gene, which was subsequently demonstrated to encode for a secreted ligand in the pathway 

(Lee et al., 1992); hh mutations result in segmental patterning defects in Drosophila larvae 

(Nusslein-Volhard and Wieschaus, 1980). Molecular characterization discovered that Hh provides 

patterning cues to neighboring cells in Drosophila larvae (Lee et al., 1992; Mohler and Vani, 1992; 

Tabata et al., 1992; Taylor et al., 1993). Hedgehog ligands are evolutionarily conserved and 

provide segmental and body plan identity for organisms ranging from invertebrates to vertebrates 

[reviewed in (Ingham et al., 2011)]. Importantly, Sonic Hedgehog (SHH) has been demonstrated 

to be a key mitogen in the developing cerebellum (Dahmane and Ruiz i Altaba, 1999; Lewis et al., 

2004; Wallace, 1999; Wechsler-Reya and Scott, 1999). 

 The main receptor for HH ligands is Patched (PTC) in Drosophila, Patched1 (PTCH1) in 

mammals, a twelve-pass transmembrane protein (Hooper and Scott, 1989; Marigo et al., 1996; 

Nakano et al., 1989). In the absence of Hh/HH ligand (Figure 1.1, left), PTC/PTCH1 inhibits a G 

protein-coupled like receptor Smoothened [SMO, (Chen and Struhl, 1996; Marigo and Tabin, 

1996; Stone et al., 1996)]. Additionally, proper cell surface regulation of HH pathway activity is 

dependent on three co-receptors – GAS1, CDON and BOC (Allen et al., 2011; Allen et al., 2007; 

Cobourne et al., 2004; Lee et al., 2001a; Lum et al., 2003; Martinelli and Fan, 2007; Tenzen et al., 

2006; Yao et al., 2006). Two of the HH co-receptors, BOC and GAS1, have been demonstrated to 

be essential for proper HH signal transduction in the developing cerebellum (Izzi et al., 2011). 

When HH ligand is present (Figure 1.1, right), it binds to PTC/PTCH1, relieving the inhibition on 

SMO, resulting in a signal transduction cascade that leads to modulation of the HH transcriptional 
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effectors, Cubitus interruptus (CI, Drosophila) and glioma-associated oncogene (GLI, mammals) 

zinc finger transcription factors (Alexandre et al., 1996; Taipale et al., 2002). In the absence of 

ligand, Ci/GLI transcription factors are cleaved to form a transcriptional repressor, inhibiting HH 

target gene expression. In the presence of HH ligand, CI/GLIs are post-translationally modified to 

form transcriptional activators, inducing HH target gene expression [(Alexandre et al., 1996; Chen 

and Struhl, 1996; Taipale et al., 2002); reviewed in (Aberger and Ruiz i Altaba, 2014; Falkenstein 

and Vokes, 2014; Huangfu and Anderson, 2006; Hui and Angers, 2011)]. Notably, Gli2 and Gli3 

are required for proper cerebellar development (Blaess et al., 2006; Blaess et al., 2008; Corrales et 

al., 2006; Corrales et al., 2004). 

One aspect of vertebrate HH signaling that distinguishes it from flies is the requirement for 

the primary cilium, a microtubule-based projection from the cell surface. Once thought to be a 

vestigial organelle, the primary cilium has been demonstrated to be necessary for proper HH signal 

transduction [(Huangfu et al., 2003); reviewed in (Bangs and Anderson, 2017; Goetz and 

Anderson, 2010)]. Several pathway components localize to the primary cilium, and the absence of 

primary cilia leads to dysregulated HH signaling across several developing tissues and organs 

(Corbit et al., 2005; Haycraft et al., 2005; Liu et al., 2005; Rohatgi et al., 2007). Importantly, loss 

of primary cilia during cerebellar development results in an inability to respond to SHH ligand, 

leading to a reduction in cerebellar granule neural progenitors (CGNP) proliferation (Spassky et 

al., 2008). Ciliogenesis and ciliary trafficking is dependent on the kinesin-2 family of motors 

(Figure 1.2A-B), specifically the heterodimeric motor complex KIF3A/KIF3B. Loss of either one 

of these subunits in mice results in defective ciliogenesis (Nonaka et al., 1998; Takeda et al., 1999). 

In addition to KIF3A/KIF3B motor complex, there are two accessory kinesin-2 motors, 

heterodimeric KIF3A/KIF3C and homodimeric KIF17 [reviewed in (Hirokawa et al., 2009)]. Loss 
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of either accessory motor in mice does not result in embryonic lethality or any gross defects in 

ciliogenesis (Yang et al., 2001; Yin et al., 2011). For my dissertation, I will focus on the accessory 

kinesin-2 motors and investigate the potential contributions of these motors to HH signal 

transduction within postnatal cerebellar development. 

1.3 HH Ligands 

1.3.1 Translation and Intracellular Processing 

In mammals, there are three different HH ligands, Sonic Hedgehog (Shh), Indian Hedgehog 

(Ihh) and Desert Hedgehog (Dhh) (Echelard et al., 1993; Krauss et al., 1993; Riddle et al., 1993). 

Expression analyses revealed some overlapping areas of expression of these ligands as well as 

unique areas of expression, suggesting some non-redundant functions of the three ligands (Bitgood 

and McMahon, 1995). The most studied HH ligand is Shh, which has well-described roles in neural 

tube specification and digit specification (Echelard et al., 1993; Riddle et al., 1993; Roelink et al., 

1994; Roelink et al., 1995). The cerebellum also requires Shh for proper levels of HH signaling to 

drive postnatal expansion of CGNPs (Lewis et al., 2004), as SHH promotes proliferation of 

CGNPs (Dahmane and Ruiz i Altaba, 1999; Wechsler-Reya and Scott, 1999). During ossification, 

Ihh functions in chondrogenesis and osteogenesis (Chung et al., 2001; Vortkamp et al., 1996), 

while Dhh is vital for spermatogenesis (Bitgood et al., 1996; Clark et al., 2000) and peripheral 

nerve ensheathment (Parmantier et al., 1999). Importantly, Shh is the only ligand expressed in the 

cerebellum; Ihh and Dhh are not expressed in the cerebellum (Traiffort et al., 1998). 

All Hedgehog ligands are initially translated as a 45 kDa precursor including an N-terminal 

signal sequence, N-terminal signaling molecule and C-terminal domain (Figure 1.3). The 

polypeptide undergoes autocatalytic cleavage to generate an N-terminal 19 kDa active signaling 

component and a C-terminal 25 kDa fragment (Lee et al., 1994; Porter et al., 1995). The 
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autocleavage process results in cholesterol modification to the C-terminus of the active N-terminal 

fragment due to the cholesterol transferase activity of the 25 kDa C-terminal fragment (Porter et 

al., 1996a; Porter et al., 1996b). Full length HH retains a significant level of activity (Tokhunts et 

al., 2010), while the C-terminal fragment is not sufficient to drive a HH gain-of-function phenotype 

(Porter et al., 1995). In the absence of the C-terminal domain, the N-terminal signaling fragment 

was able to travel further extracellularly in the imaginal discs of Drosophila (Porter et al., 1996a), 

suggesting the C-terminus and cholesterol modification are required for proper localization of the 

N-terminal fragment. Furthermore, within the developing Drosophila retina, the C-terminal 

domain has been shown to drive localization of the N-terminal ligand to the axons and growth 

cones of neurons (Chu et al., 2006). Cleaved N-HH is retained in the retina, while the full length 

HH was transported down axons (Daniele et al., 2017). In mice, the cholesterol modification is 

required for the proper range of SHH (Feng et al., 2004; Lewis et al., 2001; Li et al., 2006). In 

NIH/3T3 and 293T cells, the C-terminal fragment is degraded within the ER (Chen et al., 2011). 

It remains to be investigated if the C-terminal domain is degraded in the ER or required for 

trafficking or localization of the ligand in cells that endogenously produce HH ligands in mice. 

Another post-translation modification of HH ligands is palmitoylation (Pepinsky et al., 

1998). Identified in Drosophila, Skinny Hedgehog (Ski), a transmembrane acyltransferase, is 

responsible for palmitoylating the N-terminus of the active signaling fragment (Amanai and Jiang, 

2001; Chamoun et al., 2001; Micchelli et al., 2002). Loss of the palmitoylate, either through 

mutating the palmitoylate site or through loss of ski, results in a reduction of activity in HH ligand. 

However, this was not due to a change in HH abundance, localization, or cholesterol modification 

(Chamoun et al., 2001; Micchelli et al., 2002; Pepinsky et al., 1998). In Drosophila,  expression 

of HH lacking palmitoylate acts as a dominant negative over the endogenous HH ligand (Lee et 
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al., 2001b). In mammals, mutation of the palmitoylation site resulted in a less active SHH ligand 

in ventralizing the embryonic mouse forebrain but could induce a polydactyl phenotype in the 

developing limb (Kohtz et al., 2001; Lee et al., 2001b). Deletion of mouse homologue 

acetyltransferase Hhat revealed loss of palmitoylate affects the multimeric complex of SHH, 

therefore affecting long-range HH signaling (Chen et al., 2004). Importantly, full length SHH can 

be palmitoylated, suggesting autocleavage and cholesterol modification is not required for 

palmitoylation (Chen et al., 2004). Collectively, these data propose a model where sorting of SHH 

is dependent on whether SHH remains full length or processed (Figure 1.3). 

 

1.3.2 Extracellular Processing 

DISP, initially identified through a Drosophila genetic screen, is a twelve-pass 

transmembrane protein from the resistance-nodulation division (RND) transporter family. DISP 

mediates the release of dually lipidated HH ligand from HH-producing cells (Burke et al., 1999; 

Caspary et al., 2002; Kawakami et al., 2002; Ma et al., 2002; Tian et al., 2005a). Loss of disp in 

Drosophila results in segment polarity phenotypes consistent with a HH loss-of-function 

phenotype; specifically, disp mutation results in an accumulation of HH ligand within HH-

producing cells (Burke et al., 1999). Importantly, this effect was not observed in HH protein 

lacking the cholesterol modification (Burke et al., 1999; Tian et al., 2005a). In zebrafish, loss of 

disp1 disrupts HH signaling through its essential role in secretion of lipid-modified HH ligand 

(Nakano et al., 2004). In mice, there are two DISP homologues, DISP1 and DISP2 (Caspary et al., 

2002; Kawakami et al., 2002; Ma et al., 2002). In mice, loss of Disp1 loss results in embryonic 

lethality with left-right asymmetry and defects the face, forebrain, and neural tube, phenocopying 

Smo mutants  (Caspary et al., 2002; Kawakami et al., 2002; Ma et al., 2002). Importantly, 
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conditional deletion of Disp1 in Shh-expressing cells results in midline and neural tube patterning 

defects, confirming DISP1 is required in HH-producing cells (Tian et al., 2005a). Unlike Disp1, 

Disp2 is not expressed embryonically, and overexpression of DISP2 does not increase SHH export 

(Ma et al., 2002). With its sterol sensing domain, DISP1 is structurally similar to PTCH1, the HH 

ligand receptor (Burke et al., 1999; Caspary et al., 2002). The sterol sensing domain is important 

for DISP1 activity on HH ligand in a cholesterol-dependent manner (Creanga et al., 2012; Ma et 

al., 2002; Tukachinsky et al., 2012). Another important domain for DISP1 function is its Furin 

cleavage site, which has been demonstrated to be essential for proper SHH release (Stewart et al., 

2018). While further studies are required to elucidate the exact molecular mechanism of DISP, 

another pathway component has been demonstrated to be required for proper HH ligand activity – 

SCUBE2 [signal peptide, CUB domain, EGF (epidermal growth factor)-like protein 2] (Creanga 

et al., 2012; Hollway et al., 2006; Kawakami et al., 2005; Tukachinsky et al., 2012; Woods and 

Talbot, 2005). 

SCUBE2 was initially identified in mutagenic screen in zebrafish (van Eeden et al., 1996). 

Scube2/youty97 mutants displayed classic HH defects, such as myotome and neural tube defects 

(Hollway et al., 2006; Kawakami et al., 2005; van Eeden et al., 1996; Woods and Talbot, 2005).  

SCUBE2 is conserved from zebrafish to mice and humans but interestingly not in Drosophila 

(Grimmond et al., 2000; Grimmond et al., 2001; Hollway et al., 2006; Kawakami et al., 2005; 

Woods and Talbot, 2005). Loss of Scube2 in mice causes a defect in endochondral bone formation, 

a phenotype associated with HH loss-of-function (Lin et al., 2015), but surprisingly no other HH 

phenotypes have been reported despite its wide expression during embryogenesis (Grimmond et 

al., 2001; Kawakami et al., 2005; Woods and Talbot, 2005). Notably, Scube2 deletion in the 

cerebellum has not been examined. SCUBE2 belongs to a family of proteins which also contains 
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SCUBE1 and SCUBE3. In zebrafish, loss of all SCUBE family members results in a total lack of 

HH activity (Johnson et al., 2012), while compound mutants of Scube in mice have not been 

published. However, recent work demonstrate mice with Scube3 deletion are viable, but they 

display impaired endochondral bone formation and chondrogenesis, similar to Scube2-/- mice (Lin 

et al., 2021; Lin et al., 2015). Mutations in SCUBE3 in humans results in reduced growth, skeletal 

features, distinctive craniofacial appearance, and dental anomalies through modulating BMP 

signaling (Lin et al., 2021). In addition, human SCUBE1 has been demonstrated to promote BMP 

signaling in vitro (Liao et al., 2016). 

It is thought that SCUBE2 is responsible for long-range HH signaling through its 

interaction with cholesterol modified HH ligands and increasing its solubility in the extracellular 

environment (Creanga et al., 2012; Hollway et al., 2006; Kawakami et al., 2005; Tukachinsky et 

al., 2012; Woods and Talbot, 2005). SCUBE2 has been demonstrated to interact with SHH and 

PTCH1 within lipid rafts (Tsai et al., 2009), but there is conflicting evidence whether palmityl 

moiety on HH ligands is required for SCUBE2-mediated release (Creanga et al., 2012; 

Tukachinsky et al., 2012). SCUBE proteins contain nine EGF repeats, followed by a spacer region 

then three cysteine-rich motifs and a CUB domain at the C-terminus (Hollway et al., 2006; 

Kawakami et al., 2005; Tsai et al., 2009). Both spacer regions and the cysteine-rich motifs are 

required for proper localization in SCUBE2 and SCUBE1 (Liao et al., 2016; Tsai et al., 2009). 

Deletion of the cysteine-rich motifs and CUB domain (Scube2ΔCUB) impairs its ability to secrete 

HH ligand (Tukachinsky et al., 2012). Altogether, it is believed SHH secretion is accomplished 

through the sterol sensing domain of DISP1 and transfers it to SCUBE2 in a cholesterol-dependent 

manner (Creanga et al., 2012; Tukachinsky et al., 2012). 
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1.4 GLI Transcription Factors 

1.4.1 Overlapping and distinct functions of GLI proteins 

Initially, Drosophila Ci was demonstrated as both a transcriptional repressor and activator 

(Dominguez et al., 1996). In mice, activator and repressor functions are split between three proteins 

– GLI1, GLI2 and GLI3 (Figure 1.4). Initial observations describe while GLI1 only contained an 

activator domain, GLI3 contained both activator and repressor domains (Dai et al., 1999). GLI3 

activity is dependent on SHH ligand; in the absence of SHH, GLI3 is processed as a repressor. In 

the presence of SHH ligand, GLI3 can bind to Gli1 locus, suggesting it was also a target of the 

pathway (Dai et al., 1999). Follow up examination revealed activator and repressor domains were 

present in GLI2 as well, and deletion of the repressor domains increased in activator function 

(Sasaki et al., 1999). GLI2 is most often described as an activator, while GLI3 is primarily a 

transcriptional repressor (Ding et al., 1998; Sasaki et al., 1997; Sasaki et al., 1999). In Gli2-/-;Gli3-

/- compound mutants, Gli1 expression is not detected, suggesting GLI1 acts as a positive feedback 

loop to propagate HH signal transduction (Bai et al., 2004). The loss of Gli2 or Gli3 result in 

embryonic lethality, while Gli1 deletion does not result in embryonic defects unless there is a 

concurrent reduction in Gli2 (Bai et al., 2002; Park et al., 2000). 

GLI1 and GLI2 have overlapping and distinct roles for GLI activator function. In the neural 

tube, Gli1 mutants do not display patterning defects, while Gli1-/-;Gli2+/- compound mutants have 

a slight defect in floor plate and V3 interneuron progenitor cells that require the highest level of 

HH signaling (Bai et al., 2002; Bai et al., 2004). This suggests GLI2 can compensate for GLI1 to 

attain ventral cell types in the neural tube. In further support of this notion, replacing the 

endogenous Gli2 allele with Gli1 can rescue Gli2 mutants in the developing neural tube (Bai and 

Joyner, 2001). In the cerebellum, Gli1 deletion does not impact cerebellar development, while loss 
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of Gli2 results in HH loss-of-function phenotype (Corrales et al., 2006). However, similar to the 

neural tube, loss of Gli1 in Gli2 conditional deletion animals worsens the cerebellar phenotype, 

suggesting GLI1 can partially compensate for GLI2 in this tissue (Corrales et al., 2006).  

GLI3 is most often classified as a repressor, but there are contexts where GLI3 activator is 

observed. In dorsal neural tube, Gli3 deletion results in HH gain-of-function phenotype, but in the 

ventral neural tube, Gli3 mutants have reduced Gli1 expression, demonstrating both GLI3 activator 

and repressor are required for proper neural tube specification (Bai et al., 2004). In the developing 

jaw, GLI3 has been described to cooperate with HAND2 to activate mandibular prominence target 

genes (Elliott et al., 2020). Examination of Gli2/Gli3 compound mutants reveal GLI2 and GLI3 

have overlapping and distinct roles as activators (Mo et al., 1997). Gli2 mutant mice display a 

narrow oesophagus and trachea and lung hypoplasia, and further loss of one allele of Gli3 (Gli2-/-

;Gli3+/-) significantly worsens the phenotype, while Gli2-/-;Gli3-/- mice lack lungs, oesophagus 

(Motoyama et al., 1998). This dosage-dependent phenotype suggests there are partially redundant 

roles for GLI2 and GLI3 (Motoyama et al., 1998). Replacing the Gli2 endogenous allele with Gli3 

can partially rescue neural tube patterning (Bai et al., 2004), providing additional support that 

GLI2 and GLI3 have overlapping roles. It is unknown whether GLI3 can act as a transcriptional 

activator in the developing cerebellum, but Gli3 deletion results in a defect in embryonic cerebellar 

patterning through increased FGF8, a HH gain-of-function phenotype (Blaess et al., 2008).  

 While GLI2 is typically described as an activator, there are instances where GLI2 repressor 

has been described. The abundance of GLI2 repressor increases when Shh is deleted (Pan et al., 

2006). In the sclerotome, GLI2 has been observed to repress expression of HH target gene, Pax1 

(Buttitta et al., 2003). GLI2 represses hypaxial genes in the absence of Gli3 in the developing 

skeletal muscle (McDermott et al., 2005). It is unknown whether GLI2 can act as a transcriptional 
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repressor in the cerebellum, but conditional deletion of Gli2 in the cerebellum results in reduced 

CGNP proliferation and cerebellar hypoplasia, a HH loss-of-function phenotype. Altogether, these 

data highlight the importance of GLI transcription factors and their cell-specific roles in 

modulating the HH response. 

 

1.4.2 GLI processing 

GLI transcriptional activity is dependent on its post-translational modifications (Figure 

1.4). Initially described in Drosophila, Ci is proteolytically cleaved to form a transcriptional 

repressor in the absence of ligand (Aza-Blanc et al., 1997). Extensive work described Ci 

phosphorylation by protein kinase A (PKA), glycogen synthase kinase 3 (GSK3), and casein 

kinase I (CKI) were required for proteolytical cleavage by SCFSlimb/β-TRCP ubiquitin ligase (Chen 

et al., 1999; Jia et al., 2002; Jia et al., 2005; Jiang and Struhl, 1998; Price and Kalderon, 2002; 

Smelkinson and Kalderon, 2006; Wang et al., 1999). Degradation of Ci can be prevented through 

mutation of the protein degradation domain (Methot and Basler, 1999; Tian et al., 2005b). 

Vertebrate HH signaling is also dependent on PKA phosphorylation (Epstein et al., 1996; 

Hammerschmidt et al., 1996). GLI3 has been demonstrated to be phosphorylated by PKA and 

processed into a repressor by SCFβTrCP ubiquitin E3 ligase [Figure 1.4; black asterisks, P1-P6 

(Tempe et al., 2006; Wang et al., 2000; Wang and Li, 2006). While GLI2 can also be 

phosphorylated by PKA, only a small fraction is processed into a repressor and the rest is degraded 

(Pan et al., 2006; Pan et al., 2009). GLI1 does not contain the entire PKA phosphorylation cluster 

and cannot be processed into a repressor (Pan and Wang, 2007; Price and Kalderon, 2002). 

However, PKA does have a negative impact on GLI1 transcriptional activity (Kaesler et al., 2000). 

PKA can also regulate GLI activator function as well (Niewiadomski et al., 2013). A differential 
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set of phosphorylation clusters are required for full activator function of GLI2 and GLI3 

(Niewiadomski et al., 2014). Phosphomimetic mutations of Pc-g clusters resulted in increased 

activity of GLI2 and GLI3 [Figure 1.4; blue asterisks, Pc-g (Niewiadomski et al., 2014)].  

 Another important component of regulating GLI processing is Suppressor of Fused 

(SUFU). Initial identification of SUFU was in flies, where sufu deletion suppresses phenotypes in 

fu mutants, a kinase downstream of SMO (Preat, 1992; Preat et al., 1993; Therond et al., 1993). In 

mice, Sufu deletion results in mid-gestation lethality with HH gain-of-function phenotypes, 

resembling Ptch1 mutants (Svard et al., 2006). Importantly, SUFU has been demonstrated to 

restrict CGNP proliferation through promoting GLI3 repressor formation and repressing GLI2 

activator (Jiwani et al., 2020). Similar to Gli3 deletion, Sufu deletion results in increased FGF8 in 

the cerebellum (Jiwani et al., 2020). 

SUFU interacts with GLI2 and GLI3 and promotes repressor formation, and activation of 

HH signaling induces GLI proteins to dissociate from SUFU (Humke et al., 2010). Deletion of 

Sufu leads to unstable full length GLIs, while SUFU overexpression stabilizes full length GLIs 

(Wang et al., 2010). Cerebellar conditional deletion of Sufu results in reduced GLI1 and GLI3 but 

increased GLI2 (Jiwani et al., 2020). Further, PKA activation promotes SUFU-GLI interaction, 

inhibiting GLI activator function (Humke et al., 2010). SUFU interacts with GLIs through a SYGH 

motif [Figure 1.4; orange box (Dunaeva et al., 2003)]. Mutation of this site in GLI1 results in 

constitute nuclear localization (Dunaeva et al., 2003; Svard et al., 2006).  

 Initially identified in the mouse brain, RAB23 is another negative regulator of HH 

signaling (Eggenschwiler et al., 2006; Eggenschwiler et al., 2001; Guo et al., 2006). Rab23 

deletion in mice results in mid-gestation lethality and phenocopies Sufu mutants (Eggenschwiler 

et al., 2006; Eggenschwiler et al., 2001). RAB23 suppresses HH signaling through repression of 
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GLI activator; Rab23 deletion results in an increase of full length GLI proteins (Eggenschwiler et 

al., 2006). Conditional deletion of Rab23 in the developing cerebellum results in increased CGNP 

proliferation and mis-patterning of the cerebellum (Hor et al., 2021). Importantly, RAB23 localizes 

to cilia and regulates ciliary localization of overexpressed KIF17 in NIH/3T3 cells (Lim and Tang, 

2015).  

 

1.4.3 Primary cilia and GLI proteins 

Primary cilia are microtubule-based projections from the cell surface that was originally 

believed to be a vestigial organelle. The observation that HH signaling is disrupted in primary cilia 

mutants significantly altered the field of HH signaling (Huangfu et al., 2003). In addition to HH 

signaling, the primary cilia regulates several essential developmental processes [reviewed in 

(Goetz and Anderson, 2010)]. Intraflagellar transport is accomplished with IFT A and IFT B 

particles, which are trafficked with kinesin-2 motors (anterograde) and dynein (retrograde). 

Mutations in IFT particles have been associated with dysregulation of HH signaling (Gorivodsky 

et al., 2009; Haycraft et al., 2005; Huangfu and Anderson, 2005; Huangfu et al., 2003; Keady et 

al., 2012; Liu et al., 2005; Ocbina et al., 2011; Qin et al., 2011; Yang et al., 2015). Intriguingly, 

most ciliary mutants display HH loss-of-function phenotypes in the neural tube (Huangfu and 

Anderson, 2005; Huangfu et al., 2003), some ciliary mutants display polydactyl, a HH gain-of-

function phenotype (Haycraft et al., 2005; Liu et al., 2005). These contradictory results are likely 

due to the net reduction of GLI activator and repressor in these tissues, as proper GLI processing 

is dependent on intact primary cilia. 

Full length GLI1, GLI2 and GLI3 localize to the tips of primary cilia even in the absence 

of HH stimulation, while processed repressors do not (Chen et al., 2009; Kim et al., 2009; Wen et 
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al., 2010). Notably, the presence of primary cilia can restrict the activity of constitutively active 

GLI2 (Engelke et al., 2019; Wong et al., 2009). PKA localizes to the base of the primary cilia, and 

the HH gain-of-function phenotype with PKA loss is dependent on cilia (Tuson et al., 2011). 

Deletion of PKA phosphorylation sites in GLI2 negatively affect activator function and ciliary 

localization (Liu et al., 2015a), while point mutations in PKA phosphorylation sites enhances 

activator function and does not impact ciliary localization (Niewiadomski et al., 2014; Zeng et al., 

2010). Mutations of other sites in GLI2 have also reduced ciliary localization; however, GLI2 

constructs also lacking those resides still localize to primary cilia (Han et al., 2017; Santos and 

Reiter, 2014). These conflicting data demonstrate GLI ciliary localization is a complex process 

that requires further study. 

Importantly, SUFU and GLI co-localize at the tips of cilia (Haycraft et al., 2005). GLI 

dissociation from SUFU is cilia-dependent, and SUFU ciliary localization is dependent on GLI2 

and GLI3 (Humke et al., 2010; Tukachinsky et al., 2010). Collectively, these data suggest a model 

where in the absence of HH stimulation, GLI is bound to SUFU at the tips of primary cilia and is 

processed into repressors through PKA phosphorylation of P1-P6 sites; in the presence of ligand, 

GLI dissociates from SUFU and PKA phosphorylates Pc-G clusters for transcriptional activation.  

 

1.5 Accessory Kinesin-2 Motors 

1.5.1 Kinesin-2 Overview 

Intracellular transport through kinesin motors is required for essential cellular functions. 

Passive transport of small molecules is accomplished by diffusion, but movement of large cargo 

(organelles, vesicles etc.) must be actively transported. Cellular trafficking along microtubules is 

accomplished through kinesin and dynein motors. First identified in the giant axon of the squid 
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(Allen et al., 1982; Brady et al., 1982; Vale et al., 1985), kinesin proteins contain a motor domain, 

which uses ATP hydrolysis to carry cargo anterograde – from the minus ends of microtubules to 

the plus ends at the periphery of the cell or the tip of primary cilium. In addition to the motor 

domain, kinesins typically contain a coiled-coiled region to dimerize and a tail domain for cargo 

binding. In mammals, there are over forty different kinesin proteins highlighting the importance 

of specialized transport within the cell [reviewed in (Hirokawa et al., 2009)]. One family of motors 

is kinesin-2, initially identified from sea urchin eggs (Cole et al., 1993). The kinesin-2 family 

contains heterodimeric KIF3A/KIF3B, homodimeric KIF17 and heterodimeric KIF3A/KIF3C 

[reviewed in (Hirokawa et al., 2009)], Figure 1.2A-B). The latter two motors are known as 

accessory motors, as they do not have clear roles within mammalian ciliogenesis or embryonic 

development (Yang et al., 2001; Yin et al., 2011). 

 

1.5.2 Heterodimeric KIF3A/KIF3B 

KIF3A was the first kinesin-2 motor to be cloned from mouse brain cDNA libraries 

(Aizawa et al., 1992) and observed as an anterograde axonal motor in the brain (Kondo et al., 

1994). KIF3B was subsequently identified from mouse brain cDNA libraries and demonstrated to 

form a heterodimeric motor with KIF3A to transport vesicles in axons (Yamazaki et al., 1995). 

While axonal (Aizawa et al., 1992; Kondo et al., 1994; Takeda et al., 2000) and cytoplasmic 

(Brown et al., 2005; Stauber et al., 2006; Yamazaki et al., 1995) trafficking roles have been 

established, KIF3A/KIF3B is well-known for its role in primary cilia [reviewed in (Scholey, 

2013)]. Anterograde transport within the primary cilia is accomplished by one main motor in mice 

– heterodimeric kinesin-2 motor KIF3A/KIF3B.  Loss of either one of these subunits in mice, 

Kif3a or Kif3b, lead to defective ciliogenesis, embryonic lethality and dysregulation of HH 
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signaling (Huangfu et al., 2003; Nonaka et al., 1998; Takeda et al., 1999). In addition to its role in 

ciliogenesis, inhibition of KIF3A/KIF3B resulted in primary ciliary deconstruction in a matter of 

hours, suggesting there is an additional requirement for this motor in cilia maintenance (Engelke 

et al., 2019). Furthermore, previous work in our laboratory has found that KIF3A and its adaptor 

protein, KAP3, directly binds and regulates GLI transcription factors (Carpenter et al., 2015). 

Importantly, loss of Kif3a within the HH-responsive cells in the developing cerebellum leads to 

cerebellar hypoplasia due to reduced CGNP proliferation and loss of mitogenic response to SHH 

ligand (Spassky et al., 2008). Recent work has implicated KIF3B in contributing to the SHH 

gradient in the developing limb (Wang et al., 2022), but it remains to be explored whether 

KIF3A/KIF3B functions within the SHH-producing Purkinje cells in the cerebellum. 

 

1.5.3 Homodimeric KIF17 

KIF17 is a homodimeric kinesin motor, initially identified and mapped using cDNA 

libraries from 4 week old kidney from mice (Nakagawa et al., 1997). KIF17 has orthologues 

ranging from Tetrahymena (Awan et al., 2004) and sea urchin (Morris et al., 2006) to humans 

(Nagase et al., 2000). Loss of Kif17 is well-tolerated in across several model organisms, though 

KIF17 does have defined roles within neuronal tissues. Within C. elegans, loss of KIF17 

homologue, OSM-3, leads to a disrupted distal primary cilia compartment within neurons (Evans 

et al., 2006; Signor et al., 1999; Snow et al., 2004). In Danio rerio, loss of KIF17 led to disrupted 

photoreceptor outer segment development (Insinna et al., 2008; Lewis et al., 2018; Lewis et al., 

2017), as well as morphological changes to olfactory cilia (Zhao et al., 2012). Loss of KIF17 in 

mice leads to short term memory issues, learning disabilities and a disruption of NR2B trafficking 

in the hippocampus (Yin et al., 2012; Yin et al., 2011). Knock-down of Kif17 in mice spinal cord 
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led to reduced pain perception (Liu et al., 2015b; Liu et al., 2014). Observational studies in humans 

revealed mutations in KIF17 were associated with schizophrenia (Tarabeux et al., 2010), dementia 

with Lewy bodies (Goldstein et al., 2021), microphthalmia, coloboma (Riva et al., 2021), and male 

infertility (Markantoni et al., 2021). Overexpression of KIF17 in mice resulted in improved 

memory (Wong et al., 2002) but also increased the severity of epileptic activity (Liu et al., 2022).  

Whether KIF17 can compensate for the loss of other kinesin-2 motors varies significantly 

across different organisms. In C. elegans amphid-channel sensory cilia, KIF17/OSM-3 can 

compensate for the loss of KIF3A/KIF3B homologue, KLP20/KLP11 (Evans et al., 2006; Snow 

et al., 2004). In the developing zebrafish, injection of Kif17 RNA was able to partially rescue the 

loss of Kif3b (Zhao et al., 2012). However, KIF17 cannot rescue ciliogenesis in Kif3a-/-;Kif3b-/- 

NIH/3T3 mouse fibroblasts (Engelke et al., 2019). 

In the mouse, KIF17 has been demonstrated to traffic NR2B, a sub-unit of the NMDA 

receptor in the dendrites of hippocampal neurons and regulating synaptic plasticity and memory 

(Guillaud et al., 2003; Guillaud et al., 2008; Yin et al., 2012; Yin et al., 2011). Outside of the 

central nervous system, another tissue where Kif17 has notable expression is the testis (Macho et 

al., 2002).  Overexpression studies examining KIF17 function revealed co-localization with the 

transcription factor Activator of CREM in Testis (ACT) in specific stages of spermatogenesis, and 

in vitro analyses revealed KIF17 shuttled ACT between the cytoplasm and nucleus (Macho et al., 

2002), as well as the mRNAs dependent on CREM binding (Chennathukuzhi et al., 2003). KIF17 

has also been noted to localize to chromatoid bodies and could interact with Piwi-like protein 1, 

MIWI (Kotaja et al., 2006). Additionally, KIF17 co-localizes with Spatial during spermatid 

differentiation (Saade et al., 2007) and neuron differentiation (Irla et al., 2007). While human male 

infertility has been linked to KIF17 (Markantoni et al., 2021), mice lacking Kif17 are viable and 
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fertile (Lewis et al., 2017; Yin et al., 2011), suggesting redundancy in KIF17 function in the mouse 

testis. 

KIF17/OSM-3 is a fast, processive motor (Guillaud et al., 2003; Hammond et al., 2010; 

Setou et al., 2000). When not bound to cargo, inhibition of kinesin motors is essential to avoid 

unnecessary ATP hydrolysis and congestion on microtubule tracks (Blasius et al., 2007; Verhey 

and Hammond, 2009). Previous work revealed two mechanisms of autoinhibition for KIF17 

(Hammond et al., 2010). A region of the tail domain binds to the motor domain to prevent 

microtubule binding, while another region in the coiled-coiled 2 domain also binds to the motor to 

prevent processive movement [Figure 1.2C, (Hammond et al., 2010)]. KIF17 activity can be 

further modulated through phosphorylation by Calcium/calmodulin-dependent protein kinase II 

(CaMKII) on the tail domain (Guillaud et al., 2008; Lewis et al., 2018). Phospho-mimetic 

mutations in the tail domain of KIF17 increased ciliary localization across multiple cell lines and 

the distal outer segment of zebrafish larvae (Lewis et al., 2018). Another important region of 

KIF17 is the ciliary localization signal (CLS) in the tail domain, which was found to be necessary 

and sufficient for ciliary localization (Dishinger et al., 2010). Surprisingly, removal of the motor 

domain does not affect ciliary localization of KIF17, suggesting KIF17 can act as cargo for 

KIF3A/KIF3B (Jiang et al., 2015; Williams et al., 2014). While there has been work demonstrating 

KIF17’s function across several cell types, a role for KIF17 in HH signaling has not been 

investigated.  

 

1.5.4 Heterodimeric KIF3A/KIF3C 

The remaining kinesin-2 motor, Kif3c, was first identified from cDNA libraries isolated 

from mouse brain, spinal cord and retina (Yang et al., 1997). Similar to Kif17, loss of Kif3c does 
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not perturb embryonic development in several model organisms. Morpholinos for kif3c and kif3c-

like do not result in ciliary phenotypes or embryonic development defects in Danio rerio (Zhao et 

al., 2012).  In mice, Kif3c mutants are viable, fertile and display grossly normal development 

(Jimeno et al., 2006; Yang et al., 2001); but Kif3c-/- neurons display defects in axon growth in 

neuron regeneration (Gumy et al., 2013). In both the zebrafish retina and mouse dorsal root ganglia 

neurons, Kif3c expression restricted to the adult tissue (Gumy et al., 2013; Zhao et al., 2012). In 

humans, mutations in KIF3C have been associated with sporadic infantile spasm syndrome 

(Dimassi et al., 2016), and expression of KIF3C has been observed in several human cancer cell 

lines (Gao et al., 2020; Liu et al., 2021; Ma et al., 2021; Wang et al., 2015; Yao et al., 2021).  

Unlike the other kinesin-2 motors, KIF3C has not been observed in cilia, and Kif3c loss 

does not result in ciliary phenotypes (Jimeno et al., 2006; Yang et al., 2001; Zhao et al., 2012). 

Injection of Kif3c RNA was able to partially rescue the loss of Kif3b in the developing zebrafish 

(Zhao et al., 2012). However, KIF3C overexpression cannot rescue ciliogenesis in Kif3a-/-;Kif3b-

/- NIH/3T3 mouse fibroblasts (Engelke et al., 2019).  

KIF3C forms a motor complex with KIF3A, but not KIF3B, for anterograde axonal 

transport of vesicles [Figure 1.2A, B, D, (Muresan et al., 1998; Yang and Goldstein, 1998)]. In 

contrast to KIF3B, a significant subset of KIF3C is not bound to KIF3A, raising the possibilities 

KIF3C interacts with another motor or has an independent function (Muresan et al., 1998). KIF3C 

preferentially binds to tyrosinated (unstable) microtubules, and treatment with Taxol, a 

microtubule stabilizer, resulted in KIF3C release from microtubules (Gumy et al., 2013). 

Additionally, forced homodimeric motor KIF3C/KIF3C has been observed to increase the 

catastrophe frequency of microtubules without altering the rate of microtubule growth (Guzik-

Lendrum et al., 2017). Through its tail domain, KIF3C can interact with end-binding protein 3 
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(EB3), which is necessary for localization at growing ends of microtubules within the growth cones 

of regenerating dorsal root ganglion cells (Gumy et al., 2013). In adult regenerating dorsal root 

ganglion axons, KIF3C loss led to stable, overgrown, and looped microtubules at the growth cones. 

Overexpression of Kif3c in embryonic dorsal root ganglion cells (which do not express Kif3c) is 

detrimental to axon growth (Gumy et al., 2013). While embryonic Kif3c expression has not been 

detected, it remains to be investigated whether loss of KIF3C results in any defects in tissues that 

develop postnatally, such as the cerebellum. 

 

1.6 Cerebellar Morphogenesis 

1.6.1 Specification of cerebellar cell types 

The developing cerebellum contains four cell layers (Figure 1.5). Positioned most 

externally are the CGNPs, which reside next to the basement membrane. The next layer is the 

molecular layer, consisting of Purkinje cells and Bergmann glia. CGNs are subsequently 

positioned, while the white matter lays most internally. Initially, all cerebellar neurons are 

specified alar plate of r1, which give rise to the rhombic lip and ventricular zone [reviewed in 

(Butts et al., 2014; Leto et al., 2016)]. Purkinje cells precursors (PCPs) arise from the ventricular 

zone between E10-E13 and give rise to a transient structure called the Purkinje cell plate, which 

will transform into the molecular monolayer in the later cerebellum (Goffinet, 1983; Yuasa et al., 

1991). Bergmann glia are derived from the ventricular zone around E14.0 and initially migrate to 

the precursor white matter (Anthony and Heintz, 2008; Mori et al., 2006; Yuasa, 1996) before they 

settle adjacent to Purkinje cells in the molecular layer. One subset of Bergmann glia is 

differentiated early in development, while another subset undergoes a proliferative wave up to 

postnatal day 7 (P7; reviewed in (Leto et al., 2016)]. Cerebellar granule neural progenitors 
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(CGNPs) are derived from the rhombic lip and express Atoh1 (Alder et al., 1999; Machold and 

Fishell, 2005; Wang et al., 2005). During E12.0 to E16.5, CGNPs will migrate to the dorsal surface 

of cerebellar anlagen and form the external granule layer [EGL, (Miale and Sidman, 1961)]. 

Several mitogenic pathways promote expansion of the EGL, starting with a thin layer of cells to a 

cell layer consisting of six to eight cells deep. SHH is the main driver behind CGNP expansion 

(Corrales et al., 2006; Dahmane and Ruiz i Altaba, 1999; Lewis et al., 2004; Wallace, 1999; 

Wechsler-Reya and Scott, 1999); Notch signaling participates in driving proliferation and 

antagonizing BMP signaling (Solecki et al., 2001; Zhao et al., 2008). As development progresses, 

CGNPs will exit the cell cycle aided by BMP and WNT3 signaling (Anne et al., 2013). Semaphorin 

6A and Plexin A2 provide the molecular cue for post-mitotic CGNPs to migrate using the radial 

fibers from the Bergmann glia into the inner granule layer (IGL), where they differentiate and 

become mature CGNs [summarized in Figure 1.5, (Kerjan et al., 2005; Renaud et al., 2008)]. 

 

1.6.2 HH-dependent cerebellar development 

 Hedgehog signaling was first implicated in cerebellar development when human 

medulloblastomas were noted to have mutations in PTCH1 (Raffel et al., 1997). It was then 

observed Ptch1+/- mice also had increased incidence of medulloblastoma, and Ptch1 is expressed 

in the cerebellum (Goodrich et al., 1997). It was then noted Hedgehog pathway components were 

expressed during cerebellar development – Shh within Purkinje cells, Ptch1 in Bergmann glia, 

cerebellar granule neurons (CGNs) and cerebellar granule neural progenitors (CGNPs) and Smo 

within CGNPs (Figure 1.5) (Traiffort et al., 1998). Further examination revealed Ptch2, Gli1, Gli2, 

and Gli3 were also expressed in CGNPs, Bergmann glia and CGNs [summarized in Figure 

1.(Corrales et al., 2004; Dahmane and Ruiz i Altaba, 1999; Wallace, 1999; Wechsler-Reya and 
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Scott, 1999). SHH ligand induced CGNP proliferation and inhibited differentiation (Dahmane and 

Ruiz i Altaba, 1999; Wechsler-Reya and Scott, 1999). Further, injection of hybridoma cells 

secreting SHH blocking antibody (5E1) led to thinning of the external granule layer (EGL), where 

CGNPs reside (Dahmane and Ruiz i Altaba, 1999; Wallace, 1999; Wechsler-Reya and Scott, 

1999).  

 Starting at E16.5 and continuing through adulthood, Shh is expressed in Purkinje cells 

starting at E16.5 and continuing through adulthood (42, 283). SHH is the only HH ligand in the 

cerebellum; Ihh and Dhh expression are not detected in this tissue (Traiffort et al., 1998). 

Cerebellar size and foliation are influenced by the levels of ligand – deletion of Shh results in 

cerebellar hypoplasia and reduced number of lobes, while an additional allele of Shh increases 

cerebellar size and the number of lobes (Corrales et al., 2006; Lewis et al., 2004). It is unknown 

how SHH is processed, trafficked, or released from Purkinje cells. 

 SHH ligand drives CGNP proliferation and activates HH signaling in the surrounding 

Bergmann glia and CGNs. SHH binds to PTCH1, relieving the inhibition of SMO; deletion of Smo 

in the cerebellum results in reduced expression of HH target genes and lack of foliation in the 

tissue (Corrales et al., 2006). CGNP specific deletion of Smo similarly resulted in cerebellar 

hypoplasia and reduced CGNP proliferation, and conditional deletion of Smo in Bergmann glia 

results in a mild patterning defect in the molecular layer and reduced proliferation of CGNPs 

(Cheng et al., 2018). Two of the HH co-receptors, BOC and GAS1 have been demonstrated to be 

essential for proper HH signal transduction in the developing cerebellum; loss of either of these 

co-receptors results in reduced CGNP proliferation in a cell-autonomous manner (Izzi et al., 2011). 

Boc is ubiquitously expressed in the cerebellum, while Gas1 is restricted to CGNPs (Izzi et al., 
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2011). Notably, Cdon expression is not detected, and its deletion did not impact embryonic 

cerebellar development (Izzi et al., 2011).  

Gli1, Gli2 and Gli3 are expressed in all three HH-responsive cells [Figure 1.5, (Corrales et 

al., 2004)]. Gli1 deletion does not impact cerebellar size unless there is additional deletion of an 

allele of Gli2 (Corrales et al., 2006). Examination of Gli2-/- mouse embryos at embryonic day 18.5 

(E18.5) revealed decrease of EGL thickness, while Gli3-/- embryos displayed a thicker EGL 

(Corrales et al., 2004). GLI2 activator function is required for the postnatal expansion of the 

cerebellum, as Gli2 conditional deletion reduced cerebellar size and number of lobes (Corrales et 

al., 2006). Additionally, GLI3 repressor plays an important role in setting up the embryonic 

primordium in maintaining Fgf8 expression from E9.5-E12.5, as well as defining the cerebellar 

foliation pattern (Blaess et al., 2006; Blaess et al., 2008). GLI3 function in the postnatal cerebellum 

has not been investigated. 

Loss of other repressive components of HH signaling result in increased CGNP 

proliferation and patterning defects. Sufu deletion results in increased FGF8 in the cerebellum, 

phenocopying Gli3 mutants (Jiwani et al., 2020). SUFU promotes GLI3 repressor formation and 

represses GLI2 activator to restrict CGNP proliferation (Jiwani et al., 2020). Conditional deletion 

of Rab23 in the developing cerebellum results in increased CGNP proliferation and mis-patterning 

of the cerebellum (Hor et al., 2021). Collectively, these data establish the importance of HH 

signaling in cerebellar development. 

 

1.7 Conclusion 

The postnatal expansion of the cerebellum is dependent on proper levels of HH signaling; 

deletion of HH pathway components significantly impact cerebellar size and foliation. Loss-of-
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function mutations result in reduced CGNP proliferation and cerebellar hypoplasia, while gain-of-

function mutations lead to increased CGNP proliferation, disrupted cell layers, and  

medulloblastoma. The primary cilium is required for proper HH signaling and processing of the 

transcriptional effectors, GLI proteins. Loss of the primary cilia lead to lack of both repressor and 

activator forms of GLI. Heterodimeric kinesin-2 motor, KIF3A/KIF3B, is responsible for 

anterograde transport in primary cilia in mice. Deletion of either Kif3a or Kif3b result in defective 

ciliogenesis, abnormal GLI processing, and cerebellar hypoplasia. Deletion of accessory kinesin-

2 motors, homodimeric KIF17 and heterodimeric KIF3A/KIF3C do not result in obvious ciliary 

phenotypes in mice. For my thesis, I investigate what, if any, roles do accessory kinesin-2 motors 

play in HH-dependent cerebellar development? 

 Chapter 2 focuses on homodimeric KIF17 and its conflicting roles in HH signaling within 

the developing cerebellum. The first role for KIF17 is as a positive regulator SHH ligand, where 

Kif17 deletion in SHH-producing Purkinje cells causes a loss-of-function phenotype. The second 

opposing role described for KIF17 is as a positive regulator of GLI3 repressor in HH-responsive 

CGNPs, where Kif17 specific deletion results in a HH gain-of-function phenotype. Chapter 3 

focuses on KIF3C’s contribution to cerebellar development. Similar to Kif17, Kif3c deletion results 

in reduced cerebellar size. However, Kif3c deletion does not impact HH signaling but Notch 

signaling instead. Collectively, the data presented in this thesis demonstrate while loss of accessory 

kinesin-2 motors does not impact embryogenesis or ciliogenesis in mice, KIF17 and KIF3C have 

unique and non-redundant roles in postnatal cerebellar development. 
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1.8 Figures 

 

Figure 1.1 Schematic of Hedgehog signaling in primary cilia.  

In the absence of HH ligand (blue), PTCH1 lays at the base of cilia, repressing SMO. Full length GLIs (orange) are 
processed into repressors (red) to inhibit HH target genes. In the presence of HH ligand, HH binds to PTCH1, 
relieving inhibition on SMO. This results in full length GLIs processed into activators which turn on expression of 
HH target genes, like Gli1 and Ptch1. 
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Figure 1.2 Schematic of Kinesin-2 Motors.  
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(A) Phylogeny tree of mouse kinesin-2 motors. (B) Schematic of three kinesin-2 motor complexes carrying cargo 
(orange oval) to the plus ends of microtubules. (C) Polypeptide schematic of human and mouse KIF17. (D) 
Polypeptide schematic of human and mouse KIF3C. 
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Figure 1.3 SHH processing schematic.  

Schematic displaying SHH ligand polypeptide with a signal sequence (green), N-terminal signaling domain (N-
SHH) and C-terminal fragment (C-SHH). Autocleavage between N-SHH and C-SHH results in the addition of 
cholesterol at the C terminus of N-SHH (labeled as C). Skinny Hedgehog (SKI, red) transfers the palmitoylate to the 
N-terminus of N-SHH. 
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Figure 1.4 GLI/Ci Processing Schematic.  

Schematic displaying Drosophila Ci and mammalian GLIs with their domains, binding sites and phosphorylation 
sites labeled. Figure adapted from Brandon Carpenter’s thesis. 
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Figure 1.5 Schematic demonstrating postnatal cerebellar development.  

Purkinje cells (magenta) express Shh, which drives HH target genes like Gli1 and proliferation of CGNPs (dark 
blue). As development progresses, CGNPs exit the cell cycle and use the fibers of the Bergmann glia (green) to 
migrate to the inner granule layer where they differentiate and become mature neurons (light blue). 
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Chapter 2 Dual and Opposing Roles for KIF17 in HH-dependent 

Cerebellar Development 

2.1 Abstract 

While the kinesin-2 motors KIF3A and KIF3B have essential roles in ciliogenesis and 

Hedgehog (HH) signal transduction, potential role(s) for another kinesin-2 motor, KIF17, in HH 

signaling have yet to be explored. Here, we investigated the contribution of KIF17 to HH-

dependent cerebellar development, where Kif17 is expressed in both HH-producing Purkinje cells 

and HH-responding cerebellar granule neuron progenitors (CGNPs). Germline Kif17 deletion in 

mice results in cerebellar hypoplasia due to reduced CGNP proliferation, a consequence of 

decreased HH pathway activity mediated through decreased Sonic HH (SHH) protein. Notably, 

Purkinje cell-specific Kif17 deletion phenocopies Kif17 germline mutants. Surprisingly, CGNP-

specific Kif17 deletion results in the opposite phenotype– increased CGNP proliferation and HH 

target gene expression due to altered GLI transcription factor processing. Together these data 

identify KIF17 as a key regulator of HH-dependent cerebellar development, with dual and 

opposing roles in HH-producing Purkinje cells and HH-responding CGNPS. 

 

2.2 Introduction 

Hedgehog (HH) signaling is a major mitogenic stimulus for postnatal expansion of the 

developing cerebellum (Dahmane and Ruiz i Altaba, 1999; Wechsler-Reya and Scott, 1999). Sonic 

hedgehog (SHH) ligand is produced by Purkinje cells and promotes cerebellar granule neural 
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progenitor (CGNP) proliferation (Dahmane and Ruiz i Altaba, 1999; Lewis et al., 2004; Wechsler-

Reya and Scott, 1999). Shh deletion within Purkinje cells results in cerebellar hypoplasia and 

reduced CGNP proliferation (Lewis et al., 2004). Conversely, increasing the dosage of Shh in 

Purkinje cells results in cerebellar hyperplasia, as well as the formation of additional cerebellar 

lobes (Corrales et al., 2006). Genetic deletion of other HH pathway components, namely Gli2 (a 

key transcriptional effector of the HH pathway), Gas1 or Boc (essential HH pathway co-receptors), 

within CGNPs leads to cerebellar hypoplasia due to reduced CGNP proliferation (Corrales et al., 

2004; Izzi et al., 2011).  

In addition to CGNPs, mature cerebellar granule neurons (CGNs) and Bergmann glia (BG) 

are HH-responsive (Corrales et al., 2004). Recent work demonstrated that abrogating HH signaling 

within BG (through conditional Smo deletion) results in a non-cell autonomous reduction in CGNP 

proliferation and mild patterning abnormalities (Cheng et al., 2018). Notably, the role of HH 

signaling within mature CGNs remains unclear.  

A key organelle that is required for proper HH signaling in mice is the primary cilium 

(reviewed in (Bangs and Anderson, 2017)). Primary cilia are microtubule-based organelles that 

project from the cell surface and act as signaling centers for the HH pathway. Anterograde 

transport within primary cilia is accomplished by the heterodimeric kinesin-2 motor, 

KIF3A/KIF3B. Loss of either subunit in mice, Kif3a or Kif3b, lead to an absence of primary cilia, 

dysregulation of HH signaling and embryonic lethality (Huangfu et al., 2003; Nonaka et al., 1998; 

Takeda et al., 1999). Within the developing cerebellum, loss of Kif3a within CGNPs leads to 

cerebellar hypoplasia due to reduced CGNP proliferation and loss of mitogenic response to SHH 

ligand (Spassky et al., 2008). In addition to KIF3A/KIF3B function in ciliogenesis, KIF3A and its 
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adaptor protein, KAP3, regulate HH signaling by binding to and regulating GLI transcription 

factors (Carpenter et al., 2015).  

The kinesin-2 motor family contains two additional motor complexes in mammals, 

heterodimeric KIF3A/KIF3C and homodimeric KIF17 (reviewed in (He et al., 2017; Hirokawa et 

al., 2009)). These motors are known as accessory motors, as they do not have clear roles within 

mammalian ciliogenesis (Engelke et al., 2019; Yang et al., 2001; Yin et al., 2011). Loss of Kif17 

is well-tolerated across several model organisms, though KIF17 does have defined roles within 

several neuronal tissues. Within Caenorhabditis elegans, loss of OSM-3, a KIF17 homologue, 

leads to disruption of the distal region of primary cilia in sensory neurons (Signor et al., 1999; 

Snow et al., 2004). In Danio rerio, loss of Kif17 results in disrupted photoreceptor outer segment 

development (Insinna et al., 2008; Lewis et al., 2018; Lewis et al., 2017), as well as morphological 

changes to olfactory cilia (Zhao et al., 2012). Kif17 deletion in mice leads to short term memory 

issues, learning disabilities and disruption of NR2B trafficking in the hippocampus (Yin et al., 

2012; Yin et al., 2011). Given that KIF17 can alter primary cilia with functional consequences in 

multiple neuronal cell types across different species, we investigated the contribution of KIF17 to 

HH signaling during postnatal cerebellar development. 

Here we find that Kif17 is expressed within SHH-producing Purkinje cells and HH-

responsive CGNPs. Germline Kif17 deletion leads to cerebellar hypoplasia, reduced CGNP 

proliferation and decreased HH target gene expression across multiple HH-responsive cell types. 

Purkinje cell-specific Kif17 deletion phenocopies the germline mutant, demonstrating a 

requirement for KIF17 in Purkinje cells for proper HH signaling, a finding that correlates with 

reduced SHH protein levels within Purkinje cells in Kif17 mutant animals. Conversely, CGNP-

specific Kif17 deletion results in upregulation of HH target genes and increased CGNP 
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proliferation in vitro and in vivo, a finding that correlates with reduced GLI3 protein levels (a 

transcriptional repressor of HH signaling). Together these data suggest that KIF17 plays dual roles 

in HH-dependent cerebellar development– promoting HH signaling in Purkinje cells through the 

regulation of SHH ligand and restricting HH signaling in CGNPs through the regulation of GLI 

transcription factor processing.  

 

2.3 Results 

2.3.1 Kif17 is expressed within Purkinje cells and cerebellar granule neural progenitors and is 

required for normal cerebellar development. 

To investigate a role for the kinesin-2 motor, KIF17, in HH signal transduction, we 

generated Kif17 mutant mice on a congenic C5BL/6J background. For our analysis, we utilized 

Kif17lacZ mice (Figure 2.1A), where fourth exon is deleted and has an insertion of a lacZ cassette. 

Similar to previous work on Kif17 (Lewis et al., 2017; Yin et al., 2011), but in contrast to genetic 

deletion of other kinesin-2 family members (Nonaka et al., 1998; Takeda et al., 1999), Kif17 

homozygous mutant animals are viable and fertile, with no gross morphological abnormalities. 

Expression analysis revealed that Kif17 is expressed within the developing cerebellum, starting at 

postnatal day 4 (P4) and continuing into adulthood (Figure 2.1B-G). X-GAL staining of Kif17+/+ 

and Kif17lacZ/lacZ pups at P10 demonstrated Kif17 expression within the Purkinje cell layer (PCL) 

and to a lesser degree within the external granule layer (EGL; Figure 2.2A-B). Kif17 is expressed 

in a graded fashion along the anterior-posterior axis, with the strongest signal detected within the 

posterior lobes (Figure 2.2A-B), similar to what has been reported for the HH pathway target Gli1 

(Corrales et al., 2004). To evaluate if the loss of KIF17 impacted HH-dependent cerebellar 

development, we continued our analysis of Kif17-/- cerebella at postnatal day 10, following the 
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peak of HH-dependent CGNP proliferation. For our analysis, we examined mid-sagittal cerebellar 

sections, where lobes I-III were considered anterior, while lobes VI-VIII were considered posterior 

(Figure 2.1H-I). 

To identify which cell(s) express Kif17, we performed immunofluorescence for beta-

galactosidase (b-GAL) in Kif17+/+ and Kif17lacZ/lacZ cerebella at P10 (Figure 2.2C-H). In posterior 

lobes of Kif17lacZ/lacZ cerebella, we observed punctate localization of b-GAL within the cell bodies 

of Purkinje cells and in a subset of dendrites (Figure 2.2G, arrowheads). Further, we observed b-

GAL signal within cerebellar granule neuron progenitors (CGNPs) of the EGL (Figure 2.2G, 

bracket). To confirm expression within these two cell populations, we performed fluorescence in 

situ hybridization in posterior lobes (Figure 2.2I-P) and anterior lobes (Figure 2.1J-Q) of Kif17+/+ 

and Kif17lacZ/lacZ cerebella. In both regions of Kif17lacZ/lacZ cerebella, we detected lacZ punctae 

surrounding Purkinje cell nuclei (Figure 2.2M-N, Figure 2.1N-O) and CGNP nuclei (Figure 2.2O-

P, Figure 2.1P-Q), corroborating the B-GAL localization results. Notably, Kif17 expression was 

not detected within Bergmann glia or mature CGNs. Additionally, Kif17 expression persists in 

Purkinje cells through P21 (Figure 2.3A-D). Finally, RT-qPCR analysis confirmed Kif17 

expression in CGNPs and verified efficient Kif17 deletion in mutant animals (Figure 2.3E-F). 

Together, these data indicate that Kif17 is expressed in two cell populations in the developing 

cerebellum– SHH-producing Purkinje cells and SHH-responsive CGNPs. 

Analysis of cortical (Figure 2.2Q) and cerebellar (Figure 2.2R) weights at P10 indicated 

that Kif17 mutant cerebella are significantly smaller than Kif17+/+ littermates. Notably, this 

difference persisted even after normalizing cerebellar weight to cortical weight (Figure 2.2S). No 

significant difference in cortices or cerebellar weights were detected in Kif17+/- animals (Figure 

2.3G-I). Notably, cerebellar hypoplasia was still observed in Kif17 mutant animals maintained on 
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a mixed C57BL/6J; 129S4/SvJaeJ background (Figure 2.3J). However, this phenotype was not 

observed in Kif17 mutants maintained on a congenic 129S4/SvJaeJ background (Figure 2.3K). On 

a C57BL/6J background, Kif17-/- animals had non-significant reduction of cerebellar area 

compared to Kif17+/- animals (Figure 2.3L-N). To determine if KIF17-mediated cerebellar 

hypoplasia is maintained during cerebellar development, cerebellar weights were measured from 

postnatal day 7 to 42 (Figure 2.3O). The reduction in cerebellar weight was not observed at 

postnatal day 7 in Kif17-/- animals but was observed at all later time points. Together, these data 

suggest that KIF17 promotes cerebellar development, albeit in a genetic background-dependent 

fashion.  

 

2.3.2 Kif17 germline deletion results in reduced CGNP proliferation and decreased Gli1 

expression within all HH-responsive cells.   

To further investigate which layers of the cerebellum are affected by KIF17 loss, we 

measured the length of the Purkinje cell (PC) dendrites (Figure 2.4A, Figure 2.5A). Additionally, 

external granule layer thickness was measured (EGL, Figure 2.4B, Figure 2.5B) where CGNPs 

reside.  Although we did not detect significant changes in PC dendrite length, we did observe 

statistically significant reductions in EGL thickness within both posterior and anterior lobes of 

Kif17-/- cerebella (Figure 2.4B, Figure 2.5B). Since previous work demonstrated that reduced EGL 

thickness is associated with a reduction in CGNP proliferation (Izzi et al., 2011), we next examined 

in vivo proliferation of CGNPs in Kif17+/+ and Kif17-/- P10 cerebella. Within the posterior lobes, 

we observed a significant reduction in the percentage of Ki67+ cells and EdU+ cells out of the 

PAX6+ cells in the EGL (Figure 2.4C-J). Within the anterior lobes, we similarly observed a 

significant reduction in CGNP proliferation (Figure 2.5C-D), although to a lesser degree. 
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Intriguingly, while there is a significant reduction in the percentage of EdU+ cells, we also observed 

decreased EdU fluorescence within posterior and anterior lobes of Kif17-/- cerebella (Figure 2.5E-

F). Altogether, these data suggest that cerebellar hypoplasia in Kif17-/- mice is due to reduced 

CGNP proliferation. 

To determine whether decreased CGNP proliferation was associated with alterations in the 

levels of HH signaling in Kif17-/- cerebella, we quantified expression of the HH target gene, Gli1, 

using RT-qPCR and found it is significantly decreased in Kif17-/- P10 cerebella (Figure 2.4K). 

Expression of other HH target genes, Ptch1, Ptch2, Ccnd1, also trend lower in Kif17-/- cerebella 

(Figure 2.5G-I). Since Gli1 is expressed in several HH-responsive cells in the developing 

cerebellum [CGNPs, Bergmann glia and cerebellar granule neurons (CGNs)], section in situ 

hybridization for Gli1 was performed to define which cell population(s) displayed downregulated 

Gli1 expression [Gli1 probe specificity was validated in Gli1-/- cerebella (Figure 2.5J-M)]. 

Surprisingly, we found that Gli1 expression is reduced across all HH-responsive cells (Figure 

2.4L-Q). Additionally, reduced Gli1 expression persists in CGNs and Bergmann glia in P21 Kif17-

/- cerebella (Figure 2.5N-Q). Reduced Gli1 expression within CGNs could be due to a resulting 

defect due to Kif17 loss in its progenitors, CGNPs. However, since we did not observe Kif17 

expression within Bergmann glia, we hypothesized that KIF17 acts in a non-cell autonomous 

fashion in SHH-producing Purkinje cells to regulate Gli1 expression. 

 

2.3.3 Purkinje cell-specific Kif17 deletion results in a non-cell autonomous HH loss-of-function 

phenotype. 

To directly assess KIF17 function in Purkinje cells, we conditionally deleted Kif17 within 

Purkinje cells using a ShhCre driver (Figure 2.6A). The specificity of ShhCre was confirmed through 
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breeding with Rosa26LSL-tdT reporter mice (Figure 2.7A-F). Consistent with previous reports (Harfe 

et al., 2004), ShhCre efficiently mediates recombination in Calbindin (CALB1)-positive Purkinje 

cells. Importantly, ShhCre is a loss-of-function allele; however, reducing Shh dosage does not alter 

cerebellar size in Kif17-/-;Shh+/- pups compared to Kif17-/- littermates (Figure 2.7G). RT-qPCR 

analysis revealed significantly reduced Kif17 expression in ShhCre;Kif17fl/fl cerebella (Figure 2.6B), 

suggesting efficient deletion within Purkinje cells (note that residual Kif17 expression is likely due 

to the presence of Kif17-expressing CGNPs). Remarkably, Purkinje cell-specific Kif17 deletion 

results in cerebellar hypoplasia measured through weight (Figure 2.6C, Figure 2.7H) and cerebellar 

area (Figure 2.7I-K), phenocopying Kif17 germline deletion (cf. Figure 2.2S, Figure 2.3L-N).   

As with Kif17 germline mutants, PC dendrite length is unaltered in Purkinje cell-specific 

Kif17 mutant pups in either the posterior (Figure 2.6D) or anterior (Figure 2.7L) lobes. However, 

there is a significant reduction in EGL thickness, specifically in posterior lobes (Figure 2.6E, 

Figure 2.7M). Consistent with Kif17-/- mice, analysis of CGNP proliferation revealed a significant 

reduction in the percentage Ki67+ cells and EdU+ cells within both the posterior and anterior lobes 

of ShhCre:GFP;Kif17fl/fl mice compared to control littermates (Figure 2.6F-M, Figure 2.7N-O). 

Additionally, we observed significant reductions in the expression of multiple HH target genes, 

including Gli1 and Ptch1 (Figure 2.6N-O) as well as Ptch2 and Ccnd1, as measured by RT-qPCR 

(Figure 2.7P-Q). Fluorescence in situ hybridization revealed reduced Gli1 expression in 

ShhCre:GFP;Kif17fl/fl cerebella within CGNPs, BG and CGNs (Figure 2.6P-S). These data 

demonstrate that Purkinje cell-specific Kif17 deletion phenocopies germline Kif17 mutant 

cerebella. The HH loss-of-function phenotype could be due to reduced PC number or a change in 

PC morphology with Kif17 deletion. However, we did not observe any gross differences in PC 

morphology or density in either Kif17 germline deletion or PC conditional deletion cerebella 
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(Figure 2.7R-W). Altogether, these data establish an essential role for KIF17 within SHH-

producing Purkinje cells during cerebellar development. 

 

2.3.4 KIF17 regulates SHH protein in the developing cerebellum. 

The reduction of HH target gene expression across multiple HH-responsive cells in Kif17 

mutant cerebella suggested a non-cell autonomous role for KIF17 in HH signal transduction. Given 

that SHH, the only HH ligand expressed in the developing cerebellum, is produced by Purkinje 

cells, we explored a role for KIF17 in Purkinje cell regulation of SHH localization and release. 

Initially, examination of Shh expression by RT-qPCR revealed that Shh transcripts are 

downregulated in both Kif17-/- mice (Figure 2.8A) and Purkinje cell-specific conditional Kif17 

mutants (Figure 2.8B). Next, we assessed the protein levels of SHH ligand and observed levels of 

N-terminal SHH are subtly but not significantly decreased in the cerebella of Kif17 germline 

mutants [Figure 2.8C-D; SHH antibody specificity was validated in Shh-/- tissue (Figure 2.9A)]. 

We also examined levels of the HH co-receptor, BOC, which is expressed in Purkinje cells 

(Izzi et al., 2011) and has been recently demonstrated to regulate SHH localization in cytonemes 

of NIH/3T3 cells (Hall et al., 2021). Notably, levels of Boc transcripts (Figure 2.9B-C) and BOC 

protein are unaltered in Kif17 deletion cerebella (Figure 2.9D-E). However, Scube2, which 

encodes a key regulator of SHH protein release (Hollway et al., 2006; Kawakami et al., 2005), is 

significantly reduced in P10 cerebella from both Kif17-/- (Figure 2.8E) and Purkinje cell-specific 

Kif17 mutant animals (Figure 2.8F). Given the reduced levels of Scube2, we speculated that KIF17 

could impact SHH ligand release or secretion. 

To assess a role for KIF17 in SHH release, we utilized a gain-of-function approach, where 

COS-7 cells were driven to express epitope-tagged KIF17 (KIF17:HA) and either full-length 
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(SHH:GFP) or N-terminal SHH (N-SHH; Figure 2.8G). While KIF17 expression does not alter 

the levels of secreted N-SHH (Figure 2.9F), we did observe increased levels of secreted full-length 

SHH (Figure 2.8H). We also observed significantly increased levels of intracellular SHH, 

including full length SHH:GFP, N-SHH:GFP and N-SHH when co-expressed with KIF17 (Figure 

2.8I, Figure 2.9G-H).  

To investigate KIF17-mediated regulation of intracellular SHH levels in vivo, we employed 

an antibody directed toward the C-terminus of SHH [SHH antibody specificity was validated in 

P10 cerebella of Shh conditional mutant animals ShhCreER/lacZ mice (Figure 2.9I-Q)]. Intracellular 

SHH is detected in the Golgi/ER (horizontal arrowheads) and within the cell bodies of Purkinje 

cells of Kif17+/- and Kif17-/- littermates (vertical arrowheads, Figure 2.8J-M). However, SHH 

levels are significantly reduced in the posterior lobes of Kif17-/- P10 cerebella (Figure 2.8N). 

Notably, SHH levels are not significantly altered in anterior lobes of Kif17-/- mice (Figure 2.9R). 

Together, these gain- and loss-of-function data suggest that KIF17 acts in Purkinje cells to stabilize 

intracellular SHH protein and promote SHH release. This is supported by the downregulation of 

HH target genes across the multiple HH-responsive cell types (CGNPs, BG and CGNs) following 

Purkinje cell-specific Kif17 deletion. Reduction of SHH protein ultimately results in decreased 

CGNP proliferation and cerebellar hypoplasia in Kif17 deletion mice (Figure 2.8O).  

 

2.3.5 Kif17 deletion promotes CGNP proliferation in vitro. 

To investigate a role for KIF17 in CGNPs, we isolated and cultured wildtype and Kif17-/- 

CGNPs in vitro isolated from mice maintained on C57BL/6J genetic background (Lee et al., 2009). 

HH-dependent proliferation was measured in response to treatment with either Smoothened 

Agonist (SAG) or N-SHH conditioned media (N-SHH CM). Surprisingly, Kif17-/- CGNPs display 
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increased baseline proliferation compared to Kif17+/- and Kif17+/+ CGNPs (Figure 2.10A-F). 

Treatment with either SAG or N-SHH CM resulted in increased CGNP proliferation, measured by 

EdU/BrdU incorporation (Figure 2.10E, Figure 2.11A) or luminescence-based quantitation of ATP 

levels (Figure 2.10F). Additionally, we cultured CGNPs from Kif17fl/fl and ShhCre;Kif17fl/fl 

littermates and evaluated their proliferation in vitro (Figure 2.11B-G). We observed no significant 

differences of CGNP proliferation in Kif17fl/fl and ShhCre;Kif17fl/fl cultures, confirming increased 

proliferation in Kif17-/- CGNPs is a cell-autonomous phenotype. Notably, these results are distinct 

from those observed in CGNPs lacking Boc, which encodes for an essential HH co-receptor (Izzi 

et al., 2011). Direct comparison of Kif17-/- CGNP and Boc-/- CGNP proliferation confirmed that 

Kif17 deletion results in increased baseline and HH-stimulated CGNP proliferation (Figure 2.11H). 

These data are directly in opposition of CGNP proliferation in vivo (c.f. Figure 2.4C-J), suggesting 

KIF17 has two distinct roles in Purkinje cells and CGNPs. 

Given the altered baseline CGNP proliferation, we examined the levels and processing of 

the HH pathway transcriptional repressor, GLI3 in Kif17 mutant animals. Western blot analysis of 

GLI3 full length (GLI3FL) and repressor (GLI3R) in P10 cerebella revealed (Figure 5G) significant 

reductions in both GLI3FL and GLI3R in Kif17-/- cerebella (Figure 2.10H-I). Further, the ratio of 

GLI3FL to GLI3R is significantly increased in Kif17 mutant cerebella (Figure 2.10J). These data 

suggest that similar to other kinesin-2 mutants (Huangfu and Anderson, 2005), KIF17 regulates 

GLI3 processing in CGNPs. To examine the consequences of altering Gli3 dosage in Kif17 mutant 

animals, we measured cerebellar size in P10 Kif17lacZ;Gli3Xt compound mutant cerebella (Figure 

2.10K). Notably, loss of one Gli3 allele causes cerebellar hyperplasia in Kif17+/+ mice and rescues 

the cerebellar hypoplasia phenotype observed in Kif17 mutants. Together, these data suggest that 
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KIF17 negatively regulates HH signaling in a cell-autonomous fashion within CGNPs, potentially 

through regulation of GLI3 repressor.  

 

2.3.6 CGNP-specific Kif17 deletion results in a cell-autonomous HH gain-of-function phenotype. 

To directly assess KIF17 function in CGNPs in vivo, we crossed Kif17flox mice to Atoh1Cre 

animals (Figure 2.12A), which specifically drives recombination in CGNPs [(Matei et al., 2005); 

Figure 2.13A-F]. We used RT-qPCR to confirm efficient Kif17 deletion in Atoh1Cre;Kif17fl/fl 

cerebella (Figure 2.12B, Figure 2.13G). Additionally, while Kif17 expression is reduced in 

conditional deletion cerebella, we found Kif17 expression was surprisingly increased 

Atoh1Cre;Kif17+/+ cerebella (Figure 2.13G). Next, we assessed cerebellar size in 

Atoh1Cre;Kif17fl/fl animals, which is unchanged compared to control animals (Figure 2.12C, 

Figure 2.13H-K). These data are in striking contrast to Kif17 germline mutants and Purkinje cell-

specific Kif17 deletion (cf. Figure 2.2S and Figure 2.6C). While length of the PC dendrites is not 

significantly changed in either posterior or anterior lobes of Atoh1Cre;Kif17fl/fl cerebella (Figure 

2.12D, Figure 2.13L), EGL thickness is increased, specifically in posterior lobes of 

Atoh1Cre;Kif17fl/fl cerebella (Figure 2.12E, Figure 2.13M). Notably, increased EGL thickness 

appears to be due to increased CGNP proliferation (as assessed by the percentage of EdU+ cells 

out of the PAX6+ cells in the EGL) in both posterior (Figure 2.12M) and anterior (Figure 2.13O) 

lobes of Atoh1Cre;Kif17fl/fl cerebella. RT-qPCR analysis revealed increased HH target gene 

expression in Atoh1Cre;Kif17fl/fl cerebella compared to control littermates (Figure 2.12N-O; 

Figure 2.13P-R). In situ hybridization confirmed that the increase in HH target gene expression is 

restricted to CGNPs in the posterior lobe, while no changes were observed in HH-responsive 

Bergmann glia and CGNs (Figure 2.12P-T; Figure 2.13S). Together, these data indicate that 
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CGNP-specific Kif17 deletion results in increased HH pathway activity and CGNP proliferation, 

leading to a thicker EGL within posterior lobes of the developing cerebellum. 

 

2.3.7 CGNP-specific Kif17 deletion results in reduced GLI protein, increased CGNP proliferation, 

and elongated primary cilia in vitro. 

 Given that other kinesin-2 motors regulate GLI processing and trafficking, including in the 

cerebellum (Huangfu and Anderson, 2005; Huangfu et al., 2003; Spassky et al., 2008), we 

examined the consequences of CGNP-specific Kif17 deletion on Gli expression and GLI protein 

levels. Gli2 and Gli3 expression are increased in Atoh1Cre;Kif17fl/fl cerebella (Figure 2.14A-B), 

similar to Gli1. However, western blot analysis (Figure 2.15A) revealed significantly reduced 

levels of GLI1 and GLI2 protein (Figure 2.15B-C). Similar to what was observed Kif17-/- cerebella 

(cf Figure 2.10G-J), GLI3 full length and GLI3 repressor levels are also reduced (Figure 2.15D-

E); further, the ratio of full length (GLI3FL) to repressor (GLI3R) is increased in Kif17 mutant 

CGNPs (Figure 2.15F). 

We also assessed potential physical interactions between KIF17 and GLI proteins, as 

previously demonstrated for other Kinesin-2 motors (Carpenter et al., 2015). Co-

immunoprecipitation of epitope-tagged KIF17 (KIF17:HA) and GLI transcription factors 

(MYC:GLI1, MYC:GLI2, MYC:GLI3) suggested that KIF17 can indeed physically interact with 

all three GLI proteins (Figure 2.14C). Reduction of both full length and processed forms of GLI 

is reminiscent of SUFU loss-of-function cerebella (Jiwani et al., 2020). Additionally, loss of GLI2 

or GLI3 lead to loss of ciliary localization of SUFU (Tukachinsky et al., 2010). We examined 

ciliary localization of SUFU [SUFU antibody validated in Sufu-/- MEFs (Figure 2.14D-I)] in Kif17 

conditional deletion CGNPs in response to SAG (Figure 2.14J-R). We found that SUFU was found 
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at the tips of cilia in both Kif17fl/fl and Atoh1Cre;Kif17fl/fl CGNPs, albeit a lower percentage of 

SUFU+ cilia were observed in Atoh1Cre;Kif17fl/fl CGNPs. Altogether these data suggest KIF17 

impacts GLI stability or processing, potentially through regulating SUFU-GLI interactions. 

We noted that Atoh1 expression is increased in animals with CGNP-specific Kif17 deletion 

(Figure 2.16A); previous work demonstrated that ATOH1 promotes ciliogenesis and maintains 

CGNP responsiveness to HH (Chang et al., 2019). However, analysis of CGNP primary cilia 

length in Atoh1Cre;Kif17fl/fl P10 cerebella revealed no significant change in vivo (Figure 2.16B-C; 

p = 0.4534 for posterior lobes, p = 0.0886 for anterior lobes). In contrast, when we examined 

primary ciliary length in SAG-treated CGNPs in vitro, we found that CGNPs lacking Kif17 display 

increased ciliary length (Figure 2.15G-L), with an average ciliary length of 1.46 µm (compared to 

1.1 µm in control animals); notably, some primary cilia reached lengths of 5 µm (Figure 2.15K).  

Since HH signaling also regulates cilia length (Cruz et al., 2010) and ciliogenesis (Peterson 

et al., 2012), we investigated whether increased ciliary length was a cause or a consequence of HH 

pathway activity. We antagonized HH signaling in vitro by adding BMP ligands, either BMP2, 

which has been previously shown to antagonize SHH-induced CGNP proliferation (Rios et al., 

2004) or BMP10, which is significantly upregulated in Kif17-/- cerebella (Figure 2.16D). Notably, 

both BMP2 and BMP10 effectively attenuate HH-mediated CGNP proliferation in both Kif17fl/fl 

and Atoh1Cre;Kif17fl/fl cultures (Figure 2.16E-M, Figure 2.15L). However, BMP2 and BMP10 

treatment reduced ciliary length specifically in Atoh1Cre;Kif17fl/fl CGNPs (Figure 2.15M-S, 

Figure 2.16N), resulting in average ciliary lengths of 1.18 µm (BMP2) and 1.17 µm (BMP10). 

Together, these data suggest that high levels of HH pathway activation in Kif17 mutant CGNPs 

results in increased ciliary length, which can be attenuated by BMP signaling. 
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2.4 Discussion 

In this study, we investigated a role for the kinesin-2 motor KIF17 in HH-dependent 

cerebellar development. Our work revealed that Kif17 is expressed in both SHH-producing 

Purkinje cells and SHH-responsive CGNPs. Purkinje cell-specific Kif17 deletion phenocopies 

germline Kif17 deletion, resulting in reduced EGL thickness due to reduced HH target gene 

expression and decreased CGNP proliferation. Conversely, CGNP-specific Kif17 deletion 

increased EGL thickness due to increased HH target gene expression and increased CGNP 

proliferation (Figure 2.17). This work identifies dual and opposing roles for KIF17 in HH-

dependent cerebellar development– first, as a positive regulator of HH signaling through regulation 

of SHH protein levels within Purkinje cells, and second, as a negative regulator of HH signaling 

through regulation of GLI transcription factors in CGNPs. 

 

2.4.1 KIF17 function in SHH-producing Purkinje cells 

Here we demonstrated that KIF17 is required in Purkinje cells to mediate proper HH-

dependent cerebellar development and that KIF17 regulates SHH protein levels within Purkinje 

cells. Specifically, we visualized intracellular SHH utilizing a C-terminal antibody, which revealed 

reduced SHH protein in Kif17 mutant cerebella, both within the presumed endoplasmic 

reticulum/Golgi apparatus and more broadly within Purkinje cell bodies. Notably, SHH is 

translated as a 45 kDa precursor protein, which undergoes auto-catalytic cleavage into a 19 kDa 

N-terminal fragment and 25 kDa C-terminal fragment (Bumcrot et al., 1995; Lee et al., 1994; 

Porter et al., 1995). The N-terminal fragment is dually-lipidated with cholesterol at the C-terminus 

and palmitate at the N-terminus to produce active ligand (reviewed in (Petrov et al., 2017)). While 

the 25 kDa C-terminal SHH fragment does not transduce HH signaling, the C-terminal HH 



 64 

fragment does target N-HH to axons and growth cones in the developing retina of Drosophila 

melanogaster (Chu et al., 2006). One model for KIF17 action in Purkinje cells is the transport of 

SHH-containing vesicles along microtubules to distinct locations within these cells. This model 

has precedence with a previously described role for KIF17 in the vesicular trafficking of NR2B in 

the hippocampus (Yin et al., 2012; Yin et al., 2011). Further, this is consistent with the reduced 

levels of SHH protein in Kif17 mutants, as NR2B levels are also reduced when its vesicular 

trafficking is disrupted in Kif17 mutants. This model is also consistent with the results from KIF17 

gain-of-function experiments demonstrating increased intracellular SHH protein accumulation 

(this study). Altogether, the data in this paper propose KIF17 may be responsible for cytoplasmic 

trafficking of SHH within cerebellar Purkinje cells. However, we cannot rule out similar 

trafficking-related effects of KIF17 on other HH pathway components, such as SCUBE2 and 

DISP, both of which regulate SHH protein release from cell surfaces. We also cannot distinguish 

between KIF17-mediated effects on SHH trafficking versus potential impacts on SHH protein 

stability. Distinguishing between these possibilities would require robust methods to culture 

Purkinje cells ex vivo, which are currently lacking. Further, while we did not observe any gross 

morphological changes or the density of Purkinje cells, we cannot distinguish whether the loss of 

KIF17 impacts overall Purkinje cell function or the secretion of other Purkinje cell-derived ligands, 

such as IGF-1.  

 

2.4.2 KIF17 regulation of GLIs in CGNPs 

In addition to a non-cell autonomous role for KIF17 in Purkinje cells, we also established 

a cell autonomous role for KIF17 in CGNPs, where Kif17 deletion results in a HH gain-of-function 

phenotype – increased CGNP proliferation and upregulation of several HH target genes. CGNP-
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specific Kif17 deletion results in reduced protein levels of all three HH transcriptional effectors, 

GLI1, GLI2, and GLI3. Previous work established GLI1 and GLI2 as transcriptional activators in 

the developing cerebellum where Gli2 deletion results in a HH loss-of-function phenotype 

(Corrales et al., 2006; Corrales et al., 2004). Given these roles for GLI1 and GLI2, we were 

surprised to find that CGNP-specific Kif17 deletion results in a HH gain-of-function phenotype. 

However, the concomitant loss of GLI3 repressor in Kif17 mutant CGNPs suggests that GLI 

repressor function is a significant mediator of CGNP proliferation. Notably, reduction of GLI 

activator and repressor protein is consistent with previous work where cerebellar-specific 

Suppressor of fused (Sufu) deletion also results in increased CGNP proliferation (Jiwani et al., 

2020). GLI3 also acts during early embryonic cerebellar development in mesencephalon and 

rhombomere 1 patterning through the regulation of Fgf8 expression (Blaess et al., 2008). Here we 

also show that loss of one Gli3 allele is sufficient to drive cerebellar hyperplasia, likely due to 

increased HH signaling. Together, these data suggest that KIF17 in CGNPs promotes GLI3 

repressor formation to restrict proliferation in the postnatal cerebellum, consistent with previous 

work demonstrating central roles for other kinesin-2 motors in GLI processing (Endoh-Yamagami 

et al., 2009; Huangfu and Anderson, 2005; Huangfu et al., 2003).  

GLIs require primary cilia for proper processing and transcriptional activity (reviewed in 

(Bangs and Anderson, 2017)). Further, studies have established ciliary tip localization of KIF17 

(Dishinger et al., 2010), similar to GLI transcription factor localization during HH activation 

(Santos and Reiter, 2014; Wen et al., 2010). One model for KIF17 regulation of GLI protein levels 

in CGNPs is through ciliary trafficking or localization. Notably, this is consistent with recent work 

demonstrating that GLI interactions with KIF7 promote ciliary localization (Haque et al., 2022). 

Unfortunately, the lack of suitable KIF17 antibodies precludes rigorous testing of this hypothesis. 
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Other possible roles for KIF17 in CGNPs include the regulation of GLI trafficking and stability as 

well as interactions with other ciliary proteins that regulate GLI processing, such as SUFU, KIF7, 

or PKA (Ding et al., 1999; He et al., 2014; Tuson et al., 2011). We observe that SUFU does localize 

to the tips of cilia with the loss of KIF17, although at a reduced proportion. This may be due to 

KIF17 interacting with SUFU or due to the reduced abundance of GLI transcription factors. 

Previous literature demonstrates that the loss of GLI2 or GLI3 results in a loss of ciliary SUFU 

(Tukachinsky et al., 2010).  

It is important to note the contradictory results of CGNP proliferation in vitro with germline 

and CGNP-specific Kif17 deletion. While the CGNP-specific Kif17 deletion increased CGNP 

proliferation in vivo, germline Kif17 mutants display reduced CGNP proliferation in vivo. One 

hypothesis to explain this contradiction is KIF17’s function in Purkinje cells in regulating SHH 

ligand is upstream to GLI processing, therefore the cell autonomous defect cannot be observed 

until the CGNPs are isolated and grown in culture. While we do note reduced GLI3 repressor in 

the germline mutants, it will be essential to determine the levels of GLI activator (GLI1 and GLI2) 

in germline Kif17 deletion CGNPs is similarly reduced or below the levels seen in conditional 

deletion CGNPs. Furthermore, we observed increased proliferation in the absence of HH 

stimulation in germline and CGNP-specific Kif17 deletion CGNPs in vitro. This result could be 

due to reduced levels of BMP signaling. In support of that hypothesis, Bmp10 expression was 

reduced in germline Kif17 deletion CGNPs. Further, the addition of recombinant BMP ligands, 

BMP2 and BMP10, reduced the levels of CGNP proliferation in vitro in Kif17 conditional deletion 

CGNPs, lowering proliferation levels to match Kif17fl/fl controls. 

 

2.4.3 Kinesin motors and HH signaling 
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While previous studies have explored the requirement for kinesin and dynein motors in 

HH-responding cells (reviewed in (Bangs and Anderson, 2017)), the current study highlights a 

novel role for kinesin motors in HH-producing cells, complementing new work examining KIF3B 

and SHH in the developing limb bud (Wang et al., 2022). It is important to note that the single loss 

of KIF17 in the developing cerebellum results in a HH loss-of-function phenotype, demonstrating 

other kinesin-2 motors cannot rescue or compensate the loss of KIF17. An outstanding question is 

whether KIF17 functions in HH-producing cells in other tissues. Notably, the subgranular zone of 

the hippocampus and subventricular zone rely on proper HH signaling for neurogenesis (Ahn and 

Joyner, 2005; Breunig et al., 2008; Han et al., 2008; Machold et al., 2003). While KIF17 has a 

well-defined role in NR2B trafficking in the hippocampus (Yin et al., 2012; Yin et al., 2011), the 

potential contribution of KIF17 to HH signaling in the hippocampus has not yet been examined.  

In addition to its neural-specific contributions, KIF17 has several described functions in 

the testes, although loss-of-function studies have yet to be performed (Chennathukuzhi et al., 2003; 

Kimmins et al., 2004; Kotaja et al., 2006; Macho et al., 2002; Saade et al., 2007). Desert Hedgehog 

(DHH) is expressed in Sertoli cells, and Dhh deletion results in a loss of HH-responsive Leydig 

cells (Clark et al., 2000). While we did not observe infertility in Kif17 mutant mice, it will be of 

interest to investigate the consequences of Kif17 deletion on HH-dependent spermatogenesis. 

Future studies investigating the contribution of other kinesin-2 motors, particularly KIF3A/KIF3B, 

in HH-producing cells (e.g., in the notochord or zone of polarizing activity) will be of high interest. 

Finally, this work raises the question of potential contributions from KIF3C, another accessory 

kinesin-2 motor, to HH signal transduction. 
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2.5 Materials and Methods 

Reagents 

 Antibodies utilized (Table 2.1); primers used for RT-qPCR (Table 2.2); 

 

Animal models 

Kif17lacZ germline mutant mice have been previously described (Lewis et al., 2017). These 

mice were maintained on two different congenic C57BL/6J and 129S4/SvJaeJ backgrounds after 

backcrossing for at least 10 generations. Kif17fl animals carrying Kif17 conditional alleles were 

generated from the initial knock-in allele from EUCOMM through crossing Kif17tm1A animals to 

ubiquitous Flippase mice obtained from The Jackson Laboratory [strain 011065, (Wu et al., 2009)] 

to generate Kif17tm1C/Kif17flox mice. These mice were maintained on a congenic C57BL/6J 

background. Atoh1Cre animals were obtained from The Jackson Laboratory [strain 011104, (Matei 

et al., 2005)] and maintained on a C57BL/6J background. Mice carrying the ShhCre allele [strain 

005622] were provided by Dr. Deb Gumucio and previously described (Harfe et al., 2004). These 

mice were backcrossed for at least 10 generations to C57BL/6J animals to create a congenic line. 

All animal procedures were reviews and approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Michigan, USA. Experiments performed in this paper 

were completed with littermate controls.  

 

Wholemount X-gal staining 

Postnatal cerebella were dissected in 1X PBS (pH 7.4) and cut in half with a razor before 

fixation (1% formaldehyde, 0.2% glutaraldehyde, 2 mM MgCl2, 5 mM EGTA, 0.02% NP-40) on 

ice for 20 min. After fixation, the cerebella were washed 3 x 5 min with 1X PBS (pH 7.4) on a 
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rocking platform. Beta-Galactosidase activity was detected with X-gal staining solution [5 mM 

K3Fe(CN)6, 5 mM K4Fe(CN)6, 2 mM MgCl2, 0.01% Na deoxycholate, 0.02% NP-40, 1 mg/ml X-

gal]. The signal was developed for 24 h at 37°C, changing the staining solution after 12 h. After 

staining, cerebella were washed 3 x 5 min with 1X PBS (pH 7.4) and post-fixed in 4% 

paraformaldehyde for 30 min at room temperature on a rocking platform, followed by 3 x 5 min 

washes in 1X PBS (pH 7.4). Cerebella were photographed using a Nikon SMZ1500 microscope 

and stored in 1X PBS (pH 7.4).  

 

Section Immunofluorescence 

Section immunofluorescence was performed as described in (Allen et al., 2011). Briefly, 

cerebella were dissected in 1X PBS (pH 7.4) and cut in half using a razor. For all experiments 

except for beta-galactosidase and SHH visualization, cerebella were fixed with 4% 

paraformaldehyde (Electron Microscopy Sciences) for 1 h on ice. For beta-galactosidase 

immunofluorescence, cerebella were fixed (1% formaldehyde, 0.2% glutaraldehyde, 2 mM MgCl2, 

5 mM EGTA, 0.02% NP-40) on ice for 20 min.  For SHH visualization, cerebella were fixed in 

Sainte Marie’s solution (95% ethanol, 1% acetic acid) at 4°C on a rocking platform for 24 h. 

Following fixation, cerebella were washed 3 x 5 min with 1X PBS (pH 7.4) on a rocking platform 

and cryoprotected overnight in 1X PBS + 30% sucrose on a rocking platform. Then, cerebella were 

washed 3 x 1 h in 50% OCT (Fisher Scientific, 23-730-571) before embedding in 100% OCT. 

Sections were collected on a Leica CM1950 cryostat at 12 µm thickness for all experiments, except 

for SHH visualization, which were sectioned at 9 µm thickness. Slides were then washed 3 x 5 

min with 1X PBS (pH 7.4). For mouse primary antibodies, citric acid antigen retrieval (10 mM 

citric acid + 0.5% Tween-20, pH 6.0) at 92°C for 10 min was performed prior to primary antibody 
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incubation. Primary antibodies were diluted in blocking buffer (3% bovine serum albumin, 1% 

heat-inactivated sheep serum, 0.1% Triton X-100) and incubated overnight at 4°C in a humidified 

chamber. After primary antibody incubation, slides were washed 3 x 10 min with 1X PBSTX (1X 

PBS + 0.1% Triton X-100, pH 7.4). Secondary antibodies were diluted in blocking buffer and 

incubated for 1 h at room temperature, followed by 3 x 5 min 1X PBSTX washes. Nuclei were 

labeled using DAPI (0.5 µg/mL in blocking buffer) for 10 min and washed twice with 1X PBS. 

Coverslips were mounted using Immu-mount aqueous mounting medium (Thermo Fisher 

Scientific, 9990412). Images were taken on a Leica SP5X upright confocal (2 photon). A list of 

all the primary and secondary antibodies and their working concentrations is provided in Table S1. 

 

Fluorescent in situ hybridization 

Cerebella were dissected in 1X PBS (pH 7.4) and cut in half using a razor. Cerebella were 

fixed with 10% neutral buffered formalin (Fisher, 245-685) on a rocking platform at room 

temperature for 24 h. Following fixation, cerebella were washed 3 x 5 min with 1X PBSTX on a 

rocking platform and cryoprotected overnight in 1X PBS + 30% sucrose on a rocking platform. 

Cerebella were then washed 3 x 1 h with 50% OCT compound before embedding in 100% OCT. 

Sections were collected on a Leica CM1950 cryostat at 12 µm thickness. Slides were processed 

using RNAscope Multiplex Fluorescent Detection kit (ACD, 323110) using a protocol adapted 

from (Holloway, 2021). Prior to probe hybridization, samples underwent antigen retrieval for 15 

minutes and treated with Protease Plus (ACD, 322381) for 5 minutes. Probes used in this paper 

were Mm-Gli1 (ACD, 311001) and E.coli-lacZ (ACD, 313451). After probe detection, slides were 

subsequently stained using the above-described section immunofluorescence protocol.  
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RT-qPCR 

Cerebella were dissected in 1X PBS, and RNA was isolated using a PureLink RNA Mini 

Kit (ThermoFisher Scientific, 12183025). Following isolation, 2 µg of RNA were used to generate 

cDNA libraries using a High-Capacity cDNA reverse transcription kit (Applied Biosystems, 

4368814). RT-qPCR was performed using PowerUP SYBR Green Master Mix (Applied 

Biosystems, A25742) in a QuantStudio 3 Real-Time PCR System (Applied Biosystems). Primers 

used in this paper can be found in Table S2. Gene expression was normalized to Gapdh, except 

for Figure 3B, where expression was normalized to Calb1, and relative expression analyses were 

performed using the 2(-ddCT) method. For RT-qPCR analysis, biological replicates were analyzed 

in triplicate. 

 

Weight analyses 

For weight measurements, the date litters were born were noted as postnatal day 0 and were 

dissected on postnatal day 10. Pups were first weighed and then placed on ice briefly before 

decapitation. The cortices and cerebella were dissected in 1X PBS (pH 7.4). To weigh cortices and 

cerebella, a specimen jar was first filled with PBS on an analytical scale. The tissue was transferred 

with forceps to the specimen jar, and its weight was recorded. Genotyping samples were taken 

after dissection, allowing the weights to be recorded without prior knowledge of the genotype. 

 

Hematoxylin and Eosin Staining and Cerebellar Area Quantification 

Tissue sections were washed 1 x 5 minutes in water, stained with hematoxylin for 5 

minutes, then rinsed in water and 1X PBS (pH 7.4) for 10 seconds. Slides were counterstained 

with eosin solution, rinsed in water and dehydrated in an ethanol and xylene series (1 x 1 minutes 
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in 95% ethanol, 2 x 2 minutes in 100% ethanol, 2 x 2 minutes in 100% xylene). Slides were 

mounted using Cytoseal 60 mounting media and imaged on a Nikon SMZ1500 stereomicroscope. 

For cerebellar area quantitation, we analyzed 2-5 sections per animal and a minimum of 2 animals 

per genotype. Cerebellar area measurements were collected using the area measure function on 

ImageJ. 

 

EGL and PC Dendrite quantitation 

To measure the thickness of the external granule layer (EGL) and PC dendrites, ImageJ 

software was utilized. Images were first blinded before measuring. For EGL thickness, the area 

was divided by the length of the EGL. For PC dendrite length, measurements were taken just below 

the bottommost nuclei in the EGL to the center of Purkinje cell nuclei within the molecular layer. 

For each animal, at least three images were acquired in the posterior lobes and an additional three 

images in the anterior lobes. 

 

EdU incorporation assay (in vivo) 

On postnatal day 9, pups were intraperitoneally injected with 100mg/kg of EdU 

(Invitrogen, A10044), dissolved in 1X PBS (pH 7.4). 24 h later, cerebella were dissected and 

processed for section immunofluorescence as described above. Prior to primary antibody 

incubation, EdU incorporation was visualized with an azide staining solution [100 mM Tris HCl 

(pH 8.3), 0.5 mM CuSO4, 50 mM ascorbic acid, 50 µM Alexa Fluor 555 Azide, Triethylammonium 

Salt (Thermo Fisher Scientific, A20012)] for 30 min at room temperature. Sections were then 

washed 3 x 10 min in PBSTX (1x PBS + 0.1% Triton X-100, pH 7.4), followed by 

immunofluorescence staining as described above. 
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Section digoxigenin in situ hybridization 

Section digoxigenin in situ hybridization was performed as previously described (Allen at 

al., 2011; Wilkinson, 1992). First, cerebella were dissected in 1X PBS (pH 7.4) and fixed for 24 h 

with 4% paraformaldehyde at 4°C on rocking platform. After fixation, cerebella were washed 3 x 

5 min with 1X PBSTW (1X PBS + 0.1% Tween-20, pH 7.4) and cryoprotected with 1X PBS + 

30% sucrose overnight on a rocking platform. The next day, cerebella were subjected to 3 x 1 h 

washes with 50% OCT before embedding in 100% OCT. Cerebella were sectioned on Leica 

CM1950 cryostat at 20 µm thick sections. Probe hybridization was performed with the indicated 

digoxigenin probes at a concentration of 1 ng/µl overnight at 70°C. The sections were incubated 

in AP-conjugated anti-DIG antibody (Table S1). AP-anti-DIG was visualized with BM Purple 

(Roche, 11442074001), and signal was developed for 4 h at 37°C. After the signal was developed, 

development was stopped with 3 x 5 min washes with 1X PBS (pH 4.5). Sections were post-fixed 

in 4% PFA + 0.2% glutaraldehyde for 30 min, then washed 3 x 5 min in 1X PBS (pH 7.4). Sections 

were dried with 70% ethanol wash before drying at 60°C for 10 min. Coverslips were mounted 

using Glycergel (DAKO, C056330-2) preheated to 60°C. Images were taken on a Nikon SMZ1500 

microscope. 

 

Western blot analysis 

For cerebellar lysates – Cerebella were dissected in 1X PBS (pH 7.4) and lysed in 

radioimmunoprecipitation assay buffer [50 mM Tris-HCl (pH 7.2), 150 mM NaCl, 0.1% Triton 

X-100, 1% sodium deoxycholate, 5 mM EDTA] containing protease inhibitor (Roche, 

11836153001) and 1 mM phenylmethylsulfonyl fluoride (PMSF; Sigma, 10837091001). Extracts 
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were cleared by centrifugation at 21130 rcf for 10 min at 4°C. Total protein concentration was 

determined with the Pierce BCA protein assay kit (Thermo Fisher Scientific), utilizing 50 µg of 

cerebellar lysate for each sample. Lysates were mixed with 6X Laemmli buffer and denatured at 

95°C for 10 min. Protein was separated by SDS-PAGE (5% separating gel for GLI1 and GLI2, 

6.25% for GLI3 and 12% for SHH) and transferred onto Immuno-Blot PVDF membranes (Bio-

Rad) at 100 v for 100 min on ice. For most blots, primary antibodies were diluted in blocking 

buffer [30 g/L bovine serum albumin with 0.2% NaN3 in 1X TBST (Tris-buffered saline, 0.5% 

Tween-20, pH 7.4)]. Blots were incubated with primary antibodies overnight at 4°C on a rocking 

platform. For detecting SHH, the primary antibody was diluted in 1X TBST and blots were 

incubated with primary antibody for 1 h at room temperature on a rocking platform. All primary 

antibodies and concentrations used can be found in Table S1. After incubation with primary 

antibody, blots were washed 3 x 10 min in 1X TBST. Peroxidase-conjugated secondary antibodies 

(Table S1) were diluted in blocking buffer, and blots were incubated with secondary antibodies 

for 1 h at room temperature on a rocking platform. After secondary incubation, blots were washed 

4 x 10 min in 1X TBST, following incubation with Amersham ECL Prime Western Blotting 

Detecting Reagent (GE Healthcare, RPN2232) for 2 min and then exposed to HyBlot CL 

autoradiography film (Fisher Scientific, NC9556985) and developed using a Konica Minolta SRX-

101A medical film processor. Relative levels were obtained by taking the integrated density value 

of each band, subtracting the background of the lane, and normalizing to the integrated density of 

housekeeping protein (CALB-1, VINCULIN, β-TUB) minus the background of the lane.  

For Cos7 overexpression lysates – COS-7 cells were transiently transfected with the 

relevant DNA constructs using Lipofectamine 2000 (Invitrogen, catalog number 11668). The 

media was collected, and cells were lysed 48 h after transfection in HEPES lysis buffer (25 mM 
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HEPES pH 7.4, 115 mM KOAc, 5 mM NaOAc, 5 mM MgCl2, 0.5 mM EGTA and 1% Triton X-

100) containing protease inhibitor (Roche, catalog number 11836153001) and 1 mM PMSF 

(Sigma, 10837091001). Culture media and extracts were cleared by centrifugation at 15,000 rpm 

for 10 min at 4°C. Total protein concentration was determined for cell lysates with the Pierce BCA 

protein assay kit (Thermo Fisher Scientific), utilizing 50 µg of cell lysate for each sample. 

Collected culture media was diluted 1:5 in HEPES lysis buffer before mixing with 6X Laemmli 

buffer and denatured at 95°C for 10 min. Protein was separated by SDS-PAGE using 12% gels 

and transferred onto Immuno-Blot PVDF membranes (Bio-Rad). Membranes with cell lysates 

were treated identical to cerebellar lysates, as described above.  

 

Tamoxifen induction  

To conditionally delete Shh in ShhCreER/lacZ mice, neonatal pups were injected 

intraperitoneally  with 50 mg/kg of tamoxifen (Sigma, T5648-1G) dissolved in corn oil once daily 

on postnatal days 7, 8 and 9. On postnatal day 10, cerebella were collected and processed for 

section immunofluorescence described above. 

 

Cerebellar granule neuronal progenitor cultures 

The protocol was adapted from (Lee et al., 2009). Postnatal day 8 animals were 

anesthetized on ice briefly before decapitation. Cerebella were dissected in 1X PBS (pH 7.4) and 

placed in Hibernate-A media (BrainBits, HA). Tissue was then washed once with 1X PBS (pH 

7.4). Cerebella were incubated in digestion media [0.25% Trypsin-EDTA (Gibco, ILT25200056) 

+ 1 mg/mL DNAse I (Roche, 10104159001)] for 5 min at 37°C followed by trituration with a 

P1000 pipette, and subsequent incubation for 15 min at 37°C, shaking the dish every 5 minutes. 
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After digestion, the pieces of tissue were further broken up with a P1000 pipette and transferred to 

a conical containing isolation media [DMEM (Gibco, 11965-092) + 10% calf bovine serum 

(ATCC 50-189-025NP) + 1x Penicillin-Streptomycin-Glutamine (Gibco, 10378016)]. The 

digested tissue was spun down 800 rcf for 8 min to pellet the cells. Digestion media was removed, 

and the pellet was washed with twice more isolation media. The pellet was fully resuspended in 

isolation media and passed through a 70 µm cell strainer. Single cell suspensions were spun down 

and resuspended in 1 mL of isolation media, which was then added to the top of a 30%/60% Percoll 

gradient (Sigma/Cytiva, P1644) before spinning at 800 rcf for 20 min. Initially, 100% Percoll was 

diluted with 10X PBS to make 90% Percoll. For 60% Percoll, 90% Percoll was diluted in L15 

complete media [Leibovitz's L-15 Medium without phenol red (Gibco, 21083027) +  10% calf 

bovine serum (ATCC 50-189-025NP) + 1x Penicillin-Streptomycin-Glutamine (Gibco, 

10378016)]. For 30% Percoll, 90% Percoll was diluted in isolation media. CGNPs were isolated 

from the 30%/60% Percoll interphase and washed with isolation media. Finally, CGNPs were 

resuspended in neuronal media [Neurobasal media (Gibco, 21103049) + 1% calf bovine serum 

(ATCC 50-189-025NP) + 1x Penicillin-Streptomycin-Glutamine (Gibco, 10378016) + 1x B27 

supplement (Gibco, 17504044)] and counted using a hemocytometer and plated at appropriate 

densities onto chambers or wells that were incubated with laminin (Sigma, L2020). CGNPs were 

cultured at 37°C, 5% CO2, 95% humidity in neuronal media. For activation of Hedgehog 

signaling, either SHH C.M. collected from COS-7 cells was added to the media (1:10) or 500 nM 

of SAG (Enzo Life Sciences, ALX-270-426-M001) dissolved in DMSO was added to the media. 

To antagonize HH signaling, BMP2 (Peprotech, 120-02) was used at 100 ng/mL, and BMP10 

(Peprotech, 120-40) was used at 10 ng/mL. Half media changes were done every 24 hours for the 
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duration of the cultures. 24 h before fixation, 10 µM EdU (Invitrogen, A10044), dissolved in 

DMSO, was administered to the culture. 

 

Genotyping with beta-galactosidase fluorescence 

For co-culturing Kif17+/- and Kif17-/- CGNPs, we utilized BetaFluor β-gal assay kit 

(Promega 70979-3) to distinguish between Kif17+/- and Kif17-/- littermates at postnatal day 8. 

Briefly, while dissected cerebella were on ice in Hibernate-A media, half of the cortex placed in 

TrypLE express (Invitrogen, ILT12604013) for 15 minutes at 37°C before lysing with reporter 

lysis buffer (Promega, E397A). Samples were spun at 15,000 rpm for 10 min at 4°C, and 

supernatant removed to a fresh tube. Lysates were then plated in triplicate in clear bottom 96-well 

plate and incubated with assay mixture for 30 min at 37°C before reading fluorescence. 

Genotyping samples taken at dissection later confirmed beta-galactosidase assay results. 

 

Cerebellar granule neuronal progenitor culture immunofluorescence 

Culture media was removed gently before coverslips were fixed in 4% paraformaldehyde 

for 30 min at room temperature. Coverslips were washed 3 x 5 min with 1X PBSTX, then were 

stained with EdU staining solution [100 mM Tris HCl (pH 8.3), 0.5 mM CuSO4, 50 mM ascorbic 

acid, 50 µM Alexa Fluor 555 Azide, Triethylammonium Salt (Thermo Fisher Scientific, A20012)] 

for 30 min at room temperature. Coverslips were washed 3 x 5 min with 1X PBSTX and then 

blocked with blocking buffer (3% bovine serum albumin, 1% heat-inactivated sheep serum, 0.1% 

Triton X-100) for either 1 h at room temperature or 4°C overnight. Primary antibodies were diluted 

in blocking buffer. Coverslips were removed from the plate and were placed onto the diluted 

primary antibodies on top of parafilm for 1 h at room temperature. Coverslips were placed back in 
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the well and were washed 3 x 5 min with 1X PBSTX. Secondary antibodies were diluted in 

blocking buffer and were added to a fresh piece of parafilm. Coverslips were placed onto the 

parafilm and incubated with the secondaries for 1 h at room temperature. After secondary 

incubation, nuclei were labeled using DAPI (0.5 ng/mL in block buffer) for 10 minutes. Coverslips 

were then washed 3 x 5 min with PBSTX. Before mounting onto a slide with Immu-mount aqueous 

mounting medium (Thermo Fisher Scientific, 9990412), coverslips were briefly dipped in water. 

Images were taken on a Leica SP5X upright confocal (2 photon). 

 

CGNP microplate assays 

To quantify EdU incorporation in vitro, a Click-iT EdU proliferation assay (Thermo Fisher 

Scientific, C10499) was used in CGNPs in vitro. 24 h after plating, EdU was added to the culture 

(10µM, dissolved in DMSO). 48 h after plating, the assay was completed according to the 

manufacturer’s protocol. To measure BrdU incorporation, a colorimetric BrdU Cell Proliferation 

ELISA Kit (Abcam, ab126556) was utilized. 48 h after plating (2 d in vitro), BrdU was 

administered to the culture. 48 h after BrdU addition (4 d in vitro), the assay was completed 

according to the manufacturer’s protocol. To quantify the number of viable CGNPs in vitro, a 

CellTiter-Glo® Luminescent Cell Viability Assay (Promega, G7570) was used on cultures grown 

for 4 d in vitro. The assay was performed according to the manufacturer’s protocol. 

 

Immunoprecipitation of tagged proteins 

COS-7 cells were transiently transfected with the relevant DNA constructs using 

Lipofectamine 2000 (Invitrogen, 11668). Cell lysates (1 mg) were pre-cleared with Protein-G–

agarose beads (Roche, catalog number 11719416001) for 1 h at 4°C. MYC- or HA-tagged proteins 
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were immunoprecipitated from pre-cleared lysates using either anti-MYC or anti-HA antibodies 

for 2 hours at 4°C. Following immunoprecipitation, the lysates were incubated with Protein-G–

agarose beads for 1 h at 4°C. The Protein-G–agarose beads were subjected to 5 x 8 min washes in 

HEPES lysis buffer and resuspended in 30 µl of 1X PBS and 6X Laemmli buffer. The samples 

were boiled for 10 min and proteins were separated using SDS-PAGE and analyzed by western 

blotting. Visualization and quantitation were identical to the above-described western blot 

analysis. 

 

Image quantitation  

To quantify intensity of SHH immunofluorescent signal, ImageJ software was used to 

measure the fluorescence integrated density of individual Purkinje cell bodies, subtracting the 

background measured from the internal granule layer. Per mouse, at least 5 images from the 

posterior lobes were measured, and an additional 5 images of the anterior lobes. To quantify 

fluorescent Gli1 fluorescence, ImageJ software was used to measure the integrated density 

fluorescent signal contained to either the external granule layer (EGL, CGNPs) or lower molecular 

layer to inner granule layer (IGL, Bergmann glia and CGNs). At least six images were analyzed 

per mouse; three images for each posterior and anterior lobes. For all image analyses, images were 

blinded. 

 

Quantitation and statistical analysis 

All the data are mean ± s.d. All statistical analyses were performed using GraphPad Prism 

(www.graphpad.com). Statistical significance was determined by using a two-tailed Student’s t-

test for comparison of two groups or one way ANOVA analysis for more than two groups.. For all 
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the experimental analyses, a minimum of three mice of each genotype were analyzed, each n 

represents a mouse. For in vitro experiments, a minimum of three biological replicates were 

analyzed, each n represents a biological replicate. All the statistical details (statistical test used, 

adjusted P-value, statistical significance and exact value of each n) for each experiment are 

specified in the figure legends. 
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2.8 Tables 

Table 2.1 Table of Antibodies 

Antibody Source Catalogue 

Number 

Application Concentration used 

Mouse IgG1 anti PAX6 DSHB PAX6 IF 1:20 on tissue 

sections, 1:40 on 

coverslips 

Rabbit anti Calbindin 

(CALB-1) 

SWANT CB38 IF/WB 1:10,000 (IF), 

1:2000 (WB) 

Chicken anti Beta-

galactocidase 

ICL CGAL-45A-Z IF 1:2000 

Mouse IgG1 anti 

LIM1+2 

DSHB 4F2 IF 1:20 

Rabbit anti Ki67 Abcam ab15580 IF 1:1000 on tissue 

sections, 1:2000 on 

coverslips 

Rabbit anti SOX2 Seven Hills 

Bioreagent 

WRAB-1236 IF 1:2000 

Goat anti SHH (N-

terminus) 

R&D systems AF464 WB 0.5 µg/mL 
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Rabbit anti HA Bethyl Labs A190-108A WB 1:10,000 

Mouse IgG1 anti Beta-

tubulin (B-Tub) 

DSHB E7 WB 1:2000 

Goat anti SHH (C-

terminus) 

R&D systems AF445 IF 10 µg/mL 

Goat anti BOC R&D systems AF2385 WB 1:4000 

Rabbit anti Giantin Biolegend 

(Covance) 

924302 IF 1:1000 

Goat anti GLI3 R&D systems AF3690 WB 1:1000 

Rabbit anti GLI1 Cell Signaling 

Technology 

2534 WB 1:1000 

Goat anti GLI2 R&D systems AF3635 WB 1:1000 

Rabbit anti VINCULIN Cell Signaling 

Technology 

13901 WB 1:1000 

Mouse IgG1 anti MYC Santa Cruz sc-40 IP/WB 1:150 (IP), 1:1000 

(WB) 

Mouse IgG1 anti HA Covance MMS-101 IP/WB 1:300 (IP), 1:1000 

(WB) 

Mouse IgG2a anti 

ARL13B 

NeuroMAB 73-287 IF 1:100 on tissue 

sections, 1:200 on 

coverslips 

Rabbit anti Gamma-

Tubulin 

Sigma T3559 IF 1:4000 on tissue 

sections, 1:8000 on 

coverslips 

Goat anti SUFU Adrian Salic Lab N/A IF 1:750 

Alexa Fluor 488 goat 

anti-mouse IgG1  

Invitrogen A21121 IF 1:500 
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Alexa Fluor 647 goat 

anti-mouse IgG1 

Invitrogen A21240 IF 1:500 

Alexa Fluor 647 donkey 

anti-rabbit IgG 

Invitrogen A31573 IF 1:500 

Cy3 AffiniPure Donkey 

anti-Chicken IgY 

Jackson 

Immunoresearch 

703-165-155 IF 1:500 

AP-conjugated anti-DIG 

antibody  

Roche (Millipore 

Sigma) 

11093274910 SISH 1:4000 

Polyclonal Donkey anti 

Goat HRP 

R&D systems HAF109 WB 1:1000-5000 

Peroxidase AffiniPure 

Donkey Anti-Rabbit IgG 

Jackson 

Immunoresearch 

711-035-152 WB 1:5000 

Peroxidase AffiniPure 

Donkey Anti-Mouse IgG 

Jackson 

Immunoresearch 

715-035-150 WB 1:5000 

Alexa Fluor 488 donkey 

anti-goat IgG 

Invitrogen A11055 IF 1:500 

AffiniPure goat anti-

mouse-light-chain 

secondary antibody 

Jackson 

Immunoresearch 

115-035-174 WB 1:50,000 

Alexa Fluor 488 goat 

anti-mouse IgG2a 

Invitrogen A21131 IF 1:500 

 

Table 2.2 Table of RT-qPCR primers 

Gene forward primer (5-3) reverse primer (5-3) Reference 

Gapdh GTGGTGAAGCAGGCA

TCTGA 

GCCATGTAGGCCAT

GAGGTC 

[Han et al., 2017 (PLoS 

Biology)] 
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Kif17 CATGCACACGGTACA

CAAC 

GAACGGGAGGAGTC

CTTATTC 

designed by BW 

Atoh1 AGTCAATGAAGTTGT

TTCCC 

ACAGATACTCTTAT

CTGCCC 

[Hor et al., 2021 (Journal of 

Neuroscience)] 

Gli1 GTGCACGTTTGAAGG

CTGTC 

GAGTGGGTCCGATT

CTGGTG 

[Han et al., 2017 (PLoS 

Biology)] 

Ptch1 GAAGCCACAGAAAAC

CCTGTC 

GCCGCAAGCCTTCT

CTAGG 

[Han et al., 2017 (PLoS 

Biology)] 

Ptch2 CCCGTGGTAATCCTC

GTGGCCTCTAT 

TCCATCAGTCACAG

GGGCAAAGGTC 

[Shimokawa et al., 2008 

(JBC)] 

Ccnd1 AGACCTGTGCGCCCT

CCGTA 

CAGCTGCAGGCGGC

TCTTCT 

[Han et al., 2017 (PLoS 

Biology)] 

Shh GCTGTGGAAGCAGGT

TTCG 

GGAAGGTGAGGAAG

TCGCTC 

[Madison et al., 2005 

(Development)] 

Scube2 TGACTACCTGGTGAT

GCGGAAAAC 

CAGTGGCGTGTGGG

AAGAGTCA 

[Lin et al., 2015 (J Bone Miner 

Res.)] 

Boc TTCATCCCCTTCTGC

CTATG 

ACCATTGTGTACTG

GCACGA 

[Mille et al., 2014 (Dev Cell)] 

Ki67 CATTGACCGCTCCTTT

AGGTATGAAG 

TTGGTATCTTGACC

TTCCCCATCAG 

[Mille et al., 2014 (Dev Cell)] 

Gli2 CCTTCACCCACCTTC

TTGG 

CTTGTTCTGGTTGG

CATCATTT 

[Scales et al., 2022 (PLoS 

Genetics)] 
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Gli3 CACATGCATCAACAG

ATCCTAAGC 

AGGGATAGGTCTCT

GTGTTGGAAAT 

[Scales et al., 2022 (PLoS 

Genetics)] 

Bmp10 ATGGGGTCTCTGGTT

CTGC 

CAATACCATCTTGC

TCCGTGAA 

[Liu et al., 2017 (J Biol 

Chem.)] 
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2.9 Figures 

 

Figure 2.1 Schematic of Kif17lacZ allele, orientation of sectioning analysis, timeline of Kif17 
expression during postnatal cerebellar development. 
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Schematic of Kif17 wildtype and lacZ alleles (A) and the polypeptides they encode. The wildtype 
allele encodes for three domains (motor domain, orange; coiled-coiled, purple; tail, yellow), 
while lacZ allele contains exon 4 deletion and IRES-lacZ insertion. The lacZ insertion contains a 
stop codon at the end of the cassette, and deletion of exon 4 results in a frameshift and premature 
stop codon within exon 5 (red line). Asterisk in wildtype polypeptide denotes the binding site of 
the commercial antibody in the paper initially describing this allele. Whole-mount X-gal stain of 
Kif17+/+ (B-D) and Kif17lacZ/lacZ (E-G) cerebella from postnatal day 4 (P4) to postnatal day 21 
(P21). Asterisks denote endogenous Beta Galactosidase in the choroid plexus (Trifonov et al., 
2016). Scale bar (A-F), 500 µm. Whole-mount image of P10 Kif17+/+ cerebella (H), indicating 
where mid-sagittal sections were taken for this paper (black brackets) for a depth of 300 µm into 
the tissue. Hematoxylin and eosin-stained section of P10 Kif17+/+ cerebella (I), indicating 
numbering of the lobes. For this paper, lobes I-III are considered anterior, while VI-VIII are 
considered posterior. Boxes indicate where images were obtained. Fluorescent in situ 
hybridization detection of lacZ (yellow, J-Q) in anterior cerebellar lobes of P10 Kif17+/+ (J-M) 
and Kif17-/- (N-Q) mice. Immunofluorescent detection of LIM1/2 (magenta; J, N) and PAX6 
(cyan; L, P) were used to visualize Purkinje cells and CGNPs, respectively. Scale bar (J, L, N, 
P), 25 µm.  




