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Abstract

This dissertation develops methodologies to incorporate summary information from external stud-

ies to improve estimation efficiency for an internal study that has individual-level data. I first

propose a penalized constrained maximum likelihood (PCML) method that simultaneously selects

the external studies whose target populations match the internal study’s so that their information

is useful for internal model fitting and incorporates the corresponding information into internal

estimation. The PCML estimator has the same efficiency as an oracle estimator that knows which

external information is useful and fully incorporates that information alone. I then extend the

PCML method to a more general framework by allowing the number of external studies to in-

crease with the sample size of the internal study and apply the method to study mental health of

people with bipolar disorder during the COVID-19 pandemic. I further develop a doubly penal-

ized constrained maximum likelihood (dPCML) method that also accounts for the uncertainty in

external information with more flexibility on what external information can be integrated. The

dPCML method covers some existing well-known data integration methods as special cases. For

the proposed methods I carry out detailed theoretical investigations, provide algorithms for imple-

mentation, and conduct comprehensive simulation studies. Based on the simulation studies, the

proposed methods have excellent numerical performance. For example, when using the dPCML

method with external study sample sizes similar to the internal sample size, the reduction in em-

pirical standard errors is more than 20% for the estimates of some model parameters compared to

the maximum likelihood estimator (MLE) without using the external information, and more than

10% compared to some other existing methods, without introducing bias.
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Chapter 1

Introduction

Data integration has become an active research area due to increasing availability of data from
many sources. For example, methods of meta-analysis for integrating data across studies on the
same topic have been extensively developed and employed in many scientific fields during the
past few decades (Gurevitch et al. 2018). Data from different sources often contain information
that can help make a better decision or a more accurate conclusion compared to using a single
data source alone, if the information is properly incorporated. For instance, in survey sampling,
although a probability-based sample is desired to ensure the representativeness of the population,
the financial cost in practice may limit the sample size of the probability-based sample. On the
other hand, non-probability samples may be easy to obtain with large sizes and can then be used
to improve the precision and/or accuracy for estimation. Another example is that, in genetics
research, evidence from multiple genome-wide association studies can be integrated to help better
identify genetic variants with modest effects on complex diseases or traits, whereas a single study
alone may not have the desired power.

Statistical methods for data integration vary depending on many factors, including the types
of information to be combined. For example, traditional methods for meta-analysis usually inte-
grate summary information from different studies, such as meta-regression analysis (Stanley and
Jarrell 2005) and METAL, a tool for meta-analysis genome-wide association scans (Willer et al.
2010), while an alternative approach could be meta-analysis of individual-level data (e.g., Higgins
et al. 2001), in which the raw data on individual participants from all available studies are ob-
tained and used for integration (Riley et al. 2010). In contrast to individual-level data, summary
information (or equivalently, aggregate data) refers to information averaged or estimated across all
individuals that participate in a study, such as a mean estimate (e.g., the mean age, the proportion
of participants who are female, or the mean effect of certain risk factor on a disease outcome)
and its associated uncertainty, which is typically measured with a standard error and/or confidence
interval. Summary information has become widely available in many areas. For instance, in sur-
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vey sampling summary information such as stratified population means is often available from
published census reports, and in biomedical and public health research summary information such
as demographic distributions and model fitting results is often available from published articles.
Studies have shown that, in many cases, integrating summary information produces estimators as
efficient as analyzing individual-level data across studies, but are much less cumbersome (e.g.,
Olkin and Sampson 1998; Mathew and Nordström 1999; Lin and Zeng 2010). Data integration
methods that can deal with summary information are particularly attractive because of their less
demand on data sharing and data storage, as well as ethical considerations such as maintaining
confidentiality and privacy of study participants.

Suppose that we are conducting a study that may consider some new variables of interest that
have not been well studied in the existing literature, and we plan to incorporate summary informa-
tion from external studies for enhanced inference of the internal study. Such setting is motivated
by research in many areas, particularly biomedicine and public health. For example, the internal
study collects new covariates such as newly discovered biomarkers, as well as certain conventional
covariates such as demographic variables, to investigate their associations with a disease outcome.
The internal study sample size may not be large due to budget or technique restrictions. On the
other hand, the associations between the outcome and some of the conventional covariates have
been established by external studies with large sample sizes, with results available in published
articles. Such external information, if incorporated into internal analysis, may substantially im-
prove internal model fitting. One of the main restrictions in traditional methods for meta analysis
is that the variables included in the analyses must be the same across all studies; information from
some of the available studies has to be discarded if the studies contain variables different from the
others (Qin 2017). The research presented in this dissertation is inspired by the growing interest in
more flexible methods for incorporation of summary information from external studies to improve
estimation efficiency for an internal study that has individual-level data.

There has been a large literature on integrating external summary information, and many ex-
isting methods make the assumption that the external study populations for which the summary
information is generated are the same as the internal study population of interest (e.g., Imbens and
Lancaster 1994; Qin 2000; Wu and Sitter, 2001; Chen et al. 2002; Chaudhuri et al. 2008; Qin et
al. 2015; Chatterjee et al., 2016; Huang et al. 2016; Cheng et al. 2019; Gu et al. 2019; Huang and
Qin 2020; Han et al. 2022) or the distribution of the outcome given the covariates does not differ
across studies (e.g., Han and Lawless 2019; Kundu et al. 2019; Zhang et al. 2020; Sheng et al.
2021). In practice, however, such an assumption oftentimes does not hold since, for example, the
demographic distribution and outcome prevalence often vary between study populations, in which
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case these methods may yield substantial estimation biases for internal model parameters.
In the presence of study population heterogeneity, some authors proposed to shrink the internal

study results towards the external information as a way to integrate the summary information (e.g.,
Estes et al. 2018; Gu et al. 2021). Such methods become less effective when the internal study
is designed to target a specific population and the goal of integrating external information is to
improve estimation efficiency of the internal analysis rather than shifting the analysis to align with
external studies. In such a case, only the external information that agrees with the internal study
population should be incorporated, as otherwise the external information can introduce estimation
bias. Therefore, data integration needs to be carried out with caution when some external studies
under consideration may target different populations. In this dissertation we make it explicit that
the internal study population is the target for inference whereas the external information is used
to improve the internal analysis. Taylor et al. (2022) developed a method for logistic regression
model to integrate the ratios of coefficients from external regression models. The equality of
ratio statistics across different studies is a relaxation of the assumption of homogeneous study
populations, but it is still restrictive and subject to other assumptions, among which the coefficients
need to be close to zero.

To be able to improve estimation efficiency without introducing estimation bias when inte-
grating external summary information from possibly heterogeneous populations, in Chapter 2, we
develop a penalized constrained maximum likelihood (PCML) method that can simultaneously
select and incorporate the useful information from those external studies that target the same pop-
ulation as the internal study and discard the information from the rest. The PCML method is
developed based on the constrained maximum likelihood (CML) method (Chatterjee et al. 2016),
which assumes homogeneous study populations (see also Qin 2000; Han and Lawless 2019). The
external information is formulated as moment constraints on the internal study model. The con-
straints corresponding to external studies that target the same population as the internal study are
valid and should be incorporated for efficiency improvement, and those corresponding to the other
external studies are invalid and should be discarded. This formulation makes the data integration
problem into a selection of valid moment constraints. We then further formulate it as a variable
selection by introducing nuisance parameters that represent the biases of the moment constraints
under the internal data distribution and select the ones with zero biases. Such a variable selection
can be achieved by shrinkage techniques that estimate some parameters exactly as zeros through a
penalization on the nuisance parameters.

Shrinkage techniques have mostly been proposed for regression analyses. Some of these tech-
niques, such as the ridge (Hoerl and Kennard 1970), always keep all the predictors in the regression
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model, while some others, such as the Lasso (Tibshirani 1996), can simultaneously do continuous
shrinkage and automatic variable selection. The development of shrinkage techniques, especially
those capable of variable selection, are remarkable in recent years. Fan and Li (2001) proposed the
smoothly clipped absolute deviation (SCAD) penalty function and showed that the SCAD enjoys
the oracle property, that is, the SCAD estimator works as well as if the correct submodel were
known. Zou and Hastie (2005) proposed the elastic-net shrinkage and demonstrated its superior-
ity over the Lasso when there is high correlation between predictors. Zou (2006) developed the
adaptive Lasso, which, as an improved version of the Lasso, performs as well as the oracle. Zou
and Zhang (2009) proposed the adaptive elastic net, which can be viewed as a combination of the
elastic-net and the adaptive Lasso. In general, there is no “best” shrinkage method that can uni-
formly dominate all the others; the Lasso and SCAD have been quite appealing due to their good
computational and statistical properties (Zou and Zhang 2009). A proper choice of the shrinkage
technique to fit our setting is one of the important parts of the proposed PCML method, and we
discuss it further in Sections 2.2.3 and 2.2.4.

The CML-type methods have been considered by many authors for data integration when the
internal and external study populations are the same (e.g., Qin 2000; Qin et al. 2015; Chatterjee et
al. 2016; Huang et al. 2016; Han and Lawless 2019; Zhang et al. 2020). In the presence of pop-
ulation heterogeneity, the PCML method makes use of adaptive group Lasso penalties (Tibshirani
1996; Zou 2006; Yuan and Lin 2006; Wang and Leng 2008) on the CML as a way to simultaneously
select and incorporate useful external information into internal analysis. To account for the fact
that information from an external study whose population differs from the internal study’s may still
be partially useful, we consider both group-wise and component-wise shrinkage for selecting the
moment constraints to ensure a maximal incorporation of useful information. The PCML method
makes an oracle use of the external information in the sense that the PCML estimator has the same
efficiency as the oracle CML estimator that knows which external information is useful and fully
incorporates that information alone. Compared to a recently proposed two-step procedure (Sheng
et al. 2021) that first conducts a hypothesis test for population heterogeneity and then assumes a
nuisance model to link the external information to the internal study, the PCML method simulta-
neously selects and incorporates the valid external information without specifying any additional
models beyond the internal study model.

The PCML method proposed in Chapter 2 considers scenarios where the number of external
studies is small, which may not be directly applicable to cases where many external studies exist
for possible information integration. In Chapter 3, we extend the PCML method by allowing the
number of external studies to increase according to the sample size of the internal study, motivated
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by a study of the COVID-19 pandemic impact on mental health of people with bipolar disorder.
Our extension allows leveraging the many relevant external studies of mental health before and
during the COVID-19 pandemic. Within this more general framework, under a set of assumptions
including the assumption on the growth rate of the number of external studies, the asymptotic
properties of the resulting estimator, including external information selection consistency and ora-
cle efficiency, are established. We also carry out comprehensive simulation studies under varying
numbers of external studies. The PCML method is then applied to the bipolar-COVID study to
integrate useful external information from the many existing mental health studies. Integrating
external information helps to reveal mental health outcome trends from pre-pandemic to pandemic
periods.

A major assumption made by the PCML method developed in Chapters 2 and 3, is that the
external study sample sizes are much larger than the internal sample size so that the uncertainty
associated with the external summary information is negligible. Such an assumption is commonly
made in the existing literature, including most of the aforementioned methods for integrating sum-
mary information with exceptions such as Zhang et al.(2020). When the external information
uncertainty is not properly accounted for, integrating external information may not improve the
estimation efficiency for the internal study, and may even introduce estimation bias. In Chapter 4,
we develop a doubly penalized constrained maximum likelihood (dPCML) method that takes into
account the uncertainty associated with the external summary information with more flexibility on
what external information can be integrated. Although the dPCML method also formulates the data
integration problem as a variable selection problem to deal with population heterogeneity, similar
to the PCML method, for the dPCML method we quantify the difference between model param-
eter estimates between internal and external studies rather than quantifying the bias of moment
constraints. This allows us to directly account for the uncertainty associated with the estimated
coefficients from the external studies. The dPCML method covers some existing data integration
methods as special cases. In particular, it extends the work of Zhang et al. (2020) by allowing
arbitrary differences between the internal and external study populations, and extends our work in
Chapter 2 by allowing the external studies to have limited sample sizes. Both extensions lead to
much wider applicability of the proposed method.
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Chapter 2

Integrating External Summary Information and
Achieving Oracle Efficiency

2.1 Introduction

In this chapter, we propose a penalized constrained maximum likelihood (PCML) method that
simultaneously achieves (i) selecting the external studies whose target populations match the inter-
nal study’s so that their information is useful for internal model fitting, and (ii) incorporating the
corresponding information into internal estimation.

The PCML method has implicit connections to some literature on penalized empirical likeli-
hood (Tang and Leng 2010; Leng and Tang 2012; Chang, Tang, and Wu 2018), due to the con-
nections between the CML-type methods and the empirical likelihood (Han and Lawless 2019).
But the settings are different. In our data integration setting some external studies provide invalid
moment constraints due to population heterogeneity, whereas the penalized empirical likelihood
assumes all moment constraints are valid.

We provide a detailed theoretical investigation of the PCML method. Under a set of regularity
conditions, including assumptions on the convergence rate of the tuning parameter, we establish
the asymptotic properties of the PCML estimator as follows. First, estimation consistency is estab-
lished by explicitly exploiting the saddle-point representation of the PCML method. Second, the
convergence rate of the PCML estimator is shown to be the parametric

√
n-rate. Third, external

study selection consistency is established by showing that the nuisance parameters representing
the biases of moment constraints are estimated exactly as zero with probability approaching one
when the true biases are zero. Fourth, the asymptotic normal distribution is derived jointly for both
the internal model parameters and the nuisance parameters representing the non-zero biases of the
moment constraints. And last, the asymptotic variance of the PCML estimator for the internal
model parameters is shown to be equal to the asymptotic variance of the oracle CML estimator.
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An algorithm for numerical implementation is provided, together with a data-adaptive procedure
for tuning parameter selection. Numerical performance is investigated through simulation stud-
ies. The method is applied to study the risk of developing high-grade prostate cancer, where both
conventional covariates and some newly discovered biomarkers are included in the internal study
model. An incorporation of summary information from the Prostate Cancer Prevention Trial risk
calculator (Thompson et al. 2006) leads to effect estimates with reduced standard errors in the
internal study.

2.2 The Proposed Method

2.2.1 Setting and Notation

We consider the setting where (i) an internal study collects individual-level data to fit a parametric
regression model, (ii) some external studies have fitted similar regression models using less de-
tailed covariates with large sample sizes and their model fitting results are available, and (iii) these
external studies are conducted for possibly different populations. The aim is to incorporate exter-
nal information that is useful to improve the internal model fitting, since the external information
uncertainty is low due to their large sample sizes. One major challenge is how to identify and in-
corporate only the useful external information, because the information from external studies that
do not target the internal study population may introduce estimation bias when incorporated.

To fix notation, let (Yi,X
T
i ,Z

T
i )

T , i = 1, . . . , n, denote the individual-level data from a ran-
dom sample collected by the internal study, where Y is the outcome variable, X is the vector of
conventional covariates that are typically collected by studies on the same outcome, and Z is the
vector of covariates that are only collected by the internal study. We allow Z to be the null set
if the internal study only collects X . The main interest is to fit a parametric regression model
f(Y |X,Z;β) for the distribution f(Y |X,Z), where β is a q-dimensional vector of parameters
with true value β0 such that f(Y |X,Z;β0) = f(Y |X,Z). We assume that q is a fixed positive in-
teger with q < n. With no additional information, β0 can be estimated by the maximum likelihood
estimator (MLE) β̂MLE that maximizes the likelihood

∏n
i=1 f(Yi|Xi,Zi;β).

Suppose there are K external studies on the same outcome Y that can potentially provide
useful information to improve the internal model parameter estimation. In this paper we consider
K to be a fixed finite number. The kth external study, k = 1, · · · , K, used covariates X(k) and
fitted a model f(k)(Y |X(k);θ(k)) for f(k)(Y |X(k)). Here, for generality, we allow X(k) to be a
possibly coarsened version of X , such as a subset or a categorization of some components of
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X , the subscript of f(k) is to explicitly indicate that the kth external study population may be
different from the internal study population, and θ(k) is the parameters for this model, which is
possibly misspecified by the external study. Let h(k)

(
Y,X(k);θ(k)

)
denote the dk-dimensional

score function for the model f(k)(Y |X(k);θ(k)). The kth external study then provides an estimate
θ̂(k) that is the solution to the corresponding score equation. When the external study sample
size is large, the uncertainty in θ̂(k) is negligible compared to the internal study and we will use
notation θ∗(k) instead of θ̂(k), where θ∗(k) is the probability limit of θ̂(k) under the external study.
The assumption that the external study uncertainty is negligible compared to the internal study has
been made by many authors (e.g., Chaudhuri et al. 2008; Qin et al. 2015; Chatterjee et al. 2016;
Huang et al. 2016; Cheng et al. 2019). It is made based on the consideration that the internal study
sample size is usually not large due to the collection of new covariates and, to improve estimation
efficiency, the external studies to be considered usually have much larger sample sizes. Please see
Section 2.7 for more discussion. In simulation studies in Section 2.5 we also show the performance
when the external study sample sizes are not very large. The summary information from the kth
external study is

E(k){h(k)(Y,X(k);θ
∗
(k))} = 0, (2.1)

where the expectation E(k)(·) is taken under f(k)(Y |X(k)).
It is worth pointing out that (2.1) is a very general way to summarize the external study infor-

mation, not only for the information derived based on parametric models as above. For instance,
many population registries or big data bases provide outcome summary information, such as the
mean, median and standard deviation for continuous outcomes and the prevalence for binary out-
comes, stratified by demographics such as age and sex. Such information can all be formulated in
the form of (2.1) with different h(k) functions. As an example, the disease prevalence information
given by E(k)(Y |X(k) ∈ X ) = θ∗(k), for a stratum defined by (X(k) ∈ X ) for some X , can be
summarized as (2.1) by taking h(k)(Y,X(k);θ

∗
(k)) = (Y − θ∗(k))I(X(k) ∈ X ).

2.2.2 The CML Method Assuming Population Homogeneity

Hereafter we will use E(·) to denote expectations under the internal study data distribution. When
all study populations are the same, (2.1) becomes 0 = E[h(k)(Y,X(k);θ

∗
(k))] = E{E[h(k)(Y,X(k);

θ∗(k))|X,Z]}. Thus, defining U(k)(X,Z;β,θ∗(k)) =
∫
h(k)(Y,X(k);θ

∗
(k))f(Y |X,Z;β)dY , we

then have
E
[
U(k)

(
X,Z;β0,θ

∗
(k)

)]
= 0, (2.2)
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which summarizes the information from the kth external study in the form of moment constraints
under the internal study covariate distribution.

To incorporate the external summary information in (2.2) into estimating β0, the CML method
introduces a discrete distribution pi ≥ 0 on the internal study covariate data (XT

i ,Z
T
i )

T , i =

1, . . . , n, and the CML estimator β̂CML for β0 is defined through

max
β

max
p1,··· ,pn

n∏
i=1

f(Yi|Xi,Zi;β)pi subject to

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(Xi,Zi;β) = 0,

(2.3)

where g(X,Z;β) = [U(1)(X,Z;β,θ∗(1))
T , · · · ,U(K)(X,Z;β,θ∗(K))

T ]T . The CML-type esti-
mators have been proposed and studied by many authors under different settings (e.g., Qin 2000;
Qin et al. 2015; Chatterjee et al. 2016; Huang et al. 2016; Han and Lawless 2019; Zhang et al.
2020; Sheng et al. 2021), and they are closely connected to the empirical likelihood literature (Qin
and Lawless 1994; Owen 2001). When all study populations are the same, the CML estimator
defined through (2.3) is more efficient than the MLE and the efficiency gain comes from the inte-
gration of the external summary information. With heterogeneous populations, however, in general
the CML method no longer works in the sense that the CML estimator can be severely biased after
incorporation of the external information.

2.2.3 The PCML Method for Heterogeneous Populations

In the presence of heterogeneous populations, the moment constraints in (2.2) may no longer
be valid. To account for this, we introduce some unknown nuisance parameters γ0(k), where

γ0(k) = E
[
U(k)(X,Z;β0,θ

∗
(k))
]
, to represent the bias of the moment constraints resulted from the

population difference. Thus the moment constraints from all external studies can be reparametrized
as E[g(X,Z;β0)−γ0] = 0, where γ0 = (γ0

T
(1), · · · ,γ0T(K))

T . The zero components of γ0 identify
the external studies that are based on the same population as the internal study and whose summary
information should be incorporated. It is desirable to estimate the zero components of γ0 to be ex-
act zeros, which will simultaneously select the external studies that provide useful information and
incorporate the information into internal model fitting. The shrinkage estimation techniques can
help achieve this goal.

Among the many shrinkage techniques available in the literature that are capable of shrinking
the parameter estimates to exactly zero, the Lasso (Tibshirani 1996) is one of the most widely used
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due to its simplicity and effectiveness. A drawback of the Lasso is that it shrinks the non-zero
parameters to be biased towards zero, and the resulting estimators are generally not consistent
(Hastie et al. 2001). Zou (2006) developed the adaptive Lasso (aLasso) so that both the selection
of the zero parameters and the estimation of the non-zero parameters are consistent and the final
estimator is as efficient as if the zero parameters are removed from the model before estimation,
the so-called oracle property (see also Fan and Li 2001), while retaining the convexity property
of the Lasso which is very attractive for computational purposes. Therefore, we adopt the aLasso
shrinkage to achieve our goal of data integration. Since we are considering multiple external
studies, intuition suggests that the shrinkage needs to be carried out at the study level so that an
external study should no longer be considered if it is for a different population. Such a group-
wise shrinkage can be achieved based on the group Lasso (gLasso) developed by Yuan and Lin
(2006). The adaptive version of group Lasso (agLasso) by Wang and Leng (2008) ensures the
consistency of both group selection and parameter estimation, as well as the oracle property of the
final estimator. Thus we adopt the agLasso to deal with multiple external studies.

Based on all the considerations so far, we propose the PCML estimator β̂ for β0 that is the
β-component of (β̂, γ̂) defined through

max
β,γ

[
max

p1,··· ,pn
log

{
n∏

i=1

f(Yi|Xi,Zi;β)pi

}
− n

K∑
k=1

P̂λn

(
γ(k)
)]

subject to

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi{g(Xi,Zi;β)− γ} = 0,

(2.4)

where
P̂λn

(
γ(k)
)
= λn∥γ̃(k)∥−w∥γ(k)∥ (2.5)

is the agLasso penalty with tuning parameter λn > 0, ∥ · ∥ is the Euclidean norm, γ̃(k) is some
first-step consistent estimator of γ0(k), and w > 0 is some user-specified positive number. The
most natural choice for γ̃(k) in the setting we consider is to take the corresponding components
from γ̃ = n−1

∑n
i=1 g(Xi,Zi; β̂MLE). A common choice for w is w = 1 or 2 (e.g., Zou 2006;

Wang and Leng 2008).
Compared to the optimization in (2.3) for the CML estimator, the optimization in (2.4) for the

proposed PCML estimator has an agLasso penalty that shrinks the estimate of γ0 towards zero.
When the degree of shrinkage is properly chosen through the tuning parameter λn, some γ0(k)
will be estimated exactly as zeros and the corresponding information summarized in the moment
constraints (2.2) will be automatically incorporated into the estimation of β0. Furthermore, when
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only the γ0(k) corresponding to the external studies that are for the same population as the internal
study are estimated as zeros, the resulting PCML estimator for β0 will be consistent and have
improved efficiency compared to the MLE. The penalization in (2.4) allows simultaneous selection
of useful external information and estimation of β0 incorporating that information.

Using the Lagrange multiplier method, it is easy to show that the PCML constrained optimiza-
tion in (2.4) can be equivalently written as

min
β,γ

[
−

n∑
i=1

log fi(β) + max
ρ

{
n∑

i=1

log
{
1− ρT [gi(β)− γ]

}}
+ n

K∑
k=1

P̂λn

(
γ(k)
)]

, (2.6)

where fi(β) = f(Yi|Xi,Zi;β), gi(β) = g(Xi,Zi;β), and ρ is the Lagrange multiplier. The
expression in (2.6) is the so-called saddle-point representation in the empirical likelihood literature
(e.g., Owen 2001; Newey and Smith 2004) and is the expression used both for derivation of the
asymptotic properties and for the numerical implementation in later sections.

2.2.4 Group-wise Shrinkage vs Component-wise Shrinkage

The agLasso penalty (2.5) is based on the intuition that an external study should no longer be con-
sidered for information integration if its population is different from the internal study. The penalty
(2.5) ensures that data integration is carried out in a group-wise manner at the study level. How-
ever, a further investigation reveals that not all components of (2.2) are necessarily invalid when the
external study has a different population. In below we present two such examples, both of which
have an appreciable degree of generality despite the concrete numbers in Example 2. Both exam-
ples are based on a factorization of the joint distribution f(Y,X,Z) = f(Y |X,Z)f(Z|X)f(X).
Example 1 shows that (2.2) may still hold if the difference between the internal and external study
populations is only in f(X). Example 2 shows that, in the presence of a difference in any of
f(Y |X,Z), f(Z|X) and f(X), some components in (2.2) may still hold even though the rest do
not.
Example 1. Suppose that the internal and external studies have different distributions for X but
share the same distribution for both Y |(X,Z) and Z|X , and thus they also share the same dis-
tribution for Y |X . Suppose that the external study used a correctly specified model f(Y |X;θ),
which implies that E[h(Y,X;θ∗)|X] = 0. Note that in this case, due to the correct specification
of f(Y |X;θ), the moment equality is conditional onX and thus holds regardless of the difference
in theX distribution between the internal and external studies. Thus, the same calculation leading
to (2.2) shows that E[U(X,Z;β0,θ

∗)|X] = 0, which then implies (2.2).
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Example 2. Suppose that, for the internal study, X ∼ N(−0.5, 0.52), Z|X ∼ N(X+X2, 12), and
Y |(X,Z) ∼ N(βc+βXX+βZZ, 1

2) withβ0 = (0.5, 1, 0.5)T . For the external study with data gen-
erated as in Cases (a)-(c) below, the model Y |X ∼ N(θc + θXX,

√
1.25

2
) is fitted, which leads to

h(Y,X;θ) = (1, X)T (Y −θc−θXX) andU(X,Z;β,θ) = (1, X)T (βc+βXX+βZZ−θc−θXX).
Some calculation shows that under the internal study E(X2) = 0.5, E(Z) = 0 and E(XZ) = 0,
and thus E{U(X,Z;β,θ)} = (βc − 0.5βX − θc + 0.5θX ,−0.5βc + 0.5βX + 0.5θc − 0.5θX)

T .
Now consider three cases for the external study data distribution. (a) The distributions of Z|X and
Y |(X,Z) are the same as the internal study while X ∼ N(0,

√
0.5

2
). Some calculation shows

that θ∗ = (0.75, 1.5)T , which then leads to E{U(X,Z;β0,θ
∗)} = (0,−0.125)T . (b) The distri-

butions of X and Y |(X,Z) are the same as the internal study while Z|X ∼ N(X + 0.5, 12).
Some calculation shows that θ∗ = (0.75, 1.5)T , which then leads to E{U(X,Z;β0,θ

∗)} =

(0,−0.125)T . (c) The distributions of X and Z|X are the same as the internal study while
Y |(X,Z) ∼ N(0.25 + 0.5X + 0.5Z, 12). Some calculation shows that θ∗ = (0.25, 0.5)T , which
then leads to E{U(X,Z;β0,θ

∗)} = (0, 0.125)T .
The implication of these two examples is that γ0(k) may still have zero components even if the

kth external study has a population different from the internal study so that γ0(k) ̸= 0. In this case
the external study still provides useful information for efficiency gain. This observation is also
easy to understand from a practical perspective. For example, the association between the same
outcome and covariates may not differ much across populations with certain specific heterogeneity.

Therefore, for information integration, it may be beneficial to do a component-wise shrinkage
on γ0(k) instead of a group-wise shrinkage, especially when no external study appears to be useful
with a group-wise shrinkage. A component-wise shrinkage in this case may help incorporate the
useful information contained in a subset of the moment constraints from the external study that
is not selected by the group-wise shrinkage. Component-wise shrinkage is easy to achieve by
replacing the penalty

∑K
k=1 P̂λn

(
γ(k)
)

in (2.4) with
∑K

k=1

∑dk
j=1 P̂λn

(
γ(kj)

)
, where P̂λn(γ(kj)) =

λn|γ̃(kj)|−w|γ(kj)| is the adaptive Lasso (aLasso) penalty on γ(kj), the jth component of γ(k), j =

1, · · · , dk. As a matter of fact, the component-wise shrinkage is a special case of the group-wise
shrinkage based on the agLasso penalty in (2.5) with all group sizes equal to one, by pretending
that each moment constraint came from a separate external study. There is no special treatment
needed for component-wise shrinkage in either asymptotic property investigation or numerical
implementation.
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2.3 Asymptotic Properties of the PCML Method

2.3.1 Estimation Consistency and
√
n-Convergence

We first establish the consistency of the proposed estimator (β̂, γ̂). The assumptions needed on the
model f(Y |X,Z;β) and the moment function g(X,Z;β) are similar to those for the consistency
of the MLE and the empirical likelihood estimator (e.g., Newey and McFadden 1994; Qin and
Lawless 1994; Newey and Smith 2004). In addition, the penalty function needs to be small enough
compared to the likelihood function and this is achieved through an assumption on the turning
parameter λn.

Assumption 2.1. (i) B × T , the parameter space where (β0,γ0) lies, is compact;

(ii) E [log f(Y |X,Z;β)] is uniquely maximized at β0 ∈ B;

(iii) log f(Y |X,Z;β) is continuous at each β ∈ B with probability one;

(iv) E
[
sup(β,γ)∈B×T ∥g(X,Z;β)− γ∥α

]
<∞ for some α > 2;

(v) E
{
[g(X,Z;β0)− γ0][g(X,Z;β0)− γ0]T

}
is non-singular;

(vi) supβ∈B n
−1/2

∑n
i=1{li(β) − E[l(β)]} = Op(1) for l(β) = log f(Y |X,Z;β) and g(X,Z;

β);

(vii) λn = Op(n
−ξ) for some ξ with 1/α < ξ < 1/2.

Here Assumption 2.1(vi) is a high-level condition that can be verified by applying the empirical
process theory (e.g., Andrews 1994; van der Vaart 2000). Assumption 2.1(vii) makes sure that the
shrinkage effect when estimating the non-zero components of γ0 disappears as n → ∞. Under
Assumption 2.1, the consistency of (β̂, γ̂) is given by Theorem 2.1. The proof makes use of the
saddle-point representation in (2.6). This proof, together with the proofs of all other theorems in
this Chapter, is given in Section 2.8.

Theorem 2.1. (Consistency) Under Assumption 2.1, the PCML estimator (β̂, γ̂) converges to

(β0,γ0) in probability as n→∞.

To establish the
√
n-convergence of (β̂, γ̂) we need some additional assumptions.

Assumption 2.2. (i) (β0,γ0) is in the interior of B × T ;
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(ii) g(X,Z;β) is continuously differentiable in some neighborhood BN of β0 and

E[supβ∈BN
∥∂g(β)/∂β∥] <∞;

(iii) log f(Y |X,Z;β) is twice continuously differentiable in some neighborhood BN of β0 and

E[supβ∈BN
∥∂s(β)/∂β∥] <∞, where s(β) = ∂ log f(Y |X,Z;β)/∂β;

(iv) E
[
∂2 log f(Y |X,Z;β0)/∂β∂β

T
]

is non-singular;

(v) λn = op(n
−1/2).

The assumptions needed on f(Y |X,Z;β) and g(X,Z;β) are similar to those in Newey and
McFadden (1994), Newey and Smith (2004) and Liao (2013). Assumption 2.2(v) is to ensure that
the tuning parameter converges to zero fast enough so that adding the penalty function does not
affect the parametric

√
n-convergence rate for the parameters of interest. Under Assumptions 2.1

and 2.2, the
√
n-convergence of (β̂, γ̂) is given by Theorem 2.2. Theorem 2.2 also gives the

√
n-

convergence of the Lagrange multiplier ρ̂ corresponding to (β̂, γ̂), and this result is oftentimes of
independent interest. For example, the tuning parameter selection in Section 2.4.2 makes use of
this result.

Theorem 2.2. (
√
n-Consistency) Under Assumptions 2.1 and 2.2, we have (i) ∥β̂ − β0∥ =

Op(n
−1/2), (ii) ∥γ̂ − γ0∥ = Op(n

−1/2), and (iii) ρ̂ = argmax
∑n

i=1 log{1− ρT [gi(β̂)− γ̂)]},
the Lagrange multiplier as in (2.6), exists with probability approaching one and ∥ρ̂∥ = Op(n

−1/2).

2.3.2 External Study Selection Consistency

Let K=0 = {k : γ0(k) = 0, k = 1, · · · , K} and K ̸=0 = {k : γ0(k) ̸= 0, k = 1, · · · , K} denote the
index sets for the zero and nonzero groups in γ0, respectively, corresponding to external studies
that are for the same population as the internal study and those for different populations. Let
K̂=0 = {k : γ̂(k) = 0, k = 1, · · · , K} and K̂ ̸=0 = {k : γ̂(k) ̸= 0, k = 1, · · · , K} denote the index
sets for the zero and nonzero groups in γ̂, respectively, corresponding to external studies that are
selected by the PCML method for information integration and those are not selected.

The consistency of γ̂ from Theorem 2.1 implies that γ̂ falls into a shrinking neighbourhood
of γ0 with probability approaching one, and thus for those γ0(k) ̸= 0 we must have γ̂(k) ̸= 0

with probability approaching one. However, consistency of γ̂ alone does not imply γ̂(k) = 0 with
probability approaching one for those γ0(k) = 0, and thus does not imply external study selection
consistency. To ensure the selection consistency, we impose a further condition on the convergence
rate of the tuning parameter λn. This condition ensures that λn does not converge to zero too fast
so that its shrinkage effect can shrink γ̂(k) to exactly zero for those γ0(k) = 0.
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Assumption 2.3. n1/2+w/2λn →∞ as n→∞.

Theorem 2.3. Under Assumptions 2.1, 2.2 and 2.3, we have limn→∞ P (K̂=0 = K=0) = 1.

2.3.3 Asymptotic Distribution and Oracle Information Integration

To derive the asymptotic distribution of the proposed PCML estimator, rewrite γ0 as γT
0 = (γT

0,=0,

γT
0, ̸=0) without loss of generality, where γ0,=0 contains those γ0(k) that γ0(k) = 0 and γ0,̸=0 contains

those γ0(k) that γ0(k) ̸= 0. Correspondingly, write g(β) as g(β)T = (g=0(β)
T , g̸=0(β)

T ), γ as
γT = (γT

=0,γ
T
̸=0), and γ̂ as γ̂T = (γ̂T

=0, γ̂
T
̸=0). Define ηT = (βT ,γT

̸=0), η
T
0 = (βT

0 ,γ
T
0, ̸=0), and

η̂T = (β̂T , γ̂T
̸=0). Because γ̂=0 = 0 with probability approaching one based on Theorem 2.3, we

just need to derive the asymptotic distribution of η̂. The result is given by the following theorem.

Theorem 2.4. (Asymptotic Normality) Under Assumptions 2.1, 2.2 and 2.3, we have
√
n(η̂ −

η0)
d→ N (0, (S + GT

ηΩ
−1Gη)

−1), where S = diag(S0,0), S0 = E[s(β0)s(β0)
T ], s(β) =

∂ log f(Y |X,Z;β)/∂β, Gη = E{∂ [g (X,Z;β0)− γ0] /∂η}, and Ω = E{[g(X,Z;β0) −
γ0][g(X,Z;β0)− γ0]T}.

From Theorem 2.4, some calculations lead to the asymptotic distribution for the PCML esti-
mator β̂.

Theorem 2.5. (Oracle Efficiency) Under Assumptions 2.1, 2.2 and 2.3, we have

√
n(β̂ − β0)

d→ N
(
0, (S0 +G

T
0Ω

−1
0 G0)

−1
)
, (2.7)

whereG0 = E[∂g=0(X,Z;β0)/∂β] and Ω0 = E[g=0(X,Z;β0)g=0(X,Z;β0)
T ].

Compared to the MLE based on the internal study data alone, whose asymptotic variance is
S−1

0 , the proposed PCML estimator β̂ has a smaller asymptotic variance because GT
0Ω

−1
0 G0 is

positive-definite. On the other hand, the asymptotic variance in (2.7) is the same as that of the
oracle CML estimator defined in (2.3) with only g=0(X,Z;β) used. In other words, the proposed
estimator has the same efficiency as that of the oracle CML estimator incorporating only useful
external information. This optimal estimation efficiency for the parameter of interest, together with
the external study selection consistency from Theorem 2.3, implies the oracle use of information
from external studies in the presence of population heterogeneity.
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2.4 Implementation

2.4.1 Implementation Based on Saddle-Point Representation

The numerical implementation of the proposed PCML method is based on the saddle-point rep-
resentation (2.6) and consists of two loops, following the recommendation from the empirical
likelihood literature (e.g., Owen 2001; Kitamura 2007; Han and Lawless 2019). The inner loop
computes the Lagrange multiplier ρ(β,γ) at a given value of (β,γ), and the outer loop updates
(β,γ).

Specifically, the inner loop is maxρ
∑n

i=1 log
{
1− ρT [gi(β)− γ)]

}
as in (2.6). When the

given value (β,γ) is close to the true value (β0,γ0), which is indeed the case during the imple-
mentation if the initial value of (β,γ) is taken to be the consistent estimator (β̂MLE, γ̃), the inner
loop is a concave maximization with a unique maximizer (e.g., Han 2014). Thus the inner loop can
be easily implemented based on the Newton-Raphson algorithm, for which the initial value can be
simply set as ρ = 0 because of Theorem 2.2.

To present the outer loop, let ρ̂(β,γ) denote the computed Lagrange multiplier from the inner
loop at a given (β,γ) and ρ̂(k)(β,γ) the components of ρ̂(β,γ) corresponding to γ0(k) . The outer
loop computes the PCML estimator (β̂, γ̂) in the following steps.
Step 0. Take the initial value (β̂(0), γ̂(0)) = (β̂MLE, γ̃).

With (β̂(l), γ̂(l)) available from the l-th iteration (l = 0, 1, 2, · · · ), in the (l + 1)-th iteration the
outer loop obtains γ̂(l+1) and β̂(l+1) based on a block coordinate descent procedure.
Step 1. For k = 1, · · · , K sequentially, set γ̂(l+1)

(k) equal to 0 if∥∥∥∥∥∥∥
1

n

n∑
i=1

ρ̂(k)

(
β̂(l), γ̂(l+ k

K
)(0)

)
1−

[
ρ̂
(
β̂(l), γ̂(l+ k

K
)(0)

)]T [
gi(β̂(l))− γ̂(l+ k

K
)(0)

]
∥∥∥∥∥∥∥ <

λn

∥γ̃(k)∥w
(2.8)

and equal to the root of the equation

λn

∥γ̃(k)∥w
γ(k)∥∥γ(k)∥∥ +

1

n

n∑
i=1

ρ̂(k)

(
β̂(l), γ̂(l+ k

K
)(γ(k))

)
1−

[
ρ̂
(
β̂(l), γ̂(l+ k

K
)(γ(k))

)]T [
gi(β̂(l))− γ̂(l+ k

K
)(γ(k))

] = 0 (2.9)

as an equation for γ(k) if (2.8) does not hold, where

γ̂(l+ k
K
)(γ(k)) ≡

[(
γ̂
(l+1)
(1)

)T
, · · · ,

(
γ̂
(l+1)
(k−1)

)T
,γT

(k),
(
γ̂
(l)
(k+1)

)T
, · · · ,

(
γ̂
(l)
(K)

)T]T
.
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Step 2. Set β̂(l+1) equal to the root of the equation

1

n

n∑
i=1

si(β) +
1

n

n∑
i=1

{∂gi(β)/∂β}T ρ̂(β, γ̂(l+1))

1− [ρ̂(β, γ̂(l+1))]
T
[gi(β)− γ̂(l+1)]

= 0. (2.10)

as an equation for β.
Step 3. Repeat Step 1 and Step 2 until convergence such that ∥β̂(l+1) − β̂(l)∥ and ∥γ̂(l+1) − γ̂(l)∥
are smaller than some pre-specified small number and K̂(l+1)

=0 = K̂(l)
=0, where K̂(l)

=0 = {k : γ̂
(l)
(k) =

0, k = 1, · · · , K}.
Equations (2.9) and (2.10) are the first-order condition of the saddle-point representation (2.6)

with respect to γ(k) when γ(k) ̸= 0 and β, respectively, treating ρ̂(β,γ) as an implicit function of
β and γ. These equations can be solved based on the Newton-Raphson algorithm, for which the
calculation of the Jacobian matrices of the left-hand sides of (2.9) and (2.10) needs to again treat
ρ̂(β,γ) as an implicit function of β and γ. The expression of the Jacobian matrix for (2.10) is
the same as that in Han and Lawless (2019) and the expression for (2.9) can be similarly derived.
Details are omitted here due to their lengthy expressions.

2.4.2 Tuning Parameter Selection

The rate of convergence of the tuning parameter λn is crucial when deriving the asymptotic proper-
ties of the PCML estimator in Section 2.3, and Assumptions 2.2(v) and 2.3 specify some sufficient
conditions on the convergence rate that guarantee the

√
n-convergence and the oracle property of

the PCML estimator. For practical implementation, however, we need an effective way of selecting
a concrete value for the tuning parameter.

Note from (2.8) that γ0(k) is estimated exactly as zero if∥∥∥∥∥∥ ρ̂(k)(β̂, γ̂−(k))√
n

n∑
i=1

1

1− ρ̂T (β̂, γ̂−(k))
[
gi(β̂)− γ̂−(k)

]
∥∥∥∥∥∥ <

√
nλn

∥γ̃(k)∥w
, (2.11)

where γ̂−(k) = (γ̂T
(1), · · · , γ̂T

(k−1),0, γ̂
T
(k+1), · · · , γ̂T

(K))
T . For any γ0(k) ̸= 0, ρ̂(β̂, γ̂−(k)) is of order

Op(1) and thus the left-hand side of (2.11) is asymptotically bounded away from zero, in which
case to avoid estimating γ0(k) to be zero

√
nλn needs to converge to zero as fast as possible, since

∥γ̃(k)∥w converges to a non-zero constant. With all γ0(k) ̸= 0 estimated as non-zeros, for any
γ0(k) = 0, ρ̂(β̂, γ̂−(k)) is of order Op(n

−1/2) and the left-hand side of (2.11) is of order Op(1), and
in addition ∥γ̃(k)∥ = Op(n

−1/2). Therefore, to estimate γ0(k) = 0 exactly as zero n1/2+w/2λn needs
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to diverge to infinity as fast as possible. These considerations agree with Assumptions 2.2(v) and
2.3. To balance these rate requirements on λn, we choose λn = Cn−1/2−w/4, where C is a positive
constant.

We now discuss how to select C > 0 by following the idea in Liao (2013). From the proof of
Theorem 2.4 it is seen that

√
nρ̂

d→ Υυ, where Υ = Ω−1A{diag(Ω,S0)}1/2,

A =

[
Id×d −Gη

(
S +GT

ηΩ
−1Gη

)−1
GT

ηΩ
−1 Gη

(
S +GT

ηΩ
−1Gη

)−1

[
Iq×q

0

]]
,

υ is a (d+ q) dimensional standard Gaussian random vector, and d = dim(γ0) =
∑K

k=1 dk. On the
other hand, under

√
n-consistent estimation, the left-hand side of (2.11) has the same asymptotic

distribution as
√
nρ̂(k) =

√
nBkρ̂, whereBk is the dk × d matrix that selects the components ρ(k)

from ρ. Therefore, to account for the study heterogeneity of the left-hand side of (2.11) and to
normalize the linear combination of υ, we allow the C in the tuning parameter λn = Cn−1/2−w/4

to be study-specific and choose C(k) = ∥BkΥ̂∥F , where ∥ · ∥F is the Frobenius norm and Υ̂ is
an estimate of Υ with a preliminary PCML estimator of (β0,γ0) plugged in. For the preliminary
PCML estimator the tuning parameter can be taken as λn = n−1/2−w/4 with C = 1.

2.5 Simulation Studies

2.5.1 Simulation Setup

For the internal study there are four covariates, X1, X2, X3 and Z, which are generated as fol-
lows; (X1, X̃2) ∼ N (0,Σ) with unit variances and correlation coefficient 0.3, X2 = I(X̃2 > 0),
X3 ∼ Exponential(1), and Z|X ∼ N (X1 + X3, 1

2). Given X and Z, Y is generated from
a Bernoulli distribution with logit{P (Y = 1|X, Z)} = (1, X1, X2, X3, Z,X1Z)β0, with βT

0 =

(−0.5, 0.5,−1.5, 1, 0.5,−0.5). The internal study model is the corresponding logistic regression
with βT = (βc, βX1 , βX2 , βX3 , βZ , βX1Z).

We consider two external studies. External study 1 has the same data distribution as the in-
ternal study and measures only Y , X2 and X3 to fit the logistic regression model logit{P (Y =

1|X2, X3)} = θ(1)c + θ(1)1X2 + θ(1)2X3. External study 2 has a different covariate distribu-
tion. Specifically, (X1, X̃2) ∼ N ((−0.5, 0.25),Σ) with the same Σ as the internal study, X2 =

I(X̃2 > 0), X3 ∼ Exponential(0.5), and Z|X ∼ N (0.25 + 0.5X1 + 0.5X3, 1
2). Conditional

on the covariates, the outcome distribution in external study 2 is the same as that in the inter-
nal study. External study 2 measures only Y , X1 and X2 to fit the logistic regression model
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logit{P (Y = 1|X1, X2)} = θ(2)c + θ(2)1X1 + θ(2)2X2. The h(k)(Y,X(k);θ(k)), k = 1, 2, are the
corresponding score functions for these two external logistic regression models.

Since external study 1 has the same data distribution as the internal study, we have γ0(1) = 0

and thus incorporating the information from this external study should improve the efficiency for
internal parameter estimation. For external study 2, some numerical calculation based on a sample
size 106 for both the internal and external studies shows that γ0(2) = (−0.1651,−0.0036,−0.0957).
The second component of γ0(2) is very close to zero, and thus part of the information available
from external study 2 may be helpful for efficiency improvement as well. To evaluate the numer-
ical performance of the PCML method, we consider three scenarios where the external summary
information is available from (i) external study 1 only, (ii) external study 2 only, and (iii) both ex-
ternal studies. The MLE and the CML estimators are included for comparisons. In each scenario,
both the group-wise shrinkage and the component-wise shrinkage are applied. We take w = 2 in
the penalty function (2.5).

For the external studies we consider two sample sizes, 50000 and 3000, corresponding to large
and moderate sizes, respectively. In both cases two internal sample sizes, n = 300 and 800, are
considered. When the external sample size is 50000, all replications use the same external study
data. When the external sample size is 3000, in each replication the external data are re-generated
together with the internal data. Table 2.1 contains the results for external sample size 50000, and
Table 2.2 contains the results for external sample size 3000, both based on 1000 replications. The
observations from these two tables are very similar.

2.5.2 Simulation Observations

When only using External Study 1, the CML estimator CML-1 is the oracle CML estimator and
has a substantial reduction of empirical standard errors, compared to the MLE, for the estimates
of βc, βX2 and βX3 corresponding to the regressors used in External Study 1. This observation is
in full agreement with the existing CML literature that the efficiency improvement occurs mainly
for the estimates corresponding to external study covariates. The PCML estimator with group-
wise shrinkage (PCMLg-1) has a performance very close to CML-1, especially with n = 800.
Even with n = 300, compared to the MLE, PCMLg-1 has substantially smaller empirical standard
errors for the estimates of βc, βX2 and βX3 . The PCML estimator with component-wise shrinkage
(PCMLc-1) has a performance almost identical to CML-1.

The closeness in performance in this case between PCMLg-1, PCMLc-1 and CML-1 is because
the PCML method is able to automatically incorporate all the information available from External
Study 1. For PCMLg-1, the selection rate of External Study 1 is 97.1% for n = 300 and 98.7% for
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Table 2.1: Simulation results summarized based on 1000 replications with external study sample
size 50000.

Internal sample size n = 300 Internal sample size n = 800

βc βX1
βX2

βX3
βZ βX1Z βc βX1

βX2
βX3

βZ βX1Z

MLE
Bias -0.024 0.022 -0.037 0.036 0.021 -0.022 -0.008 0.011 -0.012 0.010 0.007 -0.007
ESE 0.268 0.259 0.333 0.254 0.166 0.117 0.160 0.148 0.193 0.153 0.093 0.070
RMSE 0.269 0.260 0.335 0.256 0.167 0.119 0.161 0.148 0.193 0.153 0.093 0.071

CML-1
Bias -0.008 0.023 -0.028 0.017 0.021 -0.022 -0.008 0.011 -0.010 0.012 0.007 -0.008
ESE 0.116 0.258 0.157 0.166 0.166 0.118 0.069 0.148 0.090 0.095 0.093 0.070
RMSE 0.117 0.259 0.160 0.166 0.167 0.120 0.069 0.148 0.090 0.096 0.093 0.071

PCMLg-1
Bias -0.006 0.023 -0.026 0.015 0.021 -0.022 -0.008 0.011 -0.009 0.011 0.007 -0.008
ESE 0.131 0.259 0.182 0.173 0.166 0.118 0.072 0.148 0.095 0.098 0.093 0.070
RMSE 0.131 0.259 0.184 0.173 0.167 0.120 0.073 0.148 0.096 0.098 0.093 0.071

PCMLc-1
Bias -0.007 0.023 -0.028 0.015 0.021 -0.022 -0.007 0.011 -0.010 0.012 0.007 -0.008
ESE 0.119 0.258 0.159 0.169 0.166 0.118 0.070 0.148 0.090 0.096 0.093 0.070
RMSE 0.119 0.259 0.161 0.169 0.167 0.120 0.070 0.148 0.090 0.097 0.093 0.071

CML-2
Bias 0.614 0.004 0.116 0.037 0.022 -0.023 0.634 -0.000 0.133 0.010 0.007 -0.009
ESE 0.193 0.218 0.199 0.254 0.166 0.117 0.116 0.125 0.119 0.153 0.093 0.070
RMSE 0.643 0.218 0.230 0.256 0.167 0.119 0.645 0.125 0.179 0.153 0.093 0.071

CML-2o
Bias -0.025 0.035 -0.035 0.036 0.021 -0.023 -0.008 0.028 -0.011 0.010 0.007 -0.008
ESE 0.267 0.230 0.333 0.254 0.166 0.117 0.160 0.131 0.193 0.153 0.093 0.070
RMSE 0.269 0.233 0.335 0.256 0.167 0.120 0.161 0.134 0.193 0.153 0.093 0.071

PCMLg-2
Bias -0.024 0.022 -0.037 0.036 0.021 -0.022 -0.008 0.011 -0.012 0.010 0.007 -0.007
ESE 0.268 0.259 0.333 0.254 0.166 0.117 0.160 0.148 0.193 0.153 0.093 0.070
RMSE 0.269 0.260 0.335 0.256 0.167 0.119 0.161 0.148 0.193 0.153 0.093 0.071

PCMLc-2
Bias -0.025 0.016 0.105 0.036 0.021 -0.023 -0.008 0.028 -0.010 0.010 0.007 -0.008
ESE 0.270 0.236 0.487 0.254 0.166 0.117 0.160 0.131 0.195 0.153 0.093 0.070
RMSE 0.271 0.237 0.499 0.256 0.167 0.120 0.161 0.134 0.195 0.153 0.093 0.071

CML-12
Bias 0.123 0.159 -0.179 0.003 0.024 -0.014 0.125 0.157 -0.188 0.020 0.011 -0.002
ESE 0.143 0.243 0.197 0.178 0.166 0.118 0.089 0.140 0.122 0.112 0.094 0.070
RMSE 0.189 0.291 0.266 0.178 0.168 0.119 0.153 0.210 0.224 0.114 0.094 0.070

CML-12o
Bias -0.006 0.035 -0.034 0.016 0.021 -0.023 -0.002 0.029 -0.021 0.012 0.007 -0.008
ESE 0.109 0.229 0.133 0.166 0.166 0.118 0.064 0.129 0.079 0.095 0.093 0.070
RMSE 0.109 0.231 0.137 0.166 0.167 0.120 0.064 0.133 0.081 0.096 0.093 0.071

PCMLg-12
Bias -0.005 0.023 -0.027 0.016 0.021 -0.022 -0.008 0.011 -0.009 0.011 0.007 -0.008
ESE 0.133 0.258 0.183 0.173 0.166 0.117 0.072 0.148 0.095 0.098 0.093 0.070
RMSE 0.133 0.259 0.185 0.174 0.167 0.120 0.073 0.148 0.096 0.098 0.093 0.071

PCMLc-12
Bias -0.005 0.035 -0.029 0.013 0.021 -0.023 -0.002 0.029 -0.020 0.011 0.007 -0.008
ESE 0.120 0.231 0.172 0.169 0.166 0.117 0.067 0.129 0.082 0.096 0.093 0.070
RMSE 0.120 0.233 0.174 0.169 0.167 0.120 0.067 0.133 0.085 0.097 0.093 0.071

1 ESE: empirical standard error. RMSE: root mean squared error. MLE: maximum likelihood estimator using internal study data alone. CML:
constrained maximum likelihood. PCMLg, PCMLc: penalized constrained maximum likelihood estimators with group-wise and component-
wise shrinkage, respectively. -1, -2, -2o, -12, -12o: with external study 1 only, with external study 2 only, with the second moment constraint
from external study 2 only, with both external studies, with external study 1 and the second moment constraint from external study 2, respectively.
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Table 2.2: Simulation results summarized based on 1000 replications with external study sample
size 3000.

Internal sample size n = 300 Internal sample size n = 800

βc βX1
βX2

βX3
βZ βX1Z βc βX1

βX2
βX3

βZ βX1Z

MLE
Bias -0.024 0.022 -0.037 0.036 0.021 -0.022 -0.008 0.011 -0.012 0.010 0.007 -0.007
ESE 0.268 0.259 0.333 0.254 0.166 0.117 0.160 0.148 0.193 0.153 0.093 0.070
RMSE 0.269 0.260 0.335 0.256 0.167 0.119 0.161 0.148 0.193 0.153 0.093 0.071

CML-1
Bias -0.002 0.023 -0.028 0.011 0.021 -0.023 -0.001 0.011 -0.011 0.007 0.007 -0.008
ESE 0.138 0.258 0.179 0.175 0.166 0.118 0.102 0.148 0.125 0.113 0.093 0.070
RMSE 0.138 0.259 0.181 0.175 0.167 0.120 0.102 0.148 0.125 0.113 0.093 0.071

PCMLg-1
Bias 0.001 0.023 -0.033 0.011 0.021 -0.022 -0.001 0.011 -0.008 0.005 0.007 -0.008
ESE 0.156 0.258 0.211 0.187 0.166 0.117 0.106 0.148 0.130 0.116 0.093 0.070
RMSE 0.156 0.259 0.214 0.187 0.167 0.120 0.106 0.148 0.130 0.116 0.093 0.071

PCMLc-1
Bias -0.000 0.023 -0.029 0.010 0.021 -0.022 0.000 0.011 -0.010 0.005 0.007 -0.008
ESE 0.142 0.258 0.182 0.177 0.166 0.118 0.105 0.148 0.125 0.115 0.093 0.070
RMSE 0.142 0.259 0.184 0.177 0.167 0.120 0.105 0.148 0.125 0.115 0.093 0.071

CML-2
Bias 0.597 -0.005 0.141 0.037 0.022 -0.023 0.618 -0.009 0.158 0.010 0.007 -0.009
ESE 0.204 0.220 0.215 0.254 0.166 0.117 0.140 0.129 0.145 0.153 0.093 0.070
RMSE 0.631 0.220 0.257 0.256 0.167 0.119 0.634 0.129 0.214 0.153 0.093 0.071

CML-2o
Bias -0.026 0.030 -0.035 0.036 0.021 -0.023 -0.009 0.023 -0.011 0.010 0.007 -0.008
ESE 0.267 0.231 0.333 0.254 0.166 0.117 0.160 0.134 0.193 0.153 0.093 0.070
RMSE 0.269 0.233 0.335 0.256 0.167 0.120 0.161 0.136 0.193 0.153 0.093 0.071

PCMLg-2
Bias -0.024 0.022 -0.037 0.036 0.021 -0.022 -0.008 0.011 -0.012 0.010 0.007 -0.007
ESE 0.268 0.259 0.333 0.254 0.166 0.117 0.160 0.148 0.193 0.153 0.093 0.070
RMSE 0.269 0.260 0.335 0.256 0.167 0.119 0.161 0.148 0.193 0.153 0.093 0.071

PCMLc-2
Bias -0.023 0.011 0.105 0.036 0.021 -0.023 -0.009 0.022 -0.009 0.010 0.007 -0.008
ESE 0.272 0.238 0.480 0.254 0.166 0.117 0.160 0.135 0.198 0.153 0.093 0.070
RMSE 0.273 0.238 0.491 0.256 0.167 0.120 0.161 0.136 0.198 0.153 0.093 0.071

CML-12
Bias 0.123 0.151 -0.170 -0.002 0.024 -0.015 0.124 0.150 -0.178 0.015 0.011 -0.003
ESE 0.165 0.245 0.215 0.187 0.166 0.118 0.121 0.146 0.155 0.127 0.093 0.070
RMSE 0.206 0.288 0.275 0.187 0.168 0.119 0.173 0.209 0.236 0.127 0.094 0.070

CML-12o
Bias -0.001 0.030 -0.031 0.011 0.021 -0.023 0.002 0.024 -0.019 0.007 0.007 -0.008
ESE 0.133 0.231 0.163 0.175 0.166 0.118 0.101 0.134 0.123 0.113 0.093 0.070
RMSE 0.133 0.233 0.166 0.175 0.167 0.120 0.101 0.136 0.125 0.113 0.093 0.071

PCMLg-12
Bias 0.005 0.023 -0.033 0.011 0.021 -0.022 -0.001 0.011 -0.007 0.005 0.007 -0.008
ESE 0.154 0.258 0.212 0.185 0.166 0.117 0.106 0.148 0.129 0.116 0.093 0.070
RMSE 0.154 0.259 0.215 0.185 0.167 0.120 0.106 0.148 0.130 0.116 0.093 0.071

PCMLc-12
Bias -0.001 0.030 -0.021 0.007 0.021 -0.023 0.004 0.024 -0.017 0.005 0.007 -0.008
ESE 0.145 0.232 0.210 0.178 0.166 0.118 0.105 0.134 0.125 0.115 0.093 0.070
RMSE 0.145 0.234 0.211 0.178 0.167 0.120 0.105 0.136 0.126 0.115 0.093 0.071

1 ESE: empirical standard error. RMSE: root mean squared error. MLE: maximum likelihood estimator using internal study data alone. CML:
constrained maximum likelihood. PCMLg, PCMLc: penalized constrained maximum likelihood estimators with group-wise and component-
wise shrinkage, respectively. -1, -2, -2o, -12, -12o: with external study 1 only, with external study 2 only, with the second moment constraint
from external study 2 only, with both external studies, with external study 1 and the second moment constraint from external study 2, respectively.
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n = 800, and for PCMLc-1 the selection rate of the entire External Study 1 is 99.6% for n = 300

and 99.8% for n = 800.
When only using External Study 2, the CML estimator CML-2 clearly has a large bias because

this external study data distribution is different from the internal study. On the other hand, the
CML estimator CML-2o that only uses the second moment constraint out of the three that External
Study 2 provides has little bias. In addition, CML-2o has a considerably smaller empirical standard
error for the estimate of βX1 compared to the MLE. This improved performance of CML-2o over
the MLE is because that the second component of γ0(2) is very close to zero. Thus CML-2o may
be treated as the oracle CML estimator in this case for comparison purposes. In this case the
PCML estimator with group-wise shrinkage (PCMLg-2) has identical results to the MLE, since
the group-wise shrinkage detected the distribution difference and made no use of the external
information for both n = 300 and n = 800. The PCML estimator with component-wise shrinkage
(PCMLc-2) has a performance almost identical to the oracle CML-2o when n = 800, showing
the effectiveness of the component-wise shrinkage in integrating useful external information in the
presence of population heterogeneity. The rate of estimating the second component of γ0(2) and
only this component exactly as zero is 99.8% in this case. When n = 300, due to randomness in
the internal data, PCMLc-2 sometimes estimates the third component of γ0(2) also as zero, whose
true value is −0.0957. Specifically, when n = 300 the rate of estimating the second component
of γ0(2) alone as zero is 75.4% and estimating the second and third components but not the first as
zero is 23.5%. Incorporating information from the third moment constraint leads to slight bias and
larger empirical standard errors for PCMLc-2 compared to CML-2o, but all these disappear when
n = 800.

When using both external studies, the CML estimator CML-12 has a large bias. Compared to
both CML-1 and CML-2o, the oracle CML estimator CML-12o that uses all moment constraints
from External Study 1 and the second moment constraint from External Study 2 has a further
reduction in empirical standard errors for certain estimates. The PCML estimator with group-wise
shrinkage (PCMLg-12) has a performance almost identical to PCMLg-1, especially when n = 800,
since the group-wise shrinkage correctly selected External Study 1 with rate 96.6% when n = 300

and rate 98.7% when n = 800, and never selected External Study 2.
The PCML estimator with component-wise shrinkage (PCMLc-12) has a performance almost

identical to the oracle CML-12o when n = 800. When n = 300 PCMLc-12 has a slightly larger
empirical standard error compared to CML-12o due to occasionally estimating the third compo-
nent of γ0(2) as zero. Specifically, when n = 300 the rate of correctly selecting External Study
1 together with only the second moment constraint from External Study 2 is 97.2%, and the rate
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becomes 99.4% when n = 800. Compared to PCMLc-1, PCMLc-12 shows a better overall ef-
ficiency, especially when n = 800, due to the integration of additional useful information from
External Study 2. Compared to PCMLc-2, the efficiency improvement of PCMLc-12 is substan-
tial. Compared to PCMLg-12, PCMLc-12 has a clear reduction in the empirical standard error for
the estimate of βX1 , corresponding to the covariate X1 that is used only by External Study 2.

Based on all these observations, the PCML method is very effective in incorporating useful
external information in the presence of study population heterogeneity. Especially, the PCML
estimator based on component-wise shrinkage can make a partial use of the information from an
external study that is not selected by the group-wise shrinkage. The numerical performance is
overall excellent even with a small internal sample size.

2.5.3 Bootstrap for Inference

In finite samples, the standard error of the PCML estimator β̂ calculated based on the asymptotic
distribution (2.7) does not properly account for the finite-sample study selection error, and thus
may lead to poor inferences about β0. A theoretical development and investigation of a method
that takes the study selection error into account is challenging and is beyond the scope of this dis-
sertation. Instead, we evaluate the performance of the bootstrap method for a numerical calculation
of the standard error. The results are summarized in Table 2.3. It is seen that, when n = 300 the
bootstrap standard errors overall overestimate the empirical standard errors, but the overestimation
becomes much milder when n = 800, in which case the difference is less for component-wise
shrinkage compared to group-wise shrinkage. In the presence of overestimation, bootstrap will
lead to more conservative inference. Overall, when the internal sample size is not very small, the
bootstrap method seems to have an acceptable performance and provide a feasible way for standard
error calculation in the absence of other formal methods.

2.6 Data Application

We apply the PCML method to study the association between the risk of developing high-grade
prostate cancer (Gleason score ≥ 7) and certain risk factors. The effects of some commonly
considered risk factors, including age, race, the prostate specific antigen (PSA) level, the digital
rectal examination (DRE) finding and prior biopsy result, have been studied extensively in the
literature. Among the studies, Thompson et al. (2006) built an online risk calculator for calculating
the risk of developing high-grade prostate cancer, using data collected in the 1990s from 5519 men
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Table 2.3: Results of the bootstrap method for standard error calculation, with external study
sample size 50000, 1000 replications, and 200 bootstrap samples for each replication.

Internal sample size n = 300 Internal sample size n = 800

βc βX1
βX2

βX3
βZ βX1Z βc βX1

βX2
βX3

βZ βX1Z

PCMLg-1 ESE 0.131 0.259 0.182 0.173 0.166 0.118 0.072 0.148 0.095 0.098 0.093 0.070
BSE 0.209 0.262 0.256 0.223 0.168 0.126 0.102 0.151 0.126 0.117 0.097 0.070

PCMLc-1 ESE 0.119 0.258 0.159 0.169 0.166 0.118 0.070 0.148 0.090 0.096 0.093 0.070
BSE 0.174 0.262 0.194 0.201 0.168 0.126 0.084 0.151 0.098 0.107 0.097 0.070

PCMLg-2 ESE 0.268 0.259 0.333 0.254 0.166 0.117 0.160 0.148 0.193 0.153 0.093 0.070
BSE 0.272 0.262 0.330 0.265 0.168 0.126 0.157 0.151 0.192 0.153 0.097 0.070

PCMLc-2 ESE 0.270 0.236 0.487 0.254 0.166 0.117 0.160 0.131 0.195 0.153 0.093 0.070
BSE 0.286 0.249 0.441 0.265 0.168 0.126 0.157 0.138 0.201 0.153 0.097 0.070

PCMLg-12 ESE 0.133 0.258 0.183 0.173 0.166 0.117 0.072 0.148 0.095 0.098 0.093 0.070
BSE 0.211 0.262 0.257 0.223 0.168 0.126 0.102 0.151 0.126 0.117 0.097 0.070

PCMLc-12 ESE 0.120 0.231 0.172 0.169 0.166 0.117 0.067 0.129 0.082 0.096 0.093 0.070
BSE 0.193 0.245 0.250 0.204 0.168 0.126 0.084 0.137 0.094 0.107 0.097 0.070

1 ESE: empirical standard error. BSE: average of the bootstrap standard errors over 1000 replications.

in the placebo group of the Prostate Cancer Prevention Trial (PCPT). This PCPT risk calculator
is the first online prostate cancer risk assessment tool and is among the most widely used ones.
Detailed information about the study, including the model behind this risk calculator, is provided
in Thompson et al. (2006).

Recent research on the biological mechanisms related to the progression of prostate cancer
shows that two specific biomarkers, TMPRSS2:ERG (T2:ERG) and prostate cancer antigen 3
(PCA3), may lead to a better early detection of the disease (e.g., Tomlins et al. 2016). There-
fore, it is of great interest to study the effects of both the aforementioned conventional risk factors
and the new biomarkers on the risk of prostate cancer after adjusting for each other, as an update to
the effect estimation typically done without considering the biomarkers. We use part of the sam-
ple collected in Tomlins et al. (2016) as the internal data, which consists of 1218 men presenting
for diagnostic prostate biopsy at seven community clinics throughout the United States. We fit
the logistic regression model logit(P (Y = 1)) = βc + β1 log2(X1) + β2X2 + β3X3 + β4X4 +

β5X5 + β6 log2(Z1 + 1) + β7Z2. Here Y is the high-grade prostate cancer status, X1 is the PSA
level (ng/ml), X2 is age, X3 is a binary indicator of an abnormal DRE result, X4 is a binary indi-
cator of negative previous biopsies, X5 is a binary indicator of being African American, Z1 is the
PCA3 score, and Z2 is a binary indicator dichotomized at the sample median of the T2:ERG score
(Cheng et al. 2019). When fitting this model, we will incorporate the information available from
Thompson et al. (2006) that led to the PCPT risk calculator, a logistic regression model given by
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Table 2.4: Analysis results for the prostate cancer data with n = 1218.

MLE CML PCML

Estimate Std. Err P-value Estimate Std. Err P-value Estimate Std. Err P-value
Intercept −7.236 0.698 < 0.001 −7.050 0.261 < 0.001 −7.131 0.683 < 0.001
PSA 0.638 0.089 < 0.001 0.894 0.027 < 0.001 0.464 0.143 0.001
Age 0.033 0.010 0.002 0.010 0.005 0.029 0.033 0.010 0.001
DRE 0.586 0.193 0.002 0.963 0.057 < 0.001 0.512 0.181 0.005
Biopsy −0.974 0.234 < 0.001 −0.293 0.061 < 0.001 −0.414 0.178 0.020
Race −0.087 0.324 0.788 0.749 0.097 < 0.001 0.594 0.189 0.002
PCA3 0.364 0.058 < 0.001 0.365 0.064 < 0.001 0.363 0.053 < 0.001
T2:ERG 0.545 0.172 0.002 0.548 0.194 0.005 0.556 0.167 0.001
1 MLE: maximum likelihood estimate. CML: constrained maximum likelihood. PCML: penalized constrained

maximum likelihood. Std. Err: standard error. The standard errors for the PCML estimates are calculated based
on 200 bootstrap samples.

logit(P (Y = 1)) = −6.2461+ 1.2927 log(X1)+ 0.0306X2 +1.0008X3− 0.3634X4 +0.9604X5.
This external information may help improve the accuracy of the effect estimation since the PCPT
study has a fairly large sample size.

There are some apparent differences between the internal study data distribution and the data
distribution reported in Thompson et al. (2006). Of the 5519 men included in Thompson et al.’s
analysis, 4.7% developed high-grade prostate cancer and 47.1% were at age 70 or older, while
the numbers are 18.3% and 27.2%, respectively, for the internal study cohort. For Thompson et
al.’s cohort the median PSA level was 1.5 ng/ml and 88.6% had a PSA level ≤ 4.0 ng/ml. In
contrast, for the internal study cohort the median PSA level is 4.6 ng/ml and 36.5% have a PSA
level ≤ 4.0 ng/ml. The heterogeneity in the study cohorts can also be clearly seen from γ̃ =

n−1
∑n

i=1 g(Xi,Zi; β̂MLE). In this application we have γ̃ = (0.042, 0.056, 2.909, 0.006,−0.004,
−0.004). The large component 2.909 clearly indicates a cohort heterogeneity. On the other hand,
however, the last three components of γ̃ are very close to zero, showing that part of the external
information may be useful to improve the internal estimation. In our analysis the group-wise
shrinkage did not lead to information integration. The component-wise shrinkage did estimate the
last three components of γ, as well as the second component, exactly to be 0.

Table 2.4 contains the analysis results. Due to population heterogeneity, the CML estimates for
the effects of DRE, prior biopsy and race are quite different from the MLE. In contrast, the PCML
estimates are considerably closer to the MLE, with some effect change observed for prior biopsy
and race. For the MLE, the effects of all covariates but race (indicator of being African Ameri-
can) are highly significant. In the internal study cohort there are only 81 African Americans, and
this small number leads to the non-significance of the corresponding effect (p-value=0.788). The
PCML method incorporates part of the information from Thompson et al.’s (2006) cohort, which
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includes 175 African Americans. The information integration leads to a better estimate of the race
effect together with a reduced standard error, resulting in a significance (p-value=0.002) that is
in agreement with the general findings in existing literature. Based on the PCML method, while
having had previous negative biopsies is significantly associated with a decreased risk of high-
grade prostate cancer, having a higher PSA level, older age, abnormal DRE results, being African
American, and higher PCA3 and T2:REG scores are all associated with significantly increased
risk.

2.7 Discussion

We developed a penalized constrained maximum likelihood (PCML) method for data integration
to deal with possible population heterogeneity. The method selects only the useful information
from external studies and simultaneously incorporates the information into internal model fitting
for efficiency improvement. We established asymptotic properties of the PCML estimators, in-
cluding

√
n-consistency, asymptotic normality, and the oracle integration of external information.

Comprehensive simulation studies showed the effectiveness of the PCML method in making use of
external information. Compared to existing data integration methods, which either assume no pop-
ulation heterogeneity or shrink the internal study estimates towards the external study population,
the PCML method maintains the internal study population and selects only the external informa-
tion that matches this target. This is particularly important when the internal study is carefully
designed.

We considered two penalties, the adaptive group Lasso (agLasso) penalty for group-wise selec-
tion of external studies and the adaptive Lasso (aLasso) penalty for component-wise selection of
external study moment constraints. It is hard to have a general rule on when to use which penalty,
as the choice may depend on many factors, including the respective covariates used by the inter-
nal and external studies, the forms they are included and the dimensions. In our experience the
group-wise selection is more conservative in selecting external information. Therefore, a possible
approach would be to first carry out a group-wise selection using the agLasso penalty. If none of
the external studies are selected or if the selected studies only cover a small subset of the inter-
nal study covariates, a component-wise selection using the aLasso penalty can be employed. It
is worth to point out that, alternative penalties may be considered to achieve the same theoretical
properties. One example would be the SCAD penalty (Fan and Li 2001), which is a widely used
alternative to the Lasso-type penalties. Another would be the penalties proposed by Huang and
Breheny (2009) that lead to bi-level variable selection and, when applied to our data integration
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setting, could achieve oracle external information selection while maintaining the group structure
of external studies.

We made the assumption that the external study uncertainty is negligible compared to the in-
ternal study following the literature. Under some settings different from the one considered in this
chapter, there have been recent developments on accounting for the uncertainty associated with
external studies when their sample sizes are not much larger than the internal study (e.g., Han and
Lawless 2019; Zhang et al. 2020). A very interesting finding is that, under certain scenarios, the
external study uncertainty may reduce the internal estimation variance (Han and Lawless 2019),
an observation similar to that using estimated weights helps to reduce the asymptotic variance
compared to using the true weights for the inverse probability weighting method in missing data
literature (e.g., Robins et al. 1994; Liang et al. 2004). This deserves an investigation under the
setting considered in this chapter.

In our simulation studies, results in Tables 2.1 and 2.2 showed the excellent performance of
the PCML method for point estimation. For standard error calculation we evaluated the bootstrap
method, the overall numerical performance of which seems to be acceptable. In some unreported
simulation studies of the bootstrap method, as a way to account for the external information uncer-
tainty when the external sample size was 3000, for each bootstrap sample from the internal study
data we generated a value θ̆(k) from the normal distribution with mean θ̂(k) and variance the corre-
sponding covariance matrix of θ̂(k). We then used the bootstrap samples paired with the generated
θ̆(k)’s to compute the bootstrap PCML estimates, which lead to the bootstrap standard error. But
such a way of accounting for external information uncertainty considerably overestimated the em-
pirical standard error. As a future research topic, we will investigate standard error calculation that
can properly account for the external information uncertainty.

2.8 Proofs

For ease of notation, let F̂ (β) = n−1
∑n

i=1 log fi(β), F (β) = E [log f(Y |X,Z;β)], Q̂(β,γ,ρ) =

n−1
∑n

i=1 log
{
1− ρT [gi(β)− γ)]

}
, r̂(β,γ) = n−1

∑n
i=1 [gi(β)− γ], Ĥn(β,γ) = {ρ : ρT

[gi(β) − γ)] < 1, i = 1, · · · , n}, K=0 = {k : γ0(k) = 0, k = 1, · · · , K}, K ̸=0 = {k : γ0(k) ̸=
0, k = 1, · · · , K}, and C > 0 a generic positive constant whose value varies from one place to
another.

To facilitate the proofs of all theorems we first present three lemmas. Lemmas 2.1 and 2.2 are
Lemmas A1 and A2 in Newey and Smith (2004), and Lemma 2.3 is part of Inequality (A.5) in
Newey and Smith (2004). Refer to Newey and Smith (2004) for proofs of these lemmas.
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Lemma 2.1. If Assumption 2.1 is satisfied, then for any ζ with 1/α < ζ ≤ 1/2 and Hn ={
ρ : ∥ρ∥ ≤ n−ζ

}
, sup(β,γ)∈B×T ,ρ∈Hn,1≤i≤n |ρT [gi(β)− γ]|

p→ 0 and, with probability approach-

ing one, Hn ⊆ Ĥn(β,γ) for all (β,γ) ∈ B × T .

Lemma 2.2. If Assumption 2.1 is satisfied, (β̄, γ̄) ∈ B × T , (β̄, γ̄)
p→ (β0,γ0), and r̂(β̄, γ̄) =

Op(n
−1/2), then ρ̄ = argmaxρ∈Ĥn(β̄,γ̄)

Q̂(β̄, γ̄,ρ) exists with probability approaching one, ρ̄ =

Op(n
−1/2), and supρ∈Ĥn(β̄,γ̄)

Q̂(β̄, γ̄,ρ) ≤ Op(n
−1).

Lemma 2.3. If Assumption 2.1 is satisfied, then for ζ in Lemma 2.1 we have n−ζ∥r̂(β̂, γ̂)∥ −
Cn−2ζ ≤ Q̂(β̂, γ̂, ρ̂).

Proof of Theorem 2.1

Proof. By the definition of (β̂, γ̂) we have

Q̂(β̂, γ̂, ρ̂)+
K∑
k=1

P̂λn

(
γ̂(k)
)
−F̂ (β̂) ≤ sup

ρ∈Ĥn(β0,γ0)

Q̂(β0,γ0,ρ)+
K∑
k=1

P̂λn

(
γ0(k)

)
−F̂ (β0). (2.12)

Also by definition we have Q̂(β̂, γ̂, ρ̂) ≥ Q̂(β̂, γ̂,0) = 0 and the penalty function is non-negative.
Therefore, from (2.12) we have

F̂ (β0)− F̂ (β̂) ≤ sup
ρ∈Ĥn(β0,γ0)

Q̂(β0,γ0,ρ) +
K∑
k=1

P̂λn

(
γ0(k)

)
. (2.13)

On the other hand, by Assumption 2.1(iv) and the Central Limit Theorem, we have ∥r̂(β0,γ0)∥ =
Op(n

−1/2), which leads to supρ∈Ĥn(β0,γ0)
Q̂(β0,γ0,ρ) ≤ Op(n

−1) based on Lemma 2.2. For
k ∈ K=0 we have P̂λn

(
γ0(k)

)
= 0, and for k ∈ K̸=0 we have P̂λn(γ0(k)) = Op(λn) = Op(n

−ξ)

from Assumption 2.1(vii). Therefore from (2.13) we have F̂ (β0)− F̂ (β̂) ≤ Op(n
−1)+Op(n

−ξ) =

Op(n
−ξ). In addition, from Assumption 2.1(vi) we have F̂ (β0) − F̂ (β̂) = F (β0) − F (β̂) +

Op(n
−1/2), and thus F (β0)−F (β̂) ≤ Op(n

−ξ). On the other hand Assumption 2.1(ii) implies that
F (β0)− F (β̂) ≥ 0. Hence, we must have

|F (β0)− F (β̂)| = Op(n
−ξ), (2.14)

which then implies β̂ → β0 in probability based on Assumptions 2.1(ii) and (iii).
Take ζ such that 1/α < ζ < ξ. From Lemma 2.3, Equations (2.12) and (2.14), Assumption
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2.1(vi) and 2.1(vii) we have

n−ζ∥r̂(β̂, γ̂)∥ − Cn−2ζ

≤ sup
ρ∈Ĥn(β0,γ0)

Q̂(β0,γ0,ρ) +
K∑
k=1

P̂λn

(
γ0(k)

)
+ F̂ (β̂)− F̂ (β0)

≤ Op(n
−1) +Op(λn) + |F̂ (β̂)− F (β̂)|+ |F (β̂)− F (β0)|+ |F (β0)− F̂ (β0)|

= Op(n
−1) +Op(n

−ξ) +Op(n
−1/2) +Op(n

−ξ) +Op(n
−1/2)

= Op(n
−ξ),

which leads to ∥r̂(β̂, γ̂)∥ ≤ Op(n
ζ−ξ) + Cn−ζ = op(1). Thus, by Assumption 2.1(vi) and the

consistency of β̂ we have

∥γ̂ − γ0∥ =

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− r̂(β̂, γ̂)− E[g(X,Z;β0)]

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− E[g(X,Z; β̂)]

∥∥∥∥∥+ ∥∥∥E[g(X,Z; β̂)]− E[g(X,Z;β0)]
∥∥∥

+ ∥r̂(β̂, γ̂)∥

=op(1),

which implies γ̂ → γ0 in probability as n→∞.

Proof of Theorem 2.2

Proof. From (2.12) and the proof of Theorem 2.1 we have

Q̂(β̂, γ̂, ρ̂) + F̂ (β0)− F̂ (β̂) +

 ∑
k∈K ̸=0

[
P̂λn(γ̂(k))− P̂λn(γ0(k))

] ≤ Op(n
−1). (2.15)

It is easy to check that, at any γ(k) ̸= 0,

∂P̂λn(γ(k))

∂γ(k)
=

λn

∥γ̃(k)∥w
γ(k)
∥γ(k)∥

.

Therefore, by the mean value theorem, Cauchy-Schwarz inequality and Assumption 2.2(v) we
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have ∣∣∣∣∣∣
∑

k∈K ̸=0

[
P̂λn(γ̂(k))− P̂λn(γ0(k))

]∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

k∈K ̸=0

[
∂P̂λn(γ̇(k))

∂γT
(k)

(γ̂(k) − γ0(k))

]∣∣∣∣∣∣
≤ K max

k∈K ̸=0

∥∥∥∥∥∂P̂λn(γ̇(k))

∂γ(k)

∥∥∥∥∥ ∥γ̂ − γ0∥
≤ K|λn| max

k∈K ̸=0

{
1

∥γ̃(k)∥w

}
∥γ̂ − γ0∥

= op(n
−1/2)∥γ̂ − γ0∥, (2.16)

where γ̇(k) is some value between γ̂(k) and γ0(k). By the mean value theorem, Assumptions 2.1(ii)
2.2(iii) and the central limit theorem we have

F̂ (β̂) = F̂ (β0) +
∂F̂ (β0)

∂βT
(β̂ − β0) +

1

2
(β̂ − β0)

T ∂
2F̂ (β̇)

∂β∂βT
(β̂ − β0)

= F̂ (β0) +Op(n
−1/2)∥β̂ − β0∥+

1

2
(β̂ − β0)

T ∂
2F̂ (β̇)

∂β∂βT
(β̂ − β0), (2.17)

where β̇ is some value between β0 and β̂. Then by Assumptions 2.1(ii) 2.2(iii)(iv) and the consis-
tency of β̂ we have

F̂ (β0)− F̂ (β̂) ≥ C(1 + op(1))∥β̂ − β0∥2 +Op(n
−1/2)∥β̂ − β0∥. (2.18)

Taking ζ = 1/2 in Lemma 2.3 leads to

Q̂(β̂, γ̂, ρ̂) ≥ n−1/2∥r̂(β̂, γ̂)∥ − Cn−1. (2.19)

Then by Assumptions 2.1(vi), 2.2(ii) and the triangle inequality we have

Q̂(β̂, γ̂, ρ̂)

≥ n−1/2

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− E[g(X,Z; β̂)] + E[g(X,Z; β̂)]− γ̂ + γ0 − E[g(X,Z;β0)]

∥∥∥∥∥
−Cn−1

≥ n−1/2
{
∥γ̂ − γ0∥ − |Op(n

−1/2)| − C(1 + op(1))∥β̂ − β0∥
}
− Cn−1. (2.20)
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From (2.15), (2.16), (2.18) and (2.20) we have

C(1 + op(1))∥β̂ − β0∥2 +Op(n
− 1

2 )∥β̂ − β0∥+ n− 1
2 (1 + op(1))∥γ̂ − γ0∥ ≤ Op(n

−1). (2.21)

If β̂ has a faster convergence rate than γ̂, then (2.21) becomes

C(1 + op(1))∥β̂ − β0∥2 + n− 1
2 [1 + op(1)] ∥γ̂ − γ0∥ ≤ Op(n

−1),

which implies that both ∥β̂ − β0∥ = Op(n
−1/2) and ∥γ̂ − γ0∥ = Op(n

−1/2). If β̂ has the same or
slower convergence rate than γ̂, then (2.21) becomes

∥β̂ − β0∥2 +Op(n
− 1

2 )∥β̂ − β0∥ ≤ Op(n
−1),

which implies that ∥β̂ − β0∥ ≤ Op(n
−1/2) from the property of quadratic functions, and thus

∥β̂ − β0∥ = Op(n
−1/2). Since β̂ has the same or slower convergence rate than γ̂, we must also

have ∥γ̂ − γ0∥ = Op(n
−1/2). This proves results (i) and (ii).

Based on (i), from (2.17) we have |F̂ (β0) − F̂ (β̂)| = Op(n
−1). Then (2.15) and (2.16) imply

that Q̂(β̂, γ̂, ρ̂) ≤ Op(n
−1), and then from (2.19) we have ∥r̂(β̂, γ̂)∥ = Op(n

−1/2). Therefore
result (iii) directly follows from Lemma 2.2.

Proof of Theorem 2.3

Proof. On the event {γ̂(k) ̸= 0} for some k ∈ K=0, the KKT optimality condition

λn

∥γ̃(k)∥w
γ̂(k)
∥γ̂(k)∥

+
ρ̂(k)

n

n∑
i=1

1

1− ρ̂T [gi(β̂)− γ̂]
= 0

implies that ∣∣∣∣∣ 1√
n

n∑
i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣ ∥ρ̂(k)∥ =
∥∥∥∥√n λn

∥γ̃(k)∥w
γ̂(k)
∥γ̂(k)∥

∥∥∥∥ .
Based on ρ̂ = Op(n

−1/2) from Theorem 2.2 and Assumption 2.1(iv) we have∣∣∣∣∣ 1√
n

n∑
i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣ ∥ρ̂(k)∥ = Op(1).
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On the other hand, by Assumption 2.3 and the
√
n-consistency of γ̃(k), we have

lim
n→∞

∥∥∥∥√n λn

∥γ̃(k)∥w
γ̂(k)
∥γ̂(k)∥

∥∥∥∥ = lim
n→∞

∣∣∣∣√n λn

∥γ̃(k)∥w

∣∣∣∣ =∞
for any k ∈ K=0. Therefore, we must have P (γ̂(k) = 0) → 1 as n → ∞ for any k ∈ K=0. This,
together with the consistency of γ̂, implies the desired result.

Proof of Theorem 2.4

Proof. For any compact setH ⊂ Rdim(η), denote uη ∈ H as uT
η = (uT

β ,u
T
γ,̸=0), where uβ contains

the first q elements in uη and uγ, ̸=0 contains the rest elements in uη. On this compact setH define

L(uη) =−
n∑

i=1

log fi

(
β0 +

uβ√
n

)
+

n∑
i=1

log fi(β0)

+ max
ρ

n∑
i=1

log

1− ρT

gi(β0 +
uβ√
n

)
−

(
γT
0,=0,γ

T
0,̸=0 +

uT
γ,̸=0√
n

)T


+ n
∑

k∈K ̸=0

[
P̂λn

(
γ0(k) +

uγ, ̸=0,(k)√
n

)
− P̂λn

(
γ0(k)

)]
.

From Theorem 2.3, we know that γ̂=0 = 0 with probability approaching one. Thus,
√
n(η̂ − η0)

is the minimizer of L(uη) onH with probability approaching one.
From (2.16) we have

n

∣∣∣∣∣∣
∑

k∈K ̸=0

[
P̂λn

(
γ0(k) +

uγ, ̸=0,(k)√
n

)
− P̂λn

(
γ0(k)

)]∣∣∣∣∣∣ ≤ n|op(n−1/2)|
∥∥∥∥uγ,̸=0√

n

∥∥∥∥ = op(1). (2.22)

uniformly onH.
By Assumption 2.1(vi) and 2.2(ii), we have

1

n

n∑
i=1

gi

(
β0 +

uβ√
n

)
=

{
1

n

n∑
i=1

gi

(
β0 +

uβ√
n

)
− E

[
g

(
β0 +

uβ√
n

)]}

+

{
E
[
g

(
β0 +

uβ√
n

)]
− E [g (β0)]

}
+ E [g (β0)]

=Op(n
−1/2) + γ0,
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uniformly onH, which implies that

r̂

β0 +
uβ√
n
,

(
γT
0,=0,γ

T
0, ̸=0 +

uT
γ, ̸=0√
n

)T
 =

1

n

n∑
i=1

gi

(
β0 +

uβ√
n

)
−

(
γT
0,=0,γ

T
0,̸=0 +

uT
γ,̸=0√
n

)T

= Op(n
−1/2)

uniformly onH. Thus, by Lemma 2.2,

ρ̂η = argmax
ρ

n∑
i=1

log

1− ρT

gi(β0 +
uβ√
n

)
−

(
γT
0,=0,γ

T
0,̸=0 +

uT
γ,̸=0√
n

)T


exists with probability approaching one and ρ̂η = Op(n
−1/2), uniformly onH. Denote

ri

(
uη√
n

)
= gi

(
β0 +

uβ√
n

)
−

(
γT
0,=0,γ

T
0, ̸=0 +

uT
γ,̸=0√
n

)T

.

It is clear that ρ̂η must satisfy
n∑

i=1

ri

(
uη√
n

)
1− ρ̂T

ηri

(
uη√
n

) = 0.

Then the mean value theorem leads to

0 =
n∑

i=1

ri

(
uη√
n

)
+

n∑
i=1

ri

(
uη√
n

)
ri

(
uη√
n

)T
{
1− ρ̇T

ηri

(
uη√
n

)}2 ρ̂η,

where ρ̇η is some value between ρ̂η and 0. Then we have

√
nρ̂η = −Ω−1

{
1√
n

n∑
i=1

ri

(
uη√
n

)}
+ op(1),

uniformly onH. On the other hand, we have
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1√
n

n∑
i=1

ri

(
uη√
n

)

=

{
1√
n

n∑
i=1

gi

(
β0 +

uβ√
n

)
−
√
nE
[
g

(
β0 +

uβ√
n

)]}
+

∂E [g (β0)]

∂β
uβ + op(1)

+
√
nγ0 −

√
n

(
γT
0,=0,γ

T
0, ̸=0 +

uT
γ, ̸=0√
n

)T

=

{
1√
n

n∑
i=1

gi (β0)−
√
nE [g (β0)]

}
+Gηuη + op(1)

d→ψ +Gηuη,

uniformly over uη ∈ H, where ψ ∼ N (0,Ω). Then the mean value theorem gives

n∑
i=1

log

1− ρ̂T
η

gi(β0 +
uβ√
n

)
−

(
γT
0,=0,γ

T
0, ̸=0 +

uT
γ,̸=0√
n

)T


=−
√
nρ̂T

η

1√
n

n∑
i=1

ri

(
uη√
n

)
− 1

2

√
nρ̂T

η

 1

n

n∑
i=1

ri

(
uη√
n

)
ri

(
uη√
n

)T
[
1− ρ̇T

ηri

(
uη√
n

)]2
√nρ̂η

d→1

2
{ψ +Gηuη}T Ω−1 {ψ +Gηuη} (2.23)

uniformly over uη ∈ H.
By the mean value theorem we have

n∑
i=1

log fi

(
β0 +

uβ√
n

)
−

n∑
i=1

log fi(β0)

=

{
1√
n

n∑
i=1

si(β0)
T

}
uβ +

1

2
uT

β

{
1

n

n∑
i=1

∂si(β̇)

∂β

}
uβ

d→ uT
βϕ−

1

2
uT

βS0uβ, (2.24)

uniformly over uη ∈ H, where ϕ ∼ N (0,S0).
Therefore, from (2.22)-(2.24) we have
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L(uη)
d→L∗(uη) ≡ −uT

βϕ+
1

2
uT

βS0uβ +
1

2
(ψ +Gηuη)

TΩ−1(ψ +Gηuη)

=
1

2
uT

η (S +GT
ηΩ

−1Gη)uη + uT
η

{
GT

ηΩ
−1ψ −

[
ϕ

0

]}
+

1

2
ψTΩ−1ψ,

uniformly over uη ∈ H, and L∗(uη) is uniquely minimized at

u∗
η = −(S +GT

ηΩ
−1Gη)

−1

{
GT

ηΩ
−1ψ −

[
ϕ

0

]}
.

It is easy to see that u∗
η ∼ N

(
0, (S +GT

ηΩ
−1Gη)

−1
)
, based on the fact that E(ψϕT ) = E{E[

(g(β0) − γ0)s(β0)
T | X,Z]} = 0. Then from the Continuous Mapping Theorem we have

√
n(η̂ − η0)

d→ u∗
η, which completes the proof.

Proof of Theorem 2.5

Proof. Denote

Gη =

[
G0 0

G ̸=0 −I

]
, and Ω−1 =

[
W11 W12

W21 W22

]
,

where G ̸=0 = E[∂g ̸=0(X,Z;β0)/∂β], W11 is the leading dim(γ ̸=0) × dim(γ ̸=0) sub-matrix of
Ω−1, andW12,W21, andW22 are the other corresponding sub-matrices of Ω−1. Then we have

GT
ηΩ

−1Gη

=

[
GT

0W11G0 +G
T
̸=0W21G0 +G

T
0W12G ̸=0 +G

T
̸=0W22G ̸=0 −GT

0W12 −GT
̸=0W22

−W21G0 −W22G ̸=0 W22

]
.

Therefore, the inverse of the leading q × q sub-matrix of (S +GT
ηΩ

−1Gη)
−1 is

(S0 +G
T
0W11G0 +G

T
̸=0W21G0 +G

T
0W12G ̸=0 +G

T
̸=0W22G ̸=0)

− (GT
0W12 +G

T
̸=0W22)W

−1
22 (W21G0 +W22G ̸=0)

=S0 +G
T
0W11G0 −GT

0W12W
−1
22 W21G0

=S0 +G
T
0W11G0 −GT

0 (W11 −Ω−1
0 )G0

=S0 +G
T
0Ω

−1
0 G0,

where the second equality follows from the fact that the block matrix inverse of Ω−1 leads to
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Ω0 = (W11 −W12W
−1
22 W21)

−1. This completes the proof.
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Chapter 3

Integrating Summary Information from a Large
Number of External Studies

3.1 Introduction

The research in this chapter was motivated by studies of the coronavirus disease 2019 (COVID-
19) pandemic impact on mental health of people with bipolar disorder (BD). Since early 2020,
the COVID-19 has spread rapidly worldwide, affecting not only physical health but also mental
health and well-being across many populations. The pandemic and related public health mea-
sures have induced unprecedented changes to daily life, and caused considerable impact on mental
health, including elevated levels of depression and anxiety symptoms (Wu et al. 2021; Zaninotto
et al. 2022). In particular, the inherent instability of mood among those living with chronic mental
health conditions makes them highly susceptible to problems. BD is such a mental health condi-
tion, causing extreme changes in mood ranging from emotional lows (depression) to highs (mania
or hypomania). BD affects more than 1% of the population and is one of the most common causes
of disability worldwide(McIntyre et al. 2020; Ferrari et al. 2016). Moreover, BD is associated with
substantially shortened life expectancy (e.g., Chan et al. 2022) and an elevated risk of suicide and
development of cardiovascular disease (e.g., Monson et al. 2021; Weiner et al. 2011). Recent find-
ings (e.g., Yocum et al. 2021) have suggested that people with BD were more likely to experience
the COVID-19 pandemic related stress. The impetus for this current research was to investigate
the association between depression/anxiety and age, sex and education for people with BD, and to
compare the effects over time. The internal/index study is a small-sized longitudinal cohort study
of people with BD (McInnis et al. 2018). The study takes advantage of the available published
associations between the outcome measures and several sociodemographic factors that have been
widely studied in larger sample sizes. Such external information, if incorporated properly into the
specific internal analysis, may substantially improve internal model fitting.
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Some authors have considered similar settings and developed methods to integrate the external
information under the assumption that the internal and external study populations are the same
(e.g. Imbens and Lancaster 1994; Wu and Sitter 2001; Chen et al. 2002; Chaudhuri et al. 2008;
Qin et al. 2015; Chatterjee et al. 2016; Huang et al. 2016; Cheng et al. 2019; Gu et al. 2019;
Han and Lawless 2019; Huang and Qin 2020; Zhang et al. 2020). Such an assumption can be
easily negated in practice. For example, in our index study of the pandemic impact on mental
health of people with BD, most of the external studies do not include people with BD, and thus
their estimated effects may or may not be relevant to the internal study population with BD. In the
presence of population heterogeneity, some authors proposed to shrink the internal study results
towards the external information (Estes et al. 2018; Gu et al. 2021). When the internal study
is for a population with specific characteristics, such as people with BD in our index study, our
goal of integrating external information is to improve estimation efficiency of the internal analysis
rather than shifting the analysis to align with the external study. In such a case, only the external
information that agrees with the internal study population should be incorporated, as otherwise the
incorporation of external information leads to estimation bias. Therefore, data integration needs
to be carried out with great care in the presence of population heterogeneity (see also Taylor et
al. 2022). Herein we make it explicit that the internal study population is the target for inference
whereas the external information is used to improve the estimation efficiency of internal analysis.

In the presence of study population heterogeneity, in Chapter 2 we’ve developed the penalized
constrained maximum likelihood (PCML) method that simultaneously selects and incorporates the
useful information from the external studies and ignores the remainder. The PCML method pro-
posed in Chapter 2 (Zhai and Han 2022) considered the case where the number of external studies
is small, which may not be directly applicable to our index study. For the associations that we aim
to investigate, there has been a large literature providing external information. Therefore, in this
chapter, we extend the PCML method and algorithm to a general framework, allowing the number
of external studies to increase with the sample size of the internal study. The asymptotic properties
of the resulting estimator, including estimation consistency, rate of convergence, external informa-
tion selection consistency, asymptotic normality, and oracle efficiency, are established. Simulation
studies show that our proposed algorithm performs well when dealing with many external studies.
The algorithm is then applied to study the pandemic impact on mental health of people with BD,
by using the external study information in the existing literature to improve internal study.
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3.2 The Proposed Method

3.2.1 Setting and Notation

To fix notation, let (Yi,X
T
i ,Z

T
i )

T , i = 1, . . . , n, denote the individual-level data collected by the
internal study, where Y is the outcome variable, X is the vector of covariates that are typically
collected by all studies on this outcome Y , and Z is the vector of covariates that are only collected
by the internal study. We allow Z to be the null set if the internal study only collects X . The
main interest is to fit a parametric regression model f(Y |X,Z;β) for the distribution f(Y |X,Z),
where β is a q-dimensional vector of parameters with true value β0 such that f(Y |X,Z;β0) =

f(Y |X,Z). With no additional information, β0 can be estimated by the maximum likelihood
estimator (MLE) β̂MLE that maximizes the likelihood

∏n
i=1 f(Yi|Xi,Zi;β).

Suppose that there are Kn external studies on the same outcome Y that can potentially provide
useful information to improve the internal model parameter estimation, where the number of exter-
nal studies Kn can increase with the internal sample size n. The kth external study, k = 1, · · · , Kn,
used covariates X(k) and fitted a model f(k)(Y |X(k);θ(k)) for f(k)(Y |X(k)). Here, for generality,
we allowX(k) to be a possibly coarsened version ofX , such as a subset or a categorization of some
components of X , the subscript of f(k) is to explicitly indicate that the kth external study popula-
tion may be different from the internal study population, and θ(k) is the parameters for this model.
Let h(k)

(
Y,X(k);θ(k)

)
denote the dk-dimensional score function for the model f(k)(Y |X(k);θ(k)).

The kth external study then provides an estimate θ̂(k) that is the solution to the corresponding score
equation. When the external study sample size is large, the uncertainty in θ̂(k) is negligible com-
pared to the internal study and we will use notation θ∗(k) instead of θ̂(k). The summary information
from the kth external study is

E(k){h(k)(Y,X(k);θ
∗
(k))} = 0, (3.1)

where the expectation E(k)(·) is taken under f(k)(Y |X(k)).

3.2.2 The PCML Method for Heterogeneous Populations

Hereafter we will use E(·) to denote expectations under the internal study data distribution. When
all study populations are the same, (3.1) becomes

0 = E
[
h(k)(Y,X(k);θ

∗
(k))
]
= E

{
E
[
h(k)(Y,X(k);θ

∗
(k))|X,Z

]}
.

39



Thus, defining U(k)(X,Z;β,θ∗(k)) =
∫
h(k)(Y,X(k);θ

∗
(k))f(Y |X,Z;β)dY , we then have

E
[
U(k)

(
X,Z;β0,θ

∗
(k)

)]
= 0, (3.2)

which summarizes the information from the kth external study in the form of moment constraints
under the internal study covariate distribution.

In the presence of heterogeneous populations, the moment constraints in (3.2) may no longer
be valid. To account for this, we introduce some unknown nuisance parameters γ0(k), where

γ0(k) = E
[
U(k)(X,Z;β0,θ

∗
(k))
]
, to represent the bias of the moment constraints resulted from the

population difference. Thus the moment constraints from all external studies can be reparametrized
as E[g(X,Z;β0) − γ0] = 0, where g(X,Z;β) = [U(1)(X,Z;β,θ∗(1))

T , · · · ,U(Kn)(X,Z;β,

θ∗(Kn)
)T ]T , γ0 = (γ0

T
(1), · · · ,γ0T(Kn)

)T . The dimension of E[g(X,Z;β0) − γ0] is denoted by
dn =

∑Kn

k=1 dk. The zero components of γ0 identify the external information that agrees with the
internal study population and thus should be incorporated to improve the internal analysis.

We consider the PCML estimator (Zhai and Han 2022) β̂ for β0 that is the β-component of
(β̂, γ̂) defined through

max
β,γ

{
max

p1,··· ,pn
log

[
n∏

i=1

f(Yi|Xi,Zi;β)pi

]
− n

Kn∑
k=1

dk∑
j=1

P̂λn

(
γ(kj)

)}
subject to

pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pi[g(Xi,Zi;β)− γ] = 0,

(3.3)

where
P̂λn

(
γ(kj)

)
= λn|γ̃(kj)|−w|γ(kj)| (3.4)

is the adaptive Lasso (aLasso) penalty (Zou 2006) on γ(kj), the jth component of γ(k), j =

1, · · · , dk, with tuning parameter λn > 0, γ̃(kj) is some first-step consistent estimator of γ0(kj),
and w > 0 is some user-specified positive number. The most natural choice for γ̃(kj) in the setting
we consider is to take the corresponding component from γ̃ = n−1

∑n
i=1 g(Xi,Zi; β̂MLE). A

common choice for w is w = 1 or 2 (e.g., Zou 2006; Wang and Leng 2008).
As shown in (3.2), when the kth external study targets the same population as the internal

study, γ0(k) = 0. Intuitively, the kth external study should no longer be considered for information
integration if its population is different from the internal study so that γ0(k) ̸= 0. The aLasso
penalty (3.4), however, ensures that data integration is carried out in a component-wise manner
for each single moment constraint, not at the study (group) level. Such a choice of the penalty
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function is based on the fact that γ0(k) may still have zero components even if γ0(k) ̸= 0, and
these zero components contain information that is useful for efficiency gain. Such examples can
be easily constructed (Zhai and Han 2022) and are commonly seen in practice. In our motivating
study, there are quite a few external studies that provide useful information to improve the internal
analysis despite that these external studies are for various populations without BD. Therefore, for
information integration, it may be beneficial to do a component-wise shrinkage on γ0(k) instead of
a group-wise shrinkage, especially when no external study explicitly targets the same population
as the internal study.

A study-wise shrinkage can be easily achieved by replacing the penalty
∑Kn

k=1

∑dk
j=1 P̂λn

(
γ(kj)

)
in (2.4) with

∑Kn

k=1 P̂λn

(
γ(k)
)
, where

P̂λn

(
γ(k)
)
= λn∥γ̃(k)∥−w∥γ(k)∥ (3.5)

is the adaptive group Lasso (agLasso) penalty (Wang and Leng 2008) on γ(k), and ∥ · ∥ is the Eu-
clidean norm. The agLasso penalty in (3.5) treats the information from an external study as a whole
instead of considering the information contained in each single moment constraint. Hereafter we
will present properties of the PCML estimator and the algorithm using study-wise shrinkage, since
the component-wise shrinkage as in (3.4) is a special case of (3.5) by pretending that each moment
constraint came from a separate external study.

Using the Lagrange multiplier method, it is easy to show that the PCML constrained optimiza-
tion in (3.3) with study-wise shrinkage can be written as

min
β,γ

{
−

n∑
i=1

log fi(β) + max
ρ

{
n∑

i=1

log
{
1− ρT [gi(β)− γ]

}}
+ n

Kn∑
k=1

P̂λn

(
γ(k)
)}

, (3.6)

where fi(β) = f(Yi|Xi,Zi;β), gi(β) = g(Xi,Zi;β), and ρ is the Lagrange multiplier. The
expression in (3.6) is the so-called saddle-point representation in the empirical likelihood literature
(e.g., Owen 2001; Newey and Smith 2004) and is the expression used both for derivation of the
asymptotic properties (see Section 3.7) and for the numerical implementation.

3.3 Asymptotic Properties

To establish asymptotic properties, assumptions on the divergence rate of the number of external
studies Kn are needed. These assumptions will drive rates of convergence for the tuning parameter
λn. One possibility is to follow the ultra-high dimension literature (e.g., Fan and Lv 2008; Fan et
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al. 2009) by allowing Kn to diverge at exponential rate of n. However, in reality this is unlikely
the case because Kn is the number of external studies. It is realistic and reasonable to assume
Kn grows at a much slower rate than n. In the development of this article, we assume that Kn

increases at a rate o(n1/3) (see, for example, Fan and Peng 2004, and Cheng and Liao 2015). Such
an assumption is not particularly restrictive because in practice one would consider only highly
relevant external studies in terms of the variables and the model structures used. In addition, faster
divergence rates for Kn are always possible with different theoretical treatments.

Under a set of assumptions provided in the supplementary materials, including assumptions
on the convergence rate of the tuning parameter λn and the growth rate of the number of external
studies Kn, the asymptotic properties of the PCML estimator are established as follows.

Theorem 3.1. (Consistency of β̂) Under Assumption 3.1, the PCML estimator β̂ converges to β0

in probability as n→∞.

Theorem 3.2. (Consistent Moment Selection) Under Assumptions 3.1, 3.2 and 3.3, we have

P (K̂=0 = K=0) → 1 as n → ∞, where K=0 = {k : γ0(k) = 0, k = 1, · · · , Kn} and K̂=0 = {k :

γ̂(k) = 0, k = 1, · · · , Kn}.

Theorem 3.2 implies that the PCML method will asymptotically select and only select the
useful information from external studies to be integrated into internal study model fitting.

To present the asymptotic distribution of the PCML estimator, rewrite γ0 as γT
0 = (γT

0,=0,γ
T
0,̸=0)

without loss of generality, where γ0,=0 contains those γ0(k) that γ0(k) = 0 and γ0, ̸=0 contains
those γ0(k) that γ0(k) ̸= 0. Correspondingly, write g(β) as g(β)T = (g=0(β)

T , g̸=0(β)
T ), γ

as γT = (γT
=0,γ

T
̸=0), and γ̂ as γ̂T = (γ̂T

=0, γ̂
T
̸=0). Define ηT = (βT ,γT

̸=0), η
T
0 = (βT

0 ,γ
T
0,̸=0),

and η̂T = (β̂T , γ̂T
̸=0). Let dn,=0 and dn,̸=0 denote the dimension of γ=0 and γ ̸=0, respectively.

Define S0 = E[s(β0)s(β0)
T ], where s(β) = ∂ log f(Y |X,Z;β)/∂β. Define Σn = (S +

GT
ηΩ

−1
n Gη)

−1, where S =

[
S0 0q×dn,̸=0

0dn,̸=0×q 0dn,̸=0×dn,̸=0

]
, Gη = E{∂ [g (X,Z;β0)− γ0] /∂ηT}, and

Ωn = E{[g(X,Z;β0)− γ0][g(X,Z;β0)− γ0]T}.

Theorem 3.3. (Asymptotic Normality) Under Assumptions 3.1, 3.2, 3.3 and 3.4, we have

√
nιTnΣ

− 1
2

n (η̂ − η0)
d→ N(0, 1). (3.7)

for any ιn ∈ Rq+dn,̸=0 and ∥ιn∥ = 1.

Let ι∗n,q = Σ
1
2
nιn,q∥Σ

1
2
nιn,q∥−1, where ιTn,q = (ιTq ,0

T
dn,̸=0

) and ιq ∈ Rq. Then by Theorem 3.3
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and ∥ι∗n,q∥ = 1, it’s easy to show that

∥Σ
1
2
nιn,q∥−1

√
nιTq (β̂ − β0)

d→ N(0, 1),

which implies that the PCML estimator of β0 is asymptotically as efficient as the oracle CML
estimator (i.e., the CML estimator that knows which external information is useful and fully incor-
porates that information alone into estimating β0).

3.3.1 Algorithm for the PCML Estimator

The algorithm for the PCML estimator (see Figure 3.1) follows Zhai and Han (2022), with the
tuning parameter λn selected differently because we allow Kn to increase with n.

In establishing the asymptotic properties, Assumptions 3.3 and 3.4(viii) (see Section 3.7) imply
restrictions on the tuning parameter λn. Assumption 3.3 is satisfied if λnK

−1/2−w/2
n n1/2+w/2 →∞.

Assumption 3.4(viii) is satisfied if λnK
1/2
n n1/2 → 0.

To balance these two restrictions, following Liao (2013) and Zhai and Han (2022), we set
λn = CK

w/4
n n−1/2−w/4, where C is a positive constant and is allowed to be study-specific such

that C(k) = ∥BkΥ̂n∥F for k = 1, · · · , Kn, where Bk =
[
0dk×

∑k−1
j=1 dj

Idk 0dk×
∑Kn

j=k+1 dj

]
is a

dk×dn matrix, ∥ ·∥F is the Frobenius norm, Υ̂n is an estimate of Υn = Ω−1
n An{diag(Ωn,S0)}1/2

with a preliminary PCML estimator plugged in, and

An =

[
Idn×dn −Gη

(
S +GT

ηΩ
−1
n Gη

)−1
GT

ηΩ
−1
n Gη

(
S +GT

ηΩ
−1
n Gη

)−1

[
Iq×q

0

]]
.

For the preliminary PCML estimator the tuning parameter can be taken as λn = K
w/4
n n−1/2−w/4

with C = 1.

3.4 Simulation Studies

We now investigate the numerical performance of the PCML method by considering a varying
number of external studies. The internal study contains eight covariates, X1, X2, · · · , X6 and
Z1, Z2, where (X1, X̃2, X5) ∼ N (0,Σ125) with unit variances, correlation coefficients ρ12 =

ρ25 = 0.3 and ρ15 = 0.2, X2 = I(X̃2 > 0), X3 ∼ Exponential(1), X4 ∼ Bernoulli(0.4),
X6 ∼ Uniform(0, 1), and Z|X ∼ N ((X1 + X3, X1 − X3),ΣZ) with unit variances and cor-
relation coefficient 0.2. Given X and Z, Y is generated from a Bernoulli distribution with
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Inner Loop:
Input: Internal sample data (Yi,X

T
i ,Z

T
i ), external information in the form of

g(X,Z;β), a given value of (β,γ)
Output: ρ̂(β,γ)← maxρ

∑n
i=1 log

{
1− ρT [gi(β)− γ)]

}
, calculated by

Newton-Raphson algorithm with initial value ρ̂(0) ← 0

Outer Loop:
Input: Internal sample data (Yi,X

T
i ,Z

T
i ), parametric model f(Y |X,Z;β) for the

internal study, external information in the form of g(X,Z;β)
Output: The PCML estimator (β̂, γ̂)← the root of (2.6)

Initial value: l← 0, (β̂(0), γ̂(0))← (β̂MLE, γ̃), where
β̂MLE = argmaxβ

∏n
i=1 f(Yi|Xi,Zi;β)

γ̃ = n−1
∑n

i=1 g(Xi,Zi; β̂MLE)
repeat

Step 1: for k = 1, · · · , Kn sequentially

if the inequality

∥∥∥∥∥∥ 1
n

∑n
i=1

ρ̂(k)

(
β̂(l),γ̂

(l+ k
Kn

)
(0)

)
1−

[
ρ̂

(
β̂(l),γ̂

(l+ k
Kn

)
(0)

)]T [
gi(β̂(l))−γ̂

(l+ k
Kn

)
(0)

]
∥∥∥∥∥∥ < λn

∥γ̃(k)∥w

holds then
γ̂
(l+1)
(k) ← 0

else
γ̂
(l+1)
(k) ← the root of

λn

∥γ̃(k)∥w
γ(k)

∥γ(k)∥ +
1
n

∑n
i=1

ρ̂(k)

(
β̂(l),γ̂

(l+ k
Kn

)
(γ(k))

)
1−

[
ρ̂

(
β̂(l),γ̂

(l+ k
Kn

)
(γ(k))

)]T [
gi(β̂(l))−γ̂

(l+ k
Kn

)
(γ(k))

] = 0

as an equation for γ(k)
end

Step 2: β̂(l+1) ← the root of
1
n

∑n
i=1 si(β) +

1
n

∑n
i=1

{∂gi(β)/∂β}T ρ̂(β,γ̂(l+1))

1−[ρ̂(β,γ̂(l+1))]
T
[gi(β)−γ̂(l+1)]

= 0 as an equation for β

l← l + 1
until ∥β̂(l) − β̂(l−1)∥ and ∥γ̂(l) − γ̂(l−1)∥ are smaller than some pre-specified small
number and K̂(l)

=0 = K̂
(l−1)
=0 , where K̂(l)

=0 = {k : γ̂
(l)
(k) = 0, k = 1, · · · , Kn}

Note: The tuning parameter is selected as λn = CK
w/4
n n−1/2−w/4, where C is calculated

based on a preliminary PCML estimator with λn = K
w/4
n n−1/2−w/4.

Figure 3.1: Algorithm for the PCML estimator
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logit[P (Y = 1|X,Z)] = (1, X1, · · · , X6, Z1, Z2, X1Z1)β0 and βT
0 = (−0.5, 0.5,−1.5, 1,−1,

−0.5, 1,−0.5, 0.5, 1). The internal study model is the logistic regression logit[P (Y = 1|X, Z)]

= βc+βX1X1+· · ·+βX6X6+βZ1Z1+βZ2Z2+βX1Z1X1Z1 with βT = (βc, βX1 , · · · , βX6 , βZ1 , βZ2 ,

βX1Z1) having true value β0.
We consider twelve external studies for possible information integration. External study k

measures Y and X(k) and fits logistic regression model logit[P (Y = 1|X(k))] = (1,XT
(k))θ(k),

where X(1) = (X1, X2, X4, X6), X(2) = (X4, X5), X(3) = (X2, X3, X4), X(4) = (X3), X(5) =

(X1, X4, X6), X(6) = (X1, X5), X(7) = (X2), X(8) = (X2, X3, X6), X(9) = (X3, X6), X(10) =

(X2, X4, X5), X(11) = (X1, X4, X5), X(12) = (X2, X4, X6). Studies 1 and 2 have the same data
distribution as the internal study. Studies 3-8 each has a different covariate distribution but has
the same outcome distribution conditional on the covariates as the internal study. Studies 9-12
each has a different covariate distribution and a different outcome distribution conditional on the
covariates. Specifically,

(a) for Study 3, (X1, X̃2, X5) ∼ N ((0.5, 0.25,−0.5),Σ125), X2 = I(X̃2 > 0), X3 ∼ Exponent-
ial(1.25), X4 ∼ Bernoulli(0.5), X6 ∼ Uniform(0.2, 1), and Z|X ∼ N ((X1 + 0.5X3, X1 −
0.5X3),ΣZ);

(b) for Study 4, (X1, X̃2, X5) ∼ N ((0.5,−0.25, 0),Σ125), X2 = I(X̃2 > 0), X4 ∼ Bernoulli
(0.3), X6 ∼ Uniform(0, 0.8), the distribution of X3 is same as the internal study, andZ|X ∼
N ((X1 + 0.75X3, X1 − 0.75X3),ΣZ);

(c) for Study 5, (X1, X̃2, X5) ∼ N ((−0.5,−0.5, 0.25),Σ125), X2 = I(X̃2 > 0), X3 ∼
Exponential(0.75), X4 ∼ Bernoulli(0.6),X6 ∼ Uniform(0.2, 1), and Z|X ∼ N ((X1 +

0.75X3, X1 −X3),ΣZ);
(d) for Study 6, (X1, X̃2, X5) ∼ N ((0.25,−0.25, 0),Σ125), X2 = I(X̃2 > 0), X3 ∼ Exponent-

ial(0.75), X6 ∼ Uniform(0, 0.8), the distribution of X4 is same as the internal study, and
Z|X ∼ N ((X1 + 0.5X3, X1 − 0.5X3),ΣZ);

(e) for Study 7, (X1, X̃2, X5) ∼ N ((−0.25,−0.5,−0.5),Σ125), X2 = I(X̃2 > 0), X3 ∼
Exponential(0.75), X6 ∼ Uniform(0.2, 0.8), and the distributions of X4 and Z|X are same
as the internal study;

(f) for Study 8, (X1, X̃2, X5) ∼ N ((0.5,−1,−0.25),Σ125), X2 = I(X̃2 > 0), X6 ∼ Uniform
(0.2, 1), the distributions of X3 and X4 are same as the internal study, andZ|X ∼ N ((1.5X1

+X3, 1.5X1 −X3),ΣZ);
(g) for Study 9, (X1, X̃2, X5) ∼ N ((−0.25, 0.25, 0),Σ125), X2 = I(X̃2 > 0), X3 ∼ Exponent-

ial(0.75), X4 ∼ Bernoulli(0.6), the distributions of X6 and Z|X are same as the internal
study. Given X and Z, Y follows a Bernoulli distribution with logit{P (Y = 1|X,Z)} =
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(1, X1, · · · , X6, Z1, Z2, X1Z1)β9∗ and βT
9∗ = (−0.5, 0.25,−1.5, 1,−1,−0.5, 1,−0.5, 0.5,

0.5);
(h) for Study 10, (X1, X̃2, X5) ∼ N ((−0.5, 0.25, 0.5),Σ125), X2 = I(X̃2 > 0), X3 ∼ Exponen-

tial(1.25), X6 ∼ Uniform(0, 0.8), and the distributions of X4 and Z|X are same as the
internal study. Given X and Z, Y follows a Bernoulli distribution with logit{P (Y =

1|X,Z)} = (1, X1, · · · , X6, Z1, Z2)β10∗ and βT
10∗ = (−0.75, 0.5,−1.25, 0.75,−1,−0.5, 1,

−0.25, 0.5);
(i) for Study 11, (X1, X̃2, X5) ∼ N ((−0.25, 0, 0),Σ125), X2 = I(X̃2 > 0), X3 ∼ Exponent-

ial(0.75), and the distributions of X4, X6 and Z|X are same as the internal study. Given X
and Z, Y follows a Bernoulli distribution with logit{P (Y = 1|X,Z)} = (1, X1, · · · , X6,

Z1, Z2, X1Z1)β11∗ and βT
11∗ = (1.5, 1,−1.5, 1,−1,−0.5, 1,−0.5, 0.5, 0.5);

(j) for Study 12, (X1, X̃2, X5) ∼ N ((−0.5, 0.25, 0.5),Σ125), X2 = I(X̃2 > 0), X4 ∼ Bernoulli
(0.5), X6 ∼ Uniform(0, 0.8), and the distributions of X3 and Z|X are same as the internal
study. Given X and Z, Y follows a Bernoulli distribution with logit{P (Y = 1|X,Z)} =
(1, X1, · · · , X6, Z1, Z2, X1Z1)β12∗, withβT

12∗ = (−1, 0.5,−1.25, 1,−1,−0.75, 1,−0.5, 0.5,
0.5).

For all these twelve studies, we calculate the true value γ0(k) using a large sample size of 106

for both the internal and external studies and the results are given in Figure 3.2, corresponding
to which components of X are used by each external study. We see that some components of
γ0(k), k ∈ {3, · · · , 12}, are very close to zero, indicating that these studies can still provide useful
information for internal model fitting despite the distribution heterogeneity. Note that Studies 1
and 2 both have the same data distribution as the internal study, and thus γ0(1) and γ0(2) are exactly
equal to 0.

For the internal study we consider two sample sizes, n = 500 and 1000, while for all external
studies the sample size is set as 50000. The simulation results are summarized in Figure 3.3 based
on 1000 replications, of which the exact values can be found in Tables 3.1 and 3.2. All replications
use the same external study data due to the very large sample size, while the internal data are
re-generated in each replication. We take w = 2 in the penalty function.

We use our simulation setup to evaluate the performance of both the group-wise selection
and the component-wise selection. To evaluate the performance of the group-wise selection, we
consider two scenarios where the summary information is available from (i) Studies 1, 3, 5, 9,
11, 12 and (ii) Studies 1-12. In Scenario (i), the oracle CML estimator (CML-1) uses information
only from Study 1 and has a substantial reduction in the empirical standard errors, compared to the
MLE, for the estimates of βc, βX1 , βX2 , βX4 and βX6 , corresponding to covariates used by Study 1.
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The PCML estimator (PCML-i) has a performance that is fairly close to CML-1 when n = 500 and
almost identical to CML-1 when n = 1000. For PCML-i, the selection rate of Study 1 is 98.0%
for n = 500 and 99.5% for n = 1000.

Figure 3.2: The estimated value for each component of γ0(k) using a large sample size of 106

for both the internal and external studies. The components of γ0(k) are identified by which of
the intercept and X1 −X6 are used by the external study k.

In Scenario (ii), the oracle CML estimator (CML-1&2) uses information only from Studies
1 and 2 and has substantially smaller empirical standard errors, compared to the MLE, for the
estimates of βc, βX1 , βX2 , βX4 , βX5 and βX6 , corresponding to covariates used by either Study 1 or
Study 2. The PCML estimator (PCML-ii) has a performance very close to CML-1&2, especially
with n = 1000. In this scenario, Study 7 is sometimes selected due to the fact that γ0(7) is very
close to zero as can be seen from Figure 3.2. When n = 500, the selection rate is 87.7% for Study
1, 73.5% for Study 2 and 54.1% for Study 7. When n = 1000, the selection rates become 94.3%,
80.0% and 61.0%, respectively.

To evaluate the performance of the component-wise selection, we consider two scenarios where
the summary information is available from (iii) Studies 3, 5, 9, 11, 12 and (iv) Studies 3-12. These
two scenarios remove Study 1 and Studies 1-2 from scenarios (i) and (ii), respectively, as otherwise

47



Figure 3.3: Simulation results summarized based on 1000 replications with external sample
size 50000. The center of each bar indicates estimation bias and the two ends indicate one
empirical standard error from the center. Within each plot, the seven bars, from left to right,
represent estimators MLE, CML-1, PCML-i, CML-1&2, PCML-ii, PCML-iii, and PCML-iv,
respectively.
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the components from these two studies will dominate, making it hard to evaluate the benefit of
considering studies with different distributions. In Scenario (iii), the PCML estimator (PCML-iii)
has substantially smaller empirical standard errors, compared to the MLE, for the estimates of
βc, βX1 , βX4 , βX5 and βX6 . These β’s correspond to the regressors for which there is an external
study that the corresponding component of γ0(k) is very close to zero. Specifically, from Figure
3.2, γ0(5),c, γ0(5),X4

, γ0(5),X6
, γ0(11),X1

, and γ0(11),X5
are all very close to zero. When n = 500,

the selection rate of these components is 98.5% for γ0(5),c, 99.5% for γ0(5),X4
, 98.9% for γ0(5),X6

,
99.9% for γ0(11),X1

and 100% for γ0(11),X5
. When n = 1000, the rate becomes 99.9%, 100%,

100%, 99.9% and 100%, respectively.
In Scenario (iv), the PCML estimator (PCML-iv) has apparently smaller empirical standard

errors, compared to the MLE, for βX1 , βX2 , βX4 , βX5 and βX6 . From Figure 3.2, we can see that
for these β’s there are external studies whose corresponding components of γ0(k) are very close to
zero. It is the selection of some of these components that help reduce the standard errors compared
to the MLE. When n = 500, occasional selection of invalid moment constraints leads to slight bias
and larger standard errors for the PCML-iv estimates of βc and βX3 , compared to the MLE.

3.5 Study of COVID-19 Pandemic Impact on Mental Health of
People with Bipolar Disorder

The World Health Organization declared COVID-19 a global pandemic on March 11, 2020. The
rapid spread of COVID-19 worldwide threatened the health and lives of millions of people within
a short period of time, and prompted governments to execute extraordinary public health measures
such as social distancing, lockdown and quarantine. The lifestyle changes, together with the worry
of becoming infected, had severe impact on the mental health of many people in the form of in-
creased depression and anxiety. Wu et al. (2021) conducted a systematic review and meta-analysis
of 66 studies between January 1st and April 1st, 2020, and found that the pandemic increased the
prevalence of mental health problems in the general population. Zaninotto et al. (2022) exam-
ined changes in mental health and well-being before and during the initial and later phases of the
pandemic (2018-2019, June-July in 2020, and November-December in 2020) and concluded that
mental health and well-being continued to worsen as the pandemic progressed. With new variants
of the virus that cause COVID-19 continuing to emerge, the pandemic continues in 2022, and the
related impact appears to be long-lasting.

Previous studies, both before and during the COVID-19 pandemic, have shown that age, sex
and education, among other sociodemographic factors, were significantly associated with depres-
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Table 3.1: Simulation results summarized based on 1000 replications with internal sample size
500 and external sample size 50000.

βc βX1
βX2

βX3
βX4

βX5
βX6

βZ1
βZ2

βX1Z1

MLE
Bias -0.013 0.011 -0.036 0.037 -0.031 -0.017 0.016 -0.016 0.021 0.038
ESE 0.327 0.229 0.275 0.260 0.263 0.138 0.433 0.138 0.133 0.127
RMSE 0.327 0.229 0.277 0.263 0.265 0.139 0.433 0.139 0.135 0.133

CML-1
Bias -0.019 0.002 -0.025 0.036 -0.032 -0.017 -0.003 -0.016 0.021 0.038
ESE 0.221 0.206 0.166 0.260 0.158 0.138 0.256 0.138 0.133 0.127
RMSE 0.221 0.206 0.168 0.263 0.162 0.139 0.256 0.139 0.135 0.133

PCML-i
Bias -0.022 -0.005 -0.024 0.037 -0.030 -0.017 -0.001 -0.015 0.021 0.037
ESE 0.225 0.209 0.170 0.260 0.159 0.138 0.266 0.138 0.133 0.127
RMSE 0.226 0.209 0.172 0.263 0.161 0.139 0.266 0.139 0.135 0.133

CML-1&2
Bias -0.019 -0.009 -0.030 0.036 -0.029 -0.006 -0.004 -0.015 0.021 0.037
ESE 0.220 0.203 0.161 0.260 0.157 0.092 0.256 0.138 0.133 0.127
RMSE 0.221 0.203 0.164 0.262 0.160 0.092 0.256 0.139 0.135 0.133

PCML-ii
Bias -0.023 -0.010 -0.022 0.032 -0.019 -0.008 0.005 -0.014 0.021 0.031
ESE 0.246 0.223 0.189 0.263 0.172 0.122 0.292 0.138 0.133 0.127
RMSE 0.247 0.223 0.190 0.265 0.173 0.122 0.292 0.138 0.135 0.131

PCML-iii
Bias 0.021 0.007 -0.036 0.014 -0.014 -0.005 -0.017 -0.015 0.021 0.037
ESE 0.287 0.203 0.282 0.290 0.191 0.099 0.309 0.138 0.133 0.127
RMSE 0.288 0.203 0.284 0.291 0.192 0.099 0.309 0.139 0.135 0.133

PCML-iv
Bias -0.051 0.008 -0.024 0.052 0.022 -0.022 -0.020 -0.015 0.021 0.037
ESE 0.347 0.205 0.250 0.288 0.214 0.089 0.394 0.138 0.133 0.127
RMSE 0.351 0.205 0.252 0.293 0.215 0.092 0.394 0.139 0.135 0.133

1 ESE: empirical standard error. RMSE: root mean squared error. MLE: maximum likelihood estimator using internal study data alone. CML:
constrained maximum likelihood. PCML: penalized constrained maximum likelihood.

2 -1, -1&2: with External Study 1 only, with External Studies 1 and 2, respectively.
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Table 3.2: Simulation results summarized based on 1000 replications with internal sample size
1000 and external sample size 50000.

βc βX1
βX2

βX3
βX4

βX5
βX6

βZ1
βZ2

βX1Z1

MLE
Bias -0.023 0.005 -0.026 0.015 -0.015 -0.010 0.037 -0.004 0.007 0.020
ESE 0.230 0.157 0.191 0.176 0.181 0.095 0.298 0.096 0.089 0.087
RMSE 0.231 0.158 0.193 0.176 0.182 0.095 0.300 0.096 0.089 0.090

CML-1
Bias -0.020 0.002 -0.012 0.015 -0.020 -0.010 -0.002 -0.004 0.007 0.020
ESE 0.150 0.139 0.109 0.176 0.108 0.095 0.171 0.096 0.089 0.087
RMSE 0.151 0.139 0.110 0.176 0.110 0.095 0.171 0.096 0.089 0.090

PCML-i
Bias -0.021 -0.003 -0.012 0.015 -0.020 -0.010 -0.003 -0.003 0.007 0.019
ESE 0.151 0.141 0.109 0.176 0.109 0.095 0.170 0.096 0.089 0.087
RMSE 0.152 0.141 0.110 0.176 0.110 0.095 0.170 0.096 0.089 0.090

CML-1&2
Bias -0.019 -0.008 -0.015 0.015 -0.018 -0.003 -0.004 -0.003 0.007 0.020
ESE 0.150 0.137 0.107 0.176 0.108 0.066 0.170 0.096 0.089 0.087
RMSE 0.151 0.137 0.108 0.176 0.109 0.066 0.170 0.096 0.089 0.090

PCML-ii
Bias -0.012 -0.014 -0.011 0.005 -0.014 -0.006 -0.002 -0.003 0.007 0.016
ESE 0.162 0.152 0.117 0.181 0.115 0.081 0.187 0.096 0.089 0.088
RMSE 0.163 0.153 0.118 0.181 0.116 0.081 0.187 0.096 0.089 0.089

PCML-iii
Bias 0.013 0.011 -0.026 0.015 -0.014 0.000 -0.019 -0.004 0.007 0.020
ESE 0.175 0.140 0.191 0.176 0.122 0.070 0.190 0.096 0.089 0.087
RMSE 0.175 0.141 0.193 0.177 0.123 0.070 0.191 0.096 0.089 0.090

PCML-iv
Bias -0.044 0.008 -0.020 0.035 0.027 -0.022 -0.010 -0.004 0.007 0.020
ESE 0.240 0.140 0.164 0.180 0.132 0.062 0.259 0.096 0.089 0.088
RMSE 0.244 0.140 0.166 0.184 0.135 0.066 0.259 0.096 0.089 0.090

1 ESE: empirical standard error. RMSE: root mean squared error. MLE: maximum likelihood estimator using internal study data alone. CML:
constrained maximum likelihood. PCML: penalized constrained maximum likelihood.

2 -1, -1&2: with External Study 1 only, with External Studies 1 and 2, respectively.
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sion and/or anxiety (e.g., Blüml et al. 2013; Rabenberg et al. 2016; Hickson et al. 2017; Hinz et
al. 2017; Hoshino et al. 2018; Silva et al. 2018; Yu et al. 2018; Ju et al. 2019; Lee et al. 2019;
Cook et al. 2020; Gao et al. 2020; Mazza et al. 2020; Özdin and Bayrak Özdin 2020; Hong et
al. 2021). However, the estimated effects in the majority of these studies may not hold for the BD
population since their study participants are not restricted to people with BD. In addition, effects
estimated at different times across the studies cannot be directly compared to reveal any potential
systematic changes over time, especially during the pandemic, because of different study samples.
Our data analysis aims to estimate such effects for people with BD and compare the effects over
time to reveal any medium to long-term effect changes.

Our study uses data collected from the Heinz C. Prechter Longitudinal Study of Bipolar Dis-
order, an observational cohort study launched in 2005 at the University of Michigan (McInnis et
al. 2018). The longitudinal nature of this study allows us to compare effects estimated at different
times. We focus on two mental health measures. Depression is measured using the Patient Health
Questionnaire (PHQ-9) (Kroenke et al. 2001) and anxiety is measured using the General Anxiety
Disorder-7 (GAD-7) (Spitzer et al. 2006), both of which are self-reporting instruments. The PHQ-
9 score ranges from 0 to 27 per measurement, and following the literature we dichotomize the
score into < 10 and ≥ 10 in our analysis, where the category ≥ 10 has a sensitivity of 88% and a
specificity of 88% for the diagnosis of major depression or clinically relevant depression (Kroenke
et al. 2001). The GAD-7 score ranges from 0 to 21 per measurement, and we dichotomize the score
into < 10 and ≥ 10, with ≥ 10 having a sensitivity of 89% and specificity of 82% for detecting
Generalised Anxiety Disorder (Spitzer et al. 2006).

Given the small number of participants at each time window we consider (see Figure 3.4),
we apply the PCML method to integrate results from existing literature to improve the statistical
power when studying the effects of age, sex and education. There has been an enormous literature
studying PHQ-9 and GAD-7, both before and during the pandemic, and many of these studies
have large sample sizes. Table 3.3 contains a summary of studies we found that provide estimated
effects of some of the three sociodemographics (age, sex and education) that can be considered for
possible information integration. Many of these studies are not for the BD population, but they
may still provide partially useful information when estimating the effects for the BD population.

PHQ-9 and GAD-7 are measured every two months in the Prechter study. We focus on the time
period between April 1, 2018 and November 30, 2021 and divide it into windows of four-month.
Within each time window, we dichotomize the respective average values of the available PHQ-
9 and GAD-7 scores as two outcomes for each participant, and fit the logistic regression model
logit[P (Y = 1)] = βc + β1X1 + β2X2 + β3X3 + β4X4. Here Y is the indicator for depression
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Figure 3.4: Prevalence of depression (PHQ-9 ≥ 10) and anxiety (GAD-7 ≥ 10). The solid
line and numbers on top are for depression. The dotted line and numbers at bottom are for
anxiety.

(PHQ-9 ≥ 10) or anxiety (GAD-7 ≥ 10), X1 is age (decades), X2 is a binary indicator for male
sex, X3 is a binary indicator for college degree or above, and X4 is the average PHQ-9 or GAD-7
score from the previous time window included as a baseline adjustment. When fitting the model
for time windows before (after) April 2020, we consider the pre-COVID (post-COVID) studies
in Table 3.3 for possible information integration, using the PCML method with component-wise
shrinkage.

The sample for modeling PHQ-9 comprises n = 478 participants who have complete data on
all variables under consideration in at least one of the eleven time windows. Of the 478 partici-
pants, 334 (69.9%) are female, 148 (31.0%) do not have a college degree, and the mean, minimum
and maximum age is 50.0, 22 and 92 years old, respectively. The sample for modeling GAD-7
comprises n = 468 participants who have complete data in at least one time window, with 327

(69.9%) females, 321 (68.6%) having a college degree or above, and the mean, minimum and
maximum age is 50.2, 22 and 92 years old, respectively. The exact sample size within each time
window can be found in Figure 3.4.

Figure 3.4 shows the overall prevalence of depression and anxiety in the Prechter sample for
each time window, together with the corresponding sample size. Across the study period, 27%-
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Table 3.3: External studies under our consideration for possible information integration

Authors
Year of
publi-
cation

Year of
data
collection

Sample
size

Country
or Region Sample

PHQ-9 or
GAD-7 or
Both

Pre-COVID studies

Hong et al. 2021 2014-2016 10,710 Korea GP PHQ-9
Cook et al. 2020 2015-2018 5077 Russia GP (aged 35-69) Both
Hickson et al. 2017 2011 5799 UK GB men Both
Blüml et al. 2013 2011 2427 Germany GP Both
Hinz et al. 2017 2011-2014 9721 Germany GP GAD-7
Silva et al. 2018 2015 4001 Brazil GP GAD-7
Richard et al. 2016 2012 15,975 Switzerland GP PHQ-9
Rabenberg et al. 2016 2008-2011 6331 Germany GP PHQ-9
Hoshino et al. 2018 2013 3753 Japan GP PHQ-9
Ju et al. 2019 2014 4349 Korea GP PHQ-9
Lee et al. 2019 2014 5483 Korea GP PHQ-9
Ventura et al. 2019 2015 1907 Australia T1/2D GAD-7
Yu et al. 2018 2012-2013 36,806 China GP GAD-7

Post-COVID studies

Nguyen et al. 2020 2020 3947 Vietnam OP PHQ-9
Zhu et al. 2020 2020 5062 China HW PHQ-9
Cao et al. 2020 2020 7143 China CS GAD-7
Stocker et al. 2021 2020 13,829 Australia GP Both
Shi et al. 2020 2020 56,679 China GP Both
Rathod et al. 2020 2020 7917 UK GP (49.7% HCP) Both
Gao et al. 2020 2020 4827 China GP GAD-7
Fancourt et al. 2021 2020 17,090 (week 1) UK GP Both
Hou et al. 2021 2020 4021 HK, China GP Both
Bäuerle et al. 2020 2020 15,037 Germany GP GAD-7
1 HK: Hong Kong
2 GP: general population; T1/2D: type 1 or 2 diabetes; GB: gay and bisexual; OP: outpatient; HW: health workers; CS: college students; HCP:

healthcare professionals
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36% participants had PHQ-9 score≥ 10, indicating moderate-to-severe depression, and 26%-33%
had GAD-7 score ≥ 10, indicating moderate-to-severe anxiety. The estimates suggest that both
pre- and post-pandemic prevalence of depression and anxiety is relatively high in those with BD,
as compared to what was reported in the general population (e.g., Rabenberg et al. 2016; Richard
et al. 2016; Yu et al. 2018; Bäuerle et al. 2020; Shi et al. 2020; Fancourt et al. 2021; Hong et al.
2021; Stocker et al. 2021). At the beginning of the pandemic (April-July 2020), the prevalence of
both depression and anxiety was relatively high, but there seems to be an overall decreasing trend
afterwards. The elevated prevalence of depression and the lowered prevalence of anxiety around
late 2018 and early 2019 is an interesting observation and deserves future investigations.

Figure 3.5 plots the estimated effects of age, sex and education on prevalence of depression
and anxiety, with and without integrating information from external studies. The 99% confidence
intervals constructed for the PCML estimates contain the MLE at most time points, providing some
assurance that incorporating external information does not seem to introduce substantial bias.

For depression, the estimates by integrating external study information reveals some interesting
trends. These trends are not clear from the internal study results because of the large uncertainty
due to small sample size, which might keep the trends hidden inside the noise. Specifically, prior
to the pandemic the age effect on prevalence of depression is not significant, whereas after the pan-
demic it is clear that younger people have a higher prevalence of depression and the gap seems to
increase over time. For example, for every 10 years increase in age, the odds of having depression
become 1 − exp (−0.47) = 37.5% lower within the time window August-November, 2020, and
become 1 − exp (−0.69) = 49.8% lower within the time window August-November, 2021. For
sex effect, before the pandemic, the prevalence of depression among males is significantly lower
than that among females, and this gap is quite stable. For example, in the time window December
2019 to March 2020, the odds of having depression among males are 1 − exp (−1.61) = 80.0%

lower than among females. After the pandemic, the gap between males and females becomes
much smaller and insignificant until before August 2021. In the time window August to November
2021, the sex gap seems to return to the level before pandemic, with females having a much higher
prevalence of depression. For education effect, prior to the pandemic, there is no significant dif-
ference in the prevalence of depression between people with college degrees or higher and people
without. As the pandemic began, however, a gap quickly emerges and a much higher prevalence is
seen among people without college degrees. For example, at the beginning of the pandemic (April
to July, 2020), the odds of having depression among people with college degrees or higher are
1− exp (−1.87) = 84.6% lower compared to those without. This gap remains stable in our whole
study period.
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Figure 3.5: Effect estimates based on logistic regression models. For PCML, p-values and
99% confidence intervals are calculated based on bootstrap standard errors using 200 bootstrap
resamples of the internal study data. Within each plot, the numbers on top are for MLE, and
the numbers at bottom are for PCML, and the vertical lines with bars on two ends indicate the
99% confidence intervals for the PCML estimates.

(a) Age effect on depression (b) Age effect on anxiety

(c) Sex effect on depression (d) Sex effect on anxiety

(e) Education effect on depression (f) Education effect on anxiety
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For anxiety, the age effects with and without integrating external study information are very
close and are insignificant throughout the study period. The estimated sex effects seem to suggest
an overall higher prevalence of anxiety among females. The estimated effects with and without
integrating external information differ for some time windows, but neither has a clear time trend
within our study period. The estimated education effects after integrating external study informa-
tion reveals a gap, after the pandemic, that there is a higher prevalence of anxiety among people
without college degrees. This gap is not clear from the estimates without integrating external
information.

3.6 Discussion

Motivated by a study of COVID-19 pandemic impact on mental health of people with BD, where
there are many relevant external studies that we could “borrow” information from, we extended
the PCML method in Chapter 2 to a more general framework by allowing the number of external
studies to increase with the internal study sample size. When applied to the motivating study, the
extended method helped to reveal certain pandemic impact on the effects of age, sex and education
on the mental health of people with BD.

External studies sometimes may contain redundant information in the sense that some compo-
nents of g(X,Z; β̂MLE) − γ̃ may be highly linearly correlated. This is more likely to occur in
the presence of many external studies, when some studies are for similar populations using similar
models. The high linear correlation among components of g(X,Z; β̂MLE)− γ̃ can cause numer-
ical issues. In our motivating study, to avoid numerical complications due to such high collinearity
we took an ad hoc approach by repeatedly identifying the two components with the highest (neg-
ative or positive) correlation and removing the one with larger γ̃kj until all correlations among the
remaining components are below 0.9 in absolute value. More formal solutions may be needed to
deal with the issue of collinearity.

In this chapter we did not account for the uncertainty associated with the external study infor-
mation because of the assumption that the external study sample sizes are much larger compared
to the internal sample size, which is indeed the case for our motivating study. When sample sizes
of external studies are not much larger, the uncertainty of the external information may need to be
accounted for. The methods developed in Cheng et al. (2018), Han and Lawless (2019) and Zhang
et al. (2020) may be adopted under our setting to account for the external uncertainty.
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3.7 Proofs

For ease of notation, let F̂ (β) = n−1
∑n

i=1 log fi(β), F (β) = E [log f(Y |X,Z;β)], Q̂(β,γ,ρ) =

n−1
∑n

i=1 log
{
1− ρT [gi(β)− γ)]

}
, ri(β,γ) = gi(β) − γ, r̂(β,γ) = n−1

∑n
i=1 [gi(β)− γ],

Ĥn(β,γ) = {ρ : ρT [gi(β) − γ] < 1, i = 1, · · · , n}, g(k)(X,Z;β) − γ(k) a subvector of
g(X,Z;β)− γ corresponding to the kth external study, K=0 = {k : γ0(k) = 0, k = 1, · · · , Kn},
K ̸=0 = {k : γ0(k) ̸= 0, k = 1, · · · , Kn}, and C > 0 a generic positive constant whose value varies
from one place to another.

Assumption 3.1. (i) B, the parameter space where β0 lies, is compact; for any k = 1, · · · , Kn,

Tk, the parameter space where γ0(k) lies, is compact;

(ii) E [log f(Y |X,Z;β)] is uniquely maximized at β0 ∈ B;

(iii) log f(Y |X,Z;β) is continuous at each β ∈ B with probability one;

(iv) supβ∈B |n−1
∑n

i=1 log fi(β)− E[log f(Y |X,Z;β)]| = op(1);

(v) for any k = 1, · · · , Kn, E[h(k)(Y,X(k);θ
∗
(k))] ≤ C;

(vi) ∥n−1
∑n

i=1 gi(β0)− E[g(X,Z;β0)]∥ = Op(
√

Kn/n);

(vii) the smallest eigenvalue of Ωn is greater than or equal to C for all n, where Ωn = E{[g(X,

Z;β0)− γ0][g(X,Z;β0)− γ0]T};

(viii)
∥∥n−1

∑n
i=1 [gi(β0)− γ0][gi(β0)− γ0]T −Ωn

∥∥ = op(1);

(ix) max1≤k≤Kn E
[
∥g(k)(X,Z;β0)− γ0(k)∥α

]
≤ C for some α > 2;

(x) K2
n/n

1−2/α = o(1);

(xi)
∑

k∈K ̸=0
λn∥γ̃(k)∥−w = op(1).

Lemma 3.1. If Assumption 2.1(ix) is satisfied, then for any ζn = o(n−1/αK
−1/2
n ) and Hn =

{ρ : ∥ρ∥ ≤ ζn}, we have supρ∈Hn,1≤i≤n |ρT [gi(β0)− γ0]|
p→ 0 and, with probability approaching

one (w.p.a.1), Hn ⊆ Ĥn(β0,γ0).

Proof of Lemma 3.1

Proof. Refer to the proof of Lemma 3.3.
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Lemma 3.2. If Assumption 3.1 is satisfied, then ρ̄ = argmaxρ∈Ĥn(β0,γ0)
Q̂(β0,γ0,ρ) exists w.p.a.1,

and supρ∈Ĥn(β0,γ0)
Q̂(β0,γ0,ρ) ≤ Op(Kn/n).

Proof of Lemma 3.2

Proof. Choose ζn > 0 satisfying ζn = o(n−1/αK
−1/2
n ) and

√
Kn/n = o(ζn), which is possible

by Assumption 2.1(x). By Lemma 3.1, Q̂(β0,γ0,ρ) is twice continuously differentiable on Hn =

{ρ : ∥ρ∥ ≤ ζn}, w.p.a.1. Then ρ̃ = argmaxρ∈Hn
Q̂(β0,γ0,ρ) exists w.p.a.1. By Assumptions

3.1(vii)(viii), n−1
∑n

i=1 [gi(β0)− γ0][gi(β0)− γ0]T has smallest eigenvalue bounded away from
zero w.p.a.1. It follows similarly to the proof of Lemma A.11 of Donald et al. (2003) that ∥ρ̃∥ =
Op(∥r̂(β0,γ0)∥) = Op(

√
Kn/n) by Assumption 3.1(vi), so that w.p.a.1 ∥ρ̃∥ < ζn, and then

ρ̄ = ρ̃, and finally we have supρ∈Ĥn(β0,γ0)
Q̂(β0,γ0,ρ) ≤ Op(Kn/n).

Proof of Theorem 3.1

Proof. By the definition of (β̂, γ̂) we have

Q̂(β̂, γ̂, ρ̂)+
Kn∑
k=1

P̂λn

(
γ̂(k)
)
− F̂ (β̂) ≤ sup

ρ∈Ĥn(β0,γ0)

Q̂(β0,γ0,ρ)+
Kn∑
k=1

P̂λn

(
γ0(k)

)
− F̂ (β0). (3.8)

Also by definition we have Q̂(β̂, γ̂, ρ̂) ≥ Q̂(β̂, γ̂,0) = 0 and the penalty function is non-negative.
Therefore, from (3.8) we have

F̂ (β0)− F̂ (β̂) ≤ sup
ρ∈Ĥn(β0,γ0)

Q̂(β0,γ0,ρ) +
Kn∑
k=1

P̂λn

(
γ0(k)

)
. (3.9)

For k ∈ K=0, we have P̂λn

(
γ0(k)

)
= 0. By Assumption 3.1(v), we have ∥γ0(k)∥ ≤ C for any k =

1, · · · , Kn, which combined with Assumption 3.1(xi) implies that
∑

k∈K ̸=0
P̂λn

(
γ0(k)

)
= op(1).

Therefore from (3.9) we have F̂ (β0)−F̂ (β̂) ≤ op(1) by Lemma 3.2. In addition, from Assumption
3.1(iv) we have F̂ (β0) − F̂ (β̂) = F (β0) − F (β̂) + op(1), and thus F (β0) − F (β̂) ≤ op(1).
On the other hand, Assumption 3.1(ii) implies that F (β0) − F (β̂) ≥ 0. Hence, we must have
|F (β0) − F (β̂)| = op(1), which then implies β̂ → β0 in probability based on Assumptions
3.1(i)(ii) and (iii).

Assumption 3.2. (i) β0 is in the interior of B; for any k = 1, · · · , Kn, γ0(k) is in the interior

of Tk;

(ii) log f(Y |X,Z;β) is twice continuously differentiable in some neighborhood BN of β0 and

E[supβ∈BN
∥∂s(β)/∂β∥] <∞, where s(β) = ∂ log f(Y |X,Z;β)/∂β;
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(iii) for any l = 1, · · · , dn, g(l)(X,Z;β) is continuously differentiable in some neighborhood

BN of β0, where g(l)(X,Z;β) is the lth component of vector g(X,Z;β);

(iv) max1≤l≤dn sup∥β̃−β0∥≤δ

∥∥∥E[∂g(l)(β̃)/∂β]− E[∂g(l)(β0)/∂β]
∥∥∥ ≤ Cδ for some δ > 0;

(v) E[s(β0)s(β0)
T ] = −E

[
∂2 log f(Y |X,Z;β0)/∂β∂β

T
]

is non-singular;

(vi) the largest eigenvalue of {E[∂g(β0)/∂β
T ]}TE[∂g(β0)/∂β

T ] is smaller than or equal to C;

(vii) supβ∈B {n−1
∑n

i=1 log fi(β)− E[log f(Y |X,Z;β)]} = Op(n
−1/2);

(viii) supβ∈B ∥n−1
∑n

i=1 gi(β)− E[g(X,Z;β)]∥ = Op(
√
Kn/n);

(ix) max1≤k≤Kn E
[
sup(β,γ(k))∈B×Tk ∥g(k)(X,Z;β)− γ(k)∥α

]
≤ C for some α > 2;

(x) λn∥ωn, ̸=0∥ = op(
√
Kn/n), where ωn,̸=0 denote a vector that collects ∥γ̃(k)∥−w for all k ∈

K ̸=0.

Lemma 3.3. If Assumption 3.2(ix) is satisfied, then for any ζn = o(n−1/αK
−1/2
n ) and Hn =

{ρ : ∥ρ∥ ≤ ζn}, we have sup(β,γ(1),··· ,γ(Kn))∈B×T1×···×TKn ,ρ∈Hn,1≤i≤n |ρT [gi(β)− γ]|
p→ 0 and, with

probability approaching one (w.p.a.1), Hn ⊆ Ĥn(β,γ) for all (β,γ(1), · · · ,γ(Kn)) ∈ B × T1 ×
· · · × TKn .

Proof of Lemma 3.3

Proof. For bi,k = sup(β,γ(k))∈B×Tk ∥g(k)(Xi,Zi;β)− γ(k)∥, it follows by the Markov’s inequality
that for any finite number a > 0,

P

(
|max1≤i≤n,1≤k≤Kn bi,k|α

n
> a

)
< P

(
max1≤k≤Kn

∑n
i=1 |bi,k|α

n
> a

)

≤
max1≤k≤Kn E

[
sup(β,γ(k))∈B×Tk ∥g(k)(X,Z;β)− γ(k)∥α

]
a

,

so that max1≤i≤n,1≤k≤Kn bi,k = Op(n
1/α) by Assumption 3.2(ix). Then by the Cauchy-Schwarz

inequality,

sup
(β,γ(1),··· ,γ(Kn))∈B×T1×···×TKn ,ρ∈Hn,1≤i≤n

|ρT [gi(β)− γ]|

≤
{
sup
ρ∈Hn

∥ρ∥
}{

sup
(β,γ(1),··· ,γ(Kn))∈B×T1×···×TKn ,1≤i≤n

∥gi(β)− γ∥

}
≤ζnK1/2

n max
1≤i≤n,1≤k≤Kn

bi,k
p→ 0,
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and thus, w.p.a.1, Hn ⊆ Ĥn(β,γ) for all (β,γ(1), · · · ,γ(Kn)) ∈ B × T1 × · · · × TKn .

Lemma 3.4. If Assumptions 3.1 and 3.2 are satisfied, (β̄, γ̄(1), · · · , γ̄(Kn)) ∈ B × T1 × · · · ×
TKn , (β̄, γ̄) = (β0,γ0) + Op(ξn), ξn

√
Kn → 0, and ∥r̂(β̄, γ̄)∥ = Op(

√
Kn/n), then ρ̄ =

argmaxρ∈Ĥn(β̄,γ̄)
Q̂(β̄, γ̄,ρ) exists w.p.a.1, ρ̄ = Op(

√
Kn/n), and supρ∈Ĥn(β̄,γ̄)

Q̂(β̄, γ̄,ρ) ≤
Op(Kn/n).

Proof of Lemma 3.4

Proof. Choose ζn > 0 satisfying ζn = o(n−1/αK
−1/2
n ) and

√
Kn/n = o(ζn), which is possi-

ble by Assumption 3.1(x). By Lemma 3.3, Q̂(β̄, γ̄,ρ) is twice continuously differentiable on
Hn = {ρ : ∥ρ∥ ≤ ζn}, w.p.a.1. Then ρ̃ = argmaxρ∈Hn

Q̂(β̄, γ̄,ρ) exists w.p.a.1. Let Ω̄ =

n−1
∑n

i=1{[gi(β̄)−γ̄][gi(β̄)−γ̄]T}, Ω̃ = n−1
∑n

i=1{[gi(β0)−γ0][gi(β0)−γ0]T}, gi(β̄)−γ̄ = ḡi,
and gi(β0) − γ0 = g̃i. By Assumptions 3.2(iv)(vi)(viii), ξn

√
Kn → 0, the triangle and Cauchy-

Schwartz inequalities,

|tr(Ω̄− Ω̃)| =

∣∣∣∣∣ 1n
n∑

i=1

(ḡTi ḡi − g̃Ti g̃i)

∣∣∣∣∣
≤

∣∣∣∣∣ 1n
n∑

i=1

(ḡi − g̃i)T (ḡi − g̃i)

∣∣∣∣∣+
∣∣∣∣∣ 2n

n∑
i=1

(ḡi − g̃i)T g̃i

∣∣∣∣∣
≤∥γ̄ − γ0∥2 + 2∥γ̄ − γ0∥

∥∥∥∥∥ 1n
n∑

i=1

[gi(β̄)− gi(β0)]

∥∥∥∥∥+ 1

n

n∑
i=1

∥gi(β̄)− gi(β0)∥2

+
2

n

n∑
i=1

∥gi(β̄)− gi(β0)∥∥g̃i∥+ 2∥γ̄ − γ0∥

∥∥∥∥∥ 1n
n∑

i=1

g̃i

∥∥∥∥∥
→0,

which combined with Assumptions 3.1(vii)(viii) implies that Ω̄ has smallest eigenvalue bounded
away from zero w.p.a.1. By assumption we have ∥r̂(β̄, γ̄)∥ = ∥n−1

∑n
i=1 [gi(β̄)− γ̄]∥ = Op(√

Kn/n). It then follows similarly to the proof of Lemma A.11 of Donald et al. (2003) that
∥ρ̃∥ = Op(∥r̂(β̄, γ̄)∥) = Op(

√
Kn/n), so that w.p.a.1 ∥ρ̃∥ < ζn, and then ρ̄ = ρ̃, and finally

supρ∈Ĥn(β̄,γ̄)
Q̂(β̄, γ̄,ρ) ≤ Op(Kn/n).

Lemma 3.5. If Assumptions 3.1 and 3.2 are satisfied, then Q̂(β̂, γ̂, ρ̂) ≥ ζn∥r̂(β̂, γ̂)∥ − Cζ2n,

where ζn > 0 satisfying ζn = o(n−1/αK
−1/2
n ).

Proof of Lemma 3.5
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Proof. By the definition of ρ̂ we have

Q̂(β̂, γ̂, ρ̂) ≥ Q̂

(
β̂, γ̂,−ζn

r̂(β̂, γ̂)

∥r̂(β̂, γ̂)∥

)
. (3.10)

By an Taylor expansion around ρ = 0,

Q̂

(
β̂, γ̂,−ζn

r̂(β̂, γ̂)

∥r̂(β̂, γ̂)∥

)

=ζn
r̂(β̂, γ̂)

∥r̂(β̂, γ̂)∥
r̂(β̂, γ̂)− 1

2
ζn
r̂(β̂, γ̂)T

∥r̂(β̂, γ̂)∥

{
1

n

n∑
i=1

ri(β̂, γ̂)ri(β̂, γ̂)
T

[1− ρ̇Tri(β̂, γ̂)]2

}
ζn
r̂(β̂, γ̂)

∥r̂(β̂, γ̂)∥
, (3.11)

where ρ̇ lies between 0 and −ζnr̂(β̂, γ̂)/∥r̂(β̂, γ̂)∥. By Lemma 3.3,

max
1≤i≤n

1

[1− ρ̇Tri(β̂, γ̂)]2
≤ C. (3.12)

By the Cauchy-Schwarz inequality and the proof of Lemma 3.3,

1

n

n∑
i=1

ri(β̂, γ̂)ri(β̂, γ̂)
T ≤ 1

n

n∑
i=1

max
1≤k≤Kn

b2i,kI

p→ CI. (3.13)

Therefore, from (3.10)-(3.13), we have Q̂(β̂, γ̂, ρ̂) ≥ ζn∥r̂(β̂, γ̂)∥ − Cζ2n.

Lemma 3.6. Under Assumptions 3.1 and 3.2, we have (i) ∥(β̂T , γ̂T )T−(βT
0 ,γ

T
0 )

T∥ = Op(
√

Kn/n),

and (ii) ρ̂ = argmax
∑n

i=1 log{1− ρT [gi(β̂)− γ̂)]}, the Lagrange multiplier as in (3.6), exists

with probability approaching one (w.p.a.1) and ∥ρ̂∥ = Op(
√
Kn/n).

Proof of Lemma 3.6

Proof. From (3.8), Lemma 3.2, and the proof of Theorem 3.1 we have

F̂ (β0)− F̂ (β̂) +

 ∑
k∈K ̸=0

[
P̂λn(γ̂(k))− P̂λn(γ0(k))

] ≤ Op(Kn/n). (3.14)

By the triangle inequality, Cauchy-Schwarz inequality and Assumption 3.2(x) we have
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∣∣∣∣∣∣
∑

k∈K ̸=0

[
P̂λn(γ̂(k))− P̂λn(γ0(k))

]∣∣∣∣∣∣ ≤ |λn|∥ωn,̸=0∥∥γ̂ − γ0∥

=
∣∣∣op(√Kn/n)

∣∣∣ ∥γ̂ − γ0∥. (3.15)

By the mean value theorem, Assumptions 3.1(ii) 3.2(ii) (vii) and the central limit theorem we have

F̂ (β̂) = F̂ (β0) +
∂F̂ (β0)

∂βT
(β̂ − β0) +

1

2
(β̂ − β0)

T ∂
2F̂ (β̇)

∂β∂βT
(β̂ − β0)

= F̂ (β0) +Op(n
−1/2)∥β̂ − β0∥+

1

2
(β̂ − β0)

T ∂
2F̂ (β̇)

∂β∂βT
(β̂ − β0), (3.16)

where β̇ is some value between β0 and β̂. Then by Assumptions 3.1(ii) 3.2(ii)(v) and the consis-
tency of β̂ we have

F̂ (β0)− F̂ (β̂) = C[1 + op(1)]∥β̂ − β0∥2 +Op(n
−1/2)∥β̂ − β0∥. (3.17)

By the mean value theorem,

E[g(X,Z; β̂)]− E[g(X,Z;β0)] = E

[
∂g(X,Z; β̃)

∂βT

]
(β̂ − β0),

where β̃ is some value between β̂ and β0. By Assumption 3.2(iv),∥∥∥∥∥
{
E

[
∂g(X,Z; β̃)

∂βT

]
− E

[
∂g(X,Z;β0)

∂βT

]}
(β̂ − β0)

∥∥∥∥∥ ≤ C
√

Kn∥β̂ − β0∥2,

and by Assumption 3.2(vi),∥∥∥∥E [∂g(X,Z;β0)

∂βT

]
(β̂ − β0)

∥∥∥∥2 ≤ C∥β̂ − β0∥2.

Therefore, ∥∥∥E[g(X,Z; β̂)]− E[g(X,Z;β0)]
∥∥∥ ≤ C

√
Kn∥β̂ − β0∥2 + C∥β̂ − β0∥.

Then by Assumptions 3.2(iii)(viii) and the triangle inequality we have
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∥r̂(β̂, γ̂)∥

=

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− E[g(X,Z; β̂)] + E[g(X,Z; β̂)]− γ̂ + γ0 − E[g(X,Z;β0)]

∥∥∥∥∥
≥ ∥γ̂ − γ0∥ −

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− E[g(X,Z; β̂)]

∥∥∥∥∥− ∥∥∥E[g(X,Z; β̂)]− E[g(X,Z;β0)]
∥∥∥

= ∥γ̂ − γ0∥ − |Op(
√

Kn/n)| − C
√

Kn∥β̂ − β0∥2 − C∥β̂ − β0∥,

which combined with Lemma 3.5 (taking ζn =
√

Kn/n) leads to

Q̂(β̂, γ̂, ρ̂) ≥
√

Kn/n∥γ̂−γ0∥−CKn/
√
n∥β̂−β0∥2−C

√
Kn/n∥β̂−β0∥−|Op(Kn/n)|. (3.18)

Since Kn/
√
n = o(1) by Assumption 3.1(x), from (3.14), (3.15), (3.17) and (3.18) we have

C[1+op(1)]∥β̂−β0∥2+Op(
√

Kn/n)∥β̂−β0∥+
√
Kn/n[1+op(1)]∥γ̂−γ0∥ ≤ Op(Kn/n). (3.19)

If ∥β̂ − β0∥ has a faster convergence rate than ∥γ̂ − γ0∥, then (3.19) becomes

C[1 + op(1)]∥β̂ − β0∥2 +
√

Kn/n[1 + op(1)]∥γ̂ − γ0∥ ≤ Op(Kn/n),

which implies that ∥β̂ − β0∥ = Op(
√

Kn/n) and ∥γ̂ − γ0∥ = Op(
√

Kn/n). If ∥β̂ − β0∥ has the
same or slower convergence rate than ∥γ̂ − γ0∥, then (3.19) becomes

C[1 + op(1)]∥β̂ − β0∥2 +Op(
√

Kn/n)∥β̂ − β0∥ ≤ Op(Kn/n),

which leads to ∥β̂ − β0∥ = Op(
√

Kn/n) and further implies that ∥γ̂ − γ0∥ = Op(
√

Kn/n). This
proves result (i). Based on result (i) and

∥r̂(β̂, γ̂)∥ =

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− E[g(X,Z; β̂)] + E[g(X,Z; β̂)]− γ̂ + γ0 − E[g(X,Z;β0)]

∥∥∥∥∥
≤ ∥γ̂ − γ0∥+

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂)− E[g(X,Z; β̂)]

∥∥∥∥∥
+
∥∥∥E[g(X,Z; β̂)]− E[g(X,Z;β0)]

∥∥∥
= Op(

√
Kn/n),
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result (ii) directly follows from Lemma 3.4.

Lemma 3.7. Under Assumptions 3.1 and 3.2, if ∥γ0(k)∥ for any k ∈ K ̸=0 are bounded away

from zero or converge to zero at a rate slower than
√

Kn/n, i.e., mink∈K ̸=0
∥γ0(k)∥ ≥ C > 0 or√

Kn/n = o(mink∈K ̸=0
∥γ0(k)∥), then P (∪k∈K ̸=0

{γ̂(k) = 0})→ 0 as n→∞.

Proof of Lemma 3.7

Proof. By the triangle inequality,

P

(
min
k∈K ̸=0

∥γ̂(k)∥ > 0

)
≥ P

(
min
k∈K ̸=0

[
∥γ0(k)∥ − ∥γ̂(k) − γ0(k)∥

]
> 0

)
≥ P

(
min
k∈K ̸=0

∥γ0(k)∥ − ∥γ̂ − γ0∥ > 0

)
.

Therefore by ∥γ̂ − γ0∥ = Op(
√

Kn/n) from Lemma 3.6, when mink∈K ̸=0
∥γ0(k)∥ ≥ C > 0

or
√

Kn/n = o(mink∈K ̸=0
∥γ0(k)∥), we have P

(
mink∈K ̸=0

∥γ̂(k)∥ > 0
)
→ 1 as n → ∞, which

immediately yields that P (∪k∈K ̸=0
{γ̂(k) = 0})→ 0 as n→∞.

Assumption 3.3.
√

n/Knλnmink∈K=0 ∥γ̃(k)∥−w →∞ as n→∞.

Lemma 3.8. Under Assumptions 3.1, 3.2 and 3.3, we have P (∩k∈K=0{γ̂(k) = 0})→ 1 as n→∞.

Proof of Lemma 3.8

Proof. By the KKT optimality condition, γ̂(k) = 0 if

∥ρ̂(k)∥

∣∣∣∣∣ 1n
n∑

i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣ < λn

∥γ̃(k)∥w
.

Hence,

P
(
γ̂(k) = 0,∀k ∈ K=0

)
≥ P

(
max
k∈K=0

{
∥γ̃(k)∥w

λn

∥ρ̂(k)∥

∣∣∣∣∣ 1n
n∑

i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣
}

< 1

)

≥ P

(
∥ρ̂∥

∣∣∣∣∣ 1n
n∑

i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣ max
k∈K=0

{
∥γ̃(k)∥w

λn

}
< 1

)

= P

∥ρ̂∥
∣∣∣ 1n∑n

i=1
1

1−ρ̂T [gi(β̂)−γ̂]

∣∣∣
λnmink∈K=0 ∥γ̃(k)∥−w

< 1

 . (3.20)
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From Lemma 3.6 (and the proof of it), we have ∥ρ̂∥ = Op(
√
Kn/n) and ∥r̂(β̂, γ̂)∥ = Op(√

Kn/n). Then by a Taylor expansion around ρ = 0, Lemma 3.3, and the Cauchy-Schwarz
inequality, ∣∣∣∣∣ 1n

n∑
i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣ =

∣∣∣∣∣1 + ρ̂T

n

n∑
i=1

gi(β̂)− γ̂
{1− ρ̇T [gi(β̂)− γ̂]}2

∣∣∣∣∣
≤ 1 + C∥ρ̂∥∥r̂(β̂, γ̂)∥

= Op(1),

where ρ̇ lies between 0 and ρ̂. Therefore,

∥ρ̂∥

∣∣∣∣∣ 1n
n∑

i=1

1

1− ρ̂T [gi(β̂)− γ̂]

∣∣∣∣∣ = Op(
√
Kn/n),

which together with Assumption 3.3 and (3.20), implies that P (∩k∈K=0{γ̂(k) = 0}) → 1 as n →
∞.

Proof of Theorem 3.2

Proof. Combining Lemmas 3.7 and 3.8, we conclude that P (K̂=0 = K=0) → 1 as n → ∞, i.e.,
the PCML estimation achieves consistent moment selection.

Assumption 3.4. (i) For any τn ∈ Rdn and ∥τn∥ = 1,

√
nτ T

n Ω
− 1

2
n

{
1

n

n∑
i=1

g(Xi,Zi;β0)− γ0

}
d→ N(0, 1);

(ii) the following central limit theorem holds

S
− 1

2
0

1√
n

n∑
i=1

si(β0)
d→ N (0q, Iq×q) ;

(iii) supβ∈B
∥∥n−1

∑n
i=1 ∂s(m),i(β)/∂β − E[∂s(m)(β)/∂β]

∥∥ = Op(n
−1/2) for m = 1, · · · , q,

where s(m)(β) is the mth component of vector s(β);

(iv) supβ∈B
∥∥n−1

∑n
i=1 ∂g(l),i(β)/∂β − E[∂g(l)(β)/∂β]

∥∥ = Op(n
−1/2) for l = 1, · · · , dn;

(v) max1≤m≤q sup∥β̃−β0∥≤δ

∥∥∥E[∂s(m)(β̃)/∂β]− E[∂s(m)(β0)/∂β]
∥∥∥ ≤ Cδ for some δ > 0;
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(vi) the largest eigenvalue of Ωn is smaller than or equal to C for all n;

(vii) the largest eigenvalue of Σn is smaller than or equal to C for all n;

(viii) λn∥ωn, ̸=0∥ = op(n
−1/2);

(ix) K3
n/n = o(1).

Remark. Assumption 3.4(ix) gives an explicit restriction on the divergence rate of the number of
external studies Kn. Also note that, Kn = o(nw/(2+w)) is implicitly required by λnK

−1/2−w/2
n

n1/2+w/2 → ∞ and λnK
1/2
n n1/2 → 0, which are, respectively, derived based on Assumptions 3.3

and 3.4(viii) as discussed in Section 3.3.1. For w ≥ 1, Kn = o(nw/(2+w)) holds under Assumption
3.4(ix), while for 0 < w < 1, Kn = o(nw/(2+w)) gives a stronger restriction on the divergence rate
of Kn than Assumption 3.4(ix).

Proof of Theorem 3.3

Proof. Let ϵn be a sequence of constants such that (i) ϵn = o(n−1/2), and (ii) K3/2
n /n = o(ϵn),

which is possible by Assumptions 3.4(ix). Let ιn ∈ Rq+dn,̸=0 be an arbitrary vector with ∥ιn∥ = 1.
Define uη = Σ

1/2
n ιn. Denote uη as uT

η = (uT
β ,u

T
γ,̸=0), where uβ contains the first q elements in

uη and uγ, ̸=0 contains the rest elements in uη. Define β̂∗ = β̂+ ϵnuβ, γ̂∗
̸=0 = γ̂ ̸=0 + ϵnuγ,̸=0, and

(γ̂∗)T = [0T
dn,=0

, (γ̂∗
̸=0)

T ].
Since ∥uη∥ ≤ C by Assumption 3.4(vii), we have ∥β̂∗ − β̂∥ = Op(ϵn) and ∥γ̂∗

̸=0 − γ̂ ̸=0∥ =
Op(ϵn), which together with Lemma 3.6 imply that ∥β̂∗ − β0∥ = Op(

√
Kn/n) and ∥γ̂∗ − γ0∥ =

Op(
√

Kn/n).
By the mean value theorem and Assumptions 3.1(x)3.2(iv)(vi),∥∥∥E[g(X,Z; β̂∗)]− E[g(X,Z;β0)]

∥∥∥ ≤ C
√

Kn∥β̂∗ − β0∥2 + C∥β̂∗ − β0∥ = Op(
√

Kn/n),

which combined with Assumption 3.2(viii) and ∥γ̂∗ − γ0∥ = Op(
√

Kn/n) implies that

∥r̂(β̂∗, γ̂∗)∥ =

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂
∗)− γ̂∗

∥∥∥∥∥
≤

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂
∗)− E[g(X,Z; β̂∗)]

∥∥∥∥∥+ ∥∥∥E[g(X,Z; β̂∗)]− E[g(X,Z;β0)]
∥∥∥

+ ∥E[g(X,Z;β0)]− γ̂∗∥

=Op(
√

Kn/n).
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Thus by Lemma 3.4, ρ̂∗ = argmaxρ∈Ĥn(β̂∗,γ̂∗) Q̂(β̂∗, γ̂∗,ρ) exists w.p.a.1, ρ̂∗ = Op(
√

Kn/n),
and Q̂(β̂∗, γ̂∗, ρ̂∗) ≤ Op(Kn/n).

By the definition of (β̂, γ̂), we have

Q̂(β̂, γ̂, ρ̂) +
Kn∑
k=1

P̂λn

(
γ̂(k)
)
− F̂ (β̂) ≤ Q̂(β̂∗, γ̂∗, ρ̂∗) +

∑
k∈K ̸=0

P̂λn

(
γ̂∗
(k)

)
− F̂ (β̂∗). (3.21)

Define r ̸=0,i(β,γ) =

[
g=0,i(β)

g̸=0,i(β)− γ ̸=0

]
, r̸̂=0(β,γ) = n−1

∑n
i=1 r ̸=0,i(β,γ), Q̸̂=0(β,γ,ρ) =

n−1
∑n

i=1 log{1− ρTr ̸=0,i(β,γ)}, and ρ̸̂=0 = argmaxρ∈H̃n
Q̸̂=0(β̂, γ̂,ρ), where

H̃n =

{
ρ ∈ Rdn : ρT

[
g=0,i(β̂)

g ̸=0,i(β̂)− γ̂ ̸=0

]
< 1,∀i = 1, · · · , n

}
.

By Lemma 3.4, ρ̂ ̸=0 exists w.p.a.1 and ρ̸̂=0 = Op(
√

Kn/n).
By Lemma 3.8,

Q̂(β̂, γ̂, ρ̂) +
Kn∑
k=1

P̂λn

(
γ̂(k)
)
= Q̸̂=0(β̂, γ̂, ρ̸̂=0) +

∑
k∈K ̸=0

P̂λn

(
γ̂(k)
)

(3.22)

w.p.a.1. Assumption 3.4(viii), the triangle inequality, and Cauchy-Schwarz inequality imply that∣∣∣∣∣∣
∑

k∈K ̸=0

[
P̂λn(γ̂(k))− P̂λn(γ̂

∗
(k))
]∣∣∣∣∣∣ ≤ |λn|∥ωn, ̸=0∥∥γ̂ ̸=0 − γ̂∗

̸=0∥ = op(ϵnn
− 1

2 ). (3.23)

From (3.21)-(3.23) we have

Q̸̂=0(β̂, γ̂, ρ̸̂=0)− F̂ (β̂)− Q̂(β̂∗, γ̂∗, ρ̂∗) + F̂ (β̂∗) ≤ op(ϵnn
− 1

2 ). (3.24)
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By the mean value theorem and Assumptions 3.4(iii)(v)(ix),

F̂ (β̂∗)− F̂ (β̂) =ϵnu
T
β

{
1

n

n∑
i=1

si(β̂)

}
+

1

2
ϵnu

T
β

{
1

n

n∑
i=1

∂si(β̇)

∂βT

}
ϵnuβ

=ϵnu
T
β

{
1

n

n∑
i=1

si(β̂)

}
+Op(ϵ

2
n)

=ϵnu
T
β

{
1

n

n∑
i=1

si(β0) +
1

n

n∑
i=1

∂si(β̃)

∂βT
(β̂ − β0)

}
+Op(ϵ

2
n)

=ϵnu
T
β

{
1

n

n∑
i=1

si(β0) + E
[
∂s(β0)

∂βT

]
(β̂ − β0)

}
+Op(ϵnKn/n) +Op(ϵ

2
n)

=ϵnu
T
β

{
1

n

n∑
i=1

si(β0)− S0(β̂ − β0)

}
+ op(ϵnn

− 1
2 ), (3.25)

where β̇ lies between β̂∗ and β̂, and β̃ lies between β̂ and β0.
It is clear that ∥r̂ ̸=0(β̂, γ̂)∥ = Op(

√
Kn/n). By the first order condition, ρ̸̂=0 must satisfy

1

n

n∑
i=1

r ̸=0,i(β̂, γ̂)

1− ρ̂T
̸=0r ̸=0,i(β̂, γ̂)

= 0.

Then a Taylor expansion around ρ = 0 leads to

0 =
1

n

n∑
i=1

r ̸=0,i(β̂, γ̂) +
1

n

n∑
i=1

r̸=0,i(β̂, γ̂)r ̸=0,i(β̂, γ̂)
T ρ̸̂=0 +Op(Kn/n),

which implies that

ρ̂ ̸=0 = −

{
1

n

n∑
i=1

r̸=0,i(β̂, γ̂)r ̸=0,i(β̂, γ̂)
T

}−1 [
r̂ ̸=0(β̂, γ̂) +Op(Kn/n)

]
.

So by a Taylor expansion around ρ = 0,

69



Q̸̂=0(β̂, γ̂, ρ̂ ̸=0)

=− ρ̂T
̸=0r̂ ̸=0(β̂, γ̂)−

1

2
ρ̂T
̸=0

{
1

n

n∑
i=1

r ̸=0,i(β̂, γ̂)r ̸=0,i(β̂, γ̂)
T

}
ρ̸̂=0 +Op(K

3
2
n /n

3
2 )

=
1

2
r̂ ̸=0(β̂, γ̂)

T

{
1

n

n∑
i=1

r ̸=0,i(β̂, γ̂)r ̸=0,i(β̂, γ̂)
T

}−1

r̂ ̸=0(β̂, γ̂) +Op(K
3
2
n /n

3
2 )

=
1

2
r̂ ̸=0(β̂, γ̂)

TΩ−1
n r̂ ̸=0(β̂, γ̂) +Op(K

3
2
n /n

3
2 ). (3.26)

Similarly we have

Q̂(β̂∗, γ̂∗, ρ̂∗) =
1

2
r̂(β̂∗, γ̂∗)TΩ−1

n r̂(β̂
∗, γ̂∗) +Op(K

3
2
n /n

3
2 ). (3.27)

By the mean value theorem and Assumptions 3.2(iv)3.4(iv),

r̂(β̂∗, γ̂∗)− r̂ ̸=0(β̂, γ̂) =

{
1

n

n∑
i=1

∂gi(β̇)

∂βT

}
ϵnuβ − ϵn

[
0dn,=0

uγ,̸=0

]

=

[
1
n

∑n
i=1

∂g=0,i(β̇)

∂βT 0dn,=0×dn,̸=0

1
n

∑n
i=1

∂g ̸=0,i(β̇)

∂βT −Idn,̸=0×dn,̸=0

]
ϵnuη

= Gηϵnuη +Op(ϵnKn/
√
n),

and similarly,
r̂ ̸=0(β̂, γ̂)− r̂ ̸=0(β0,γ0) = Gη(η̂ − η0) +Op(K

3
2
n /n),

which combined with (3.26)-(3.27) imply that
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Q̸̂=0(β̂, γ̂, ρ̸̂=0)− Q̂(β̂∗, γ̂∗, ρ̂∗)

=− 1

2
ϵnu

T
ηG

T
ηΩ

−1
n Gηϵnuη +Op(ϵ

2
nKn/

√
n)

− r̂ ̸=0(β̂, γ̂)
TΩ−1

n Gηϵnuη +Op(ϵnK
3
2
n /n) +Op(K

3
2
n /n

3
2 )

=− r̂ ̸=0(β̂, γ̂)
TΩ−1

n Gηϵnuη +Op(ϵ
2
n) +Op(K

3
2
n /n

3
2 )

=−
{
r̂ ̸=0(β0,γ0)

T + (η̂ − η0)TGT
η +Op(K

3
2
n /n)

}
Ω−1

n Gηϵnuη

+ op(ϵnn
− 1

2 ) +Op(K
3
2
n /n

3
2 )

=− ϵnu
T
ηG

T
ηΩ

−1
n [r̂(β0,γ0) +Gη(η̂ − η0)] + op(ϵnn

− 1
2 ). (3.28)

From (3.24)(3.25)(3.28) we have

op(ϵnn
− 1

2 ) ≥− ϵnu
T
ηG

T
ηΩ

−1
n [r̂(β0,γ0) +Gη(η̂ − η0)] + ϵnu

T
β

{
1

n

n∑
i=1

si(β0)− S0(β̂ − β0)

}

=− ϵnu
T
η

{
Σ−1

n (η̂ − η0) +GT
ηΩ

−1
n r̂(β0,γ0)−

[
1
n

∑n
i=1 si(β0)

0dn,̸=0

]}
. (3.29)

Next, define β̂∗ = β̂−ϵnuβ and γ̂∗
̸=0 = γ̂ ̸=0−ϵnuγ, ̸=0. Then using the same arguments in deriving

(3.29), we deduce that

ϵnu
T
η

{
Σ−1

n (η̂ − η0) +GT
ηΩ

−1
n r̂(β0,γ0)−

[
1
n

∑n
i=1 si(β0)

0dn,̸=0

]}
≤ op(ϵnn

− 1
2 ). (3.30)

From (3.29)(3.30) and Assumptions 3.4(i)(ii) we have

√
nιTnΣ

− 1
2

n (η̂ − η0) =−
√
nιTnΣ

1
2
n

{
GT

ηΩ
−1
n r̂(β0,γ0)−

[
1
n

∑n
i=1 si(β0)

0dn,̸=0

]}
+ op(1)

=
∥∥∥Ω− 1

2
n GηΣ

1
2
nιn

∥∥∥√n−ιTnΣ 1
2
nGT

ηΩ
− 1

2
n∥∥∥Ω− 1

2
n GηΣ

1
2
nιn

∥∥∥Ω− 1
2

n r̂(β0,γ0)

+
∥∥∥S 1

2
0 ψn

∥∥∥ ψT
nS

1
2
0∥∥∥S 1

2
0 ψn

∥∥∥S− 1
2

0

1√
n

n∑
i=1

si(β0) + op(1)

d→
∥∥∥ιTnΣ 1

2
nG

T
ηΩ

− 1
2

n

∥∥∥ϕ1 +
∥∥∥S 1

2
0 ψn

∥∥∥ϕ2,
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where ψn contains the first q elements in Σ
1
2
nιn, ϕ1 and ϕ2 are standard normal random variables

with Cov(ϕ1, ϕ2) = 0 which follows from

E
{
g(β0)− γ0]s(β0)

T
}
= E

{
E
{
[g(β0)− γ0]s(β0)

T |X,Z
}}

= 0.

Finally we have
√
nιTnΣ

− 1
2

n (η̂ − η0)
d→ N(0, 1),

since

Var
(∥∥∥Ω− 1

2
n GηΣ

1
2
nιn

∥∥∥ϕ1 +
∥∥∥S 1

2
0 ψn

∥∥∥ϕ2

)
= ιTnΣ

1
2
nG

T
ηΩ

−1
n GηΣ

1
2
nιn + ι

T
nΣ

1
2
nSΣ

1
2
nιn

= ιTnΣ
1
2
n

{
GT

ηΩ
−1
n Gη + S

}
Σ

1
2
nιn

= 1,

where the first equality is by ψn =
[
Iq×q 0dn,̸=0×q

]
Σ

1
2
nιn.
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Chapter 4

Accounting for Uncertainty of External Summary
Information to Improve Efficiency

4.1 Introduction

In this chapter, we consider the setting where (i) an internal study collects individual-level data to fit
a parametric regression model for an outcome, (ii) some external studies have fitted less detailed
regression models for the same outcome and the model fitting results are available as summary
information, such as the estimated coefficients and standard errors, (iii) these external studies may
target populations different from the internal study and their sample sizes may not be very large.
Our goal is to incorporate only the external information that is useful to improve the efficiency
of internal parameter estimation, even if the external sample sizes are not much larger than the
internal one.

4.2 The Proposed Method

4.2.1 Setting and Notation

Let (Yi,X
T
i ,Z

T
i )

T , i = 1, · · · , n, denote the individual-level data from a random sample collected
by the internal study, where Y is the outcome of interest,X is the vector of covariates that are rou-
tinely collected for different studies on Y , and Z is the vector of covariates that are only collected
by the internal study. For example, X may include conventional covariates such as demograph-
ical variables and Z may include newly discovered biomarkers. We allow Z to be the null set
if the internal study only collects X . Our main interest is to fit a parametric regression model
f(Y |X,Z;β) for the distribution f(Y |X,Z), where β is a q-dimensional vector of parameters
with true value β0 such that f(Y |X,Z;β0) = f(Y |X,Z). With only the internal study data
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available, β0 can be estimated by the maximum likelihood estimator (MLE) β̂MLE that maximizes
the likelihood

∏n
i=1 f(Yi|Xi,Zi;β).

Suppose that there are K independent external studies on the same outcome Y that can poten-
tially provide useful information to improve the efficiency of internal model parameter estimation.
The kth external study, k ∈ {1, · · · , K}, fits a regression model of Y onX(k), whereX(k) is either
X or a coarsened version of X , such as a subset and/or a categorization of X . In other words,
the external study has a less detailed covariate measurement. Suppose that the fitted model can
be formulated as the estimating equation E(k)[h(k)(Y,X(k);η(k))] = 0, where η(k) is the vector of
regression parameters, h(k)

(
Y,X(k);η(k)

)
is the estimating function determined by the external

study regression model and has the same dimension as η(k), and the expectation E(k)(·) is taken
under the kth external study data distribution f(k)(Y |X(k)). Let η̃E

(k) denote the estimate of η(k)
provided by the kth external study based on its own sample with sample size Nk, and ηE∗

(k) the
probability limit of η̃E

(k) as Nk → ∞ such that E(k)[h(k)(Y,X(k);η
E∗
(k))] = 0. One example for

the external study regression model is a parametric model f(k)(Y |X(k);η(k)) for f(k)(Y |X(k)), in
which case h(k)

(
Y,X(k);η(k)

)
is the corresponding score function and η̃E

(k) is the solution to the
score equation. Note that we allow f(k)(Y |X(k);η(k)) to be a misspecified model. Another exam-
ple is that the kth external study provides stratified mean of Y with strata defined by the value of
X(k), in which case h(k)

(
Y,X(k);η(k)

)
is a vector of functions (Y − ηX(k))I(X(k) ∈ X ), where X

is any stratum based onX(k) and ηX(k) is the mean of Y within this stratum under f(k)(Y |X(k)).
The external study model can of course be fitted using the internal study data. Let η̃I

(k) denote
the parameter estimate from fitting the kth external study model to the internal study data such
that

∑n
i=1 h(k)(Yi,X(k)i

; η̃I
(k)) = 0. Let ηI∗

(k) denote the probability limit of η̃I
(k) as n → ∞ such

that E[h(k)(Y,X(k);η
I∗
(k))] = 0, where E(·) is the expectation under the internal data distribution

f(Y |X,Z). Assuming (i) f(k)(Y |X(k)) is the same as f(Y |X(k)) such that ηE∗
(k) = ηI∗

(k) and (ii)
Nk is very large such that the uncertainty associated with η̃E

(k) is negligible and thus ηE∗
(k) = η̃E

(k),
Chatterjee et al. (2016) proposed the CML estimator β̂CML for β0, defined through

max
β

max
p1,··· ,pn

log

[
n∏

i=1

f(Yi|Xi,Zi;β)pi

]

subject to pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pig(k)(Xi,Zi;β, η̃
E
(k)) = 0, k = 1, · · · , K

(4.1)
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where η = (ηT
(1), · · · ,ηT

(K))
T and

g(k)(X,Z;β,η(k)) =

∫
h(k)(Y,X(k);η(k))f(Y |X,Z;β)dY (4.2)

such that E
[
g(k)(X,Z;β0,η

I∗
(k))
]
= E[h(k)(Y,X(k);η

I∗
(k))] = 0. Under Assumptions (i) and (ii),

β̂CML has a higher efficiency compared to β̂MLE because of the incorporation of the external study
information ηE∗

(k).
Assumption (i) is very restrictive. For many problems it is known that certain components of

ηE∗
(k) and ηI∗

(k) are not equal due to study population heterogeneity. For example, for an external case-
control study that has a different disease prevalence, the intercept component of ηE∗

(k) and ηI∗
(k) is not

equal, while the components corresponding to covariate effects can be the same. In the presence of
a substantial population heterogeneity, there may not be any equal components between ηE∗

(k) and
ηI∗
(k). Based on this consideration, without loss of generality, we write η(k) = (αT

(k),θ
T
(k))

T , where
α(k) consists of the components known to have unequal values between the internal and external
studies (i.e., αE∗

(k) ̸= αI∗
(k)) and θ(k) consists of the rest components. When some components of

θI∗(k) are indeed equal to the corresponding components of θE∗
(k), incorporating the value of those

components provided by the external study into internal model fitting can improve the efficiency
for internal model parameter estimation. Our goal is to develop methods to select these components
of θE∗

(k) and incorporate their information to improve estimation efficiency.
Another consideration is that, in practice, an external study may report the estimated value for

only some instead of all components of η(k). For example, an study may only report estimated
effect size for the risk factors of main interest even though there are additional covariates included
as an effect adjustment. In this case, we will include the components of η(k) whose estimated
value is not available from the external study as part of α(k) as well. In other words, α(k) includes
the components of η(k) for which either the value is known to be unequal between the internal
and external studies or the estimated value is not reported by the external study. The kth external
study provides θ̃E(k) as an estimate of θ(k). If θI∗(k) and θE∗

(k) have certain equal components, then
making use of the external estimate θ̃E(k) may help improve estimation efficiency for internal model
parameters. We will focus on the non-trivial case where θ(k) is not the null set, as otherwise we
will simply exclude the kth external study from further consideration.

Assumption (ii) is also restrictive. The external study sample size Nk is not necessarily much
larger than n, in which case θ̃E(k) ̸= θE∗

(k) and the uncertainty associated with θ̃E(k) needs to prop-
erly accounted for when integrating θ̃E(k) into internal model fitting. The uncertainty is typically

quantified by the variance N−1
k Σ̃E

(k) of θ̃E(k), based on the asymptotic result
√
Nk(θ̃

E
(k) − θE∗

(k))
d−→
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N (0,ΣE
(k)) with ΣE

(k) being estimated by Σ̃E
(k). Our goal is to account for the uncertainty in θ̃E(k)

by incorporating external information about N−1
k Σ̃E

(k) into the internal model fitting as well.

4.2.2 The dPCML Method for Heterogeneous Populations

When some components of θI∗(k) and θE∗
(k) are indeed equal, making use of the corresponding com-

ponents of θ̃E(k) provided by the external study in the process of estimating β0 may help improve
the estimation efficiency. To account for the fact that we do not know which components of θI∗(k)
and θE∗

(k) are equal and which ones are not as a result of study population heterogeneity, we intro-
duce the nuisance parameters γ∗

(k) such that γ∗
(k) = θI∗(k) − θE∗

(k) represents the difference between
θI∗(k) and θE∗

(k). The zero components of γ∗
(k) correspond to the part of the external information from

study k that should be incorporated to improve the internal analysis. Since γ∗
(k) is unknown and

needs to be estimated, it is desirable to estimate the zero components of γ∗
(k) to be exactly zero to

select the corresponding external information. To achieve this goal, we will impose an adaptive
Lasso penalty (Zou 2006) that can consistently shrink the estimate of the zero components of γ∗

(k)

to zero.
On the other hand, since the external study provides θ̃E(k) instead of θE∗

(k) and the sample size Nk

used to derive θ̃E(k) is not necessarily much larger than the internal sample size n, the uncertainty
associated with θ̃E(k) needs to be properly accounted for when θ̃E(k) is incorporated into the internal
estimation of β0. Since θE∗

(k) = θ
I∗
(k) − γ∗

(k) is how θE∗
(k) and θI∗(k) are connected, when the estimated

variance of θ̃E(k), i.e. N−1
k Σ̃E

(k), is also available from the external study in addition to θ̃E(k), we
can account for the uncertainty associated with θ̃E(k) by shrinking the estimate of θI∗(k) − γ∗

(k) to the
normal distribution N (θ̃E(k), N

−1
k Σ̃E

(k)).
Based on the above considerations, we propose the doubly penalized constrained maximum

likelihood (dPCML) estimator β̂ for β0 defined through

max
β,α,θ,γ

max
p1,··· ,pn

{
log

[
n∏

i=1

fi(β)pi

]
−

K∑
k=1

Nk

2
(θ(k) − γ(k) − θ̃E(k))T Σ̃E−1

(k) (θ(k) − γ(k) − θ̃E(k))

− nλn

K∑
k=1

dk∑
j=1

|γ(kj)|
|θ̃I(kj) − θ̃E(kj)|w

}

subject to pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pigi(β,α,θ) = 0,

(4.3)

where fi(β) = f(Yi|Xi,Zi;β), α = (αT
(1), · · · ,αT

(K))
T , θ = (θT(1), · · · ,θT(K))

T , γ = (γT
(1), · · · ,

γT
(K))

T , gi(β,α,θ) = g(Xi,Zi;β,α,θ) = [g(1)(Xi,Zi;β,α(1),θ(1))
T , · · · , g(K)(Xi,Zi;β,
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α(K),θ(K))
T ]T with g(k)(Xi,Zi;β,α(k),θ(k)) = g(k)(Xi,Zi;β,η(k)) given by (4.2), |γ(kj)||θ̃I(kj)−

θ̃E(kj)|−w is the adaptive Lasso (aLasso) penalty on γ(kj), the jth component of γ(k), j = 1, · · · , dk,
λn > 0 is the tuning parameter, and w > 0 is some user-specified positive number such as 1 or 2
(e.g., Zou 2006; Liao 2013).

Compared to the optimization in (4.1) that defines the CML estimator, the optimization in (4.3)
is over α, θ and γ in addition to β, with two penalties imposed. This optimization includes α
because information integration for α from external studies is impossible, since α consists of the
components of η whose values are either known to be unequal between the internal and external
studies or are not reported by the external studies. Information integration for components of θ
is achieved by optimizing over θ and γ while shrinking θ(k) − γ(k) towards the information from
external study k via the quadratic penalty and shrinking components of γ to zero via the aLasso
penalty.

With the aLasso penalty and a properly chosen degree of shrinkage via the tuning parameter λn,
all the zero components and only those components of γ∗ are estimated exactly as zero, in which
case the corresponding external information will be automatically incorporated into the estimation
of β0 and the resulting dPCML estimator is consistent and has improved efficiency compared
to the MLE. The aLasso penalty allows a simultaneous selection of useful external information
and estimation of β0 incorporating that information. The uncertainty associated with the external
estimate θ̃E(k) is accounted for via the quadratic penalty on θ(k) − γ(k), adopting the idea in Zhang
et al. (2020). This quadratic penalty is the kernel of the log-likelihood of a normal distribution
for θ(k) − γ(k) with mean θ̃E(k) and variance N−1

k Σ̃E
(k). When Nk is much larger compared to n,

uncertainty in θ̃E(k) is small, and the Nk factor in the quadratic penalty puts a heavy weight on the
information from external study k to make θ(k) − γ(k) close to the very precise θ̃E(k) during the
optimization. On the contrary, when Nk is much smaller compared to n, uncertainty in θ̃E(k) is big,
and the Nk factor in the quadratic penalty puts a light weight on the information from external
study k to diminish its contribution to the estimation of β0.

The proposed optimization in (4.3) covers some methods in the existing literature as special
cases. By dropping γ and the aLasso penalty, the method essentially becomes the one proposed
in Zhang et al. (2020) under the assumption that all study populations are the same. By drop-
ping the quadratic penalty and replacing θ with θ̃E + γ, the method becomes similar to the one
proposed in Zhai and Han (2022) under the assumption that external information has no uncer-
tainty. The major difference is that Zhai and Han (2022) introduced the nuisance parameters
γ∗
(k) = E[g(k)(X,Z;β0,η

E∗
(k))] to represent the bias of the moment constraints resulted from the

population difference, whereas the γ∗
(k) we introduced represents the difference in the population
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values θI∗(k) and θE∗
(k). Our method makes the information integration process more straightforward

since the external information is θ̃E(k), an estimate of θE∗
(k). Our method is also more flexible as it

can deal with the case where only partial information about ηE∗
(k) is available instead of the estimate

of the whole parameter vector.
In (4.3), to account for the uncertainty in θ̃E(k), we assume that the variance matrix N−1

k Σ̃E
(k)

for θ̃E(k) is available, which may not be the case for many external studies. In practice, oftentimes
only the standard errors for the components of θ̃E(k), i.e. the square root of the diagonal elements
of N−1

k Σ̃E
(k), are available from the external studies. In this case we can replace N−1

k Σ̃E
(k) in (4.3)

by the diagonal matrix with diagonal elements the squares of standard errors. There may also be
situations where only the external study sample size Nk is available instead of any standard errors
or variance matrix. In this case we can replace Σ̃E

(k) in (4.3) by the identity matrix. Our theoretical
studies show that using these compromised solutions to account for external information uncer-
tainty does not affect the estimation consistency of the dPCML estimator but only the efficiency
(see next section for more discussion). Our numerical studies show that these compromised solu-
tions still have clear efficiency improvement over the MLE by integrating the external information.
Such observations are not surprising, since the amount of external information uncertainty to a
large degree is determined by the external sample size Nk. Thus even if only Nk is available a
large degree of uncertainty can be accounted for.

The aLasso penalty in (4.3) ensures that the integration of summary information from external
study k is carried out in a component-wise manner for each component of θ̃E(k). Such a choice of
the penalty function is based on the consideration that not all components of θI∗(k) are necessarily
different from the corresponding components of θE∗

(k) even when the study populations are not the
same. If one prefers to treat the information from an external study as a whole, a study-wise
shrinkage can be easily achieved by replacing the aLasso penalty on γ(kj) with the adaptive group
Lasso (agLasso) penalty (Wang and Leng 2008) on γ(k), i.e. nλn

∑K
k=1 ∥γ(k)∥∥θ̃I(k) − θ̃E(k)∥−w,

where ∥ · ∥ is the Euclidean norm. It is worth to point out that, the component-wise shrinkage
allows us to make the maximum use of external information since the study-wise shrinkage may
discard an external study completely if one component of θI∗(k) and θE∗

(k) is different. The component-
wise shrinkage can be particularly helpful when no external study information appears to be useful
with a study-wise shrinkage. In this article, we will present the properties and the numerical
implementation of the dPCML estimator based on component-wise shrinkage.

Using the Lagrange multiplier method, it is easy to show that the constrained optimization in
(4.3) can be equivalently written as
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min
β,α,θ,γ

{
−

n∑
i=1

log fi(β) +
K∑
k=1

Nk

2
(θ(k) − γ(k) − θ̃E(k))T Σ̃E−1

(k) (θ(k) − γ(k) − θ̃E(k))

+ nλn

K∑
k=1

dk∑
j=1

|γ(kj)|
|θ̃I(kj) − θ̃E(kj)|w

+max
ρ

n∑
i=1

log
{
1− ρT [gi(β,α,θ)]

}}
,

(4.4)

where ρ is the Lagrange multiplier. The expression in (4.4) is the so-called saddle-point representa-
tion in the empirical likelihood literature (e.g., Owen 2001; Newey and Smith 2004) and is used for
both the derivation of the asymptotic properties in Section 4.2.3 and the numerical implementation
in Section 4.3.

4.2.3 Asymptotic Properties

This section provides some asymptotic properties of the proposed estimator and corresponding
assumptions. When establishing these properties, we consider the setting where Nk/n → ck ∈
(0,∞) as n → ∞, k = 1, . . . , K, which means that Nk is of the same order as n and thus
the uncertainty in the external summary information can not be ignored for data integration. If
ck = 0 then there is no need to integrate the external information, and if ck = ∞ then there is no
uncertainty associated with the external information, both of which are cases already considered
in the existing literature.

Assumption 4.1. (i) B ×A× C × T , the parameter space for (β,α,θ,γ), is compact;

(ii) E [log f(Y |X,Z;β)] is uniquely maximized at β0 ∈ B;

(iii) (αI∗,θI∗) is the unique solution to E[g(X,Z;β0,α,θ)] = 0;

(iv) log f(Y |X,Z;β) is continuous at each β ∈ B with probability one;

(v) g(X,Z;β,α,θ) is continuous at each (β,α,θ) ∈ B ×A× C with probability one;

(vi) E
[
sup(β,α,θ)∈B×A×C ∥g(X,Z;β,α,θ)∥a

]
<∞ for some a > 2;

(vii) E
[
g(X,Z;β0,α

I∗,θI∗)g(X,Z;β0,α
I∗,θI∗)T

]
is non-singular;

(viii) supβ∈B n
−1/2

∑n
i=1{log fi(β)− E[log f(Y |X,Z;β)]} = Op(1);

(ix) sup(β,α,θ)∈(B×A×C) n
−1/2

∑n
i=1{g(Xi,Zi;β,α,θ)− E[g(X,Z;β,α,θ)]} = Op(1);
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(x) λn = Op(n
−ξ) for some ξ with 1/a < ξ < 1/2.

Assumptions 4.1(i)-(vii) are standard ones commonly made in the literature on maximum like-
lihood estimator and empirical likelihood estimator (e.g., Newey and McFadden 1994; Qin and
Lawless 1994; Newey and Smith 2004); (viii) and (ix) are functional Central Limit Theorem,
which is a standard result in the empirical processes theory (Donsker’s Theorem, e.g., Andrews
1994; van der Vaart and Wellner 1996; van der Vaart 2000; Kosorok 2008) and is a uniform ver-
sion of the standard Central Limit Theorem that holds under the typical regularity conditions (e.g.
Newey and McFadden 1994); (x) is an assumption on the turning parameter λn and ensures that
the aLasso penalty function is small enough compared to the likelihood function and disappears as
n→∞ to avoid introducing estimation bias.

Under Assumption 4.1, the consistency of (β̂, α̂, θ̂, γ̂) is given by Theorem 4.1. The proof
makes use of the saddle-point representation in (4.4). This proof, together with the proofs of all
other theorems, is given in Section 4.7.

Theorem 4.1. (Consistency) Under Assumption 4.1, the estimator (β̂, α̂, θ̂, γ̂) converges to (β0,

αI∗,θI∗,γ∗) in probability as n→∞.

To establish the
√
n-convergence of (β̂, α̂, θ̂, γ̂), we need some additional assumptions.

Assumption 4.2. (i) (β0,α
I∗,θI∗,γ∗) is in the interior of B ×A× C × T ;

(ii) g(X,Z;β,α,θ) is continuously differentiable in some neighborhood BN × AN × CN of

(β0,α
I∗,θI∗) and E[sup(β,α,θ)∈BN×AN×CN ∥∂g(β,α,θ)/∂µ∥] <∞, whereµT = (βT ,αT ,

θT );

(iii) log f(Y |X,Z;β) is twice continuously differentiable in some neighborhood BN of β0 and

E[supβ∈BN
∥∂s(β)/∂β∥] <∞, where s(β) = ∂ log f(Y |X,Z;β)/∂β;

(iv) E
[
∂2 log f(Y |X,Z;β0)/∂β∂β

T
]

is non-singular;

(v) E
[
∂g
(
X,Z;β0,α

I∗,θI∗
)
/∂η

]
is non-singular, where ηT = (αT ,θT );

(vi) λn = op(n
−1/2).

Assumption 4.2(i)-(v) are similar to those made in Newey and McFadden (1994), Newey and
Smith (2004) and Liao (2013). The

√
n-convergence requires that the tuning parameter converges

to zero fast enough so that the aLasso penalty is asymptotically small compared to the likelihood,
and (vi) specifies the convergence rate.
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Theorem 4.2. (
√
n-Consistency) Under Assumptions 4.1 and 4.2, we have (i) ∥β̂ − β0∥ =

Op(n
−1/2); (ii) ∥α̂ − αI∗∥ = Op(n

−1/2), ∥θ̂ − θI∗∥ = Op(n
−1/2), and ∥γ̂ − γ∗∥ = Op(n

−1/2);

and (iii) ρ̂ = argmaxρ
∑n

i=1 log[1− ρTgi(β̂, α̂, θ̂)], the Lagrange multiplier as in (4.4), exists

with probability approaching one and ∥ρ̂∥ = Op(n
−1/2).

Consistency and
√
n-consistency of (β̂, α̂, θ̂, γ̂) does not imply the consistency of selection of

external information that is compatible with the internal study population. Let K=0 = {(k, j) :

γ∗
(kj) = 0, k = 1, · · · , K, j = 1, · · · , dk} and K ̸=0 = {(k, j) : γ∗

(kj) ̸= 0, k = 1, · · · , K, j =

1, · · · , dk} denote the index sets for the zero and nonzero components of γ∗, corresponding to
the coefficients provided by external studies that are the same as the corresponding coefficients of
the internal study and those that are different, respectively. Let K̂=0 = {(k, j) : γ̂(kj) = 0, k =

1, · · · , K, j = 1, · · · , dk} and K̂ ̸=0 = {(k, j) : γ̂(kj) ̸= 0, k = 1, · · · , K, j = 1, · · · , dk} denote
the index sets for the zero and nonzero components of γ̂, corresponding to the external study
coefficients that are selected by the dPCML method for information integration and those that
are not selected, respectively. Then selection consistency means that K̂=0 is the same as K=0

asymptotically.
To ensure the selection consistency, we impose the following condition on the convergence rate

of the tuning parameter λn, which ensures that λn does not converge to zero too fast so that the
aLasso penalty can shrink γ̂(kj) to exactly zero for those γ∗

(kj) = 0.

Assumption 4.3. n1/2+w/2λn →∞ as n→∞.

We have the following result regarding the selection consistency of external information.

Theorem 4.3. Under Assumptions 4.1, 4.2 and 4.3, we have limn→∞ P (K̂=0 = K=0) = 1.

To derive the asymptotic distribution of the proposed estimator, rewrite γ∗ as γ∗T = (γ∗
̸=0

T ,

γ∗
=0

T ) without loss of generality, where γ∗
̸=0 contains those γ∗

(kj) that γ∗
(kj) ̸= 0 and γ∗

=0 contains
those γ∗

(kj) that γ∗
(kj) = 0. Denote the dimension of γ∗

̸=0 as d ̸=0 and the dimension of γ∗
=0 as d=0.

Correspondingly, write θ as θT = (θT̸=0,θ
T
=0), γ as γT = (γT

̸=0,γ
T
=0), and γ̂ as γ̂T = (γ̂T

̸=0, γ̂
T
=0).

Let V E = diag(c1ΣE−1

(1) , · · · , cKΣE−1

(K) ), and then rearrange the rows/columns of V E according
to γ∗ = (γ∗

̸=0
T ,γ∗

=0
T )T . Define νT = (βT ,αT ,θT ,γT

̸=0), ν
T
0 = (βT

0 ,α
I∗T ,θI∗

T
,γ∗

̸=0
T ), and

ν̂T = (β̂T , α̂T , θ̂T , γ̂T
̸=0). Because γ̂=0 = 0 with probability approaching one based on Theorem

4.3, we just need to derive the asymptotic distribution of ν̂. The result is given by the following
theorem.
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Theorem 4.4. (Asymptotic Normality) Under Assumptions 4.1, 4.2 and 4.3, we have
√
n(ν̂ −

ν0)
d→ N

0,

{[
S0 0

0 0

]
+

[
0 0

0 ATV EA

]
+

[
GT

µΩ
−1Gµ 0

0 0

]}−1
, where S0 = E[s(β0)

s(β0)
T ], A =

[
Id̸=0

0 −Id̸=0

0 Id=0 0

]
, Gµ = E

[
∂g
(
X,Z;β0,α

I∗,θI∗
)
/∂µ

]
, µT = (βT ,αT ,

θT ), and Ω = E
[
g(X,Z;β0,α

I∗,θI∗)g(X,Z;β0,α
I∗,θI∗)T

]
.

Based on Theorem 4.4 we have the following corollary.

Corollary 4.1. Under Assumptions 4.1, 4.2 and 4.3, (i) β̂ is asymptotically more efficient than

β̂MLE , the MLE based on the internal study data alone; (ii) β̂ is asymptotically as efficient as the

estimator for β0 that knows which components of θI∗ and θE∗ are equal and only incorporates

information from the corresponding components of θ̃E , i.e., the estimator for β0 defined through

max
β,α,θ

max
p1,··· ,pn

{
log

[
n∏

i=1

fi(β)pi

]
−

K∑
k=1

Nk

2
(θ=0,(k) − θ̃E=0,(k))

T Σ̃E−1

=0,(k)(θ=0,(k) − θ̃E=0,(k))

}

subject to pi ≥ 0,
n∑

i=1

pi = 1,
n∑

i=1

pigi(β,α,θ) = 0,

where θ=0,(k), θ̃E=0,(k), and Σ̃E
=0,(k) denote the components of θ(k), θ̃E(k), and Σ̃E

(k) corresponding to

those γ(kj) that γ∗
(kj) = 0, respectively.

All the above results are established by using Σ̃E
(k), a consistent estimate of ΣE

(k) provided by the
external studies in addition to the estimate θ̃E(k), to account for the uncertainty associated with θ̃E(k).
It turns out that Theorems 4.1, 4.2 and 4.3 still hold even if Σ̃E

(k) is not consistent for ΣE
(k). These

three theorems remain valid if Σ̃E
(k) is replaced by any positive definite matrix with dimension

equal to that of θ(k). In particular, when only the standard errors for the components of θ̃E(k) are
available, Σ̃E

(k) can be replaced by a diagonal matrix based on the standard errors. When only the
external study sample size Nk is available instead of any standard errors, Σ̃E

(k) can be replaced
with the identity matrix. Consistency of estimation and information selection remains valid. The
asymptotic distribution in Theorem 4.4 will, however, be different. It is hard to establish a clear
comparison as in Corollary 4.1 in this case, but our simulation studies show that the proposed
estimator still has efficiency improvement over the MLE by integrating the external information.
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4.3 Implementation

4.3.1 Implementation Based on Saddle-Point Representation

The numerical implementation of the proposed dPCML method is based on the saddle-point rep-
resentation (4.4) and consists of two loops, following the recommendation from the empirical
likelihood literature (e.g., Owen 2001; Kitamura 2007; Han and Lawless 2019). The inner loop
computes the Lagrange multiplier ρ(β,α,θ) at a given value of (β,α,θ), and the outer loop
updates (β,α,θ,γ).

Specifically, the inner loop is maxρ
∑n

i=1 log
{
1− ρT [gi(β,α,θ)]

}
as in (4.4). When the

given value (β,α,θ) is close to the true value (β0,α
I∗,θI∗), which is indeed the case dur-

ing the implementation if the initial value of (β,α,θ) is taken to be the consistent estimator
(β̂MLE, α̃

I , θ̃I), the inner loop is a concave maximization with a unique maximizer (e.g., Han
2014). Thus the inner loop can be easily implemented based on the Newton-Raphson algorithm,
for which the initial value can be simply set as ρ = 0 because of Theorem 4.2.

To present the outer loop, let ρ̂(β,α,θ) denote the computed Lagrange multiplier from the
inner loop at a given (β,α,θ). The outer loop computes the dPCML estimator (β̂, α̂, θ̂, γ̂) in the
following steps.
Step 0. Take the initial value (β̂(0), α̂(0), θ̂(0), γ̂(0)) = (β̂MLE, α̃

I , θ̃I , θ̃I − θ̃E).
With (β̂(l), α̂(l), θ̂(l), γ̂(l)) available from the l-th iteration (l = 0, 1, 2, · · · ), in the (l + 1)-th

iteration the outer loop obtains (β̂(l+1), α̂(l+1), θ̂(l+1), γ̂(l+1)) based on a block coordinate descent
procedure.
Step 1. For k = 1, · · · , K, j = 1, · · · , dk, set γ̂(l+1)

(kj) equal to 0 if

∣∣∣∣Nk

n

[
Σ̃E−1

(k)

]
j.

[
θ̂
(l)
(k) − γ̂

(
l+ j

dk

)
(k) (0)− θ̃E(k)

]∣∣∣∣ < λn

|θ̃I(kj) − θ̃E(kj)|w
(4.5)

and equal to the root of the equation

λn

|θ̃I(kj) − θ̃E(kj)|w
γ̂(kj)
|γ̂(kj)|

− Nk

n

[
Σ̃E−1

(k)

]
j.

[
θ̂
(l)
(k) − γ̂

(
l+ j

dk

)
(k) (γ(kj))− θ̃E(k)

]
= 0 (4.6)

as an equation for γ(kj) if (4.5) does not hold, where
[
Σ̃E−1

(k)

]
j.

denotes the jth row of Σ̃E−1

(k) , and

γ̂

(
l+ j

dk

)
(k) (γ(kj)) =

[
γ̂
(l+1)
(k,1) , · · · , γ̂

(l+1)
(k,j−1), γ(kj), γ̂

(l)
(k,j+1), · · · , γ̂

(l)
(k,dk)

]T
.
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Step 2. Set (α̂(l+1), θ̂(l+1)) equal to the root of the equation

∑n
i=1

{∂gi(β̂(l),α,θ)/∂α}T ρ̂(β̂(l),α,θ)

1−[ρ̂(β̂(l),α,θ)]
T
[gi(β̂(l),α,θ)]

= 0

−N1Σ̃
E−1

(1)

{
θ(1) − (θ̃E(1) + γ̂

(l+1)
(1) )

}
+
∑n

i=1

{∂gi(β̂(l),α,θ)/∂θ(1)}T ρ̂(β̂(l),α,θ)

1−[ρ̂(β̂(l),α,θ)]
T
[gi(β̂(l),α,θ)]

= 0

...

−NKΣ̃
E−1

(K)

{
θ(K) − (θ̃E(K) + γ̂

(l+1)
(K) )

}
+
∑n

i=1

{∂gi(β̂(l),α,θ)/∂θ(K)}T ρ̂(β̂(l),α,θ)

1−[ρ̂(β̂(l),α,θ)]
T
[gi(β̂(l),α,θ)]

= 0

(4.7)

as an equation for (α,θ).
Step 3. Set β̂(l+1) equal to the root of the equation

n∑
i=1

si(β) +
n∑

i=1

{∂gi(β, α̂(l+1), θ̂(l+1))/∂β}T ρ̂(β, α̂(l+1), θ̂(l+1))

1−
[
ρ̂(β, α̂(l+1), θ̂(l+1))

]T [
gi(β, α̂(l+1), θ̂(l+1))

] = 0. (4.8)

as an equation for β.
Step 4. Repeat Step 1-3 until convergence such that ∥β̂(l+1)−β̂(l)∥, ∥α̂(l+1)−α̂(l)∥, ∥θ̂(l+1)−θ̂(l)∥,
and ∥γ̂(l+1) − γ̂(l)∥ are smaller than some pre-specified small number and K̂(l+1)

=0 = K̂(l)
=0, where

K̂(l)
=0 = {(k, j) : γ̂

(l)
(kj) = 0, k = 1, · · · , K, j = 1, · · · , dk}.

Equations (4.6), (4.7) and (4.8) are the first-order condition of the saddle-point representation
(4.4) with respect to γ(kj) when γ(kj) ̸= 0, α, θ and β, respectively, treating ρ̂(β,α,θ) as an
implicit function of (β,α,θ). These equations can be solved based on the Newton-Raphson algo-
rithm, for which the calculation of the Jacobian matrices of the left-hand sides of (4.7) and (4.8)
needs to again treat ρ̂(β,α,θ) as an implicit function of (β,α,θ). The expression of the Jacobian
matrix for (4.8) is the same as that in Han and Lawless (2019) and the expression for (4.7) can be
similarly derived. Details are omitted here due to their lengthy expressions.

4.3.2 Tuning Parameter Selection

The rate of convergence of the tuning parameter λn is crucial when deriving the asymptotic prop-
erties of the dPCML estimator, and Assumptions 4.2(vi) and 4.3 specify some sufficient conditions
on the convergence rate that guarantee the

√
n-convergence of the dPCML estimator and the infor-

mation selection consistency. For practical implementation, however, we need an effective way of
selecting a concrete value for the tuning parameter.
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Note from (4.5) that γ∗
(kj) is estimated exactly as zero if∣∣∣∣Nk√

n

[
Σ̃E−1

(k)

]
j.

[
θ̂(k) − γ̂(k,−j) − θ̃E(k)

]∣∣∣∣ < √
nλn

|θ̃I(kj) − θ̃E(kj)|w
, (4.9)

where γ̂(k,−j) = (γ̂(k,1), · · · , γ̂(k,j−1), 0, γ̂(k,j+1), · · · , γ̂(k,dk))T .
For any γ∗

(kj) ̸= 0, the left-hand side of (4.9) is asymptotically bounded away from zero, in
which case to avoid estimating γ∗

(kj) to be zero
√
nλn needs to converge to zero as fast as possible,

since |θ̃I(kj) − θ̃E(kj)|w converges to a non-zero constant. With all γ∗
(kj) ̸= 0 estimated as non-zeros,

for any γ∗
(kj) = 0, the left-hand side of (4.9) is of order Op(1), and in addition |θ̃I(kj) − θ̃E(kj)| =

Op(n
−1/2). Therefore, to estimate γ∗

(kj) = 0 exactly as zero n1/2+w/2λn needs to diverge to infinity
as fast as possible. These considerations agree with Assumptions 4.2(vi) and 4.3. To balance these
rate requirements on λn, we choose λn = Cn−1/2−w/4, where C is a positive constant. We did an
exploration of the idea in Liao (2013) to select C and found that the numerical performance with
selected C was similar to that with C = 1 when the covariance matrix for θ̃E(k) or the standard
errors for the components of θ̃E(k) are available as a quantification of the uncertainty, but was worse
when only the sample size Nk is available. Thus we recommend to take C = 1 in implementation,
which also avoids the complex procedure of selecting C.

4.4 Simulation Studies

4.4.1 Simulation Setup

The internal study has covariates X1, X2, · · · , X5 and Z1, Z2, where (X1, X̃2, X5) ∼ N (0,Σ125)

with unit variances, correlation coefficients ρ12 = ρ25 = 0.3 and ρ15 = 0.2, X2 = I(X̃2 >

0), X3 ∼ Exponential(1), X4 ∼ Bernoulli(0.4), and Z|X ∼ N ((X1 + X3, X1 − X3),ΣZ)

with unit variances and correlation coefficient 0.2. Given X and Z, Y is generated from a
Bernoulli distribution with logit{P (Y = 1|X,Z)} = (1, X1, · · · , X5, Z1, Z2, X1Z1)β0 and βT

0 =

(1, 0.5,−1.5, 1,−1, 0.5,−0.5, 0.5, 1). The internal study model is the logistic regression logit{P (Y

= 1|X, Z)} = βc+βX1X1+ · · ·+βX5X5+βZ1Z1+βZ2Z2+βX1Z1X1Z1 with βT = (βc, βX1 , · · · ,
βX5 , βZ1 , βZ2 , βX1Z1) having true value β0.

We consider three external studies. For Study 1 the data are generated as (X1, X̃2, X5) ∼
N ((−0.5,−0.5, 0),Σ125), X2 = I(X̃2 > 0), X3 ∼ Exponential(1.25), X4 and Z|X follow the
same distributions as in the internal study, Y follows a Bernoulli distribution with logit{P (Y =

1|X,Z)} = (1, X1, · · · , X5, Z1, Z2, X1Z1)β1∗ and βT
1∗ = (0.75, 1,−1, 0.75,−1, 0.8,−0.6, 0.75,
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0.75). Study 1 measures only Y , X4 and X5 to fit the logistic regression model logit{P (Y =

1|X4, X5)} = θ(1,1) + θ(1,2)X4 + θ(1,3)X5. Some numerical calculation based on a large sam-
ple size 106 for both the internal study and Study 1 shows that γ∗

(1) = (γ∗
(1,1), γ

∗
(1,2), γ

∗
(1,3))

T =

(0.622, 0.001,−0.212)T , with the second component almost zero.
Study 2 has the same data distribution as the internal study and measures only Y , X1, X2 and

X5 to fit the logistic regression model logit{P (Y = 1|X1, X2, X5)} = θ(2,1)+θ(2,2)X1+θ(2,3)X2+

θ(2,4)X5. It is clear that γ∗
(2) = (γ∗

(2,1), γ
∗
(2,2), γ

∗
(2,3), γ

∗
(2,4))

T = (0, 0, 0, 0)T .
For Study 3 the data are generated as (X1, X̃2, X5) ∼ N ((0, 0.5, 0.5),Σ125), X2 = I(X̃2 >

0), X3 and X4 follow the same distributions as the internal study, Y follows a Bernoulli dis-
tribution with logit{P (Y = 1|X)} = (1, X1, X2, · · · , X5)(α

I∗
(3,1) − 0.5, αI∗

(3,2) + 0.5, θI∗(3,1) −
0.5, θI∗(3,2), θ

I∗
(3,3), θ

I∗
(3,4))

T , where (αI∗T
(3) ,θ

I∗T
(3) )

T = (αI∗
(3,1), α

I∗
(3,2), θ

I∗
(3,1), θ

I∗
(3,2), θ

I∗
(3,3), θ

I∗
(3,4))

T is derived
by fitting the corresponding logistic regression model to a data set with sample size 106 generated
under the internal data distribution. Study 3 measures Y and X1, X2, · · · , X5 to fit the logistic re-
gression model logit{P (Y = 1|X)} = α(3,1)+α(3,2)X1+θ(3,1)X2+θ(3,2)X3+θ(3,3)X4+θ(3,4)X5.
After model fitting, Study 3 provides information about θ(3,1), θ(3,2), θ(3,3) and θ(3,4), but not α(3,1)

and α(3,2). It is clear that γ∗
(3) = (γ∗

(3,1), γ
∗
(3,2), γ

∗
(3,3), γ

∗
(3,4))

T = (−0.5, 0, 0, 0)T .
For the three external studies, h(k)(Y,X(k);η(k)) = h(k)(Y,X(k);α(k),θ(k)) is the score func-

tion for the corresponding external logistic regression model, where X(1) = (X4, X5), X(2) =

(X1, X2, X5) and X(3) = (X1, X2, X3, X4, X5). Here both α(1) and α(2) are the null set, while
α(3) = (α(3,1), α(3,2))

T , for which Study 3 does not provide any information. The three external
studies provide the estimates θ̃E(k). For the uncertainty associated with θ̃E(k), we consider three sce-
narios: (i) the variance matrices N−1

k Σ̃E
(k) for θ̃E(k) are available from external studies, (ii) only the

standard errors for the components of θ̃E(k) are available, and (iii) only Nk are available.
We consider two sample sizes, n = 300 and 800, for the internal study. The external study

sample sizes are set as N1 = 3n, N2 = 2n and N3 = n for Studies 1, 2, and 3, respectively, in order
to be consistent with our assumption that Nk/n → ck > 0 as n → ∞ and the consideration that
studies which collect more covariates may have smaller sample sizes due to budget or technical
constraints. We summarize the results based on 1000 replications. Each replication regenerates
both the internal and the external data. We take w = 2 in (4.3) for the aLasso penalty.

To make comparisons, in addition to the MLE using internal study data alone, we also include
the CML estimator of Chatterjee et al (2016), the generalized integration method (GIM) estimator
of Zhang et al. (2020), the optimal covariance weighted (OCW) estimator and the selective coeffi-
cient learner (SCL) of Gu et al. (2021), and the the component-wise PCML estimator of Zhai and
Han (2022). Since the CML, OCW, SCL and PCML estimators do not deal with cases where only
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the information about some subset of external regression coefficients is available, Study 3 is dis-
carded when computing these estimators. The CML and PCML estimators do not account for the
uncertainty of external information. For the OCW and SCL estimators we make use of N−1

k Σ̃E
(k)

to account for the uncertainty in θ̃E(k). The GIM method makes use of Nk only since it assumes
population homogeneity and computes the covariance matrix. The OCW and SCL estimators are
computed by the R package “MetaIntegration” (Gu et al. 2021) and the GIM estimator is computed
by the R package “gim” (Zhang and Yu 2022).

4.4.2 Simulation Observations

From Tables 4.1 and 4.2, it is seen that our proposed estimator (dPCML) has substantial efficiency
improvement without introducing bias, compared to the MLE, by integrating external study in-
formation and properly accounting for the associated uncertainty. When only the standard errors
for the components of θ̃E(k) are available from external studies instead of the variance matrices
N−1

k Σ̃E
(k) as a quantification of the uncertainty, the performance stays almost the same. When only

Nk is available, the improvement over MLE becomes smaller but is still substantial. The obser-
vation that the proposed estimator remains unbiased even if the external uncertainty can only be
quantified by the sample size is in full agreement with the discussion at the end of Section 4.2.3.

As a comparison, the CML estimator has a substantial bias because of the heterogeneity be-
tween Study 1 and the internal study data distributions. Moreover, compared to the MLE, the CML
estimator may even have larger empirical standard errors since it does not account for the uncer-
tainty in the external information. The OCW and SCL estimators are unbiased but the reduction in
empirical standard errors compared to the MLE is not as impressive as our proposed estimator. The
PCML estimator has no clear-cut improvement over the MLE since its bias is not negligible when
n = 300 and its empirical standard errors are not necessarily smaller, due to ignoring the external
information uncertainty. The GIM estimator is clearly biased although it has a substantial reduction
of empirical standard errors compared to the MLE, due to the study population heterogeneity.

Table 4.3 presents the percentage of estimating γ∗
(kj) exactly as zero by our proposed method.

It is seen that, as n increases from 300 to 800, the percentage of estimating the γ∗
(kj) = 0 as zero

increases and the percentage of estimating γ∗
(kj) ̸= 0 as zero decreases, in full agreement with the

selection consistency of external information.
We have also done some simulations by setting the external study sample sizes as Nk = 50000

for k = 1, 2, 3 so the uncertainty in the external summary information is negligible. The results
are summarized in Tables 4.4 and 4.5. It is seen that dPCML-i, dPCML-ii and dPCML-iii have
very similar performance in this case due to the negligible uncertainty. The performance is again
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Table 4.1: Simulation results summarized based on 1000 replications with internal sample size
n = 300 and external sample sizes N1 = 3n, N2 = 2n, N3 = n.

βc βX1
βX2

βX3
βX4

βX5
βZ1

βZ2
βX1Z1

MLE
Bias 0.054 0.019 -0.064 0.038 -0.069 0.030 -0.027 0.013 0.063
ESE 0.351 0.304 0.358 0.335 0.342 0.178 0.180 0.171 0.182
RMSE 0.355 0.305 0.364 0.337 0.349 0.180 0.182 0.172 0.193

dPCML-i
Bias 0.035 0.026 -0.099 0.040 -0.045 0.077 -0.026 0.013 0.063
ESE 0.283 0.279 0.274 0.323 0.270 0.130 0.180 0.171 0.182
RMSE 0.286 0.281 0.292 0.326 0.274 0.151 0.182 0.172 0.193

dPCML-ii
Bias 0.020 0.026 -0.093 0.038 -0.042 0.081 -0.026 0.013 0.063
ESE 0.284 0.279 0.274 0.324 0.270 0.130 0.180 0.171 0.182
RMSE 0.285 0.280 0.290 0.326 0.273 0.153 0.182 0.172 0.193

dPCML-iii
Bias 0.055 0.039 -0.115 0.035 -0.069 0.065 -0.026 0.013 0.063
ESE 0.307 0.282 0.305 0.334 0.286 0.142 0.180 0.171 0.183
RMSE 0.312 0.285 0.326 0.336 0.294 0.156 0.182 0.172 0.193

CML
Bias 0.262 0.402 -0.161 0.036 -0.375 0.059 -0.027 0.015 -0.051
ESE 0.332 0.350 0.344 0.347 0.326 0.157 0.185 0.178 0.215
RMSE 0.423 0.533 0.380 0.348 0.497 0.168 0.187 0.179 0.221

OCW
Bias 0.050 0.018 -0.061 0.038 -0.069 0.029 -0.026 0.013 0.063
ESE 0.332 0.291 0.321 0.335 0.342 0.160 0.180 0.171 0.182
RMSE 0.336 0.291 0.327 0.337 0.348 0.162 0.182 0.172 0.193

SCL
Bias 0.038 0.018 -0.062 0.038 -0.067 0.034 -0.026 0.013 0.063
ESE 0.339 0.291 0.320 0.335 0.333 0.166 0.180 0.171 0.182
RMSE 0.342 0.291 0.326 0.337 0.340 0.169 0.182 0.172 0.193

GIM
Bias -0.131 0.143 -0.232 0.043 -0.067 0.101 -0.026 0.013 0.061
ESE 0.255 0.279 0.257 0.320 0.250 0.116 0.180 0.171 0.183
RMSE 0.287 0.314 0.347 0.323 0.259 0.154 0.182 0.172 0.193

PCML
Bias 0.173 0.022 -0.068 0.038 -0.432 0.081 -0.026 0.013 0.062
ESE 0.383 0.288 0.318 0.335 0.574 0.158 0.180 0.171 0.182
RMSE 0.421 0.289 0.325 0.337 0.718 0.178 0.182 0.172 0.193

1 ESE: empirical standard error. RMSE: root mean squared error.
2 CML: constrained maximum likelihood (Chatterjee et al. 2016). GIM: generalized integration method (Zhang et

al. 2020). OCW: optimal covariance weighted (Gu et al. 2021). SCL: selective coefficient learner (Gu et al. 2021).
PCML: the PCML method (Zhai and Han 2022).

3 -i, -ii, -iii: using Σ̃(k), diag(Σ̃(k)) and Idk
in (4.3).
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Table 4.2: Simulation results summarized based on 1000 replications with internal sample size
n = 800 and external sample sizes N1 = 3n, N2 = 2n, N3 = n.

βc βX1
βX2

βX3
βX4

βX5
βZ1

βZ2
βX1Z1

MLE
Bias 0.003 0.000 -0.015 0.021 -0.012 0.004 -0.005 0.009 0.024
ESE 0.192 0.164 0.207 0.208 0.191 0.105 0.107 0.104 0.110
RMSE 0.193 0.164 0.208 0.209 0.192 0.105 0.107 0.105 0.113

dPCML-i
Bias 0.007 0.004 -0.044 0.020 -0.003 0.043 -0.005 0.009 0.024
ESE 0.149 0.152 0.165 0.201 0.141 0.079 0.107 0.104 0.110
RMSE 0.149 0.152 0.171 0.202 0.141 0.090 0.107 0.105 0.113

dPCML-ii
Bias -0.003 0.003 -0.034 0.019 -0.005 0.046 -0.005 0.009 0.024
ESE 0.151 0.153 0.167 0.201 0.141 0.079 0.107 0.104 0.110
RMSE 0.151 0.153 0.171 0.202 0.141 0.092 0.107 0.105 0.113

dPCML-iii
Bias 0.006 0.004 -0.037 0.016 -0.011 0.029 -0.005 0.009 0.024
ESE 0.168 0.156 0.183 0.205 0.156 0.083 0.107 0.104 0.110
RMSE 0.168 0.156 0.187 0.206 0.156 0.088 0.107 0.105 0.113

CML
Bias 0.226 0.367 -0.101 0.030 -0.362 0.047 -0.015 0.015 -0.072
ESE 0.207 0.219 0.216 0.216 0.183 0.095 0.108 0.110 0.138
RMSE 0.307 0.428 0.239 0.218 0.406 0.106 0.109 0.111 0.155

OCW
Bias 0.001 -0.001 -0.013 0.021 -0.012 0.005 -0.005 0.009 0.024
ESE 0.181 0.158 0.187 0.208 0.191 0.094 0.107 0.104 0.110
RMSE 0.181 0.158 0.188 0.209 0.192 0.094 0.107 0.105 0.113

SCL
Bias -0.004 -0.001 -0.013 0.021 -0.012 0.006 -0.005 0.009 0.024
ESE 0.186 0.158 0.187 0.208 0.189 0.098 0.107 0.104 0.110
RMSE 0.186 0.158 0.188 0.209 0.190 0.099 0.107 0.105 0.113

GIM
Bias -0.170 0.123 -0.181 0.023 -0.021 0.084 -0.004 0.009 0.022
ESE 0.145 0.156 0.155 0.199 0.139 0.071 0.107 0.104 0.110
RMSE 0.223 0.199 0.238 0.201 0.141 0.109 0.107 0.105 0.112

PCML
Bias 0.019 -0.006 -0.015 0.021 -0.077 0.028 -0.005 0.009 0.023
ESE 0.203 0.159 0.179 0.208 0.309 0.096 0.107 0.104 0.110
RMSE 0.204 0.159 0.180 0.209 0.318 0.100 0.107 0.105 0.113

1 ESE: empirical standard error. RMSE: root mean squared error.
2 CML: constrained maximum likelihood (Chatterjee et al. 2016). GIM: generalized integration method (Zhang et

al. 2020). OCW: optimal covariance weighted (Gu et al. 2021). SCL: selective coefficient learner (Gu et al. 2021).
PCML: the PCML method (Zhai and Han 2022).

3 -i, -ii, -iii: using Σ̃(k), diag(Σ̃(k)) and Idk
in (4.3).
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Table 4.3: The percentage (%) of estimating γ∗
(kj) as zero, summarized based on 1000 replications

with external sample sizes N1 = 3n, N2 = 2n, N3 = n.

γ∗
(kj) ̸= 0 γ∗

(kj) = 0

γ(1,1) γ(1,3) γ(3,1) γ(1,2) γ(2,1) γ(2,2) γ(2,3) γ(2,4) γ(3,2) γ(3,3) γ(3,4)

n = 300

dPCML-i 0.9 56.9 49.2 83.9 85.7 89.8 82.2 89.4 92.1 81.5 88.5
dPCML-ii 1.2 57.7 50.1 84.3 89.1 90.7 86.4 89.9 91.9 80.4 88.5
dPCML-iii 0.5 38.9 26.9 70.3 76.8 85.4 65.9 75.0 82.5 56.7 66.8

n = 800

dPCML-i 0.0 27.0 27.5 91.3 92.5 96.4 86.9 94.0 95.2 89.3 92.6
dPCML-ii 0.0 27.8 28.9 91.7 94.8 97.0 91.1 94.6 94.8 89.8 93.1
dPCML-iii 0.0 13.4 10.3 78.7 87.4 92.0 78.9 82.1 88.5 67.4 73.9

1 -i, -ii, -iii: using Σ̃(k), diag(Σ̃(k)) and Idk
in (4.3).

overall better than all the other estimators under comparison in terms of bias and/or empirical
standard errors. Note that here the GIM estimator is not calculated since many replications failed
when using the R package “gim”. The GIM method may not work so well in the presence of
substantial population heterogeneity, especially when the external sample sizes are much larger
than the internal sample size.

4.5 Data Application

We apply the proposed dPCML method to study the association between the risk of developing
high-grade prostate cancer (Gleason score ≥ 7) and certain risk factors, with individual-level data
from an internal study as well as two external risk calculators from different studies.

The effects of some commonly considered risk factors, including demographic and clinical
variables such as age, race, the prostate specific antigen (PSA) level, the digital rectal examination
(DRE) finding and prior biopsy result, have been studied extensively in the literature. Among the
studies, Thompson et al. (2006) built an online risk calculator for calculating the risk of developing
high-grade prostate cancer, using data collected in the 1990s from 5519 men in the placebo group
of the Prostate Cancer Prevention Trial (PCPT) in the United States. This PCPT risk calculator
is the first online prostate cancer risk assessment tool and is among the most widely used ones.
The model behind this risk calculator, together with the estimates (and 95% confidence intervals)
for the model parameters, is provided in Thompson et al. (2006) as follows: logit(P (Y = 1)) =

−6.25+1.29 log(X1)+0.03X2+1.00X3− 0.36X4+0.96X5, where Y is the high-grade prostate
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Table 4.4: Simulation results summarized based on 1000 replications with internal sample size
n = 300 and external sample sizes N1 = N2 = N3 = 50, 000.

βc βX1 βX2 βX3 βX4 βX5 βZ1 βZ2 βX1Z1

MLE
Bias 0.054 0.019 -0.064 0.038 -0.069 0.030 -0.027 0.013 0.063
ESE 0.351 0.304 0.358 0.335 0.342 0.178 0.180 0.171 0.182
RMSE 0.355 0.305 0.364 0.337 0.349 0.180 0.182 0.172 0.193

dPCML-i
Bias 0.041 0.030 -0.124 0.038 -0.050 0.043 -0.026 0.013 0.062
ESE 0.233 0.266 0.298 0.308 0.226 0.119 0.180 0.171 0.182
RMSE 0.237 0.268 0.323 0.310 0.232 0.127 0.182 0.172 0.193

dPCML-ii
Bias 0.039 0.029 -0.124 0.038 -0.050 0.043 -0.026 0.013 0.062
ESE 0.232 0.266 0.298 0.308 0.226 0.119 0.180 0.171 0.182
RMSE 0.235 0.268 0.323 0.310 0.232 0.127 0.182 0.172 0.193

dPCML-iii
Bias 0.048 0.033 -0.110 0.039 -0.061 0.042 -0.026 0.013 0.062
ESE 0.250 0.268 0.318 0.309 0.260 0.121 0.180 0.171 0.182
RMSE 0.255 0.270 0.337 0.311 0.267 0.128 0.182 0.172 0.193

CML
Bias 0.258 0.404 -0.140 0.035 -0.375 0.059 -0.027 0.014 -0.053
ESE 0.291 0.331 0.314 0.345 0.277 0.135 0.183 0.177 0.207
RMSE 0.389 0.522 0.344 0.347 0.466 0.147 0.185 0.178 0.214

OCW
Bias 0.049 0.017 -0.060 0.038 -0.069 0.028 -0.026 0.013 0.063
ESE 0.324 0.285 0.308 0.335 0.342 0.151 0.180 0.171 0.182
RMSE 0.328 0.286 0.313 0.337 0.348 0.154 0.182 0.172 0.193

SCL
Bias 0.037 0.017 -0.060 0.038 -0.067 0.034 -0.026 0.013 0.063
ESE 0.335 0.285 0.307 0.335 0.333 0.162 0.180 0.171 0.182
RMSE 0.338 0.285 0.313 0.337 0.340 0.165 0.182 0.172 0.193

PCML
Bias 0.197 0.026 -0.064 0.038 -0.493 0.068 -0.026 0.013 0.063
ESE 0.362 0.265 0.243 0.335 0.610 0.124 0.180 0.171 0.183
RMSE 0.413 0.266 0.252 0.337 0.784 0.142 0.182 0.172 0.193

1 ESE: empirical standard error. RMSE: root mean squared error.
2 CML: constrained maximum likelihood (Chatterjee et al. 2016). OCW: optimal covariance weighted (Gu et al.

2021). SCL: selective coefficient learner (Gu et al. 2021). PCML: the PCML method (Zhai and Han 2022).
3 -i, -ii, -iii: using Σ̃(k), diag(Σ̃(k)) and Idk

in (4.3).
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Table 4.5: Simulation results summarized based on 1000 replications with internal sample size
n = 800 and external sample sizes N1 = N2 = N3 = 50, 000.

βc βX1
βX2

βX3
βX4

βX5
βZ1

βZ2
βX1Z1

MLE
Bias 0.003 0.000 -0.015 0.021 -0.012 0.004 -0.005 0.009 0.024
ESE 0.192 0.164 0.207 0.208 0.191 0.105 0.107 0.104 0.110
RMSE 0.193 0.164 0.208 0.209 0.192 0.105 0.107 0.105 0.113

dPCML-i
Bias -0.001 0.000 -0.032 0.019 -0.009 0.016 -0.005 0.009 0.024
ESE 0.116 0.144 0.160 0.189 0.114 0.068 0.107 0.104 0.110
RMSE 0.116 0.144 0.163 0.190 0.115 0.070 0.107 0.105 0.113

dPCML-ii
Bias -0.002 0.000 -0.032 0.019 -0.009 0.016 -0.005 0.009 0.024
ESE 0.115 0.144 0.159 0.189 0.114 0.068 0.107 0.104 0.110
RMSE 0.115 0.144 0.163 0.190 0.115 0.070 0.107 0.105 0.113

dPCML-iii
Bias -0.001 0.000 -0.029 0.019 -0.010 0.015 -0.005 0.009 0.023
ESE 0.120 0.144 0.168 0.190 0.119 0.069 0.107 0.104 0.110
RMSE 0.120 0.144 0.170 0.191 0.120 0.071 0.107 0.105 0.113

CML
Bias 0.224 0.364 -0.093 0.030 -0.369 0.043 -0.015 0.015 -0.070
ESE 0.183 0.212 0.195 0.216 0.157 0.083 0.108 0.110 0.132
RMSE 0.289 0.421 0.216 0.219 0.401 0.093 0.109 0.111 0.149

OCW
Bias 0.000 -0.002 -0.014 0.021 -0.012 0.004 -0.005 0.009 0.024
ESE 0.177 0.155 0.178 0.208 0.191 0.089 0.107 0.104 0.110
RMSE 0.177 0.155 0.178 0.209 0.192 0.089 0.107 0.105 0.113

SCL
Bias -0.004 -0.002 -0.014 0.021 -0.012 0.006 -0.005 0.009 0.024
ESE 0.184 0.155 0.178 0.208 0.189 0.096 0.107 0.104 0.110
RMSE 0.184 0.155 0.178 0.209 0.190 0.096 0.107 0.105 0.113

PCML
Bias 0.011 -0.006 -0.014 0.021 -0.061 0.017 -0.005 0.009 0.024
ESE 0.180 0.145 0.129 0.208 0.292 0.073 0.107 0.104 0.110
RMSE 0.180 0.145 0.130 0.209 0.298 0.075 0.107 0.105 0.113

1 ESE: empirical standard error. RMSE: root mean squared error. BSE: mean of ⟨empirical standard error over 200
bootstrap estimates⟩ over 1,000 replications.

2 CML: constrained maximum likelihood (Chatterjee et al. 2016). OCW: optimal covariance weighted (Gu et al.
2021). SCL: selective coefficient learner (Gu et al. 2021). PCML: the PCML method (Zhai and Han 2022).

3 -i, -ii, -iii: using Σ̃(k), diag(Σ̃(k)) and Idk
in (4.3).
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cancer status, X1 is the PSA level (ng/ml), X2 is age, X3 is a binary indicator of an abnormal DRE
result, X4 is a binary indicator of negative previous biopsies, and X5 is a binary indicator of being
African American.

Previous studies have also shown that the prostate volume is related to PSA level (e.g., Bohnen
et al. 2007), and should be taken into account when assessing men for prostate cancer risk (e.g.,
Al-Azab et al. 2007). The European Randomized Study of Screening for Prostate Cancer risk
calculator 3 (ERSPC-RC3) (Roobol et al. 2012), is one of the validated tools for prostate can-
cer risk assessment that include transrectal ultrasound prostate volume (TRUS-PV) as a predictor.
Developed based on data from 3616 men, the ERSPC-RC3 is modeled as logit(P (Y = 1)) =

log(0.03)+ log(3.24)log2(X1)+ log(6.13)X3+log(0.22)log2(X6), where X6 is TRUS-PV reclas-
sified in three categories (25, 40, and 60 cm3), and the lines over log2(X1) and log2(X6) imply that
they are centered. The 95% confidence intervals for all these model estimates are also reported in
Roobol et al. (2012).

Recent research on the biological mechanisms related to the progression of prostate cancer
shows that two specific biomarkers, TMPRSS2:ERG (T2:ERG) and prostate cancer antigen 3
(PCA3), may lead to a better early detection of the disease (e.g., Tomlins et al. 2016). There-
fore, it is of great interest to study the effects of both the aforementioned risk factors (X1, · · · , X6)
and the new biomarkers on the risk of prostate cancer after adjusting for each other. We use part
of the sample collected in Tomlins et al. (2016) as the internal data, which consists of 1218 men
presenting for diagnostic prostate biopsy at seven community clinics throughout the United States.
We fit the logistic regression model logit(P (Y = 1)) = βc+β1 log2(X1)+β2X2+β3X3+β4X4+

β5X5 + β6log2(X6) + β7 log2(Z1 + 1) + β8Z2, where Z1 is the PCA3 score, and Z2 is a binary
indicator dichotomized at the sample median of the T2:ERG score (Cheng et al. 2019). The final
sample size of the internal study is reduced to n = 1174 due to some missing values of TRUS-PV.

When fitting the internal study model, we will incorporate the information from the two ex-
ternal risk calculators, PCPT and ERSPC-RC3. Note that the external sample sizes are both not
very large, especially for the ERSPC-RC3, and thus the uncertainty in the external model estimates
should be properly addressed. Moreover, there are some apparent differences between the internal
study data distribution and the data distribution reported in Thompson et al. (2006) (see Zhai and
Han 2022), and the information from ERSPC-RC3 might also be inconsistent with the internal
study population since ERSPC recruited men through registries in seven European countries not
the United States. The proposed dPCML method, which is proved to be able to account for the
external information uncertainty and study population heterogeneity, is well-suited for this real
data problem.
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Although the covariance matrices of the model estimates are not reported by the two external
studies, we can easily obtain the standard errors for each estimate from the corresponding 95%
confidence interval. Note that the intercept of the model used in ERSPC-RC3 indicates the log
odds when X3 = 0, and log2(X1) and log2(X6) are at their mean in the ERSPC study population,
which is incompatible with the intercept of the same model fitted in the internal study, and we
cannot get an accurate estimate for the intercept of the same model with non-centered log2(X1) and
log2(X6) in the ERSPC study from the information published in Roobol et al. (2012). Therefore,
we discard the information of the intercept in the ERSPC-RC3 model.

The external model estimates are θ̃E(1) = (−6.25, 1.29, 0.03, 1.00,−0.36, 0.96)T for PCPT, and
θ̃E(2) = (log(3.24), log(6.13), log(0.22))T = (1.18, 1.81,−1.51)T for ERSPC-RC3, which lead
to γ̃(1) = θ̃I(1) − θ̃E(1) = (−0.11,−0.39, 0.02,−0.37,−0.62,−1.03)T , and γ̃(2) = θ̃I(2) − θ̃E(2) =

(−0.40,−1.03, 0.24)T . The non-zero components of γ̃(1) and γ̃(2) clearly indicate study population
heterogeneity. On the other hand, some components of γ̃ are very small, such as −0.11 and 0.02,
showing that part of the external information may be useful to improve the internal estimation.
In our analysis the first, third and fourth components of γ(1) and the last component of γ(2) are
estimated exactly as zero.

Table 4.6 contains the analysis results. The dPCML estimates are not very different from the
MLE due to the discard of information that is inconsistent with the internal study. Both the MLE
and the proposed method show that, while having negative previous biopsies and a larger prostate
volume are significantly associated with a decreased risk of high-grade prostate cancer, having
a higher PSA level, older age, abnormal DRE results, and higher PCA3 and T2:REG scores are
all associated with significantly increased risk. The information integration leads to substantially
reduced standard errors for the intercept, abnormal DRE, and prostate volume. Table 4.6 also
contains results based on the PCML method of Han and Zhai (2022) since it too can select the
useful external information. The PCML estimator is calculated using only the PCPT risk calculator
because the estimated intercept in the ERSPC-RC3 model is not available. It can be seen that the
PCML estimate for race is quite different from the MLE, possibly due to some bias introduced by
ignoring the external information uncertainty.

4.6 Discussion

In this chapter, we propose a doubly penalized constrained maximum likelihood (dPCML) method
for using summary-level information from external studies while building a refined regression
model based on individual-level data collected in an internal study. Incorporating the external in-
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Table 4.6: Analysis results for the prostate cancer data with n = 1174.

MLE dPCML PCML

Estimate Std. Err P-value Estimate Std. Err P-value Estimate Std. Err P-value
Intercept −8.124 0.739 < 0.001 −7.973 0.429 < 0.001 −8.022 0.800 < 0.001
PSA 0.733 0.094 < 0.001 0.899 0.080 < 0.001 0.550 0.141 < 0.001
Age 0.045 0.011 < 0.001 0.035 0.007 < 0.001 0.046 0.012 < 0.001
DRE 0.617 0.198 0.002 0.877 0.121 < 0.001 0.503 0.193 0.009
Biopsy −0.793 0.240 0.001 −0.671 0.231 0.004 −0.312 0.210 0.137
Race −0.297 0.375 0.429 −0.205 0.349 0.557 0.520 0.219 0.017
TRUS-PV −1.351 0.203 < 0.001 −1.491 0.108 < 0.001 −1.348 0.199 < 0.001
PCA3 0.307 0.061 < 0.001 0.307 0.057 < 0.001 0.306 0.057 < 0.001
T2:ERG 0.630 0.180 < 0.001 0.632 0.192 0.001 0.646 0.192 0.001
1 Std. Err: standard error. The standard errors for the dPCML or PCML estimates are calculated based on 200

bootstrap samples.

formation can increase efficiency of the parameter estimates in the internal study model without
introducing more biases, under the assumptions that (1) the internal and external studies are con-
ducted for the same population and (2) the external datasets are very big such that the uncertainty
associated with external information is negligible. These two assumptions are both restrictive and
hard to fully satisfy in reality, especially the first one. Unlike many existing methods for data
integration in similar settings, the proposed dPCML method is robust to departures from the two
assumptions. It can simultaneous select and incorporate the external information that agrees with
the internal study while properly accounting for the uncertainty associated with the external esti-
mates.

It is also worth pointing out that, the dPCML method is flexible in the ways that (1) it allows
incorporating partial summary information from external studies in the cases where only some
but not all estimates from external models are reported and/or certain estimates are known to be
unequal between the internal and external studies, (2) it doesn’t require a consistent type of the
common parameters shared across different external models (e.g., in our real data application,
it is allowed that the PCPT calculator uses log(PSA) while the ERSPC-RC3 uses log2(PSA) in
the prediction model), (3) it doesn’t need high-quality reference datasets from external studies to
deal with the population heterogeneity, and (4) our simulation studies show that, even when no
information about uncertainty for the external estimates is available, except for the external sample
sizes, the dPCML estimator can still improve efficiency over the MLE by integrating the external
information.

95



4.7 Proofs

For ease of notation, let Q̂(β,α,θ,ρ) = n−1
∑n

i=1 log
{
1− ρT [gi(β,α,θ)]

}
, ĝ(β,α,θ) =

n−1
∑n

i=1 [gi(β,α,θ)], Ĥn(β,α,θ) = {ρ : ρT [gi(β,α,θ)] < 1, i = 1, . . . , n}, s(β) = ∂ log

f(Y |X,Z;β)/∂β, and C > 0 a generic positive constant whose value varies from one place to
another.

Lemmas 4.1 and 4.2 are Lemmas A1 and A2 in Newey and Smith (2004), and Lemma 4.3 is
part of Inequality (A.5) in Newey and Smith (2004). Refer to Newey and Smith (2004) for proofs
of these lemmas.

Lemma 4.1. If Assumption 4.1 is satisfied, then for any ζ with 1/a < ζ ≤ 1/2 and Hn ={
ρ : ∥ρ∥ ≤ n−ζ

}
, sup(β,α,θ)∈B×A×C,ρ∈Hn,1≤i≤n |ρTgi(β,α,θ)|

p→ 0 and, with probability ap-

proaching one, Hn ⊆ Ĥn(β,α,θ) for all (β,α,θ) ∈ B ×A× C.

Lemma 4.2. If Assumption 4.1 is satisfied, (β̄, ᾱ, θ̄) ∈ B × A × C, (β̄, ᾱ, θ̄)
p→ (β0,α

I∗,θI∗),

and ĝ(β̄, ᾱ, θ̄) = Op(n
−1/2), then ρ̄ = argmaxρ∈Ĥn(β̄,ᾱ,θ̄) Q̂(β̄, ᾱ, θ̄,ρ) exists with probability

approaching one, ρ̄ = Op(n
−1/2), and supρ∈Ĥn(β̄,ᾱ,θ̄) Q̂(β̄, ᾱ, θ̄,ρ) ≤ Op(n

−1).

Lemma 4.3. If Assumption 4.1 is satisfied, then for ζ in Lemma 4.1 we have n−ζ∥ĝ(β̂, α̂, θ̂)∥ −
Cn−2ζ ≤ Q̂(β̂, α̂, θ̂, ρ̂).

Proof of Theorem 4.1

Proof. By the definition of (β̂, α̂, θ̂, γ̂) and γ∗
(k) = θ

I∗
(k) − θE∗

(k), we have

Q̂(β̂, α̂, θ̂, ρ̂)− F̂ (β̂) +
K∑
k=1

Nk

2n
(θ̂(k) − γ̂(k) − θ̃E(k))T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θ̃E(k))

+
K∑
k=1

dk∑
j=1

λn|γ̂(kj)|
|θ̃I(kj) − θ̃E(kj)|w

≤ sup
ρ∈Ĥn(β0,αI∗,θI∗)

Q̂(β0,α
I∗,θI∗,ρ)− F̂ (β0) +

K∑
k=1

Nk

2n
(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θE∗
(k) − θ̃E(k))

+
K∑
k=1

dk∑
j=1

λn|γ∗
(kj)|

|θ̃I(kj) − θ̃E(kj)|w
. (4.10)

Also by definition we have Q̂(β̂, α̂, θ̂, ρ̂) ≥ Q̂(β̂, α̂, θ̂,0) = 0. Therefore, from (4.10), λn|γ̂(kj)|
|θ̃I

(kj)
−θ̃E

(kj)
|w
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≥ 0 for any (k, j), and (θ̂(k) − γ̂(k) − θ̃E(k))T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θ̃E(k)) ≥ 0 for any k, we have

F̂ (β0)− F̂ (β̂) ≤ sup
ρ∈Ĥn(β0,αI∗,θI∗)

Q̂(β0,α
I∗,θI∗,ρ) +

K∑
k=1

Nk

2n
(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θE∗
(k) − θ̃E(k))

+
K∑
k=1

dk∑
j=1

λn|γ∗
(kj)|

|θ̃I(kj) − θ̃E(kj)|w
. (4.11)

On the other hand, by Assumption 4.1(ix), we have ∥ĝ(β0,α
I∗,θI∗)∥ = Op(n

−1/2), which leads
to

sup
ρ∈Ĥn(β0,αI∗,θI∗)

Q̂(β0,α
I∗,θI∗,ρ) ≤ Op(n

−1) (4.12)

based on Lemma 4.2. According to White (1982), we have N
1/2
k (θE∗

(k) − θ̃E(k))
d→ N (0,ΣE∗

(k)) as
Nk →∞, which together with Nk/n→ ck ∈ (0,∞) as n→∞, implies that

Nk

n
(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θE∗
(k) − θ̃E(k)) = Op(n

−1). (4.13)

For (k, j) ∈ K=0 we have
λn|γ∗

(kj)
|

|θ̃I
(kj)

−θ̃E
(kj)

|w = 0, and for (k, j) ∈ K̸=0 we have
λn|γ∗

(kj)
|

|θ̃I
(kj)

−θ̃E
(kj)

|w = Op(λn) =

Op(n
−ξ) from Assumption 4.1(x), which together imply that

K∑
k=1

dk∑
j=1

λn|γ∗
(kj)|

|θ̃I(kj) − θ̃E(kj)|w
= Op(n

−ξ). (4.14)

Therefore, from (4.11)(4.12)(4.13)(4.14), we have

F̂ (β0)− F̂ (β̂) ≤ Op(n
−ξ). (4.15)

In addition, from Assumption 4.1(viii) we have

F̂ (β0)− F̂ (β̂) = F (β0)− F (β̂) +Op(n
−1/2), (4.16)

and thus F (β0)− F (β̂) ≤ Op(n
−ξ). On the other hand, Assumption 4.1(ii) implies that F (β0)−

F (β̂) ≥ 0. Therefore, we must have

|F (β0)− F (β̂)| = Op(n
−ξ), (4.17)
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which then implies β̂ → β0 in probability based on Assumptions 4.1(ii) and (iv).
Take ζ such that 1/α < ζ < ξ. From Lemma 4.3, (4.10) and (4.17), and Assumption 4.1(viii)

we have

n−ζ∥ĝ(β̂, α̂, θ̂)∥ − Cn−2ζ

≤ sup
ρ∈Ĥn(β0,αI∗,θI∗)

Q̂(β0,α
I∗,θI∗,ρ) + F̂ (β̂)− F̂ (β0)

+
K∑
k=1

Nk

2n
(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θE∗
(k) − θ̃E(k))

+
K∑
k=1

dk∑
j=1

λn|γ∗
(kj)|

|θ̃I(kj) − θ̃E(kj)|w

≤ Op(n
−ξ) + |F̂ (β̂)− F (β̂)|+ |F (β̂)− F (β0)|+ |F (β0)− F̂ (β0)|

= Op(n
−ξ),

which leads to ∥ĝ(β̂, α̂, θ̂)∥ ≤ Op(n
ζ−ξ) + Cn−ζ = op(1). Thus, by Assumptions 4.1(iii)(v)(ix)

and the consistency of β̂, we have (α̂, θ̂)→ (αI∗,θI∗) in probability as n→∞.
From (4.10)(4.12)(4.13)(4.14)(4.16)(4.17), we have

K∑
k=1

Nk

2n
(θ̂(k) − γ̂(k) − θ̃E(k))T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θ̃E(k)) ≤ Op(n
−ξ),

which together with Nk/n → ck ∈ (0,∞) as n → ∞, implies that ∥θ̂(k) − θ̃E(k) − γ̂(k)∥ = op(1)

and thus γ̂ → γ∗ in probability as n→∞.

Proof of Theorem 4.2

Proof. From (4.10) and the proof of Theorem 4.1 we have

Q̂(β̂, α̂, θ̂, ρ̂) + F̂ (β0)− F̂ (β̂) +
K∑
k=1

Nk

2n
(θ̂(k) − γ̂(k) − θ̃E(k))T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θ̃E(k))

−
K∑
k=1

Nk

2n
(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θE∗
(k) − θ̃E(k)) +

∑
(k,j)∈K ̸=0

{
λn

|γ̂(kj)| − |γ∗
(kj)|

|θ̃I(kj) − θ̃E(kj)|w

}
≤Op(n

−1). (4.18)
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By the mean value theorem, Assumptions 4.1(iii) 4.2(iii) and the central limit theorem we have

F̂ (β̂) = F̂ (β0) +
∂F̂ (β0)

∂βT
(β̂ − β0) +

1

2
(β̂ − β0)

T ∂
2F̂ (β̇)

∂β∂βT
(β̂ − β0)

= F̂ (β0) +Op(n
−1/2)∥β̂ − β0∥+

1

2
(β̂ − β0)

T ∂
2F̂ (β̇)

∂β∂βT
(β̂ − β0), (4.19)

where β̇ is some value between β0 and β̂. Then by Assumptions 4.1(iii) 4.2(iii)(iv) and the con-
sistency of β̂ we have

F̂ (β0)− F̂ (β̂) ≥ C(1 + op(1))∥β̂ − β0∥2 +Op(n
−1/2)∥β̂ − β0∥. (4.20)

Taking ζ = 1/2 in Lemma 4.3 leads to

Q̂(β̂, α̂, θ̂, ρ̂) ≥ n−1/2∥ĝ(β̂, α̂, θ̂)∥ − Cn−1. (4.21)

Then by Assumptions 4.1(ix), 4.2(ii) and the triangle inequality we have

Q̂(β̂, α̂, θ̂, ρ̂)

≥ −n
1
2

∥∥∥∥∥ 1n
n∑

i=1

gi(β̂, α̂, θ̂)− E[g(X,Z; β̂, α̂, θ̂)]

∥∥∥∥∥
+n

1
2

∥∥∥E[g(X,Z; β̂, α̂, θ̂)]− E[g(X,Z;β0,α
I∗,θI∗)]

∥∥∥− Cn−1

= n− 1
2

{
−|Op(n

−1/2)|+ C(1 + op(1))(∥β̂ − β0∥+ ∥α̂−αI∗∥+ ∥θ̂ − θI∗∥)
}

−Cn−1. (4.22)

Let P̂λn(γ(kj)) = λn
|γ(kj)|

|θ̃I
(kj)

−θ̃E
(kj)

|w . At any γ(kj) ̸= 0, ∂P̂λn (γ(kj))

∂γ(kj)
= λn

|θ̃I
(kj)

−θ̃E
(kj)

|w
γ(kj)
|γ(kj)|

. Therefore,

by the mean value theorem, Cauchy-Schwarz inequality and Assumption 4.2(vi) we have
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∣∣∣∣∣∣
∑

(k,j)∈K ̸=0

[
P̂λn(γ̂(kj))− P̂λn(γ

∗
(kj))

]∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(k,j)∈K ̸=0

[
∂P̂λn(γ̇(kj))

∂γ(kj)
(γ̂(kj) − γ∗

(kj))

]∣∣∣∣∣∣
≤

(
K∑
k−1

dk

)
max

(k,j)∈K ̸=0

∣∣∣∣∣∂P̂λn(γ̇(kj))

∂γ(kj)

∣∣∣∣∣ ∥γ̂ − γ∗∥

≤

(
K∑
k−1

dk

)
|λn| max

(k,j)∈K ̸=0

{
1

|θ̃I(kj) − θ̃E(kj)|w

}
∥γ̂ − γ∗∥

= op(n
−1/2)∥γ̂ − γ∗∥, (4.23)

where γ̇(kj) is some value between γ̂(kj) and γ∗
(kj).

K∑
k=1

Nk

2n
(θ̂(k) − γ̂(k) − θ̃E(k))T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θ̃E(k))

−
K∑
k=1

Nk

2n
(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θE∗
(k) − θ̃E(k))

=
K∑
k=1

Nk

2n

{
(θ̂(k) − γ̂(k) − θE∗

(k))
T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θE∗
(k))
}

+
K∑
k=1

Nk

2n

{
2(θE∗

(k) − θ̃E(k))T Σ̃E−1

(k) (θ̂(k) − γ̂(k) − θE∗
(k))
}

≥|Op(∥θ̂ − θI∗∥2)|+ |Op(∥γ∗ − γ̂∥2)|+ n−1/2Op(∥θ̂ − θI∗∥) + n−1/2Op(∥γ∗ − γ̂∥), (4.24)

where the last inequality comes from θ̂(k) − γ̂(k) − θE∗
(k) = θ̂(k) − θI∗(k) + γ∗

(k) − γ̂(k) + θE∗
(k) − θE∗

(k).
From (4.18)(4.20)(4.22)(4.23)(4.24) we have

C(1 + op(1))∥β̂ − β0∥2 +Op(n
− 1

2 )∥β̂ − β0∥+ Cn− 1
2 [1 + op(1)]∥α̂−αI∗∥

+ op(n
1
2 )∥γ̂ − γ∗∥+ |Op(∥θ̂ − θI∗∥2)|+ |Op(∥γ̂ − γ∗∥2)|+ n− 1

2Op(∥θ̂ − θI∗∥)

+ n− 1
2Op(∥γ̂ − γ∗∥)

≤Op(n
−1). (4.25)
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If β̂ has a faster convergence rate than θ̂ or γ̂, then (4.25) becomes

Cn− 1
2 [1 + op(1)]∥α̂−αI∗∥+ |Op(∥θ̂ − θI∗∥2)|+ |Op(∥γ̂ − γ∗∥2)|+ n−1/2Op(∥θ̂ − θI∗∥)

+ n−1/2Op(∥γ̂ − γ∗∥)

≤Op(n
−1), (4.26)

and further if both θ̂ and γ̂ have a faster convergence rate than α̂, then (4.26) becomes

Cn− 1
2 [1 + op(1)]∥α̂−αI∗∥+ |Op(∥θ̂ − θI∗∥2)|+ |Op(∥γ∗ − γ̂∥2)| ≤ Op(n

−1),

which implies that ∥α̂−αI∗∥ = Op(n
−1/2), ∥θ̂− θI∗∥ = Op(n

−1/2), and ∥γ̂−γ∗∥ = Op(n
−1/2);

on the other hand, if either θ̂ or γ̂ has the same or slower convergence rate than than α̂, then (4.26)
becomes

|Op(∥θ̂ − θI∗∥2)|+ |Op(∥γ̂ − γ∗∥2)|+ n−1/2Op(∥θ̂ − θI∗∥) + n−1/2Op(∥γ̂ − γ∗∥) ≤ Op(n
−1),

which implies that ∥θ̂ − θI∗∥ ≤ Op(n
−1/2) and ∥γ̂ − γ∗∥ ≤ Op(n

−1/2) from the property of
quadratic functions, and thus we must have ∥α̂ − αI∗∥ = Op(n

−1/2), ∥θ̂ − θI∗∥ = Op(n
−1/2),

and ∥γ̂ − γ∗∥ = Op(n
−1/2). Since β̂ has a faster convergence rate than θ̂ or γ̂, we also have

∥β̂ − β0∥ = Op(n
−1/2).

If β̂ has the same or slower convergence rate than both θ̂ and γ̂, then (4.25) becomes

C(1 + op(1))∥β̂ − β0∥2 +Op(n
− 1

2 )∥β̂ − β0∥+Cn− 1
2 [1 + op(1)]∥α̂−αI∗∥ ≤ Op(n

−1), (4.27)

and further if β̂ has a faster convergence rate than α̂, then (4.27) becomes

C(1 + op(1))∥β̂ − β0∥2 + Cn− 1
2 [1 + op(1)] ∥α̂−αI∗∥ ≤ Op(n

−1),

which implies that both ∥β̂ − β0∥ = Op(n
−1/2) and ∥α̂ − αI∗∥ = Op(n

−1/2); on the other hand,
if β̂ has the same or slower convergence rate than α̂, then (4.27) becomes

C(1 + op(1))∥β̂ − β0∥2 +Op(n
− 1

2 )∥β̂ − β0∥ ≤ Op(n
−1),

which implies that ∥β̂ − β0∥ ≤ Op(n
−1/2) from the property of quadratic functions, and thus

∥β̂ − β0∥ = Op(n
−1/2), which implies that ∥α̂ − αI∗∥ = Op(n

−1/2) also holds. Since β̂ has the
same or slower convergence rate than both θ̂ and γ̂, we must also have ∥θ̂ − θI∗∥ = Op(n

−1/2)
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and ∥γ̂ − γ∗∥ = Op(n
−1/2).

Now we’ve proved results (i) and (ii). Based on (i), from (4.19) we have F̂ (β̂) − F̂ (β0) =

Op(n
−1). Based on (ii), from (4.23) we have

∣∣∣∣∑(k,j)∈K ̸=0

{
λn

|γ̂(kj)|−|γ∗
(kj)

|
|θ̃I

(kj)
−θ̃E

(kj)
|w

}∣∣∣∣ = op(n
−1) . Then

(4.18) implies that Q̂(β̂, α̂, θ̂, ρ̂) ≤ Op(n
−1), and taking ζ = 1/2 in Lemma 4.3 leads to ∥ĝ(β̂, α̂,

θ̂)∥ = Op(n
−1/2). Therefore result (iii) directly follows from Lemma 4.2.

Proof of Theorem 4.3

Proof. On the event {γ̂(kj) ̸= 0} for some (k, j) ∈ K=0, the KKT optimality condition is

λn

|θ̃I(kj) − θ̃E(kj)|w
γ̂(kj)
|γ̂(kj)|

− Nk

n

[
Σ̃E−1

(k)

]
j.
(θ̂(k) − γ̂(k) − θ̃E(k)) = 0,

where
[
Σ̃E−1

(k)

]
j.

denotes the jth row of Σ̃E−1

(k) , which implies that

∣∣∣∣Nk√
n

[
Σ̃E−1

(k)

]
j.
(θ̂(k) − γ̂(k) − θ̃E(k))

∣∣∣∣ = √n λn

|θ̃I(kj) − θ̃E(kj)|w
.

From Theorem 4.2 and Nk/n→ ck ∈ (0,∞) as n→∞, we have∣∣∣∣Nk√
n

[
Σ̃E−1

(k)

]
j.
(θ̂(k) − γ̂(k) − θ̃E(k))

∣∣∣∣ = Op(1).

On the other hand, by Assumption 4.3,
√
n-consistency of θ̃I(kj),

√
Nk-consistency of θ̃E(kj), and

Nk/n→ ck ∈ (0,∞) as n→∞, we have

lim
n→∞

√
n

λn

|θ̃I(kj) − θ̃E(kj)|w
=∞

for any (k, j) ∈ K=0. Therefore, we must have P (γ̂(kj) = 0)→ 1 as n→∞ for any (k, j) ∈ K=0.
This, together with the consistency of γ̂, implies the desired result.

Proof of Theorem 4.4

Proof. Let Ṽ E
N = diag(N1Σ̃

E−1

(1) , · · · , NKΣ̃
E−1

(K) ), and then rearrange the rows/columns of Ṽ E
N

according to γ∗ = (γ∗
̸=0

T ,γ∗
=0

T )T .
For any compact set H ⊂ Rdim(ν), denote uν ∈ H as uT

ν = (uT
β ,u

T
α ,u

T
θ ,u

T
γ, ̸=0), where the

dimensions of uβ, uα, uθ, and uγ, ̸=0 correspond to that of β, α θ, and γ ̸=0,respectively. On this
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compact setH define

L(uν)

=−
n∑

i=1

log fi

(
β0 +

uβ√
n

)
+

n∑
i=1

log fi(β0)

+
1

2

[
θE∗
̸=0 +

uθ, ̸=0√
n
− uγ, ̸=0√

n
− θ̃E̸=0

θE∗
=0 +

uθ,=0√
n
− θ̃E=0

]T
Ṽ E

N

[
θE∗
̸=0 +

uθ,̸=0√
n
− uγ ,̸=0√

n
− θ̃E̸=0

θE∗
=0 +

uθ,=0√
n
− θ̃E=0

]

− 1

2

(
θE∗ − θ̃E

)T
Ṽ E

N

(
θE∗ − θ̃E

)
+max

ρ

n∑
i=1

log

{
1− ρTgi

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)}
+ n

∑
(k,j)∈K ̸=0

[
P̂λn

(
γ∗
(kj) +

uγ, ̸=0(kj)√
n

)
− P̂λn

(
γ∗
(kj)

)]
, (4.28)

and then from (4.4) we have
√
n(ν̂ − ν0) is the minimizer of L(uν) onH.

By the mean value theorem we have

n∑
i=1

log fi

(
β0 +

uβ√
n

)
−

n∑
i=1

log fi(β0)

=

{
1√
n

n∑
i=1

si(β0)
T

}
uβ +

1

2
uT

β

{
1

n

n∑
i=1

∂si(β̇)

∂β

}
uβ

d→ uT
βϕ−

1

2
uT

βS0uβ, (4.29)

uniformly over uν ∈ H, where ϕ ∼ N (0,S0).
By Assumptions 4.1(iii)(ix) and 4.2(ii), we have

ĝ

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)
=

{
1

n

n∑
i=1

gi

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)
− E

[
g

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)]}

+

{
E
[
g

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)]
− E

[
g
(
β0,α

I∗,θI∗
)]}

+ E
[
g
(
β0,α

I∗,θI∗
)]

=Op(n
−1/2),

uniformly onH. Thus, by Lemma 4.2,
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ρ̂µ = argmax
ρ

n∑
i=1

log

[
1− ρTgi

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)]
exists with probability approaching one and ρ̂µ = Op(n

−1/2), uniformly on H. It is clear that ρ̂µ

must satisfy
n∑

i=1

gi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)
1− ρ̂T

µgi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

) = 0.

Then the mean value theorem leads to

0 =
n∑

i=1

gi

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)

+
n∑

i=1

gi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)
gi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)T
[
1− ρ̇T

µgi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)]2 ρ̂µ,

where ρ̇µ is some value between ρ̂µ and 0. Then we have

√
nρ̂µ = −Ω−1

[√
nĝ

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)]
+ op(1),

uniformly onH. On the other hand, we have

√
nĝ

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)
=

1√
n

n∑
i=1

gi

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)
− 1√

n

n∑
i=1

gi
(
β0,α

I∗,θI∗
)

+
1√
n

n∑
i=1

gi
(
β0,α

I∗,θI∗
)

=

[
1

n

n∑
i=1

∂gi
(
β0,α

I∗,θI∗
)

∂µ

]
uµ + op(1) +

1√
n

n∑
i=1

gi
(
β0,α

I∗,θI∗
)

=E

[
∂g
(
β0,α

I∗,θI∗
)

∂µ

]
uµ + op(1) +

1√
n

n∑
i=1

gi
(
β0,α

I∗,θI∗
)

d→ψ +Gµuµ,

uniformly over uν ∈ H, where ψ ∼ N (0,Ω) and uT
µ = (uT

β ,u
T
α ,u

T
θ ). Then the mean value
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theorem gives

n∑
i=1

log

[
1− ρ̂T

µgi

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)]
=−
√
nρ̂T

µ

√
nĝ

(
β0 +

uβ√
n
,αI∗ +

uα√
n
,θI∗ +

uθ√
n

)
− 1

2

√
nρ̂T

µ 1

n

n∑
i=1

gi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)
gi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)T
[
1− ρ̇T

µgi

(
β0 +

uβ√
n
,αI∗ + uα√

n
,θI∗ + uθ√

n

)]2
√nρ̂µ

d→1

2
{ψ +Gµuµ}T Ω−1 {ψ +Gµuµ} (4.30)

uniformly over uν ∈ H.
From (4.23) we have

n

∣∣∣∣∣∣
∑

(k,j)∈K ̸=0

[
P̂λn

(
γ∗
(kj) +

uγ, ̸=0(kj)√
n

)
− P̂λn

(
γ∗
(kj)

)]∣∣∣∣∣∣ ≤ n|op(n−1/2)|
∥∥∥∥uγ, ̸=0√

n

∥∥∥∥ = op(1), (4.31)

uniformly onH.

1

2

[
θE∗
̸=0 +

uθ,̸=0√
n
− uγ ,̸=0√

n
− θ̃E̸=0

θE∗
=0 +

uθ,=0√
n
− θ̃E=0

]T
Ṽ E

N

[
θE∗
̸=0 +

uθ,̸=0√
n
− uγ ,̸=0√

n
− θ̃E̸=0

θE∗
=0 +

uθ,=0√
n
− θ̃E=0

]

− 1

2

(
θE∗ − θ̃E

)T
Ṽ E

N

(
θE∗ − θ̃E

)
=

{
uθ√
n
−

[
uγ ,̸=0√

n

0

]}T

Ṽ E
N

(
θE∗ − θ̃E

)
+

1

2

{
uθ√
n
−

[
uγ ,̸=0√

n

0

]}T

Ṽ E
N

{
uθ√
n
−

[
uγ, ̸=0√

n

0

]}

d→

{
uθ −

[
uγ, ̸=0

0

]}T

χ+
1

2

{
uθ −

[
uγ,̸=0

0

]}T

V E

{
uθ −

[
uγ,̸=0

0

]}
, (4.32)

uniformly over uν ∈ H, where χ ∼ N (0,V E).
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From (4.28)-(4.32) we have L(uν)
d→ L∗(uν), where

L∗(uν)

≡− uT
βϕ+

1

2
uT

βS0uβ +

{
uθ −

[
uγ,̸=0

0

]}T

χ

+
1

2

{
uθ −

[
uγ, ̸=0

0

]}T

V E

{
uθ −

[
uγ,̸=0

0

]}
+

1

2
(ψ +Gµuµ)

TΩ−1(ψ +Gµuµ)

=− uT
βϕ+

1

2
uT

βS0uβ +

[
uθ

uγ, ̸=0

]T
ATχ+

1

2

[
uθ

uγ,̸=0

]T
ATV EA

[
uθ

uγ,̸=0

]
+

1

2
(ψ +Gµuµ)

TΩ−1(ψ +Gµuµ)

=
1

2
uT

η

{[
S0 0

0 0

]
+

[
0 0

0 ATV EA

]
+

[
GT

µΩ
−1Gµ 0

0 0

]}
uη

+ uT
η


[
GT

µΩ
−1ψ

0

]
+

 −ϕ0
ATχ


+

1

2
ψTΩ−1ψ

uniformly over uν ∈ H, and L∗(uν) is uniquely minimized at

u∗
ν = −

{[
S0 0

0 0

]
+

[
0 0

0 ATV EA

]
+

[
GT

µΩ
−1Gµ 0

0 0

]}−1


[
GT

µΩ
−1ψ

0

]
+

 −ϕ0
ATχ


 .

It is easy to see thatu∗
ν ∼ N

0,

{[
S0 0

0 0

]
+

[
0 0

0 ATV EA

]
+

[
GT

µΩ
−1Gµ 0

0 0

]}−1
, based

on the fact that E(ψϕT ) = E{E[g(β0,α
I∗,θI∗)s(β0)

T |X,Z]} = E{g(β0,α
I∗,θI∗)E[s(β0)

T |
X,Z]} = 0 and E[ψχT ] = E[g(β0,α

I∗,θI∗)]χT = 0. Then from the Continuous Mapping
Theorem we have

√
n(ν̂ − ν0)

d→ u∗
ν , which completes the proof.

Proof of Corollary 4.1

Proof. Let Gβ = E
[
∂g
(
X,Z;β0,α

I∗,θI∗
)
/∂β

]
and Gη = E

[
∂g
(
X,Z;β0,α

I∗,θI∗
)
/∂η

]
,

where ηT = (αT ,θT ). Note that Gη is a square matrix, and is non-singular based on Assumption
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4.2(v). Then we have GT
µΩ

−1Gµ =

[
GT

βΩ
−1Gβ GT

βΩ
−1Gη

GT
ηΩ

−1Gβ GT
ηΩ

−1Gη

]
. Therefore, the inverse of the

leading dim(β)× dim(β) sub-matrix of{[
S0 0

0 0

]
+

[
0 0

0 ATV EA

]
+

[
GT

µΩ
−1Gµ 0

0 0

]}−1

is

S0 +G
T
βΩ

−1Gβ

−
[
GT

βΩ
−1Gη 0

]([0 0

0 ATV EA

]
+

[
GT

ηΩ
−1Gη 0

0 0

])−1 [
GT

ηΩ
−1Gβ

0

]

=S0 +G
T
βΩ

−1Gβ −GT
βΩ

−1Gη

GT
ηΩ

−1Gη +

[
0 0

0 V E

]
−

0 0 0

0 V E
̸=0 0

0 0 0




−1

GT
ηΩ

−1Gβ

=S0 +G
T
βΩ

−1Gβ −GT
βΩ

−1Gη

(
GT

ηΩ
−1Gη +

[
0 0

0 V E
=0

])−1

GT
ηΩ

−1Gβ

=S0 +G
T
βΩ

−1

Ω−Gη

([
0 0

0 V E
=0

]
+GT

ηΩ
−1Gη

)−1

GT
η

Ω−1Gβ

=S0 +G
T
βΩ

−1

Ω−

[
(GT

η )
−1

([
0 0

0 V E
=0

]
+GT

ηΩ
−1Gη

)
G−1

η

]−1
Ω−1Gβ

=S0 +G
T
βΩ

−1

Ω−

[
Ω−1 +

(
GT

η

)−1

[
0 0

0 V E
=0

]
G−1

η

]−1
Ω−1Gβ,

which is the same as the inverse of the leading dim(β)× dim(β) sub-matrix of{[
S0 0

0 0

]
+

[
0 0

0 V E
=0

]
+GT

µΩ
−1Gµ

}−1

,

leading to result (ii).
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From Assumption 4.1(vii), we have

Ω−

[
Ω−1 +

(
GT

η

)−1

[
0 0

0 V E
=0

]
G−1

η

]−1

≥ 0,

which completes the proof of result (i).
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Chapter 5

Some Possible Future Work

External studies sometimes may contain redundant information in the sense that some components
of g(X,Z;β0) − γ0 (or similarly, g(X,Z;β0,η

I∗), using the setting and notation in Chapter
4) are linear combinations of other components. Such scenario is highly likely to occur in the
presence of a large number of external studies, especially when many of these studies are for a
same population and their models are extremely similar in terms of the model structure and the
covariates used, resulting in a high correlation among certain components of g(X,Z;β0) − γ0.
Redundant information not only affects the computation but also brings theoretical complications,
and thus, regardless of whether consistent with the internal study population, should be discarded
in the process of information integration. A possible future research topic is to further extend the
PCML method developed in Chapter 3 to also deal with the issue of external information redun-
dancy, so that the resulting estimator can simultaneously (i) discard redundant external information
regardless of whether that information is consistent with the internal study, and (ii) for the non-
redundant external information incorporate the part that is consistent with the internal study (and
thus useful for internal study efficiency gains) and discard the part that is inconsistent due to pop-
ulation heterogeneity, within the framework that the number of external studies can increase with
the internal study sample size.

Some other extensions of our proposed methods are also of interest. When the new covariates
collected by the internal study are high-dimensional, a variable selection may be needed to build a
sparse internal model. Such a setting is similar to the one in Sheng et al. (2021) and can be achieved
by adding an additional penalty for variable selection. Another possible extension is to take into
account the design of studies. In this dissertation we presented the proposed methods with the
internal study data being a random sample. However, in practice, a biased sampling is often used
for data collection, such as case-control sampling, and it is of vital importance to take these study
designs into consideration. In addition, our methods require that the external studies have less
detailed covariates than the internal study, which makes scenarios where the external studies use
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variables that are not included by the internal study particularly challenging for data integration.
We may have to discard estimates from a well-fitted multivariable external model completely if one
of the covariates is not covered by the internal data, and may only be able to utilize estimates from
univariate analyses in such external studies. It is worthwhile exploring methods that can address
such issues, developed based on our proposed methods.

Applications of our methods to other different contexts could also be considered. In this dis-
sertation we focused on cases where the internal study has a specific parametric regression model
of interest. There are situations where the main goal of the internal study is to estimate average
causal effects rather than regression parameters, and in such cases the key idea behind our methods
might still be highly relevant. For example, Yang and Ding (2020) considered estimation of causal
effects in a setting very similar to ours - combining information from big data with unmeasured
confounders (fewer covariates) to improve the estimation efficiency of the initial estimators based
solely on a smaller data with supplementary information on these confounders (more covariates).
Our methods may be adopted under their setting, and the detailed development is an interesting
topic that deserves some future investigation.
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