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Abstract

Carbon dioxide (CO2) is the single most important greenhouse gas contributor to increases in

global temperatures. Since 1850, humans have emitted approximately 700 Gt of carbon. About

half of that CO2 has remained in the atmosphere with the rest being stored in the land and ocean.

While global human emissions of CO2 from fossil fuels are well-understood, regional-scale ex-

changes between the land and atmosphere and ocean and atmosphere remain highly uncertain and

are a very active area of study. Inferences of carbon fluxes can be made by modeling carbon cycle

processes, statistical upscaling of local fluxes, human emissions, or accurately partitioning drivers

of spatiotemporal changes in atmospheric CO2 observations.

The launch of space-based CO2 monitoring systems in the 21st century has provided unprece-

dented global coverage of CO2 observations. Instruments, such as NASA’s Orbiting Carbon

Observatory-2 (OCO-2), which launched in 2014, provide approximately 1 million total column-

averaged CO2 (XCO2) soundings per day at a horizontal spatial resolution of 1.29 × 2.25 km2,

with a repeat cycle of every 16 days. OCO-3, which was installed on the International Space Sta-

tion in 2019 provides the first space-based XCO2 observations at different times of day, potentially

allowing for the direct observation of the diurnal cycle of XCO2 from space.

This thesis leverages the abundance of XCO2 data available to quantify a subseasonal variance

budget of XCO2. At these timescales, we expect XCO2 to vary as a function of local fluxes and ad-

vection via atmospheric transport. Here, we first quantify climatological variations in XCO2 driven

by fine mesoscale atmospheric transport, larger synoptic scale atmospheric transport, and local di-

urnal fluxes using ground-based XCO2 observations from the Total Carbon Column Observing

Network (TCCON). We then use the one dimensional tracer conservation equation to provide a

statistical framework for estimating along-track mesoscale variations of XCO2 detected by OCO-2
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data. We also provide a framework to detect the diurnal cycle of XCO2 from space-based missions,

such as OCO-3.

This research contributes an early attempt at quantifying ”XCO2 meteorology,” analogous to

our understanding of subseasonal variations of atmospheric water vapor. These studies provide

alternative methods to quantify transport-driven variability and random and spatially-coherent er-

rors in XCO2 retrievals, which can be applied to inverse models or evaluating the performance

retrieval algorithms. Most importantly, these studies move us closer to intuitively quantifying the

local-to-regional scale fluxes globally using XCO2 observations.
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Chapter 1

Introduction

1.1 Introduction

1.1.1 CO2 contributions to climate change

The greenhouse effect plays a critical role in governing global surface temperatures and sustaining

contemporary life on this planet. The greenhouse effect refers to the process in which trace gasses

in the atmosphere – such as water vapor (H2O), carbon dioxide (CO2), methane (CH4), nitrous

oxide (N2O), nitrogen oxides (NOx), among others – absorb outgoing longwave thermal radiation

from the earth’s surface and emits that radiation back to the surface. Without these greenhouse

gasses, the earth’s climate would be much colder with an average surface temperature of around

-20ºC (0ºF), in contrast to the mean global surface temperature of 13.9ºC (57.0ºF) observed over

the 20th century (NOAA National Centers for Environmental Information, 2023). At these temper-

atures, water can exist in liquid form, yielding a large system of lakes, aquifers, rivers, and oceans

– and clouds that provide rainfall over land, transporting essential nutrients that support life.

Industrial emissions since around 1750 have continuously released greenhouse gasses into the

atmosphere, increasing their global concentrations and the strength of the greenhouse effect. In

this time period, atmospheric CO2 concentrations have increased from approximately 275 ppm in

1750 to over 420 ppm today (Keeling et al, 2001). The United Nations Intergovernmental Panel on

Climate Change’s 2021 Physical Science Basis report (IPCC, 2021) includes a time series of both

observed and simulated changes in global surface temperatures from 1850 to 2019 (Figure 1.1).
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Figure 1.1: (From the IPCC, 2021) Observed global surface temperature changes from 1850-2019
(solid black line) compared to simulated temperatures based on human-induced forcing, such as
greenhouse gasses (red shading) and aerosols (blue shading), natural causes (green shading), and
the combined effects of human and natural causes (gray shading).

The simulated changes in temperature can be broken down and attributed to warming greenhouse

gasses, net cooling from the release of aerosols, and natural causes. Only by including the net

effects of human activities (warming from greenhouse gas emissions and cooling from aerosols)

are simulations able to replicate observed warming in temperatures. In the absence of human

activities, natural causes do not provide any appreciable long-term warming trends.

When partitioning warming among individual greenhouse gas species and aerosols, CO2 is the

largest contributor to observed temperature increases (Figure 1.2; IPCC, 2021). CO2 is responsible

for about 2 W m-2 approximately 1ºC (within a range of 0.5 to 1.5ºC) of warming from 1750 to

2019. The second largest contributor to warming, CH4, only adds approximately 0.5ºC of warming

in the same time period.

Annual CO2 growth rates are overwhelmingly driven by fossil fuel emissions, with a secondary

source from land use change (Figure 1.3; Friedlingstein et al, 2022). These anthropogenic sources

of CO2 are then distributed between the land, ocean, and atmospheric reservoirs. The key point
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Figure 1.2: From IPCC (2021): (a) Effective radiative forcing and (b) changes in Global mean
Surface Atmospheric Temperatures (GSAT) from 1750 to 2019 attributed to individual greenhouse
gas species and aerosols.

here is that, despite interannual variability, the land and oceans each take up around 25 percent of

emissions each year. The rest – approximately half – remains in the atmosphere contributing to

global warming.

The longest continuous observations of CO2 have been made at the Mauna Loa Observatory

in Hawaii. Figure 1.4, widely known as the “Keeling curve,” shows that atmospheric CO2 con-

centrations have steadily increased from roughly 315 ppm in 1958 to approximately 420 ppm in

2023 (Keeling and Keeling, 2017). Prior to the industrial era in 1750, CO2 concentrations were

around 280 ppm (USGCRP, 2018). The last time CO2 concentrations exceeded 400 ppm was ap-

proximately 10 to 20 million years ago; however, the average annual CO2 growth rate of roughly

2 ppm per year is unprecedented in global records (IPCC, 2021). This underscores both the role

human activity has contributed to increases, as well as CO2’s role in governing global surface

temperatures.

1.1.2 The global carbon budget

Predicting how much CO2 ends up in the atmosphere depends on both constraining carbon fluxes

and an accurate representation of global carbon stocks. The global carbon budget contextualizes
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Figure 1.3: (Friedlingstein et al, 2022) Annual carbon emissions and their partitioning between the
atmosphere, land, and ocean from 1850 to 2021.
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Figure 1.4: Carbon dioxide concentrations observed at the Mauna Loa Observatory from 1958 to
2023. The documentation for these measurements are described in Keeling and Keeling (2017).

global carbon stocks in the land, oceans, and atmosphere, as well as the natural exchanges be-

tween the three reservoirs and emissions of fossil fuels (Friedlingstein et al, 2022; Figure 1.5).

The overwhelming majority of carbon on earth is stored in the lithosphere, the majority of carbon

available for fast cycling in the modern carbon cycle is stored in the ocean and is on the order of

40,000 GtC. By comparison, the earth’s atmosphere only stores a small fraction of what is in the

land and oceans: 875 GtC. At annual timescales, approximately 25 percent of anthropogenic emis-

sions have been historically stored in the oceans, with another 25 percent stored in the biosphere,

with roughly just 50 percent remaining in the atmosphere (Figure 1.3; Friedlingstein et al, 2022).

The primary source of anthropogenic CO2 emissions to date, fossil fuels such as gas reserves (115

GtC), oil reserves (230 GtC), and coal reserves (230 GtC) store a cumulative 905 GtC (Figure

1.3; Friedlingstein et al, 2022). Still, atmospheric carbon sources, such as vegetation (450 GtC),

soils (1700 GtC), and permafrost (1400 GtC) store 3550 GtC altogether, more than 3 times the

cumulative carbon available from fossil fuels worldwide (Figure 1.3; Friedlingstein et al, 2022).

In this thesis, we focus on contemporary carbon exchanges that occur at much smaller time

scales, such as within a day, as well as the processes that contribute to inferring these diurnal
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Figure 1.5: From Friedlingstein et al (2022): The Global Carbon Budget in 2021. Land-ocean-
atmosphere fluxes are denoted by arrows. Upward (downward) pointing arrows represent the av-
erage carbon fluxes into the atmosphere (into the ocean or land reservoirs) each year from 2012 to
2021. Total carbon stocks by reservoir are denoted by circles. Note that 1 GtC is equal to 1 Pg of
Carbon (PgC).
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exchanges. These fluxes, and their response to environmental forcing, provide key insights to

resolving uncertainties in global carbon uptake projections in earth system models (ESMs) (Bonan

and Doney, 2018). Friedlingstein et al (2022) reports yearly carbon exchanges indicated by the

arrows shown in Figure 1.5. Here, the net increase of carbon in the atmosphere is balanced by

anthropogenic emissions and the biosphere and ocean sinks is approximately 5.2 GtC per year.

Note that 1 GtC per year added to the atmosphere translates to an increase of CO2 concentrations

of roughly 0.5 ppm per year. Thus, the increase in atmospheric CO2 translates to an approximate

increase of around 2.6 ppm each year in this time period. However, even with these observations,

there is still a budget imbalance of 0.3 GtC per year. This imbalance at annual timescales is more

profoundly highlighted by the mismatch between sinks and sources in Figure 1.3, suggesting that

the carbon budget remains to be closed.

1.1.3 Observing CO2

1.1.3.1 In situ CO2 observations

Sporadic samples of atmospheric CO2 observations have been cited in academic literature dating

back to Krogh (1904) through Glueckauf (1951). These first observations showed increases in

CO2 concentrations that could be attributed to the combustion of fossil fuels as early as Callen-

dar (1938), Revelle and Suess (1957), Bolin and Erickson (1959). As described above, the first

continuous measurements of in situ CO2 began in 1958 at the Mauna Loa Observatory in Hawaii

by Charles David Keeling. These measurements revealed the seasonal cycle of CO2, in which en-

hanced drawdown was observed in the northern hemisphere during the summer, and a net release

in the winter (Keeling, 1960). Keeling (1960) also included continuous measurements in Antarc-

tica and California, in addition to Hawaii. These observations also showed for the first time in the

magnitude of the seasonal cycle of CO2 as a function of latitude, and the phasing of the seasonal

cycle by hemisphere. Keeling’s studies motivated broader observational networks to connect spa-

tiotemporal changes of atmospheric CO2 to our understanding of the contemporary global carbon

cycle.
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Most early studies of CO2 primarily focused on exchanges between the ocean and atmosphere,

as well anthropogenic emissions (Dingle, 1954; Revelle and Suess, 1957; Bolin, 1960; Bolin and

Keeling, 1963; Broecker et al, 1979). Land fluxes to this point were considered negligible (Broeker

at al, 1979). It was with a denser network of observations over land and oceans with the advent

of NOAA’s Geophysical Monitoring for Climatic Change (GMCC) program and observed partial

pressures of CO2 measurements over oceans that Tans et al (1990) revealed that oceanic CO2 fluxes

were too small to be the only sink of anthropogenic CO2. This profound finding revealed how large

of an imprint carbon fluxes within terrestrial ecosystems on CO2 observations throughout the year

and punctuated how we cannot ignore terrestrial fluxes if we wish to understand the contemporary

global carbon cycle. The increase in spatial and temporal atmospheric CO2 observations revealed

the necessity for increasingly sophisticated methods for inferring global carbon fluxes, such as

inverse models, to account for other drivers of variability of CO2, such as atmospheric transport

(Enting, 2002).

The network of in situ CO2 observations has continued to expand into the present day (Crisp

et al, 2022; Figure 1.6). In situ observations are routinely made over land, by sea routes and by

aircrafts. However, the greatest density of CO2 observations are still made in North America and

Europe (Crisp et al, 2022; Figure 1.6). The gaps of regular in situ measurements over the tropics

and boreal regions has contributed to the significant uncertainty in regional land fluxes (Gurney et

al, 2002; Basu et al, 2018).

1.1.3.2 Space-based CO2 observations

Satellites provide an unprecedented opportunity to fill in observational gaps with global, regular

observations of CO2. Several greenhouse gas satellites detect CO2 throughout the entire atmo-

spheric column, which is more commonly referred to as total column-averaged CO2 (henceforth

denoted as XCO2) (Pan et al, 2022). XCO2 can be interpreted as the vertical integration of CO2

throughout the depth of the atmospheric column. Many of the early instruments retrieved CO2 in

the thermal infrared (TIR) spectra, which is most sensitive to CO2 in the upper troposphere and
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Figure 1.6: From Crisp et al, (2022) Global network of in situ CO2 observations in 2022.

lower stratosphere and are not particularly sensitive to surface CO2 (Pan et al, 2022). Unlike the

TIR-observing instruments, observations in the near infrared spectra can detect XCO2 through the

entire column, including sensitivity to surface CO2 (Chevalier et al, 2014). Characterizing subsea-

sonal variations of XCO2 that occur on timescales ranging from within-day to as much as 21 days

is the focus of this dissertation. With this information, we expect that we can more directly infer

the magnitude of local carbon fluxes globally using the increasing wealth and accuracy of available

XCO2 data.

The earliest satellites equipped with the capacity to monitor CO2 were launched in 2002 (Figure

1.7; Pan et al, 2022). Several early satellites, such as those onboard NASA’s Aqua, Aura, and Eu-

ropean Space Agency’s (ESA) Metop-A (Meteorological operational satellite - A) satellites, used

CO2 detection as ancillary products. From the order of satellites listed in the previous sentence, the

CO2-monitoring instruments included AIRS (Atmospheric Infrared Sounder), TES (Tropospheric

Emission Spectrometer), and IASI (Infrared Atmospheric Sounding Interferometer), respectively

(Pan et al, 2022). CO2 retrievals from these instruments were primarily sensitive to CO2 in the
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mid-troposphere and did not directly detect the imprint of local surface fluxes (Figure 1.7; Pan et

al, 2022). While the SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric

Cartography) instrument aboard the Envisat (Environmental Satellite) satellite could provide early

retrievals of XCO2, these retrievals are only accurate to 14 ppm, which is quite impractical for

inferences of local fluxes (Figure 1.7; Pan et al, 2022).

The first satellites specifically designed to detect XCO2 were Japanese Aerospace Exploration

Agency’s (JAXA) Greenhouse Gas Observing Satellite (GOSAT) (Yokota et al, 2009) and NASA’s

Orbiting Carbon Observatory (OCO; Crisp et al, 2004). These instruments leverage the NIR por-

tion of the solar spectrum and therefore provide sensitivity close to the surface, where fluxes occur.

GOSAT launched successfully in 2009 and began retrieving high-density XCO2 and XCH4 sound-

ings at horizontal resolutions of 10 x 10 km2 with a 3-day repeat cycle beginning in 2009 (Yokota

et al, 2009). Unfortunately, the first OCO satellite failed to reach orbit due to a catastrophic mal-

function in the launch vehicle during the same year(Eldering et al, 2017).

Most of our analysis is focused on the OCO-2 and OCO-3 datasets. OCO-2 launched in 2014 as

a replacement to the original OCO satellite (Eldering et al, 2017). The OCO-2 satellite is equipped

with three grating spectrometers that measure reflected sunlight in three narrow spectral bands

centered around 0.76 µm for strong oxygen (O2) absorption, 1.6 µm for weak CO2 absorption, and

2.1 µm for strong CO2 absorption with the highest spatial resolution to date of 1.29 × 2.25 km2

(Crisp et al, 2008). This results in an average of approximately 1 million OCO-2 soundings per

day that are accurate to approximately 1 ppm (Eldering et al, 2017). All of these instruments sit

aboard satellites that have sun-synchronous polar-orbiting patterns that would allow for continuous

observations at the same time of day globally. Other CO2 monitoring satellites that have launched

include China’s TANSAT, which launched in 2016, and JAXA’s GOSAT-2, which launched in 2018

(Figure 1.7; Pan et al, 2022).

The OCO-3 instrument is the first XCO2-monitoring instrument that collects soundings through

variable times of day from a space-based platform (Eldering et al, 2019). The OCO-3 payload,

which has nearly identical design specifications as the OCO-2 instrument, was installed in the
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Figure 1.7: From Pan et al. (2020): “The launching timeline of satellites for CO2 detection includ-
ing scheduled satellite plans. (a)&(b) The accuracies, spatial resolutions and repeating cycles of
current and previous CO2 satellites (XCO2 total column measurement). Among current satellites,
OCO-2, OCO-3 and GOSAT-2 can provide relatively high detection accuracy. OCO-2, OCO-3 and
TANSAT can detect kilometer level emission. GOSAT and GOSAT-2 can provide relatively fre-
quent detection.” Note: Future ASCENDS, MicroCarb, and GeoCarb missions have been canceled
since the publishing of Pan et al. (2020).

International Space Station (ISS) in 2019 (Eldering et al, 2019). Since the ISS orbits in a precessing

orbital pattern, overpasses occur at various times of day with no consistent repeat cycle (Eldering

et al, 2019).

The studies in this dissertation only focus on OCO-2 and OCO-3 space-based and TCCON

ground-based data. Additional details regarding specifications of these observing systems are de-

scribed in greater depth in the subsequent chapters.

1.1.3.3 Total Carbon Column Observing Network (TCCON)

While space-based observations provide a high density of XCO2 observations, these observing

systems combined still provide sparse temporal observations. These temporal gaps are partially

filled by ground-based networks that collect XCO2. One such network that is heavily used in this
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Figure 1.8: A map of operational, future, and previous Total Carbon Column Observing Network
(TCCON) sites. https://tccondata.org/

dissertation is the Total Carbon Column Observation Network (TCCON; Wunch et al, 2011). TC-

CON contains a network of ground-based Fourier Transform Spectrometers measure direct solar

absorption spectra in the near-infrared to measure total column-averaged dry air mole fractions of

atmospheric trace gasses, including CO2, CH4, N2O, CO, H2O, and HDO (Wunch et al. 2011a).

There are TCCON sites spread across the planet with the greatest density of sites in North America,

Europe, and eastern Asia (Figure 1.8). The oldest TCCON site is located in Park Falls, Wisconsin,

which has been in nearly continuous operation since 2004 (Washenfelder et al, 2006).

TCCON provides ground-based XCO2 soundings at a repeat cycle of approximately 2 minutes

throughout the daylight hours in sunny to mostly sunny conditions across several sites globally and

is also used for validation for OCO (Wunch et al, 2011; 2017) and GOSAT (Parker et al, 2011;
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Cogan et al, 2012; Yoshida et al, 2013; Kulawik et al, 2016) soundings. The longevity, fidelity,

and high temporal resolution of XCO2 data collected in the TCCON network has also provided

key insights into the behavior of XCO2, such as sensitivity to atmospheric transport (Keppel-Aleks

et al, 2012; Torres et al, 2019), diurnal fluxes (Yang et al, 2007; Torres et al, 2019), and seasonal

exchanges (Basu et al, 2011; Messerschmidt et al, 2012). In this thesis, we use TCCON data to

partition the sources and quantify the magnitude of variability of XCO2 across diurnal to synoptic-

scale time scales.

1.1.4 Inferring carbon fluxes

Understanding the biogeochemical processes that govern global carbon uptake is critical for re-

ducing outstanding uncertainties in climate model projections through 2100 (IPCC, 2021). In

Bonan and Doney (2018), model uncertainty in Earth System Models (ESMs) is largely driven by

uncertainty in representing biogeochemical processes. Through 2100, model uncertainty repre-

sents about 10 percent of uncertainty in simulated carbon uptake over the oceans, but roughly 80

percent of the uncertainty over land (Figure 1.9; Bonan and Doney, 2018). While uncertainty in an-

thropogenic emission scenarios dominate ocean uptake uncertainty, uncertainty in biogeochemical

processes become increasingly important at regional and biome scales (Bonan and Doney, 2018).

In order to reduce model uncertainty in carbon uptake, we have to improve our understanding of

the biogeochemical processes that govern contemporary carbon fluxes and how these processes

respond to changes in climate forcing through 2100 (Bonan and Doney, 2018). Providing con-

straints to global carbon fluxes at increasing spatiotemporal resolution is a key way to increasing

our understanding of the natural processes that govern model uncertainty (Crisp et al, 2021).

1.1.4.1 “Bottom-up” approaches

Carbon fluxes are traditionally inferred using “bottom-up” or “top-down” approaches. While this

dissertation primarily focuses on top-down approaches, we briefly describe bottom-up approaches

here. Bottom-up data products often infer carbon fluxes by scaling up processes or statistics col-
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Figure 1.9: From Bonan and Doney (2018): “The percentage of total variance attributed to internal
variability, model uncertainty, and scenario uncertainty in projections of cumulative global carbon
uptake from 2006 to 2100 differs widely between (A) ocean and (B) land. The ocean carbon
cycle is dominated by scenario uncertainty by the middle of the century, but uncertainty in the
land carbon cycle is mostly from model structure. Data are from 12 ESMs using four different
scenarios.”
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lected at local, regional, and global levels. Statistically-based products include fossil fuel invento-

ries, such as the Emissions Database for Global Atmospheric Research (EDGAR; Muntean et al,

2018), the scaling-up of eddy covariance flux tower measurements, such as FLUXNET (Baldocchi

et al, 2001), or inferring ocean-atmosphere fluxes by scaling up measurements of partial pres-

sure of CO2 in the oceans, such as the Surface Ocean pCO2 Mapping intercomparison (SOCOM)

initiative (Rödenbeck et al, 2015).

Process-based bottom-up products include terrestrial biosphere models (TBMs) and oceanic

biogeochemical models. The accuracy of bottom-up estimates of carbon fluxes largely depend

on the accurate representation of all relevant processes and the fidelity of the statistics collected.

Intercomparison projects, such as the North American Carbon Program (NACP) regional interim

synthesis, have benchmarked an ensemble of TBMs ability to estimate carbon fluxes over North

America (Huntzinger et al, 2012). Within NACP regional interim synthesis, the discrepancies

among TBMs were so large that the models could not decipher whether North America was a

net sink or source of CO2 (Huntzinger et al, 2012). This has motivated longer-term intercom-

parison projects, such as the Multi-Scale Synthesis and Terrestrial Model Intercomparison Project

(MsTMIP) to systematically identify structural differences within member TBMs to better infer

global carbon fluxes (Figure 1.10; Hutzinger et al, 2013). Still, differences in the representation

of processes driving CO2 fluxes among TBMs are large enough that the inter-model spread of the

cumulative land sink from 1959 to 2010 varies from a net source of CO2 to a net sink of over 200

PgC per year (Figure 1.10; Huntzinger et al, 2017).

1.1.4.2 “Top-down” approaches

An alternative to bottom-up methods are top-down approaches, which are heavily referenced

throughout the remainder of this dissertation. Top-down methods are generally more agnostic to

processes that govern carbon fluxes and are more focused on spatiotemporal quantification of mass

exchange between the atmosphere and the surface. Top-down methods infer carbon fluxes from

spatiotemporal changes in CO2 observations. The earliest top-down model inferred CO2 fluxes at

15



Figure 1.10: The cumulative net land carbon partitioned by climate forcing, land-cover change,
atmospheric CO2, nitrogen, and cumulative net land uptake/release among (a.) 12 TBMs and (b.)
by region (Huntzinger et al, 2017). ”
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the hemispheric scale, which crudely concluded the tropical oceans as a net source of CO2 (Bolin

and Keeling, 1963). While the actual magnitude of the CO2 fluxes may have been inaccurate, this

paper provided a robust roadmap for using atmospheric CO2 observations to infer carbon fluxes

(Broeker et al, 1979; Keeling et al, 1989; Tans et al, 1990).

The most common top-down method involves using inverse models, which are incrementally

more robust to errors in observations, atmospheric transport, and other proxies (Enting et al, 1995).

As an illustrative example of inverse models, a relatively common way to estimate CO2 fluxes uses

Bayesian least squares as a mode of posterior distribution (Enting, 2002). Here, the cost function

(J) which is minimized to estimate the value of the “true carbon flux” (x) (Equation 1.1). The

difference between CO2 observations (c) and x, which is scaled by a gain matrix (G), is weighted

against the difference between x and a priori assumptions of the carbon fluxes (z). Each term in the

cost function is weighted with inverse covariance matrices X and W, which represents uncertainty

in the measurements and a priori fluxes. G represents external factors that connect c to x, which

in the case of CO2 observations and fluxes, is often atmospheric transport. Thus, the outcome of

these models depends on which value for x minimizes J , which then provides the best estimate

of “true” carbon flux, x. The accuracy of posterior estimates depend heavily on the quality of the

observations, a priori assumptions, and accurate constraints of errors in both the observations and

assumed fluxes.

J(x) = (c − Gx)TX(c − Gx) + (x − z)TW(x − z) (1.1)

Inverse models have also long been subject to significant uncertainties in regional carbon fluxes

(Figure 1.11; Gurney et al, 2002). As shown in Equation 1.1, discrepancies among flux inversions

are a function of differing prior assumptions, sparse observations along with poorly characterized

measurement errors in observations, and errors in quantifying atmospheric transport. Misrepresen-

tations in atmospheric transport can contribute up to systemic biases of up to 1.7 GtC per year in

inverse model flux inferences (Schuh et al, 2019). Again, to compare to the Global Carbon Bud-

get, the atmosphere gains approximately 5.2 GtC per year (Friedlingstein et al, 2022). Biases in
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transport can lead to the misattribution of carbon sinks and sources over key carbon rich biomes,

such as the tropics, temperate, boreal regions, and/or oceanic sinks (Gurney et al, 2002; Stephens

et al, 2007; Schuh et al, 2019). Basu et al (2018) demonstrated that the dependence of transport on

posterior fluxes can be somewhat mitigated simply by incorporating the abundance of global XCO2

observations. Given the importance and intractability of accurately representing fine-scale atmo-

spheric transport of CO2, an overview of what is known about atmospheric transport is described

in the next section 1.1.5.

1.1.5 Atmospheric Transport

1.1.5.1 Vertical mixing and the “Rectifier Effect”

As demonstrated in section 1.1.4.2, top-down estimates of carbon fluxes heavily depend on spa-

tiotemporal variations of CO2 observations. The drivers of these spatiotemporal variations are a

combination of fluxes, human emissions, and atmospheric transport. In this section, I will discuss

the mechanisms in which atmospheric transport can drive errors in estimates of carbon fluxes, as

well as how large the imprint of atmospheric transport can be on any given observation of XCO2.

Since CO2 has an average residence time of approximately 5 to 200 years in the atmosphere

(IPCC, 2021), the vertical and horizontal atmospheric transport of CO2 happens across the large

spectrum of spatiotemporal scales (Figure 1.12). Many studies quantify transport errors by simply

running an ensemble of transport models (Baker et al, 2006; Gloor 2007; Miller et al, 2015; Schuh

et al, 2019). Overall, transport models are able to accurately resolve larger-scale atmospheric

processes, such as synoptic-scale variability and beyond, but struggle with resolving finer-scale

transport, such as mesoscale processes (Lauvaux and Davis, 2014) and vertical mixing (Denning

et al, 1994; Peters et al, 2004; Stephens et al, 2007; Schuh et al, 2019).

The reason vertical mixing between the planetary boundary layer (PBL) and free troposphere

(FT) is such a significant source of errors in flux inversions is described aptly by the “Rectifier

Effect” (Figure 1; Denning et al, 1995). The PBL describes the approximately lowest 2 km of the

atmosphere where air flows are often turbulent due to interactions with the surface. PBL variations
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Figure 1.11: “Left-hand symbols in each box are for the control inversion, right-hand symbols are
for an inversion without the background seasonal biosphere flux. Mean estimated fluxes are shown
by crosses, and include all background fluxes except fossil fuel. Positive values indicate a source
to the atmosphere. The prior flux estimates and their uncertainties are indicated by the boxes (solid
for land, dashed for ocean); the central horizontal bar indicates the prior flux estimate, and the top
and bottom of the box give the prior flux uncertainty range. The mean estimated uncertainty across
all models (the ‘within-model’ uncertainty) is indicated by the circles. The standard deviation of
the models’ estimated fluxes (the ‘between-model’ uncertainty) is indicated by the ‘error bars’.
Regions are shown in their approximate north–south and east–west relationship.” (Gurney et al,
2002)
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Figure 1.12: Space and time-scales of dynamical atmospheric processes. The source of this mate-
rial is the COMET Website at http://meted.ucar.edu/ of the University Corporation for Atmospheric
Research (UCAR), sponsored in part through cooperative agreement(s) with the National Oceanic
and Atmospheric Administration (NOAA), U.S. Department of Commerce (DOC). ©1997-2023
University Corporation for Atmospheric Research. All Rights Reserved.
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in CO2 are driven by surface fluxes as well as vertical and horizontal advection. PBL height and

convective mixing vary across all spatiotemporal scales outlined in Figure 1.12. Denning et al

(1995) demonstrate that seasonal variations in PBL height and convective mixing are strongly

correlated with fluxes over the northern mid and high-latitude regions (Denning et al, 1995; Figure

1.13). Since CO2 fluxes have minimal dependence on PBL height and mixing, this introduces

that poor characterization of the rectifier effect results in significant errors in estimates of surface

fluxes. In the warm season in the midlatitudes, advection in the PBL accounts for 60 to 70 percent

of day-to-day variability (Parazoo et al, 2008). This venting of CO2 from the PBL is commonly

known as the “Rectifier Effect.”

Poor characterization of vertical mixing is also evident when using tracers with well-constrained

fluxes (or in this case – emissions), such as sulfur hexafluoride (SF6). Peters (2004) flagged the

impact atmospheric transport errors can have on posterior flux estimates from inverse models by

modeling well-known global concentrations of SF6. Ultimately, errors in vertical mixing between

the boundary layer and free troposphere from transport models led to a 19 percent error in the

global meridional gradient of SF6 (Peters, 2004). TransCom 3, which was an intercomparison

of several inverse models, estimated carbon fluxes across 22 distinct regions using 78 global CO2

measurement sites and quantified transport errors using an ensemble of 13 transport models (Baker

et al, 2006).

Any top-down flux inference using atmospheric transport models must properly account for

vertical mixing. By improperly accounting for vertical gradients in CO2, Stephens et al (2007)

found that flux inversions can overestimate the magnitude of northern hemisphere terrestrial uptake

by over 1 PgC per year, and underestimate tropical uptake by almost 2 PgC per year (Figure 1.11),

which is quite significant compared to average global annual CO2 growth rates from 2012-2021 of

5.2 PgC per year (Friedlingstein et al, 2022). For the tropics, this flux discrepancy is large enough

to switch the region from what was considered a net source to a potentially a net sink of carbon

(Stephens et al, 2007).
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Figure 1.13: “Seasonal variations: a, of prescribed surface CO2 flux from the terrestrial biosphere
to the atmosphere, b, of simulated atmospheric mass flux due to cumulus convection at the top
of the top of the atmospheric planetary boundary layer (PBL) and c, of the simulated depth of the
atmospheric PBL. Values are area-weighted means for land points north of 28ºN, averaged for each
calendar month.” (Denning et al, 1995)
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1.1.5.2 Horizontal atmospheric transport

CO2, which is introduced into the FT from the PBL via vertical mixing, ultimately gets transported

horizontally by mesoscale, synoptic-scale, and planetary scale eddies across the mid-to-high lat-

itudes (Parazoo et al, 2011). Parazoo et al (2011) shows that the net effect of these eddies is the

meridional transport of CO2 into the high latitudes (Figure 1.14). While the bulk of CO2 varia-

tions by month are driven by surface fluxes in the mid-latitudes, monthly variations of CO2 in the

Arctic are largely attributed to meridional eddy transport from synoptic- and planetary-scale ad-

vection. These larger-eddy-driven variations are both quite pronounced in XCO2 observations and

are maximized by the magnitude of the meridional gradient of XCO2, which is maximized during

the growing season and minimized during the winter (Keppel-Aleks et al, 2011; 2012).

A clear example of horizontal advection of CO2 in the FT is shown by Keppel-Aleks et al

(2012; Figure 1.15). Here, two vertical profiles of CO2 were sampled 3 hours apart over Park

Falls, Wisconsin. CO2 in the PBL remained relatively constant. However, in the FT, CO2 varies by

about 5 ppm. Assuming the FT comprises about 70 percent of the atmospheric column, this would

result in a 3 hour change of XCO2 of approximately 3.5 ppm. For reference, a typical diurnal

change of XCO2 over Park Falls, Wisconsin during the same time of year is 1.2 ppm (Torres et al,

2019).

Large-scale horizontal advections of XCO2 has been shown that it can be approximately mod-

eled by using proxies for atmospheric transport, such as 700 mb potential temperature (Keppel-

Aleks et al, 2011; 2012). A case study during the Atmospheric Carbon and Transport - America

(ACT-America) field campaign illustrates the near perfect alignment between potential temperature

and vertical variations in CO2 in the FT during the passage of a warm and cold front (Figure 1.16;

Samaddar et al, 2021). Note that at spatial scales that are 100 km or 1 degree, the correlation be-

tween potential temperature and CO2 weakens yielding the need for alternative representations of

mesoscale and finer scale atmospheric transport (Samaddar et al, 2021). Spatially, mesoscale trans-

port can be represented using high pass filters and semivariograms (Torres et al, 2019; Mitchell et

al, 2022).
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Figure 1.14: “Column integrated seasonal CO2 budget tendencies (ppm month−1) on θe binned
into (a) high latitudes and (b) mid-latitudes. Transport by transient and stationary eddies is plotted
in blue, mean meridional transport in red, the total CO2 tendency in black, and the total surface
flux of carbon from land, ocean, and fossil fuels in green. The fossil fuel tendency is plotted as a
dashed green line. The sum of individual tendencies (red, blue and green lines) is equal to the total
tendency (black line). Error bars represent the root mean squared error.” (Parazoo et al, 2011)
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Figure 1.15: From Keppel-Aleks et al (2012): “Two profiles obtained above Park Falls on 15 July
2004 within three hours during the INTEX-NA campaign. A frontal system moved through the
region between the profiles, leading to [an approximately] 5 ppm increase in free tropospheric
CO2 between 5-9 km. The decrease in boundary layer CO2 is notably smaller.”
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Figure 1.16: From Samaddar et al (2021): “Vertical distribution of CO2 during a cold front passage.
(a) Vertical distribution (MSL) of CO2 along the transect (white line in Figure 6b) shown in Figure
6 highlighting the warm and cold sector of the front on August 4th at 18Z. The bold black line
shows the slanted structure of the front in the cold sector with lower CO2 mole fractions. (b) Time
evolution of CO2 mole fractions over the reference location (white star in Figure 6b at 40.9 N and
96.9 W) from August 3rd to August 7th 00Z. The gray regions show the terrain. The vertical black
lines in panel (b) show the period of frontal influence from August 4th 18Z to August 6th 09Z
over the reference location. The black vertical lines highlight the period of warm and cold sector
passage over the location.”
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1.1.6 Thesis Overview

In this dissertation, we attempt to partition the sources of variability of XCO2 at subseasonal

timescales. Throughout the thesis, variations in XCO2 are broadly explained in terms shown in

Equation 1.2:

XCO2 = XCO2,trend + XCO2,transport + XCO2,f luxes + ϵ (1.2)

where variations in XCO2 are driven by anthropogenic emissions (XCO2,trend), multi-scale at-

mospheric transport (XCO2,transport), multi-scale fluxes (XCO2,f luxes), and measurement errors

(ϵ). Note that Equation 1.2 neglects to mention interannual and seasonal variations in XCO2. For

simplicity in this introduction, these terms are implicitly folded into the flux and transport terms.

In the subsequent chapters, the XCO2 variance budget is partitioned into smaller subcategories.

The overarching science question addressed throughout this thesis is:

How can we use statistical analyses of XCO2 observations to partition variations of XCO2 into

component parts of atmospheric transport and local diurnal fluxes (as shown in Equation 1.1.)?

Chapter 2 includes my published work from 2019 in the Journal of Geophysical Research:

Atmospheres, entitled “A geostatistical framework for quantifying the imprint of mesoscale at-

mospheric transport on satellite trace gas retrievals” (Torres et al. 2019). In this paper, we use

semivariograms, which is a measure of along-track spatial variability, to estimate the magnitude of

fine scale variability (<250 km) of XCO2 retrievals from the OCO-2 satellite, which we attribute

primarily to mesoscale atmospheric transport. We also include preliminary work to independently

quantify sources of errors within the elements of the state vector of the XCO2 retrieval algorithm,

such as albedo and aerosol optical depth.

Chapter 3 focuses on our ability to leverage OCO-3’s precessing orbital pattern aboard the

International Space Station to make global estimates of the diurnal cycle of XCO2. Specifically, we

use TCCON observations (Wunch et al, 2011), as well as synthetic XCO2 from the 2019 version of

the CarbonTracker model (Jacobson et al., 2020), to estimate the minimum number of overpasses
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required to reasonably quantify the magnitude of the diurnal cycle of XCO2. From Torres et

al. (2019), the magnitude of the climatological diurnal cycle of XCO2 directly scales with the

magnitude of local diurnal fluxes. Thus, this research provides a potential framework for directly

inferring the magnitude of local fluxes globally using space-based observations. The manuscript

for this project is in prep with an expected submission in May 2023.

Finally, this thesis closes with a brief conclusion in Chapter 4 tying all of the research together

along with ideas for future work.
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Chapter 2

A Geostatistical Framework for Quantifying the Imprint of Mesoscale

Atmospheric Transport On Satellite Trace Gas Retrievals

This chapter has been published in the Journal for Geophysical Research: Atmospheres (see Torres

et al, 2019).

2.1 Key Points

1. We developed a framework to relate high-frequency spatial variations to transport-induced

temporal fluctuations in atmospheric tracers

2. We use geostatistical analysis to quantify the variance budget for XCO2 and XH2O retrieved

from NASA’s OCO-2 satellite

3. Accounting for random errors, systematic errors, and real geophysical coherence in remotely

sensed trace gas observations may yield improved flux constraints

2.1.1 Abstract

NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite provides observations of total column-

averaged CO2 mole fractions (XCO2) at high spatial resolution that may enable novel constraints

on surface-atmosphere carbon fluxes. Atmospheric inverse modeling provides an approach to op-

timize surface fluxes at regional scales, but the accuracy of the fluxes from inversion frameworks

depends on key inputs, including spatially and temporally dense CO2 observations and reliable
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representations of atmospheric transport. Since XCO2 observations are sensitive to both synop-

tic and mesoscale variations within the free troposphere, horizontal atmospheric transport imparts

substantial variations in these data, and must be either resolved explicitly by the atmospheric trans-

port model or accounted for within the error covariance budget provided to inverse frameworks.

Here, we used geostatistical techniques to quantify the imprint of atmospheric transport in along-

track OCO-2 soundings. We compare high-pass filtered (<250 km, spatial scales that primarily

isolate mesoscale or finer scale variations) along-track spatial variability in XCO2 and XH2O from

OCO-2 tracks to temporal synoptic and mesoscale variability from ground-based XCO2 and XH2O

observed by nearby Total Carbon Column Observing Network (TCCON) sites. Mesoscale atmo-

spheric transport is found to be the primary driver of along-track, high frequency variability for

OCO-2 XH2O. For XCO2, both mesoscale transport variability and spatially coherent bias associ-

ated with other elements of the OCO-2 retrieval state vector are important drivers of the along-track

variance budget.

2.1.2 Plain Language Summary

Numerous efforts have been made to quantify sources and sinks of atmospheric CO2 at regional

spatial scales. A common approach to infer these sources and sinks requires accurate representa-

tion of variability of CO2 observations attributed to transport by weather systems. While numerical

weather prediction models have a fairly reasonable representation of larger-scale weather systems,

such as frontal systems, representation of smaller-scale features (<250 km), is less reliable. In this

study, we find that the variability of total-column averaged CO2 observations attributed to these

fine-scale weather systems accounts for up to half of the variability attributed to local sources and

sinks. Here, we provide a framework for quantifying the drivers of spatial variability of atmo-

spheric trace gases rather than simply relying on numerical weather prediction models. We use

this framework to quantify potential sources of errors in measurements of total-column averaged

CO2 and water vapor from NASA’s Orbiting Carbon Observatory-2 (OCO-2) satellite.
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2.2 Introduction

Knowledge of regional surface-atmosphere carbon dioxide (CO2) fluxes are required to understand

anthropogenic and climatic influences on the global carbon cycle. Despite longstanding research

efforts to develop a robust budget for surface fluxes of CO2 (Bolin and Keeling, 1963; Enting and

Mansbridge, 1989; Tans et al., 1990; Keeling et al., 1996; Peters et al., 2005; Chevallier et al.,

2010; Peylin et al., 2013; Basu et al., 2018), these studies diverge in their estimates of the geo-

graphic distribution of sources and sinks of CO2 (Gurney et al., 2002; Baker et al., 2006; Stephens

et al., 2007). For example, Gurney et al. (2002) found uncertainties in regional scale carbon fluxes

were greater than 0.5 Gt C yr-1 across various inversion frameworks. In these studies, carbon fluxes

are inferred from spatial and temporal variations in atmospheric CO2 observations via atmospheric

inverse methods. Atmospheric inversions typically apply Bayesian optimal estimation methods to

optimize assumed (a priori) fluxes that have been used as boundary conditions to simulate spa-

tiotemporal CO2 variations in an atmospheric transport model. Mismatches between the simulated

and observed atmospheric CO2 provide the basis for scaling the assumed fluxes. The optimization

requires rigorous attention to errors associated with the assumed flux structure, the observations,

and the fidelity of atmospheric transport modeled by the framework (Rogers, 2000). One limitation

to inverse modeling studies has been the density and geographic distribution of atmospheric obser-

vations available to constrain surface fluxes (Gurney et al., 2002). Traditionally, observations of

atmospheric CO2 have been measured in situ or via flask sampling within the atmospheric bound-

ary layer. These observatories are concentrated within Northern Hemisphere temperate latitudes,

and there is a scarcity of observations in key regions for the global carbon cycle, including the

tropics (Stephens et al., 2007) and the Southern Ocean (Landschützer et al, 2015). The sparse in

situ network for atmospheric CO2 observations was the impetus for the launch of several satellites,

including Japan Aerospace Exploration Agency’s (JAXA) Greenhouse gases Observing SATellite

(GOSAT) (Yokota et al, 2009; Ross et al., 2013), NASA’s Orbiting Carbon Observatory-2 satellite

(OCO-2) (Crisp et al., 2004; Eldering et al., 2017), and Chinese National Space Administration’s

(CNSA) TanSat (Yang et al., 2018). These low Earth, polar-orbiting satellites measure the total
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column averaged dry air mole fraction of atmospheric CO2 (denoted as XCO2) at high spatial

density. For example, OCO-2 acquires approximately 1 million soundings every day, each with a

footprint on the order of 1 km2 (Crisp et al., 2004; Eldering et al., 2017). Theoretical studies have

hypothesized that the high spatiotemporal density of XCO2 observations may allow for a reduction

of errors in flux inferences from inversion models (Rayner and O’Brien, 2001; Baker et al, 2006;

Miller et al., 2007).

A second limitation to the fidelity of inverse modeling studies is the inverse modeling frame-

work itself, via either incorrect parameterization of atmospheric transport (Masarie et al., 2011;

Williams et al., 2014; Chevallier et al., 2010; Houwelling et al., 2015; Basu et al., 2018) or inappro-

priate representation of error covariance structures (Chevallier and O’Dell, 2013). The goal of this

paper is to discuss the unique requirements for atmospheric transport fidelity and the description

of variance budgets for XCO2from the OCO-2 satellite. One advantage of measuring the column

averaged mole fraction is that its variations can be used more effectively to constrain surface fluxes

via mass balance. Measurements made within the planetary boundary layer are sensitive not only

to fluxes at the surface, but also to the rate at which the surface flux signal is entrained into the free

troposphere. The column, however, is unaffected by the vertical entrainment rate, so in theory it

is more directly related to surface fluxes via mass balance (Rayner and O’Brien, 2001; Olsen and

Randerson, 2004). For example, Basu et al. (2018) concluded that fluxes inferred from perfect, or

error-free, satellite observations of XCO2 are less sensitive to uncertainty in atmospheric transport

than perfect in situ observations of CO2 in the planetary boundary layer by applying flux inversion

techniques to the output from different atmospheric transport models forced with the same CO2

initial and boundary conditions.

A potential complication of using XCO2, however, is that it is sensitive to CO2 within the free

troposphere, where most weather occurs. The variance budget is therefore strongly affected by

horizontal advection (Geels et al., 2004; Keppel-Aleks et al., 2011), not just surface fluxes, which

are the real target of obtaining and inverting atmospheric observations. In fact, at subseasonal

timescales, horizontal advection dominates the variance budget in XCO2 (Keppel-Aleks et al.,
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2011). Keppel-Aleks et al. (2012) used ground-based observations of XCO2 at several midlatitude

sites in the Total Carbon Column Observing Network (TCCON) to show that synoptic-scale vari-

ations, which occur on spatial scales on the order of 1000 km and temporal scales of about one to

two weeks, could be up to half the peak-to-trough seasonal cycle in XCO2. Likewise, horizontal

advection drives up to 60 to 70 percent of diurnal variations of boundary layer CO2 in the midlati-

tudes (Parazoo et al., 2008), and these horizontal eddy-induced variations are roughly half the size

of the seasonal CO2 variations driven by regional net ecosystem exchange of XCO2(Parazoo et al.,

2011). At finer spatial scales on the order of 100 km, mesoscale variability in XCO2, which occurs

on timescales of around one day, can be larger than diurnal variations in XCO2 resulting from CO2

exchange with the local terrestrial ecosystem (Keppel-Aleks et al., 2012). Mesoscale transport

imposes especially large errors on flux inversions over cities at time scales smaller than a month

(Lauvaux et al, 2016). However, even with global scale inversions, the variations on XCO2 im-

parted by fine scale transport may ultimately degrade the inverted fluxes. This is largely due to the

fact that signal imposed by fine and large-scale atmospheric transport is spatially correlated, thus

these variations cannot simply be addressed simply by averaging multiple observations (Miller et

al, 2015).

Thus, efforts to use XCO2 from OCO-2 for flux inference must reliably account for transport-

induced time/space variations, either through explicit simulation within the atmospheric transport

model or by representation of transport-induced errors within the error covariance matrix. We

note that larger-scale synoptic weather systems are more likely to be simulated explicitly by atmo-

spheric inverse modeling frameworks, which generally have horizontal resolutions between 0.5º

to 5º (Corbin et al., 2008), whereas mesoscale systems occur at spatial scales smaller than the

grid-cell resolution for all but the highest resolution atmospheric transport models. These smaller

mesoscale systems, therefore, may not be represented explicitly by atmospheric transport models

despite affecting the distribution of XCO2. Because mesoscale or frontal systems may also have

clouds, which obscure space-based XCO2 measurements, it is important to quantify the variance

and spatial coherence of XCO2 that will be averaged from satellite measurements before for com-
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parison with a single model grid-cell value (Corbin et al., 2008).

In this study, we use complementary information from space-based (OCO-2) and ground-based

(TCCON) remote sensing of XCO2 to quantify the imprint of mesoscale atmospheric transport

and to refine the variance budget of OCO-2 XCO2. While the current suite of carbon observing

satellites provide spatially dense observations, the time in between satellite overpasses at a spe-

cific location is too long (16 days for OCO-2) to sample temporal variations of XCO2 driven by

mesoscale (i.e., the duration of a thunderstorm) or synoptic-scale systems (i.e., the time in between

frontal systems, which is typically on the order of a week in mid latitude regions). In contrast,

ground-based networks, such as TCCON, provide temporally dense, but spatially sparse observa-

tions. To use these observations together, we must develop a framework that relates the spatial

variations in OCO-2 data to the temporal variations in TCCON data.

Throughout our analysis, we are cognizant of the fact that observing system error may also in-

troduce variance to satellite data (Baker et al., 2010; Chevallier et al., 2014). For example, Worden

et al. (2017) showed that natural variability (i.e., variations due to natural surface fluxes, anthro-

pogenic emissions, and atmospheric transport) of XCO2 along simulated representative OCO-2

tracks was negligibly small (approximately 0.08 ppm over 100 km neighborhoods) in compari-

son to variations of 1.28 ppm per 100 km attributed to instrument noise and slow varying biases,

such as those caused by surface pressure or albedo variations, observed in OCO-2 data. There-

fore, while the primary purpose of this study is to understand synoptic and mesoscale variations of

XCO2, we also leverage retrievals of total column-averaged mole fractions of water vapor (XH2O

) from OCO-2 (Nelson et al., 2016) and TCCON observations to validate our approach to esti-

mating terms in Equation 2.5. Retrievals of water vapor from OCO-2 have a high signal-to-noise

ratio (from several hundred to greater than 1000) (Nelson et al., 2016). Therefore, we expect that

synoptic and mesoscale variations of atmospheric transport XH2O are more readily quantifiable

from space-based observations.

This manuscript is organized around answering the following science questions.

1.) What is the imprint of synoptic and mesoscale systems on XCO2 (and XH2O)?

34



 100.0° W   97.5 ° W   95.0 ° W   92.5°  W

 32.5° N  

 35.0° N  

 37.5° N  

 40.0° N  

Raw

XC
O

2 [p
pm

]

397

398

399

400

401

402

403

404

405

406

407

 100.0° W   97.5 ° W   95.0 ° W   92.5°  W

 32.5° N  

 35.0° N  

 37.5° N  

 40.0° N  

Filtered

XC
O

2 [p
pm

]

-3

-2

-1

0

1

2

3
a. b. 

Figure 2.1: XCO2 tracks over a 10°×10° domain centered on Lamont, Oklahoma for one 16-day
repeat cycle in early July 2016. (a.) Raw XCO2 soundings and (b.) High-pass filtered XCO2.
The radius of the red and black circle represents the monthly mean range (denoted as aspace) of
explained variability of XCO2 and XH2O, respectively in July. The blue box represents a typical
3°×2° grid cell used in atmospheric inversion models, such as those used in Basu et al. (2018).

2.) How predictive are large-scale spatial gradients in XCO2 (or XH2O) of the imprint of

synoptic and mesoscale atmospheric transport on OCO-2 observations?

3.) How large are other sources of fine-scale variation in XCO2 (and XH2O) in the OCO-2

variance budget?

In Section 2, we describe the methods and framework we used to quantify variability attributed

to synoptic and mesoscale atmospheric transport from both TCCON and along-track OCO-2 ob-

servations of XCO2 and XH2O. In Section 3, we describe the variance budgets for OCO-2 XCO2

and XH2O in the context of validation data from TCCON. In Section 4, we provide discussion and

recommendations for future work toward robust flux influence from the satellite data.

35



2.3 Methods

2.3.1 Framework to compare temporal and spatial variability of trace gases

This framework provides the basis to which we compare temporal mesoscale variability of along-

track XCO2 and XH2O observed at TCCON ground sites to along-track spatial mesoscale variabil-

ity from OCO-2 data. We define along-track mesoscale spatial variability of XCO2 and XH2O for

tracks that occur within a 10º by 10º box of TCCON sites (Figure 2.1). The domains of analysis

chosen were large enough to encompass several representative atmospheric transport model grid

cells, such as the 3º by 2º grid cells used by Basu et al. (2018) to infer carbon fluxes.

We start from the tracer conservation equation in one dimension:

∂c

∂t
= −u

∂c

∂x
+ Sc (2.1)

where c represents the tracer concentration, in this case XCO2, u represents the column-

weighted wind velocity in one direction (assumed along the OCO-2 track), and Sc represents the

column-average surface sources and sinks of CO2 (with appropriate scaling to convert from flux

to XCO2 column-average variation). In this equation, we have neglected molecular diffusion of

XCO2, which is small relative to the other terms, and any variations in u and CO2 in the vertical

profile by simply using the total column averages. We decompose c into its mean and variable

components (Equation 2.2)

c = c+ c′ (2.2)

and Reynolds average Equation 2.1 to yield an equation for the time rate of change of c (Equa-

tion 2.3). For our analysis, we assume that the filter used to determine the average concentration,

c, results in a c′ that reflects mesoscale variations in the tracer concentration while synoptic and

slower- and larger-scale variations remain in c.
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∂c̄

∂t
= −u

∂c̄

∂x
− ∂u′c′

∂x
+ Sc (2.3)

The first term on the right hand side represents the advection of the mean gradient in c by the

mean wind, while the second term represents turbulent flux divergence. Equation 2.3 underscores

that spatial gradients in the mean tracer concentration give rise to temporal variations through

the action of atmospheric transport. We can subtract Equation 2.3 from Equation 2.1, expanded

by replacing u and c with the corresponding mean and anomaly terms from Equation 2.2 (and

equivalent equation for u), to yield an equation for the time rate of change for the fluctuating

component, c′:

∂c′

∂t
= −u

∂c′

∂x
− u′ ∂c

∂x
+

∂u′c′

∂x
+ S ′

c (2.4)

In Equation 2.4, the first term on the right hand side represents the advection of mesoscale gra-

dients by the mean wind, the second term and third terms represent the production of mesoscale

anomalies in c by eddies acting on the mean gradient and mesoscale gradient, respectively. The

fourth term represents the turbulent flux convergence. We can simplify Equation 2.4 by assuming

that the production term from eddies acting on mesoscale gradients and the turbulent flux conver-

gence are both small. We also neglect variations in sources, Sc′, since our framework accounts

for only climatological mean surface fluxes (described in detail in 3.2.1 below). We can then use

scaling arguments to approximate these terms:

⟨c′⟩time

τtime

= u
⟨c′⟩space
aspace

+ ⟨u′⟩⟨ ∂c
∂x

⟩ (2.5)

In Equation 2.5, ⟨c′⟩time represents the characteristic magnitude of temporal variations at a

TCCON site over a relevant mesoscale timescale time. The variable ⟨c′⟩space represents the charac-

teristic magnitude of along-track spatial variations from OCO-2 over a relevant mesoscale length

scale, aspace. The last term on the right-hand side (RHS) represents the advection of the mean

gradient ⟨ ∂c
∂x
⟩ by mesoscale transport ⟨u′⟩.
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The crux of our analysis is to compare ⟨c′⟩time and time inferred from empirical analysis of

TCCON observations with ⟨c′⟩space and aspace inferred from geostatistical analysis of high-pass

filtered OCO-2 tracks. This analysis is conducted with an eye toward using the OCO-2 derived

estimates of ⟨c′⟩space and aspace to improve the representation of fine scale transport errors within

the error covariance budget provided to inverse models used for flux inference.

2.3.2 TCCON

We quantified temporal synoptic and mesoscale variations in XCO2 and XH2O using ground-based

remote sensing data from sites in the TCCON network (Table 2.1). TCCON sites are instrumented

with ground-based Fourier Transform Spectrometers that acquire direct solar absorption spectra

approximately every two minutes during sunny conditions (Wunch et al., 2015). TCCON instru-

ments obtain near infrared spectra in the same spectral region as OCO-2 (0.65 – 2.63 µm), and

total column CO2 is retrieved in the 1.58 and 1.60 µm absorption bands and total column H2O is

retrieved in the 1.54 – 1.65 µm absorption bands using the GFIT algorithm (Wunch et al., 2011).

Because TCCON measures direct solar absorption spectra, the signal to noise ratio is higher com-

pared to that of OCO-2, and the uncertainties on TCCON XCO2 have a calibration accuracy of 0.4

ppm (Wunch et al., 2010). TCCON data are calibrated to the World Meteorological Organization

(WMO) standard ensuring absolute accuracy of measurements better than 0.25 percent (Washen-

felder et al., 2006; Wunch et al., 2011). We analyzed data from TCCON sites that have data records

longer than 5 years and that observe across a full annual cycle to minimize biases introduced by

seasonal and interannual variations.

2.3.2.1 Removing diurnal cycle climatology of XH2O and XCO2 to quantify temporal syn-

optic and mesoscale variability

We separated the imprint of synoptic and mesoscale systems on variations in TCCON XCO2 and

XH2O by assuming that the only sources of variations were surface fluxes or atmospheric transport.

For both XCO2 and XH2O, we assumed that flux-driven diurnal variations could be accounted
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TCCON Site Location Observational Peri-
ods

Citation

Bialystok, Poland 53.33ºN,
23.03ºE

March 13, 2009 –
April 14, 2017

Deustcher et al.
(2014)

Karlsruhe, Germany 49.10ºN,
8.44ºE

April 19, 2010 – Jan-
uary 24, 2018

Hase et al. (2014)

Orleans, France 47.97ºN,
2.11ºE

August 29, 2009 –
April 29, 2017

Warneke et al. (2014)

Garmisch, Germany 47.48ºN,
11.06ºE

July 16, 2007 – March
16, 2018

Sussman and Ret-
tinger (2014)

Park Falls, Wisconsin 45.95ºN,
90.27ºE

June 2, 2004 – Decem-
ber 31, 2017

Wennberg et al.
(2014a), Washen-
felder et al. (2006)

Lamont, Oklahoma 36.60ºN,
97.49ºW

July 6, 2008 – Decem-
ber 31, 2017

Wennberg et al.
(2014b)

Darwin, Australia 12.42ºS,
130.89ºE

August 28, 2005 –
March 28, 2017

Griffith et al. (2014),
Deutscher et al.,
(2010)

Reunion Island, France 20.90ºS,
55.49ºE

September 16, 2011 –
January 30, 2018

De Mazière et al. (2014)

Lauder, New Zealand 45.04ºS,
169.69ºE

February 2, 2010 –
November 1, 2017

Sherlock et al. (2014)

Table 2.1: Locations of TCCON sites and observational periods analyzed in this study with asso-
ciated references.
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for by calculating a monthly climatological daily cycle of XCO2 variations for each site, since

atmospheric transport patterns may be random but surface fluxes are phase-locked to the diurnal

cycle. We note there are changes in surface fluxes in response to physical climate changes, such

as thunderstorms/rain, cloud coverage, or boundary layer temperature, induced by mesoscale and

synoptic-scale systems (Baldocchi et al., 2001). There is, however, no easy way to attribute the

changes in XCO2 and XH2O to either changing fluxes or synoptic/mesoscale transport without

running a coupled atmosphere/land model. We choose instead to use an empirical, data-driven

approach that necessitates neglecting weather-driven changes in surface fluxes.

For each calendar month, we binned all available observations (after removing the long-term

trend) from the multi-year time series into half-hour increments to reveal the characteristic diurnal

cycle (Figure ??-2). For any given month, we limited our analysis to daytime observations obtained

at solar zenith angle less than 75º to reduce the influence of spectroscopic errors at high air masses.

We then removed the climatological daily cycle from each calendar day with observations, and

assumed that the residual was the component of variability driven by transport. We note that this

approach is a simplification, and expect that at least some of the residual were due to synoptic,

intraseasonal, and interannual variability of surface fluxes. Our approach does, however, allow us

to approximate the influence of local fluxes on the observations without relying on an ecosystem

model or sparse flux tower data with limited spatial footprints.

Given our assumption that temporal variability of XCO2 and XH2O is derived from either local

fluxes or atmospheric transport, we can then estimate the influence of atmospheric transport-driven

variations from the time series of residuals. We calculated the standard deviation from the half-

hourly bin averaged residuals at bi-weekly time intervals to approximate variability at synoptic

and smaller timescales. We likewise calculated the standard deviation of the residuals within each

day to approximate mesoscale variability. These time periods were sufficient to sample variability

attributed to multiple synoptic scale weather systems, such as high and low pressure systems and

frontal passages, or mesoscale systems, such as individual thunderstorms.

We evaluate our approach for calculating the influence of climatological fluxes on the diurnal
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cycle of XCO2 at the Park Falls TCCON site since it is co-located with an Ameriflux eddy co-

variance (EC) tower that provides observations of diurnally varying NEE (Desai et al 2015). We

estimate the influence that the observed eddy covariance fluxes have on the daily cycle of XCO2

(and denote this quantity as XCO2,EC using equations 6 and 7:

⟨dXCO2,EC

dt
⟩ =

NEEEC · g · MWdry air

Ps

(2.6)

XCO2,EC =

∫ τPM

τAM

⟨dXCO2,EC

dt
⟩ dτ (2.7)

where NEEEC represents the observed net ecosystem exchange, g represents the gravitational

constant of 9.81 ms-2, MWdry air represents the molecular weight of dry air, Ps represents the sur-

face pressure, and τ represents time. We calculated XCO2,EC at hourly time steps over a period

from when the local solar zenith angle crosses 70 degrees in the morning and afternoon. The

seasonal cycle of the within-day variation in XCO2 observed by the TCCON instrument agrees

well with the seasonal cycle of the expected within-day variation in XCO2 from NEE observations

(R2 of 0.8; Figure 2.2a). The magnitude of the error bars derived from NEE, which represent

the standard deviation among individual days, are substantially smaller than the magnitude of the

error bars derived from the TCCON XCO2 drawdown (Figure 2.2b). During winter, the average

standard deviation for XCO2,EC is less than 0.1 ppm while the average standard deviation from

XCO2,FTS is about 0.4 ppm. In contrast, the average summer standard deviation is about 0.3 ppm

for XCO2,EC and 1.2 ppm for XCO2,FTS. Across seasons, the uncertainty from assuming a clima-

tological within-day drawdown therefore reflects at most 30 percent of the total variability across

the days on which observations are obtained. This suggests that most of the within-in day variation

for XCO2 results from processes other than local fluxes, confirming the motivation of the present

study.
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Figure 2.2: (a.) A comparison of the climatological monthly mean diurnal mean amplitude of
XCO2 observed at the TCCON site (XCO2,FTS) compared to the estimated imprint of drawdown
based on the observed net ecosystem exchange at the adjacent FluxNet eddy covariance tower
in Park Falls, Wisconsin (XCO2,EC). (b.) The standard deviation of monthly mean XCO2,FTSS
compared to the standard deviation of XCO2,EC plotted in panel a. Note that the axes in panel b.
are different.

2.3.3 OCO-2

We analyzed spatial variations in XCO2 and XH2O retrieved from OCO-2 satellite observations.

OCO-2 is a sun-synchronous, polar-orbiting satellite with a spatial footprint for individual sound-

ings of 2.4 km along-track and 1.25 km cross-track; the instrument measures 8 cross-track bins at

each time step resulting in a narrow (approximately 10 km wide) sampling swath (Eldering et al.,

2017). The satellite acquires a repeat cycle of approximately every 16 days using three scanning

modes, described below. The instrument comprises three grating spectrometers that measure radi-

ances from reflected near-infrared sunlight in two CO2 bands, the 1.61 µm weak absorption band

(WCO2) and the 2.06 µm strong CO2 (SCO2) absorption band, and in the 0.72 µm oxygen (O2A)

absorption band. These radiances are used in a full physics retrieval algorithm (version 8r, O’Dell

et al., 2012; 2018), which uses optimal estimation to infer the vertical column of both CO2 and O2

while simultaneously adjusting other elements of the retrieval state vector, including the surface

albedo for each band, aerosol optical depth (AOD), and other parameters that affect measured ra-
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diances (O’Dell et al., 2012; 2018). The reported error for each XCO2 sounding is estimated using

instrument noise, and then post-processed to account for errors associated with the forward model

used in the retrieval algorithm (O’Dell et al., 2012; Wunch et al., 2017). The measurements are

bias-corrected by accounting for biases in individual cross-track observations using multivariate

linear regression to identify physically unrealistic correlations between XCO2 and other elements

of the retrieval state vector (such as surface pressure, aerosols, or unphysical variations of the re-

trieved vertical profile of CO2) and systematic offsets of OCO-2 XCO2 target mode retrievals in

comparison to TCCON observations (O’Dell et al., 2018). The (lower bound) bias-corrected sin-

gle sounding errors for retrieved XCO2 are generally less than 1 ppm (compared to a mean global

value of approximately 410 ppm; Tans and Keeling, 2018), with the largest errors over land and

higher latitudes (generally above 45º N or S) and smallest errors over the ocean (Eldering et al.,

2017). Similarly, XH2O was retrieved from OCO-2 using the 1.61 and 2.06 µm weak and strongly

absorbing H2O spectral bands with mean biases of approximately 70 ppm, compared to typical

XH2O concentrations that varies from roughly 700 to 9000 ppm globally (Nelson et al., 2016).

OCO-2 uses three scanning modes to optimize retrievals over land and ocean surfaces, includ-

ing nadir (land only), glint (over ocean and land), where the instrument is pointed at the glint angle

to maximize reflected light over water surfaces, and target where the instrument angle is adjusted

to point towards a targeted location (typically a ground-based validation site). In this analysis,

we investigate nadir and glint observations separately, and only used soundings without a qual-

ity warning flag (Osterman et al., 2018). Note that many tracks exhibit significant missing data

because of cloud cover.

2.3.3.1 Geostatistical analysis

We used geostatistical analysis to quantify the variance budget for OCO-2 data. We removed low

frequency variations using a 250 km Hamming high-pass filter. To apply the filter, the data were

pre-processed by averaging up to 8 cross-track soundings into 1.1 km bins in nadir mode or 1.3

km bins in glint mode to create a 1-dimensional track. We gap-filled empty bins with a distance-
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weighted mean of the nearest filled bin. For each 10º by 10º box, we filtered tracks containing valid

observations in at least 96 bins in glint mode or 113 bins in nadir mode (i.e. one-half of the rolling

window filter size). To minimize edge effects on the high-pass filter, we attached a 250-point buffer

made up of the average of the first 250 bins (i.e. the length of variability passed through the high

pass filter) to the beginning and end of each satellite track. After running the filter, we repopulated

each sounding with the filtered bin-averaged and gap-filled values and began our semivariogram

analysis described below.

We separated variance of XCO2 and XH2O along OCO-2 tracks into random errors (“unex-

plained variance”) and the component that is spatially coherent, or systematic, (“explained vari-

ance”) by calculating semivariograms for the high frequency component of XH2O and XCO2. We

calculated the semivariance (γ∗) for lag d at position xk for sounding values Z using Equation 2.8,

γ∗(d) =
1

2N(d)

N∑
k=1

[Z(x⃗k)− Z(x⃗k + d)]2 (2.8)

where N is the number of soundings separated by lag d (Cressie and Hawkins, 1980). We

fit a spherical model (Equation 2.9) to estimate the total variance, c∞, and the spatial range of

total variance, denoted as aspace (as in Equation 2.5), for each semivariogram (Figure ??). For the

spherical model fits, we fixed the unexplained variance, c0, to the semivariance calculated from the

observations at the smallest observed lag (1.1 km in nadir or 1.3 km in glint mode).

γ(d) =

 c0 + (c∞ − c0)
[
3d
2a

− 1d3

2a3

]
for d ≤ a

c∞ for d > a
(2.9)

We calculated the explained variance, denoted as ⟨c′space⟩, by subtracting the unexplained vari-

ance from the total variance, c∞− c0. In this framework, the explained variance relates to spatially

coherent patterns, which could be due to real atmospheric gradients owing to fine scale transport or

errors arising from spatially coherent correlations between XH2O and XCO2 and other elements of

the state vector. We compared the square root of unexplained and explained variances, denoted as

unexplained and explained variability, to temporal variations observed at adjacent TCCON sites,
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described in more detail in Section 2.2.

2.3.3.2 North-south gradient calculation

To investigate the mesoscale tracer transport term on the RHS of Equation 2.5, we quantified

the relationship between fine-scale spatial variations and the large-scale gradient in XH2O and

XCO2. We calculated the North-South (N-S) gradient from three different datasets. For OCO-2,

we aggregated data within a 10º by 10º box centered at the TCCON sites listed in Table 2.1. We

calculated the gradient for each track within the targeted domain by fitting OCO-2 soundings to a

simple least squares linear regression model weighted by self-reported errors from the version 8

level 2 retrieval algorithm. Because OCO-2 tracks may have data gaps associated with seasonal

variations or cloud cover, we filtered the north-south gradients by quantifying the uncertainty (σ2
NS)

of the estimated N-S gradient using Equation 2.8 (Glover et al., 2011), where xi represents the

latitude and σi is the OCO-2 reported retrieval error at point i for N total soundings. We then

discarded regression fits that had an uncertainty larger than 0.01 ppm/degree.

σ2
NS =

∑N
i=1

1
σ2
i∑N

i=1
1
σ2
i
·
∑N

i=1
x2
i

σ2
i
− (

∑N
i=1

x2
i

σ2
i
)2

(2.10)

We compared monthly mean observed N-S gradients from OCO-2 to two additional datasets:

the monthly mean N-S gradients derived from assimilated 2017 CarbonTracker (CT2017) out-

put from the OCO-2 period (from 2014-2017, with observations ongoing) and the N-S gra-

dients inferred from the High-Performance Instrumented Airborne Platform for Environmental

Research (HIAPER) Pole-to-Pole Observations (HIPPO) flight transects over the Pacific Ocean

that took place between 2009 and 2011. CarbonTracker is a data assimilation system that pro-

vides three-dimensional atmospheric CO2 fields based on assimilating surface CO2 observations

from NOAA’s cooperative sampling network (Peters et al., 2007; with updates documented at

http://carbontracker.noaa.gov). XCO2 was computed in their 2017 (CT2017) dataset with simple

pressure-weighted vertical integration of CO2. During the HIPPO campaign, partial columns of
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CO2 were measured from roughly 300 to 8500 m altitude from aircraft transects spanning from

67ºS to 85ºN across the Pacific Ocean during all seasons between 2009 and 2011 (Wofsy et al.,

2011). XCO2 was then inferred by integrating a pressure-weighted mean concentration using ref-

erence static pressure from the GV Paroscientific Model 1000 sensor (Wofsy et al., 2017). We

did not apply averaging kernels to either the CT2017 or HIPPO data since we were not attempt-

ing to directly compare individual columns to their OCO-2 or TCCON counterparts, but rather to

approximate the large-scale features in XCO2.

With sufficient data density, the N-S gradients derived from OCO-2 overpasses were broadly

consistent with CT2017 output and HIPPO transects. However, when satellite data were charac-

terized by gaps or low coverage during the winter season, the satellite estimate of the N-S gradient

was inconsistent with HIPPO and CarbonTracker. Given this pattern of agreement and the need for

year-round N-S gradient information, we used the CarbonTracker gradient to quantify monthly-

mean N-S gradients and to evaluate the impact of the gradient on temporal synoptic-scale and

mesoscale variability and along-track high frequency explained variability.

2.4 Results

2.4.1 Temporal Variations at TCCON

2.4.1.1 Flux-driven diurnal variations

Local diurnal fluxes account for up to 1 to 2.0 ppm of within-day temporal variability of XCO2

during the growing season, with the largest diurnal signal observed during boreal summer (Figure

2.3a). For example, in Lamont, Oklahoma, local ecosystem drawdown contributed a decrease

of XCO2 of 1.1 ppm between 7:00 am to 5:30 pm LST (local standard time) in July, whereas it

showed almost no change throughout the day (10 am to 2 pm) during winter months (Figure ??), as

expected given the relatively dormant winter biosphere. At most midlatitude TCCON sites, local

diurnal fluxes of XCO2 accounted for less than 0.3 ppm of within-day variability during the winter
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Figure 2.3: Climatological daytime diurnal range of a. XCO2and b. XH2O . We calculate the range
between morning and evening, with a limit of solar zenith angle less than 75º.

(Figure 2.3a). The seasonal cycle of XCO2 variability driven by diurnal fluxes at tropical TCCON

sites, such as Darwin, Australia, was tied to the onset of the wet and dry seasons and varied from

0.1 ppm and 1.1 ppm (Figure 2.3a). We note that these are typical within-day variations of XCO2

attributed to diurnal fluxes, and that the actual diurnal fluxes depend on weather, anthropogenic,

and other natural interactions.

The climatological diurnal cycle of XH2O had a strong seasonal cycle across all TCCON sites,

with defined wet and dry seasons in the tropics, and lower winter and higher summer peak-to-

trough diurnal cycle amplitudes in the midlatitudes (Figure 2.3b). In the Northern Hemisphere

midlatitudes, the within-day local imprint was maximum in the summer (around 200-600 ppm) and

smallest during boreal winter (around 5-100 ppm). Within-day, flux-driven variations were largest

at the two tropical TCCON sites, which are both located in the Southern Hemisphere tropics.

Within-day variations in these regions could exceed 500 ppm during austral summer but were

generally 300-500 ppm during austral winter (Figure 2.3b). We note that while many atmospheric

processes are analogous for XCO2 and XH2O, condensation and precipitation drive additional

spatial and temporal variability in XH2O (Dai and Wang, 2002). The values we report in Figure
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2.3b are the peak-to-trough difference in within-day XH2O climatology. During summer, most

TCCON sites showed a maximum value of XH2O in mid-to-late afternoon (1400 to 1700h, Figure

??), consistent with the diurnal phasing of precipitable water reported by Dai and Wang (2002).

2.4.1.2 Synoptic-scale (bi-weekly) variability

Mean temporal synoptic-scale (bi-weekly) variations in both XH2O and XCO2 from TCCON were

larger in magnitude to the typical daily cycle (Figure 2.3 and 4). For XH2O, synoptic-scale vari-

ations were, on average, 4 times larger than variability attributed to diurnal fluxes (Figure 2.3

and 4). For some months, synoptic-scale variability of XH2O was over 10 times larger than the

magnitude of the imprint of local diurnal fluxes. For XCO2 mean synoptic-scale variations were

approximately twice as large local flux-driven variability, although for both gases, the differences

varied seasonally. These variations in both XH2O and XCO2 were also tied to the seasonal cycle

in the large-scale N-S gradient (Table ??). As described in Section 2.2.1, we quantified temporal

synoptic-scale variability by taking the standard deviation of the bi-weekly residual in XH2O and

XCO2 after accounting for the climatological peak-to-trough within-day signal at each TCCON

site.

Temporal synoptic-scale variations of XH2O across all TCCON sites were of order 100 to

1000 ppm with strong regional and seasonal dependence (Figure 2.4a). For example, we observe

synoptic-scale variations in XH2O of 200-400 ppm in Lamont and Park Falls during boreal winter

and peak synoptic-scale variability of over 1000 ppm during the Northern Hemisphere summer

(Figure 2.4a). At similar latitudinal regions in Europe, synoptic scale variability of XH2O only

varies from 150 to 800 ppm throughout the year. We acknowledge that on multi-week timescales,

many processes other than atmospheric transport can alter the atmospheric water vapor mole frac-

tion, including diabatic processes in the atmosphere. This complexity is evident in the different

seasonal patterns in and magnitudes of bi-weekly variability at TCCON sites, which varies even

within a given latitude band. We therefore present this analysis to parallel the XCO2 analysis

described below.
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Figure 2.4: Comparison of synoptic-scale and variability in TCCON observations. (a.) XH2O
monthly mean synoptic-scale (bi-weekly) variability, (b.) XH2O mesoscale (within-day) variabil-
ity, (c.) XCO2 monthly mean synoptic-scale variability, and (d.) XCO2 monthly mean mesoscale
variability. Note that the color scales for XH2O and XCO2 are different.
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For XCO2, typical synoptic-scale variations ranged from 0.1 to 1.3 ppm across all TCCON

sites, with the largest variations (in excess of 1 ppm) observed over Northern Hemisphere TCCON

sites during July and August (Figure 2.4c). These locations also had the largest seasonal cycles

of synoptic-scale variability (Figure 2.4c). There was less pronounced synoptic-scale variability

of XCO2 in the tropics and the southern hemisphere, where synoptic-scale variability ranged from

0.1 in the boreal summer to 0.7 ppm in boreal winter (Figure 2.4c). The magnitude and seasonality

of these variations are mostly tied to the meridional (N-S) gradient in XCO2, as we discuss below.

Synoptic-scale variations of XCO2 were correlated with the magnitude of the N-S gradient at

northern hemisphere midlatitude TCCON sites (Table ??). As described in Section 2.3.2, we fit

a regression slope to estimate the absolute value of N-S gradients of XCO2 derived from OCO-2

overpasses to those derived from CT2017 output and HIPPO transects (Figure ??). In the Northern

Hemisphere midlatitudes, the correlation between monthly mean temporal synoptic-scale varia-

tions observed from TCCON (Fig 4c.) and the monthly mean N-S gradient (Figure ??-S6) was

generally around 0.6 to 0.9 (Table ??). This relationship is consistent with the argument that

synoptic variations arise from transient eddies acting on the large-scale gradient, as indicated by

the second RHS term in Equation 2.5. The weaker correlation (R=0.41) observed at Garmisch,

Germany was an outlier among Northern Hemisphere midlatitude TCCON sites, which may be

due to limited observations. In the tropics and Southern Hemisphere, the relative absence of N-S

gradients of XCO2 resulted in weak relationship with synoptic-scale variations. We note that the

length-scales estimated from many of the slopes of our best-fit linear regressions between synoptic

scale variability and the N-S gradient of XCO2 (2.1º to 6.5º; or roughly 200 to 600 km at Northern

Hemisphere midlatitude TCCON sites) are on the smaller end of those of typical synoptic-scale

systems.

The temporal synoptic variability of XH2O correlates with the N-S gradient of XH2O across

most TCCON sites (Table ??). The correlation coefficients were between 0.4 to 0.9 across TCCON

sites. The highest correlation coefficients were observed at mid-latitude TCCON sites (Bialystok,

Orleans, Park Falls, and Lamont), and at these sites, the slope of the relationship was consistently
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between 7 and 9 ppm/(ppm/degree) (which can be written as a length scale, degree). This is

approximately consistent with typical length scales of synoptic-scale variability of the order of

magnitude of 1000 km and larger than that estimated for XCO2.

2.4.1.3 Mesoscale (within-day) variability

Mesoscale variations (Figure 2.4b, 5c) of XH2O are, on average, a factor of 1.4 times larger in

magnitude to variability attributed to local diurnal fluxes (Figure 2.3b). For XH2O, mesoscale

variations were generally a factor of 5 smaller than synoptic-scale variability across all TCCON

sites (Figure 2.4b). As expected based on synoptic scale variations in XH2O, patterns of mesoscale

variation showed strong regional variations. For example, TCCON sites in North America (Park

Falls and Lamont), mesoscale variations of XH2O were almost 300 ppm during the boreal summer,

but less than 100 ppm during the boreal winter (Figure 2.4b, 5c). In contrast, at TCCON sites at

similar latitudes in Europe, mesoscale variations of XH2O were generally less than 200 ppm all

year. At tropical TCCON sites, such as Darwin and Reunion Island, mesoscale variations were

between 160 and 320 ppm all year round, with lower (<200 ppm) mesoscale variations occurring

during the dry season (Figure 2.4b).

Mesoscale variations of XH2O, like synoptic variations, were generally correlated with the N-S

gradient of XH2O across all midlatitude TCCON sites (R values of 0.4 to 0.9 at TCCON sites with

statistically significant slopes; Table ??). The slopes, however, were much lower, typically around

2º. We expect that these correlations do not necessarily suggest that the large-scale N-S gradient

drives mesoscale variations, but rather to the fact that both quantities change seasonally and have

strong temperature dependence via the Clausius-Clapeyron relationship.

Temporal mesoscale variability in XCO2, which we assume is primarily driven by advection

from small-scale weather features, was less than 0.5 ppm across all TCCON sites and all months

(Figure 2.4, 5). This represents about half the magnitude of variability attributed to local diurnal

fluxes during the growing season at northern hemisphere TCCON sites (Figure 2.4). In the winter,

mesoscale variations of XCO2 become larger than the imprint of variability attributed to local
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diurnal fluxes. In Park Falls, Wisconsin, the combined imprint of mesoscale and synoptic scale

transport was 1 to 2 ppm during summer (Figure 2.4), substantially larger than the potential bias

from assuming climatological fluxes of about 0.3 ppm (Figure 2.2). These mesoscale variations

were approximately 30 to 50 percent magnitude of synoptic-scale variability (Figure 2.4c and 4d).

Mesoscale variations in XCO2were only moderately correlated with N-S gradients (R-values less

than 0.52) in the mid-to-high latitudes in both the northern and southern hemispheres (Table ??),

consistent with our expectation that the length scale of mesoscale systems is small in comparison

to the length scale of the N-S gradient. In the tropics, there was likewise no correlation between

mesoscale variability and the N-S gradient of XCO2 (Table ??).

We calculated a typical timescale for mesoscale (within-day) variations based on the autocor-

relation of within-day residuals with climatological local fluxes removed (Figure S7). We found

that the autocorrelation of the residuals typically decayed to values between e-1 and 0 over about

3 hours. This timescale was consistent for both XH2O and XCO2 across all TCCON sites. We

therefore used this mean lag time as time in Equation 2.5 to compare temporal variations to spatial

variations of XH2O and XCO2 (Section 3.2.1)
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2.4.2 OCO-2 along-track spatial variability

This section compares the relationship between the high-frequency along-track spatial variability

observed by OCO-2 to mesoscale temporal variability of XH2O and XCO2 from TCCON using the

theoretical framework outlined in Section 2.1. Variations in both XH2O and XCO2 evolve in re-

sponse to local surface fluxes and atmospheric transport, and for XH2O, condensation, evaporation,

and precipitation within the atmosphere. While the details of the surface fluxes and in situ atmo-

spheric processes differ for the two tracers, they experience the same atmospheric advection and

mixing fields. The advantage of a joint analysis of these two gases is that both XH2O and XCO2

are observed simultaneously by TCCON and OCO-2, and the precision of XH2O is substantially

larger, providing a framework for assessing the XCO2 results. Specifically, if the calculated and

observed explained variability of either species, ⟨c′space⟩, are in agreement, then we can assume that

mesoscale atmospheric transport is the dominant source of high-frequency variability of that gas.

2.4.2.1 Explained Variability (⟨c′space⟩)

Along-track, high frequency (<250 km) explained spatial variations of XH2O from OCO-2

spanned between 20 and 300 ppm across all TCCON sites (Figure 2.6b). The smallest explained

variations (20 to 60 ppm) were observed at Northern Hemisphere midlatitude sites during the

boreal winter. The largest explained variations (> 200 ppm) occurred over most Northern Hemi-

sphere midlatitude sites during the boreal summer and over the tropical sites (Darwin and Reunion

Island) during the local wet season. Across all months and TCCON sites, the spatial range (aspace)

of explained variability generally spanned between 40 to 140 km (Figure 2.7b). The explained

high-frequency spatial variability of XCO2 was generally between 0.2 and 1.0 ppm across all

TCCON sites (Figure 2.6e). The highest explained variations (>0.5 ppm) were observed over

Northern Hemisphere TCCON sites. Smaller explained variations (0.2 to 0.5 ppm) were observed

at southern hemisphere TCCON sites. In contrast to XH2O, the aspace for XCO2 occurred at much

smaller spatial scales from 10 to 40 km, with mean aspace values for explained variability around

20 km (Figure 2.7a).
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Figure 2.6: Variability metrics for remotely sensed XH2O and XCO2. Monthly mean (a.) unex-
plained variability for XH2O and (b.) explained variability for XH2O derived from high-pass fil-
tered OCO-2 observations. c. Monthly mean temporal mesoscale (within-day) variability in XH2O
derived from TCCON observations. Panels d-f are similar, except we show values for XCO2 from
OCO-2 (d-e) and TCCON (f) observations.
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Figure 2.7: Monthly mean spatial range (aspace) of a. XH2O and b. XCO2derived from OCO-2
data near each TCCON site. Note both panels use the same color scale.

We can put the explained spatial variability of both XH2O and XCO2 along OCO-2 tracks

(⟨c′space⟩) by comparing variations in each gas with the corresponding mesoscale variations at TC-

CON sites (Section 2.3.1) using Equation 2.5 to relate temporal variations at a given location

to tracer anomaly advection and turbulent production. We expect the time tendency (Term A in

Equation 2.9) to be balanced by the advection of tracer variations by the mean wind (Term B)

or by small-scale production of variation by eddies acting on the mean gradient (Term C). Take,

for example, a typical temporal mesoscale variation of XH2O, ⟨c′time⟩, of about 280 ppm (as is

approximately the case in Lamont, Oklahoma in June; Figs. 4-6). We computed the following

scales:

(A)
c′time

τtime

=
280 ppm
3 hours

= 90
ppm
hour

(B) u
c′space
aspace

= 8
(m

s

) 280 ppm
70 km

= 90
ppm
hour

(C) u′ ∂c

∂x
= 1

(m
s

) 280 ppm
140 degrees

= 5
ppm
hour

(2.11)
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We used a within-day period (time) of 3 hours (Section 3.1.3; Figure S7). For Lamont in June,

we computed total column pressure and H2O vertical profile weighted mean horizontal wind speed

(u) of 8 m/s and mesoscale variability of horizontal winds (u′) of 1 m/s by vertically integrating

wind output from CT2017 (Figure S8). Since CarbonTracker is run at relatively coarse resolution,

we compare these values against calculations derived from the North American Regional Reanal-

ysis (NARR, Mesinger et al., 2006), which provides wind fields at 0.3 degrees resolution. At the

two North American TCCON sites, u was the same as that estimated from CarbonTracker fields,

while u′ was larger by a factor of two (about 2 m/s), an expected result given the higher horizontal

resolution of NARR. Nevertheless, when we apply this larger u′ estimate into Equation 2.11, our

scale analysis remains unchanged. We also used CT2017 output to calculate a typical summertime

Northern Hemisphere midlatitude N-S gradient of around 140 ppm/degree (Figure ??). The scaling

exercise suggests that the time tendency is mostly balanced by the mesoscale anomaly advection

term (Term B) rather than the turbulent production term (Term C), at least for these time-scales.

The small contribution of the production term is consistent with the fact that mesoscale variations

at TCCON sites were not highly correlated with the mean N-S gradient. This analysis can also be

applied to relate spatial and temporal mesoscale variations in XCO2or another atmospheric tracer.

Based on the scaling arguments above, we rearrange Equation 2.5 to solve for the expected

⟨c′⟩space along OCO-2 tracks and neglect the turbulent production term (Equation 2.12):

⟨c′⟩space =
aspace
u

(
⟨c′⟩time

τtime

− ⟨u′⟩⟨ ∂c
∂x

⟩
)

≈ aspace
u

(
⟨c′⟩time

τtime

)
(2.12)

We then use Equation 2.12 to estimate the expected magnitude of ⟨c′⟩space for XH2O in Lamont

in June as approximately 226 ppm which agrees within 10 percent with the observed explained

variability of 214 ppm from OCO-2 (Figure 2.6b and 8b). We found that if we applied Equation

2.12 to compute ⟨c′⟩space at each TCCON site and each month, our estimated ⟨c′⟩space values match

observed explained variations from OCO-2 to within 30 percent (Figure 2.8a and b). The agree-

ment between the observed and estimated ⟨c′⟩space of XH2O suggests that the observed explained

variations of XH2O from OCO-2 are primarily driven by mesoscale atmospheric (Figure 2.5 and
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2.8a,b). These results also validate our choice of a 250 km high-pass filter to isolate mesoscale

transport and exclude larger-scale synoptic systems.

We likewise calculated the ⟨c′⟩space of XCO2 in Lamont in June using the estimated total col-

umn pressure and CO2 vertical profile weighted mean horizontal wind speed (u) m/s and a spatial

range, aspace, of 20 km fit from semivariogram analysis (Figure 2.7a). Using this framework, the

calculated spatial mesoscale variability of 0.1 ppm was much smaller than the observed ⟨c′⟩space

(0.6 ppm). The empirical aspace of 20 km for XCO2 is suspect, since mesoscale variations in XH2O

from OCO-2 showed an aspace of 70 km in the same month and are consistent with the expected

length-scale for mesoscale systems. When we instead used aspace of 70 km based on the analysis

of XH2O, estimated mesoscale variability increases to 0.3 ppm (Equation 2.13).

⟨c′⟩space,XCO2 =
70 km
10 m/s

(
0.4 ppm
3 hours

)
≈ 0.3 ppm (2.13)

We note that an estimate of 0.3 ppm, while more reasonable in magnitude, is still about 40 percent

smaller than the observed value of 0.5 ppm for the OCO-2 explained XCO2 variability.

Together, these relationships suggest first that the temporal and spatial scaling within our frame-

work is consistent with mesoscale variations of XH2O quantified using TCCON and OCO-2 data.

Second, the spatial range (aspace) for XCO2 variability derived from the geostatistical analysis of

OCO-2 data is too small to be driven by mesoscale systems. Third, the results suggest that the

XCO2 ⟨c′⟩space value is larger than what is calculated assuming mesoscale systems are the only

driver of high frequency spatial variability along OCO-2 tracks. As shown for Lamont, Oklahoma,

there is no overlap between the estimated and observed ⟨c′⟩space even when accounting for uncer-

tainty in both terms (Figure 2.5b). We estimated the uncertainty ⟨c′⟩space using error propagation

of the standard error of each of the measured terms in Equation 2.12. Although we only plot the

uncertainty on the ⟨c′⟩space calculation for Lamont (Figure 2.5), we quantified uncertainty across

all TCCON sites presented in the paper and this result is robust, meaning that the differences be-

tween the calculated ⟨c′⟩space (Figure 2.8c,d) and the observed ⟨c′space⟩(Figure 2.8e) represent real
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Figure 2.8: Comparison of calculated and observed ⟨c′space⟩. The top row shows (a.) Calculated
annual cycle in ⟨c′⟩space for XH2O using Equation 2.12, assuming aspace values derived from XH2O
(Figure 2.7b) and ⟨c′⟩time values from TCCON mesoscale variations (Figure 2.4b). (b.) Observed
annual cycle in ⟨c′⟩space for XH2O. Note that this quantity is identical to the explained variability of
XH2O (Figure 2.6b). The bottom row shows the same quantities, except for XCO2. (c.) Calculated
annual cycle in ⟨c′⟩space for XCO2 using Equation 2.12, assuming aspace values for XCO2 (Figure
2.7a) and ⟨c′⟩time values from TCCON (Figure 2.4d). (d.) Calculated annual cycle in ⟨c′space⟩,
except we use aspace values from XH2O. (e.) Observed annual cycle in ⟨c′⟩space for XCO2 (identical
to Figure 2.6e).
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and significant disagreement. Thus, we conclude that some other factor imparts spatially coherent

variability on OCO-2 XCO2 that depresses the aspace and augments the ⟨c′space⟩. One possibility is

coherent biases or errors in the OCO-2 XCO2 retrieval, as discussed more in section 3.3. These

relationships are true across all TCCON sites (Figure 2.8c and 8e), where the observed XCO2

⟨c′⟩space was generally larger than what would be expected based on ⟨c′⟩time and the observed

XCO2 aspace was small relative to the value calculated from XH2O observations (Figure 2.8a and

8b). We found that XCO2 ⟨c′⟩space was more comparable to observed explained variations from

OCO-2 when we used observed aspace values for XH2O (Figure 2.8d and 8e).

We do not expect that the inflated XCO2 ⟨c′⟩space values result from aliasing of synoptic scale

variability. First, the water vapor analysis confirmed that our 250 km filter properly isolates

mesoscale atmospheric transport. Second, the explained variability from OCO-2 was not corre-

lated with the N-S gradients (Table ??). If our ⟨c′⟩space values reflected synoptic scale variability,

these quantities should be correlated.

2.4.2.2 Unexplained Variability

The unexplained high frequency spatial variability of XH2O was up to 50 ppm (Figure 2.5 and 6),

about 50 percent larger than the random errors reported by the v8 OCO-2 retrieval algorithm data

product. These results were consistent with arguments from Connor et al. (2008) that reported

random errors from the OCO-2 retrieval algorithm represent a lower bound on actual error. How-

ever, our estimate for unexplained variability along OCO-2 tracks was still less than 20 percent

of the temporal and spatial mesoscale XH2O variability (Figure 2.5 and 6), suggesting that the

signal-to-noise ratio of XH2O retrievals are large enough to observe mesoscale variations.

The unexplained spatial variability in XCO2 was 0.3 to 0.8 ppm, which is the same order of

magnitude as the spatial and temporal variations that may reflect mesoscale variations and is also

generally consistent with random errors reported by the v8 OCO-2 retrieval algorithm data prod-

uct (Figure 2.6d). These unexplained variations were consistent with the mean standard deviation

of the cross-track soundings we averaged into each along-track bin (Section 2.3.2; Figure S9).
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OCO-2 tracks adjacent to Southern Hemisphere TCCON sites typically had smaller unexplained

variations (0.3-0.4 ppm), while tracks adjacent to Northern Hemisphere TCCON sites had slightly

larger unexplained variations (0.5-0.7 ppm). This difference appears to arise due to the fact that

the Southern Hemisphere and tropical OCO-2 tracks we analyzed contained ocean observations,

whereas the Northern Hemisphere tracks contained only land observations. When we conducted

semivariogram analysis around the latitude band between 40-50 degrees North, the unexplained

variations over the ocean were approximately half the magnitude observed over land (Figure 2.9).

Errors associated with retrieving XCO2 over land, where topography and albedo can influence the

XCO2 retrieval, likely increase the unexplained variability. The unexplained variations over land

did not show dependence on nadir versus glint observing mode. We note that the estimates for

unexplained variability were not sensitive to the cutoff for the high-pass filter and were also robust

when we explicitly fitted, rather than fixed, the unexplained variance in the spherical semivari-

ogram model.

2.4.3 Spatially correlated variance from the state vector

Correlations between high frequency along-track spatial variations in XCO2 and other elements of

the OCO-2 retrieval state vector likely contributed to the larger than expected spatially coherent

(explained) variability in OCO-2 XCO2, compared to mesoscale variations at corresponding TC-

CON sites (Table ??), and the smaller geostatistical spatial range (aspace) for XCO2 than XH2O.

We therefore tested whether the total and high frequency along-track spatial variability of XCO2

were correlated with other elements of the OCO-2 retrieval state vector. We selected aerosol op-

tical depth (AOD) and albedo in the O2 and weak and strong CO2 absorption bands as variables

that were likely to have spatial structures that, if correlated with XCO2, could obscure spatially co-

herent transport patterns. The correlations between elements of the state vector and both the total

variations and the high frequency along-track spatial variations of XCO2 were small (R 0.2; Table

??), but statistically significant. This analysis suggests that correlations between XCO2 and these

state vector elements may have depressed the apparent aspace and increased the explained variabil-
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Figure 2.9: Global analysis of along-track high-frequency spatial (a.) unexplained variability, (b.)
explained variability, and (c.) range of explained variability (aspace) of XCO2 within 10°×10° grid
cells across a latitudinal band centered at 45ºN. In general, grid cells over ocean show lower values
of explained and unexplained error than those over land.
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ity along OCO-2 tracks. We note that the analysis of albedo and AOD presented here was in no

way exhaustive, but rather, our results show that these correlations were important contributors to

the overall variance budget.

In contrast, high frequency variations in XH2O were generally independent of other state vector

elements. There were some weak to moderate, statistically significant correlations between the

unfiltered XH2O data and albedo or AOD (Table ??). These correlations could represent real

geophysical relationships among XH2O, albedo, and AOD, but could also be attributed large-scale,

coherent systematic biases in the retrieval of XH2O that can be attributed to errors in AOD and

albedo. When we high-pass filtered these variables, however, the correlations between the high

frequency variations of XH2O and albedo were not statistically significant, with the exception of

AOD. This result suggests that at smaller spatial scales (less than 250 km), the variations in XH2O

were independent of the state vector elements we tested here and therefore the explained variability

did not contain the imprint of spatially coherent biases
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2.5 Discussion and Conclusions

We developed a framework that allows us to leverage spatially dense soundings from the OCO-2

satellite and temporally dense soundings from TCCON to quantify the variance budget for XH2O

and XCO2, with a focus on estimating the imprint of mesoscale transport on OCO-2 observa-

tions. We first developed a method to separate variations from local diurnal surface-atmosphere

fluxes, synoptic-scale atmospheric transport, and mesoscale atmospheric transport from the overall

variability in TCCON observations. We found that variability from synoptic-scale transport was,

on average, 3 times larger than that attributed to diurnal fluxes for XH2O and of 2 times larger

magnitude for XCO2. On average, and mesoscale variations in XH2O and XCO2 were similar in

magnitude to the variability from local diurnal fluxes. The large contributions of mesoscale and

synoptic scale transport in driving tracer variability underscores the importance of accounting for

uncertainties in atmospheric transport and its subgrid-scale impact when using XCO2 in a carbon

flux inference system.

Second, we used geostatistical analysis to quantify explained (spatially coherent) and unex-

plained (random) variations in XCO2 and XH2O along OCO-2 tracks. We applied a 250-km high

pass filter that, for XH2O, isolated mesoscale variations that were the primary driver of along-track

high frequency variability of XH2O from OCO-2. We confirmed that the explained variations in

XH2O were primarily related to mesoscale transport using the tracer transport framework to com-

pare temporal variability to spatial variations. For XH2O, observed explained spatial variations of

XH2O were consistent with estimated explained variations within this framework (Figure 2.8a and

8b).

In contrast, we were not able to fully characterize the variance budget for XCO2. Within our

physical framework, the explained variations of XCO2 observed by OCO-2 (Figure 2.8c and e)

were too large to be explained solely by mesoscale atmospheric transport. We note that this mis-

match was particularly acute when using the geostatistically-estimated aspace from OCO-2 (around

20 km) for XCO2, but was also true when we substituted the observed aspace for XH2O (Figure

2.8d). Together, these suggest another source of spatially coherent variance in OCO-2 XCO2 that
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both shortens the length scale of coherence and contributes additional spatially coherent variability.

Based on correlation analysis with other elements of the state vector, we conclude that high-pass

filtered XCO2 fields from v8 of the OCO-2 Level 2 XCO2 retrieval impart such structure and may

explain part, though perhaps not all, of the mismatch in mesoscale time-space XCO2 variability

from TCCON and OCO-2. Correlations among elements of the retrieval state vector have also

manifested in biases in XCO2 retrieval output from GOSAT data, resulting in uncertainty of the

magnitude and sign of posterior regional-scale flux estimates (Chevallier et al., 2014). Our esti-

mates of explained and unexplained variability can be compared against other studies that leverage

the OCO-2 data set. For instance, Worden et al., (2017) analyzed the contribution of natural vari-

ations simulated by NASA’s high resolution GEOS-5 simulation to the OCO-2 error budget. They

found that the natural variability of XCO2 within 100 km neighborhoods was only about 0.08 ppm,

and that the observed variability from OCO-2 exceeded this value due to bias from other elements

of the OCO-2 v7 retrieval vector. We used our framework to estimate the natural (or mesoscale)

contribution to variations in XCO2 with our space-for-time framework. Based on mesoscale vari-

ations at northern hemisphere TCCON stations, we expect that the imprint of mesoscale systems

along the satellite track should be about 0.4 ppm (over 250 km). That our value is larger than the

natural variability in model output reported by Worden et al. (2017) underscores the utility of our

geostatistical approach for quantification of the variance budget based on observations themselves,

rather than model output that may contain its own set of biases. Further, our methodology enables

us to quantify the random error in the observations (unexplained variability) as well as the spatially

coherent error (the portion of the explained variability caused by systematic bias in the retrieval).

Our results suggest that our analysis framework yields robust quantification of the influence of

mesoscale transport for XH2O, despite the fact that local surface processes are likely also to im-

part local variations on this quantity. We acknowledge that our method to subtract local influence

based on a climatological diurnal signal may result in biases of up to 30 percent of the fraction of

variability in TCCON data being attributed to transport (Figure 2.2). Ultimately, the methodology

to account for local signals at TCCON sites would benefit from additional information on local
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fluxes across all sites, either from observations, such as eddy covariance fluxes, or from mecha-

nistic coupled atmosphere-land models. Despite this caveat, the agreement between TCCON and

XH2O variations suggests that the 250 km filter used and the assumptions made in this manuscript

are sufficient to account for the structure imparted by fine spatial scale transport.

Although there were complications with XCO2, our results are promising for the use of geosta-

tistical methods for parameterizing errors in inverse modeling frameworks. While we had hypoth-

esized that our approach would allow us to separate the influence of mesoscale transport on XCO2,

we note that for robust flux inference, proper accounting for spatially coherent non-transport struc-

tures within the data is also necessary. The approach presented in this study can be applied to

each subsequent data release, and we anticipate that as the retrieval algorithm becomes more ma-

ture, the importance of correlated errors will decrease and the role of mesoscale transport will

be revealed more clearly. Our results highlight the importance of continued development of the

OCO-2 retrieval algorithm, since correlations between XCO2 and other elements of the state vector

may induce bias and spurious spatial correlation in XCO2 that mask the influence of atmospheric

transport.

Our results also highlight the importance of constraining variations of XCO2 attributed to at-

mospheric transport for improved inferences of carbon fluxes from inversion models. While the

influence of random errors can be minimized by averaging multiple soundings, transport-driven

processes introduce variability on XCO2 observations that are both spatially and temporally cor-

related. For example, taking a 10 s average of XCO2 observations along the OCO-2 track (about

70 km), similar to the method presented in Crowell et al. (2019) will reduce the unexplained error

(Figure 2.6d) by 1N where N is the number of soundings in the averaging bin, because the unex-

plained errors for each sounding are assumed to be independent. In contrast the mean error for a bin

decreases only by 1Neffective for the spatially correlated transport variability (Figure 2.6e), where

Neffective can be approximated as the bin length divided by the geostatistical range (or autocorre-

lation length), which for XCO2 is roughly 2-3 and may actually be closer to 1 if the XH2O ranges

are used as more appropriate. Since the length-scales at which the resolved variability is correlated
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are comparable to the spatial distance encompassed by a 10-s along track average (Figure 2.7), the

mesoscale variance is a key element of the signal that will be used in the inversions even when

observations are aggregated. Given that the imprint of mesoscale and synoptic scale variance is

not spatially or temporally uniform, ignoring it in an inverse modeling framework will lead to over

confidence in some observational aggregates and underconfidence in others, ultimately shifting the

distribution of fluxes. This is analogous to conducting a simple linear regression in which uniform

error bars are assumed instead of assigning realistic errors to individual points; the resulting slope

and intercept will differ depending on the method of assigning errors. Inversion techniques typi-

cally require uncertainty estimates and their correlations on the inversion grid-scale, which spans

from roughly mesoscale ( 100km) to several times mesoscale depending on the transport model

resolution. The appropriate uncertainty estimate will incorporate both instrument and algorithm

error and spatially/temporally coherent subgrid-scale variability induced by transport and surface

flux processes. Based on our analysis of both TCCON and OCO-2, the coherent mesoscale vari-

ability signal for XCO2 is substantial relative to sounding errors alone and may be larger than

transport variability estimates produced by most carbon cycle models, which may inadequately

resolve mesoscale dynamics. Since mesoscale systems may have also been associated with frontal

cloud coverage, lack of ability to constrain mesoscale variations may have resulted in large rep-

resentation errors in inverse modeling (Corbin et al. 2008). Our results suggested that as a first

step, we could use the explained variability derived from geostatistical analysis of OCO-2 data to

inflate error estimates within inverse modeling systems. As a next step, we recommend the de-

velopment of coupled high-resolution CO2-weather models that fully capture fine-to-large scale

spatial and temporal variations in carbon fluxes, as an alternative to constrain the imprint of atmo-

spheric transport from XCO2observations provided by OCO-2, OCO-3, and other emerging CO2

monitoring satellites.”
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Chapter 3

Can We Infer the Imprint of Local Biospheric Fluxes in XCO2 Observations

from Space?

Note: This study remains in prep with a plan to submit for publication during the summer in 2023.

In this chapter, we provide an overview of the current status of this study, as well outline the

remaining work before submission.

3.1 Abstract

NASA’s Orbiting Carbon Observatory-3 (OCO-3) instrument aboard the International Space Sta-

tion is the first CO2-monitoring mission that collects total column-averaged CO2 (XCO2) data at

various times of day. OCO-3 provides the first opportunity to observe the diurnal cycle of XCO2

from space. We analyze OCO-3 observations in an attempt to calculate the diurnal cycle within a

given calendar month by compositing data obtained across different days, focusing on three loca-

tions within the Total Carbon Column Observing Network (TCCON), which provides validation

for space-based XCO2 observations. At these three sites (Park Falls, Wisconsin, Lamont, Ok-

lahoma, and Darwin, Australia), we find that OCO-3 observations are not sufficiently dense to

infer the diurnal cycle in light of uncertainty in the observations and geophysical variation due

to atmospheric transport. Instead, we leverage long-term records of XCO2 provided by TCCON

to quantify the minimum number of satellite overpasses as a function of time of day each month

necessary to infer the climatological diurnal cycle of XCO2. TCCON-based bootstrapping esti-

mates suggest a minimum of 10 to 20 observations, which are made under sunny to mostly sunny
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sky conditions, to reach a minimum of 100 percent relative error in the diurnal cycle amplitude

estimates. This result agrees well with a similar approach applied to the and the 2019B version

of the CarbonTracker posterior CO2 fields, (CT2019B). Our study provides a roadmap to measure

diurnal carbon fluxes globally for OCO-3, or similar remote sensing platforms that sample across

the diurnal cycle, as more data are collected during the extended mission, as well as for future

CO2-monitoring satellite missions.

3.2 Introduction

Accurate representation of carbon cycle processes is a critical step in constraining future estimates

of carbon dioxide (CO2) concentrations under various greenhouse gas emission scenarios (Peters

et al., 2017). Historically, lands and oceans have together taken up roughly half of all anthro-

pogenic CO2 emissions, with approximately a quarter of total emitted CO2 stored within each

reservoir (Friedlingstein et al, 2022). According to the Global Carbon Project (Friedlingstein et al,

2022), uncertainty in global fluxes remains high at nearly 1 PgC Yr−1 between the land and atmo-

sphere, and 0.5 PgC Yr−1 between the ocean and atmosphere. This uncertainty, which increases

at smaller local and regional scales, is due to unresolved processes in terrestrial ecosystem models

(O’Sullivan et al, 2022), poorly resolved constraints in assumptions used in atmospheric inversion

models (Crowell et al, 2019; Chandra et al, 2022), as well as uncertainties in ocean biogeochemical

process-based and observationally-based models (Fay and McKinley, 2022).

There are several approaches used within the broader scientific community to estimate car-

bon fluxes. These approaches are often broken down into two distinct categories: bottom-up and

top-down. Briefly, bottom-up approaches make inferences of carbon fluxes by estimating CO2

exchange at the process-level – such as tracking fossil fuel emissions, modeling plant behavior,

or scaling up fluxes measured at eddy covariance flux towers. Our study focuses on top-down

approaches, which infer carbon fluxes by tracking spatiotemporal changes in atmospheric CO2

concentrations.
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Examples of top down approaches include from simple box models (Bolin and Keeling, 1963)

that make basic assumptions of hemispheric exchanges of CO2 to more complex inverse models

that are largely based on the framework used by Enting (2002). Regardless of approach, the ro-

bustness of top-down inferences have a major dependence on the spatiotemporal density of high

quality CO2 observations (Gurney et al, 2002; Baker et al, 2006; Masarie et al, 2011). This depen-

dency is due to multiple sources and spatiotemporal scales of variability in CO2 observations that

each top-down method must constrain in order to infer fluxes. For example, in situ CO2 observa-

tions are heavily influenced by vertical mixing between the free troposphere and boundary layer

(Denning et al, 1995; Stephens et al, 2007) in addition to horizontal advection (Parazoo et al, 2008;

Parazoo et al, 2011; Williams et al, 2014; Kerr et al, 2020). Inadequate representation of vertical

and horizontal atmospheric transport processes yields large errors and uncertainties in estimated

posterior fluxes in inversions (Gurney et al, 2002; Baker et al 2006, Houwelling et al, 2015; Miller

and Michalak, 2020).

To fill critical global observational gaps in atmospheric CO2, a series of CO2-monitoring satel-

lites launched. The first satellites equipped with CO2-monitoring instruments launched with Aqua

and Envisat in 2002, Aura in 2004, and Metop-A in 2006; however their spatial footprints and ac-

curacy limited their ability to infer regional-scale carbon fluxes (Pan et al, 2022). By 2009, Japan

Aerospace Exploration Agency’s Greenhouse gases Observing SATellite (GOSAT-1; Ross et al.,

2013; Yokota et al., 2009). GOSAT-1 provides high density measurements of total vertical col-

umn integrated CO2 and methane (henceforth denoted as XCO2 and XCH4). GOSAT-2, a second

satellite launched in 2018 (Kataoka et al., 2017). National Aeronautics and Space Administration

(NASA) launched the Orbiting Carbon Observatory-2 (OCO-2) in 2014 (Crisp et al, 2004; Elder-

ing et al, 2017), and launched OCO-3 in 2019 and sits aboard the International Space Station (ISS)

(Eldering et al, 2019). Additionally, China launched Tansat in 2016 (Yang et al, 2018). Together,

these satellite observations, combined with existing networks of in situ observations, increase the

robustness of posterior estimates of fluxes from inverse models (Basu et al, 2018).
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3.2.1 Budgeting the diurnal variability of XCO2

Our research is predicated upon the decomposition of the XCO2 time series over a range of tem-

poral scales (Equation 3.1). We build on the work of Guan et al (2023), which examines the

interannual variability of XCO2, and Mitchell et al (2023), which focuses on mesoscale variations

of XCO2. In Section 3, we discuss the methodology used to account for each term of Equation 3.1

in detail.

XCO2 = XCO2,trend+XCO2,IAV +XCO2,season+XCO2,synoptic+XCO2,mesoscale+XCO2,local+ ϵ

(3.1)

At the longest timescales, XCO2 increases year upon year due to anthropogenic emissions

(XCO2,trend). Over the period of years to decades, we also fold in some variations of XCO2

driven by interannual variability (XCO2,IAV ), which primarily lies beyond the scope of this par-

ticular study. Within a given year, XCO2 oscillates seasonally due to hemispheric scale seasonal

fluxes (XCO2,season), synoptic-scale atmospheric transport (XCO2,synoptic), mesoscale atmospheric

transport (XCO2,mesoscale), and local fluxes (XCO2,local) (as noted in Mitchell et al, 2023). We also

include a bulk error term (ϵ), which represents variations attributable to measurement errors or

other unaccounted features.

Our study focuses on the the ability to infer typical magnitudes of changes in column CO2

due to local diurnal fluxes (XCO2,local) using space-based instruments, such as OCO-3. Here, we

define XCO2,local as diurnal variations of XCO2 that are the result of net mass exchanges of CO2

between the atmosphere and land (or possibly the atmosphere and oceans). At diurnal timescales,

the magnitude XCO2,local varies both by season and latitude (Torres et al, 2019). For example,

in northern mid-latitude regions XCO2,local can contribute as much as 2 ppm of daytime XCO2

variability per day during the growing season, but as little as 0.1 ppm per day in the winter (Torres

et al, 2019). At lower latitudes in the tropics, XCO2,local driven daytime variability is around 1 ppm

per day nearly year-round (Torres et al, 2019).

75



Atmospheric transport drives significant variations in XCO2 that often drowns out variations

driven by XCO2,local (Keppel-Aleks et al, 2011; Keppel-Aleks et al, 2012; Torres et al, 2022).

Atmospheric transport advects CO2 gradients across all ranges of spatiotemporal scales ranging

from the microscale eddies, to mesoscale circulations like thunderstorms, land-sea breeze inter-

actions, to synoptic-scale frontal systems, to planetary scale Rossby waves and inter-hemispheric

exchange. In the northern hemisphere midlatitude regions during the warm season, when the north-

south gradient is maximized, advection of XCO2 via large-scale eddies in the form of synoptic- to

planetary-scale weather systems (XCO2,synoptic ) can contribute to approximately the same amount

or greater of within-day variability of XCO2 as XCO2,local (Torres et al., 2019). On a typical day,

variability driven by XCO2,mesoscale can contribute more than half of the diurnal variability from

XCO2,local (Torres et al, 2019; Mitchell et al, 2023).

The partitioning of XCO2, XCO2,local, XCO2,mesoscale and XCO2,synoptic depends on the length

of averaging across spatiotemporal scales (Keppel Aleks, 2012; Torres et al, 2019). Torres et al

(2019) demonstrated using 13 years of data that mean total XCO2 variability scales directly with

local net ecosystem exchange observations. This implies that with a sufficient timespan of obser-

vations, long-term contributions driven by XCO2,mesoscale and XCO2,synoptic on the diurnal XCO2

diurnal variance budgetcancels out. As a result, a climatological representation of the diurnal vari-

ance budget of XCO2 is primarily driven by XCO2,local in the absence of systemic biases embedded

within the ϵ term in Equation 3.1 (Torres et al, 2019).

3.2.2 Study Overview

With the exception of the OCO-3 instrument, most of the other CO2-monitoring satellites follow a

polar orbit and only make measurements at approximately 13:00 LT (Crisp et al 2004; Yokota et

al, 2009; Ross et al, 2013; Eldering et al, 2017; Eldering et al, 2019). As a result of the ISS’s pre-

cessing orbit discussed in Section 2.1, OCO-3 collects data throughout the entire day (Eldering et

al, 2019). This unique orbital pattern provides an unprecedented opportunity to observe the diurnal

cycle of XCO2 globally from space. For this study, we first provide a contemporary assessment of
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OCO-3’s capacity to directly infer the climatological diurnal cycle of XCO2. We then leverage the

longer and more complete TCCON and CarbonTracker records to define a minimum threshold of

observations to reasonably estimate the diurnal cycle of XCO2.

This chapter addresses the following science questions:

1. How well does OCO-3 currently estimate the climatological diurnal cycle of XCO2?

2. What would be the minimum number of required space-based observations spread over the

day to reliably reproduce the diurnal cycle of XCO2?

Section 3.3 of this chapter discusses the datasets we use in this analysis in detail. Section

3.4 describes how we estimate each term of the XCO2 diurnal cycle budget and our methods for

identifying the minimum number of required observations to estimate the diurnal cycle of XCO2.

We show our results in Section 3.5 and discuss the implications of this study in Section 3.6.

3.3 Data

3.3.1 OCO-3

NASA began the installation the OCO-3 instrument on May 4, 2019 (Eldering et al, 2019). OCO-3

observations began in August 2019 with the extended mission expected to continue through 2029

(https://ocov3.jpl.nasa.gov/). The precessing orbit allows for the sampling of XCO2 at different

times of day within 52 degrees of the equator (Eldering et al, 2019). In a typical month, there are

roughly 140,000 globally XCO2 soundings over land and water that are quality flagged (QF) as

“good” (Eldering et al, 2019). Unlike OCO-2, which has a consistent 16-day repeat cycle globally

(Crisp et al, 2004), the OCO-3 repeat cycle is much more complex and geographically dependent

(Eldering et al, 2019). Globally, the average repeat cycle of OCO-3 is approximately 70 days with

very few soundings below 30 degrees south and as much as over 300 soundings at 55 degrees North

(Eldering et al, 2019). While overpasses can occur at any time per day, only observations made

with a solar zenith angle of 63 degrees pass the QF as “good” (Eldering et al, 2019).
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Observations are made with OCO-3 in three scanning modes: land nadir, ocean glint, and

Snapshot Area Mapping (SAMs), all of which were used in this study (Eldering et al, 2019).

SAMs represents a new scanning mode that is not available with OCO-2. Here, a pointing mirror

assembly, takes 100 km by 100 km samples of various land (and potentially oceanic) regions to

observe potential CO2 emission hotspots, volcanos, and other areas of interest (Eldering et al,

2019). The closest analog to SAMs with OCO-2 is “target mode,” in which the satellite rotates

such that grating spectrometers on board are pointed in the direction of the target (Crisp et al,

2004).

The OCO-3 instrument has a nearly identical design (described below) to that of OCO-2, which

has been collecting data in low earth orbit since September 2014. To infer XCO2, the OCO-3

instrument consists of three grating spectrometers, measuring reflected sunlight in strong CO2 ab-

sorption band centered around 2.0 µm, a weak CO2 absorption band near 1.6 µm, and the oxygen

A band near 0.76 µm, (Eldering et al, 2019). Each measurement consists of eight cross-track foot-

prints of 1.6 by 2.2 km2 every 0.33 seconds (Eldering et al, 2019). Unlike OCO-2, the spectrome-

ters on OCO-3 are guided by a pointing mirror assembly (PMA), which allows for measurements

of irradiances at various solar zenith angles making SAMs possible (Eldering et al, 2019).

In this study, we use data from the OCO-3 B10 Level 2 bias-corrected XCO2 from the full-

physics retrieval product starting on August 8, 2019 and ending November 30, 2022 (O’Dell et al,

2018). These are derived from the measured irradiances, combined with ancillary meteorological

and physics-based data, using the Atmospheric Carbon Observations from Space (ACOS) retrieval

algorithm (O’Dell et al, 2018). For OCO-3, XCO2 retrievals are accurate to within 1 ppm after

calibration with the TCCON network (Eldering et al, 2019). This data is available for download

online at https://disc.gsfc.nasa.gov/ labeled with the prefix “OCO3 Lite FP 10” for each file. We

use output from the quality control parameter in the OCO3 Lite FP 10 output to retain observa-

tions that pass the quality flags as “good.”.
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3.3.2 TCCON

We calculate the climatological diurnal cycle in XCO2 using observations from three test sites

in the Total Carbon Column Observing Network (TCCON). TCCON is a global, ground-based

network of Fourier transform spectrometers (FTS) that measure direct solar absorption spectra in

the near-infrared, from which the total column-averaged mole fraction of atmospheric trace gasses

like CO2, CH4, N2O, CO, H2O, and HDO (Wunch et al. 2011a) are inferred. TCCON is regularly

used for validating OCO-2 and -3 XCO2 retrievals (Wunch et al, 2011b; Liang et al, 2017; Wu

et al, 2018) and provides a long-term record with dense temporal coverage. In the absence of all

cloud cover, a spectrum can be obtained in an approximately 2 minutes repeat-cycle.

For our analysis, we focus on three TCCON sites. We selected two mid-latitude sites in North

America and one tropical TCCON site in Australia (Table 1). We choose these different latitude

zones because we expect that patterns of atmospheric transport, which vary by latitude, may impact

our ability to estimate the diurnal cycle (Torres et al, 2019). In addition to atmospheric transport,

the seasonality of local diurnal fluxes as observed by TCCON also varies greatly by latitude (Torres

et al, 2019). To compare TCCON with OCO-3, we closely follow the coincident criteria described

by Wunch et al (2017) in which any retrieval within a 10 degree longitude and 5 degree latitude

centered over a TCCON location is considered. We partition all of the available data within half-

hourly bins for each OCO-3 overpass. Given the observational length from these sites, this aligns

with anywhere between 0 and 7 (and most often just 1) coinciding observations from OCO-3

collected at a given hour of the day for a given month of the year (Figure 1).

Retrievals of XCO2 are derived from absorption in the 1.58 and 1.60-µm absorption band

(Wunch et al., 2011). We use TCCON data that has been processed using the GGG2014 retrieval

algorithm (De Mazière et al, 2014). TCCON data typically have precision of 0.4 ppm and are

tied to the World Meteorological Organization (WMO) CO2 scale by periodic aircraft and AirCore

overpasses (Wunch et al., 2010). We filter out any data where the solar zenith angle is greater than

55º.
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TCCON Site Location Citation Dates of TCCON measurements
Park Falls, WI, US 45.93ºN, 90.44ºW Wennberg et al (2022a) May 26, 2004 - August 31, 2022
Lamont, OK, US 36.69ºN, 97.56ºW Wennberg et al (2022b) July 6, 2008 - February 27, 2022
Darwin, Australia 12.46°S, 130.84° E Deustcher et al (2010) August 28, 2005 - April 30, 2020

Table 3.1: The list of TCCON sites and dates of measurements used in this analysis.

3.3.3 CarbonTracker

We use CO2 output from the CarbonTracker to corroborate inferences about the detectibility of

the diurnal cycle made from TCCON. CarbonTracker creates a 4-dimensional estimate (x, y, z,

and t) of atmospheric CO2 fields by assimilating multiple networks of in situ CO2 observations

from the surface, towers, aircrafts, and ships. CarbonTracker uses the TM5 atmospheric transport

model bounded by meteorological data from the European Centre for Medium-Range Weather

Forecasts (ECMWF) ERA-interim reanalysis product (Jacobson et al, 2020). In this study, we use

the CO2 and temperature products provided by the 2019B version of CarbonTracker (CT2019B).

The temporal resolution of CT2019B output is every 3 hours, spanning from January 2000 to the

end of December 2018. The horizontal resolution over our study region in North America is on 1

by 1 degree grid cells and 3 by 2 degree grid cells in Australia (Jacobson et al, 2020). We integrate

CO2 vertically using pressure-weighting and a uniform vertical averaging kernel for the nearest

horizontal grid cell to each TCCON site to compute XCO2 in CT2019B (Supplemental Figure

B.1).

3.4 Methods

3.4.1 Estimating the climatological diurnal cycle of XCO2

Torres et al (2019) demonstrated that the climatological diurnal drawdown XCO2 scales directly

with local net ecosystem exchange. To isolate the local (diurnal) imprint on XCO2, we first ac-

count for the long term trend (XCO2,trend) by fitting a linear polynomial to all available obser-

vations. After subtracting this trend, we infer XCO2,season by taking the mean all thedetrended
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data within a given calendar month. By subtracting XCO2,trend and XCO2,season, we are left with

variations of XCO2 driven by local fluxes, sub-seasonal transport, and in the case of OCO-3 and

TCCON, measurement errors (Equation 3.1). We denote the detrended and deseasonalized XCO2

as XCO2,detrended. For TCCON and CT2019B, where there are sufficiently long records of data,

we detrend and deseasonalize using XCO2 data from their respective datasets. Given the limited

data available with OCO-3, we deseasonalize and detrend OCO-3 XCO2 data using values derived

from the coincident TCCON site.

Note, we neglect the interannual variability (IAV) term from Equation 3.1 at timescales between

XCO2,trend and XCO2,season. This is in part because, as we discuss below, we average across

multiple seasonal cycles, averaging away IAV, and in part because IAV on the order of 0.5 to

1 ppm is fairly small in comparison to long-term trends driven by anthropogenic emissions and

seasonal cycle amplitudes (Guan et al., 2023).

We calculate the climatological diurnal cycle at each site using XCO2,detrended data from TC-

CON. To obtain representative samples of XCO2,detrended for each hour of observations, we first

partition each observation into hourly local time bins at each TCCON site. We take the mean of

all the data in each bin provided there are a minimum of 10 observations in that bin. Otherwise

that bin is filtered out from our calculations. Once we obtain representative hourly XCO2,detrended

data, we are then able to directly compute the climatological diurnal cycle of XCO2. To remove

potential biases folded in by large air masses, we filter out all TCCON and OCO-3 data obtained

with a solar zenith angle of greater than 55 degrees. We then further partition all of the available

representative XCO2,detrended data into their respective 12 month by 24 hour bins and take the mean

of all available data.

We treat the climatological diurnal cycle derived from TCCON data as the “true” diurnal cycle

of XCO2. This provides us the basis to evaluate the performance of estimates of the climatological

diurnal cycle of XCO2 inferred with OCO-3 data.
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3.4.2 Bootstrapping the diurnal cycle of XCO2

We use a bootstrapping approach to estimate the uncertainty on the diurnal cycle drawdown given

the sample size of the observations. For TCCON observations, we again partition all of the

XCO2,detrended data into hourly bins as described above in Section 3.4.1, filtering out bins with

fewer than 10 observations. We then bootstrap diurnal cycle computations using 1000 random

samples of length N. For TCCON data, N increases from 1 to 100, while N increases from 1 to

400 with CT2019B data. We keep track of any discrepancy by computing 95 percent confidence

intervals of the bootstrapped diurnal cycle for each sample N, and compare the magnitude of the

confidence interval to the magnitude of the amplitude of the climatological diurnal cycle of XCO2.

We follow the same procedure for CT2019B data, although model output is only available at 3

hour local time intervals.

3.5 Results

3.5.1 Climatological diurnal cycle of XCO2

OCO-3 shows no discernible trend in the diurnal cycle of XCO2 for any month across the three

locations we analyze (Figure 3.1). For example, in August over Park Falls, OCO-3 shows that

XCO2 falls from -0.4 ppm at 10:00 to -1.7 ppm by 11:00 LT, followed by an increase to 0.2

ppm between 11:00 and 12:00 LT; resulting in a net decrease of 1.3 ppm in one hour followed by a

sudden increase of 1.9 ppm in the subsequent hour (Figure 3.1a). In the same time period, TCCON

observes a steady drop from 0.2 ppm to 0.0 pm from 11:00 to 12:00 LT (Figure 3.1b). While the

downward trend of XCO2 continues into the late afternoon with TCCON with a drop down to

-0.5 ppm by 15:00 LT, XCO2 anomaliees from OCO-3 randomly oscillates between positive and

negative values (Figure 3.1). Similar are observed in Lamont, Oklahoma in August (Figure 3.1c

and d). In Darwin, Australia, the “warm” season with the greatest data coverage with TCCON

and OCO-3 is November (Figure 3.1 e and f). TCCON consistently shows hour-to-hour drops in
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Figure 3.1: Diurnal cycle of XCO2 as a function of month of year and hour of day over (a. and
b.) Park Falls, Wisconsin, US, (c. and d.) Lamont, Oklahoma, US, and (e. and f.) Darwin,
Australia. Climatological diurnal cycles derived from OCO-3 data are in panels (a.), (c.), and (e.);
and TCCON in (b.), (d.), and (f.).

XCO2 from 0.2 ppm at 08:00 LT to -0.4 ppm by 15:00 LT (Figure 3.1f). With the limited OCO-3

data available in November, we again note considerable hour-to-hour variability in XCO2 with no

discernable trend (Figure 3.1e).

The lack of a diurnal cycle almost certainly spurs from the sparsity of observations made by

OCO-3 within each hourly bin (Figure 3.2). Using August again as an example, we note a max-

imum of 5 OCO-3 overpasses over an hourly bin in Park Falls and 7 in Lamont (Figure 3.3). In

Darwin, there are only 1 to 3 observations within each hourly bin in November. In general 3 or

fewer, with frequently only 0 or 1 observations with the hourly bins each month across each site

(Figure 3.3). In contrast, there is an excess of 100 or TCCON observations within each bin when

the solar zenith angle is less than 55 degrees at each site (Figure 3.4). During the late morning and

afternoon hours in the peak growing season, TCCON observes over 300 to 400 hourly-averaged

observations within each bin in Park Falls and Lamont (Figure 3.4a and b). In Darwin, the peak

number of TCCON observations (300 to nearly 500) occur in the late afternoon during the dry sea-
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Figure 3.2: The diurnal drawdown of XCO2 observed at the TCCON site in Park Falls, Wisconsin
in June. The blue lines represent the drawdown on each individual day. The thick black line
presents the climatological diurnal cycle of XCO2.
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Figure 3.3: OCO-3 overpasses as a function of month of year and hour of day over (a.) Park Falls,
Wisconsin, US, (b.) Lamont, Oklahoma, US, and (c.) Darwin, Australia, from August 8, 2019
through November 30, 2022.

Figure 3.4: The same as Figure 3.3, but using all available TCCON data.

son from June to October (Figure 3.4c). Unfortunately, this time period is challenging to compare

against OCO-3 since the dry season coincides with the weakest diurnal drawdown observed by

TCCON in Darwin.

We note that the overall patterns in the diurnal cycle of XCO2 described with TCCON also

match closely what we observe with CT2019B.

3.5.2 Bootstrapping XCO2 as a function of sample size

The trajectory of XCO2 varies significantly from day-to-day (Figure 3.2). We attribute much of

this day-to-day variability to random atmospheric transport patterns and random and systematic

retrieval errors (Equation 3.1). Given the randomness of the spread of the evolution of the XCO2
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time series on a given day, as the number of observations increase, the more representative does

the mean XCO2,detrended value becomes to the “true” climatological diurnal mean, as shown with

TCCON. Thus, increasing the coverage of satellite observations over time, as well as the quality

of retrievals, would provide adequate direct estimates of the diurnal cycle of XCO2 globally.

Across each site, the uncertainty in estimates of the climatological diurnal cycle each hour

decreases as the number of observations increases (Figure 3.5). At the northernmost site of our

analysis in Park Falls, Wisconsin in July, we note that the range of the 95 percent confidence

interval decreases from 4 ppm with 5 observations to 0.5 ppm with 100 observations with CT2019B

data (Figure 3.5a). We note approximately identical numbers with TCCON in Park Falls (Figure

3.5b). At Lamont, Oklahoma, we observe both slightly lower estimates of error with fewer samples

(approximately 1.5 ppm with 5 samples), but here we also have a smaller “true” diurnal cycle

amplitude (Figure 3.5c and d). We see the smallest error over Darwin, Australia in February at

only approximately 1 ppm with 5 samples observed by TCCON and just under 1 ppm observed by

CT2019 (Figure 3.5e and f). In Darwin, we note the magnitude of the diurnal amplitude of XCO2

is observed by CT2019B remarkably low at only 0.1 ppm, compared to the approximately 0.7 ppm

observed by TCCON (Figure 3.5e and f).

To achieve 100 percent relative error on the true diurnal cycle, we require 10 to 20 observations

within an hourly bin. Across each site, the uncertainty asymptotes to under 0.5 ppm (about 50

percent relative error) with sample sizes of roughly 50 or greater, which we roughly consistent

with the magnitude day-to-day variability of the imprint of local diurnal fluxes estimated at Park

Falls in Torres et al (2019). In Park Falls (Figure 3.6a) and Lamont (Figure 3.6b), we observe re-

markable consistency between TCCON and CT2019B – which increases our confidence in results.

However, in February in Darwin there are significant unexplained differences between TCCON

and CT2019B data, again owing to the differences in the diurnal cycle amplitude. It is worth not-

ing that despite differences in the magnitude of the diurnal drawdown, the trajectory of the range

of the 95th percentile estimated error of the climatological cycle of XCO2 in CT2019B remains

remarkably similar to the range observed by TCCON. Overall, the estimated error in CT2019B is
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Figure 3.5: The range of the bootstrapped diurnal cycles of XCO2, shaded by the sample size of N .
The shaded region represents the range of the middle 95th-percentile of the diurnal cycle of XCO2

each hour. The yellow dashed line represents the “true” diurnal cycle at each respective site. The
right (left) column represents bootstrapped data for (a. and b.) Park Falls, Wisconsin, US, (c. and
d.) Lamont, Oklahoma, US, and (e. and f.) Darwin, Australia. Panels (a.), (c.), and (e.) represent
TCCON data and panels (b.), (d.), and (f.) are from CT2019B.
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Figure 3.6: The difference between the 97.5th percentile of the diurnal cycle of the bootstrapped
XCO2 (red lines) compared to climatology (black lines) as a function of the total number of sam-
ples for (a.) Park Falls, Wisconsin, US, (b.) Lamont, Oklahoma, US, and (c.) Darwin, Australia.
We use July climatology for Park Falls and Lamont, but February climatology at Darwin. The
solid lines use TCCON data and the dashed lines represent CT2019 data.

approximately 0.2 ppm smaller than that observed by TCCON, which we speculate may be due to

the coarser 3º x 2º resolution of the global CT2019B output (compared to the 1º x 1º horizontal

resolution output available at the North American sites) (Figure 3.6c). Still, TCCON shows that

10 to 20 observations are sufficient to reduce the relative error in climatological diurnal cycle of

XCO2 estimates in Darwin, which is consistent with our results in Park Falls, and Lamont (Figure

3.6).

3.6 Discussion and Conclusions

Our results show that that – to date – OCO-3 has not collected enough data in any of the three sites

we analyzed (Park Falls, Wisconsin, Lamont, Oklahoma, and Darwin, Australia) to make direct

inferences of the climatological diurnal cycle of XCO2 (Figures 1 and 3). However, we are able to

leverage the longevity of coincident temporally dense TCCON observations at each site to obtain

the “true” climatological diurnal cycle of XCO2 (Figure 3.1).

Across each site, we estimate that there must be a minimum of 10 to 20 observations to get

100 percent relative error on the estimate of the climatological value XCO2 each hour. The un-

certainty of these estimates when using 10 to 20 samples is approximately equal to the magnitude
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of the peak-to-trough diurnal drawdown of XCO2 (Figure 5). It is noteworthy that this result was

consistent across each site using TCCON, and Park Falls and Lamont with CT2019B data. The

minimum threshold of 10 to 20 samples is consistent with the representative timescales of larger

synoptic-scale weather systems in previous studies if observations were made over the course of

sequential days (Torres et al 2019; Keppel-Aleks et al, 2011; and Keppel-Aleks et al, 2012). We

note a divergence in the results between TCCON and CT2019B in Darwin which are driven by

a large difference in the magnitude of the diurnal cycle amplitude in February between the two

datasets (Figure 3.6). Using TCCON data exclusively, the results still suggest 10 to 20 observa-

tions are sufficient to reach 100 percent relative error in estimates of the diurnal cycle. However,

the amplitude of the diurnal cycle in CT2019 in Darwin of 0.1 ppm is smaller than the variability

of XCO2 with even 50 to 100 observations (Figure 3.6). Overall, these results underscore the need

to increase the number of global observations of XCO2 or the need to understand the processes

that govern the spatiotemporal variability of XCO2 with fewer observations.

Another caveat is that this statistical analysis and bootstrapping methods used in this chapter

of this thesis are preliminary. Prior to publication, we will need to include more robust analysis.

The approach we use will likely continue bootstrapping each hour of binned data. However, we

will instead estimate the magnitude of diurnal drawdown of XCO2 using linear regression instead

of peak-to-trough analysis used in this thesis. We will also determine if we can reduce the total

number of XCO2 samples each hour to infer reasonable estimates of the climatological diurnal

cycle accounting for the imprint of larger-scale synoptic-scale atmospheric transport as discussed

in section 3.3. We hypothesize that we can account for synoptic-scale atmospheric transport using

700 mb potential temperature data as a proxy for transport (Equation 2). From Torres et al (2019),

the imprint of synoptic-scale transport imposes a signal that is approximately an equal order of

magnitude of the diurnal drawdown of XCO2 in the midlatitudes. While we will unlikely include

finer scale atmospheric transport in this analysis, which can be estimated using semivariograms, it

can account for variations in XCO2 that are about half the magnitude of the climatological diurnal

drawdown across most latitudinal bands (Torres et al, 2019; Mitchell et al, 2023).
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Even when accounting for atmospheric transport, there still remain several uncategorized vari-

ations in XCO2 that are all embedded within the error term, ϵ, in Equation 3.1. We anticipate

that these variations likely include retrieval errors in TCCON or OCO-3, spurious fossil fuel emis-

sions, or other potential sources. Accurate representations of each of these sources of variability

are needed in order to back out the “true” imprint of local carbon fluxes. Even in the absence of

retrieval errors with CT2019B, we note a remarkable consistency in results when compared to TC-

CON data – including the minimum number of observations to have 100 percent relative error or

less in estimates of the diurnal cycle of XCO2. This increases our confidence in our results and the

number of observations are required to properly estimate typical contributions to XCO2 variability

by local diurnal fluxes.

We expect that improvements in the characterization of the diurnal variability budget of XCO2

in Equation 3.1 will increase our ability to more directly quantify the climatological imprint of

local carbon fluxes with space-based observations. Additionally, with an additional three years

worth of data from OCO-3’s extended mission and a consequence of the orbital pattern of XCO2,

we anticipate that there could be increasing utility in making early estimates of the climatological

diurnal cycle of XCO2 using OCO-3 in regions with greater than 10 to 20 overpasses at a particular

time of day and month. This threshold could potentially be reduced with better constraints on other

terms in Equation 3.1. These estimates could be compared against estimates of fluxes derived from

inverse models, terrestrial biosphere models, and other methods of inferring local carbon fluxes.

This study not only examines the ability for OCO-3 to estimate the diurnal cycle of XCO2, but

could also inform the design of future CO2-monitoring satellite missions.

3.7 Future Work

We anticipate that we will submit a paper based on the work done in this chapter in June. Prior to

publication, our efforts are concentrated in two areas:

1. Increasing the robustness of the bootstrapping method. Instead of simply taking the mean of
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each hourly bin to estimate the diurnal cycle of XCO2, we are bootstrapping each hourly bin

from 5 to 100 samples and bootstrapping the best fit linear regression slope of the diurnal

drawdown of XCO2. By multiplying the slope by the number of daylight hours observations

available, this provides an alternative estimate of the diurnal drawdown of XCO2 for each

month. Then we will be able to evaluate the minimum number of samples each hour are

required to estimate the climatological drawdown of XCO2.

2. We will attempt to account for the imprint of synoptic-scale transport of XCO2 for each

observation. We will then repeat the bootstrapping analysis using the synoptic-scale atmo-

spheric transport corrections. We will be able to determine if these corrections are able to

improve estimates of the diurnal drawdown of XCO2 with fewer observations. We note that

we are still neglecting to account for mesoscale atmospheric transport – as well as accounting

for potential contributions to the error term in Equation 3.1.
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Chapter 4

Conclusions

CO2 is one of the largest contributors to the warming of the planet and understanding how much

CO2 will remain in the atmosphere is critical for understanding future climate scenarios through

2100. Future projections of CO2 require that we accurately model the processes that govern the

mass exchange of carbon between the land and atmosphere and ocean and atmosphere (Bonan and

Doney, 2018). By constraining contemporary carbon fluxes at increasing spatiotemporal resolu-

tion, we move closer to understanding the processes that govern the contemporary carbon cycle

– and can potentially learn how these processes will respond to different environmental forcing.

In this dissertation, we examine the spatiotemporal behavior of XCO2 at timescale that ranges

from within a day through up to 21 days. Spatially, this represents mesoscale to synoptic-scale

processes.

In Chapter 2, we used simultaneous measurements of XCO2 and XH2O to evaluate and in-

troduce a framework for quantifying along-track mesoscale variability of XCO2 from the OCO-2

retrievals using semivariograms. We also quantified the diurnal amplitude of XCO2 across sev-

eral TCCON sites, as well as estimated the climatological imprint of mesoscale and synoptic scale

variability of XCO2 using TCCON. In doing so, we demonstrated that climatological drawdown

of XCO2 scales directly with local carbon fluxes (net ecosystem exchange). As an ancillary out-

come, we demonstrated the utility semivariograms provide as an alternative independent measure

of retrieval error. The framework we use in this study can be applied to future satellite missions

and other relatively inert trace gasses.

In Chapter 3, we evaluate the potential to directly infer the climatological diurnal cycle of
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XCO2 using OCO-3 data. While, to date, there is not enough OCO-3 data available to make

reliable inferences of the diurnal cycle of XCO2, we use TCCON and CarbonTrack 2019B data to

estimate the minimum number of observations required to reliably estimate the diurnal drawdown

of XCO2 from space. At all three sites studied (Park Falls, Wisconsin, Lamont, Oklahoma, and

Darwin, Australia), we determined that a minimum of 10 to 20 observations were needed to reach

within 100 percent relative error in any estimate of the climatological diurnal drawdown of XCO2.

Future work in Chapter 3 will involve evaluating how many observations would be needed if we

properly account for synoptic-scale atmospheric transport. From there, we can iterate by removing

mesoscale and finer scale atmospheric transport, as well as accounting for biases in retrievals.

The work done in chapter 3 provides a roadmap for directly observing the diurnal cycle – and by

extension – the mass exchange of CO2 from space.

By understanding the drivers of variability of XCO2, we can provide independent estimates of

regional scale carbon fluxes that complement research from inverse models, process-based carbon

cycle models, and the scaling up of local flux data.
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Appendix A

Supplemental Figures for Chapter 2
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Figure A.1: Climatological diurnal drawdown of XH2O observed at the TCCON site in Lamont,
Oklahoma partitioned into half-hourly bins.
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Figure A.2: Similar to Supplemental Figure 1, but for XCO2.

96



Figure A.3: A sample semivariogram of XCO2 derived from an OCO-2 overpass fitted to a spher-
ical model (red line).
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Figure A.4: Monthly mean N-S gradient of XCO2 calculated from OCO-2 data (with at least
over 30 coincident overpasses) (red) and CT2017 output (blue) within a 10ºx10º grid centered on
Lamont, Oklahoma, and HIPPO transects over the Pacific Ocean between 25º and 45ºN (green).
The error bars represent the standard error of monthly mean N-S gradients.
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Figure A.5: Monthly mean N-S gradients of XH2O at each TCCON site derived from CT2017
data.
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Figure A.6: Similar to Supplemental Figure 6, but for XCO2.
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Figure A.7: Mean lag time of within-day variability of residual XCO2 across each TCCON site
from 800 to 1800 LST every day (dashed lines) for when autocorrelation values drop to less than 0
(red) and e−1(blue). The circles represent the mean lag times at each TCCON site. The error bars
represent the standard deviation of the mean lag times at each TCCON site.
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Figure A.8: Monthly within-day (1000 to 1800 LST) (a. and c.) mean and (b. and d.) standard
deviation of total column averaged horizontal wind speeds weighted by vertical profiles of (a. and
b.) H2O and (c. and d.) CO2 at each TCCON site derived from CT2017 output.
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Figure A.9: Mean standard deviation of a. XCO2 and b. XH2O for every cross-track retrieval
averaged into each bin described in Section 2.2.1 for each OCO-2 track over Lamont, Oklahoma.
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Appendix B

Supplemental Figures for Chapter 2
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Figure B.1: The range of the bootstrapped diurnal cycles of XCO2, shaded by the sample size of
N . The shaded region represents the range of the middle 95th-percentile of the diurnal cycle of
XCO2 each hour. The yellow dashed line represents the “true” diurnal cycle at each respective site.
The right (left) column represents bootstrapped data for (a. and b.) Park Falls, Wisconsin, US,
(c. and d.) Lamont, Oklahoma, US, and (e. and f.) Darwin, Australia. Panels (a.), (c.), and (e.)
represent TCCON data and panels (b.), (d.), and (f.) are from CT2019B.
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