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Abstract 

 
Somatic mutations are genetic variations that occur in a subset of cells during an 

individual's lifespan and have implications for various biological processes and diseases. While 

high-throughput sequencing technology has made it possible to profile these mutations genome-

wide, detecting somatic mutations from bulk tissue samples poses significant challenges. Single-

cell DNA sequencing is a powerful technique that can reveal the presence and extent of somatic 

genetic variations, such as copy number variations (CNVs), at the resolution of individual cells; 

however, this method also presents technical challenges due to low coverage, high noise, 

amplification bias, and artifacts. 

To address these challenges, this dissertation presents three main contributions. First, I 

developed SCOVAL, a method that verifies the single-cell CNV calls from a read coverage-

based approach with additional phased loss-of-heterozygosity information. This method was 

applied to 2,125 frontal cortical neurons from a neurotypical human brain and discovered 226 

CNV neurons, including a novel class of neurons with complex karyotypes characterized by 

whole or substantial losses of multiple chromosomes. Second, it is difficult to directly validate 

CNVs present in only a single cell and thus ground truth sets are problematic to obtain. I 

therefore developed a single-cell CNV simulator to generate realistic single-cell DNA 

sequencing data with predefined somatic CNVs, which was used to benchmark existing tools for 

somatic CNV detection and to provide a ground truth dataset for the development and evaluation 

of new methods. Third, I developed a deep learning-based method named ScovalNN that 

leverages Long Short-Term Memory (LSTM) neural networks to detect somatic CNVs from 
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single-cell DNA sequencing data, and showed that it performs well on both simulated and real 

data and outperforms existing methods in terms of multiple metrics. 

Overall, this dissertation provides significant advancements in the field of somatic CNV 

detection using single-cell DNA sequencing data and highlights the challenges that still need to 

be addressed. These contributions have important implications for the understanding of somatic 

mutations in non-cancer diseases and the development of personalized medicine. 
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Chapter 1 Introduction 

1.1 Somatic mosaicism 

Somatic mosaicism refers to the occurrence of genetically diverse cells within an 

individual, derived from a postzygotic mutation (Freed et al., 2014). Somatic mosaic mutations 

are present in only a subset of cells of a single individual. These mutations can arise 

spontaneously or as a result of exposure to environmental factors (Oota, 2020). Compared to  

inherited mutations, which are present in every cell of an individual and are passed down to 

subsequent generations, somatic mosaic mutations may affect only a limited portion of the body 

and are not transmitted to progeny (“Definition of somatic mutation - NCI Dictionary of Cancer 

Terms - NCI,” 2011). 

The spectrum of somatic mutations encompasses a wide range of variants, ranging from 

small-scale single nucleotide variants (SNVs) (Wang et al., 2021; Zaidi et al., 2020) to large-

scale structural variations, such as the loss or gain of entire chromosomes (aneuploidy) (Valind 

et al., 2013). These mutations have the potential to alter cellular function through changes in 

gene expression and regulation (Ding et al., 2015; Jia and Zhao, 2017; Mathelier et al., 2015). 

Different types of somatic mutations include single nucleotide variations (SNVs), insertions and 

deletions (indels), copy number variations (CNVs), and structural variations (SVs). A 

noteworthy type of structural variation is caused by long interspersed nucleotide element 1 

(LINE-1 or L1), which occurs due to the insertion of a copy of the L1 retrotransposable element 

into a new location in the genome, leading to activation or inactivation of genes and subsequent 

cellular dysfunction and disease (Brouha et al., 2003; Kazazian and Moran, 2017, 1998; Larson 
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et al., 2018; Moran et al., 1996; Ostertag et al., 2000; Ostertag and Kazazian, 2001; Singer et al., 

2010; Smit, 1999; Zhao et al., 2019; Zhou et al., 2020). To advance our understanding of the 

underlying mechanisms of disease and develop effective treatments, it is essential to thoroughly 

investigate the full spectrum of somatic mosaic mutations, from small-scale SNVs to large-scale 

structural variations. 

Somatic mutations also play a crucial role in the development and progression of various 

diseases, both cancerous and non-cancerous. In particular, cancer is heavily influenced by 

somatic mutations (Martincorena and Campbell, 2015). These mutations accumulate over time, 

driving the evolution of malignant cells and contributing to the development of tumors 

(Fernández et al., 2016). In tumor tissues, somatic mutations can alter the expression and 

regulation of key genes, leading to cellular transformation and the hallmark features of cancer, 

such as uncontrolled cell growth and the ability to evade normal cellular controls (Nenclares and 

Harrington, 2020). Cancer evolves from somatic mutations through a process of clonal 

expansion, genetic diversification, and clonal selection. It is derived from a single ancestor cell, 

whose progenies that are positively selected by acquisition of driver mutations (Greaves and 

Maley, 2012; Greenman et al., 2007). Clonal expansion driven by the acquisition of different 

mutations leads to the development of a population of cancer cells (Merlo et al., 2006). Such 

expansions are accompanied by passenger alterations that may transform into driver aberrations 

if the selective pressures change. During tumor progression, the mutational rate changes, leading 

to genetic heterogeneity within the tumor (Greaves and Maley, 2012; Hanahan and Weinberg, 

2011). Clonal evolution has been demonstrated in multiple cancers. Using next-generation 

sequencing, the tumor clonal structures and evolutionary history of several cancers have been 

identified (Gerlinger et al., 2012; Gundem et al., 2015; Harbst et al., 2016; Jamal-Hanjani et al., 
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2017; Roerink et al., 2018; Yates et al., 2015), directly confirming that the cancer tissues 

comprise highly heterogeneous cell populations in terms of somatic mutation. 

On the other hand, somatic mutations also play a role in a diverse range of non-cancerous 

diseases. Autoimmune disorders, such as systemic lupus erythematosus (SLE), can be influenced 

by somatic mutations, as these mutations can trigger an immune response against the individual's 

own cells (Law et al., 2022). Neurodegenerative diseases, such as Huntington's disease (Roy et 

al., 2021), Alzheimer's disease (Miller et al., 2022) and Parkinson's disease (Veeriah et al., 

2010), are also thought to be influenced by somatic mutations, which can contribute to the 

progressive degeneration of neural cells (Proukakis, 2020). In addition, somatic mutations have 

been linked to a variety of neurodevelopmental disorders (D’Gama and Walsh, 2018), including 

epileptic encephalopathies (Stosser et al., 2018), intellectual disability (Gilissen et al., 2014), 

Schizophrenia (Bundo et al., 2014) and autism spectrum disorder (ASD) (Dou et al., 2017). A 

previous study suggested that somatic mutations can contribute to 3-5% of simplex ASD 

diagnoses (D’Gama, 2021).  

In addition, recent research has demonstrated that somatic mutations play a role in the 

aging process and can contribute to the causes of age-related diseases (Vijg, 2014). However, the 

exact relationship between aging and somatic mutation rate remains to be fully elucidated. Some 

studies found that the somatic mutation rate appears to remain constant during aging, leading to a 

gradual linear mutation accumulation over time (Manders et al., 2021). In contrast, other studies 

suggest that somatic mutation rates may be inversely correlated with lifespan across species and 

tissues, indicating a more complex relationship between aging and somatic mutations (Cagan et 

al., 2022; Chronister et al., 2019). 
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Overall, the relationship between somatic mutations and disease is complex and multi-

faceted, encompassing both cancerous and non-cancerous conditions. A comprehensive 

understanding of this relationship is essential for the development of effective diagnostic and 

therapeutic strategies aimed at improving patient outcomes and quality of life. 

 

1.2 Somatic mosaicism in human neurons 

Neurons are produced by neural stem cells (NSCs), including neuroepithelial cells 

(NECs), radial glial cells (RGCs), basal progenitors (BPs), intermediate neuronal precursors 

(INPs), subventricular zone astrocytes, and subgranular zone radial astrocytes, each of which has 

a distinct role in the process of neurogenesis (Kandel et al., 2021). During neurogenesis, NSCs 

divide and differentiate to form mature neurons. Mature neurons are not capable of dividing after 

birth, and do not renew themselves. However, NSC populations that divide rapidly can also 

acquire somatic mutations due to errors in DNA replication. Subsequently, the clonal expansion 

of variant genomes can contribute to the somatic mosaicism (Malinverno et al., 2019). 

Somatic single nucleotide variants (SNVs) can have significant effects on gene 

expression, cellular function and disease susceptibility (Huang and Lee, 2022). Somatic SNVs 

are particularly relevant for studying brain disorders, as the brain is composed of diverse cell 

types and regions that may harbor distinct mutational profiles. Several recent studies have 

applied advanced sequencing technologies and bioinformatics methods to detect and characterize 

somatic SNVs in the human brain. For example, Wang et al. presents a unified set of best 

practices to detect somatic SNVs in human brain tissue. They identified 43 bona fide somatic 

SNVs that range in variant allele fractions from ~ 0.005 to ~ 0.28 (Wang et al., 2021). Luquette 

et al. analyzed whole-genome sequencing data from 52 primary template-directed amplification 
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(PTA) amplified single neurons to identify SNVs and small indels. Their analysis confirms an 

increase in non-clonal somatic mutation in single neurons with age, but revises the estimated rate 

of this accumulation to 16 SNVs per year (Luquette et al., 2022). Miller et al. analyzed single-

cell whole-genome sequencing data from 319 neurons from the prefrontal cortex and 

hippocampus of individuals with Alzheimer’s disease and neurotypical control individuals. They 

found that somatic SNVs increase in individuals with Alzheimer’s disease, with distinct 

molecular patterns (Miller et al., 2022). These studies demonstrate the power and potential of 

investigating somatic SNVs in the human brain to uncover novel insights into its development, 

diversity and disease. 

Somatic mobile element insertions (MEIs) are a source of genomic variation in the 

human nervous system that may have implications for brain development and neuropsychiatric 

disorders (Bundo et al., 2014; Coufal et al., 2009; Evrony et al., 2012; Muotri et al., 2005). 

Somatic MEIs are generated by active retrotransposons, such as L1, Alu and SVA elements, that 

can transpose via an RNA intermediate in both germline and somatic cells. Several studies have 

used different approaches to identify and quantify somatic MEIs in human neurons. Erwin et al. 

reported that a subset of somatic L1-associated variants (SLAVs) comprises somatic deletions 

generated by L1 endonuclease cutting activity. SLAVs can present in crucial neural genes, and 

affect 44–63% of cells in the healthy brain (Erwin et al., 2016). Zhao et al. identified and 

validated somatic L1Hs insertions in both cortical neurons and non-brain tissues. They also 

explored the genomic patterns of somatic L1Hs insertions in neuronal and non-neuronal samples, 

and to investigate whether MeCP2 dysfunction could alter the distribution of L1Hs 

retrotransposition in patients with Rett syndrome (Zhao et al., 2019). 
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Somatic copy number variations (CNVs) are changes in the number of copies of a 

genomic region in a single cell, and they can range in size from hundreds to millions of base 

pairs (Gao et al., 2022; Knouse et al., 2016; Macaulay and Voet, 2014). They may have a 

significant impact on human disease and development, and may be caused by mechanisms such 

as retrotransposition (Sui and Peng, 2021; Turan et al., 2022). In recent years, there has been 

growing interest in studying somatic CNVs in human neurons, as they are believed to play a role 

in various aspects of neuronal function and behavior.  

Researchers have used a variety of techniques, including single-cell sequencing and 

genomic arrays, to study the prevalence and characteristics of somatic CNVs in human neurons 

(Knouse et al., 2016; McConnell et al., 2013). These studies have revealed that somatic CNVs 

are relatively common (~8% - 41%) in human neurons and can vary greatly in size and genomic 

location. Some somatic CNVs have been shown to have significant effects on neuronal function 

and behavior, while others appear to be more benign (Zhang et al., 2009). Key findings from 

these studies include evidence of regional differences in the prevalence of somatic CNVs in 

human neurons (Turan et al., 2022), as well as a potential role for somatic CNVs in 

neurodevelopmental and neurodegenerative disorders (Maury and Walsh, 2021). 

Regarding somatic CNVs, there are still several important questions that remain to be 

answered. For example, their frequency and distribution, and what factors influence them. In 

addition, a fundamental open question in neurodevelopmental genetics is whether and how 

somatic mosaicism may contribute to neuronal diversity within the neurotypical spectrum and in 

diseased brains. To study somatic mosaicism in human neurons, The National Institute of Mental 

Health (NIMH) has formed a network of 18 investigative teams representing 15 institutions 

called the Brain Somatic Mosaicism Network (BSMN) (McConnell et al., 2017). Researchers 
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can leverage various genomic technologies, including next-generation and long-read DNA 

sequencing technologies, single-cell genomics, and cutting-edge bioinformatics, to make it 

possible to determine the types and frequencies of somatic mutations within the human brain. 

 

 

1.3 Single-cell DNA sequencing: technologies and applications 

Before single-cell sequencing was invented, some early attempts on somatic mutation 

detection were performed on bulk tissue samples. Somatic mutation calling from bulk DNA 

sequencing data has been primarily studied in cancer research, where the sequencing data from 

tumor samples are compared to matched normal control samples to identify mutations. Tools 

such as Strelka (Saunders et al., 2012), VarScan2 (Koboldt et al., 2012), JointSNVMix (Roth et 

al., 2012), and MuTect (Cibulskis et al., 2013) have been developed to identify somatic 

mutations in these samples by comparing the mutant allele fractions between tumor and normal 

samples. These models also incorporate error filters to remove technical artifacts from 

sequencing data. 

Targeted ultra-deep sequencing is a powerful technique to detect somatic mutations in 

cancer-related genes with high sensitivity. However, it also faces the challenge of distinguishing 

true mutations from technical artifacts that arise from various sources of error. Several methods 

have been developed to address this issue, such as RareVar (Hao et al., 2017) and RePlow (Kim 

et al., 2019). RareVar employs a position-specific error model to filter out false positives with a 

low allele fraction of 0.5%, while RePlow estimates the background error rate based on the 

distribution of sequencing depth and quality scores. These methods improve the accuracy of 

somatic variant detection in ultra-deep sequencing data, but they are mainly designed for bulk 
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sequencing. Bulk sequencing has inherent limitations in detecting rare or subclonal mutations 

due to the dilution effect and tumor heterogeneity (Ma et al., 2019). Therefore, alternative 

approaches such as single-cell sequencing may be needed to overcome these challenges and 

achieve more reliable somatic variant detection. 

Single-cell sequencing is a cutting-edge technology that enables sequencing DNA at 

individual cell level. Compared to the bulk sequencing method, which sequences DNA from a 

bulk population of cells, single-cell sequencing can provide a deeper understanding of genetic 

heterogeneity and diversity within complex biological systems. Single-cell DNA sequencing has 

its origins in pioneering experiments that allowed the detection of gene expression in single cells 

by microarrays in the early 2000s (Tang et al., 2011). Since then, the single-cell technology has 

rapidly evolved. In 2009, Navin et al. developed a method to profile single-cell genomes using 

comparative genomic hybridization (CGH) to identify two types of genomic structural variations 

and infer pathways of cancer progression in human breast tumors (Navin et al., 2010). They also 

applied single-cell sequencing to investigate tumor population structure and evolution in two 

breast cancer cases (Navin et al., 2011). Single-cell sequencing examines the sequence 

information from individual cells with optimized next-generation sequencing technologies, 

providing a higher resolution than traditional array-based and bulk sequencing methods 

(Eberwine et al., 2014). 

Single-cell DNA sequencing is limited by its DNA quantity, and it needs the whole 

genome amplification (WGA) to provide sufficient DNA before sequencing. There are several 

strategies for the WGA of single-cell DNA sequencing. Multiple Displacement Amplification 

(MDA), degenerate-oligonucleotide-primed PCR (DOP-PCR) and Multiple Annealing and 

Looping-Based Amplification Cycles (MALBAC) are three of the most widely used methods for 
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single-cell DNA sequencing (Hou et al., 2015). MDA is a DNA amplification technique that can 

rapidly amplify minute amounts of DNA samples from a single cell (Dean et al., 2002; Spits et 

al., 2006). It is a non-PCR type of DNA amplification that can generate large amounts of DNA 

from very small starting material. MDA has several advantages, including high amplification 

efficiency and low input requirements. However, it is prone to amplification bias and errors, 

which can lead to inaccurate results (Marine et al., 2014). DOP-PCR is a PCR based WGA 

method, and it uses non-selective amplification to achieve whole genome sequencing (Cheung 

and Nelson, 1996; Telenius et al., 1992). DOP-PCR has been demonstrated to be a reliable 

technology to provide low-noise CNV profiles. However, the genomic coverage by DOP-PCR is 

relatively low, limiting its applications in SNV-related studies (Fu et al., 2019). MALBAC is a 

newer WGA technology, and it can complete the high-precision whole genome sequencing of a 

single cell (Lu et al., 2012; Zong et al., 2012). This technique has high sensitivity, and the 

amplification uniformity is better than other WGA techniques (He et al., 2018). A 

comprehensive comparison (Hou et al., 2015) of these three WGA methods revealed that the 

DOP-PCR method had the highest duplication ratio, but the read distribution was even, and it 

exhibited the best reproducibility and accuracy for CNV detection. In contrast, the MDA method 

had a significantly higher genome recovery sensitivity (~84%) compared to DOP-PCR (~6%) 

and MALBAC (~52%) at high sequencing depth. The efficiency of detecting single-nucleotide 

variations, the false-positive ratio, and the allele drop-out ratio were similar for MALBAC and 

MDA. Besides these 3 approaches, 10X Genomics developed a droplet-based method, 

Chromium Single Cell sequencing, with a high uniformity, low coverage, but high throughput, 

which is suitable for somatic CNV detection (10X Genomics, 2023). However, 10X Genomics 

discontinued this product after December 31, 2020. 
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Long-read sequencing technologies, such as Pacific Biosciences (PacBio) and Oxford 

Nanopore Technologies (ONT), have enabled the sequencing of individual DNA molecules with 

a length of up to tens of kilobases (Amarasinghe et al., 2020). They have already been applied to 

study multiple cancer genomics and transcriptomics (Porubsky et al., 2021; Sakamoto et al., 

2020; Singh et al., 2019). One of the main advantages of long-read sequencing for somatic 

mutation detection is that it can overcome the limitations of short-read sequencing in detecting 

mutations in repetitive regions of the genome. In addition, long-read sequencing can also provide 

phasing information, which is important for studying allele-specific variants and for 

reconstructing haplotypes (Logsdon et al., 2020). However, there are still some challenges to 

overcome (Adewale, 2020). One of the main challenges is the low throughput of current long-

read sequencing technologies, which limits the number of cells that can be sequenced in a single 

experiment. In addition, the high error rates of long-read sequencing can make it difficult to 

distinguish true somatic mutations from sequencing errors. 

Single-cell DNA sequencing has revolutionized the field of genomics. This technology 

has numerous applications in various fields of biology and medicine, including somatic 

mosaicism, cancer research, microbiome, immunology, neurobiology, germline transmission, etc 

(Wang and Navin, 2015). One of the most exciting applications is in the study of somatic 

mosaicism. Single-cell DNA sequencing has been used to study somatic mosaicism in various 

tissues and diseases, including the brain (Cai et al., 2014; Wang et al., 2021), skin (Saini et al., 

2016), and blood (Zhang et al., 2019). By sequencing individual cells, researchers can discover 

the distribution and frequency of somatic mutations, which can provide insights into disease 

mechanisms and potential therapeutic targets. 
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1.4 Single-cell CNV detection methods and challenges 

Single-cell DNA-sequencing technologies provide a valuable opportunity to detect 

genetic variants in individual cells. It is necessary to develop computational tools to accurately 

identify such variants. While a number of methods have been developed for identifying SNVs 

from Single-cell DNA-sequencing data, there is a limited availability of CNV detection methods. 

Furthermore, several existing methods for CNV detection were originally designed for other 

types of data, including array-CGH and bulk next-generation sequencing data.  

The main challenges for single-cell sequencing to identify CNV include low sequencing 

depth of coverage, low throughput, and amplification bias. The sequencing coverage determines 

the size range and the resolution of the CNV that can be detected. A higher coverage can lead to 

the CNV identification with smaller lower bounds and higher resolution of CNV boundaries. The 

sequencing throughput is defined as the number of cells that can be sequenced simultaneously 

and the speed of the turnaround time. Higher throughput enables the scalability of single-cell 

sequencing, and tends to have lower costs, as they require less labor and can thus accommodate 

the sequencing of thousands of cells for a single sample. The amplification bias can lead to the 

non-uniformity of the coverage, which will make false positive CNV calls as it is 

computationally challenging to distinguish whether read-count fluctuations are due to 

amplification biases or to true CNVs (Navin, 2014).  

The general steps of single-cell CNV detection pipelines usually include genomic 

binning, GC correction, mappability correction, removal of outlier bins, removal of outlier cells, 

segmentation and calling the absolute copy numbers (Mallory et al., 2020a). In order to reduce 

the effects of inconsistent amplification and sequence sampling from single-cell sequencing, it is 

necessary to partition the genome into fixed- or variable-size bins (Garvin et al., 2015). By doing 
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so, the resolution of genome segmentation and copy number identification can be determined 

based on bins rather than the base pairs. GC correction is another essential step due to GC bias, 

and it would drop the read coverage at the regions with extreme GC contents (Yoon et al., 2009). 

The mappability is quantified by the percentage of the uniquely mappable positions within a 

genomic bin. Similar to GC correction, correction of the read counts based on  mappability can 

follow the similar process by modeling the relationship between the read count and mappability 

of each bin, and subsequently normalizing the read count. Removing outlier bins can help reduce 

false-positive calls in single-cell sequencing analysis. Bins that are located at centromere or 

telomere regions, or have zero or extremely high read counts are often identified as outliers and 

removed from further analysis. Removing outlier cells is also important for further analysis as 

their coverage is lower or higher than expected. The above five steps are the data wrangling prior 

to CNV detection, and the following two steps are segmentation and absolute copy number 

calling. There are three approaches for segmentation: a sliding-window approach, an objective 

function-based approach, and an HMM-based approach. The sliding-window approach segments 

the genome by statistical testing and requires post-processing to calculate absolute copy number. 

The objective function-based approach models the read count by a piecewise constant function to 

minimize changes and approximate the data, while the HMM-based approach models absolute 

copy numbers as states and captures transitions between bins to identify breakpoints across 

multiple cells. After segmenting the genome, the next step is to determine the absolute copy 

number for each segment. If the DNA ploidy information is known, the absolute copy number 

can be calculated by scaling the read count of the segment with the genome-wide ploidy and 

dividing it by the average read count of the whole genome. In the absence of DNA ploidy 
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information, a copy number multiplier can be estimated to normalize the read count to its nearest 

integer value (Mallory et al., 2020a). 

Currently, there are several computing tools for CNV detection from single-cell data. 

They can be divided into two categories: single cell-based methods (e.g. HMMcopy, Ginkgo and 

SCNV), which process a single cell at a time; and multiple cells-based methods (e.g. CHISEL 

and Alleloscope), which pool the information shared among all the cells. HMMcopy is a Hidden 

Markov Model (HMM) based approach (Shah et al., 2006). It models the read count distribution 

of each bin with a Gaussian mixture model and estimates the copy number using the Viterbi 

algorithm. It was originally designed for array CGH data, but has been widely applied to large-

scale single-cell sequencing data (Knouse et al., 2016; Vitak et al., 2017).  Ginkgo is a web 

platform for detecting single-cell CNVs, and it can also be used as a local application (Garvin et 

al., 2015). It applies a variable bin strategy to segment the genome into bins followed by GC 

correction. Ginkgo employs Circular Binary Segmentation (CBS) algorithm (Olshen et al., 2004) 

for genome segmentation and subsequent inference of integer absolute copy number values. 

Ginkgo has shown a higher accuracy than the other tools in an extensive assessment (Mallory et 

al., 2020b). SCNV is a bin-free single-cell CNV detector, which provides higher resolution 

boundaries for CNAs and generalizability to data at different sequencing depths, but it requires at 

least 20-30 normal cells in the pool of sampled single cells, which limits its usability (Wang et 

al., 2018). CHISEL is the first allele-specific and haplotype-specific single-cell CNV detection 

tool that uses a reference-based algorithm to phase blocks in each bin and an Expectation-

Maximization algorithm to cluster bins and cells based on B-allele frequency (BAF) and read 

depth (Zaccaria and Raphael, 2021). CHISEL can identify complex genomic rearrangements and 

is suitable for analyzing cancer genomes. CHISEL has been shown to detect CNVs on 2 breast 
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cancer samples and reconstruct a more refined tumor evolutionary scenario that has been 

validated by SNVs. Alleloscope is another tool that estimates allele-specific copy number and is 

useful for analyzing single-cell DNA and ATAC sequencing data (Wu et al., 2021). This 

approach enables more precise identification of copy number states, detection of subclonal copy-

neutral loss-of-heterozygosity, and mirrored copy number alteration events. Additionally, the 

tool allows for the integration of multi-omic analysis of allele-specific copy number and 

chromatin accessibility for the same cell in single-cell ATAC-seq data. 

 

1.5 Single-cell DNA sequencing simulation methods 

The generation of DNA sequences through in silico methods is a highly efficient and 

inexpensive technology for the evaluation and validation of bioinformatics tools and pipelines 

(Escalona et al., 2016). They are widely used in a wide range of bioinformatics applications, 

including genome assembly (Ono et al., 2013), variant calling (Sandmann et al., 2017), 

transcriptomics (Angly et al., 2012), metagenomics (Jia et al., 2013; Richter et al., 2008), etc.  

Compared to the NGS data simulation, it is more necessary to develop a single-cell 

sequencing simulator as the replication of experiments from the same cells is not possible. The 

currently available single-cell DNA sequencing simulators, CellCoal, SCSsim, SCSIM, 

SimSCSnTree and SCSilicon, while able to simulate single-cell data, are not suitable for 

simulating CNVs in the non-cancer single-cell sequencing data. CellCoal is a computational tool 

that uses coalescent simulations to model the evolution of cells and infer clonal relationships 

from single-cell sequencing data (Posada, 2020). It can estimate the time of the most recent 

common ancestor and the clonal fraction of each cluster of cells. CellCoal was shown to 

accurately infer the clonal architecture of simulated and real datasets, but it only focuses on SNV 
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simulation. SCSsim is a MALBAC-based single-cell DNA sequencing simulator that integrates 

diverse sources of technical noise in scDNA-seq data, including SNVs, indels, and CNVs (Yu et 

al., 2020). The tool allows users to simulate different sequencing depths and cell coverages, and 

generates both read and variant files. SCSIM is designed to generate correlated single-cell and 

bulk DNA reads with SNVs (Giguere et al., 2020). SimSCSnTree generates evolutionary trees of 

cells that can be tuned via a Beta-splitting model to mimic clonality in cancer (Mallory and 

Nakhleh, 2022). Additionally, it generates both SNV and CNV, individually or simultaneously, 

and allows for the generation of ancestral data points to assess the performance of tools that infer 

CNVs and SNVs in ancestral cells. SimSCSnTree also generates both bulk and single-cell DNA 

sequencing data, mimicking technological artifacts like non-uniform coverage reflecting various 

library preparation technologies. SCSilicon is a simulation tool that can generate single-cell 

DNA reads with minimal manual intervention (Feng and Chen, 2022). It has the ability to 

automatically create a variety of genomic aberrations, such as SNV, indel, and CNV. 

Additionally, SCSilicon provides accurate information on CNV segmentation breakpoints and 

subclone cell labels, allowing researchers to make reliable and valid benchmarking in a 

controlled way. 

While these simulators have been developed to simulate somatic variants based on the 

single-cell sequencing data, they focus more on the cancer sample and they may not be suitable 

for other samples such as brain tissue, where clonal evolution is not a major factor. In addition, 

the mutational landscape of different samples varies, and the performance of bioinformatics tools 

may depend on the type and frequency of somatic variants present. Therefore, there is a need for 

developing single-cell sequencing simulators that can generate for non-cancer samples. 
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1.6 Deep learning application in genomics research 

Machine learning techniques are playing an increasingly important role in biomedical 

research, enabling researchers to analyze complex datasets and make new discoveries in areas 

such as drug discovery (Vamathevan et al., 2019), protein structural prediction (AlQuraishi, 

2021), genomic/genetic data analysis (Libbrecht and Noble, 2015), etc. Machine learning 

algorithms are used to analyze large amounts of chemical compounds, predict therapeutic effects 

of compounds, analyze protein structures and identify potential drug targets. Through these 

approaches, researchers can identify promising drug candidates more efficiently than traditional 

methods. Due to the increasing availability of large-scale genomic datasets, it is possible to apply 

machine learning methods to a broad range of areas within genetics and genomics. Machine 

learning algorithms are useful in annotating various genomic sequence elements, including 

transcription start sites (TSSs), splice sites, promoters, and enhancers (Basith et al., 2021; 

Georgakilas et al., 2020; Oubounyt et al., 2019). Machine learning models can also be trained to 

recognize patterns in DNA sequences as well as input data generated by other genomic assays, 

such as RNA-seq data for gene expression, ATAC-seq for chromatin accessibility, and ChIP-seq 

data for histone modification or transcription factor binding (Libbrecht and Noble, 2015). 

There are two primary types of machine learning methods: supervised learning and 

unsupervised learning. Supervised learning algorithms involve learning the relationship between 

a set of input variables and a designated dependent variable or labels from training instances. 

These algorithms can subsequently be used to predict the outcomes of new instances. Common 

supervised learning techniques include regression and classification. On the other hand, 

unsupervised learning algorithms infer patterns from data without a dependent variable or known 
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labels. Clustering is one of the popular unsupervised learning methods used to find patterns in 

high dimensionality data such as omics data. 

Deep learning (artificial neural network) is a subtype of machine learning that has been 

inspired by the connectivity and behavior of neurons in the brain and was originally designed to 

learn about brain function (Greener et al., 2022). A key property of neural networks is that they 

are universal function approximators, which means that they can approximate any mathematical 

function with high accuracy. Deep learning models can be classified into various types, including 

fully connected networks, convolutional neural networks (CNNs), recurrent neural networks 

(RNNs), autoencoders, transformers, graph neural networks (GNNs), etc. The most basic form of 

neural network is a fully connected network, consisting of layers of artificial neurons connected 

in a dense fashion. These networks are trained by adjusting the weights between the neurons. 

Convolutional neural networks (CNNs) are ideal for image-like data that contain local structures. 

CNNs are composed of one or more convolutional layers, in which the output is the result of 

applying a small, one-layer fully connected neural network, called a ‘filter’ or ‘kernel’, to local 

groups of features in the input. Recurrent neural networks (RNNs) are best suited to sequential 

data, such as DNA or protein sequences. RNNs are a block of neural network layers that take 

each sequence entry or time step as input and produce an output that is dependent or correlated 

with the other entries. Autoencoders, transformers, and graph neural networks are other types of 

deep learning models that have shown great promise in specific applications.  

Neural networks are complex and require specific concerns during training. The training 

process usually starts with training on a small training dataset to reveal programming errors, 

where the training loss function should quickly go to zero, indicating no errors. Once the 

network passes this test, training on the whole training set can proceed, where hyperparameters 
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such as the learning rate are tuned, and overfitting is prevented by early stopping, regularization 

of the model, or dropout techniques. Popular software packages used to train neural networks 

include PyTorch (Paszke et al., 2019) and Tensorflow (Abadi et al., 2016), which require a 

graphics processing unit or tensor processing unit with sufficient memory to train larger models 

on large datasets. However, running an already trained model is usually faster and feasible on a 

standard central processing unit. For those without access to a graphics processing unit, cloud 

computing solutions exist, and Google Colab allows Python-based deep learning code to be 

tested on graphics processing units or tensor processing units for small tasks free of charge, 

making it an excellent way to get started with Python-based deep learning. 

Deep learning has been applied in many fields, largely driven by the massive increases in 

both computational power and big data. It can be both supervised and unsupervised and has 

revolutionized fields such as image recognition, natural language processing, etc. The promise of 

deep learning also extends to applications in genetics, especially for the genetic variation 

identification. Neural network-based methods for identifying SNVs and indels have been 

developed, such as DeepVariant and Clairvoyante. DeepVariant was developed by Google, and it 

utilizes a deep neural network to identify SNVs and indels from high-throughput sequencing data 

(Poplin et al., 2018). DeepVariant visualizes sequence reads in the forms of images. These 

images are then used to train a CNN model. The tool outperforms other methods, as it has been 

shown to have high accuracy and sensitivity. Clairvoyante also employs a CNN model to 

improve the identification of SNVs and indels in single molecule sequencing data (Luo et al., 

2019). In addition to identifying small variations, deep learning models have also demonstrated 

the ability to detect larger structural variations and copy number variations. DeepSV is a deep 

learning-based tool that can accurately call genomic deletions from high-throughput sequencing 
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data (Cai et al., 2019). Similar to DeepVariant, it also visualizes mapped sequence reads as 

images and uses a CNN model to learn features from aligned reads and predict the presence or 

absence of deletions at each genomic position. DudeML is a deep learning approach that detects 

CNVs from low-coverage NGS data (Hill and Unckless, 2019). It uses relative coverage changes 

across genomic windows to classify the window copy number using different machine learning 

classifiers. DeepCNV is another deep learning-based tool that can authenticate CNVs from 

genomic data (Glessner et al., 2021). It uses a novel blended deep neural network structure that 

can exploit both image plots and summary statistics output from PennCNV, a hidden Markov 

Model based CNV caller (Wang et al., 2007). DeepCNV can replace human experts and reduce 

false positives in CNV detection. SVision is a CNN-based tool that can detect and characterize 

simple and complex structural variants from long-read sequencing data (Lin et al., 2022). It uses 

a novel image representation and a multi-object recognition framework to resolve CSVs with 

various structures.  

However, there is still a lack of deep learning-based tools for calling CNVs from single-

cell sequencing data. This is a challenging task due to the high noise and sparsity of single-cell 

data. Developing more accurate and robust deep learning methods for single-cell CNV detection 

is an important direction for future research. 

 

1.7 Overview of dissertation research 

In my dissertation, I present the development of computational methods for identifying 

somatic mosaic CNVs with single-cell sequencing. Mosaic CNVs are genomic alterations that 

occur in a subset of cells within an individual and can have significant implications for human 

health and disease. Single-cell sequencing is a powerful technology that can reveal the 
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heterogeneity and diversity of cell populations at high resolution. However, calling CNVs from 

single-cell sequencing data poses many challenges due to technical noise, data sparsity and 

complexity. 

The main aim of this dissertation is to develop novel and robust methods for detecting 

and characterizing mosaic CNVs from single-cell sequencing data, as well as to demonstrate our 

findings regarding the somatic CNVs in the human brain sample. I outline these approaches in 

the following chapters: 

• Chapter 2: My colleagues and I demonstrate our methods and results for identifying 

somatic CNVs in a human brain sample by single-cell sequencing data. We use allelic 

ratio to verify coverage-based single-cell CNV calls. 

• Chapter 3: I develop a single-cell CNV simulator that can generate realistic synthetic 

datasets with various levels of mosaicism, coverage and noise. I use this simulator to 

assess the performance of different single-cell CNV calling tools and also generate the 

golden standard training data for single-cell CNV calling tool development. 

• Chapter 4: I build a recurrent neural network model to call CNVs from single-cell 

sequencing data. I train and test the model on simulated and real datasets and show that it 

can achieve high performance compared to other tools. 

• Chapter 5: I conclude the dissertation by summarizing the main findings, contributions 

and limitations of this work. I also discuss some future directions for improving and 

extending the methods developed in this dissertation. 

This dissertation provides new insights into the detection and characterization of mosaic 

CNVs with single-cell sequencing, which can facilitate further studies on their biological 

functions and implications for human health. 
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In addition to the projects described above, another original published piece of work 

during my PhD study has led to one publication in which I was a first author: 

Sun, C., Li, H., Mills, R.E. and Guan, Y., 2019. Prognostic model for multiple myeloma 

progression integrating gene expression and clinical features. Gigascience, 8(12), p.giz153. 
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Chapter 2 Mapping the Complex Genetic Landscape of Human Neurons  

2.1 Introduction 

It is inaccurate to view an individual’s genome as invariant from organ to organ, or from 

cell to cell within an organ. For example, somatic mosaicism among lymphocytes has been 

recognized since the 1970’s with the discovery of somatic gene rearrangement at T cell receptor 

and immunoglobulin loci (Hozumi and Tonegawa, 1976). Recurrent somatic mutations also 

underlie the pathology of many cancers (Hanahan and Weinberg, 2011). Recent advances in 

single-cell and bulk DNA sequencing approaches have revealed abundant somatic mosaicism 

throughout the human body (Abascal et al., 2021; Bizzotto et al., 2021; Coorens et al., 2021; 

Moore et al., 2021; Mustjoki and Young, 2021; Spencer Chapman et al., 2021).  Associated 

studies have linked environmental mutagens to somatic mutations in the skin, bladder, and other 

exposed cells (Lawson et al., 2020; Lee-Six et al., 2019; Moore et al., 2021). Rapidly dividing 

stem cell populations also incur somatic mutations due to DNA replication errors. Clonal 

expansion of variant genomes can, in turn, shape mosaicism among an individual’s somatic cells 

(Martincorena, 2019). Somatic mutations, accompanied by cell death, set the stage for somatic 

selection during the lifespan of an individual. 

Brain somatic mosaicism is associated with neurodevelopmental disorders, especially 

epilepsy (Jansen et al., 2015; Lee et al., 2012; Lim et al., 2015; Møller et al., 2016; Muotri et al., 

2010; Poduri et al., 2012; Rodin et al., 2021; Shirley et al., 2013). Unlike other organs, cerebral 

cortical neurons arise in utero and are not replaced during normal human lifespan (Bhardwaj et 

al., 2006). Neural stem and progenitor cells proliferate rapidly during human cortical 
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development; these progeny overpopulate the developing cerebral cortex. Somatic selection is 

one means by which some progeny may thrive as cortical neurons while other progeny perish 

(Blaschke et al., 1998; McConnell et al., 2009; Rakic and Zecevic, 2000; Wong and Marín, 

2019). The genomes of mature cortical neurons contain hundreds of single nucleotide variants 

(SNVs), some of which mark clonal lineages (Bae et al., 2018; Breuss et al., 2022; Fasching et 

al., 2021; Wang et al., 2021). LINE-1 mobile elements retrotranspose during neurogenesis and 

contribute to brain somatic mosaicism in a small subset of neurons (Baillie et al., 2011; Erwin et 

al., 2016; Evrony et al., 2012; Muotri et al., 2005; Zhu et al., 2021).  Although SNVs are 

numerous and accumulate throughout life, relatively few are predicted to have protein-coding 

mutations with obvious consequences for affected neurons (Lodato et al., 2018; Miller et al., 

2022; Wang et al., 2021). Megabase (Mb)-scale copy number variants (CNVs) - typically sub-

chromosomal deletions - also contribute to brain somatic mosaicism (Cai et al., 2014; Knouse et 

al., 2016; McConnell et al., 2013). 

In non-diseased (neurotypical) brains, dozens of genes are impacted in CNV neurons 

with substantial inter-individual variation in the frequency of CNV neurons among individuals 

(Chronister et al., 2019). CNV neurons are more prevalent in the frontal cortex of young 

individuals (n=4 individuals <30 years old; 28.5% CNV neurons, 75/263) than in aged 

individuals (n=5 individuals >70 years old; 7.3% CNV neurons, 26/354) (Chronister et al., 

2019). However, small sample sizes (<100 neurons / individual) have limited the ability of these 

studies to find patterns of recurrent rearrangement (e.g., CNV hotspots) among neuronal 

genomes. If present, such recurrent sites of neuronal genome rearrangement may provide insight 

into the mechanisms and/or consequences of brain somatic mosaicism. Recurrent sites of 

neuronal genome rearrangement could be influenced by common fragile sites that are 
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predisposed to genome rearrangements (Glover et al., 2017; Lehman et al., 2017) and may reflect 

neurodevelopmental somatic selection. Neither mechanism is mutually exclusive. 

We reasoned that if recurrent brain CNVs exist, hotspots would be found among neurons 

in any millimeter-scale cortical biopsy from a single individual. Using a commercial droplet-

based whole genome amplification (WGA) method, we generated Illumina sequencing libraries 

from 2,125 frontal cortical nuclei isolated from a previously characterized neurotypical 

individual (Chronister et al., 2019; Wang et al., 2021). Read-depth analysis of each cell was 

coupled with phased germline single nucleotide polymorphisms (SNPs) to develop a single-cell 

sequencing coverage and allele-based approach (SCOVAL) that restricted read-depth based 

deletion calls using concordant, phased, loss-of-heterozygosity (LOH) information. In total, 2097 

single neuron libraries passed quality controls (QC) and 10.8% (226/2097) contained at least one 

Mb-scale CNV. An unexpected subpopulation of these CNV neurons (65/226, 25%) have highly 

aberrant karyotypes wherein multiple chromosomes harbor multiple deletions, including 6 

aneusomic neurons. When compared to a random model, CNVs are depleted in gene-dense 

genomic regions. However, frequent neuronal genome rearrangements are more common in 

genomic regions that contain genes encoded by more than 100 kilobases (kb) of genomic 

sequence (herein defined as long genes). 

 

2.2 Methods 

2.2.1 Sample and sequencing library preparation 

We examined human neurons dissected from the dorsolateral prefrontal cortex (DLPFC) 

of a neurotypical individual (postmortem, 49-year-old male individual, ID: Br5154) used as the 

common reference brain in a previous study (Wang et al., 2021). Neuronal nuclei (NeuN+) were 
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isolated as in (Chronister et al., 2019). We then applied 10X Genomics Chromium Single Cell 

sequencing that ligated barcodes on the DNA in single cells within a Cell Bead Gel and the 

barcoded fragments are then pooled for library production, which can profile thousands of cells. 

We sequenced 2,125 neurons in two batches with mean coverage 0.114X (Figure 2.1A). We 

further applied 10X Genomics Chromium Linked-Read sequencing to dural fibroblast tissue with 

very high sequencing coverage (52.7X) from the same individual to identify and phase germline 

SNPs by isolating and fragmenting long DNA segments into barcoded short reads that could be 

used to reconstruct underlying haplotypes using Long Ranger v2.2 

(https://github.com/10XGenomics/longranger). 

  

2.2.2 Optimization of Ginkgo for single-cell CNV identification 

The final CNV call set was generated using a combination of read-depth and phased loss-

of-heterozygosity (LOH)-based validation. First, we processed read alignments from 2,125 

single-cells using an adapted version of Ginkgo (Garvin et al., 2015) to arrive at our unvalidated 

call set. The call set was then filtered via empirical P-value selection using information 

pertaining to loss of a particular haplotype, obtained by aligning sample reads to the (diploid) 

phased genome for this individual. The resultant calls were then filtered using a Bayesian 

classification model to arrive at the final CNV call set, which was further classified by CNV type 

(heterozygous deletions, homozygous deletions, and duplications) because the strength of 

support is different for these different CNVs, and the ensuing permutation testing (using 

heterozygous deletions alone) became more regularized. Only CNV calls in autosomes were 

included in the final CNV call set. We will now describe the generation pipeline, similar to 

(Chronister et al., 2019), in some detail. 
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Setting CNV calling cutoffs in Ginkgo via Gaussian Mixture Model 

Ginkgo was optimized by resetting default copy-number cutoffs that determine whether a 

segment detected by circular binary segmentation (CBS) will be called a CNV. To this end, we 

processed single-cell BAM files from 585 cells obtained from the five control individuals studied 

in (Chronister et al., 2019) using the CBS implementation DNACopy  

(https://bioconductor.org/packages/release/bioc/html/DNAcopy.html). Aligned reads from each 

single cell were separately processed into 5,067 autosomal bins across the hg19 human reference 

genome delineated by Ginkgo, which were then normalized to obtain an average copy number of 

two for the cell. These individual bins were then grouped contiguously into segments based on 

similarity of their read coverage using DNACopy. We then fit a Gaussian Mixture Model 

(GMM) to the distribution of the median copy number of all segments from all cells using an 

“undoSD” of three, whereby two putative segments had to be more than three times the standard 

deviation in “intra-segment” copy number to be actually written as separate segments, and 

alpha=.01. From this fit, the two-tailed probability for the Gaussian curve centered at CN=1 and 

the one at CN=2 was calculated to be 1.63 (Figure 2.2B). This became the new copy-number 

cutoff for Ginkgo to call deletions. As seen in Figure 2.2B, there were not many candidate 

duplications to yield a proper fit, but the duplication cutoff was set at 2.43. 

Filtering to remove outlier bins via Tukey’s rule 

Next, the raw bin CN data were filtered for the presence of uniform outlier bins across all 

cells (e.g., due to data-specific genomic regions uniformly subject to overamplification or 

underamplification, regions of poor mappability in the genome, etc). The median of copy 

numbers of 2,125 cells for each of the 5,067 autosomal bins was first plotted. Tukey’s rule was 
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then applied to tag all bins whose median copy number exceeded Q3 + 1.5* IQR, or was below 

Q1-1.5*IQR, where the interquartile range IQR is Q3-Q1 and Q1 and Q3 are the first and third 

quartiles, respectively, of all the median copy numbers. Three hundred and eight outlier bins 

were identified in addition to Ginkgo’s original list containing 29 (Figure 2.2C). These bins were 

simply removed from the genome by Ginkgo prior to segment processing while other bins 

(retaining their genomic coordinates) were merged. For reference, the genomic bin size used for 

benchmarking Ginkgo was 500 Kb. Thus, in this work, as in (Chronister et al., 2019), we used 

Ginkgo settings pertaining to an approximate variable bin size of 500 Kb 

(“variable_500kb_101_bowtie”) and only considered large (> 1 Mb) CNVs. Gingko reported a 

final mean bin size of 569 Kb, with bins ranging in size from 501 to 2812 Kb. 

Filtering of irregular cells 

For all cells, the mean absolute deviation (MAD) of bin copy numbers was calculated and 

fit to a Gaussian distribution. The mean (mu) and standard deviation (sigma) were .253 and .111, 

respectively. CNV calls from 19 cells (MAD > mu + 3* sigma) were removed before processing 

the data further (Figure 2.2A). The total number of reads for all remaining cells ranged uniformly 

from 580,809 to 8,983,573. However, one cell contained an inordinate proportion of reads (> 

80%) aligned to just one of the chromosomes and was removed. Further, eight cells that were not 

filtered by the above methods were manually curated from the data set based on unlikely copy-

number patterns, leaving a total of 2,097 good neurons (see Figure 2.2D). 

  

2.2.3 Assessing the coverage-based single-cell CNV call set 

To differentiate between bona fide CNVs and potential false-positives due to coverage 

fluctuations, we leveraged the long-range haplotype information obtained from the 10X linked-
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read sequences generated from bulk analysis of matched dural fibroblast tissue. We made use of 

identified heterozygous SNPs (het-SNPs) and initially segmented the genome using phase blocks 

of heterozygous SNPs as identified by the linked-read data so that each segment would contain 

SNPs with consistent haplotype labeling. We then binned these segments further into windows of 

20-100 SNPs based on empirical observations of SNP and read coverages. For each window in 

each cell, we then identified reads that overlapped het-SNPs (herein termed “informative reads”) 

and noted the allele present on the read. Notably, the coverage in each single cell resulted in a 

sparse number of informative reads per SNP window, typically resulting in 5-15 reads with 

specific allele information. Using the inferred haplotype of each overlapped het-SNP, we 

counted the number of reads present on each of the two haplotypes and calculated the absolute 

log2 ratio between the read counts if the total number of reads on each haplotype was larger than 

three. We used this log2 ratio to filter the CNV call set from the previous stage. First, we 

calculated the median log2 ratio of the windows within the CNV regions in the cells with those 

CNVs and the median log2 ratio of the windows within the CNV regions but in the cells without 

those CNVs as a background null model. From these data, we derived an empirical p-value for 

the observed log2 ratio in the sample with the CNV. We then collated the p-values for each 

individual CNV to derive a p-value distribution and selected a set of candidate CNVs with a p-

value < 0.05. 

Next, we randomly permuted 100 sets of “non-CNVs” size-matched to these candidate 

calls to build a GMM from the underlying median log2 ratios of each CNV/non-CNV region, 

with the assumption that the two distributions followed two distinct Gaussian distributions. 

Using the median absolute log2 ratios of the two datasets as the training data, we estimated the 

parameters of the Gaussians and predicted the posterior probability that the CNV belonged to the 
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CNV distribution using a naive Bayesian classifier. Calls with posterior probability > .99 were 

selected to process further. 

As allele imbalance cannot support the homozygous deletions, we implemented a read-

depth ratio measurement to add additional support on the calls. We calculated the read-depth 

ratio for each bin in every cell based on the bulk sequencing from the same tissue (Wang et al., 

2021). The read-depth ratio 𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏,𝑖𝑖 of bin b and cell i can be calculated as 

𝑅𝑅𝑅𝑅𝑅𝑅𝑏𝑏,𝑖𝑖 =  
𝐶𝐶𝑏𝑏,𝑖𝑖𝑅𝑅𝐵𝐵
𝐵𝐵𝑏𝑏𝑅𝑅𝑖𝑖

 

Where 𝐶𝐶𝑏𝑏,𝑖𝑖 is the number of reads in bin b of cell i, 𝐵𝐵𝑏𝑏 is the number of the reads in bin b of bulk 

sequencing, 𝑅𝑅𝐵𝐵 is the total number of reads of bulk sequencing, and 𝑅𝑅𝑖𝑖 is the total number of 

reads of cell i. To distinguish between homozygous and heterozygous deletions, we applied a 

GMM on read-depth ratio to calculate the posterior probability for the homozygous deletions, 

and set the cutoff as >0.99 for posterior probability. The final call set for heterozygous deletions 

was obtained by adjudicating the above calls by requiring the CNV region to have an empirical 

median log2-ratio p-value (as described above) to be less than .01 (thus ensuring that only calls 

in regions showing the highest relative allelic preference were selected). 

  

2.2.4 Benchmarking CNV detection 

We applied CHISEL (Zaccaria and Raphael, 2021) to our single-cell sequencing data 

with its default parameters (max balanced ploidy=4); however, it reported unrealistic results. 

Only 8.16% of all 5MB windows were reported as normal diploid regions with haplotype copy 

number ‘1|1’, with most windows (77.83%) indicating the max balanced ploidy with haplotype 

copy number ‘2|2’. We adjusted the max balanced ploidy setting to 2, resulting in 98.15% of the 
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windows now indicated as normal diploid regions. We combined neighboring CNV windows 

within the same cell to calculate the overlap percentage with our final call set. 

  

2.2.5 Clonal cells and recurrent CNVs 

To detect the clonal structure of neurons based on CNVs, we designed a very 

conservative method to identify clonal events. We first found all the CNVs that shared the same 

start and end breakpoints, then we marked these loci as CNVR. With the haplotype information, 

we could identify whether these loci were clonal events or the recurrent events that existed on the 

different haplotypes. For each bin covered by the CNVR, we took the maximum log2 ratio and 

minimum log2 ratio of the cells with the CNVR and calculated the delta log2 ratio using 

maximum minus minimum. Next, we calculated the median delta log2 ratio across the bins for 

each CNVR and observed two distinct distributions, one representing potential clonal events 

(low delta log2 ratio; CNVs are on the same haplotype) and the other indicating likely 

independent events (high delta log2 ratio; CNVs are on the different haplotypes). 

  

2.2.6 Characterizing CNV Neurons 

Neuronal distribution of CNVs 

The raw distribution of the number of CNVs per neuron is shown as a histogram (Figure 

2.3A) on a log scale, along with a null model based on a uniform random distribution of all 

CNVs in the final call set across all good neurons. Thus, a Poisson curve with mean = (# final 

CNVs) / (# good cells), scaled up by the total number of good neurons, was superimposed on the 
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first plot to assess whether the final call set contained more CNV-rich neurons than expected by 

a uniform distribution. 

Hierarchical clustering and complex karyotypes 

The 2,097 good neurons were ordered based on the number of total base pairs affected by 

heterozygous deletions in descending order. A heat map of all cells was generated showing the 

percentage of base pairs affected by heterozygous deletions in each autosome (see Figure 2.3C), 

Neurons were sorted and numbered in reverse order of % base pairs affected. Those cells 

affected more than 5% were termed complex neurons and numbered 1-65 in our call set. All 

good neurons were clustered using hierarchical clustering using each autosome as an 

independent dimension and the percentage of base pairs affected as the distance measure. Thus, 

cells with chromosomes that were similarly affected by heterozygous deletions clustered together 

(Figure 2.3D). Some cells with possibly multiple recurrent events were identified (Figure 2.3E), 

and some seemingly clonal cells were analyzed to be technical replicates.  

Identifying CNV hotspots and cold spots via permutation testing 

The final heterozygous deletion call set was “shuffled” using bedtools (Quinlan and Hall, 

2010) to arrive at 10,000 unique synthetic permutations (Figure 2.4A). In each permutation, 

CNVs in each cell were permuted uniformly at random in the autosomes while prohibiting 

collision (“noOverlapping” option) and then assembled together. The process was repeated 

10,000 times without genomic constraints, as unmappable regions were a priori removed (refer 

to subsection Optimization of Ginkgo for single-cell CNV identification), and calls “straddling” 

such regions commonly occurred in the final call set. 
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Each autosome was divided into contiguous 5Mb regions (remaining smaller tails of 

chromosomes were not considered). The number of unique hits (defined as simple overlap) of 

each region with synthetic CNVs from all 10,000 permutations was recorded, resulting in a CNV 

distribution profile for the synthetic data. For each 5Mb region, a P-value was assessed for the 

number of CNV hits in real data among the 10,000 hit-values in the region’s synthetic CNV 

profile. For our purposes, we define P-value to be the fraction of simulated instances that were at 

least as high as the real number of CNV hits to the 5Mb region. Given that CNV hits are 

discrete-valued, and we are using the same definition of P-value for cold spots and hotspots, we 

impose a more stringent cutoff for cold spots to account for the inherent liberal treatment of data 

values on the lower extreme (which may lead to an overabundance of cold spots). Regions with a 

P-value < .05 (i.e., where hits were among the top 5 % of synthetic hit-values for that region) 

were termed “hotspots” and those with P-value > .99 were termed “cold spots.” Regional 

significance (defined as 1 - P-value) was plotted against the autosomal genome on the x-axis 

(Figure 2.5). The distribution of the raw number of CNV hits in 5Mb regions is shown in Figure 

2.4B. Cold spots were screened for aberrant genomic blocks that might hamper CNV calling or 

regions a priori neglected. To this end, cold spot regions were coordinate-merged (via “bedtools 

merge”) and compared to all a priori removed bad bins as well as blacklisted regions (Amemiya 

et al., 2019) by means of a relative permutation analysis. A merged cold spot that overlapped 

more with blacklisted regions and bad bins as appropriately compared to 1,000 randomly 

selected non-cold spot intervals was removed from the list of final cold spots (the cutoff chosen 

was p > .05) (Figure 2.6A). Each merged cold spot was mapped to 1,000 randomly selected 

regions other than existing cold spots, and its overlap with bases contained in bad bins and 

blacklisted regions, respectively, were calculated in each instance in order to assign it a p-value. 
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For additional relevant detail, some genomic heat maps of copy number of CNV neurons are 

shown in Figure 2.6C, D along with merged cold spots and bad bins. For rigor, cold spots were 

analyzed for the presence of deduplicated germline structural variants from 1,000 individuals 

from FusorSV (Becker et al., 2018), the cold spots had a larger SV coverage (11.4) than the 

unremarkable regions (7.25), further supporting that CNVs are callable in these regions. 

Hotspots and cold spots are shown throughout the genome in a Circos (Krzywinski et al., 

2009) plot along with 33 regions of the genome where germline CNVs are associated with 

neurodevelopmental phenotypes (Birnbaum et al., 2022) to assess any possible correlation 

between the two (Figure 2.4C). The distribution of the number of genes in 5Mb regions was also 

plotted for hotspots, cold spots and unremarkable regions as control (Figure 2.4D). Similar 

distributions were plotted (with assigned p-values) for long genes and different expression levels 

(Figure 2.7). 

In a complementary assessment, the above permutation analysis was repeated for genes 

instead of 5Mb genomic regions. To profile gene expression, histograms of p-values for genes 

were shown for different gene expression categories (Figure 2.8) to assess/confirm general 

prevalence of hotspots and cold spots in each expression category. 

Recurrent CNV breakpoint analysis 

To assess the impact of different Ginkgo bin sizes on the CNV breakpoint distribution, 

we used the previously described 10K permuted CNV sets to determine the relationship between 

the number of breakpoints and Ginkgo bin size. We calculated the mean of the number of 

breakpoints from all permuted CNVs and compared this to the size of the Ginkgo bin in which 

they fell.  We then normalized the number of breakpoints by the Ginkgo bin size and compared 

this normalized number of observed breakpoints within CNVB regions with those in permuted 
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regions using a one-sided t-test with the alternative hypothesis that observed > permuted. We 

then calculated the normalized number of long genes (>100K) overlapped with CNVB bins and 

compared against the permuted regions using the same strategy.  The gene expression analysis 

was conducted by calculating the transcript per million (TPM) values for the longest gene 

observed in each of the CNVB and permuted regions and assessing whether they were 

significantly different using a one-tailed t-test. 

 

2.3 Results 

2.3.1 Determining the genetic architecture of individual neurons 

When CNVs are clonal or recurrent, as in populations of cancer cells, read-depth based 

single-cell genomic approaches can accurately reconstruct clonal cell lineages (Garvin et al., 

2015; Lim et al., 2020; Navin et al., 2011).  However, neuronal CNVs are rarely clonal 

(Chronister et al., 2019) precluding validation in lineage-derived “sister” neurons. SCOVAL 

combined read-depth and phased LOH metrics (Figure 2.1A) to determine the prevalence of 

CNVs in single neurons isolated from the post-mortem brain of a neurotypical 49-year-old male. 

Samples from the same neurotypical individual were analyzed in previous studies conducted by 

the Brain Somatic Mosaicism Network (McConnell et al., 2017; Wang et al., 2021) and a 

directly relevant small study (i.e., consisting of 99 neuronal nuclei, 26 non-neuronal nuclei) that 

identified 11 CNV neurons (~11%) and two non-neuronal nuclei (7.6%) containing CNVs > 

2Mb (Chronister et al., 2019). 

Briefly, we isolated >50,000 human frontal cortical neurons using fluorescence-activated 

nuclei sorting of NeuN-positive nuclei. Two DNA libraries were then prepared in separate lanes 

on the 10X Genomics Chromium platform (Figure 2.1A); each lane obtained ~1,000 single 
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neuronal genomic libraries with unique barcodes. The resultant libraries (2125 total) were 

combined into one pool that was sequenced in two batches on an Illumina NovaSeq platform, 

achieving an average of 2.83 +/- 1.22 million reads per neuron. Following our previous approach 

(Chronister et al., 2019), we mapped reads to 5067 variable sized autosomal bins, each 

containing 500kb of uniquely mappable sequence (mean bin size = 569kb, range = 501 to 

2812kb). Our quality control (QC) filters excluded 28 single neurons with aberrant bin-to-bin 

variance [i.e., Median Absolute Deviation (MAD), 2097 (>95%) libraries passed QC] and 

masked 308 genomic bins that were outliers in global read coverage across all neurons (Figure 

2.2A-C).  We adapted Ginkgo (Garvin et al., 2015) to call CNVs larger than 1Mb, defined copy 

number (CN) state thresholds (see Methods), and identified 2,564 putative autosomal CNVs 

(2,401 deletions and 163 duplications) in 469 different neurons (Figure 2.1B).  

In parallel, we sequenced dural fibroblast DNA from the same individual at high 

coverage (~52.7X) to identify and phase germline SNPs using 10X Genomics linked-read 

sequencing (Weisenfeld et al., 2017). Briefly, this approach isolated and fragmented long DNA 

segments into barcoded short reads that could be used to reconstruct underlying haplotypes into 

2548 phased genomic blocks (mean 1178kb +/- 2034kb, median 234kb). Within each of these 

phased blocks, we further segmented the genome into windows of 20-100 phased heterozygous 

germline SNPs (mean = 107kb, range = 0.687 to 1470kb) that arbitrate predicted somatic 

deletions with phased LOH. For each window of each cell, we counted the number of 

informative reads (e.g., reads that intersect with phased heterozygous SNPs) on each haplotype. 

We then calculated the absolute log2 ratio of the number of reads on each haplotype and 

integrated this ratio into the filtering models (Figure 2.1C). The application of our naïve 

Bayesian-based pipeline (see Methods, Figure 2.9) identified 1,985 regions with both sequence 
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coverage and phased LOH support consistent with heterozygous deletions in 231 neurons. We 

excluded Gingko deletion calls where more than 75% of internal phased SNP windows contained 

fewer than 3 informative reads and arrived at a call set of 1,853 heterozygous somatic deletions 

in 226 neurons. 

Other candidate neuronal CNVs (i.e., duplications and homozygous deletions) were more 

challenging to validate using SCOVAL. Previous studies using read-depth alone reported more 

than two-fold fewer duplications than deletions (Chronister et al., 2019; McConnell et al., 2013). 

Using SCOVAL, we measured allelic ratios between haplotypes to assess the 163 Ginkgo 

duplication calls. The log2 ratios of haplotype-resolved alleles for each duplication were not 

significantly different from randomly sampled euploid regions of that particular cell (one-tailed 

t-test, p-value = 0.998, Figure 2.10A). These findings suggest that greater single-cell sequencing 

coverage may be required for SCOVAL to assess duplications in single neuron WGA data, 

although phased LOH may also allow us to filter regions where Ginkgo reports false positives 

(Figure 2.1F, green arrow). Nevertheless, although some of these regions may represent bona 

fide duplications, set we opted to exclude putative duplications with only Gingko support from 

further analysis in the interest of evaluating a conservative call.  

Homozygous deletions have been uncommon in previous datasets and have distinct 

properties compared to heterozygous deletions. Specifically, these deletions are not directly 

amenable to allelic modeling as both haplotypes are absent and any observed non-zero allele 

ratios likely would be derived from mis-mapped reads. Thus, we developed an additional filter to 

reduce the false positive rate for 106 putative homozygous deletions with read-depth support. We 

calculated a read-depth ratio for each Ginkgo window by comparing the read-depth in every cell 

with the read-depth from bulk sequencing (Wang et al., 2021) and derived a Gaussian mixture 
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model to calculate the posterior probability for putative homozygous deletions using these values 

from our initial heterozygous and homozygous deletion calls (see Methods, Figure 2.10B) This 

strategy found additional support for 86/106 putative homozygous deletions (posterior 

probability > 0.99, Figure 2.10C). These 86 regions were included in our final deletion call set 

for subsequent analyses of CNV locations. Importantly, homozygous deletions are only found in 

neurons with highly aberrant karyotypes and all flank a heterozygous deletion (Figure 2.1F, red 

arrow), indicating that they are likely the result of two independent and overlapping 

heterozygous deletions. Further, we identified 8 Ginkgo-called homozygous deletions that 

exhibited a read depth and allele ratio profile consistent with heterozygous deletions and 

reclassified them as such (Figure 2.11).   

SCOVAL produced a final deletion CNV set comprising 1,957 somatic CNV calls (13.95 

Mb +/- 17.47 Mb) among 226 CNV neurons (~11%). These represent 76.3% of the initial 2,564 

read depth predictions. CNV neuron prevalence (226/2097 neurons) is in good agreement with 

previous read-depth based CNV detection from this individual (~11% of 99 neurons) (Chronister 

et al., 2019). Although the nature of single-cell DNA sequencing prohibits the direct validation 

of identified CNVs, manual, subjective inspection of read-depth and allele ratios are strikingly 

concordant. 

SCOVAL was designed to identify idiosyncratic CNVs in human neurons.  Another 

single-cell CNV caller, CHISEL, was designed to study tumor evolution and intra-tumor 

heterogeneity (Zaccaria and Raphael, 2021). CHISEL and similar approaches (Wu et al., 2021) 

assume a higher frequency of tumor subclones (>5-10% (Dentro et al., 2021)) than has been 

observed in CNV neurons (Chronister et al., 2019) 39. When we tested CHISEL using our single 

neuron data, almost all reported CNVs (21,906) clustered collectively within 12 genomic loci 
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(99.25% of CHISEL calls) and were reported in more than 50% of neurons (Figure 2.12). 

Notably, 11 of the 12 loci overlapped with SCOVAL outlier bins that were associated with WGA 

artifacts (see Methods and (Chronister et al., 2019)). We compared the remaining 165/21906 

CHISEL CNV calls with our final call set. These 165 calls were reported in only three neurons, 

but 39 CHISEL CNV calls overlapped with 15 SCOVAL CNV calls. Manual inspection of read-

depth and LOH at the other 126 CHISEL CNV calls found no subjective support. Consistent 

with reports attempting to apply similar cancer-oriented approaches for identifying somatic 

CNVs in neurons (Wang et al., 2021), we conclude that CHISEL and other cancer-oriented 

approaches are not appropriate to study brain somatic mosaicism.  

 

2.3.2 Some CNV Neurons have highly aberrant karyotypes 

SCOVAL identified 226 CNV neurons with at least one deletion. These deletions ranged 

in size from 1Mb to entire chromosomes. We also observed that when neurons harbored multiple 

deletions, many clustered on single chromosomes. In contrast to a uniform background model 

(see Methods and below), CNVs did not appear to be distributed randomly among CNV neurons 

(Figure 2.3A). Forty-six CNV neurons contained a single deletion, but five contained greater 

than 30 deletions. Apparent chromosomal monosomies (i.e., where all genomic bins reported a 

copy number (CN) state = 1) were observed in six different neurons. One neuron (#1) was 

monosomic for Chr5, another (neuron #7) was monosomic for Chr9, two neurons (#2, 3) were 

monosomic for Chr13, and two other neurons (#4, 46) were monosomic for Chr18 (Figure 2.3B, 

C). All monosomic neuronal genomes were highly aberrant and harbored many additional 

deletions affecting 40 – 98% of other chromosomes (Figure 2.3C). Among 65 CNV neurons with 
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deletions affecting >5% of their genome, 48 contained at least one chromosome that was >50% 

monosomic.  

We evaluated CNV locations in CNV neurons based on the percentage of each 

chromosome affected by CNVs (Figure 2.3C) and found two pairs of neurons (#17, #19 and 

#154, #155) that were nearly identical in their genomic read-depth patterns and could, in 

principle, represent clonal “sister” neurons that arose from a common progenitor cell during 

neurodevelopment (Figure 2.13). However, each of these pairs arose from the same 10X 

Genomics Chromium lane; therefore, we cannot exclude the possibility that one nucleus may 

have paired with two 10X GEM beads in a single droplet. Subsequent analyses assume that these 

two pairs are highly concordant technical replicates. 

Hierarchical clustering (Figure 2.3D) identified three other neurons (cells #32, #33, and 

#47) with similar karyotypes that could, in principle, share identity by descent (Figure 2.3E). 

Thus, we investigated whether these deletions occurred on the same chromosomal phase block 

(i.e., haplotype). Multiple deletions in cells #32, #33, and #47 mapped to Chr3; however, read-

depth alone cannot assess whether these deletions occur on the same physical chromosome. 

Also, 10X linked-read haplotyping identifies phased SNPs with Mb-scale resolution, as 

described above. To determine phasing at a chromosome level, we generated extended phase 

blocks using three CNV neurons (cells #33, #10, and #5) that contained overlapping deletions 

accounting for the full-length of Chr3 (Figure 2.14). Although CNV locations overlapped among 

these three neurons (Figure 2.3F), the Chr3 CNVs were constrained to one haplotype in two 

neurons (cells #32 and #47) but occurred on the other haplotype in the third neuron (cell #33). 

The presence of other idiosyncratic CNVs suggest that these three neurons arose in distinct 

neurodevelopmental lineages. The possible ontogeny of these chromosomes might include 



 52 

chromosome mis-segregation, micronucleus formation, and a chromothripsis-like event (Cortés-

Ciriano et al., 2020; de Pagter et al., 2015; Hatch et al., 2013; Shoshani et al., 2021; Zhang et al., 

2015).  In any case, the strikingly similar patterns of loss observed in these three neurons likely 

represent recurrent rather than clonal events. 

 

2.3.3 CNVs are not randomly distributed in neuronal genomes 

The similar patterns of chromosomal loss observed in subsets of CNV neurons led us to 

hypothesize that, in contrast to what has been reported in other tissue types (Liu et al., 2022), 

neuronal CNV locations may not arise randomly. Thus, we generated a control dataset of 

randomly placed deletions and explored whether neuronal genomes accumulate CNVs in 

“hotspots” or are protected from CNVs in “cold spots.” Briefly, the empirical call set was 

randomly rearranged, without collision, while keeping the size and abundance of CNVs constant 

on a per neuron basis. We reasoned that randomly, and reiteratively, placing the “real” CNVs 

throughout the genome would effectively generate a “random” CNV landscape (Figure 2.4A); 

we then performed 10,000 synthetic iterations of real data to generate a null model. For analysis, 

the genome was segregated into 567 contiguous 5Mb regions and the number of simulated CNVs 

that overlapped each 5Mb genomic region (i.e., hits) were counted to generate a null model.  

A Gaussian-shaped distribution of CNVs / 5Mb region was observed in the null model, 

but empirical data was enriched for observations at the extremities (Figure 2.4B). Specifically, 

when empirical P-values were calculated for each 5Mb region, we found eighty-three 5Mb 

regions (14.6%) where observed CNVs occurred more frequently than in the random model 

(“hotspots,” P-value <0.05) and fifty-six 5Mb regions (9.9%) where empirical CNVs overlapped 

less frequently than in the null model (“cold spots,” P-value >0.99) (see Methods for P-value 
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determinations). For example, fourteen 5Mb regions were hit at least 24 times by real CNVs, 

however this frequency (≥24 hits in a 5Mb region) occurred in only 0.5% of null model 

permutations. Importantly, no CNV-free region was observed in null model perturbations, but 

seven CNV-free cold spots were found in empirical data.  

CNV hotspots and cold spots are also clustered in several semi-contiguous stretches of 

the genome (Figure 2.4C). Eighty-three 5Mb hotspots clustered into 47 distinct contiguous 

regions, whereas the 56 cold spots clustered into 22 distinct contiguous regions. Surprisingly, 

individual chromosomes also clustered as either hot or cold with respect to CNV presence or 

absence. For example, 9/83 (~11%) and 15/83 hotspots (~18%) clustered on chromosomes 18 

and 5, respectively, whereas 12/56 cold spot regions (21%) clustered on chromosome 1. Thirteen 

highly aberrant neuronal genomes (containing ≥25 CNVs in empirical data) all had a CNV(s) 

that intersected hotspots, whereas only nine had CNVs intersecting cold spots. Similarly, of the 

112 CNV neurons that contained between 1-5 CNVs, fifty-four had CNVs intersecting hotspots 

and only seven had CNVs intersecting cold spots. Overall, 163 neuronal genomes had a CNV(s) 

overlapping a hotspot, whereas only 50 CNV neurons overlapped cold spots. 

Because a depletion of CNVs in some regions could artificially increase the detection of 

CNVs elsewhere, putative CNV cold spots and hotspots may have a technical explanation. Thus, 

we also functionally assessed observed cold spots for overlap with 33 germline CNVs (fifty-six 

5Mb regions) that are associated with adverse neurodevelopmental phenotypes (Birnbaum et al., 

2022). One third (11/33) of these germline CNVs were in cold spots. By comparison, none (0/33) 

of the germline CNVs overlapped hotspots. The probability that a neuropathogenic germline 

CNV occurs in any 5Mb genomic region by chance is approximately 33/567 (5.8%); however, 

empirical overlap was observed in 11/56 (19.6%) of 5Mb cold spot regions. Gene content further 
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distinguished hotspots and cold spots from other control regions of the genome (Figure 2.4D). 

Cold spots typically were gene dense (64.7 +/- 56.2 genes per 5Mb region) and were not 

distributed uniformly when compared to control regions of the genome. By comparison, hotspots 

typically were gene-sparse relative to cold spots (32.6 +/- 15.2 genes per 5Mb region). 

2.3.4 Recurrent regions of neuronal genome rearrangement 

The observation that neuronal deletions cluster in genomic hotspots suggested that local 

genomic instability could, in principle, lead to recurrent mosaicism among neurons. To explore 

this hypothesis, we examined CNV start or end locations (i.e., breakpoints) that were shared 

amongst CNV neurons. Breakpoints are defined by one of the 5067 variably sized Gingko bins 

that each include 500kb of mappable sequence. Among these bins, 857 accounted for two or 

more CNV breakpoints (termed CNVBs) (Figure 2.15 A, B), many of which (220/851; ~26%) 

fell within previously identified hotspots.  

We next sought to determine whether the number of bins containing more than 2 

breakpoints was significantly different from a random CNV distribution (i.e., the control set of 

CNV permutations). Given variably sized Gingko bins (Methods), we first assessed whether 

Ginkgo bin size impacted breakpoint frequency. While bin size scaled linearly with CNVB 

frequency in random permutations, this linear relationship was not observed with empirical 

CNVBs (Figure 2.15C). When breakpoint counts are normalized by bin size, observed CNVBs 

cluster more frequently in common bins than random CNVBs (one-sided t-test, P-value: 2.08*e-

134), suggesting that CNVBs likely originate from a non-random process (Figure 2.15D).  

Empirical CNVBs were further assessed for properties that might suggest mechanisms of 

CNV formation. As the endpoints of each CNV are imprecise within the Ginkgo bins, we were 

unable to use typical approaches that examine sequence context around precise structural 
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breakpoints (Lam et al., 2010); thus, we restricted our analysis to larger genomic features. Recent 

studies have indicated that somatic CNV hotspots in non-cancer systems are localized around 

large (>500kb) transcriptional units that form due to replication stress by a mechanism termed 

transcription-dependent double-fork failure (Wang et al., 2020; Wilson et al., 2015). To test if 

the CNVBs in our empirical dataset were consistent with this mechanism, we examined gene 

content in CNVB regions relative to random CNV permutations. Intriguingly, we observed a 

significant enrichment of empirical CNVBs within long genes (which we define as >100kb, one-

sided t-test, P-value: 1.32*e-5), suggesting possible support for the hypothesis (Glover and 

Wilson, 2016; Wei et al., 2016, p. 164; Weissman and Gage, 2016) that longer genes may incur 

an increased frequency of DNA double strand breaks (DSBs) and, in turn, lead to neuronal 

CNVs (Figure 2.15E). However, the size of our detected CNVs and corresponding breakpoint 

windows are large and CNVB locations were not enriched for expression level (Figure 2.15F).  

Thus, neuronal CNVs could arise by related, but perhaps different, mechanisms.   

Among 98 of the 226 CNV neurons, we observed 73 CNVs that shared both 3’ and 5’ 

CNVBs. These may be recurrent CNVs (CNVRs). Haplotype information was then used to 

determine if CNVRs support a clonal relationship among neurons. Briefly, we used phased allele 

ratios to compare whether CNVRs shared haplotypes by determining the median of the 

differences between the minimum and maximum log2 allele ratios observed in each SNP 

window within the CNVR across all cells where it was identified, reasoning that lower log2 

allele ratio values would represent CNVRs on a shared haplotype (Methods, Figure 2.16A). 

These calculations resulted in two apparent distributions of both lower (32/73) and higher 

(41/73) delta log2 ratio values. The lowest delta log2 ratio cluster contained the two pairs of 

technical replicates, indicating the veracity of our approach. The remaining CNVRs exhibited a 



 56 

delta median log2 ratio larger than 5, suggesting that these CNVs occurred on opposite 

haplotypes (Figure 2.16B). However, all CNV neurons harboring CNVRs had complex 

karyotypes with divergent CNV patterns across the genome (e.g., Figure 2.17). These findings 

suggest that shared CNVs are not necessarily clonally-derived, but, instead, likely represent 

recurrent events (Figure 2.16 C, D). Of note, similar CNVRs were observed in the analysis of 

cancer genomes and are referred to as “mirrored-subclonal” CNVs (Masoodi et al., 2019; 

Zaccaria and Raphael, 2021). 

 

2.4 Discussion 

The genetic landscape of human neurons is a mosaic of the individual’s germline 

genome; it is likely that every human neuron accumulates more than a thousand somatic variants 

over a person’s lifetime (Costantino et al., 2021; Jourdon et al., 2020; McConnell et al., 2017; 

Miller et al., 2021). Specific somatic mutations have been linked to overgrowth phenotypes in 

patients with hemimegalencephaly and focal cortical dysplasia (Baldassari et al., 2019; D’Gama 

et al., 2017; Lee et al., 2012; Lim et al., 2017). Other studies report differential somatic mutation 

burden in subsets of patients with autism and schizophrenia (Bundo et al., 2014; Muotri et al., 

2010; Rodin et al., 2021). Furthermore, mosaic SNVs mark neural cell lineages within brain 

regions and some neuronal SNVs trace their origin prior to neuroectodermal specification 

(Bizzotto et al., 2021; Breuss et al., 2022; Wang et al., 2021). Somatic SNVs acquired in early 

human development can be shared among progeny in multiple germ layers. Mosaic SNVs 

contribute to intra-individual genetic variation, but mosaic Mb-scale CNVs alter the neurogenetic 

landscape in dramatic ways. However, it is unknown whether some genomic regions are more, or 

less, prone to CNV occurrence than other regions. The identification of CNV-prone genomic 



 57 

loci, if they exist, could indicate mechanisms for somatic CNV formation, and, possibly, reveal a 

role for CNV neurons in brain function and disease.  

Here we employed a droplet-based WGA approach to map CNVs in 2097 frontal cortical 

neurons from a single individual. Technical barriers have limited previous studies to 

extrapolation from fewer than 100 neurons per individual and reported a total of 129 CNV 

neurons out of 879 frontal cortical neurons examined among 15 individuals (Chronister et al., 

2019. We developed SCOVAL to add veracity to read-depth based CNV detection through an 

analysis of haplotype drop out. We showed high concordance between heterozygous deletions 

identified by read-depth and by phased LOH in single neuronal nuclei. In this sample, we found 

that 226/2097 (10.8%) of neurons harbor at least one Mb-scale CNV, and that 2% of CNV 

neurons exhibited aneuploidies. Moreover, we found that 65/226 CNV neurons contained many 

deletions across multiple chromosomes leading to highly aberrant karyotypes. 

By combining haplotype and read-depth approaches, we have strong confidence that 

neuronal genomes contain large segments of chromosomes that are not sampled using single-cell 

sequencing approaches. This finding is consistent with previous reports that have examined a 

limited number of cells from neuronal and non-neuronal tissues using multiple technologies. 

Although we posit that the assayed sequence is missing because the corresponding segments 

have been deleted in vivo, unexpected technical or biological factors may yet contribute to the 

loss of signal.  For example, neuronal preps exclude micronuclei (Ye et al., 2019) however, the 

appreciable occurrence of micronuclei in neuronal tissue would still reflect an underlying 

alteration in genome content in the brain. Similarly, the lack of validated duplications in single-

cell neuronal sequencing is striking. Further study is required to develop mechanistic or technical 

explanations for this disparity. 
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Our finding of a nonrandom distribution of 1,861 deletions among 226 CNV neurons also 

allays concerns of random technical artifacts in neuronal CNV detection. Spurious WGA events, 

such as uneven genome amplification, are expected to occur randomly across the genome and are 

physically limited in size by the processivity of the polymerase (<20kb). Multiple whole genome 

amplification (WGA) approaches have been performed on single human neurons; all of these 

reported Mb-scale CNVs (Cai et al., 2014; Knouse et al., 2016; McConnell et al., 2013). This 

technical concern was addressed previously (Chronister et al., 2019; Rehen et al., 2005) wherein 

a similar prevalence of CNV neurons was observed in two samples from the same individual (26 

year-old), subjected to different WGA approaches. In Chronister, et al., parameter optimization 

on synthetic datasets limited read-depth based CNV detection to false positive rates <5%. Here, 

we provide additional lines of evidence that single-cell approaches for neuronal CNV detection 

are robust to technical artifacts. First, we showed that SCOVAL finds haplotype allele-level 

support for 76% of read-depth based deletion calls. Importantly, 99% of >10 Mb heterozygous 

deletions received orthogonal support via phased LOH. Second, when SCOVAL was applied to 

2,097 neurons, the fraction of CNV neurons observed (10.8%) was concordant with the fraction 

(11.1%) identified using different chemistry on a smaller (99 neuron) sample from the same 

brain region. Perhaps most strikingly, we identified CNV hotspots and cold spots that were 

inconsistent with a random distribution of technical artifacts. Moreover, these data resolved 

disparate reports regarding aneuploid human neurons. Approaches that measured single (or few) 

chromosomes in each neuron suggested that >10% of neurons were aneuploid (Rehen et al., 

2005; Yurov et al., 2007). Extrapolations based on these data did not account for unmeasured 

chromosomes in the same neuron, implicitly assuming that every measured aneusomy was 

unique. We identified 6 aneuploid neurons (2.7%), consistent with other reports (Knouse et al., 
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2014; van den Bos et al., 2016). These and other CNV neurons harbored additional deletions that 

covered >50% (52/2095) of chromosomes and could be scored by traditional hybridization-based 

approaches as aneuploid on multiple chromosomes. 

In addition to finding a nonrandom distribution of CNVs among CNV neurons, we 

identified genomic hotspots that were impacted by neuronal CNVs more often than expected by 

chance; the same approach identified genomic cold spots. Further analysis of these regions found 

high gene density in cold spots (64.7 +/- 56.2 genes per 5Mb region), but a lower gene density 

(32.6 +/- 15.2 genes per 5Mb region) in hotspots. Complementary analysis identified 851 regions 

with 2 or more CNV breakpoints (i.e., CNVBs), and found that 220 of these refined previously 

defined 5Mb hotspots to +/- 0.5Mb. Hotspot CNVBs were enriched for long (>100Kb) genes, 

consistent with the paucity of genes found in these regions. In some cases, the functional 

consequences of the CNVs are also suggested by associations between long gene expression, 

neuronal development, and neuropathologies (Gabel et al., 2015; King et al., 2013). For example, 

we identified seven neurons with distinct CNVs sharing a breakpoint region within KCNT2, a 

long (~380kb) gene that encodes an outward-rectifying potassium channel.  KCNT2 is important 

for neuron function and has been linked to several developmental pathologies (Ambrosino et al., 

2018; Gururaj et al., 2017; Mao et al., 2020) (Fig. 4B). KCNT2 exhibited a TPM of 7.30, which 

falls within the expected range when considering the expression of all long genes in this tissue 

(mean TPM 9.56 +/- 19.82). 

Our study shows that CNV neurons with highly aberrant karyotypes populate 

neurotypical human frontal cortex.  Although their impact on neural circuits and behavior remain 

unknown, cross-sectional studies indicate that CNV neurons are selectively vulnerable to aging-

related loss (Chronister et al., 2019). The extent to which recurrent CNV sites are shared among 
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individuals is not yet known; neither is it known if cold sites are refractory to CNV formation or 

are detrimental to neuronal survival during development. Nevertheless, we report candidate 

genomic regions that incur frequent neuronal gene rearrangement provides a rationale for 

tractable and scalable targeted single-cell sequencing. Many interesting questions follow from 

this study, including whether cold spots in neurotypical individuals are instead aberrant in 

individuals with neurological disease. 

 

2.5 Data and materials availability 

Data and call sets have been deposited in the NIMH Data Archive (NDA Study ID 1680, 

http://dx.doi.org/10.15154/1527774) and can be accessed as part of the NIMH Data Archive 

permission groups: https://nda.nih.gov/user/dashboard/data_permissions.html. The workflow to 

generate the final call set is available at https://github.com/mills-lab/Scoval. 
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Figures 

 

Figure 2.1 SCOVAL:  identification of copy number variation using read-depth and allele 
imbalance.  

(A) Single nuclei and bulk dural fibroblast DNA were analyzed using 10X platforms. (B) Single 
nuclei library quality is assessed based on median absolute deviation (MAD) and copy number 
thresholds are established using population statistics.  Graphs depict schematized data; vertical 
red lines illustrate threshold strategy. (C) Candidate CNVs are identified based on altered read 
depth across consecutive genomic bins.  (D) Heterozygous SNPs are phased using bulk linked-
reads in chromosomal segments (“hap 1” or “hap 2”). (E)  Absolute log2 ratios derived from 
“hap1” / “hap 2” are calculated across ~100 SNP windows (see text). A deletion with concordant 
loss of heterozygosity (log2 ratio <> 0) is illustrated. (F) A highly aberrant CNV neuron (#5) 
shows representative Gingko calls (blue bars), duplications (e.g., green arrow), heterozygous 
deletions (e.g., black arrow), and homozygous deletions (e.g., orange arrow) and qualitatively 
concordant increases in absolute log2 ratio (white<purple).  The genome is plotted from left to 
right on the x axis, read-depth is in the upper panel (CN state on the Y axis) and absolute log2 
ratios are reported in the lower panel. 
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Figure 2.2 Optimization of Ginkgo for read-depth-based CNV calls.  

(A) Mean absolute deviation (MAD) score distribution (based on bin copy numbers) excluded 19 
of 2,125 neurons (with MAD > 3 standard deviations away from mean). (B) Thresholds for 
calling putative CNVs were set using a GMM based on 585 cells obtained from the 5 control 
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individuals studied in (20) at 1.63 for deletions and 2.43 for duplications.  (C) Tukey’s rule was 
applied to median copy numbers for all genomic bins across all neurons in our dataset to yield 
308 additional outlier bins in addition to Ginkgo’s original 29 that were excluded from further 
analysis. (D) 4 additional cells that passed the MAD cutoff but were curated manually due to 
unlikely copy-number patterns, including 1 that did not pass the read-count filter due to 
concentration of reads on Chr2 (bottom right). 
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Figure 2.3 CNV neurons can have highly aberrant karyotypes. 

(A) The observed CNV per neuron [(purple bars, counts (y axis), CNVs/neuron (x axis)] 
distribution deviates (P < 0.0001) from Poisson expectations (dashed blue line). (B, C) Deletions 
cluster in a subset of CNV neurons.  (B) Counts (y axis) of the cumulative percent of each 
chromosome deleted (n = 2097 neurons * 22 autosomes) in CNV neurons.  (C) Neuronal 
genomes (n=2097) are arranged in a cells-by-chromosome matrix, ranked by the total percentage 
of their genome containing deletions.  Cell #226 is the first CNV neuron among 2097 total 
neurons with the smallest observed single deletion (blue = unaffected chromosome, yellow 
<50%, orange = 50 - 99%, red 100%).  (D-F) Among 65 neurons with the most aberrant 
genomes, some have similar karyotypes. (D)  Hierarchical clustering identifies two groups 
(yellow, red) with the least divergence from similarity (y axis). (E) Red cluster neurons [cells 
#32, 33, and 47 in (C)] have similar CNV profiles. Read-depth is plotted as in Fig. 1F. The 
yellow cluster (cells #17 and #19) is shown in Fig. S6B. (F) Concordant read-depth is observed 
on opposite haplotypes in the most similar pair [#32(red) and #33(blue)].  When overlapping, 
events on cell #47 (green) match the #32 haplotype, but never the #33 haplotype.  Chromosome 
3 is plotted from left to right. Haplotype log2 ratio (upper panel) and corresponding read-depth 
(lower panel, blue = diploid) plots show overlapping deletions and LOH for each haplotype. 

  



 66 

 

Figure 2.4 Analysis of CNV distribution relative to random null model. 

(A) Empirical read-depth plots of two CNV neurons (left panels) and representative permutations 
(right two panels) are displayed as in Fig. 1F.  (B) Relative to 10,000 permutations of real data 
(represented by blue dotted line and error bars), high and low CNV burden are enriched at the 
extremities of the Gaussian distribution (green bars).  (C) Circos plot shows that hotspots (red, 
outer tier) and cold spots (blue, middle tier) cluster on distinct chromosomes. Thirty-three 
pathogenic CNVs (blue, purple, inner tier) never overlap hotspots.  Eleven (blue) overlap cold 
spots.  (D) Violin plot showing gene enrichment in cold spots (left) and depletion in hotspots 
(right) relative to other 5Mb regions (P<0.001). 
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Figure 2.5 Genome-wide identification of hotspots and cold spots.  

Regional significance (1 minus p-value of number of CNV hits in a 5Mb region compared to 
random synthetic data) is plotted for all 5Mb genomic regions. Hotspots and cold spots shown in 
Fig. 3C. were identified using values > .95 and < .01 respectively. 
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Figure 2.6 Filtering of cold spots based on unmappable genomic regions.  

(A, B) Percentage of cold spots occupied by bad bins and by blacklisted regions identified by 
ENCODE respectively (green) compared to median of same quantity for cold spot permutations 
in control regions (blue). Cold spots registering high unmappable content (p-value < .05 cutoff) 
were filtered out (see Methods). (C, D) Schematic overview showing correlation of cold spots, 
bad bins and read depth for all CNV neurons across all genomic bins for 2 different 
chromosomes. 
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Figure 2.7 Comparison of hotspots and coldspots to control regions regarding long gene 
coverage and gene expression level.  

Violin plot distribution showing (A) a depletion of long genes (> 100 Kb) covering the region 
and (A) overall gene expression of genes in the region relative to control (middle) and hotspots 
(right). 

  



 70 

 

Figure 2.8 Complementary view of hotspots and cold spots in physical genes.  

Depicted are the distribution of p-values (defined as in Supplementary Figure 9 but for physical 
genes) for genes showing the presence of hotspots (first 5 bins) and cold spots (last bin) in six 
expression categories (genes not expressed, and 5 quintiles of genes expressed in DLPFC). This 
analysis is complementary to that performed in 5Mb regions and shows the presence of hotspots 
and cold spots in genes expressed at various levels. 
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Figure 2.9 Naïve Bayesian-based pipeline to filter CNVs.  

(A) We labeled CNV calls as “strong” based on an empirical p-value, which is derived from the 
median absolute log2 ratio of the windows within the CNV regions. Then we derived a Gaussian 
mixture model of strong calls and 100 non-CNV set permutations. (B) Using the median absolute 
log2 ratios of the two datasets as the training data, we estimated the parameters of the Gaussians 
and predicted the posterior probability that a candidate CNV belonged to a specific CNV 
distribution. (C) We filter out deletion calls where more than 75% of its het-SNP windows 
contained fewer than 3 informative reads which precludes an accurate haplotype assessment. 
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Figure 2.10 Homozygous deletions and duplications are more challenging to validate using 
SCOVAL.  

(A) The median absolute log2 ratio of informative reads in candidate homozygous deletions 
informative reads are similar to heterozygous deletions. The median absolute log2 ratio of 
duplications are not significantly different from randomly sampled non-CNV regions. (B) 
Derived Gaussian mixture model from median read depth ratios between homozygous and 
heterozygous deletions. (C) Posterior probability for putative homozygous deletions using a 
naive Bayesian classifier on the Gaussian mixture model from the initial heterozygous and 
homozygous deletion calls. 
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Figure 2.11 Heterozygous deletions miscalled as homozygous deletions.  

We identified 8 homozygous deletion calls from Ginkgo with read depth and allele ratio 
characteristics consistent with heterozygous deletions. The upper panel for each figure is the 
absolute log2 ratio. Red line indicates the cell with CNV and the gray lines represent two random 
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background cells. The bottom panel is the read depth ratio. The first row is for the cell with the 
candidate CNV, supplemented in rows two and three with randomly chosen cells as background. 
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Figure 2.12 Benchmarking CNV detection with CHISEL.  

Output of CHISEL to our single-cell sequencing data in (A) batch B11 and (B) batch B12 using 
diploid=2 parameters. The majority of CNVs were reported in all cells. 
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Figure 2.13 Putative clones that cannot be ruled out as technical replicates.  

(A) Putative clone-pair 1 (B) Putative clone-pair 2. Cells #17 and #19 show some deviances in 
overall bin copy number variances, but cannot conclusively be established as independently 
amplified neurons. 
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Figure 2.14 Reconstruction of Chromosome 3 haplotypes using overlapping heterozygous 
deletions in 3 cells.  

We generated extended phase blocks using three CNV neurons (cells #33, #10, and #5) that 
contained overlapping deletions that in aggregate cover the full-length of Chromosome 3 in order 
to determine phasing at chromosome level. These were used to reconstruct the haplotype of 3 
cells reported in Figure 2.3E. 
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Figure 2.15 Recurrent CNV breakpoints across multiple neurons.  

(A) UCSC Genome Browser view of all CNVs detected on Chromosome 1 (47 neurons, rows). 
Seven neurons (red) contain CNVs that share a breakpoint region (CNVB).  (B) Representative 
CNVB (red) on Chromosome 1 overlaps (+/- 250kb) two genes (lower panel). (C) Number of 
breakpoints identified in each Ginkgo bin (y axis) relative to bin size (x axis), shown for bins 
containing two or more CNVs (red) and averaged across all permutations in control set (blue 
line) (D-F) Violin plots show real and permuted data sets, normalized by bin size, when 
examined for (D) number of breakpoints, (E) number of long (>100k) genes (**** p<0.0001 for 
one-tailed t-test), and (F) transcripts per million bp (TPM) values of the longest gene in each bin. 
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Figure 2.16 CNVs sharing the same location are on different haplotypes.  

(A) We derived a min-max median delta log2 ratio to determine whether CNVRs likely reside on 
the same haplotype. (B) There are two apparent distributions of delta log2 ratio values. CNVs 
from 41 CNVRs with higher median delta log2 ratio likely occurred on different haplotypes. (C) 
Two cells (#22 and #19) both exhibit CNVs with the same location on Chr8, but show allelic 
ratios consistent with residing on different haplotypes. (D) An examination of CNVs on other 
chromosomes in these cells further indicates that these shared CNVs are not clonally derived. 
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Figure 2.17 Cells showing single shared events among complex karyotypes.  

(A, B) Three pairs of CNVs in 4 cells (shown by red, green and blue arrows respectively) are 
shared/recurrent. The shared CNVs are magnified in the lower panel. None of the other CNVs 
are shared. This indicates that the recurring CNVs are not necessarily clonal. (C) Same as above 
for another group of 5 cells. (D) The lower panel shows a magnified view of shared CNVs in (C) 
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Chapter 3 Synthetic Assessment of Single-cell CNV Detection Tools 

 

3.1 Motivation 

Single-cell DNA sequencing (scDNA-seq) is a powerful technique to study genetic 

variations at the cellular level, such as copy number variations (CNVs), which are not rare in 

somatic cells (Cai et al., 2014; D’Gama and Walsh, 2018; McConnell et al., 2013; Perez-

Rodriguez et al., 2023). However, scDNA-seq data poses several challenges for CNV analysis, 

such as low depth of sequencing coverage, high noise from sequencing errors and library 

preparation, and potential bias from whole genome amplification techniques. Therefore, more 

accurate and robust methods for CNV detection and quantification from scDNA-seq data are 

needed. 

Currently, researchers have developed several state-of-the-art single-cell CNV detection 

tools. To evaluate and compare different single-cell CNV callers, it is essential to have a reliable 

benchmark dataset with known ground truth. However, such a dataset is difficult to obtain 

experimentally due to the fact that it is very difficult to replicate the exact same genomic 

variations in different cells by biological means. An alternative method would thus be to 

simulate sequence data with known single-cell parameters. However, most methods in this area 

have been designed specifically on cancer cells (Feng et al., 2021; Feng and Chen, 2022; Giguere 

et al., 2020; Posada, 2020), which have high levels of genomic instability and complex subclonal 

structures that are not present in other tissues like the brain, which have lower levels of genomic 
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variation and more homogeneous cell populations. In addition, other single-cell simulators such 

as SCSsim cannot support CNVs (Yu et al., 2020). 

In addition to differences in approaches due to genomic features, there are other 

limitations that current single-cell simulators exhibit. Fully synthetic data simulators generate 

reads from scratch based on predefined models and parameters, such as mutation rates and 

sequencing errors. Sampling-based methods, on the other hand, use existing data as a reference 

and sample reads from it according to some criteria, such as the read count in a genomic region. 

Fully synthetic data simulators face challenges in modeling complex biological phenomena 

accurately and realistically. They may introduce biases or artifacts that do not reflect the true 

characteristics of single-cell data. Moreover, fully synthetic data simulators require extensive 

validation and calibration using real data to ensure their reliability and applicability. Sampling-

based methods can overcome some of these limitations by leveraging existing data as a source of 

information and variation. They can capture more realistic features of single-cell data, such as 

technical noise patterns. They can also benefit from the availability and diversity of single-cell 

datasets in different domains and contexts.  

In this chapter, we present a novel sampling-based single-cell CNV simulator that can 

generate realistic synthetic data for assessing the performance of single-cell CNV callers. Our 

simulator has two main components: (1) a CNV profile generator that simulates the location, size  

and copy number of CNVs for each cell based on empirical distributions derived from real 

scDNA-seq data; (2) a read simulator that creates BAM files for each cell by introducing CNVs 

according to predefined parameters. Our simulator also outputs the ground truth of CNV 

segments and breakpoints for each cell. 
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We demonstrate the utility of our simulator by generating synthetic scDNA-seq data for 

brain tissue and comparing several state-of-the-art single-cell CNV callers on it. We show that 

our simulator can produce realistic data that mimics the characteristics of real scDNA-seq data in 

terms of coverage distribution, allelic ratio and noise level. We also show that our simulator can 

reveal the strengths and weaknesses of different single-cell CNV callers and help identify areas 

for improvement. 

 

3.2 Data and methods 

3.2.1 Simulation framework 

Our simulator is designed for the benchmark of CNV detection tools using scDNA-seq 

data (Figure 3.1). The inputs consist of single-cell bam files of the non-CNV cells and the CNV 

profile, including CNV size, location and cell. The outputs are the simulated single-cell bam files 

with CNV. From the 2,097 cells we sequenced from the human neurons dissected from the 

dorsolateral prefrontal cortex (DLPFC) of a neurotypical individual described in Chapter 2, we 

exclude the 475 cells with CNVs called by Ginkgo (Garvin et al., 2015). Within the 1,628 non-

CNV cells, we randomly select 1,000 cells as the base samples for the simulator. We also 

randomly determine the CNV cell, genomic location and CNV size based on the distribution of 

the final call set described in Chapter 2.  

Since we already have the phased heterozygous SNPs (het-SNPs) for this sample, we first 

bin the whole genome into 100 phased het-SNP windows. If users need to apply our simulation 

method on the samples without phased het-SNPs, we develop a pseudo-bulk SNP calling and 

phasing pipeline. Users can merge all the single-cell sequences together and use GATK toolkit 

(McKenna et al., 2010) to call the germline SNPs. Then users can leverage the Michigan 
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imputation server (Das et al., 2016) or other similar imputation and phasing tools to impute and 

phase SNPs. We applied this pipeline to the common control sample we described in Chapter 2 

and compared phased het-SNPs with het-SNPs called from 10X linked reads. More than 97% of 

het-SNPs generated from this pipeline overlapped with those from 10X linked reads and shared 

the same phasing information, which shows our method is reliable. (Table 3.1) 

Next, we build het-SNP window-based statistical distributions for the normalized total 

read count, informative read count (reads covered by the het-SNP), and allelic ratio from the 

highly conservative CNV call set described in Chapter 2. We then count the total read count and 

informative read count in the original samples and generate simulated read counts for each 

window. Based on the differences in read counts, we add or delete reads to match the read counts 

to the simulated counts and generate simulated bam files.  

 

3.2.2 CNV profile simulation 

In the 1,000 randomly selected non-CNV cells, we randomly select 300 cells as the 

simulated CNV cells to achieve the frequency of somatic mosaicism at 30%. We designed 4 

simulated CNV sets with 0%, 10%, 20% and 30% subclonal frequency respectively, which 

means 0, 100, 200, and 300 cells share the same CNV set. Then we build the distribution for the 

size of CNVs in the final call set described in Chapter 2 and fit it with the exponential 

distribution using a fixed location parameter as 1M, as all the CNV calls are larger than 1Mb 

(Figure 3.2). Next, for each CNV, we randomly select a cell, a chromosome number and a 

genomic location without overlapping with other CNVs. Some CNVs would fall into a single 

het-SNP window, which is the basic unit for the simulator. Therefore, these CNVs would be 

filtered out. 
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3.2.3 Derive statistical distributions from the highly conservative CNV call set 

 

We build the statistical distributions for the normalized total read counts, normalized 

informative read counts and log2 ratio of informative read count between two haplotypes from 

all the het-SNP windows. The read count normalization is as follow: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 =  
1010 ∗ 𝑛𝑛𝑛𝑛𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 𝑛𝑛𝑜𝑜 𝑐𝑐ℎ𝑛𝑛𝑖𝑖 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
 

For heterozygous deletions and homozygous deletions, we build the log normal distributions 

from the CNV regions in the final call set directly. For CN-LOH, we can build the distributions 

based on the non-CNV regions as CN-LOHs have the same copy number with non-CNV regions. 

For duplications, we have to infer the location parameter of log normal distribution based on the 

difference between means of heterozygous deletions and non-CNV regions. We add this 

difference to the location parameter of the non-CNV distributions. The other two parameters 

would be the same with the non-CNV distributions. 

In order to reduce the noise of the simulation data, we also set the cutoffs for the original 

distributions before fitting to the log normal distributions. For non-CNV regions, we filter out the 

windows with the normalized total reads count higher than top 5% quantile or lower than bottom 

5% quantile, and also filter out the windows with informative reads count lower than 10 

% quantile (Figure 3.3 A, B). For heterozygous deletions, we filter out the windows with the 

normalized total reads count higher than top 5% quantile or lower than bottom 5% quantile, and 

also filter out the windows with absolute log2 ratio lower than 5 and windows with informative 

reads count lower than 15% quantile (Figure 3.3 C, D). For homozygous deletions, we filter out 
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the windows with the normalized total reads count higher than bottom 5% quantile of 

distribution for heterozygous deletions, and also filter out the windows with informative reads 

count higher than the bottom 15% quantile of distribution for heterozygous deletions (Figure 3.3 

G, H). Next, we fit these filtered data with log normal distributions, and fit the absolute log2 

ratio of heterozygous deletions with an empirical distribution (Figure 3.3 E, F). 

 

3.2.4 Count the current reads and generate simulated read counts to manipulate the bam files 

We count the reads for each het-SNP window and each cell using SAMtools (Li et al., 

2009). We also count the informative reads for each het-SNP window and each cell on the two 

haplotypes using 4th and 5th steps of the SCOVAL pipeline (Sun, 2023) described in the Chapter 

2. Next, we sample the read counts and informative read counts from the pre-built log normal 

distributions for each window as the target read counts, and we also sample the absolute log2 

ratio from the pre-built empirical distribution for the heterozygous deletion windows. We first 

transform the sampled normalized count into the real count using the formula: 

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 =  
𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 ∗ 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 𝑛𝑛𝑜𝑜 𝑐𝑐ℎ𝑛𝑛𝑖𝑖 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛

1010
 

Second, We assign the informative reads count to each haplotype based on the different copy 

numbers: 1) for the homozygous deletion window, we take the half of the informative reads 

count for each haplotype; 2) for the heterozygous deletion window, we calculate the informative 

reads count based on the simulated absolute log2 ratio; 3) for the CN-LOH window, one 

haplotype takes all the informative reads and the other one takes 0; 4) for the duplication 

window, we divide the informative reads count by the simulated copy number for one haplotype, 

and subtract this number from total informative reads count for the other haplotype. 
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Then for each window and each haplotype, we compare the target reads count and current 

reads count. If the current count is lower, we copy the reads from the other cells in the same 

window and on the same haplotype to this cell. If the target count is lower, we randomly delete 

the reads for the particular haplotype. Similarly, we also compare, and add or delete the non-

informative reads based on the difference between target and current reads count. 

 

3.2.5 Benchmark other single-cell CNV tools using simulation data 

Over the decades, several scDNA-seq CNV callers have been proposed. There are two 

types: single cell-based tools, such as Ginkgo (Garvin et al., 2015) and SCOVAL (Sun et al., 

2023), and multiple cells based tools, such as CHISEL (Zaccaria and Raphael, 2021), SCYN 

(Feng et al., 2021) and Alleloscope (Wu et al., 2021). Here we use our simulation data to 

benchmark single-cell CNV callers, and evaluate 3 state-of-the-art CNV callers: Ginkgo, 

CHISEL and SCYN. Ginkgo is a web platform for the automated and interactive analysis of 

single-cell CNVs, and it can also be used as a local application. It applies a variable bin strategy 

to segment the genome into bins followed by corrections of GC contents and other amplification 

artifacts. Ginkgo employs Circular Binary Segmentation (CBS) algorithm for genome 

segmentation and subsequent inference of integer absolute copy number state. CHISEL is the 

first method for allele-specific copy number estimation with scDNA-seq data. It can detect 

allele-specific CNVs at single-cell resolution, but it requires high sequencing depth and external 

phasing haplotypes. SCYN is a CNV segment method and it is based on another single-cell CNV 

calling method, SCOPE (Wang et al., 2020). SCOPE detected CNV by a Poisson latent factor 

model. SCYN adopts SCOPE’s normalization method and uses dynamic programming to 

conduct CNV segmentation. 
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We evaluate the performance of these 3 tools for detecting single-cell CNVs using 

simulation data with varying subclonal frequencies. We compare their CNV call set with the 

ground truth CNV set we generated. We use two levels of comparison: CNV level and window 

level. At the CNV level, we consider a CNV call to be true positive if it overlaps with at least 

80% of any ground truth CNV. At the window level, we assign the called copy number to each 

genomic window and compare it with the corresponding ground truth. We then treat this as a 

multiclass classification problem and use metrics such as precision, recall and F1-score for each 

copy number class to assess the quality of the CNV calls. The formulas are: 

𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝑃𝑃
 

𝑅𝑅𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

𝐹𝐹1 𝑖𝑖𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 =  
2 ∗ 𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 ∗ 𝑅𝑅𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛
𝑃𝑃𝑛𝑛𝑛𝑛𝑐𝑐𝑛𝑛𝑖𝑖𝑛𝑛𝑛𝑛 + 𝑅𝑅𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛

 

𝑆𝑆𝑛𝑛𝑛𝑛𝑖𝑖𝑛𝑛𝑐𝑐𝑛𝑛𝑆𝑆𝑛𝑛𝑐𝑐𝑆𝑆 = 𝑅𝑅𝑛𝑛𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 + 𝐹𝐹𝐹𝐹
 

𝑆𝑆𝑆𝑆𝑛𝑛𝑐𝑐𝑛𝑛𝑜𝑜𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐𝑆𝑆 =  
𝑇𝑇𝑃𝑃

𝑇𝑇𝐹𝐹 + 𝐹𝐹𝑃𝑃
 

where TP is the number of true positives, TN is the number of true negatives, FP is the number 

of false positives, and FN is the number of false negatives. Here we use the one-vs-rest method 

to calculate TP, FP, FN and TN for each class separately. 

 

3.3 Results 

3.3.1 Simulation result 
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We performed four simulations of CNV call sets with different subclone frequencies: 0%, 

10%, 20%, and 30%. The number of simulated CNVs for each frequency was: (1) 1,174 CNVs 

for 0%; (2) 1,200 CNVs for 10%; (3) 1,196 CNVs for 20%; and (4) 1,200 CNVs for 30%. (Table 

3.2) To evaluate the quality of the simulated CNVs, we compared them with the very 

conservative CNV call set obtained in Chapter 2. We computed the number of informative read 

counts, the median absolute log2 ratio, and the median read depth ratio for both the simulated 

and the conservative CNVs. (Figure 3.4) We also visualized the distribution of the absolute log2 

ratio and the read depth ratio for each simulation. (Figure 3.5) These analyses demonstrate that 

our simulated CNVs are realistic and representative of the data. 

 

3.3.2 Evaluation of current single-cell CNV tools 

We conducted a comparative analysis of Ginkgo, CHISEL and SCYN on four simulated 

CNV datasets with known ground truth. These datasets had different subclone frequencies 

ranging from 0% to 30% (Table 3.3). In general, Ginkgo typically calls less CNVs and SCYN 

calls more CNVs than the ground truth. In the 30% dataset, however, neither Ginkgo and SCYN 

could recall the CNVs from the simulation set. In addition, CHISEL calls an extremely large 

number of CNVs, which is not reliable.  These results suggest that Ginkgo is more accurate and 

robust than CHISEL and SCYN in detecting single-cell CNVs in the lower subclone frequencies, 

with none performing well when the subclone frequency is high. 

We assessed the performance of each tool at both the CNV and window levels using 

precision, recall and F1-score metrics (Figure 3.4). Ginkgo achieved the highest performance 

across all four subclone frequency scenarios at the CNV level, with an F1-score ranging from 0.8 

(no subclones) to 0.7 (20% subclones). However, none of the tools could detect CNVs reliably 
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when the subclone frequency is 30%, resulting in near-zero F1-scores. At the window level, 

Ginkgo maintained its superiority for subclone frequencies of 0%, 10% and 20%, while CHISEL 

surpassed the other tools for subclone frequency of 30% (Figure 3.5). The confusion matrices are 

shown in Figure 3.6. 

 

3.4   Conclusion and Discussion 

In this chapter, I have presented a novel single-cell CNV simulator that can generate 

realistic and diverse datasets of single-cell DNA copy number profiles. The simulator can 

capture the complex and heterogeneous nature of single-cell DNA copy number alterations. 

Unlike previous simulators that either focused on cancer samples or could not simulate CNVs, 

the simulator can produce datasets with different levels of complexity and heterogeneity to 

challenge existing single-cell CNV tools and to facilitate the development of new methods. The 

simulator is a powerful tool for benchmarking and evaluating the performance of different 

single-cell CNV analysis methods. Researchers can use the simulator to generate synthetic 

datasets with known ground truth CNV profiles, enabling them to compare and assess the 

accuracy, sensitivity, and specificity of different methods. It can also aid in the development of 

new single-cell CNV analysis methods. Researchers can use the simulated datasets to test and 

optimize new algorithms, potentially leading to more accurate and efficient methods for 

identifying CNVs in single cells. 

I have also benchmarked three current single-cell CNV tools, Ginkgo, CHISEL and 

SCYN, using simulation data to evaluate their performance and limitations. These tools represent 

different approaches to infer single-cell DNA copy number profiles from scDNA-seq data. I have 

compared their performance using simulated data sets with varying subclone frequencies and 
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evaluated them using five metrics: precision (the proportion of true positives among all predicted 

positives), recall or sensitivity (the proportion of true positives among all real positives), 

specificity (the proportion of true negatives among all real negatives), and F1-score (the 

harmonic mean of precision and recall). My results show that Ginkgo has the highest precision, 

recall and F1-score among the three tools when the subclone frequency is low. SCYN has a 

lower performance than Ginkgo in all metrics. These findings suggest that Ginkgo is more 

sensitive and reliable in detecting CNVs from scDNA-seq data, especially for low-frequency 

subclones, while CHISEL may perform better when the subclone frequency is higher. Therefore, 

depending on the research question and the quality of the data, different tools may be more 

suitable for single-cell CNV identification. 

There are some limitations and challenges that need to be addressed in future work. First, 

the simulation dataset relies on the single-cell sequencing data from 1,000 brain cells from a 

single individual to generate CNV profiles, which may introduce biases or errors if our data are 

not representative. Though we provide the methods to generate simulation data from other 

datasets, a better solution is to develop a self-learning algorithm that can adaptively adjust the 

parameters of the simulator based on the input data. Second, the simulator does not account for 

other types of somatic variations in scDNA-seq data, such as SNVs and SVs. The simulator may 

reflect more real simulation when incorporating them into the simulation model. Third, the 

simulator has not been validated using real single-cell CNV data from different organisms or 

tissues. Such validation is necessary to assess the generalizability and applicability of the 

simulator in different biological contexts. A possible solution is to collect more single-cell CNV 

data from various sources and compare them with the simulated data using appropriate metrics. 

We can leverage some ongoing efforts such as the Somatic Mosaicism Across Human Tissues 
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(SMaHT) network (https://commonfund.nih.gov/smaht) at NIH to implement this. The SMaHT 

Network aims to understand how somatic mosaicism influences biology and disease by 

cataloging the extent of somatic mosaicism in different cell types, disease states, and life stages. 

They plan to achieve this by systematically documenting DNA sequence variants within personal 

genomes using state-of-the art sequencing technologies and spurring technological development 

that will enable researchers to detect different types of variation. 

One of the main challenges in studying single-cell CNVs is the lack of reliable and 

realistic simulation data that can capture the complexity and diversity of genomic aberrations in 

single cells. Our simulator would enable researchers to evaluate single-cell CNV calling tools 

under various scenarios and settings, and to identify the optimal parameters and strategies for 

detecting CNVs from single-cell sequencing data. In Chapter 4, we introduce the development of 

a deep learning based single-cell CNV calling tool, which uses our simulation data set as the 

training data. 

Another future direction for research in this area is to develop a new single-cell CNV 

simulator for long-reads single-cell data. Current methods for single-cell CNV calling are mostly 

designed for short-reads data, which have limited resolution and specificity for detecting 

complex and subtle CNVs. Long-reads data offer the potential to overcome these limitations by 

providing more information about breakpoints, copy number states, allele frequencies, and 

haplotype phasing. However, long-reads data also pose new challenges such as higher error rates, 

lower coverage, and more difficult to extract the feature distributions. Therefore, new algorithms 

and models are needed to address these challenges and to exploit the full potential of long-reads 

data for single-cell CNV analysis. Such tools would enable researchers to uncover novel insights 
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into the mechanisms and consequences of somatic CNVs at unprecedented resolution and 

accuracy. 

In addition, our single-cell CNV simulator can be generalized to the data generated from 

other whole genome amplification (WGA) methods or sequencing technologies. The method is 

not limited to the specific WGA method or sequencing platform used in our study, as it can 

accommodate different sources of noise and biases that are inherent in different technologies. 

This feature makes the simulator a flexible and versatile tool that can generate simulated datasets 

that are tailored to specific experimental conditions and requirements by using the base datasets 

from other platforms. For example, our simulator can be used to generate datasets that mimic 

other types of WGA or sequencing technologies, such as MALBAC and MDA, to compare and 

benchmark the performance of different methods under different experimental conditions. By 

doing so, the simulator can provide insights into the strengths and limitations of different 

technologies for single-cell CNV analysis, and guide the development of more robust and 

accurate methods for detecting CNVs in single cells. 
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Figures 

 

Figure 3.1 Overview of the simulator workflow.  
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Figure 3.2 CNV size distribution. 

 (A) fit validated call set CNV size with an exponential distribution (orange dotted line). (B) 
sample 6,000 CNV sizes from the fitted exponential distribution. 
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Figure 3.3 Distributions of normalized total reads count and informative reads count for different 
types of CNVs and distribution of absolute log2 ratio for heterozygous deletions.  

(A-D, G, H) normalized total and informative reads count for the windows with copy number 0, 
1 and 2. (E, F) filtered absolute log2 ratio distribution from heterozygous deletions. Dashed lines 
are the fitted log normal distribution. 
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Figure 3.4 Comparison of informative reads count, median absolute ratio and median read depth 
ratio for the real and simulation CNVs. 

The real homozygous and heterozygous deletions are from the conservative calls described in 
Chapter 2. The real duplications are from Ginkgo duplication calls described in Chapter 2. The 
simulation CNVs are from the 0% subclone frequency simulation set. 
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Figure 3.5 Examples of the simulated 4 types of CNVs. 

(A) homozygous deletion. (B) heterozygous deletion. (C) CN-LOH. (D) duplication. 
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Figure 3.6 CNV level performance of 3 tools on the different subclone frequencies. 

(A) precision. (B) recall. (C) F1 score. 
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Figure 3.7 Window level performance comparison of 3 tools on the different subclone 
frequencies. 

(A) macro average precision of all the classes. (B) macro average recall of all the classes. (C) 
macro average F1 score of all the classes. (D) macro average specificity of all the classes. 
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Figure 3.8 Heatmaps of the confusion matrices for Ginkgo, SCYN and CHISEL copy number 
estimations on the 4 simulation data sets with different subclone frequencies. 

The labels 0, 1, 2, 3, and 4 represent the homozygous deletion, heterozygous deletion, normal, 
duplication and CN-LOH. 
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Tables 

Table 3.1 Comparison of phased heterozygous SNPs called from 10X linked reads and our 
pipeline. 

Phased het-SNPs from 10X linked reads 2,299,568 

Phased het SNPs after imputation 1,951,416 

Overlapped SNPs with phased 10X SNP calls 1,900,860 (97.41%) 

Overlapped SNPs with GATK SNP calls 1,925,987 (98.70%) 
 

  



 113 

Table 3.2 Four simulation CNV set with different subclone frequencies. 

Subclone frequency 0% 10% 20% 30% 

# CNV 1,174 1,200 1,196 1,200 

# CNV cell 300 300 300 300 

# Homo-DEL(CN=0) 196 224 258 300 

# Homo-DEL cell (CN = 0) 134 183 238 300 

# Het-DEL(CN=1) 785 848 663 300 

# Het-DEL cell (CN = 1) 279 284 288 300 

# CN-LOH(CN=2) 20 17 17 300 

# CN-LOH cell (CN = 2) 18 15 15 300 

# DUP (CN > 2) 173 111 258 300 

# DUP cell (CN > 2) 123 79 239 300 
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Table 3.3 Comparison of 3 tools for the CNV detection on the different subclone frequency. 

Subclone frequency 0% 10% 20% 30% 

# simulated CNV 1,174 1,200 1,196 1,200 

# simulated CNV window 122,824 94,799 68,098 184,200 

# Ginkgo CNV 961 923 931 144 

# Ginkgo CNV window 105,691 82,824 54,656 11,462 

# SCYN CNV 3,299 2,477 2,081 829 

# SCYN CNV window 105,938 74,288 44,948 4,990 

# CHISEL CNV 142,211 164,814 153,456 150,451 

# CHISEL CNV window 3,909,743 2,994,778 4,642,915 3,981,416 
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Chapter 4 Development of a Neural Network-based Single-cell CNV Caller 

 
 

4.1 Background 

Copy number variations (CNVs) are genomic alterations that result in gains or losses of 

DNA segments (Zarrei et al., 2015). CNVs can affect gene expression, function, and interactions, 

and are associated with various diseases, such as cancer and neurodevelopmental disorders 

(Grayton et al., 2012; Henrichsen et al., 2009; Shlien and Malkin, 2009). Detecting CNVs at 

single-cell resolution can reveal the heterogeneity and dynamics of genomic instability within a 

cell population, which is crucial for understanding the mechanisms and consequences of somatic 

mosaicism (Mallory et al., 2020; Ning et al., 2014). 

Deep learning is a subfield of machine learning that employs artificial neural networks to 

learn from large and complex data. Deep learning has been applied to various problems in 

genomics research, such as gene expression analysis, variant calling, regulatory motif discovery, 

and disease diagnosis (Eraslan et al., 2019; Zou et al., 2019). Some examples of deep learning 

applications in genomics are: DeepSEA: a deep convolutional neural network that predicts the 

chromatin effects of sequence alterations with single-nucleotide sensitivity (Zhou and 

Troyanskaya, 2015); DeepVariant: a deep neural network that converts high-throughput 

sequencing data into a list of variants (Poplin et al., 2018); DeepBind: a deep learning framework 

that learns the sequence preferences of DNA- and RNA-binding proteins from high-throughput 

binding assays (Alipanahi et al., 2015); DeepGestalt: a deep facial analysis framework that 

identifies rare genetic syndromes from facial images (Gurovich et al., 2019). Although more and 
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more deep learning-based approaches are applied to genomics research, there is no tool 

developed for single-cell CNV calling using such powerful techniques. 

There are various deep learning approaches that can be used to model CNVs in single 

cells. For example, we can use a 1-dimension convolutional neural network (CNN) to apply 

sliding convolutional filters to the input. We can also use Long Short-Term Memory (LSTM), 

which is a type of recurrent neural network (RNN) that can learn from sequential data such as 

text, speech, or video (Hochreiter and Schmidhuber, 1997). Compared with 1D CNN, LSTM 

networks are better suited for tasks that require modeling long-term dependencies in sequential 

data, while 1D CNNs are better suited for tasks that require feature extraction from local patterns 

in the input sequence (Kiranyaz et al., 2019). Unlike other machine learning models that assume 

the input data are independent and identically distributed, LSTM can capture the temporal 

dependencies and long-term patterns in the data. Compared with other RNN models, LSTM has 

a special mechanism called the memory cell, which consists of three gates: input gate, forget 

gate, and output gate. These gates can regulate the flow of information in and out of the cell, 

allowing LSTM to selectively remember or forget previous states. This helps LSTM to overcome 

the problem of vanishing or exploding gradients that often occurs in standard RNNs when 

dealing with long sequences. Compared with the Hidden Markov Model (HMM), LSTM can 

learn complex nonlinear relationships between the input and output sequences, while HMM can 

only model linear or simple nonlinear dependencies (Rabiner, 1989). Therefore, LSTM is a 

powerful and versatile tool for various sequence learning tasks such as natural language 

processing, speech recognition, genomic sequence analysis, and more. 

Bidirectional LSTM models are a type of recurrent neural network that can process 

sequential data in both forward and backward directions (Schuster and Paliwal, 1997). Unlike 
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standard LSTM models, which only use the previous information to make predictions, 

bidirectional LSTM models can also leverage the posterior information to improve the accuracy 

and robustness of the model. Bidirectional LSTM models consist of two parallel LSTM layers, 

one for each direction, and a merge layer that combines the outputs of both layers. The merge 

layer can use different strategies, such as concatenation, summation, or averaging, to fuse the 

information from both directions. Bidirectional LSTM models are especially useful for sequence 

prediction tasks, such as sentiment analysis, machine translation, and named entity recognition, 

where the context from both sides of a word or a sentence can provide valuable clues for the task 

(Graves et al., 2013; Lample et al., 2016; Long et al., 2019; Sundermeyer et al., 2014). 

Therefore, we can also apply bidirectional LSTM models on the CNV calling problem, which is 

the prediction of copy number on genomic regions. 

We present a novel method, ScovalNN, for single-cell CNV calling based on deep 

learning. Our method uses both sequencing coverage and allelic ratio information as features to 

train a bidirectional long short-term memory (LSTM) neural network that can predict the copy 

number variation on each genomic window. We use our simulation dataset, which mimics 

realistic scenarios of CNV events, as the training set for our model. We compare our method 

with three existing tools: Ginkgo (Garvin et al., 2015), SCYN (Feng et al., 2021) and CHISEL 

(Zaccaria and Raphael, 2021), which are based on circular binary segmentation, dynamic 

programming and probabilistic modeling, respectively. We show that our method outperforms 

these tools in terms of accuracy, sensitivity and specificity on both CNV and window level. 

Moreover, our method can leverage allelic ratio information to detect copy-neutral loss of 

heterozygosity (CN-LOH), which is a challenge for Ginkgo and SCYN. Our method is also 

faster and more scalable than CHISEL, which requires haplotype phasing and multiple iterations. 
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Therefore, we propose that our deep learning-based method is a powerful and efficient tool for 

single-cell CNV calling.  

4.2 Data and methods 

In order to acquire the training data, we use the single-cell CNV simulator, which is 

described in Chapter 3, to randomly simulate 6,000 CNVs in the 1,000 randomly selected non-

CNV cells, 1,500 CNVs for each type respectively (homozygous deletion, heterozygous deletion, 

copy-neutral loss of heterozygosity (CN-LOH), and duplication). Then we use the phased 

heterozygous SNPs (het-SNPs) to make windows, and each window contains 100 phased het-

SNPs (see details in Chapter 2, 3, and Figure 4.1). Some CNVs would fall into a single het-SNP 

window, which is the basic unit for the simulator and ScovalNN. Therefore, these CNVs would 

be filtered out. In the end, we have 5,842 CNVs from 998 cells. There are 1,469 homozygous 

deletions, 1,460 heterozygous deletions, 1,453 CN-LOHs, and 1,460 duplications. 

Then we extract all the 5,032 chromosomes with CNVs as the model input sequences. 

We split these 5,032 sequences into training, validation and testing sets, 3,522, 755, 755 for each. 

For each window, we generate 5 features: log2 ratio between informative reads on the two 

haplotypes, number of total informative reads, normalized number of total informative reads, 

number of total reads, normalized number of total reads. The read number normalization method 

is the same as that in Chapter 2 and 3.  

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 =  
1010 ∗ 𝑛𝑛𝑛𝑛𝑟𝑟 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐

𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑐𝑐𝑛𝑛𝑐𝑐𝑛𝑛𝑐𝑐 𝑛𝑛𝑜𝑜 𝑐𝑐ℎ𝑛𝑛𝑖𝑖 𝑐𝑐𝑛𝑛𝑛𝑛𝑛𝑛 ∗ 𝑟𝑟𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑟𝑟 𝑖𝑖𝑛𝑛𝑛𝑛𝑛𝑛
 

The target label for each window would be converted into 0, 1, 2, 3, and 4, which represent 

homozygous deletion, heterozygous deletion, normal, duplication and CN-LOH. 
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However, as most of the het-SNP windows are still normal (non CNV) windows, the 

class ratio among these 5 classes (normal and 4 types of CNV) is still very high (~150:1:1:1:1). 

In order to keep a balanced ratio among classes for the training data, we extract the CNV and its 

two-sides flanking regions (⅕ size of CNV). These subsequences from the same chromosome 

would be combined into a new sequence. The ratio is decreased to ~1.5:1:1:1:1 for the normal 

windows and other 4 types of CNV windows. For the validation and testing sequences, we keep 

the original sequences to make them similar to the real case. 

We implemented a bidirectional LSTM neural network for genomic region copy number 

prediction with 5 features as input and 5 types of classes as output. The network consists of 

seven layers: one input layer, one fully connected layer, one bidirectional LSTM layer, three 

fully connected layers, and one output layer. The input layer takes the 5 features as input. The 

second layer transforms the low-dimensional (5) data into high-dimensional (128) space using a 

linear transformation. The bidirectional LSTM layer has 64 units for each direction and learns 

long-term dependencies from both the forward and backward sequences. The three fully 

connected layers have 128 units each and use Leaky ReLU activation functions to introduce non-

linearity and avoid gradient vanishing. The output layer uses a softmax function to produce the 

class probabilities. We use cross entropy as the loss function to measure the discrepancy between 

the predicted and true labels. To optimize the network parameters, we used Adam optimizer with 

a learning rate of 1e-3 and a batch size of 64. We also applied early stopping to prevent 

overfitting and terminate the training process if the validation performance does not improve for 

more than 50 epochs. 

We applied the model on different test sets and obtained the initial CNV calls. Then, we 

would smooth and filter the CNV calls using a pipeline that consists of six steps. First, we 
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adjusted the copy number of a small number (<5) of CNV windows to match their neighboring 

copy number, and smoothed the copy number for each chromosome. Second, we merged two 

CNVs with the same copy number if their distance is less than 500K. Third, we discarded CNVs 

smaller than 500K. Fourth, we excluded CNVs that overlap more than 20% with the centromere 

or telomere of each chromosome. Fifth, we removed CNVs that overlap more than 20% with 

ENCODE blacklist regions (Amemiya et al., 2019). Sixth, we eliminated CNVs that have fewer 

than 5 informative windows or less than 30% of windows are informative. An informative 

window is a het-SNP window with more than 3 het-SNPs covered by the reads. 

 

4.3 Results 

In this study, we developed ScovalNN, a bidirectional LSTM neural network for single-

cell copy number prediction with 5 features as input and 5 types of classes as output. As 

described in the method section, the network consisted of seven layers, including one input layer, 

one fully connected layer, one bidirectional LSTM layer, three fully connected layers, and one 

output layer. (Figure 4.1) The input layer received the 5 features as input, which were 

transformed into a high-dimensional space of 128 units using a linear transformation in the 

second layer. The bidirectional LSTM layer, with 64 units for each direction, learned long-term 

dependencies from both the forward and backward sequences. The three fully connected layers, 

each with 128 units, introduced non-linearity and avoided gradient vanishing using Leaky ReLU 

activation functions. The output layer used a softmax function to produce the class probabilities. 

To evaluate the performance of the proposed model during the training, we use cross 

entropy to calculate the training and validation loss. (Figure 4.2) We use accuracy and F1 score 
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to evaluate the performance of the model. The model achieves a high accuracy of 0.9936 and a 

F1 score of 0.9556 on the validation set, indicating its effectiveness and robustness. 

To further demonstrate the applicability of ScovalNN, we apply it to two different 

datasets: a simulated dataset of 300 cells with CNVs (the same dataset described in Chapter 3 

with no subclonal frequency simulation), and a real dataset of 2,097 cells (the common control 

sample in Chapter 2). We perform CNV calling on both datasets and compare the results with the 

ground truth at both CNV level and window level. For the simulated dataset, we use the 

simulated CNV set as the ground truth; for the real dataset, we use our conservative CNV calls as 

the ground truth. We report the comparison results before and after applying a filtering pipeline 

to remove low-confidence CNV calls.  

On the CNV level comparison, the criteria of the same CNV between ground truth and 

prediction is that the CNV in one set is 80% overlap with the CNV in another set, and the CNVs 

have the same copy number. Based on this criterion, we can calculate the precision, recall and 

F1-score for ScovalNN on each data set (Table 4.1). Precision is the proportion of predicted 

CNVs that are true positives, and recall is the proportion of true CNVs that are detected by the 

method. Compared with other methods benchmarked in Chapter 3 on the CNV level, ScovalNN 

outperforms SCYN and CHISEL, and is comparable with Ginkgo (Figure 4.3). Ginkgo has a 

little higher precision as there is a training bias since the simulation data was based on Ginkgo’s 

initial results. However, Ginkgo cannot identify CN-LOH. On the window level comparison, we 

use a different criterion to match CNVs between the ground truth and the prediction sets. We 

consider a window as a true positive if it has the same copy number as the ground truth. We then 

calculate the confusion matrices for each method on each data set (Figure 4.4), which show the 

number of windows that are correctly or incorrectly classified by each method. From the 
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confusion matrices, we can also calculate the precision, recall, F1-score and specificity for each 

method on each data set (Table 4.2 & 4.3). The F1-score is the harmonic mean of precision and 

recall, and specificity is the proportion of windows with other copy numbers that are correctly 

classified by the method. A higher F1-score and specificity indicate a better balance between 

accuracy and sensitivity of the method. Even though the ground truth set does not include 

duplications and CN-LOH and it is very conservative, ScovalNN still performs very well on the 

real data set. This demonstrates that ScovalNN is a robust and reliable method for CNV detection 

from single-cell data. 

To further evaluate the performance of our method, we compared the median absolute 

log2 ratio and median read depth ratio of the predicted CNVs in the real data set. (Figure 4.5) 

These metrics reflect the characteristics of different types of CNVs, and can be used as additional 

filters to refine the predictions. As shown in Figure 4.5, our method produces distinct clusters for 

each type of CNVs. Moreover, our method can accurately identify the boundaries of CNVs, 

which is crucial for downstream analysis. (Figure 4.6) In contrast, Ginkgo and SCOVAL tend to 

overestimate or underestimate the size of CNVs, leading to false positives or false negatives. 

 

4.4 Discussion 

In this study, we proposed a novel method called ScovalNN for single-cell CNV calling 

based on deep learning. Our method uses a bidirectional LSTM neural network to predict the 

copy number variation on each genomic window using both sequencing coverage and allelic 

ratio information as features. We compared our method with three existing tools: Ginkgo, 

SCYN, and CHISEL and showed that our method outperforms these tools in terms of accuracy, 

sensitivity, and specificity on both CNV and window level. 
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Our results demonstrate that ScovalNN is a robust and reliable method for CNV detection 

from single-cell data. It outperforms several other methods and can accurately identify the 

boundaries of CNVs, which is crucial for downstream analysis. Moreover, our method can 

leverage allelic ratio information to detect copy-neutral loss of heterozygosity (CN-LOH), which 

is a challenge for Ginkgo and SCYN. Our method is also faster and more scalable than CHISEL, 

which requires haplotype phasing and multiple iterations. Overall, these results suggest that 

ScovalNN is a robust and reliable method for CNV detection from single-cell data. 

One limitation of our study is that we only evaluated our method on simulated and real 

datasets with conservative and partial ground truth. While our method performed well on these 

datasets, it is possible that its performance may vary on other datasets with different 

characteristics. Further studies are needed to evaluate the performance of our method on other 

datasets with complete ground truth.  

Another limitation is that our method only uses sequencing coverage and allelic ratio 

information as features for CNV calling. While these features are informative, there may be other 

types of data that could improve the performance of our method. For example, integrating gene 

expression or epigenetic data could provide additional information for CNV calling. Future 

studies could explore the potential of incorporating these types of data into our method. 

In terms of future directions, there are several avenues for further research. One direction 

could be to extend our method to call CNV from single-cell ATAC data. Single-cell ATAC-seq 

(Assay for Transposase-Accessible Chromatin using sequencing) is a powerful technique for 

profiling chromatin accessibility at single-cell resolution. By analyzing the patterns of chromatin 

accessibility in single cells, it may be possible to infer the presence of CNVs. Developing 
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methods for calling CNVs from single-cell ATAC data could provide a complementary approach 

to our current method and could improve the accuracy and sensitivity of CNV calling. 

Another direction could be to extend our method to call CNV from single-cell long-read 

sequencing data. Long-read sequencing technologies, such as those developed by PacBio and 

Oxford Nanopore, can generate reads that are tens of kilobases in length. These long reads can 

span complex genomic regions and can provide more accurate information about the structure of 

the genome. Developing methods for calling CNVs from single-cell long-read sequencing data 

could provide a higher-resolution view of genomic variation in single cells and could improve 

our ability to detect complex CNVs. 

In addition, we can generalize our method to the single-cell sequencing data generated 

from other sequencing technologies. Our model is currently trained on single-cell sequencing 

data generated by 10X Genomics. However, other WGA methods or sequencing techniques may 

generate data with different characteristics, such as different sequencing error rates, library 

preparation protocols, and read lengths. By adapting our method to these different sequencing 

technologies, it may be possible to develop new tools for CNV calling that are tailored to 

specific datasets. This could further improve the accuracy and sensitivity of CNV calling and 

provide a more comprehensive view of genomic variation in single cells. Overall, the potential 

for our method to be generalized to other sequencing technologies highlights the importance of 

developing flexible and adaptable deep learning-based tools for single-cell genomics. 

In conclusion, our study presents a powerful and efficient tool for single-cell CNV calling 

based on deep learning. Our method outperforms several existing tools and has several 

advantages, such as the ability to detect CN-LOH and its scalability. We believe that our method 

will be a valuable addition to the toolkit of researchers working on single-cell genomics. 
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Figures 
 

 
Figure 4.1 Overview of the ScovalNN framework. 
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Figure 4.2 Training loss and validation loss during the training of ScovalNN. 
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Figure 4.3 CNV level performance comparison of ScovalNN, Ginkgo, SCYN and CHISEL on 
the simulated data set. 

(A) All types of CNVs. (B) Homozygous deletion. (C) Heterozygous deletion. (D) Duplication. 
(E) CN-LOH. 
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Figure 4.4 Heatmaps of the confusion matrices (log scale) for ScovalNN prediction on the 
window level on simulation data and real data sets. 

The ground truth of the simulation set is the simulated CNV profile. The ground truth of the real 
data set is the very conservative CNV call set described in Chapter 2, and it does not include 
duplications and CN-LOHs. 
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Figure 4.5 Median absolute log2 ratio vs. median read depth ratio for each predicted CNV on the 
real data set. 
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C 

 
Figure 4.6 Example chromosomes comparing copy number profiles from Ginkgo, SCOVAL and 
ScovalNN. 
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Tables 

Table 4.1 Comparison of precision and recall on the CNV level of the before and after filtering 
ScovalNN CNV calls for both simulation and real data sets. 
  

Precision Recall F1 score 

Simulation data Before filtering 0.1423 0.7104 0.2371 

After filtering 0.7300 0.7998 0.7633 

Real data Before filtering 0.0808 0.3199 0.1290 

After filtering 0.7618 0.7363 0.7489 
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Table 4.2 Window level performance of after filtering SocvalNN CNV calls for the simulation 
data set. 
 

Precision Recall F1 score Specificity 

Homo-DEL(CN=0) 0.9898 0.9462 0.9675 0.9999 

Het-DEL(CN=1) 0.9912 0.9256 0.9573 0.9999 

Normal (CN=2) 0.9989 0.9989 0.9989 0.9369 

DUP(CN > 2) 0.7390 0.9158 0.8180 0.9991 

CN-LOH(CN=2) 0.5421 0.8811 0.6712 0.9998 

Macro average 0.8522 0.9335 0.8826 0.9871 
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Table 4.3 Window level performance of after filtering SocvalNN CNV calls for the real data set 
(ground truth does not include duplication and CN-LOH). 
 

Precision Recall F1 score Specificity 

Homo-DEL(CN=0) 0.5886 0.8567 0.6978 0.9999 

Het-DEL(CN=1) 0.9262 0.8711  0.8978 0.9997 

Normal (CN=2) 0.9994 0.9987 0.9991 0.8788 

DUP(CN > 2) 0 0 0 0.9991 

CN-LOH(CN=2) 0 0 0 0.9999 

Macro average 0.5029 0.5453 0.5189 0.9755 
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Chapter 5 Conclusion 

 

5.1 Overview 

Somatic mutations are genetic variations that occur in a subset of cells during an 

individual's lifespan, accumulating during the developmental and aging processes. While these 

mutations have long been associated with cancer, recent studies suggest their involvement in a 

range of non-cancer diseases, such as neurological diseases. High-throughput sequencing 

technology has made it possible to profile these mutations genome-wide; however, detecting 

somatic mutations from bulk tissue samples poses significant challenges as they occur only in a 

subset of cells. An alternative approach is to sequence single-cell genomes after whole-genome 

amplification, but this method presents technical challenges due to error-prone and uneven 

genome amplification. To overcome these challenges, many bioinformatic tools have been 

developed. In this dissertation, we discuss our latest advancements in somatic copy number 

variation (CNV) detection using single-cell DNA sequencing and the challenges that still need to 

be addressed. 

In this dissertation, I aimed to develop and evaluate novel computational methods for 

detecting somatic CNVs using single-cell DNA sequencing data. Somatic CNVs can have crucial 

implications for various biological mechanisms and diseases. Single-cell DNA sequencing is a 

powerful technique that can reveal the presence and extent of somatic CNVs at the resolution of 

individual cells. Nonetheless, the analysis of somatic CNVs through single-cell DNA sequencing 

data presents significant challenges, including inadequate sequencing coverage, high noise, 
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amplification bias, and artifacts. Therefore, the development of robust and precise methodologies 

capable of overcoming these challenges and accurately identifying somatic CNVs from single-

cell DNA sequencing data is urgently required. 

In this dissertation, I present three main contributions that advance the state-of-the-art of 

somatic CNV detection using single-cell DNA sequencing data. First, I developed SCOVAL, a 

method that integrates read-depth and phased loss-of-heterozygosity information to identify 

somatic CNVs in single cells. I applied SCOVAL to 2,125 frontal cortical neurons from a 

neurotypical human brain and discovered 226 CNV neurons, including a novel class of neurons 

with complex karyotypes characterized by whole or substantial losses of multiple chromosomes. 

Second, I developed a single-cell CNV simulator that can generate realistic single-cell DNA 

sequencing data with predefined somatic CNVs. I used the simulator to benchmark existing tools 

for somatic CNV detection and to provide a ground truth dataset for the development and 

evaluation of new methods. Third, I developed a state-of-the-art deep learning-based approach, 

ScovalNN, which leverages Long short-term memory (LSTM) neural networks for identifying 

somatic CNVs from single-cell DNA sequencing data. The performance of ScovalNN was 

rigorously assessed on both simulated and real-world data, exhibiting superior results compared 

to existing methodologies across various performance metrics. 

The methods and results presented in this dissertation provide new insights into the 

occurrence and characteristics of somatic CNVs in human neurons and other cell types. They 

also demonstrate the potential of single-cell DNA sequencing and computational analysis for 

uncovering the genomic diversity and complexity of somatic cells. 
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5.2 Limitations and challenges 

In this dissertation, we investigated the genomic architecture of neuronal cells and 

developed new methods for detecting copy number variations (CNVs) at the single-cell level. 

While the findings and tools presented in this study offer promising results, there are still 

limitations and challenges that need to be addressed in future studies. 

In Chapter 2, our approach identified 1,957 CNVs from 226 CNV neurons, as well as a 

class of CNV neurons with complex karyotypes containing whole or substantial losses on 

multiple chromosomes. Moreover, we found that CNV location appears to be nonrandom and 

recurrent regions of neuronal genome rearrangement containing fewer, but longer, genes. 

However, this research has some limitations that need to be addressed in future studies. First, we 

did not use any orthogonal methods to validate the existence of CNV in our data. Therefore, 

though our simulation experiments in Chapter 3 suggest that false positives will be less common, 

it is still possible that some of the CNV signals we detected are false positives or artifacts. 

Second, we only analyzed the data from neurons of a single individual, which may not be 

representative of the whole population of neurons in the brain region of interest. To draw a more 

general and robust conclusion, we need to repeat the experiments in multiple samples and 

compare their CNV patterns across different conditions. 

In Chapter 3, we developed a novel sampling-based single-cell CNV simulator that can 

generate realistic synthetic data for assessing the performance of single-cell CNV callers. It 

shows that the simulator can produce realistic data that mimics the characteristics of real scDNA-

seq data in terms of coverage distribution, allelic ratio and noise level. It also shows that the 

simulator can reveal the strengths and weaknesses of different single-cell CNV callers and help 

identify areas for improvement. Although our simulator can overcome the limitations in the fully 
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synthetic simulators by leveraging existing data as a source of information and variation, it still 

has the bias from the single individual as the only source sample, including the feature 

distributions, technical noise patterns, etc. One possible way to overcome the limitation in the 

future is to use multiple individuals with different genetic backgrounds to create a more diverse 

and representative source dataset. Additionally, incorporating more comprehensive technical 

noise patterns and feature distributions from different sequencing technologies may further 

enhance the simulator's accuracy and reduce any potential bias. 

In Chapter 4, we proposed ScovalNN, a deep learning based single-cell CNV caller. 

ScovalNN can leverage both read coverage and allelic ratio information to detect different types 

of CNVs, including copy-neutral loss of heterozygosity (CN-LOH), which is a challenge for 

some other tools. Our results show that ScovalNN outperforms other tools on both CNV and 

window level. However, there are several limitations for this tool. We only consider the 

sequencing coverage and allelic ratio as the input features. It may improve the performance if we 

add other features such as epigenetic data. In addition, we only evaluated it on the simulated 

dataset and the real dataset with conservative and partial ground truth, which may not be 

representative of all datasets.  

Overall, further validation and analysis across multiple samples and datasets, as well as 

incorporation of additional features, will be necessary to fully understand the genomic landscape 

of neuronal cells and improve the accuracy of single-cell CNV detection tools. 

 

5.3 Implications for neuropsychiatric disease 

The findings of my dissertation have important implications for our understanding of the 

role of somatic CNVs in neuropsychiatric diseases. In particular, my work can shed light on how 
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single-cell DNA sequencing can be used to investigate the genomic diversity and complexity of 

somatic cells in the context of neurological diseases. 

Neuropsychiatric disorders, such as autism spectrum disorder (ASD), schizophrenia, and 

bipolar disorder, are complex and heterogeneous conditions that affect brain function and 

behavior. The genetic basis of these disorders is not fully understood, but it is known that some 

individuals carry large germline CNVs or microdeletions that disrupt genes involved in neuronal 

development, synaptic transmission, or neuroplasticity (Cook Jr and Scherer, 2008; Fanciulli et 

al., 2010). These germline variants can affect brain structure and connectivity, and increase the 

risk for developing neuropsychiatric symptoms (Nakatochi et al., 2021). However, not all 

individuals with germline CNVs or microdeletions develop neuropsychiatric disorders, 

suggesting that other factors may modulate the phenotypic outcome (Kirov, 2015). One of these 

factors could be the presence of somatic mutations that arise during brain development or later in 

life, resulting in mosaicism. Somatic mutations can act as a second hit that worsens the effects of 

the germline variant, or confers additional risk for developing neuropsychiatric disorders (Poduri 

et al., 2013). 

One type of somatic mutation that has been associated with various diseases is the 

double-hit somatic variant, which involves the simultaneous occurrence of two or more 

mutations in a single cell (Knudson, 1971). Double-hit somatic variants can have a greater 

impact on gene expression or function than single-hit variants, and may lead to more severe 

phenotypes (Pelorosso et al., 2019; Ye et al., 2019; Zeng et al., 2021). Single-cell DNA 

sequencing is a powerful technique that can detect and characterize these double-hit somatic 

variants, as well as other types of somatic mutations, at high resolution and sensitivity (Bizzotto 

and Walsh, 2022). By applying single-cell DNA sequencing to brain tissue samples from 
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individuals with neuropsychiatric disorders, we can investigate the role of double-hit somatic 

variants in these conditions, and to elucidate the genetic and molecular mechanisms underlying 

their development. My dissertation provides new insights into the contribution of somatic CNVs 

to neuropsychiatric disorders, and will demonstrate the utility of single-cell DNA sequencing for 

studying the genomic diversity and complexity of somatic cells in the brain. 

 

5.4 Future directions 

This dissertation presented three novel methods, SCOVAL, single-cell CNV simulator 

and ScovalNN, for detection and simulation of somatic CNVs from single-cell DNA sequencing 

data. We applied our methods to a brain tissue sample from a neurotypical individual and 

revealed the complex and diverse CNV landscape of the human brain. However, there are still 

many directions for future research. 

One direction is to extend our analysis to other samples, both neurotypical and disease-

related. By comparing the CNV profiles of different samples, we could identify the CNVs that 

are associated with neurological disorders such as autism, schizophrenia, and Alzheimer's 

disease. We could also investigate how the CNVs affect the gene expression and function of 

different cell types in the brain. Furthermore, we could use the new data to improve our single-

cell CNV simulator and generate more realistic and diverse training data for ScovalNN. This 

would enhance the generalizability and robustness of our deep learning model across different 

samples and sequencing platforms. 

Another direction is to adapt our methods to long-read sequencing data. Our methods are 

designed for short-read sequencing data and cannot be directly applied to long-read data.  Long-

read sequencing technologies have become increasingly popular as they can capture the long-
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range information to resolve complex structural variations, and do not need whole genome 

amplification. One potential technology that could enable the direct sequencing of long 

molecules without whole genome amplification is Nanopore sequencing (Deamer et al., 2016; 

Jain et al., 2016; Lebrigand et al., 2020; Wen and Tang, 2022). Nanopore sequencing utilizes 

nanopores embedded in a membrane to directly read DNA molecules as they pass through the 

pore. This technology has the advantage of being able to sequence long DNA molecules without 

the need for amplification, allowing for more accurate detection of CNVs and other genetic 

variations. Furthermore, the development of new algorithms and tools specifically designed for 

analyzing Nanopore sequencing data could facilitate the identification and genotyping of CNVs 

and other genomic alterations with greater accuracy and efficiency. Overall, the utilization of 

Nanopore sequencing coupled with new analysis tools and algorithms holds great potential for 

advancing the field of single-cell CNV detection and genomic research. 

The other promising direction for future research is to investigate the simultaneous 

measurement of DNA and RNA in the same single cell (Zhu et al., 2020). Current technologies 

such as single-cell ATAC-seq and RNA-seq can provide valuable information on the chromatin 

accessibility and gene expression of individual cells, but they do not provide direct information 

on the relationship between genome sequencing and transcriptome sequencing within the same 

cell. However, recent advances in single-cell multiomics technologies offer the possibility of 

profiling both DNA and RNA from the same cell, providing a more comprehensive view of the 

genomic and transcriptomic landscapes of individual cells. One such technology that holds 

promise for this purpose is single-cell combinatorial indexing of chromatin accessibility and 

gene expression (sci-CAR), which uses combinatorial barcoding to simultaneously profile 

chromatin accessibility and gene expression from the same single cell (Cao et al., 2018). In 
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addition, Hou et al. developed scTrio-seq, which can be used to simultaneously analyze the 

genomic copy-number variations (CNVs), DNA methylome, and transcriptome of an individual 

mammalian cell (Hou et al., 2016).  

In summary, this dissertation made significant contributions to the field of single-cell 

CNV analysis, but there are still many challenges and opportunities for future work. We hope 

that our methods will facilitate the discovery of novel insights into the genetic architecture and 

function of the human brain. 
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