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(right), migration is simulated by connecting the 3 vials in a linear array (vial 1 - vial
2 - vial 3) and an independent set of pumps is used to exchange media between neigh-
boring vials at a fixed rate. B and C: Per capita growth rates for individual populations
(left) and the total population average (right) when the vials are seeded with homo-
geneous (B) or heterogeneous (C) mutant fractions under conditions of no migration
(red) and migration (blue). Bar graph insets represent the initial mutant population
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4.5 Evolution of doxycycline resistance in well-mixed communities depends on drug
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ABSTRACT

Antibiotics are used to treat bacterial infections, as they can kill or inhibit the growth of bacterial
populations. However, the misuse of antibiotics may also promote the evolution of drug resis-
tance, reducing the efficacy of many treatments. The rapid rise of antibiotic resistance continues to
outpace the development of new drugs and is becoming one of the most significant global health
challenges. The mechanisms of antibiotic resistance are increasingly understood at the molecular
level. But understanding how the dynamics of bacterial communities shape the emergence of re-
sistance in microbial populations is an ongoing challenge. In this thesis, we combine quantitative
experiments on bacteria with simple mathematical models to investigate how resistance to antibi-
otic emerges in communities of E. faecalis, a Gram positive bacterial species and opportunistic
human pathogen. Our focus is not on identifying new mechanisms of drug resistance; instead, our
goal is to gain a deeper understanding of how mutants harboring known resistance mechanisms
rise to dominance in microbial populations characterized by temporal and spatial heterogeneity.

This thesis can be divided into two primary themes: time dependent effects of collateral evo-
lution (Part I) and effects of multi-strain interactions in heterogeneous communities (Part II). Col-
lateral effects refer to an increase (collateral resistance) or decrease (collateral sensitivity) in resis-
tance to one drug that occurs during adaptation to a second drug. In Part I of this work, we use
laboratory evolution experiments to investigate how collateral sensitivity profiles change over time
as E. faecalis undergoes adaptation to a diverse library of antibiotics. We describe a rich collection
of dynamics that exhibit global trends–for example, collateral resistance often arises in early stages
of adaptation, while sensitivity tends to increase in later stages–but also reveal a number of drug-
and population-specific dynamics that we characterize using a combination of genome sequencing
and phenotype measurements.

In Part II, we investigate how interactions between cells and the surrounding spatial environ-
ment influence the evolution of resistance. Our work focuses on two aspects of these interactions:
the role of 1) spatial heterogeneity and 2) inter-cellular competition in modulating the evolution
of resistance. We investigate these issues in laboratory populations using customized, computer-
controlled bioreactors, which allow us to experimentally simulate both migration dynamics be-
tween spatially distinct populations and adaptive antibiotic treatments that depend on cell density.
Our findings reveal a complex interplay between migration, spatial heterogeneity, and population
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density, demonstrating how different features of the environment can accelerate, or impede, the
evolution of resistance.

As a whole, this thesis highlights both the simplicity and complexity of evolutionary dynamics
leading to resistance. On one hand, Part I highlights how collateral effects and evolution can be
remarkably diverse even in simple laboratory settings. Part II underscores the important role that
spatial heterogeneity can play in modulating resistance, yet also highlights how initially counter-
intuitive dynamics can–at least sometimes–be understood with simple mathematical models. We
hope these results motivate continued explorations of resistance evolution, both in the lab and the
clinic.
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CHAPTER 1

Introduction

The discovery of antibiotics has tremendously transformed the field of medicine and improved
public health [2]. However, multiple factors–including the overuse and misuse of antibiotics–have
promoted the rapid spread of antibiotic resistance ([3]). Unfortunately, the development of new
drugs is an arduous and time-consuming endeavor, and the emergence of resistance appears to
be outpacing the advent of new drugs, making antibiotic resistance an increasing threat to global
health [4, 5, 6, 7, 8, 9, 10].

Because of the slow pace of drug development, there has been renewed focus on strategies for
using currently available drugs to slow down the emergence of resistance. Doing so requires an
understanding of resistance on multiple levels–from molecular and genetic to the epidemiological
and ecological scales. With the increasing recognition that bacterial communities play an integral
in human health and physiology–not merely for infections, but also as part of the natural ecosys-
tems in human hosts–there is continued need to develop a quantitative and predictive understanding
of microbial dynamics. Rapid breakthroughs in genetics, molecular biology, and biophysics have
led to a detailed, if still incomplete, picture of antibiotic resistance at the molecular level. How-
ever, much less is known about how those molecular details give rise to population behavior that
shapes the survival, adaptation, and potential extinction of microbial communities. Over the past
decade, an increasing body of work suggests that antibiotic resistance is a community phenomena–
one that depends not only on the behavior of single cells, but on how those cells interact in larger
communities [11, 12, 13].

As traditional maximum tolerable dose treatments fail at increasing rates, evolution-based treat-
ments have emerged as a promising method to prolong the efficacy of current drugs or even reverse
resistance. Evolution-based treatments are designed to minimize drug-resistance by leveraging
common, but sometimes neglected, features of population dynamics–for example, competitive in-
teractions between different cells. These strategies include drug cycling [14, 15, 16, 17], harnessing
spatial dynamics [18, 19, 20, 21], cooperation [22, 23, 24, 25], adaptive therapy [26, 27, 28], and
judicious use of drug combinations [29, 30, 31, 32, 33, 34, 35, 36]. More recently there has been a
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growing focus on exploiting collateral sensitivity–which occurs when a population evolves resis-
tance to a selecting drug and as a direct result exhibits decreased resistance to a different drug–to
slow or reverse evolution in bacteria and cancer [37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

In this thesis, we combine quantitative experiments on bacteria with simple mathematical mod-
els to investigate how resistance to antibiotic emerges in microbial communities. One aim for
this work is to investigate the use of evolutionary-based strategies to slow down the emergence
of resistance–or to steer evolution more generally [47]. Antibiotics are a good model system
because they create strong selection pressures by killing or inhibiting the growth of susceptible
cells–effects that are relatively easy to measure with light scattering (optical density) and classical
microbiological methods. Our goals are grounded in basic science, not clinical application; while
the experiments described here are vast over simplifications of the complex dynamics that take
place within and between human hosts, the experiments also take place under relatively well con-
trolled conditions, allowing us to tease apart factors that contribute to the evolution of resistance
in a simple setting. This thesis can be divided into two primary themes: time dependent effects of
collateral evolution (Part I) and effects of multi-strain interactions in heterogeneous communities,
particularly those that are spatially non-uniform (Part II). In what follows, we briefly describe our
choice of model system, give a short overview of these two themes, and then outline the structure
of the thesis.

1.1 Model system

E. faecalis is a Gram positive bacterial species and opportunistic human pathogen associated with
a variety of nosocomial infections, such as endocarditis, bacteremia, urinary tract infections, and
wound and medical device infections [48, 49, 50, 51, 52, 53]. Our choice of E. faecalis as a model
system is motivated in part by its clinical relevance, but also because common strains–including
those we use–are fully sequenced and well characterized [48, 54], there are an increasing collec-
tion of tools available for genetic manipulation of enterococci, they are intrinsically resistant to
many antibiotics and rapidly acquire new resistance, and because–at the molecular level–there is
evidence that enterococci frequently engage in collective behavior, including horizontal gene trans-
fer, biofilm formation, and pheromone-based signaling [48]. E. faecalis are particularly relevant
for the study of spatial dynamics, as they are frequently found in the human gut, where different
subpopulations may exist under different environmental conditions and contribute to emergence of
resistance in the clinic [55].
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1.2 Collateral effects of antibiotics

Collateral effects refer to an increase (collateral resistance) or decrease (collateral sensitivity) in
resistance to one drug that occurs during adaptation to a second drug. While collateral sensi-
tivity is a promising approach for designing evolutionary therapies, a number of factors make its
application to the clinic challenging; for example, collateral effects exhibit a high degree of hetero-
geneity [56, 57], distinct collateral profiles arise from different selection pressures [58], collateral
effects are often not repeatable [59], and many non-antibiotic environments can confer collateral
sensitivity [60, 61, 62, 63, 64, 65]. Despite these challenges, theoretical and laboratory studies
have shown that control theoretic approaches may be used to counter, and even leverage, stochas-
tic features of the evolutionary process to shape population outcomes [56, 66].

Still, many fundamental questions about collateral sensitivity remain unanswered and are the
focus of ongoing work. For example, the molecular mechanisms behind collateral sensitivity are
known in relatively few cases [43, 67], and it is unclear the extent to which collateral profiles
are conserved across diverse species [68]. In addition, collateral drug pairs are difficult to iden-
tify in clinical settings, despite notable recent progress [69, 70], and somewhat surprisingly, little
is known about how collateral profiles change under continued selection, with much of the work
performed only recently in other organisms such as cancer [44, 71]. Many studies of collateral sen-
sitivity in bacteria focus on endpoint measurements that quantify resistance or sensitivity at a single
point in time–for example, at the end of a lab evolution experiment. In the work reported here, we
use laboratory evolution experiments to investigate how collateral sensitivity profiles change over
time as E. faecalis undergoes adaptation to a diverse library of antibiotics. We describe a rich
collection of dynamics that are characterized by global trends–for example, collateral resistance
arises in early stages of adaptation, while sensitivity tends to increase in later stages–but a number
of drug- and population-specific dynamics that we characterize using a combination of genome
sequencing and phenotype measurements.

1.3 Interactions between cells and their spatial environment

In Part II, we investigate a second important aspect of evolutionary dynamics: interactions between
cells and the surrounding spatial environment. Research has shown that bacterial interact with other
cells and with their environment in many ways, ranging from metabolic cooperation between cells
to competition for space and nutrients. Our work investigates two aspects of these interactions:
the role of 1) spatial heterogeneity and 2) inter-cellular competition in modulating the evolution of
resistance. A large of body of theoretical work indicates that spatial heterogeneity can dramatically
impact evolution in different contexts, from range expansions in microbes [72, 73, 74] to host
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heterogeneity in infectious disease models [75, 76, 77]. In the context of drug resistance, theory
suggests that the presence of spatial gradients of drug tends to accelerate resistance evolution [78,
79, 80, 81, 82], though it can be slowed down by tuning the drug profiles [20] or in cases where
the fitness landscape is non-monotonic [83].

While experiments in spatially-extended communities are notoriously difficult, experiments
using innovative approaches–for example, microfluidics devices [18] and large “mega” agar
plates [19]–have shown that spatial drug concentration gradients can promote resistance, even in
cases where adaptation does not occur when drug is distributed uniformly [18]. Such spatial ef-
fects could be particularly important for E. faecalis in the gut, which is a potentially heterogeneous
environment. Recent work on gut microbes in simple organisms (zebrafish) has indeed shown that
spatial effects, such as cell-cell clustering, can contribute to clearance and extinction of microbial
communities [84, 85]. In addition, ecological theory predicts that the diversity of gut microbes
depends on spatial dimensions, a predictions recently borne out in samples from human diges-
tive tracts [86]. Nevertheless, these within-host dynamics remain difficult to study quantitatively,
and the complexity of the in vivo environment makes it difficult to disentangle effects of spatial
structure from other host effects.

Our work uses a different approach: we investigate these issues in laboratory populations using
customized, computer-controlled bioreactors [87, 88], which allow us to experimentally simulate
migration dynamics between spatially distinct populations and adaptive antibiotic treatments that
depend on cell density. These experiments do not fully capture the complexity of clinical and
natural environments; on the other hand, they take place under well controlled conditions that allow
us to modulate different environmental factors–such as drug concentration–in a simple setting.

In addition to spatial structure, the emergence of resistance potentially depends on interactions
between different cells in the community [13]. These interactions can potentially be leveraged
to slow resistance. For example, recent studies propose that we could leverage competition for
resources to slow down the spread of resistance [89, 90, 28], a concept that also underlies adaptive
therapies for cancer, where the treatment is adapted in real time to account for the size (or other
features) of a tumor [91]. In the context of bacteria, recent work in E. coli showed that a mixed
population containing a large number of sensitive cells can be contained below a threshold density
longer than matched populations without the sensitive cells [28]. The experimental setup involves
adapting treatment to minimize the use of drug–adding drug only when population size eclipses
some threshold–allowing the sensitive cells to compete with resistant strains for resources. The
results show that the mixed population can contain the treatment for a longer time compared to
the resistance population alone, but only when populations can be maintained at a sufficiently high
density [90, 28]. Similar findings in cancer and parasites, as well as in mathematical models [92],
suggest potential generality of this phenomena, but more work is needed to characterize these
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adaptive therapies for a wide range of microbes and environmental conditions.

1.4 Organization of thesis

The thesis is organized as follows. In chapter 2, we investigate how collateral effects change over
time in bacteria exposed to increasing antibiotic selection and, in turn, how these potentially dy-
namic collateral sensitivity profiles may influence the design of drug scheduling. Using laboratory
evolution in Enterococcus faecalis, we measure collateral sensitivity and resistance profiles over
time for 20 populations exposed to increasing concentrations of five drugs for a total of 400 strain-
antibiotic susceptibility measurement combinations. These collateral profiles reveal a global trend:
collateral resistance appears more frequently in early stages of adaptation–when resistance to the
selecting drug is lower–while further evolution increasingly favors collateral sensitivity. Despite
this global trend, collateral profiles are temporally dynamic and difficult to predict at the level of
single drugs or single populations, which themselves can be comprised of multiple competing phe-
notypes, even after short-term adaptation for tens of generations. Finally, we show experimentally
that optimal drug scheduling may require exploitation of specific time windows where collateral
sensitivity is most likely to occur.

In Chapter 3, we narrow our focus to collateral effects that arise in populations adapted to
daptomycin, a cyclic lipopeptide antibiotic that targets the cell membrane [93, 94, 95, 96]and an
important therapeutic option for treating multi-drug-resistant infections [97, 98, 99, 100, 101],
including vancomycin-resistant enterococci (VRE). Previous work (including that in Chapter 2)
has shown that isolates selected in daptomycin are characterized by particularly heterogeneous
collateral profiles [102, 103]. To examine how these collateral effects arise during daptomycin
adaptation, we phenotypically and genetically characterized dozens of individual isolates selected
from each of the four daptomycin-selected populations described in Chapter 2. In all populations,
we identified isolates with mutations in one or more genes previously associated with DAP resis-
tance, and these isolates are characterized by divergent phenotypic properties–including different
levels of DAP resistance and different growth rates (i.e. fitness costs) in drug-free media. Interest-
ingly, we also observed strongly divergent collateral responses to different antibiotics, particularly
CRO, with collateral resistance arising in mutants harboring DAP-resistance mutations in cardi-
olipin synthetase (cls) or in genes linked to the two-component signaling system YxdJK (becR or
ycvR) [104]. By contrast, mutations in liaX, a component of a LiaFSR two-component signaling
system, arose in two of the four populations, with point mutations associated with CRO-sensitivity
and a larger, IS256-mediated insertion associated with extreme CRO-sensitivity and a dramatically
reduced growth rate. Our results reveal considerable phenotypic differences in mutations targeting
the LiaSFR system and highlight trade-offs between resistance to daptomycin, collateral profiles
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(most notably to CRO), and drug-free growth rates (fitness costs) in evolving lineages. As a whole,
Part I underscores how rich–and remarkably diverse–evolutionary dynamics can emerge even in
parallel populations adapting to simple drug escalation protocols.

Part II begins with Chapter 4, where we investigate whether drug (doxycycline) concentra-
tions in heterogeneous meta-communities (collections of well-mixed individual populations that
are linked to one another by migration) can be tuned to modulate the emergence of drug resistance.
By measuring real-time growth rate in these meta-communities,we show that migration acceler-
ates total population growth in mixed populations of drug-sensitive and drug-resistant cells. These
results are consistent with a simple mathematical model and can be explained by the homoge-
nizing effect of migration on the initial distribution of mutants. In addition, we investigate the
emergence of resistance in initially sensitive populations on longer timescales in both single- and
multi-habitat communities; on these timescales, we find that migration tends to delay adaptation
when the concentration of drug is not uniform across habitats. Genome sequencing and phenotypic
characterization of adapted isolates indicates that migration does not select for fundamentally new
mutations but instead reshapes the distribution of sensitive and resistant populations across habi-
tats. By contrast, we also observe cases where migration has little impact on growth adaptation,
even when drug heterogeneity across habitats is substantial. These trends can be partially explained
by changes in selection pressure across different habitats, which we show is correlated with the ob-
served shift in adaptation times. Overall, these results show that migration and spatial structure can
have substantial impacts on adaptation in microbial communities, even in simple scenarios where
resistance is dominated by a selective sweeps of a single type of mutant.

Chapter 5 describes ongoing preliminary work on the effects of population density on the emer-
gence of resistant populations in well-mixed communities. By performing parallel laboratory evo-
lution experiments in populations fixed at different densities, we show that resistance arises more
rapidly at lower cell densities, an effect that is captured by simple competition-based models of
population dynamics. Surprisingly, however, we observe the opposite trend at low drug concen-
trations when populations are seeded, up-front, with low frequency mutant populations: growth
increases are accelerated in the high-density populations. Finally, we describe a series of prelim-
inary experiments that use adaptive drug dosing in mixed populations of sensitive and resistant
cells in an attempt to maintain populations below a threshold “tolerable” density, which we refer
to as “containment”. These experiments extend previous studies in E. coli [28] to populations of
E. faecalis. In most cases, these adaptive dosing schedules prolong containment for longer times
in low-density populations, though the dynamics that follow the loss of containment are complex,
with initially escaping populations sometimes reaching their maximum density more slowly than
later-escaping populations.

As a whole, the thesis highlights both the simplicity and complexity of evolutionary dynamics
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leading to resistance. On one hand, Part I highlights how collateral effects and evolution can be re-
markably diverse even in simple laboratory settings where side-by-side populations in well-mixed
communities undergo similar drug escalation protocols. Part II underscores the important role that
spatial heterogeneity can play in modulating resistance, yet also highlights how initially counter-
intuitive dynamics can–at least sometimes–be understood with simple mathematical models. We
hope these results motivate continue explorations of resistance evolution, both in the lab and the
clinic.
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Part I

Dynamic Collateral Effects of Antibiotic
Resistance
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CHAPTER 2

Dynamic Collateral Sensitivity Profiles Highlight
Challenges and Opportunities for Optimizing

Antibiotic Sequences

This chapter was reproduced, in part, from the following manuscript, which has been submitted for
publication: J. Maltas, A. Huynh, and KB Wood, bioRxiv, 2022. doi: 10.1101/2021.12.19.473361.
The initial lab evolution experiments and collateral measurements (Figures 2.1-2.2) were per-
formed by J. Maltas. I (AH) performed all experiments to characterize heterogeneity and time-
depend effects in single populations (e.g. Figure 2.3, Figure 2.8). All authors contributed to
experimental design, data analysis, figure design, and manuscript drafts/revisions.

2.1 Introduction

As discussed in Chapter 1, collateral effects have been proposed as a strategy to help design
resistance-slowing combinations or cycles of antibiotics [105, 106, 102, 67, 107, 108]. Many
studies of collateral sensitivity in bacteria have quantified collateral effects at a single point in
time, but considerably less is known about how those collateral effects change over time.

In this Chapter, we sought out to understand how collateral effects change over time in bacte-
ria exposed to increasing antibiotic selection and, in turn, how these potentially dynamic collat-
eral sensitivity profiles may influence the design of drug scheduling. Using laboratory evolution
in Enterococcus faecalis, a gram-positive opportunistic bacterial pathogen typically found in the
gastrointestinal tracts of humans[48, 109, 50, 51, 52, 53], we measure collateral sensitivity and
resistance profiles over time for 20 populations exposed to increasing concentrations of five drugs,
yielding 400 strain-antibiotic susceptibility measurement combinations. These collateral profiles
reveal a complex story. When data from all drugs are combined, a clear trend emerges: collateral
resistance appears more frequently in early stages of adaptation–when resistance to the selecting
drug is lower–while further evolution increasingly favors collateral sensitivity. At the same time,
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collateral profiles are temporally dynamic and difficult to predict at the level of single drugs or
single populations. Finally, we show experimentally that optimal drug scheduling may require
exploitation of specific time windows where collateral sensitivity is most likely to occur. Taken
together, our results underscore the importance of measuring temporal collateral profiles not only
to better understand collateral evolution, but for any future work that hopes to harness collateral
effects as a therapeutic option.

2.2 Results

2.2.1 Collateral effects are temporally dynamic

To investigate how collateral effects change over time in E. faecalis, we exposed four independent
evolutionary replicates of strain V583 to escalating concentrations of a single drug over 8 days
(approximately 60 generations) via serial-passage laboratory evolution (Fig 2.1, Materials and
methods). In a previous study, we characterized collateral effects at the final endpoint of these
evolutionary experiments [56]. In this work, we investigate the temporal progression of these
collateral effects in a subset of five antibiotics chosen to represent a broad collection of mechanisms
of action (Table 2.1). To do so, we isolated a single colony from each population at 2-day intervals
and measured dose-response curves to each of the antibiotics (Fig 2.1A).

Table 2.1: Antibiotics used in chapter 2.

Drug Name (Abbreviation) Drug Class Mechanism of Action
Ceftriaxone (CRO) β-Lactam Cell wall synthesis inhibitor
Ciprofloxacin (CIP) Quinolone DNA gyrase inhibitor
Daptomycin (DAP) Lipopeptide Cell membrane insertion
Doxycycline (DOX) Tetracycline 30S protein synthesis inhibitor
Linezolid (LZD) Oxazolidinone 50S protein synthesis inhibitor

We quantified resistance and sensitivity by estimating the half-maximum inhibitory dose (IC50)
for each strain-antibiotic combination (Materials and Methods). In total, we estimated the IC50

for 400 strain-antibiotic combinations (20 evolving populations, measured against 5 antibiotics,
at 4 evolutionary time points), each in (technical) replicates of three. For each measurement, we
then calculated the collateral response c ≡ log2 (IC50,Mut/IC50,WT), the log2-scaled fold change in
IC50 of the evolved strain relative to the ancestral V583 (Fig 2.1B). Resistance (direct or collateral)
corresponds to c > 0 while sensitivity corresponds to c < 0 (c = 0 is indicated by the black dashed
line). As in previous work [56, 60], we defined collateral resistance or sensitivity to occur when the
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measured IC50 is at least 3 times the standard error of the mean of the wild-type (|c| > 3σWT , where
σWT refers to standard error of the mean in the wild type; see Methods). While other definitions
are possible, particularly in cases where a large number of technical replicates are available, we
will see (below) that the qualitative trends we observe do not depend sensitively on the threshold
for defining sensitivity or resistance.

Our results indicate that resistance to both the drug used for selection and the “unseen” testing
drugs varies considerably over time. As expected, resistance to the selecting drug (diagonal entries,
Fig 1B) tend to increase approximately (though not exclusively) monotonically over time and, in
many cases, plateau after several days of selection. However, the temporal trends in collateral
effects–the off-diagonal entries–are variable. In some cases, the population exhibits only collateral
resistance (e.g. ciprofloxacin (CIP)-selected populations tested against ceftriaxone (CRO)) at all
time points. In other cases, the same population exhibits collateral resistance at one time point
and collateral sensitivity at another (e.g. ceftrixaone (CRO)-selected strains tested against doxy-
cycline (DOX); Linezolid (LZD)-selected strains tested against CRO). Additionally, the variance
in outcome across the 4 populations, and over time, depends on the testing drug. For example,
resistance to DOX in all isolates varies over a relatively small range (fold-change in IC50 varies
from a minimum of 0.4 to a maximum of almost 8), while resistance to CRO in the same strains
varies substantially more (fold-change in IC50 varies from a minimum of 0.007 to a maximum of
over 100). We also observe varying levels of induced collateral sensitivity between tested drugs.
For example, at no point do any of the 20 evolved strains become collaterally sensitive to LZD,
and collateral sensitivity to DAP is rare at all evolutionary time points. This is particularly notable
because LZD and DAP are frequently used as last line of defense antibiotics in the treatment of
multidrug resistant gram-positive infections[110, 111, 112, 113].

2.2.2 Collateral effects are initially dominated by resistance but shift toward
sensitivity with further adaptation.

To quantify how the propensity for collateral resistance changes over time, we calculated the “in-
stantaneous” collateral resistance (or sensitivity), which measures collateral effects at each time
point relative to the previous time-point, rather than relative to the ancestral strain (Fig 2.2).
For example, to investigate how the population changed between days 4 and 6 we calculate:
cinst ≡ log2 (IC50,D6Mut/IC50,D4Mut), where the IC50’s are calculated at days 6 and 4. This analysis
reveals that the first two days of evolution are dominated by collateral resistance effects (91.25%),
while the subsequent 6 days of evolution confer collateral resistance at considerably reduced fre-
quencies (33.75%, 38.75%, and 32.50% respectively). Further, after the first two days of evolution,
the last 6 days also share a similar frequency of collateral sensitivity (52.5%, 55.0%, and 57.5%
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Figure 2.1: Laboratory evolution of E. faecalis reveals diverse, temporally dynamic collateral
sensitivity profiles. (A) E. faecalis strain V583 was exposed to single antibiotics in escalating
concentrations over the course of an 8-day serial-passage evolution experiment (roughly 60 total
generations). Four independent populations were evolved in the presence of one of five selected
antibiotics. The half-maximal inhibitory concentration (IC50) was estimated for a single isolate
from each population at days 2, 4, 6 and 8. (B) Resistance/sensitivity measurements taken every
two days for each of the 20 mutants to each of the 5 antibiotics quantified by the log2-transformed
relative increase in the IC50 of the testing drug relative to that of WT V583 cells (black dashed
line at y = 0). Rows represent the drug used to select the mutant (selecting drugs: Ciprofloxacin
(CIP) = red, Daptomyacin (DAP) = blue, Doxycycline (DOX) = purple, Ceftrixone (CRO) = teal,
Linezolid (LZD) = orange), whereas columns represent the drug used in the testing assay. Error
bars represent the standard error of the mean (SEM) for each individual experiment. Note that the
y-scales are different for each column but the same within a column to allow for comparison of
collateral effects (off-diagonal) with direct effects (diagonal).
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respectively).
To further quantify these trends, we combined the data from all drugs and all time points and

calculated the mean instantaneous collateral effects as a function of resistance to the selecting
drug (Fig 2C, left panel). At this global level, the mean collateral effects (both instantaneous
and cumulative) trend downward–toward sensitivity and away from resistance–as resistance to the
selecting drug increases. Notably, the instantaneous collateral resistance at early stages (when
resistance to the selecting drug is small) is sufficiently large that the mean cumulative collateral
effects remain positive even at later stages that is, the trend toward collateral sensitivity is not
strong enough to overcome the initial collateral resistance acquired at low levels of resistance to
the selecting drug. Similarly, the probability (frequency) of collateral sensitivity increases (Fig 2C,
right panel) Fig 2.5; pvalue < 0.05 from logistic regression, see Methods and SI Supplemental
Tables) and the probability of collateral resistance decreases (Fig 2.6,pvalue < 0.05) as resistance to
the selecting drug is increased. These qualitative trends do not depend sensitively on the specific
thresholds used to define CS/CR (Fig 2.7).

One simple explanation of this phenomenon may be an abundance of easily accessible, low-
level resistance mutations, perhaps related to efflux pumps[114, 115, 116] or a general stress
response[117, 118], that broadly confer low-level multidrug resistance at early stages of adaptation.
As the antibiotic concentration is increased the population is required to evolve more antibiotic-
specific mutations that may be associated with collateral trade-offs.

2.2.3 Temporally dynamic collateral effects are difficult to predict at the
level of individual drugs.

While global trends emerge when the data from all drugs is combined, it is not clear whether sim-
ilar trends occur at the level of individual drugs. To investigate this question, we first calculated
correlations between each of the 5 testing conditions to search for statistical similarities between
different drugs. Depending on the metric used, we find that either 4 or 5 of the 10 pairwise combi-
nations produce a statistically significant but relatively weak negative correlation. However, scatter
plots indicate that these relationships are nonlinear with considerable scatter, even when statisti-
cally significant.

In addition, we found that collateral effects for specific drugs are difficult to predict from col-
lateral profiles measured at earlier times in the same strain. For example, one DAP-adapted popu-
lation exhibits a significant increase in resistance to CRO between days 2 and 4, however days 4 to
6 and 6 to 8 both come with a significant collateral sensitivity. Similarly, the LZD-selected strains
confer resistance to DAP on days 2 and 8, but exhibit collateral sensitivity on days 4 and 6. To
quantify this effect, we calculated how often an observation from the current time step correctly
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predicted change in resistance measurement two days later. That is, if a particular isolate exhibited
collateral sensitivity to a drug on day 2, how frequently did it also exhibit collateral sensitivity
on day 4 Somewhat surprisingly, collateral profiles on day 2 correctly predict only 41% of day 4
collateral profiles. Similarly, day 4 only successfully predicted 37% of day 6 collateral profiles and
day 6 accurately predicted 41% of day 8 profiles. These data indicate that, in contrast to resistance
levels to the selecting drug, which tend to be non-decreasing over time, instantaneous collateral
effects are largely uncorrelated after short periods (2 days; 10-20 generations) of adaptation. This
lack of predictability might also arise if populations are largely heterogeneous over time, meaning
that sampling single colonies from each population could result in the appearance of dynamic or
stochastic evolution.

2.2.4 Collateral effects are dynamic within individual populations.

To investigate heterogeneity within the evolving populations, we focused on three selection-testing
drug pairs (LZD-CRO, CRO-DOX, and CRO-CIP), which correspond to lineages adapted to one
of three drugs (LZD, CRO, and CIP) and tested against a different drug (CRO, DOX, and CRO,
respectively). In two examples (LZD-CRO and CRO-DOX), the original data suggested collateral
resistance to the testing drug decreases over time, with resistance occurring at early stages and
sensitivity at later stages. In the third example (CRO-CIP), the collateral effects are approximately
constant (resistance) over time.

From each of the three populations, we isolated 48 colonies (12 colonies from each of 4 time
points) and measured the response of each isolate to the testing drug using dose response curves
(Fig 2.3). We found that the specific distributions of IC50 values vary in idiosyncratic ways–for ex-
ample, the LZD-CRO population is characterized by a roughly unimodal distribution whose mean
decreases over time, while the CRO-DOX population is characterized by coexistence of highly
resistant and highly sensitive isolates at early times, while later time points contain primarily sen-
sitive isolates. Indeed, the mean collateral resistance (i.e. fold change in IC50 relative to ancestor)
is dynamic–specifically, it is not the same at every time point in the LZD-CRO (1-way Anova,
pvalue = 0.0008), CRO-DOX (pvalue = 0.001), and CIP-CRO pairs (pvalue = 0.05). See SI for
pairwise comparisons at all time points.

In addition, we calculated the frequency of CR and CS across isolates. We found that the
frequency of sensitive isolates increases over time in the LZD-CRO and CRO-DOX pairs (logistic
regression, pvalue = 0.04 and pvalue = 0.005, respectively; see Methods) and the frequency of
resistant isolates decreases in the LZD-CRO pair (pvalue = 0.007; for CRO-DOX the trend is
qualitatively similar but not significant, pvalue = 0.1). In contrast to the first two populations,
the third population (CRO-CIP) shows the opposite trend, with resistance increasing in frequency
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Figure 2.2: Early evolution is dominated by collateral resistance followed by a diverse set of
collateral responses as evolution continues. (See next page)

15



Figure 2.2: (A) Left: Collateral profiles measured at the final time point (day 8), relative to the
day 0 ancestor. Resistance (red) or sensitivity (blue) to each antibiotic is quantified via the log2-
transformed fold change in IC50 relative to the ancestral strain (V583). A measurement is deemed
to be collaterally resistant or sensitive if it falls above or below 3 times the standard error of the
mean of the wild-type (|c| > 3σWT ). For each selecting drug, there are 4 evolutionary replicates
(thin rectangular columns). Right: Pie chart representing the fraction of collateral effects that
confer resistance (red), sensitivity (blue) or no statistical change (white/gray). (B) Instantaneous
collateral effects: collateral profiles measured for the same 20 mutants as A, but collateral sensi-
tivity/resistance is defined relative to the previous time point (rather than the ancestor strain). Days
0-2, top left; days 2-4, top right; days 4-6, bottom left; days 6-8, bottom right. Over 90 percent
of collateral effects conferred between days 0-2 resulted in collateral resistance. The subsequent
6 days of evolution (days 2-4, 4-6, and 6-8) only conferred collateral resistance 34%, 39% and
33% respectively. (C) Instantaneous collateral effects (i.e. collateral effects relative to previous
timepoint) (left) and probability of collateral sensitivity (CS) (right) as a function of resistance to
selecting drug. Left panel: dots are individual populations, shading indicates relative density of
points, and curve is moving average (shading is ± standard error over each window). Right panel:
curve is moving average (shading is ± standard error over each window). Upper inset shows in-
dividual data points (top row is CS, bottom row is not CS) used to calculate probability. Averages
are performed over windows of size 2.

(pvalue = 0.05) and sensitivity decreasing in frequency over time (pvalue = 0.02).
These results indicate that the adapting populations exhibit heterogeneity in collateral resistance

profiles but nevertheless show clear temporal trends, even within single populations. In some cases
(LZD-CRO, CRO-DOX), the trends are reminiscent of the global trends observed across drugs–that
is, early stages of adaptation favor collateral resistance and later stages collateral sensitivity–but
this is by no means universal (e.g. CRO-CIP exhibits opposite trends).

2.2.5 Success of switching to a second antibiotic is contingent on temporally
dynamic collateral effects.

To investigate the effects of drug timing experimentally, we designed an evolution experiment
(Fig 2.4A) meant to approximate a hypothetical drug-switching protocol involving two drugs
(CRO and DOX) suggested by simulations to be particularly sensitive to the timing of drug switch-
ing [103]. Similar to our previous experiments, we performed serial passage evolution using es-
calating concentrations of the antibiotic CRO but now for a total period of 14 days. At the end of
each day, we exposed a diluted sample of that population to varying concentrations of a second
antibiotic, DOX, to probe how switching to a second drug may have increased or decreased the
treatment efficacy. The entire process was repeated for 20 independent populations to quantify
evolutionary variability (Fig 4B).
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Figure 2.3: Collateral effects are dynamic within individual populations. (A): Samples from
a single evolved population at days 2, 4, 6, and 8 are plated and 12 colonies from each time point
are selected for phenotyping (IC50 characterization). (B): Measured IC50 values for 12 isolates at
each of 4 different time points from populations adapted to LZD (left), CRO (middle), and CIP
(right) and exposed to CRO (left), DOX (middle), and CRO (right). Shaded region indicates IC50

of ancestor strain (± 3 standard error). Individual points represent the mean IC50 (± standard error
from 4 technical replicates) for a single colony. Open squares represent the population mean–
that is, the mean across all colonies (error bars are ± standard deviation of the population). (C):
Frequency of colonies exhibiting collateral sensitivity (blue) or collateral resistance (red) over time.
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Figure 2.4: Success of switching to a second antibiotic is contingent on temporally dynamic
collateral effects. (A) Twenty replicate populations of E. faecalis V583 were exposed to increas-
ing concentrations of the antibiotic ceftrixone (CRO) over the course of 14 days via serial passage.
At the end of each day a sample of the population was isolated and cultured in a range of doxycy-
cline (DOX) concentrations for 24 hours. (B) Top: Density (OD) after 24 hours vs drug (DOX)
concentration for all 20 populations (light gray), and the mean over the 20 populations (dark black)
at different days of the evolution experiment. For comparison, the dose response curve in the an-
cestral strain (red curve) divides the space into regions of increased resistance (red) and increased
sensitivity (green). (B) Bottom left: Average sensitivity over 20 populations (error bar standard
error of the mean) at different time points. Sensitivity is defined as the difference in area under
the curve between the ancestral dose response curve and the dose response curve of the population
in question between the lowest ([Dox]=0.05 µg/mL) and highest ([Dox]=0.8 µg/mL) nonzero drug
concentrations. Solid line is a moving average. (B) Bottom right: Collateral effects (quantified, as
before, by log2-transformed fold change in the IC50). Dashed region highlights a transient six-day
window where collateral sensitivity is more pronounced.
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To quantify sensitivity to DOX, we calculated both a global area-under-the-curve sensitivity
score, where we take the difference between the area under the dose response curve of the ances-
tral strain and each evolved population (Fig 4B, bottom left), as well as the previously described
collateral effect metric (i.e. the log-scaled fold change in half-maximal inhibitory concentration).
Both metrics show that populations adapted to CRO become increasingly sensitized to DOX over
time. The sensitivity is particularly notable between days 8 and 13, where the mean collateral
sensitivity (across replicate populations) is maximized before starting to decline (Fig 4B, bottom
right; post-hoc pairwise comparisons following 1-way Anova identify days 8-13 as a statistically
distinct cluster; see SI Supplemental Tables). Switching to DOX at time points before or after that
window produces different levels of average sensitivty and even leads to resistance in some popu-
lations. These results indicate that the effects of a new antibiotic can vary considerably depending
on when, along the adaptation trajectory, the new drug is applied.

2.3 Discussion

Our work provides systematic evidence of temporal collateral drug effects in the pathogen E. fae-

calis. The time-dependent nature of collateral sensitivity and collateral resistance presents both
additional challenges and new opportunities for designing multi-drug therapies to slow resistance.
Full optimization of sequential drug therapies will likely involve not merely static, end-point mea-
surements of collateral effects, but a full description of their temporal development.

The goal of this study was to broadly survey phenotypic resistance patterns over time in a sys-
tematic way. This approach comes with obvious drawbacks, and we are left with many unanswered
questions. Most notably, our work does not provide any information about the molecular mecha-
nisms underlying the collateral effects; such insight, while hard won even for a single pair of drugs,
will be essential to fully exploit the phenotypic effects observed here. In addition, we focused on
a single bacterial species, and all experiments were performed starting from the ancestral V583 E.

faecalis strain. It is not clear how the results might change in a different strain or species, though
data from several recent studies suggest the presence of dynamic features in collateral profiles in
other species [42, 69, 67, 17]. Indeed, recent work underscores just how important genotype can
be in antibiotic evolvability [119], and the search for more general patterns is ongoing [42, 69, 67].
It is also possible that at least some of the trends we observe are specific to the precise laboratory
evolution protocol used here, where drug is systematically increased over time following serial
dilution.

These results raise a number of questions for future work. Most notably, it is not clear why col-
lateral resistance tends to emerge at early time points but sensitivity increases at later time points.
From an evolutionary biology perspective, these results are qualitatively consistent with Fisher’s
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classic geometric model, which posits that mutations associated with large fitness effects are more
likely to be detrimental. In the context of collateral sensitivity, this model suggests that low-level
resistant mutants–those selected in the early stages of adaptation–harbor small fitness effects that
are expected to be frequently beneficial in a wide range of environments. On the other hand, mu-
tations that have a large fitness effect (high resistance to selecting drugs) may be less likely to be
beneficial in different environments (increases sensitivity to other drugs). Previous works have
indeed used similar approaches to study how mutations affect fitness changes across different drug
environments [120, 121], and in this context, collateral effects can be formalized using the joint
distribution of fitness effects [45]–distributions that may be informed by experiments like those
reported here.

Future work will aim to sequence the genomes of multiple isolates over time in hopes of identi-
fying classes of resistance genes (e.g. efflux pumps or target mutations) that preferentially occur at
certain stages of adaptation (see next chapter for an example of this approach focused on a single
drug, daptomycin). One might speculate that low-level mutations tend to offer drug-agnostic pro-
tection to the cells. One common example is multidrug efflux pumps, which are known to extrude
a wide range of antibiotics out of the cell [122, 123, 124]. These pumps can contribute to cross-
resistance to multiple antibiotics. However, in a later stage of adaptation, when the selecting drug
concentrations are higher, cells with a higher level of resistance may require more drug-specific
mutations–for example, modification of the binding site of the drug [125]. These high-level mu-
tations may be increasingly specialized to a particular drug and could have unintended negative
consequences (i.e. sensitivity) in the presence of other drugs. These trade-offs are reminiscent
of the classic interplay between “specialists” and “generalists”, and theoretical work suggests that
switching between environments in judicious ways may be able to preferentially select for one or
the other [126, 127, 38]. Applying these principles to drug cycling in the clinic, however, is an
ongoing challenge [128, 69].

From a biological perspective, it would be interesting to identify how these patterns change in
cells from different physiological states (e.g. biofilm [129]) or under different modes of selec-
tion pressure [130]. Perhaps more importantly, our work raises the question of whether similar
global trends emerge in clinical scenarios, where the impact of collateral effects are less clear [69].
Answering this question will require not only retrospective studies that combine large large data
sets from multiple patients (for example, [69]), but also studies focused on longitudinal sampling
from individual patients. Fortunately, studies like this are already underway for different species
of enterococcus (see, for example, [55]).

Finally, it is important to keep in mind the scope of our work. These evolution experiments
are done in a highly controlled laboratory environment. Our protocols are not meant to guide
clinicians, but instead focus on whether or not collateral profiles changed even in the simplest

20



of drug-evolution environments – free, for example, of the important but difficult-to-quantify in-
teractions between host and pathogen. Translating these results into a clinically accurate model
would require additional work to understand the mechanistic, clinical, and even theoretical prin-
ciples governing drug sequence optimization. This work serves as a reminder of the complexities
of evolution and the still long path we must walk to confidently prescribe effective dosing sched-
ules in patients. At the same time, the results highlight the rich dynamical behavior of collateral
sensitivity in even simplified laboratory populations, offering a largely unexplored frontier for
evolution-based control strategies.
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2.4 Materials and methods

2.4.1 Strains, antibiotics, and media

All resistance evolution lineages were derived from an E faecalis V583 ancestor, a fully sequenced
clinical isolate with vancomycin resistance[131]. The 5 antibiotics used in this study and their
mechanisms of action are listed in Table 2.1. Antibiotics were prepared from powder stock and
stored at appropriate temperature. Evolution and IC50 measurements were conducted in BHI (brain
heart infusion).

2.4.2 Laboratory evolution experiments

Evolution experiments were performed in replicates of four. Daily serial passage evolutions were
conducted in 1 mL BHI medium in 96-well plates with a maximum volume of 2 mL. Each day
populations were grown in three antibiotic concentrations spanning sub- and super-MIC doses.
After approximately 16 hours of incubation at 37, the well with the highest drug concentration that
contained visible growth was propagated into three new concentrations (typically one-half, 2x and
4x the highest concentration that had visible growth). A 1/200 dilution was used as an inoculum for
the next day’s evolution plate. This process was repeated for 8 days for the multi-drug study and 14
days for the CRO/DOX study. All strains were stocked in 30% glycerol and subsequently plated on
pure BHI plates for further experimentation. A single colony was selected for IC50 determination.
To help ensure no contamination occured, cells were regularly plated and visualized using DIC
microscopy to ensure E. faecalis morphology.

2.4.3 Measuring drug resistance and sensitivity

IC50 determination experiments were performed in 96-well plates by exposing each strain to a drug
gradient consisting of between 6-14 concentrations, typically in linear dilution series prepared in
BHI medium with a total volume of 205 µL (200 µL BHI, 5 µL of 1.5 OD cells) in each well. After
20 hours, we measured the OD at 600 nm via an Enspire Multi-modal Plate Reader (Perkin Elmer)
with an automated plate stacker. OD measurements for each drug were normalized by the OD600
in the absence of drug.

In order to quantify resistance to each drug, the OD600-generated dose-response curve was fit
to a Hill-like function f(x) = (1 + ( x

K
)h)−1 using a nonlinear least squares fitting. K is the IC50

and h is a Hill coefficient that represents the steepness of the dose-response curve. Strains were
deemed “collaterally resistant” or “collaterally sensitive” if its IC50 had increased or decreased by
more than 3 times the standard error of the wild-type mean IC50. In previous work, we chose this
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threshold because it minimized the number of false positives (e.g. all measurements of IC50 in
the ancestor strains, across all drugs, fell within this ±3σWT window) [56, 60]. All dose response
curves were measured in technical replicates of 3 or 4.

2.4.4 Logistic regressions for estimating frequency trends

To characterize trends in the frequency of resistance (CR) or sensitivity (CS) we used standard
logistic regression. Specifically, we assume the classic logit model where ln p/(1−p) = c1+ c2X ,
with p the probability of CR (or CS), c1 and c2 regression coefficients, and X the predictor variable
of interest (either resistance to the selecting drug, as in Fig 2.2, or time, as in Fig 2.3. An increasing
trend corresponds to c2 > 0 and a decreasing trend to c2 < 0. P-values (pvalue) are given for each
regression in the corresponding figure caption and in SI Supplemental Tables.
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2.5 Supplemental Figures

Figures 2.5-2.8 are supplemental figures referenced in the main text.
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Figure 2.5: Cumulative collateral effects exhibit early resistance but trend toward sensitivity
with adaptation. Left panel: cumulative collateral effects (relative to ancestor strain) as a function
of resistance to selecting drug. Dots are individual populations, shading indicates relative density
of points, and curve is moving average (shading is ± standard error over each window). Right
panel: probability of instantaneous sensitivity (p) varies with cumulative resistance to selecting
drug. Line is fit from logistic regression (i.e. fit of ln(p/(1−p)) = c1+ c2R, where R is resistance
to selecting drug and c1 and c2 are intercept and slope parameters, respectively). Slope parameter:
c2 = 0.3 ((0.08, 0.50), 95 percent confidence interval); pvalue = 0.006. Averages and probabilities
are calculated over sliding windows of size 2 (in units of resistance to selecting drug).
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Figure 2.6: Collateral resistance decreases as resistance to selecting drug increases. Left
panel: probability of (instantaneous) collateral resistance (CR) as a function of resistance to se-
lecting drug. Curve is a moving average (shading is ± standard error over each window). Lower
inset points show individual data points (top row is CR, bottom row is not CR) used to calculate
probability. Right panel: probability of resistance (p) varies with resistance to selecting drug. Line
is fit from logistic regression (i.e. fit of ln(p/(1−p)) = c1+c2R, where R is resistance to selecting
drug and c1 and c2 are intercept and slope parameters, respectively). Slope parameter: c2 = −0.2
((−0.4,−0.01), 95 percent confidence interval); pvalue = 0.04. Averages and probabilities are
calculated over sliding windows of size 2 (in units of resistance to selecting drug).
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Figure 2.7: Modulating threshold value does not change qualitative features of collateral ef-
fects Collateral effects (top left), logit function (top right), instantaneous collateral effects (bottom
left), and probability of collateral sensitivity (bottom right) as a function of resistance to selecting
drug. All collateral effects (i.e. log of fold change in IC50) with an absolute value less than ϵ are
removed prior to analysis. Different colors represent the same analysis but with different values
of ϵ. All moving averages are taken over a window size of 2. Compare to Figures 2.2, 2.5. For
logistic regressions, pvalue < 0.05 with a positive slope parameter (i.e. frequency of CS increases)
for all values of ϵ.
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Figure 2.8: Frequency trends within individual populations do not depend sensitively on
threshold criteria for defining collateral effects changes. Frequency of sensitivity (blue) or re-
sistance (red) for different time points from populations adapted to LZD (left), CRO (middle), and
CIP (right) and exposed to CRO (left), DOX (middle), and CRO (right). In this plot, collateral ef-
fects are considered significant if errorbars (± 1 standard error) do not overlap. See also Figure 2.3
C.
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CHAPTER 3

Heterogeneous Collateral Effects in
Daptomycin-Adapted Populations of E. faecalis

This chapter was reproduced, in part, from the following manuscript, which will be uploaded to
bioRxiv and will be submitted for publication after a brief period of feedback from the commu-
nity: A. Huynh, J. Maltas, and KB Wood, bioRxiv, 2023. doi: Pending. The initial lab evolution
experiments were performed by J. Maltas, as described in the previous chapter. I (AH) performed
all other experiments, including all experiments to characterize phenotype and genotype of DAP-
isolates and DAP-adapted populations (which make up all figures in this chapter). All authors
contributed to experimental design, data analysis, figure design, and manuscript drafts/revisions.

3.1 Introduction

Antibiotic resistance is a growing threat to global health. The development of new antimicrobial
drugs is a slow and difficult process, leading to substantial recent interest in evolution-centered
strategies with the potential to slow resistance based on judicious–and perhaps unorthodox–
deployment of currently available treatments. These treatment strategies exploit interactions be-
tween cells and their environment and rely on features such as spatial heterogeneity [18, 19, 20, 21],
intercellular cooperation [22, 23, 24, 25], competition between subpopulations [26, 27, 28], and
judicious use of drug combinations simultaneously [29, 30, 31, 32, 33, 34, 35, 36] or in temporal
cycles [14, 15, 16, 17]. On potentially promising approach is based on the concept of collateral
sensitivity–an extension of so-called antagonistic pleiotropy–which, in the case of antibiotics, oc-
curs when a population selected by one drug exhibits increased sensitivity to a different drug.
Collateral effects have been a topic of substantial recent interest, with multiple studies pointing to
the benfits and potential limitations of this approach [37, 38, 39, 40, 41, 42, 43, 44, 45, 46].

In this work, we offer a case-study of daptomycin resistance–and the corresponding collateral
effects–in laboratory-evolved populations of E. faecalis, a gram-positive opportunistic pathogen
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that underlies a number of human infections[48]. Daptomycin (DAP) is a cyclic lipopeptide
antibiotic that targets the cell membrane, where it causes rapid depolarization leading to cell
death [93, 94, 95, 96]. Daptomycin is an important therapeutic option for treating multi-drug-
resistant infections [97, 98, 99, 100, 101], including vancomycin-resistant enterococci (VRE).
However, daptomycin resistance in enterococcus has been increasingly reported in the last decade
in both the laboratory and the clinic [113, 132, 133, 134, 135, 136, 137].

Daptomycin resistance in enterococcus has been linked with dozens of genes [138, 52, 134,
139], many associated with multi-component signaling systems such as LiaFSR, which modules
the response of the cell membrane to stress [140, 95, 141, 142, 143, 144]. In lab evolution exper-
iments, mutations in the liaFSR system–or putative downstream targets–dominate the early stages
of DAP-adaptation, followed by major increases in DAP resistance linked to other genes–for ex-
ample, those encoding cardiolipin synthase [53, 52]. In strains lacking liaR, increasing doses of
sub-MIC daptomycin selected for high-cost mutations in an alternative two-component signaling
system (YxdJK) [104], which itself has been linked to bacitracin resistance, as well as mutations
in a putative dihydroxyacetone kinase (DAK) family enzyme.

Collateral effects arising from daptomycin selection–and selection by a wide range of other an-
tibiotics and environmental stressors [102, 60, 103]–have also been characterized phenotypically
and, to a limited degree, genetically. As we saw in the previous chapter, at a global level–when
collateral effects from all selecting drugs are considered–collateral profiles appear dynamic, with
collateral resistance arising more frequently in early stages of adaptation and collateral sensitivity
arising more frequently after longer periods of selection [103]. At the level of individual select-
ing drugs, however, the patterns are idiosyncratic [103], with some collateral effects matching the
global trend (e.g. populations selected by linezolid show increased collateral sensitivity to ceftri-
axone (CRO) over time) while other populations show opposing trends (e.g. populations selected
by ciprofloxacin show decreasing collateral sensitivity to CRO over time).

In this work, we investigate how collateral effects arise in E. faecalis populations selected by
daptomycin in laboratory evolution experiments spanning approximately 60 generations. Pre-
vious work has shown that isolates selected in daptomycin are characterized by heterogeneous
collateral profiles [102, 103]. Most notably, the collateral response to ceftriaxone (CRO), an
inhibitor of cell wall synthesis, ranges from resistant to highly sensitive in different isolates.
The latter is reminiscent of the so-called “seesaw” effect, an inverse relationship between MICs
to glycopeptides or lipopeptides and beta-lactams commonly observed in other Gram-positive
species [145, 146, 147, 148, 149]. A similar “seesaw” effect has also been observed in E. fae-

calis [150, 151, 102], and recent work has linked CRO hypersensitivity to DAP-driven mutations
in the LiaSFR system [152, 153]. To examine how these collateral effects arise during dapto-
mycin adaptation, we phenotypically and genetically characterized dozens of individual isolates
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selected from each of the four daptomycin-selected populations described in Chapter 2. In all
populations, we identified isolates with mutations in one or more genes previously associated with
DAP resistance, and these isolates are characterized by divergent phenotypic properties–including
different levels of DAP resistance and different growth rates (i.e. fitness costs) in drug-free media.
Interestingly, we also observed strongly divergent collateral responses to different antibiotics, par-
ticularly CRO, with collateral resistance arising in mutants harboring DAP-resistance mutations in
cardiolipin synthetase (cls) or in genes linked to the two-componenent signaligng sytem YxdJK
(becR or ycvR) [104]. By contrast, mutations in liaX arose in two of the four populations, with
point mutations associated with CRO-sensitivity and a larger structural mutation associated with
extreme CRO-sensitivity and a dramatically reduced growth rate. Our results reveal that multiple
daptomycin-resistant lineages can emerge even in simple lab evolution protocols, reveal consid-
erable phenotypic differences in mutations targeting the LiaSFR system, and highlight trade-offs
between resistance to daptomycin, collateral profiles (most notably to CRO), and drug-free growth
rates (fitness costs) in evolving lineages.

3.2 Results

3.2.1 Heterogeneous daptomycin resistance in DAP-selected populations

To investigate daptomycin resistance in the lab, we focused on four daptomycin-adapted popula-
tions described in Chapter 2. Briefly, we exposed four independent populations (each from a single
colony of the ancestral V583 strain) to increasing concentrations of daptomycin over 8 days with
1:200 daily dilutions (Figure 3.1). Each day, 3 vials–each at a different DAP concentration, with
concentrations spanning sub- and super-MIC levels–were seeded with dilutions from the previous
day’s population. At the end of the day, the sample that survived in the highest concentration was
propagated on to the next day, where 3 new concentrations were chosen (typically one-half, 2x
and 4x the highest concentration with growth from the previous day; see Methods in Chapter 2).
Despite using a similar protocol to increase DAP concentration in each adaptation experiment, the
variable responses of the 4 populations led to distinct differences in the DAP survival concentration
(defined here as the highest concentration of DAP for which a given lineage survived each day)
over time (Figure 3.1). In previous work, single isolates from these populations, along with those
adapted to other drugs, were used to characterize collateral effects to a large library of antibiotics
and other stressors [102, 60, 103]. Among a collection of collateral profiles, the single isolates
selected from these four DAP-selected populations stood out as being particularly heterogeneous
and dynamic over time.

To characterize these adapting lineages, we isolated 12 single colonies from each of the four
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Figure 3.1: Evolution of daptomycin resistance in the lab. A) Schematic of laboratory evolution
experiment with E. faecalis strain V583 treated with Daptomycin (DAP). The overnight cultures
were exposed to (typically) increasing concentrations over an 8-day serial-passage with daily di-
lutions of 1:200. B) Panels B to E show trajectories of the 4 DAP populations ; black curves
represent the survival concentration (defined here as the highest concentration of DAP for which
a given lineage survived each day); blue (red) circles represent viable (non-viable) populations, as
inferred from turbidity (see Methods, Chapter 2).
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Figure 3.2: Daptomycin resistance is heterogeneous and dynamic within individual popula-
tions A) Dose-response curves (in technical replicates of 4) for twelve isolates from each DAP-
evolved population (DAP-1 to DAP-4) at four different time points (days 2, 4, 6, and 8) were used
to estimate IC50 to daptomycin. B) Daptomycin IC50 for each isolate, normalized by the IC50
of a collection of ancestral populations measured on the same day, over time for each of the four
populations. Shaded region shows precision (± 3 standard error) of IC50 estimates in the ancestral
control isolates. Isolates above the shaded region are considered DAP-resistant, while those below
the shaded region exhibit increased DAP-sensitivity. Individual points represent the mean IC50 (±
standard error from 4 technical replicates) for a single colony.

DAP populations at 4 different time points (days 2, 4, 6, and 8) and estimated the IC50 to DAP
for each isolate from dose response curves (measured in technical replicates of 4). Despite similar
evolution protocols, we found that resistance to DAP varied across the four populations 3.2. In
three of the populations (DAP1, DAP2, DAP3), we observed substantial DAP resistance by day 2,
while isolates from DAP3 did not achieve comparable levels of resistance until day 6. In addition,
the distribution of IC50’s varies across time, within individual populations, as well as across pop-
ulations. Interestingly, these distributions appear bimodal at several time points, suggesting that
multiple resistant lineages may be present–at substantial fractions– simultaneously.
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3.2.2 Collateral effects to CRO vary dramatically across and within popu-
lations

Given the range of DAP-resistance in isolates, we next asked how the collateral effects to CRO
change within and across populations. To estimate the distribution of collateral effects, we mea-
sured dose response curves to CRO for each of the previously selected isolates along with 36
additional isolates from each of the four time points for population DAP-1. Indeed, we found
substantial variability in CRO sensitivity across isolates (Figure 3.3). In two of the four popula-
tions (DAP3 and DAP4), we observed low-levels of CRO resistance by day 2, with the distribution
shifting slightly towards increased CRO resistance over time. By contrast, a substantial fraction of
isolates in populations DAP1 and DAP2 were collaterally sensitive to CRO on day 2. In DAP-1,
the distribution drifts to higher CRO resistance levels over time, though a subpopulation of highly
CRO sensitive isolates–with decreases in IC50 of nearly 100 fold relative to the ancestral strain–
emerges and is particularly noticeable by day 8. Surprisingly, the DAP2 population is dominated
by the hyper-sensitive isolates even on day 2, and collateral sensitivity remains high throughout.
These results suggest that the evolution of collateral effects in response to DAP exposure exhibits
rich dynamics, even on relatively short timescales.

3.2.3 Idiosyncratic covariation of DAP and CRO resistance across popula-
tions

We also visualized the covariation of DAP and CRO resistance in a subset of individual isolates
from the four DAP-selected populations (Figure 3.4). We found a range of different dynamics
in the 2-d space of IC50s. Populations DAP1 and DAP4 are characterized by IC50 distributions
whose mean drifts towards increased resistance to both drugs over time, though DAP1 includes
a highly CRO-sensitive subpopulation by day 8. DAP2 isolates move toward increasing DAP
resistance and decreasing CRO resistance, while DAP3 isolates show increasing DAP resistance
but relatively little change in CRO resistance (which is low-level collateral resistance) over time.

3.2.4 Population and single-isolate genome sequencing reveals varied com-
binations of mutations in genes associated with DAP resistance.

To investigate the genetic underpinnings of the varied daptomycin-resistance dynamics, we per-
formed population sequencing on each of the four populations over time and also sequenced the
full genomes of 40 individual isolates. Despite the simplicity of the laboratory evolution, we ob-
served a surprising diversity of DAP-R mutations across different populations (Figure 3.5). We
identified a number of mutations in genes previously linked to DAP resistance (Table 3.1), and we
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Figure 3.3: Collateral CRO profiles differ markedly across and within DAP-selected popu-
lations. Dose-response curves (in technical replicates of 4) for 48 isolates at four different time
points (days 2, 4, 6, and 8) from population DAP1 along with 12 isolates at four time points for
populations DAP2-DAP4 were used to estimate IC50 to ceftriaxone (CRO). A) CRO IC50 for each
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day, over time for each of the four populations. Shaded region shows precision (± 3 standard error)
of IC50 estimates in the ancestral control isolates. Isolates above the shaded region are considered
CRO-resistant, while those below the shaded region exhibit increased CRO-sensitivity. Individual
points represent the mean IC50 (± standard error from 4 technical replicates) for a single colony.
B) Frequency of collateral effects in individual isolates over time in four different DAP popula-
tions, with collateral sensitivity (CS) represented in blue and collateral resistance in red (CR).
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found that different combinations of these mutations accumulated over time in different popula-
tions.

In three of the four populations (DAP1, DAP2, DAP3), mutations in the liaFSR occurred within
the early stages of adaptation, consistent with previous findings [53, 52]. Point mutations in the
gene liaX swept to fixation in population 1 but occurred only at low frequency in DAP3. We
also identified larger IS256-mediated structural mutations in liaX in DAP1 and DAP2–and in the
latter case, this structural mutant (which we refer to as liaXs) swept to fixation over time, while it
remained a low-frequency variant in DAP1.

We also observed multiple DAP-R mutations not directly linked with liaFSR. In populations
DAP1 and DAP3, lineages characterized by point mutations in becR, a gene associated with the
two-component signaling system YxdJK previously linked with resistance to bacitracin and found
in DAP-adapted strains lacking the liaFSR system [104], appeared to out-compete the initial liaX

mutants. In DAP3, these becR lineages split into two competing lineages, one that acquired an
additional mutation in dgk, a gene encoding a putative kinase involved in lipid metabolism, and
a second with mutations in both liaF (from the liaFSR system) and cls. The mutation in dgk is
reminiscent of similar adaptations previously seen in a dihydroxyacetone kinase (DAK) associated
with lipid metabolism [104]. Mutations in cardiolypin synthetases, such as those in the cls gene,
have also been commonly linked with DAP resistance [52]. Finally, in DAP4, a lineage dominated
by a double mutant–with mutations in ycvR and EF1733 (a putative ABC transporter)– rose to high
frequencies by day 6. This lineage later acquired mutations in cdsA, a C39 family peptidase linked
with DAP resistance in other Streptococcus species [154], and subsequently in dgk. Finally, we
observed mutations in parB, associated with chromosome or plasmid segregation but not, to our
knowledge, with DAP resistance, at 4 different time points (days 2 and 6 of DAP2; days 2 and 4 of
DAP4). While the pattern of their appearance, as well as the fact that these variants did not appear
in any of the 40 individual isolates, suggests they may be spurious variant calls, we keep them here
for completeness and because they appeared in multiple populations.

Table 3.1: Mutations identified in selected populations.
Locus Tags Gene Names Descriptions
EF1753 liaX daptomycin-sensing surface protein liaX, part of LiaFSR 3-component signaling system
EF2913 liaF cell wall-active antibiotics response protein liaF
EF0727 dgk Diacylglycerol kinase catalytic domain protein
EFRS15620 parB Family partition protein
EF0926 becR DNA-biding response regulator/Two-component system HK-RR09
EF1608 cls Cardiolipin synthetase
EF1733 ABC transporter
EF2752 yvcR ABC transporter, ATP-binding protein
EFRS00550 cdsA C39 family peptidase/hypothetical protein
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Figure 3.5: Evolutionary dynamics of V583 evolving Daptomycin through independent evo-
lution experiments. Panels A–D correspond to the genotype tree and Muller plots for each DAP-
adapted population over time. Panels E-H display individual genotype frequencies correspond-
ing to each Muller plot. Muller plots were calculated from population sequencing data using the
Lolipop pipeline, which is described in [1] and available on GitHub. See also Table 3.1 for a
description of different mutations and Figure 3.8.
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Figure 3.6: Mutations and growth costs in isolates from different DAP-adapted populations
DAP resistance (left) and CRO resistance (right) vs growth cost for isolates representing each
of the 7 observed mutants. Resistance is defined as the (log2-transformed) fold change in IC50
relative to the ancestral strain; positive values represent increased resistance, while negative values
represent increased sensitivity. Growth cost is defined as the fractional decrease in maximum
growth rate when strains are grown in drug-free media. The mutants include 3 single gene mutants
(mutations in becR and two different mutations in liaX, a single nucleotide variant and an IS256-
mediated insertion variant, the latter of which we designate by using an “s” suffix), 2 double
mutants (mutations in dgk and becR; or in EF1733 and ycvR), and 2 triple mutants (mutations in
becR, cls, and liaF; or in becR, cls, and liaF).
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3.3 DAP-R mutant exhibit diverse range of resistance levels
and fitness costs.

The genome sequencing reveals a surprisingly complex collection of evolutionary trajectories that
include different combinations of individual mutations. However, it is not clear how a given com-
bination of mutations are related to phenotypic properties of a given mutant. To investigate this
question, we measured drug-free growth rate as well as DAP- and CRO-resistance (IC50) levels
for isolates representing seven different mutant ”classes” which were found among the 40 single-
colony isolates. These mutants include 3 single gene mutants (mutations in becR and two different
mutations in liaX, a single nucleotide variant and an IS256-mediated insertion variant, the latter
of which we designate by using an “s” suffix), 2 double mutants (mutations in dgk and becR; or
in EF1733 and ycvR), and 2 triple mutants (mutations in becR, cls, and liaF; or in becR, cls, and
liaF).

We found that the different mutant classes exhibit considerable differences in drug-free growth
rate (referred to here at “growth cost”, see Methods), direct resistance levels to DAP, and collateral
resistance levels to CRO (Figure 3.6; see also Figures 3.7). DAP resistance is weakly correlated
with growth cost (Figure 3.6, left panel), with a double (dgk, becR) and a triple (becR, cls, liaF)
mutant from DAP3 showing the highest levels of DAP resistance and elevated costs, while sin-
gle mutants (becR and liaX) show lower levels of DAP-R but also decreased cost. Interestingly,
the largest cost was associated with the structural (IS256-mediated insertion) mutation in the liaX

gene; these mutation dramatically increased both resistance to DAP and the growth cost relative
to the single nucleotide variant. In addition, all mutations outside of liaX showed small to mod-
erate levels of collateral resistance to CRO. By contrast, mutations in liaX were associated with
collateral sensitivity, with the IS256-mediated insertion mutant displaying extremely high levels
of CRO sensitivity. These results are consistent with recent work linking CRO hypersensitivity to
DAP-driven mutations in the LiaSFR system [152, 153] and, separately, to recent work indicating
that phage or antibiotic stress can drive rapid genome-scale transposition in enterococci, includ-
ing in E. faecium from human patients treated with daptomycin [155]. Our results complement
these findings by showing how IS256-mediated genomic changes substantially increases collat-
eral sensitivity and modulate the growth costs associated with liaX mutations in response to DAP
pressure.
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3.3.1 Disparate growth costs and resistance levels favor different mutants at
low and high DAP concentrations.

In population DAP1 at days 6 and 8 we observed coexisting mutants (mutation in becR and IS256-
mediated insertion in liaX, which we denote with subscript “s” ) with substantial differences in
DAP IC50s and growth costs (Figure 3.5 and Figure 3.6). To further characterize these compet-
ing lineages, we measured growth rates of each at multiple concentrations of DAP as well as 3
additional antibiotics (DOX, CIP, LZD). Consistent with the previous end-point IC50 measure-
ments (Figure 3.6), we found that the two mutants exhibit considerable differences in growth rate
as function of DAP, with the becR mutant showing increased growth at low DAP concentrations–a
result, in part, of its smaller fitness cost–while the liaXs mutant has a growth advantage at DAP
concentrations greater than about 40 ug/mL (Figure 3.7).

On the other hand, the becR mutant tends to show increased growth (relative to the liaXs mutant)
in the presence of other drugs, consistent with the opposing collateral effects we saw for CRO
based on end-point measurements. While growth of becR mutants in the presence of CIP and LZD
is similar to that of WT cells over most concentrations tested, the increased growth cost associated
with liaXs leads to a substantial reduction in growth at low levels of CIP and LZD (Figure 3.7).
In addition, both mutants are strongly sensitized to doxycycline, with growth rates nearing zero at
concentrations largely sub-inhibitory in the wild type (ancestral) cells.
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Figure 3.7: Effects of different antibiotics on growth rates of liaXS and becR mutants. A)
Schematic of the measurement of per capita growth rate from optical density time series in two
isolates isolated from DAP1 populations. The first isolate has a large structural mutation in EF1753
(denoted liaXS); the second isolate has a point mutation in a repressor (becR) linked to the regula-
tory system YxdJK. B) Per capita growth rate was estimated from time series of optical density in
exponential phase using nonlinear least squares fitting. Red line: example growth rate fits for two
isolates with similar growth rates (blue and black curves). C) Per capita growth rate as a function
of daptomycin (DAP) Black curves show growth of ancestral (WT) population. Individual points
are the means over 4 technical replicates, with errorbars plus/minus 1 standard error. D) Growth
rate dose-response curves are characterized by low-DAP regimes where becR-mutant grows faster
and high-DAP regimes where liaXS-mutant grows faster. The crossover point occurs at a DAP
concentration of approximately 40 ug/ml. E-G) Same as C, per capita growth rate as a function
of doxycycline (DOX, upper panel), ciprofloxacin (CIP, middle panels), and linezolid (LZD, lower
panels) for liaXS-mutant (left column) and becR-mutant (right column).
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3.4 Discussion

Daptomycin is one of the last defenses against infections caused by multi-drug resistant bacteria,
and the increasing prevalence of daptomycin resistance poses obstacles to the effective treatment of
these infections. The results reported here add to our growing understanding of the molecular and
genetic underpinnings of daptomycin resistance. Despite the relatively simple adaptation protocol–
one performed under well-controlled laboratory conditions that are substantially simplifications of
the natural environments faced in vivo–the evolution of daptomycin resistance is surprisingly com-
plex and, in four independent populations, followed four largely distinct evolutionary pathways to
resistance.

Our results complement, and are consistent with, a number of studies on daptomycin resis-
tance that identified most of the mutational targets we observed [138, 52, 134, 139, 140, 95, 141,
142, 143, 144, 53]. Collateral effects have been explored in much less detail, though the collat-
eral sensitivity we observe is consistent with the “seesaw” effect observed with glycopeptides or
lipopeptides and beta-lactams in other Gram-positive species [145, 146, 147, 148, 149]. A similar
“seesaw” effect was recently reported in E. faecalis [150, 151, 102]. Most notably, recent work
(including a PhD thesis and seminar abstract) has linked CRO hypersensitivity to DAP-driven mu-
tations in the LiaSFR system [152, 153], and we are hopeful that their continued efforts will lead
to a deeper understanding of the molecular basis of this collateral sensitivity.

Collateral effects have also been reported in isolates of a related enterococcal species (E. fae-

cium), which acquired sensitivity to other drugs when evolved in the lab in the presence of dap-
tomycin [156]. They found daptomycin resistant mutations associated with the liaFSR, yycFG,
and cls genes, all of which were associated with fitness costs. Additionally, they observed dap-
tomycin resistant mutants with increased collateral sensitivity to the glycopeptide antibiotic van-
comycin due to a large-scale insertion mediated by the IS1216E-transposon. Our results include
a similar IS-mediated insertion–this time in liaX–and similar insertion events have been recently
observed in E. feacalis populations under phage stress and in E. faecium from daptomycin-treated
patients [155], suggesting that transposon-mediated dynamics play an important role in maintain-
ing genome plasticity of enterococci.

Similar results–most notably, mutations involving the cls gene and those associated with the
LiaSRF system [156, 138, 55], have also been observed in the clinic. In one example, researchers
isolated strains of E. faecalis from a patient with fatal bacteremia before and after treatment with
DAP. They found mutations associated with the liaF gene, cls, and GdpD (an enzyme also involved
in phospholipid metabolism) [138]. Similarly, Woods and colleagues [55] found daptomycin resis-
tance in E. faecium can evolve via multiple separate evolutionary pathways in patients, with most
strains harboring mutations associated with the cardiolipin synthase (clsA) gene. Daptomycin re-
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sistance was also shown to arise in off-target gut-associated populations during intravenous treat-
ment [137].

Our results illustrate how DAP-R mutations can arise in different combinations, even under
similar environmental pressures, and lead to different effects of fitness and collateral profiles. The
work highlights several challenges, and potential opportunities, for applying collateral sensitiv-
ity in the clinic. In particular, it highlights that steering evolution down particular daptomycin-
resistant pathways–in this case, pathways targeting the liaX gene–may lead to strong collateral
sensitivities, opening the door to drug-switching strategies that target populations at their most
vulnerable. On the other hand, we also showed that treatment with daptomycin under very similar
conditions led to highly variable evolutionary trajectories across replicate populations. It is not
clear the extent to which this variability is specific to daptomycin, which targets that cell mem-
brane and may therefore be susceptible to a wide range of resistance mechanisms that module
membrane composition and homeostasis. In addition, our adaptation experiments were performed
in relatively small populations–potentially much smaller than those in the gut of human hosts. Pre-
vious work in chemostats [53, 104]–using larger populations–has indeed shown that daptomycin
resistance occurs via a relatively predictable sequence, and it would be interesting to probe dap-
tomycin adaptation at intermediate population sizes between these two extremes. In any event,
harnessing these (apparently) stochastic trajectories may require application of advanced control-
theoretic approaches, some of which have been recently applied to steering evolution [102, 66].
Future work may be able to exploit the fitness costs associated with certain genes to design more
effective control strategies to steer evolution along clinically beneficial trajectories.
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3.5 Methods and Materials

3.5.1 Strains, growth conditions, and drugs

Evolution experiments were conducted using the E. faecalis strain V583 and the resistance was
derived from the same strain. Samples were stocked in 30% glycerol and stored at -80 C. Cultures
for experiments were taken from single colonies grown on agar plates and then inoculated at 37o

C overnight before dilution in fresh media and the beginning of the experiment. All experiments
and dose-response measurements were conducted in Brain-Heart Infusion or BHI (Remel). Drug
stock solutions were prepared from powdered stock and stored at −20o C in single-use aliquots.
All experiments with daptomycin were supplemented with 20 µg/mL Ca2+.

Table 3.2: Antibiotics used in chapter 3.

Drug Name (Abbreviation) Supplier Mechanism of Action
Ceftriaxone Sodium (CRO) Sigma Aldrich Cell wall synthesis inhibitor
Ciprofloxacin, 98% (CIP) Acros Organics DNA gyrase inhibitor
Daptomycin (DAP) Acros Organics Cell membrane insertion
Doxycycline Hydrochloride (DOX) Reseach Products International 30S protein synthesis inhibitor
Linezolid, 98% (LZD) Acros Organics 50S protein synthesis inhibitor

3.5.2 Measuring drug resistance

To measure IC50, a sample acquired from the evolution experiment was streaked on a BHI Agar
plate. From there, a single colony was selected and used for inoculation and incubated at 37° C
overnight. Cells were then exposed to a drug concentration gradient, differing among each of the
12 wells on the plate, and the experiment was prepped in a BHI media with a total volume of 205
µL (200 µL of BHI, 5 µL of 1.5 OD cells) per well. Following 16 hours of growth at 37° C, OD
at 600 nm (OD600) was measured with an Enspire Multimodal Plate Reader (Perkin Elmer). An
IC50 measurement was taken for 12 colonies and each with 3 replicates.

In order to quantify the values for drug resistance, OD measurements for each drug concen-
tration were normalized by OD measurements without the drug, and the dose-response curve was
then fit to a Hill function (g(d) = (1 + (d/k)h)−1), with d the drug concentration, k the IC50, and
h the Hill coefficient.

3.5.3 Estimating growth costs

Growth costs were estimated by fitting time-series of optical density (for isolates grown
in drug-free media) to a logistic growth function [157] given by g(t) = g0 +

45



K (1 + exp(4µ(λ− t)/K + 2))−1, where µ is the maximum specific growth rate, λ is the lag
time, and K is the carrying capacity. The fitness cost (c) is then defined as c = 1 − µ/µwt, where
µwt is the maximum growth rate of the ancestral (WT) strain.

3.5.4 Whole-genome sequencing

To see if there are any genomic changes that influence the measurement of collateral phenotypes,
we sequenced 40 individual colonies that evolved Dap mutants and 2 V583 ancestors for a control.
Illumina Short Read sequencing (400 Mbp / 2.7 million reads) and DNA isolation were performed
by the Microbial Genome Sequencing Center (MiGS) at the University of Pittsburgh. We also
performed population level sequencing (2000Mbp/13.3 Million reads) on samples drawn from
days 2, 4, 6, and 8 from each population (performed at SeqCoast Genomics).

The resulting genomic data was analyzed using the high-throughput computational pipeline bre-
seq [158, 159], with default settings (and using polymorphism mode for population sequencing).
Briefly, genomes were trimmed and subsequently aligned to E. faecalis strain V583 (Accession
numbers: AE016830 - AE016833) via Bowtie 2. A sequence read was discarded if less than 90
percent of the length of the read did not match the reference genome or a predicted candidate junc-
tion. At each position a Bayesian posterior probability is calculated and the log10 ratio of that
probability versus the probability of another base (A, T, C, G, gap) is calculated. Sufficiently high
consensus scores are marked as read alignment evidence (in our case a consensus score of 10).
Any mutation that occurred in either of the 2 control V583 strains was filtered from the results.

For population sequencing, we removed any variants that did not occur at a frequency of greater
than 25 percent on at least one day. For simplicity, in the figures in the main text we also removed
variants if they were either 1) not observed in any single isolates and 2) had not previously been
linked with DAP resistance. Detailed Muller plots containing these additional mutations is shown
in Figure 3.8. To make Muller plots, we used the Lolipop pipeline, which is briefly described in [1]
and available on GitHub (https://github.com/cdeitrick/Lolipop).

3.5.5 Long-read sequencing to confirm structural mutations.

We confirmed the large-scale IS256 mediated structural mutations in liaX arising in population
2 using long-read Nanopore sequencing ([160]). Genome assemblies and sequencing were per-
formed by MiGS according to the following: Quality control and adapter trimming was performed
with bcl-convert and porechop for Illumina and ONT sequencing respectively; hybrid assembly
with Illumina and ONT reads was performed with Unicycler; assembly statistics were recorded
with QUAST and assembly annotation was performed with Prokka (Default Parameters + ’–rfam’).
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Figure 3.8: Muller plot from all mutations. Panels A–D correspond to the genotype tree and
muller plots for each DAP population during evolution. Panel E-H plots individual genotype fre-
quencies corresponding to each Muller plot.

3.6 Supplemental Figures

This section contains 4 supplemental figures referenced throughout the text

Table 3.3: Additional mutations observed in population sequencing.

Locus Tags Gene Names Descriptions
Helix domain Helix-turn-helix domain-containing protein
sfsA DNA/RNA nuclease SfsA

EFRS15670 GPT /srlM Putative transcriptional activator
EFRS08000 ydcf YdcF family protein
EF1264 Sulfatase domain protein / lipoteichoic acid synthase
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Figure 3.9: DAP mutaions. Mutations in 40 individual isolates from DAP1-DAP4 on different
days.
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Figure 3.10: Drug-free growth curves and dose-response curves for single DAP-resistant mu-
tants. The wild type (sensitive) is represented by black curves and the mutants are represented by
red curves.
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Figure 3.11: Drug-free growth curves and dose-response curves for double and triple DAP-
resistant mutants. The wild type (sensitive) is represented by black curves and the mutants are
represented by red curves.
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Part II

Evolution and Competition in Multi-Strain
Communities
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CHAPTER 4

Interplay of Spatial Heterogeneity and Migration
Modulate Evolution of Resistance in a Microbial

Metacommunity

This chapter was reproduced, in part, from the following manuscript, which will be uploaded to
bioRxiv and will be submitted for publication after a brief period of feedback from the community:
A. Huynh, A. Sharma, M. De Jong, and KB Wood, bioRxiv, 2023. doi: Pending. A. Sharma and
M. De Jong were important contributors to the initial design of this project, including the setup
and initial calibration of the bioreactors used throughout. I (AH) performed all experiments shown
in this chapter. All authors contributed to experimental design, data analysis, figure design, and
manuscript drafts/revisions.

4.1 Introduction

The crisis of antibiotic resistance is continuing to increase at an alarming rate [7, 8, 9, 10]. While
many remarkable discoveries at the molecular level have helped us understand the underlying
molecular mechanisms that give rise to resistance [161, 162, 163, 164], it remains challenging to
translate this understanding into therapies that combat resistance, in part because of the complexity
of natural and clinical environments. For example, while the majority of studies focus on bacte-
ria populations in well-mixed environments [165, 166, 167], in nature bacterial populations often
are comprised of interacting “subpopulations” and live in heterogeneous environments. Natural
communities evolve on spatially extended habitats that potentially yield complicated networks of
interacting subpopulations [168], and understanding the role of this spatial structure in the evolu-
tion of resistance is an ongoing challenge.

A large body of theoretical work has investigated the impact of spatial heterogeneity on ecologi-
cal and evolutionary dynamics in a wide range of contexts–from the spread of COVID [169] to con-
servation ecology [170]. Numerous elegant approaches exist for studying multi-habitat models on
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Figure 4.1: Estimating real-time per capita growth rate using constant-density turbidostats.
A) Schematic illustration showing an experiment setup. An overnight culture from a single colony
of E. faecalis was diluted into a fresh BHI medium (at a 1:100 ratio) in a glass vial (25mL), well-
mixed, and grown to a desired density. Then, the turbidostat, a continuous well-mixed culture
device was used. The population is kept constant by pumping in fresh BHI media from a reser-
voir at the same rate media and cells are pumped out to waste. Reservoirs can have different
conditions such as with or without antibiotics (selection pressure). The pumps are controlled by
a computer using feedback from an optical density (OD) measured with a photo-sensor. B) The
blue curve shows a population kept constant at OD=0.5, and a typical growth curve is shown in
red. C and D: Pump dynamics required to hold wild type (OG1RF) populations at constant density
in the presence (D) and absence (C) of doxycycline. In practice, flow is not continuous; instead
pumps alternate between “on” periods of a variable duration (pump duration) and ”off” periods
that are determined by a simple feedback algorithm. E). Time-averaged pump rates–proportional
to population growth rate–in two example experiments over time.
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graphs [171] or in particular limits (e.g. with a center manifold reduction) [172]. Theory suggests
that how different subpopulations in a community are topologically ”connected” can alter evolu-
tion. For example, if a subpopulation acts as a hub–that is, it serves as a central population with
connections, such as migrational pathways, to and from multiple other subpopulations–mutations
can be amplified and reach fixation faster [173]. Recent work in mammalian cells indicates that mi-
gration in a mixed population of wild type and resistant cells does not affect the average frequency
of mutants but influences the distribution of mutants among subpopulations [174]), while recent
experiments in microbial metapopulations migrating between spatially uniform can either slow or
speed adaptation [175]. In the context of drug resistance, several recent theoretical and experimen-
tal studies have shown that spatial fluctuations in drug concentration significantly impact the evo-
lution of resistance [82, 83, 79, 80, 81, 18, 78, 19]. These studies indicate that resistance emerges
more quickly in the presence of spatial gradients in drug concentration [83, 79, 80, 18, 78, 19] or
heterogeneous drug penetration [82, 81]. Despite these promising advances, experimental studies
of evolution in spatially heterogeneous landscapes remain relatively rare.

In this work, using E. faecalis as a model, we investigate whether drug (doxycycline) con-
centrations in heterogeneous meta-communities can be tuned to modulate the emergence of drug
resistance. Enterococci inhabit the gut of many mammals [176], and the gastrointestinal tract is
a substantially heterogeneous spatially-extended system. Recent work on gut microbes has un-
derscored the potential impact of spatial effects, such as cell-cell clustering, which can facilitate
clearance microbial communities in the presence of antibiotics [84, 85] and even modulate the di-
versity of the human microbiota [86]. Spatially separated enterococcal populations in the gut may
experience different levels of drug and nutrients, and it is not clear how this heterogeneity impacts
evolution of resistance, particularly given that these subpopulations are likely connected by flow
in the gut.

To investigate the interplay of spatial heterogeneity and inter-population exchange, we leverage
a series of inter-connected, computer controlled bioreactors that allow us to simulate continuous
”migration” between different well-mixed communities of fixed size held at potentially differ-
ent drug concentrations. By measuring real-time growth rate in each individual community, we
show that migration accelerates total population growth in mixed populations of drug-sensitive
and drug-resistant cells–a result consistent with simple mathematical models and intuitively ex-
plained by the homogenizing effect of migration on the initial distribution of mutants. In addition,
we investigate the emergence of resistance in initially sensitive populations on longer timescales
in both single- and multi-habitat communities; on these timescales, the emergence of resistance
appears as a sigmoidal-like increase in population growth rate, and we find that migration tends to
delay this growth increase when the concentration of drug is not uniform across habitats. Genome
sequencing of isolates from adapted populations suggest that resistance arises primarily due to
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emergence of a single mutant type–single nucleotide mutations in the gene for ribosomal protein
rpsJ, a target of doxycycline and a well known conduit of doxycycline resistance–and phenotypic
characterization of isolates indicates that migration does not select for fundamentally new muta-
tions but instead reshapes the distribution of sensitive and resistant populations across habitats.
By contrast, we also observe cases where migration has little impact on growth adaptation, even
when drug heterogeneity across habitats is substantial. These trends can be partially explained by
changes in selection pressure across different habitats, which we show is correlated with the ob-
served shift in adaptation times. Overall, these results show that migration and spatial structure can
have substantial impacts on adaptation in microbial communities, even in simple scenarios where
resistance is dominated by a selective sweeps of a single type of mutant.
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Figure 4.2: Migration leads to accelerated population growth in meta-communities when mu-
tants are initially distributed heterogeneously across habitats A) Three-vial meta-populations
are seeded with known fractions of sensitive and resistant cells. At time 0, a fixed concentra-
tion of drug is added to all three vials as well as the input reservoirs that provide fresh media to
each vial. Each vial is operated as a turbidostat, and growth within each vial (“subpopulation”)
is estimated from the influx rate of fresh media required to keep optical density constant. In one
meta-community (left), the three vials are not interconnected with one another. In the other meta-
community (right), migration is simulated by connecting the 3 vials in a linear array (vial 1 - vial 2
- vial 3) and an independent set of pumps is used to exchange media between neighboring vials at
a fixed rate. B and C: Per capita growth rates for individual populations (left) and the total popula-
tion average (right) when the vials are seeded with homogeneous (B) or heterogeneous (C) mutant
fractions under conditions of no migration (red) and migration (blue). Bar graph insets represent
the initial mutant population in each vial. In all cases, the initial fraction of mutants in the entire
population (i.e. across vials) is held fixed at 0.8 percent.
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4.2 Results

To study population dynamics in spatially connected communities, we modified a recently devel-
oped bioreactor device (eVolver [87]) to allow for exchange of media between neighboring vials
in a linear array of 3 individual growth chambers (Methods). In each chamber, we hold population
size approximately constant (turbidostat mode) using a simple feedback algorithm to pump in fresh
media and drug from a reservoir while simultaneously removing an equal volume of media plus
cells 4.1. The per capita growth rate g in each vial can be estimated from the flow rate F required
to maintain a constant optical density (OD) in that vial (g = F/V , where V is the total culture
volume).

As in previous chapters, our model system is the gram positive bacterium E. faecalis, an op-
portunistic pathogen that underlies a number of human infections[48]. In this work, we focus on
populations treated with doxycyline, a common bacteriostatic antibiotic that targets protein synthe-
sis. We chose doxycycline because it is well characterized and, based on previous work from our
group, has a relatively smooth dose response curve and does not exhibit strong density-dependent
effects [88, 28], which could unnecessarily complicate the interpretation of our results.

To simulate migration, we connected neighboring vials in each 3-vial meta-community to allow
for flow between habitats at fixed rates (Figure 4.2 A). We focus on perhaps the simplest possible
connection topology–a linear array. In this arrangement, the two edge vials are not directly con-
nected to one another but are indirectly coupled via connections to the central “hub” vial. While
this setup also allows for intermixing of drug between vials, we choose migration rates sufficiently
small that the effects of intermixing on drug concentration is typically small (less than 10 percent).

4.2.1 Dynamics of meta-populations of sensitive and resistant cells.

We began by investigating the dynamics of 3-vial communities containing mixtures of sensitive
and resistant cells. In this case, the resistant strain is a fully sequenced, lab-evolved descendent
of the sensitive strain (OG1RF); the resistant strain harbors a single point mutation in the gene for
ribosomal protein rpsJ, a known target of doxycycline. At the beginning of each experiment, we
seeded each vial in a connected (“with migration”) meta-population with a known ratio of sensitive
and resistant cells–with resistant cells initially present at a small fraction (typically ¡ 1 percent). In
parallel, we ran an identical experiment with a second “no migration” metapopulation where the
three vials are not connected and therefore act independently. In both cases, we estimated real-
time per capita growth rate in each sub-population (each vial) and compared the total (averaged)
population growth rates between the “migration” and “no migration” communities.

For simplicity, we start with a metapopulation where drug concentration is the same (216
mug/mL) in each vial (Figure 4.2). Over time, we see an increase in population growth rate in
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Subpopulations SubpopulationsPopulation Average Population Average

Migration

No migration

Figure 4.3: Heterogeneity in drug concentration can accentuate or mitigate migration-
induced acceleration of population growth. Three-vial meta-populations are seeded with differ-
ent size mutant populations (rows; see bar graphs at left) and drug concentration is heterogeneous
but fixed across vials (columns; see bar graphs at top). Panels show per capita growth rates for
individual subpopulations (left panel in each pair) and the total population average (right panel in
each pair) under conditions of no migration (red) and migration (blue).

each vial, which is expected in the presence of drug because the resistant subpopulation–which
grows faster in drug–should increase in frequency over time. When the resistant mutants are ini-
tially distributed uniformly across the community, we find that the growth rate increases similarly
in each subpopulation, regardless of migration (Figure 4.2 B). Not surprisingly, then, we do not see
significant impact of migration when conditions in the individual habitats are initially identical.

We next asked what would happen in the case where mutants are initially distributed hetero-
geneously across the different habitats. Because of the stochastic nature of evolution, one might
expect such heterogeneity in mutation frequencies to arise naturally in spatially segregated commu-
nities, particularly when population sizes are small. In contrast to the homogeneous case, we now
observe substantially accelerated growth in the presence of migration when mutants are initially
more prevalent in the center vial (Figure 4.2). We observed a similar (though smaller) growth
acceleration when other heterogeneous distributions of mutants–such as a stair-case–were used
(Figure 4.11A-C).

In addition to heterogeneity in mutant composition, we investigated the effects of heterogeneity
in drug concentration across the different vials. To do so, we repeated the experiments above
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Initial Mutant Population (f0)A

B

Vial Position Vial Position Vial Position Vial Position

Figure 4.4: A toy model provides intuition for migration-induced acceleration of growth.
A simple population dynamics model involves 3 exponentially growing, interconnected sub-
populations that are seeded with different distributions mutants at time 0 (A). Panel B: per capita
growth rate in the total population (left) and in the individual subpopulations (right panels; top
is edge vials, bottom is center vial) for meta-populations with migration (blue curves) or without
migrations (multi-colored curves, red to light orange, depending on the specific distribution of
mutants). Inset: time to fixation (τ ) in a single habitat model of two exponentially growing pop-
ulations as a function of initial mutant fraction f0. The fixation time depends nonlinearly on f0,
which means that the impact of reducing f0 (represented by vertical yellow bar) is larger than that
of increasing f0 (vertical purple bar). In a meta-community with fixed (total) mutant population
size, introducing heterogeneity would therefore be expected to slow fixation.

in meta-populations with heterogeneous drug profiles where either the middle vial or the edge
vials contain higher drug concentrations. These profiles correspond to a central peak or a central
valley in drug concentration and correspond to the simplest possible non-monotonic arrangement
of drug concentrations. Importantly, we chose the drug concentrations so that the total population
growth rate remained (approximately) constant at the beginning of each experiment–that is, each
metapopulation begins with identical growth at the level of the entire population, despite the fact
that the distribution of drug (and therefore growth rates) across vials may be variable.

As in the uniform drug populations, we found that migration can accelerate growth relative
to paired, non-migrating populations (Figure 4.3). However, heterogeneity in drug concentration
and initial migration distribution can also counter-balance one another, reducing the effect. For
example, the previously observed acceleration of growth when mutants are initially enriched in
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Figure 4.5: Evolution of doxycycline resistance in well-mixed communities depends on drug
concentration. A) Bacterial growth is measured using the rate of the pumps. The pump duration
is recorded, including when it was on and how long it stayed on (burgundy circles) to maintain
the fixed volume (25mL). This plot is an example that shows that the population grows faster after
40 hours. B) Resistant mutants emerge under Doxycycline (DOX) at different concentrations: 177
ng/mL (green), 400 ng/mL (blue), and 800 ng/mL (red). Relative growth rate curves are normalized
to the wild type without drugs. Individual trials are represented with thin curves and the average
with thick curves. C) Evolution of E. faecalis as a function of the drug concentration increases
from [DOX] min = 100 ng/mL to [Dox] max = 1200 ng/mL. In a small drug concentration regime
(less than 177 ng/mL), the population growth rate curve behaves linearly and becomes an S-shape
as the drug increases, allowing an estimation of the time when mutants emerge. The steepness of
the slopes reflects how fast mutants takeover. Each vial started with an inoculation of 250 µL from
a saturated culture of a single colony and population held constant at OD=0.5 (approximately 1010

cells when the drug is added).
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the center habitat (Figure 4.3, upper left panels) can be minimized by increasing drug concentra-
tions in the center environment and decreasing concentrations at the edges (Figure 4.3, upper right
panels). A similar effect occurs when mutants are initially enriched in the edge environments:
the migration-induced acceleration of growth is reduced when drug is increased at the edges and
decreased in the center vial.

We observed similar dynamics under a range of different drug concentrations and initial mutant
distributions (Figure 4.11). In every case, the effect of migration was to accelerate growth or leave
the dynamics essentially unchanged; notably, we did not find situations where migration leads to
a substantial slowing in the rate of growth increase. These results are consistent with predictions
of perhaps the simplest possible population dynamics model: one where cells in each habitat grow
exponentially and cells can “migrate” to neighboring habitats (see Methods; Figure 4.11). The
model is parameterized by independently measured growth rates (see Figure 4.10 for example).

While the results may appear initially surprising, they have a simple intuitive interpretation. In
a single habitat, exponentially growing population, the time (τ ) required for growth rate to reach
some threshold–say, fifty percent–of its final value is (up to an additive constant) proportional to
τ ∝ ln((1− f0)/f0) (see Methods). The convexity of this function means that the effect of adding
additional mutants–which decreases τ–and the effect of removing mutants–which increases τ–are
not symmetric (Figure 4.4B, upper left inset). In words, removing mutants at time zero slows
fixation more so than adding mutants speeds fixation. In a disconnected meta-community with
uniform drug concentrations, heterogeneity is therefore expected to increase fixation time (i.e.
to slow the increase of population growth) relative to a homogeneous community. In connected
communities, migration serves to homogenize the initial mutant distribution, which in turn leads
to an decrease in fixation time (i.e. accelerates the increase in population growth).

Solutions to the simple model confirm this intuition: even when drug is uniform across habitats,
migration leads to accelerated growth under various heterogeneous distributions of mutant seeding
(step-like decrease, central valley, central peak, Figure 4.4B). In each case, removing migration–
which effectively increases heterogeneity in the initial mutant distribution–has opposing effects on
the middle and edge vials: speeding growth acceleration in one and slowing growth acceleration
in the other Figure 4.4B, right panels). However, the slowing effects tend to dominate, leading
to a slow down in the growth curves for the entire population (Figure 4.4B), left panel). These
results offer intuition for the accelerating effects of migration, which serves to homogenize initial
fluctuations in the mutant distribution.
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4.2.2 Evolution in single habitats with fixed drug concentration.

To this point, our results have focused on population dynamics in mixed populations that are
seeded, up front, with known fractions of sensitive and resistance cells. In this section, we in-
vestigate adaptation on longer timescales in populations that start from a single sensitive colony.
In these populations, adaptation in growth are (as we will see) associated with emergence of resis-
tant mutants that eventually dominate the population.

For simplicity, we being by growing sensitive populations of cells for multiple days in the
presence of a fixed concentration of doxycyline (Figure 4.5). Under these conditions, a typical
trajectory starts at a low growth rate (determined by the concentration of drug) before undergoing
a rapid increase in growth, often after 30-40 hours of adaptation. Both the timing and the steepness
of the growth increase depend on drug concentration, with higher concentrations typically leading
to steeper increases that start at later times ((Figure 4.5 B-C)). These results are mostly consistent
with classical models of population dynamics, where the fixation time of the resistant strain is
inversely proportional to the selection pressure (in the simplest case, the difference in growth rates
between sensitive and resistant strains). However, we do note that at high drug concentrations,
growth initially decreases gradually for 20 or more hours (Figure 4.5), a trend that does not occur
in the simplest population dynamics models but may reflect complex drug binding dynamics of
ribosome-targeting drugs like doxycyline [177, 178]. As expected, strains isolated from the end of
these adaptation experiment exhibit increased IC50 (the concentration of drug at which the effect
is half-maximal), indicating they are resistant mutants–a result we confirm (below) with genome
sequencing.
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Figure 4.6: Migration can slow adaptation when drug concentrations are non-uniform across
habitats. See next page.
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Figure 4.6: (caption continued) A) The subpopulations in a metacommunity are each exposed to a
fixed concentration of drug. Profiles of drug include uniform distribution across vials, a drug valley
(where drug is largest in the center habitat), and a drug peak. The profiles can also be represented in
terms of initial population growth; in that case, high drug corresponds to lower (initial) population
growth. B) Growth rate trajectories for individual subpopulations with (blue) and without (red)
migration in metacommunities with uniform drug distributions ([Dox] = 216 ng/mL). C-D) Growth
rate trajectories for individual subpopulations (left panel) and the full metapopulation (right panel)
both with (blue) and without (red) migration. Panel C corresponds to a metacommunity where
drug concentration is maximum (initial growth minimum) in the edge vials ([Dox] = 400 ng/mL)
and lower ([Dox] = 125 ng/mL) in the center vial. In panel D, drug concentration is lower ([Dox]
= 177 ng/mL) in the edge vials and a higher drug concentration in the middle vial ([Dox] = 600
ng/mL).

4.2.3 Migration can slow adaptation when drug concentrations are non-
uniform across habitats.

To investigate the impact of spatial heterogeneity on the emergence of resistance, we next per-
formed lab evolution experiments in 3-vial metapopulations initially seeded with sensitive popula-
tions (Figure 4.6 A). Similar to the single vial case, we see adaptation occurring in each individual
habitat of these metacommunities as a sharp increase in population growth that typically occurs
after 20 or more hours of drug exposure. The results are highly repeatable across replicate pop-
ulations, a result we attribute to the size of the populations. These populations are large–each 25
mL culture vial contains on the order of 10 billion cells–and the dynamics of these populations are
likely dominated by selection on a pre-existing distribution of mutants that is statically similar in
each vial when the experiment begins.

When the drug concentration is uniform across the different vials, migration has little impact on
the time it takes for growth to increase to a plateau–a time we frequently refer to as the “fixation”
time (Figure 4.6 B). On the other hand, when drug concentration is non-uniform across different
vials, adaptation in the individual vials (Figure 4.6C and D, left panels) and in the total population
growth rate (Figure 4.6 C and D, right panels) are substantially affected by migration. In contrast
to results in pre-mixed populations (e.g. Figure 4.3), where migration tends to accelerate growth
adaptation, we now find that migration leads to a delay in fixation time under multiple profiles of
drug heterogeneity, including cases where drug is lowest (initial growth is highest) in the center
habitat (Figure 4.6 C) and cases where drug is highest in the center habitat (Figure 4.6 D). We find
that this shift in fixation is maintained across a range of migration rates achievable with our setup
(Figure 4.14).

However, this delay does not occur in all cases where the distribution of drug is heterogeneous.
For example, when metapopulations are exposed to similar drug profiles (peak or valley in drug

64



20 40 60
Time (hours)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
G

ro
w

th
 R

at
e

20 40 60
Time (hours)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
G

ro
w

th
 R

at
e

Average Populations

Individual Populations

Fixation of
 resistant mutant

Edge vials

Edge vials

Middle vials

Middle vials

20 40 60
Time (hours)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
G

ro
w

th
 R

at
e

20 40 60
Time (hours)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
G

ro
w

th
 R

at
e

20 40 60
Time (hours)

0

0.2

0.4

0.6

0.8

1

R
el

at
iv

e 
G

ro
w

th
 R

at
e

Growth

Growth Growth

GrowthGrowth

no migration

with migration

no migration

with migration

Vial
  1

Vial
  2

Vial
 3

Distribution profiles
Average 
Growth
t = 0 

Average
 [Drug]

Homogenous Heterogenous

Vial
  1

Vial
  2

Vial
 3

Vial
  1

Vial
  2

Vial
 3

no migration with migration

DoxycyclineA B

C

D

no migration
with migration

Figure 4.7: Drug heterogeneity is not sufficient to drive migration-induced slowing of adap-
tation. See next page.

concentration in center habitat) but at higher overall drug concentrations, adaptation at the level of
the entire population occurs on similar timescales regardless of migration (Figure 4.7 B-D, right
panels). In this case, however, adaptation in each individual vial is impacted–to varying degrees–by
migration, but the effects in the different subpopulations largely cancel out at the level of the entire
community. Therefore, while non-uniform profiles of drug concentration can lead to migration-
driven slowing of adaptation in some cases, this non-uniformity alone is not sufficient to guarantee
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Figure 4.7: A) The subpopulations in a metacommunity are each exposed to a fixed concentration
of drug. Profiles of drug include uniform distribution across vials, a drug valley (where drug is
largest in the center habitat), and a drug peak. The profiles can also be represented in terms of
initial population growth; in that case, high drug corresponds to lower (initial) population growth.
B) Growth rate trajectories for individual subpopulations with (blue) and without (red) migration
in metacommunities with uniform drug distributions ([Dox] = 433.3 ng/mL). C-D) Growth rate
trajectories for individual subpopulations (left panel) and the full metapopulation (right panel)
both with (blue) and without (red) migration. Panel C corresponds to a metacommunity where
drug concentration is maximum (initial growth minimum) in the edge vials ([Dox] = 525 ng/mL)
and lower ([Dox] = 125 ng/mL) in the center vial. In panel D, drug concentration is lower ([Dox]
= 250 ng/mL) in the edge vials and a higher drug concentration in the middle vial ([Dox] = 800
ng/mL).

the effect.
In addition to comparing adaptation with and without migration, we also compared adaptation

trajectories between different meta-communities with different drug-profile distributions. As in the
experiments with mixed populations (e.g. Figure 4.2), to facilitate comparisons between different
drug concentration profiles, we chose the drug concentrations that lead to different distributions
of drug but keep the overall population growth at time zero approximately constant. That is,
the profiles will lead to different distributions of (initial) growth in the individual subpopulations
but will lead to the same average population growth rate of the entire community. In the drug
profiles with lower total drug concentration, we find that the homogeneous and heterogeneous
metapopulations exhibit similar fixation times in the absence of migration, but migration leads to
a delay in fixation in heterogeneous populations (Figure 4.15, top panels). By contrast, at higher
concentrations, heterogeneous populations show slightly accelerated fixation in the absence of
migration, while migration appears to eliminate the effect (Figure 4.15).

4.3 Migration does not select for new mutations but alters the
spatial distribution of sensitive and resistant cells.

To investigate the genetic underpinnings of these evolutionary dynamics, we selected dozens of
isolates from different subpopulations at the end of these lab evolution experiments. For each
isolate, we measured a dose response curve to doxycyline and estimated the IC50. In addition, we
sequenced the full genomes of a subset of isolates.

The IC50 measurements reveal that isolates fall roughly into 2 phenotypic classes: sensitive
strains, with resistance similar to that of the WT ancestor, and dox-R strains, whose IC50 is in-
creased by approximately 5-fold (Figure 4.16). This division into two classes is confirmed by
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Figure 4.8: Quantifying mutant resistance by measuring the dose response from the final
sample of the evolution experiments. A) Schematic of experiment: a sample was saved after
the evolution experiment and streaked on a BHI agar plate, allowing it to form a colony from a
single cell. The cells were inoculated in BHI media overnight at 37oC and exposed to Dox with
increasing concentrations (96 microwell plates). After 6 hours, OD (OD600) was measured by
using a plate reader. A nonlinear response curve was fitted to the Hill function to describe the
dose effect by estimating half maximal inhibitory concentration (IC50 ).B)The resistance fraction
of final samples from low drug concentration vials connected to higher drug concentrations. The
red line indicates results without migration and the blue line indicates results with migration. C)
Showing the resistance fraction of final samples from higher drug concentration vials connected
to lower drug concentrations. The same legends apply as in panel B. The connections between the
low drug concentrations in panel C and the higher drug concentrations in panel D (and vice versa)
are followed: [Drug 100] (24 replicates for each with and without migration) connected to [Drug
275] (24 replicates for each with and without migration), [Drug 125] (48 replicates for each with
and without migration) connected to [Drug 400] (60 replicates for with migration and 48 replicates
without migration), [Drug 177] (24 replicates for each with and without migration) connected to
[Drug 600] (24 replicates for each with and without migration), [Drug 250] (24 replicates for each
with and without migration) connected to [Drug 525] (24 replicates for each with and without
migration), and [Drug 250] connected to [Drug 800] (24 replicates for each with and without
migration)

sequencing: the vast majority of resistant isolates harbored a single point mutation in the gene
for ribosomal protein rpsJ, a target of doxycycline and a well known conduit of doxycycline re-
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sistance. Somewhat surprisingly, we did not identify any isolates with mutations in other genes
commonly associated with doxycycline resistance. Together, these results suggest that adaptation
in these populations is dominated by emergence of a common variant, regardless of the level of
drug heterogeneity or migration.

While migration does not select for new variants, we found that it does shift the distribution of
sensitive and resistant cells in the different subpopulations. To investigate this issue, we used the
phenotypic IC50 measurements to estimate the population fraction of resistant cells in different
vials of the metacommunities (Figure 4.8). To do so, we split the vials into two groups: those
representing subpopulations that are connected to subpopulations with higher drug concentrations,
and suppopulations that are connected to vials with lower drug concentrations (Figure 4.8B-C). Not
suprisingly, in the absence of migration, the fraction of mutants increases approximately monoton-
ically with drug concentration. These results indicate that for low drug concentrations, resistant
cells have not achieved fixation on the timescale of our experiment, while for high drug concen-
trations (greater than about 250), mutant represent more than 90 percent of the final population. In
the presence of migration, these fractions are predictably shifted: the resistant fraction is typically
increased in vials connected to habitats with higher drug concentrations ((Figure 4.8)B, left panel),
while migration tends to slightly lower (or not impact) mutant frequencies at high drug concentra-
tions. These results are consistent with similar findings in mammalian cells, where less fit alleles
persist at a higher fraction that predicted by standard mutation-selection balance [174].

4.3.1 Mutation-induced shifts in fixation time are correlated with hetero-
geneity in selection pressure across subpopulations.

Our results indicate that in the presence of spatial heterogeneity, migration can sometimes, but
not always, delay the evolution of resistance. While it is not clear what features lead to slowed
adaptation, we hypothesized that shifts in fixation times would be related to heterogeneities in se-

lection pressure between interconnected vials, not merely heterogeneity in drug concentrations.
Because both the sensitive and resistant strains are inhibited by drug–though at very different
concentrations–it is not clear, a priori, that increasing drug concentration will always lead to an
increase in selection pressure. In the simplest case, where selection pressure can be approximated
by a difference in growth rates between sensitive and resistant cells, the nonlinearity of the dose
response curves means that selection pressure can depend non-monotonically on drug concentra-
tion.

To test this hypothesis, we estimated the selection pressure in a given habitat as the difference in
growth rate between wild type (sensitive) and resistant (mutant) populations at that concentration.
For each experiment, these growth rates can be estimated directly from non-migration experiments
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Figure 4.9: Shift in fixation time depends on growth rate differences between ancestor and
mutant strains in different habitats. Fractional changes in fixation time–defined as the time
it takes the growth rate of a population to reach half of its maximum (fully adapted) value–as a
function of ∆(gmut − gwt)–which we treat as an estimate for the difference in selection pressure
(growth rate difference) between the center and edge vials.

by averaging growth shortly after drug exposure (when the single vial population is dominated
by sensitive cells) and at the end of the adaptation, when growth has reached steady state and the
population is comprised of mostly resistant cells. For each metapopulation, we calculate the quan-
tity ∆(gmut − gwt)–which compares the difference in S and R growth rates between neighboring
vials. We treat ∆(gmut − gwt) as an estimate for the difference in selection pressure (i.e. growth
rate difference) between the center and edge vials (in the absence of migration). Large values of
∆(gmut − gwt) indicate the population is highly heterogeneous, with edge vials favoring mutants
significantly more or less than center vials. By combining data from all evolution experiments–
spanning both homogeneous and heterogeneous metacommunities (see Figures 4.12 and 4.13 for
full summary)–we found that ∆(gmut − gwt) was significantly correlated with shifts in fixation time
(Figure 4.9). These results underscore the notion that migration-induced shifts in fixation are as-
sociated with non-uniformity in selection pressure, which sometimes-but not always-corresponds
to non-uniformity in drug concentrations.
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4.4 Discussion

Overall, these findings illustrate that that migration and spatial structure can have substantial im-
pacts on adaptation in microbial communities, even in simple scenarios where resistance is domi-
nated by the emergence of a single resistant phenotype. In mixed populations where resistant cells
comprise a sizable fraction of the population, these dynamics are well described by simple multi-
deme population models, which capture the observed migration-induced acceleration of growth.
On the other hand, these models to not reliably predict the substantial delay in fixation we often
observe in longer timescale evolution experiments, where resistance emerges spontaneously from
an initially sensitive population. However, these findings are reminiscent of predictions from evo-
lutionary graph theory, which indicate that (even in the absence of heterogeneity across vials (i.e.
drug concentration)), metacommunities with a central hub can slow fixation under some condi-
tions [171, 175]. Recent work also suggests that small asymmetries in migration [174] can mod-
ulate fixation. At this stage, it is not clear whether similar mechanisms could be driving fixation
shifts in our system.

The simple models described here neglect a number of features that may partially explain these
dynamics. For example, we have not included effects of competition and clonal interference, both
of which could be relevant factors for large populations like these and can be incorporated with
classical modeling approaches [28]. In addition, the models used so far are entirely deterministic
and fail to capture stochastic effects related to mutation and demographic noise–some of which
can persist even for large systems. Our ongoing work aims to develop more realistic models to
investigate these dynamics in more detail. It is also possible that cooperation between resistant and
sensitive cells–something previously observed with other antibiotics in this species [179]–could
explain some of our results.

It is also possible that evolutionary dynamics involve more than just a single resistant strain.
While our endpoint measurements suggest that later stages of adaptation involve only one resistant
strain, it is possible that other mutants emerge and then disappear during adaptation–and future
work could investigate this phenomena with time-resolved sampling and sequencing. Furthermore,
it is not clear whether the largely repeatable evolutionary dynamics we observe are specific to
doxycycline. It might be interesting to repeat these experiments with (for example) daptomycin,
one of the final resources to treat multidrug resistance due to its unique mechanism targeting the
cell membrane [180]. In previous chapters, we saw that daptomycin resistance involves multiple
mutations that are acquired in complex combinations in homogeneous (but small) populations.
It would be interesting to evolve DAP resistance under these spatially-extended conditions with
larger populations, which may lead to more predictable dynamics. One challenge of this approach
is that the turbidostats measure growth based on optical density, but DAP targets the cell membrane
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and leads to lysis [181], which complicates the interpretation of OD measures.
It would also be interesting to explore spatial heterogeneities involving more than one drug.

For example, we could conduct an experiment to measure the collateral effects of DOX-resistance
against rifamycin (RIF), an RNA polymerase inhibitor. Previous findings [56] showed variable
collateral effects when DOX-resistant strains are tested against RIF. It could be interesting to fur-
ther explore this how these collateral effects impact evolution in populations exposed to hetero-
geneous environments that alternate between the two drugs. Finally, future work will also aim to
understand how these dynamics change for different connection topologies in the metapopulation.
Recent experimental work indicates that different topologies can impact fixation in homogeneous
populations [175], and it would be interesting to investigate how those effects interplay with het-
erogeneity in drug concentrations.

Overall, our findings underscore the important role that spatial heterogeneity and migration can
play in modulating resistance. It also highlights how initially counter-intuitive dynamics can–at
least sometimes–be understood with simple mathematical models. We hope these results motivate
continue explorations of resistance evolution, theoretical, experimental, and clinical.
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4.5 Methods and Materials

4.5.1 Strains, growth conditions, and drugs

Evolution experiments were conducted using the E. faecalis strain OG1RF and a resistant isolate
that was evolved from the same strain. Samples were stocked in 30% glycerol and stored at -
80 C. Cultures for experiments were taken from single colonies grown on agar plates and then
inoculated at 37o C overnight before dilution in fresh media and the beginning of the experiment.
All experiments and dose-response measurements were conducted in Brain-Heart Infusion or BHI
(Remel). Doxycycline Hydrochloride (Fisher) antibiotic was used for this study, which is prepared
from powdered stock and stored at −20o C.

4.5.2 Experiment using a turbidostat

Experiments were performed in modified versions of the eVOLVER platform, which is an auto-
mated continuous culture device developed by the Khalil lab [87]. Bacterial cultures were inocu-
lated in 5 mL of media (from a single colony) at 37oC overnight, then 250 µL of the culture was
added into a 25 mL vial with fresh media and allowed to grow to a desired optical density (typically
around OD = 0.5, which is far below carrying capacity). The specific drug concentrations were
distributed across 3 vials for the homogeneous and heterogeneous cases. The same drug concentra-
tion was also added to interconnected media reservoirs, which provide influx of media to maintain
population size in each individual vial (i.e. individual vials are “turbidostats”). In addition, the
three vials that comprise each meta-community are interconnected by silicone tubes, allowing us
to simulate migration between habitats by exchanging fluid at a prescribed rate. Unless stated oth-
erwise, intermixing (“migration”) was performed at a rate of 2 mL per hour, which corresponds
to an effective migration rate of β = 0.08 hr−1, which is the same order of magnitude (but a bit
slower) than typical per capita growth rate of bacterial populations under these conditions. While
this setup does allow for intermixing of drug between vials, simulations show that this intermixing
has a small effect (typically less than 10 percent) on drug concentrations in each vial.

4.5.3 Whole-genome sequencing

Illumina Short Read sequencing (400 Mbp / 2.7 million reads) and DNA isolation were performed
by the Microbial Genome Sequencing Center (MiGS) at the University of Pittsburgh. The resulting
genomic data was analyzed using the high-throughput computational pipeline breseq [158, 159],
with default settings. Briefly, genomes were trimmed and subsequently aligned to E. faecalis strain
OG1RF (Accession numbers: AE016830 - AE016833) via Bowtie 2. Any mutation that occurred
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Table 4.1: Parameters used in math models.

Panels
[Dox] ng/mL distributions Relative growth rates Resistance fractions (fmt)

Edge
1

Middle
Edge
2

Wild type (gwt) Mutant (gmt) Edge
1

Middle
Edge
2Edge vials Middle vials Edge vials Middle vials

B1
216.6 216.6 216.6

0.29
(D216.6)

0.29
(D216.6)

0.63
(D216.6)

0.63
(D216.6)

0.008 0.008 0.008
B2 0.0004 0.0232 0.0004
B3 0.016 0.004 0.002
C1

400 125 400
0.19
(D400)

0.43
(D125)

0.60
(D400)

0.71
(D125)

0.008 0.008 0.008
C2 0.0004 0.0232 0.0004
C3 0.0118 0.0004 0.0118
D1

177 600 177
0.33
(D177)

0.16
(D600)

0.71
(D177)

0.42
(D600)

0.008 0.008 0.008
D2 0.0004 0.0232 0.0004
D3 0.0118 0.0004 0.0118

in either of the 2 control OG1RF strains was filtered from the results.

4.5.4 Measuring drug resistance

To measure IC50, a sample acquired from the evolution experiment was streaked on a BHI Agar
plate. From there, a single colony was selected and used for inoculation and incubated at 37° C
overnight. Cells were then exposed to a drug concentration gradient, differing among each of the
12 wells on the plate, and the experiment was prepped in a BHI media with a total volume of 205
µL (200 µL of BHI, 5 µL of 1.5 OD cells) per well. Following 6 hours of growth at 37° C, OD
at 600 nm (OD600) was measured with an Enspire Multimodal Plate Reader (Perkin Elmer). An
IC50 measurement was taken for 12 colonies and each with 3 replicates. This was then repeated for
every mutant that samples were acquired from, both for vials with migration and without migration,
organized according to the following drug concentrations: 100ng/ml, 125 ng/ml, 177ng/ml, 216.6
ng/ml, 250ng/ml, 275 ng/ml, 400ng/ml, 433.3 ng/ml, 525ng/ml, 600ng/ml, and 800 ng/ml as well
as the wild type.

In order to quantify the values for drug resistance, OD measurements for each drug concen-
tration were normalized by OD measurements without the drug, and the dose-response curve was
then fit to a Hill function (g(d) = (1 + (d/k)h)−1), with d the drug concentration, k the IC50, and
h the Hill coefficient.

4.5.5 Mathematical Model

We use a simple deterministic model that involves a single resistant mutant without competition
to investigate the relationship between spatial heterogeneity, migration, and selection pressure af-

73



fecting the outcome of evolution experiments in metapopulations. Equations for the fraction of
resistant cells in each subpopulation, denoted by Fr1, Fr2, and Fr3, are given by:

dFr1
dt

= Fr1(t) · (1− Fr1(t)) · (gr1 − gs1)− µ · Fr1(t) + µ · Fr2(t) (4.1)

dFr2
dt

= Fr2(t) · (1− Fr2(t)) · (gr2 − gs2)− 2 · µ · Fr2(t)

+ µ · (Fr1(t) + Fr3(t))
(4.2)

dFr3
dt

= Fr3(t) · (1− Fr3(t)) · (gr3 − gs3)− µ · Fr3(t) + µ · Fr2(t) (4.3)

The growth rate in each sub population, denoted by G1, G2, and G3, can be calculated from:

G1(t) = gr1 · Fr1(t) + gs1 · (1− Fr1(t)) (4.4)

G2(t) = gr2 · Fr2(t) + gs2 · (1− Fr2(t)) (4.5)

G3(t) = gr3 · Fr3(t) + gs3 · (1− Fr3(t)) (4.6)

We denote the known seeding initial fraction resistant cells in vial 1, vial 2, and vial 3 as Fr01,
Fr02, and Fr03, and they serve as initial conditions for Equations 4.1 to 4.3. The parameters gr
and gs represent the per capita growth rates of resistant and sensitive cells, respectively; these
parameters were measured, and values vary based on drug concentration (Table 4.1). µ represents
the constant migration rate of 1 ml/s per 30 minutes. We can also estimate the subpopulation’s
growth rates over time . They are denoted as G1, G2, and G3. (Equations 4.4 to 4.6)

When migration is 0, the three habitats are independent, and each evolve according to

Fr =
F0e

dgt

1− F0 + F0edgt
(4.7)

where dg = gr − gs and F0 is the initial mutant fraction. The time τ required to reach a threshold
fraction fth is therefore

τ =
ln
[
(1−f0)fth
(1−fth)f0

]
dg

(4.8)
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4.6 Supplemental Material

This section includes a number of supplemental figures referenced in the main text.
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Figure 4.10: Measuring growth rates in bioreactors. A) Left panel: an example of measuring
the growth rate of resistance (blue curves) and wild type (black curves) over time in the present of
drug ([Dox] = 600 ng/ml) and without drug, then finding the average growth rate at each specific
drug concentration in 10 hours (in the green region). Right panel shows fitting the data to the Hill
function to estimate the IC50 of wild type (ks = 83.21 ng/ml) and the Hill coefficient (hs = 1.12),
and the IC50 of the resistant type (kr = 433.82 ng/ml) and its Hill coefficient (hr = 1.18). B) This
panel shows the growth rate of resistance is smaller compared to wild type, as measured by growth
rate over time in the absence of drug (in the red rectangle) in the left panel, and by fitting the optical
density over time data to exponential functions (in red), which shows wild type has a steeper slope
compared to resistant in the right panel.
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Figure 4.11: Fixation dynamics are well captured by a simple model. Growth rates of individual
populations (left panels) and the population average growth rate (right panels) for meta-populations
with potentially spatial heterogeneity in both drug concentrations (see schematic drug bar graphs
at top of panels) and initial mutant fractions (indicated by bar graphs within each panel). Drug
concentrations are homogeneous across habitats (A-C), higher in the edge habitats (D-F), or higher
in the central habitat (G-I). Top panels are from a simple mathematical model. Bottom panels are
experiment. Red curves indicate experiments without migration between habitats; blue curves are
experiments with migration. All parameters and variables in this figure are listed in Table 4.1
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Figure 4.12: Adaptation trajectories for individual subpopulations. Growth rate trajectories
for individual subpopulations in metacommunities with (blue) and without (red) migration. Left
panels: growth rate trajectories; Center panels: growth rate trajectories normalized so that growth
rate varies between 0 and 1, which serves as a coarse estimate of mutation fraction; Right panels:
estimated fixation times (τ50) at which growth rate is halfway between 0 (minimum) and 1 (maxi-
mum) value. Text insets (left panels) indicate drug concentration in edge and center vials.
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Figure 4.13: Adaptation trajectories for total metapopulations. Growth rate trajectories for the
total metacommunity populations with (blue) and without (red) migration. Left panels: growth rate
trajectories; Center panels: growth rate trajectories normalized so that growth rate varies between
0 and 1, which serves as a coarse estimate of mutation fraction; Right panels: estimated fixation
times (τ50) at which growth rate is halfway between 0 (minimum) and 1 (maximum) value. Inset
text indicates when difference in τ50 is significant at p < 0.05. Text insets (left panels) indicate
drug concentration in edge and center vials
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Figure 4.14: Comparison of average growth rate of metapopulation with different migration
rate µ in heterogeneous drug profiles. A) The heterogeneous growth profile represents in the
gray bars, indicating lower growth on the edge vials ([D] = 400 ng/ml) and lower growth in the
middle vial ([D] = 125 ng/ml). The average growth of populations without migration represents in
black dash curve. The average growth of metapopulation represent in colors, blue curve represents
with migration rate of µ (1ml/s migrate every 30 mins), green curve represents with a smaller µ
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mins) B) Similarly, but with a heterogeneous growth profile of higher growth on the edge vials
([D] = 177 ng/ml) and lower in the middle vial ([D] = 600 ng/ml).
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CHAPTER 5

Population Density Modulates Fixation of
Drug-Resistance Mutants

5.1 Introduction

As the threat of antibiotic resistance increases, one goal of treatment may be to delay treatment fail-
ure for as long as possible. Aggressive treatment involves using high drug concentrations that can
eliminate the susceptible cells, but this creates a selection pressure for resistance, which eventually
causes treatment failure [182, 183]. Recent studies propose that we could utilize the interactions
between bacteria as an advantage, leveraging competition to slow down the spread of resistance
[89, 90, 28]. For example, using E. coli as a model system, recent work showed that a mixed
population containing a large number of sensitive cells can be contained below a threshold density
longer than matched populations without the sensitive cells [28]. The experimental setup involves
treating the mixed population with a low drug concentration, allowing the sensitive cells to com-
pete with resistant strains for resources. The results show that the mixed population can contain the
treatment for a longer time compared to the resistance population alone, but only when populations
can be maintained at a sufficiently high density [90, 28].

Inspired by this study, this chapter describes preliminary work investigating how competition
affects the evolution of doxycycline resistance in E. faecalis at different population sizes, as well
as in mixed populations that contain a large number of sensitive cells. To test this, we conduct
experiments using two different approaches. First, we grew populations at fixed densities using
a turbidostat, where feedback algorithms pump in fresh media (and expel old media) to maintain
a constant cell density. In these experiments, drug concentration is constant and the population
growth rate increases over time as adaptation takes place. Our second approach is similar, but not
identical, to that in [28]. In that case, the population size is not fixed, but we attempt to maintain
the population below a threshold size using an adaptive treatment algorithm that adds drug when
growth is sufficiently high.
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Figure 5.1: The evolution of doxycycline resistance in well-mixed cultures evolves faster at
lower density. A) Schematic illustration showing an experiment setup. An overnight culture from
a single colony of E. faecalis was diluted into a fresh BHI medium (at a 1:100 ratio) in a glass vial
(25mL), well-mixed, and grown to a desired density. The population is held at a constant desired
density using the turbidostat mode, where the pumps are controlled by a computer that receives
feedback from an optical density (OD) measurement with photodiode sensor. Fresh BHI media
is pumped in from a reservoir at the same rate that media and cells are pumped out to waste. B)
This is an example data of populations of different sizes, where the population density was held
constant at OD = 0.5 (red) and OD = 0.2 (blue), which are lower than the carrying capacity (green).
C) Doxycycline resistance evolved at [Dox] = 125 ng/ml, with a comparison between the higher
population size at OD = 0.5 (red curve) and the lower population size at OD = 0.2 (blue curve). D)
Similarly to B, Doxycycline resistance evolved at [Dox] = 400 ng/ml.
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Figure 5.2: Growth is accelerated at high densities in mixed population of sensitive and resis-
tant cells. A) The blue curves, which represent a mixed population of a fraction of resistant cells
(fr) of 0.0004, were added to the sensitive population at a lower density (OD=0.2), while the red
curves were at a higher population density (OD=0.5). The drug concentrations increase from left
to right: [Dox] = 125 ng/ml, [Dox] = 177 ng/ml, [Dox] = 400 ng/ml, and [Dox] = 600 ng/ml. B)
Similarly, a fraction of resistant cells (fr) of 0.008 was added to the sensitive population.

5.2 Results

5.2.1 Population size modulates adaptation in fixed density populations.

Our preliminary results include both expected and surprising findings. First, we found that evolu-
tion of resistance (from an initially sensitive population) is accelerated when the evolution takes
place at higher population densities (Figure 5.1). Specifically, we exposed E. faecalis OG1RF
populations to a constant drug concentration using the turbidostat, which is a continuous culture
device that maintains a constant population (Figure 5.1A). This allowed us to measure the real-
time growth rate of two populations held at different densities, with optical densities of 0.5 and
0.2 (both of which are far below carrying capacity (OD = 1.2), Figure 5.1B). Both populations
were exposed to doxycycline, an inhibitor of protein synthesis. Our results indicate that the higher
population (OD = 0.5) takes longer to evolve (Figure 5.1 C and 5.1 D). These findings are con-
sistent with previous results showing competition can slow fixation in mixed communities–though
the current results extend those ideas to longer timescales and de novo evolution regimes–and they
can be qualitatively explained by simple competition models.
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Surprisingly, however, we see clearly different results in other regimes: at sufficiently low drug
concentrations we find an apparent acceleration of adaptation in mixed communities seeded with a
small resistant fraction (Figure 5.2). Specifically, we seeded sensitive populations of varying sizes
(OD =0.2 and OD = 0.5) with a small fraction of resistant mutants (0.4 percent, top panels, or 0.8
percent, bottom panels) at time 0 and exposed the populations to different drug concentrations. At
high concentrations (e.g. D = 600 ng/ml), the smaller populations appeared to grow slightly faster
at the small resistant fraction (Figure 5.2 A), consistent with inhibitory effects of competition. By
contrast, at low drug concentrations we observed a surprising result: larger populations exhibit
accelerated growth. This effect cannot be explained by simple models of competition and may
point to drug- and strain-specific cooperative effects where, for example, sensitive cells act as
sinks for the drug and high density. Investigations along these lines are currently underway.

5.2.2 Adaptive dosing strategies reveal rich dynamics of containment and
escape.

In this section, we investigate adaptive dosing strategies that are similar, but not identical, to the
approaches studied in [28]. In these experiments, the population size is not fixed, but we attempt
to maintain the population below a threshold size using an adaptive treatment algorithm that adds
drug when growth (or optical density) is sufficiently high (Figure 5.3 A). We seeded populations of
different initial densities with a fixed ratio of sensitive and resistant strains. Then, using feedback
control algorithms with 2 different delay time parameters (note: delay time is a parameter that
determines how frequently the concentration can be updated based on past OD measurements),
we attempted to maintain populations for as long as possible at their initial density by adding
drug. Consistent with results from [28], we found cases where higher density populations could
be contained for longer times than their low-density counterparts (Figure 5.3 B and C, left panels),
while in other cases the escape times were similar ((Figure 5.3) B and C, right panels).

While density appears to module the initial escape time, the dynamics after escape are more
complex. We explored these dynamics for a range of drug concentrations and initial densities (Fig-
ure 5.5; see also Figure 5.5 for a summary). For example, we observed scenarios where the higher
density population reaches its steady state density faster than the lower density populations, even
when escape times are comparable (Figure 5.5A). These results motivate continued investigation
of not just escape time dynamics, but the dynamics of post-escape growth in adaptive therapies.
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Figure 5.3: Population size and drug delay time modulate the growth of mixed populations.A)
Schematic show the experiment was set up by using a chemostat to measure the optical density
(OD) of mixed populations containing 90-10 ratio of sensitive to resistant cells in real-time. The
OD provided feedback for drug dosing. The drug dosing is adjusted based on the threshold popu-
lation size, Pmax, which determines the point where treatment fails. The delay time is the interval
of time between ”checking” the OD and deciding whether or not to add more drugs. Additionally,
refresh media is added at a constant rate FN = 0.067 mL min. B) The blue curves represent a mixed
population with a lower density of 0.15, while the red curves represent a population with a higher
density of 0.25. The population threshold of each population is represented by the dashed lines.
The top panels show the drug concentration in the vial over time, starting at [Dox] = 200 ng/ml.
The delay time is 4 minutes on the left and 5 minutes on the right. C) Similarly, this panel shows
the result from [Dox] = 400 ng/ml.
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Figure 5.4: Population size and drug delay time modulate the growth of mixed populations.
A) Similar to figure 3, this figure shows the result of comparing a higher population density of
0.45 (in yellow) to a lower population density of 0.25 (in red). The population threshold of each
population is represented by the dashed lines. The top panels show the drug concentration in the
vial over time, starting at [Dox] = 200 ng/ml. The delay time is 4 minutes on the left and 5 minutes
on the right. B) Similarly, this panel shows the result from [Dox] = 400 ng/ml.
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Figure 5.5: Summary of adaptive dosing experiments at different delay times and drug con-
centrations. See next page.
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Figure 5.5: This figure shows the data from various mixed population sizes of: Pmax = 0.15 (in
blue), with the initial OD of resistant cells is 0.015 and initial sensitive cells density of 0.135.
Pmax = 0.25 (in orange), with the initial OD of resistant cells is 0.025 and initial sensitive cells
density of 0.225. Pmax = 0.45 (in yellow) with the initial OD of resistant cells is 0.045 and
initial sensitive cells density of 0.405. The experiment involved exposing the mixed populations
to varying concentrations of doxycycline and different delay times. The dashed lines in the figure
represent the thresholds for each mixed population. In all panels, the top graphs show the drug
concentration in each mixed population, while The bottom graphs compare the different population
sizes (ODs) using a log scale. A) The experiment results when exposed to a drug concentration
of [Dox] = 200 ng/ml, with delay times increasing from left to right (3 mins, 4 mins, and 5 mins).
B) The experiment results when exposed to a drug concentration of [Dox] = 300 ng/ml. C)The
experiment results when exposed to a drug concentration of [Dox] = 400 ng/ml. D) The experiment
results when exposed to a drug concentration of [Dox] = 600 ng/ml.

5.3 Discussion

While incomplete, these results reveal several unexpected findings that are the basis for multiple
ongoing projects. One of the important factors affecting the interaction between resistant and
sensitive strain is mutation rates. Previous work showed mutation rates can be influenced by the
concentration of drug [184] and population size. One possible future experiment we could do is to
measure the mutation rate using the Luria and Delbrück method, which is known as a fluctuation
assay, and is used to estimate the mutation rate [185]. Future work also will aim to investigate
potential molecular and phenotypic properties of cooperation between doxycycline resistant and
doxycycline sensitive cells. We will also build on previous competition-based models to investigate
whether drug sequestration may explain the apparent cooperative effects observed in experiments.
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5.4 Methods and Materials

5.4.1 Strains, growth conditions, and drugs

Evolution experiments were conducted using the E. faecalis strain OG1RF and the resistance was
derived from the same strain. Samples were stocked in 30% glycerol and stored at -80 C. Cultures
for experiments were taken from single colonies grown on agar plates and then inoculated at 37o C
overnight before dilution in fresh media and the beginning of the experiment. All experiments and
dose-response measurements were conducted in Brain-Heart Infusion or BHI (Remel). Doxycy-
cline Hydrochloride (Fisher) antibiotic was used for this study, which is prepared from powdered
stock and stored at −20o C.

5.4.2 Evolution experiment using a turbidostat

We used a chemostat (eVOLVER), which is a continuous culture device developed by the Khalil
lab in this study [87]. Sensitive strain and resistant strain were inoculated in 5 mL of BHI media
(from a single colony) at 37oC overnight, then 250 µl of the culture was added into a 25 mL vial
with fresh media and allowed to grow to a desired optical density (higher density OD = 0.5 and
lower density OD = 0.2). The same desired drug concentration was added to the vials, which are
interconnected media reservoirs. The flow between the reservoirs, the culture vials, and the waste
were computer-controlled to maintain specific bacterial populations.

5.4.3 Experiment with a mixed population with a single resistant mutant
and wild type

The sensitive strain and resistant strain were inoculated in 5 mL of BHI media from a single
colony and incubated at 37oC overnight. Then, 250 µL of the culture was transferred to a 25 mL
vial containing fresh media and allowed to grow to a desired optical density. The setup is similar
to the previously described setup. Please note that the wild type and mutant cultures have a similar
OD when the mixing begins, depending on the desired mutant ratio, while the total volume is kept
constant.
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5.4.4 Experiment setup to investigate the effects of different mixed popula-
tion sizes, drug concentrations, and waiting times (delay times) on the
escape time.

The sensitive strain and resistant strain were inoculated in 5 mL of BHI media from a single
colony and incubated at 37oC overnight. Then, 250 µl of the culture was transferred to a 25 mL vial
containing fresh media and allowed to grow to a desired optical density. Next, the populations were
mixed with 90% sensitive cells and 10% resistance cells, and the desired drug concentration was
added to the interconnected media reservoirs. In this experiment, we exposed mixed populations
to different drug concentrations of 200 (ng/ml), 300 (ng/ml), 400 (ng/ml), and 600 (ng/ml). The
drug dosing was adjusted based on the threshold population size, Pmax (OD = 0.15, OD = 0.25,
and OD = 0.45). The delay time was also varied (3 minutes, 4 minutes, and 5 minutes), which
refers to the interval of time between ”checking” the OD and deciding whether or not to add more
drugs (pump on or pump off). Additionally, refresh media was added at a constant rate of FN =
0.067 ml/min.

5.4.5 Measuring drug resistance

To measure IC50, a sample of resistant and wild type strains was streaked on a BHI agar plate.
From there, a single colony from each strain was selected for inoculation and incubated at 37° C
overnight. 250 µl volumes of each cell type were diluted into fresh 25 ml vials and incubated until
they reached the desired optical density (OD), then exposed to a variation of drug concentrations.
Following about 15 hours of growth at 37° C in a turbidostat at a constant OD. Pump duration was
recorded to estimate the growth rates.

In order to quantify the values for drug resistance, average growth rate measurements for each
drug concentration were normalized by OD measurements without the drug, and the dose-response
curve was then fit to a Hill function (g(d) = (1 + (d/k)h)−1), with d the drug concentration, k the
IC50, and h the Hill coefficient.
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5.5 Supplemental Figures

For completeness, we include additional examples of adaptation experiments that supplement the
figures in the main text.
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Figure 5.6: Experiment starting with a known initial resistance. A) The blue curves, which
represent a mixed population of a fraction of resistant cells (fr) of 0.0118, were added to the
sensitive population at a lower density (OD=0.2), while the red curves were at a higher population
density (OD=0.5). Both populations were exposed to [Dox] = 177 ng/ml. B) Similarly, in the case
of fr = 0.0232, [Dox] = 600 ng/ml. C) Case of fr = 0.0118, [Dox] = 400 ng/ml D) Case of fr =
0.014, [Dox] = 400 ng/m.
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Figure 5.7: Relative growth rate of mixed populations of sensitive and resistant cells measured
with a turbidostat. All the mixed populations were exposed to the same drug concentration (Dox
= 400 ng/ml) and the population density was held at 0.5. Each plot shows the transparent curves
for all 10 different initial fractions of resistance (fr), and one particular fr is highlighted in each
figure (represented by thick colored curves). Please note that all curves are normalized to the curve
with fr = 0.0004
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CHAPTER 6

Conclusions and Future Directions

This thesis explores various evolution-based strategies for modulating the emergence of resistance
in laboratory populations. We focused on two primary themes: the temporal dynamics of collateral
sensitivity and the impact of spatial heterogeneity of drug distribution.

In Part I, we demonstrated that within individual drugs, the collateral effects over time vary.
For some drugs, bacteria evolve at early stages favor collateral resistance and later stages col-
lateral sensitivity. This suggests that depending on the drug treatment, there is an optimal time
window during which drug switching can be the most effective treatment. However, in the case
of Daptomycin, while mutants evolve in parallel under the same selection pressure, we observed
collateral effects that differ substantially across the individual Daptomycin populations. Dapto-
mycin resistances show different levels of resistance to CRO, and surprisingly, DNA sequencing
reveals a surprisingly rich collection of different lineages. This finding highlights the complicated
dynamic of the evolution of Daptomycin evolution, even in a controlled laboratory experiment.
Daptomycin is considered one of the last-resorts to treat infections, and considering real life situa-
tions are considerably more complex, which emphasizes the challenges associated with designing
and developing effective strategies using collateral effects. Future work may look into how these
results change in other growth modalities–for example, in surface-associated biofilms, which is the
most state of cells in natural environments.

Overall, our results from part II on spatial heterogeneity indicate that by balancing the het-
erogeneity of selection pressures with migration in metapopulations it may be possible to slow
down evolution of resistance. Our studies involve large populations, but future work will aim to
extend these approaches to smaller populations where effects of demographic noise and evolution-
ary stochasticicty are likely important. In future work, we also hope to investigate the effects of
different connection topologies in the metacommunities, and to explore adaptation in communi-
ties with significantly smaller migration rates, where dynamics are predicted to be considerably
different [20].

We incorporated several different experimental approaches to study evolution in the lab. In
Chapters 2 and 3, evolution was accomplished via serial dilution in small test tubes. In Chapter
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4, the experimental setup involved holding the population at the desired density by using the tur-
bidostat under constant selection pressure, while in Chapter 5, we used optical density to provide
feedback for drug dosing and therefore time-dependent selection pressures. Our preliminary re-
sults suggest that population size and drug delay time modulate the growth of mixed populations.
As a whole, these varied approaches provide a framework for experimentally studying evolution-
ary adaptation in different limits–large and small populations, fixed and adaptive drug dosing–in
the lab.

Overall, our research provides insights that contribute to an improved basic science understand-
ing of resistance evolution that may one day lead to new strategies for the clinical management of
infection. Our work serves as a reminder that even in the most controlled and simplistic scenarios
in the lab, evolution is dynamic and complex.
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