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Abstract 

The development of the human embryo is arguably the most complex process that we 

could care to study. In this process, the developing embryo must undergo proliferation, 

reorganization, lineage diversification, and dozens of cell fate specification events. During this 

time, a myriad of events are happening in parallel at the cell level, each one setting the 

foundation for the emergence of increasingly complex tissues of increasingly complex function. 

Understanding the mechanisms guiding these processes is pivotal not only for embryogenesis-

related applications in fertility and development, but also for regenerative medicine applications 

such as the development of organ replacements.  

In this dissertation, I propose an integrative approach to the study of morphogenesis and 

patterning, specifically in the context of stem cell-based models of human development. Firstly, I 

present a novel machine learning-assisted imaging pipeline that permits the careful 

characterization of cell-level events occurring in our in vitro model of epiblast cyst 

morphogenesis. Secondly, I present a novel agent-based model (ABM)-genetic algorithm (GA) 

framework for the generation of models of morphogenesis. The framework was first tested to 

determine its ability to generate structures of desired patterns. It was then applied for the 

generation of models that plausibly capture mechanisms at work during epiblast cyst 

morphogenesis and symmetry breaking. With preliminary in silico experiments, I showed that 

the framework was able to output models that partially captured the effect of initial cell number 

on final cyst composition. I further showed that correct structure formation was heavily impacted 



 xii 

by just a few model parameters. Combined with in vitro experimentation, these tools have the 

potential to shed light into the mechanisms guiding growth, movement, and cell fate 

specification in in vitro models of human development. 
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Chapter 1 Introduction 

1.1 Introduction 

The study of the emergence of form and function in the context of human development is 

a huge undertaking. The high degree of complexity of morphogenetic events occurring at 

different temporal and spatial scales as well as the difficulties surrounding the study of early 

embryo development have both contributed to a lack in our knowledge regarding embryogenesis 

and organogenesis. This dissertation aims to provide novel computational tools that can be used 

in conjunction with in vitro stem cell-based models of development in order to overcome this 

gap in knowledge (Figure 1.1). In this chapter, I will give a brief background and outline of the 

dissertation. 

 

Figure 1.1 Integrated approach to the study of development 
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1.2 Beginning of embryogenesis – the first three weeks 

The formation of a human body is a forty-week process that starts at conception and 

culminates at birth. Starting from a single fertilized egg, the embryo undergoes a myriad of 

processes involving divisions, migration, and cell fate specification, all of which must occur in a 

precise manner and at a precise time. Of particular focus in this work will be the first three weeks 

of development, a period of development that is understandably difficult to study but in which 

many pivotal events for human development take place. Firstly, the fertilized egg or zygote must 

undergo a series of cleavage events. At this point, this seemingly homogenous cluster of cells 

(morula) undergoes the first cell fate bifurcation in development to give rise to the blastocyst, a 

hollow structure containing an inner cell mass (ICM) and lined by trophectoderm cells, which 

will later develop into placental tissues and other extraembryonic tissues (Figure 1.2). Shortly 

after, the cells in the ICM undergo a second cell fate bifurcation, in which two populations come 

about, the epiblast population will give rise to the embryo proper, and the hypoblast cells will 

give rise to the primary and secondary yolk sacs.  
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Figure 1.2 Schematic of first two weeks of human development. 
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development as it primes the system for downstream organogenesis.  
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Figure 1.3 Schematic of embryo development during and shortly after implantation. 
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However, there is limited accessibility to human embryos, and studies of human embryos are 

further limited by the small window of research afforded by the 14-day rule 18,19.  The limitations 

of the aforementioned approaches have led researchers to take a bottom-up approach and use 

human stem cells, particularly human pluripotent stem cells (hPSCs), to construct synthetic 

models of human development (or human embryoid systems)20,21.  

1.3.1 Derivation and maintenance 

hPSCs include human embryonic stem cells (hESCs) isolated from the ICM of a human 

blastocyst (Figure 1.4) and human induced pluripotent stem cells (hiPSCs)22–24 which are derived 

from adult tissue cells via a reprogramming process involving forced expression of key 

transcription factors associated with pluripotency. hPSCs are maintained in culture and are able 

to self-renew and expand for continued use for the development of in vitro models (Figure 1.4). 

 

Figure 1.4 Derivation and maintenance of hPSCs for the construction of in vitro models of embryogenesis and 
organogenesis 
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Stem cell behavior is governed by both endogenous, genome-encoded mechanisms, and 

exogenous signals provided by the surrounding extracellular matrix (ECM) and cell-cell 

interactions.  In order to construct embryoid models, researchers must provide stem cells with an 

environment that recapitulates the necessary exogenous signals in the in vivo setting.  

Bioengineering tools can be used to create biomimetic niches in which parameters such as 

adhesive surface area, dimensionality, and mechanical and chemical properties of the 

environment can be dynamically modulated to guide the progressive development of embryoid 

models to recapitulate different aspects of embryonic development 25,26.  For example, 

microcontact printing is a commonly used tool to control adhesive surface area in order to obtain 

two-dimensional (2D) cell colonies of specific shapes and sizes.  The technique consists of 

coating a micropatterned substrate or the stamp with adhesive ECM proteins before stamping it 

onto a planar 2D surface where cells will be seeded.  Microcontact printing has allowed for the 

study of how biomechanical mechanisms involving cell density and shape affect stem cell fate 27 

as well as for the study of signaling dynamics within stem cell colonies28–31.  Basement 

membrane matrices and synthetic hydrogels are often used to create three-dimensional (3D) 

environments containing adhesive molecules.  Stiffness of these 3D scaffolds can be tuned by 

changing the gel concentration or the crosslinker density in synthetic hydrogels.  This allows for 

assay optimization to obtain desired behaviors of stem cells.  Furthermore, it allows for studies 

of how the mechanical properties of the environment affect hPSC differentiation and self-

organization32.  These 3D scaffolds can be incorporated into a variety of bioengineering 

platforms that allow for the control of initial cluster sizes of stem cells, including microwells and 

microfluidic devices.  The current state of microfabrication technologies is such that stem cell 

culture platforms can be made arbitrarily complex with the use of microfluidic devices capable 
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of creating dynamic chemical gradients and the fabrication of substrates with different 

topographies.  Importantly, even simple bioengineering platforms that provide a homogeneous 

2D or 3D environment are able to engender the formation of complex human embryoid 

structures from hPSCs28,33,34. 

1.3.3 Developmental potential 

The pre-implantation human embryo or the human blastocyst contains two 

extraembryonic lineages (trophoblast and hypoblast) and one embryonic lineage (epiblast) 

(Figure 1.2).  Human embryoids aiming to recapitulate the peri-implantation development of the 

human embryo would ideally include stem cell derivatives associated with all of the three cell 

lineages, either from co-culture or from using human stem cells with the potency to give rise to 

both extraembryonic and embryonic lineages.  Significant recent effort has been devoted to the 

development of the human hypoblast stem cells from naïve hPSCs35,36. While progress has been 

made to derive human trophoblast stem cells from human blastocysts and placenta 37, many 

researchers have been using BMP4 treatments to coax primed hPSCs to differentiate into 

trophoblast-like cells 38.  Recent studies have also reported human expanded potential stem cells 

(hEPSCs) 39–41 that seem to be able to give rise to both embryonic and extraembryonic lineages.  

However, the potencies of primed hPSCs and hEPSCs to give rise to extraembryonic lineages are 

still under debate.  A recent study by Guo et al. 12 has shed doubt on the validity of these 

methods.  They show that both primed hPSCs and hEPSCs have lost the capacity to differentiate 

into trophoblast-like cells and that BMP4 treatment causes differentiation of both cell types into 

amniotic cells as shown by Shao et al.32.  They further show that naïve hPSCs42–44 are able to 

give rise to trophoblast-like cells but require an unpredicted dedifferentiation process to the 

earlier inner cell mass (ICM) state12,45.  While it is clear that we still have gaps in our knowledge 
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regarding the potencies of different human stem cell types, researchers have been developing 

hPSC-based embryoid models that yield complex multicellular structures that recapitulate 

different aspects of the human embryonic development.  

1.3.4 Embryoid models using human pluripotent stem cells 

During implantation of the human blastocyst, the epiblast polarizes and undergoes 

lumenogenesis to form the pro-amniotic cavity (Figure 1.3).  The lumenal epiblast structure 

subsequently undergoes symmetry breaking, leading to the formation of the bipolar amniotic sac, 

with squamous amniotic cells at the uterine-proximal pole and the epiblast comprising the 

embryonic disc at the hypoblast-proximal pole (Figure 1.3).  Soon after the formation of the 

amniotic sac, gastrulation is initiated with the formation of the primitive streak at the prospective 

posterior end of the epiblast, resulting in the formation of the three germ layers and 

establishment of the body axes.  Researchers have successfully leveraged the developmental 

potential and self-organizing property of hPSCs to develop embryoid models that help break 

down these developmental stages and enable mechanistic studies28,33,34. 

Simple and controllable human embryoid systems can be used to recapitulate a variety of 

developmental events.  Combined with single-cell analysis and mathematical modeling, they can 

help us understand how processes at the subcellular level have a direct effect on tissue-level 

emergent behaviors.  Warmflash et al. 28 used microcontact printing to create the first human 

embryoid model in which primed hPSCs are constrained to 2D circular adhesive islands (Figure 

1.5a) .  Uniform supplementation of BMP4 into culture medium resulted in ring-shaped gene 

expression patterns, with CDX2+ extraembryonic cells on the colony edge followed by 

mesoendoderm and ending with ectoderm in the colony center, mimicking certain aspects of 

germ layer patterning during the human gastrulation.  Varying pattern size, an edge sensing 
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mechanism was discovered to be responsible for patterning in the 2D human gastrulation model. 

The use of knockout lines and computational modeling revealed that this edge sensing 

mechanism involved gradual cell polarization and diffusion of the BMP4 inhibitor NOGGIN31. 

Further work in the 2D human gastrulation model revealed that WNT and ACTIVIN-NODAL 

signaling act downstream of BMP4 to control primitive streak formation, timing of epithelial-

mesenchymal transition (EMT), and patterning of mesoderm and endoderm (Figure 1.5a)29.  A 

2D partial differential equation (PDE) model was generated to show that their system dynamics 

could be described by waves resulting from bistability30.  

 

Figure 1.5 (a, left) hPSCs in micropatterned culture28. Scale bar, 500 µm. (a, right) hPSCs grown in 1000 μm 
micropatterns, stimulated with WNT3A, WNT3A+SB or WNT3A+activin and stained after 48 h for germ layer 
markers30. (b, left) Protocol used by34 for creation of 3D environment. (b, right) Cyst with asymmetric expression of 
SOX2 (yellow) and BRA (green) resulting from BMP4 treatment. (c, right) Schematic of the biomimetic system 
used by [30] showing the formation of asymmetric cysts from hPSC. (c, left) Day 5 asymmetric cyst, stained for 
TFAP2A (green), OCT4 (red), and WGA (purple). HOECHST (blue) counterstains nuclei. Scale bar, 50 µm. (d, 
top) Schematic of microfluidic device designed by46, showing three parallel channels partitioned by trapezoid-
shaped supporting posts. (d, bottom) P-ELS at 36 h stained for TFAP2A (green) and T (purple) (left) and NANOG 
(red) and SOX17 (purple) (right). TFAP2C+SOX17+ hPGCLCs are marked by color-coded arrowheads to indicate 
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spatial localizations (blue, amniotic ectoderm-like compartment; yellow, amniotic ectoderm– epiblast junction; 
white, PrePS-EPI-like compartment).  

 

While 2D embryoid models are more amenable to live imaging and quantitative 

measurements and perturbations, spatial constraints of hPSCs on 2D lead to a lack of 3D cellular 

architecture and morphogenetic events that are needed to model the 3D human embryo 

development.  To address this issue, Shao et al. 33 engineered a 3D biomimetic platform with a 

soft gel bed made with the basement membrane matrix GeltrexTM and a 3D overlay made with a 

low concentration of GeltrexTM diluted in culture medium (Figure 1.5c).  hPSCs plated as single 

cells cluster and undergo lumenogenesis to form pluripotent cysts enclosing a central lumen, 

mimicking the formation of the pro-amniotic cavity in the epiblast of the peri-implantation 

human embryo.  Importantly, a subset of these cysts undergo symmetry breaking and yield the 

post-implantation amniotic sac embryoid (PASE).  This asymmetric cyst consists of a central 

lumen, enclosed by amniotic cells at one pole and epiblast-like cells at the opposite pole (Figure 

1.5c), resembling the post-implantation human amniotic sac structure (Figure 1.3).  The PASE 

was further able to recapitulate key events of gastrulation including basal lamina breakdown, 

EMT, mesoderm induction, and cell dissemination.  BMP-SMAD signaling was found to be 

important for amniotic differentiation of hPSCs 33.  However, the low yield of the asymmetric 

PASE structure and the lack of controllability of its symmetry breaking and embryonic-

extraembryonic axis formation makes in depth mechanistic studies difficult.  More recently, 

Simunovic et al.34 developed a 3D hydrogel environment in which to study BMP4-induced 

symmetry breaking events in lumenal pluripotent cysts formed by primed hPSCs (Figure 1.5b).  

By varying BMP4 concentration, Simunovic et al. were able to identify a condition that resulted 

in spontaneous patterning with SOX2+ and BRA+ cells occupying two opposite poles of the cyst 
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(Figure 1.5b).  Progressive development of this 3D human embryoid model further displayed the 

formation of a primitive streak-like structure, cell dissemination, and mesoderm/endoderm 

marker expression.   

Mechanistic studies using embryoid models would benefit from platforms that allow for 

precise control of system parameters and for a clear understanding of how the cells and the 

structures they form are oriented with respect to their surroundings.  Zheng et al.46 recently 

developed a microfluidic platform that provides a highly controllable 3D biomimetic 

environment for the PASE development (Figure 1.5d).  This microfluidic device contains three 

parallel channels, with an induction channel and a cell loading channel separated by a central gel 

channel.  Addition of GeltrexTM to the gel channel leads to the formation of pockets in which 

hPSCs will settle and aggregate.  The size of the initial cell clusters can be controlled by 

modulating initial cell seeding density.  Both the induction and cell loading channels can be used 

for exogenous chemical stimulations.  Notably, exposing clusters of primed hPSCs to BMP4 

through the induction channel leads to the formation of a posteriorized PASE or posteriorized 

embryonic-like sac (P-ELS) (Figure 1.5d), which begins with patterning of the lumenal 

pluripotent hPSC cysts where the cells facing BMP4 differentiate into amnion-like cells 

(AMLCs) and the cells at the opposite pole show markers suggesting a pre-primitive streak 

epiblast (PrePS-EPI) phenotype.  NANOG+TFAP2C+SOX17+ human primordial germ cell-like 

cells (hPGCLCs) are evident and scattered throughout the posteriorized PASE structure.  

Progressive development of this structure showed gastrulation-like events, with EMT, mesoderm 

induction, and cell dissemination from the PrePS-EPI compartment.  The microfluidic PASE 

model has shown superior controllability and reproducibility for recapitulating consecutive 

hallmarks of early human post-implantation development.  
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1.3.5 Mouse embryoid models incorporating extraembryonic stem cells  

The 3D hPSC-based embryoid models lack extraembryonic lineages associated with the 

trophoblast and the hypoblast, which may be critical for the proper organization and continuous 

development of these human embryoid models.  Given the availability of mouse trophoblast stem 

cells (mTSCs) and extra-embryonic endoderm (XEN) cells47, which represent the stem cell 

populations of the extraembryonic ectoderm and the primitive endoderm in the mouse embryo, 

researchers have created mouse embryoid models that incorporate these extraembryonic cell 

lineages.  Rivron et al.8 co-cultured mouse ESCs (mESCs) with mTSCs in non-adherent 

hydrogel microwells to induce the cells to self-organize into structures mimicking the mouse 

blastocyst (blastoid; Figure 1.6a).  Harrison et al.6 co-cultured mESCs and mTSCs in a 3D 

Matrigel culture to generate a mouse embryoid model with mESC- and mTSC-derived 

compartments (coined ETS embryoid model) to recapitulate certain events of the post-

implantation mouse development, including mesoderm and PGC induction.  Adding mouse XEN 

cells to the ETS embryoid using an inverted pyramid microwell plate resulted in the ETX 

embryoid, showing adjoining mTSC- and mESC-derived compartments surrounded by XEN 

cells 9.  Importantly, the ETX embryoid showed an improved efficiency and was able to 

recapitulate axial mesoderm and definitive endoderm specification in the mouse embryo. 
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Figure 1.6 (a, left) Platform used by48 for generating EPS-blastoids. (a, right) EPS-blastoid at 72h showing an 
implantation-like structure post-implantation-like structure with TS cell and EPS cell compartments. (b, left) Non-
adherent hydrogel microwell arrays used by8 for co-culture of mPSCs and TS cells. (b, right) Immunofluorescent 
staining of blastoids showing expression of NANOG (green, left), OCT4 (green, middle), and CDX2 (green, right). 
Scale bars, 50 μm. 

 

 Researchers have begun to use mouse EPSCs (mEPSCs) to generate mouse embryoid 

models.  The first attempt by Li et al.10 showed that mEPSCs cultured in inverted pyramid arrays 

could spontaneously give rise to a blastoid structure capable of implanting in utero.  In a more 

recent work, Sozen et al.48 co-cultured mEPSCs with mTSCs in inverted pyramid arrays (Figure 

1.6b) to obtain a blastoid structure, in which a mTSC cyst enclosing the blastocoel-like cavity 

had an internal mEPSC compartment.  The cavity was then flanked by mEPSC-derived primitive 

endoderm-like cells.  Importantly, this blastoid was able to develop further and form an 

elongated, cylindrical structure with epiblast and extraembryonic ectoderm-like compartments 

covered by a visceral endoderm-like cell layer (Figure 1.6b).   

The range of successive developmental events that these mouse embryoid models are 

able to recapitulate highlights the importance of stem cell potency and crosstalk between 

embryonic and extraembryonic stem cells to promote the proper organization and continuous 
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development of embryoid models. However, the development of extraembryonic mouse lineages 

is still an ongoing effort. The potential of mEPSCs to yield extraembryonic lineages has been 

challenged by a recent study49. Further, the aforementioned mouse embryoid models still suffer 

from low yields, which hinders their use for in-depth mechanistic studies. Regardless of current 

pitfalls, the success seen with mouse embryoid systems has set a precedent for the future 

development of human embryoid models. It is clear that the development of human embryoid 

models that more closely resemble the in vivo system will require the integration of 

extraembryonic lineages.  However, there is still work to be done for the generation of human 

extraembryonic stem cell lineages.  It also remains to be determined whether hEPSCs could be 

used to create human blastoid structures, like their mouse counterpart, the mEPSCs. 

1.4 In silico models of human development 

1.4.1 Agent-based models 

As has been discussed, human embryonic stem cells have an amazing ability to self-

organize and give rise to extremely complex structures both in form and function. But how do 

morphogenesis and patterning occur in such a robust manner? Given the low accessibility to 

human embryos and low efficiency of many stem cell-based models, how do we uncover the 

mechanisms at work behind cell migration, growth, and fate specification? The answer lies in the 

use of mathematical and computational models. 

The start of morphogenetic observations can be traced back to D’Arcy Thompson’s work 

On Growth and Form, in which he established similarities between the shapes seen in biological 

systems and mechanical systems50. Years later, Alan Turing presented a theoretical explanation, 

the reaction-diffusion (RD) mechanism, in which diffusion or ‘Turing’ instability is able to yield 

periodic patterning in a two-molecule reaction system51. Many of the pattern formation models 
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that have been developed since Turing’s work rely on the same principles of short-range 

activation and long-range or lateral inhibition52,53. In this mechanism, a fast-diffusing inhibitor 

coupled with a slow-diffusing activator leads to nonlinear reaction dynamics that result in 

repetitive patterns54. RD models typically utilize systems of PDEs that are solved using 

numerical approaches. They are often used to represent intra- and extracellular molecular 

binding and diffusion55–59. Simple PDEs can be used to study the effect of morphogen gradients. 

However, modeling morphogenesis of complex structures such as the blastocyst or a developing 

limb bud becomes difficult because of PDE’s difficulty in capturing the heterogeneous 

environments in which cells exist60. In the 1970s, Lewis Wolpert proposed the mechanism of 

positional information (PI) as a driver of pattern formation in morphogenesis61. In his proposed 

mechanism, a cell is able to determine its position relative to the other parts of the organism by 

sensing the local concentration of a morphogen. And based on this understanding of its relative 

position in the structure, it will undergo fate specification62,63. The mechanisms of RD and PI 

still form the basis for many of the current approaches to the study morphogenesis60.  

Agent-based modeling (ABM) is a cell-based modeling approach that can be seen as a 

consolidation of the two aforementioned theories60. Originally used to study the dynamics of 

replication64, agent-based models including cellular automata (CA), cellular Potts, and hybrid 

models have been used to study a variety of biological systems including biochemical reaction 

networks, stem cell proliferation and differentiation, tumor angiogenesis, and metastasis65–68. 

ABM is a discrete modeling approach with three main components: agents, the environment, and 

rules. The agents are autonomous entities that can interact with each other and the environment. 

The environment is a two- or three-dimensional space in which agents exist. And the rules 

dictate what action an agent will take based on its local input. ABMs are flexible and permit for 
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scaling so that each agent can be as large as a group of organisms or as small as a subcellular 

membrane component. Because of this range, ABMs have been used to study a variety of 

processes including tissue electrical conduction, cell trafficking, tissue mechanics, 

immunomodulation, arterial remodeling, and inflammation69–76.  

As opposed to the more traditional theoretical models of morphogenesis and patterning, 

ABMs can capture the discrete nature of cells by modeling each cell as an individual agent. This 

cell-based approach is particularly compatible with morphogenesis, a decentralized process in 

which events at the single-cell level lead to complex global form and patterning. Multicellular 

systems are complex, with multiple processes occurring in series and in parallel, across different 

temporal and spatial domains to guide growth, migration, and differentiation. The scale at which 

a system will be modeled and the degree of detail or abstraction in an ABM depends on the 

object of study and what is known about it. In cases in which the system is poorly understood, a 

successful approach begins by simplifying the system to its bare essentials and gradually adding 

more components as it is interrogated and understood77. Further, not all model parameters 

required to build the model will be measurable. For this reason, it is important to explore the use 

of parameter estimation techniques to better parameterize the models. 

1.4.2 Genetic algorithms for model construction 

 The problem of large parameter space exploration is one encountered in all fields 

interested in the study of complex systems. Oftentimes, the exploration of all possible 

combinations in parameter space is intractable. So how do we structure parameter space 

exploration so that optimal solutions can be found within acceptable timeframes? Genetic 

algorithms (GAs) are a parameter space exploration method based on the mechanisms of natural 

selection and genetics developed by Holland in the 1970s78. Key questions he was interested in 
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exploring were (1) how does evolution work to create organism of increasing fitness and (2) how 

can we build problem-solving programs based on what should happen rather than how it should 

happen79. In evolution, the adaptation of an organism involves the progressive change of 

structures based on environmental pressures. As a process, adaptation has three main 

components: the environment of the adapting system, the adaptive plan enacting change in the 

system, and the measure of performance or fitness of a system79. As explained by Holland in his 

effort to formalize GAs as a tool for parameter space exploration, a successful adaptive plan 

must be able to retain advances as well as progressively increase the proportion of fit 

structures79. This adaptive plan can be seen as a genetic plan through which a population of 

organisms or systems are allowed to reproduce and undergo genetic changes.  

Analogous to evolution, GAs work on the basis of populations of candidate solutions80. Each 

candidate solution constitutes an ‘organism’ whose function or behavior is dictated by a genetic 

code. Parameter space will be explored as the genetic code of the organisms in the population 

evolves via the following steps80:   

1. Initialization: the creation of an initial population drawn randomly from parameter space. 

2. Evaluation: the fitness of each organism is assessed. 

3. Selection: organisms are chosen to reproduce with a probability proportional to their 

fitness. 

4. Crossovers: new organisms are generated by combining sections of two or more existing 

organisms. 

5. Mutations: the genetic traits of an organism are randomly modified with some 

probability. 
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6. Replacement: the current generation is replaced by the new generation obtained after 

selection and genetic modifications. 

7. Repetition of steps 2-6 until a satisfactory solution is found or a terminating condition is 

met.  

An important consideration during initialization is population size. While small populations 

might lead to premature convergence on substandard solutions, large populations might require 

unreasonable amounts of computational time. For the evaluation, the fitness of an organism 

could be determined by an objective function involving a mathematical model or a subjective 

function determined by the user80. During selection, organisms of higher fitness have a higher 

probability of being chosen for the next generation. The two genetic operators, mutations and 

crossovers, serve distinct purposes. In a crossover, a new structure or organism is formed by 

exchanging a set of attributes (i.e. a section of genetic code). This process allows for the 

thorough exploration of local optima. During a mutation, each position or trait encoded in the 

genome has some probability of being randomly changed to a different value. The existence of 

this mechanism ensures that no trait can permanently disappear from the genetic pool79.  

Because the framework of GAs can be applied to any structure or system, since its inception the 

use of this tool has spread to a myriad of fields including optimization, automatic programming, 

machine learning, economics, immune systems, ecology, and social systems among others81. In 

this work, GAs are utilized in the context of artificial intelligence. The systems or ‘organisms’ 

being evolved are agent-based models. And the fitness measures are based on how well a model 

is able to yield a desired structure with a desired pattern. 
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1.5 Research topics and dissertation outline 

In this work, I sought to study the emergence of form and function in the context of early 

human development, specifically focusing on our in vitro model of the epiblast cyst. Presented in 

Chapter 2, the first part of my work focuses on characterizing our in vitro model by identifying 

individual cells and recording cell-level events. Presented in Chapter 3 and Chapter 4, the second 

part of my work focuses on the construction of a computational framework for generating 

models of growth and patterning. With the combined use of these tools, we hope that future work 

will increase our understand of how cell-level decisions can lead to the emergence of complex 

patterns. 

In Chapter 2, I present a pipeline for the characterization of morphogenesis from live 

cell imaging data. This machine learning-based analysis tool incorporates image pre-processing, 

cell tracking, and identification of cell state changes such as division and death. This tool enables 

us to parse the relationship between the properties of the local environment and cell-level 

decisions that lead to emergent behaviors like hPSC cyst formation and growth. 

In Chapter 3, I present a framework for the construction of in silico models of 

development. Using a combination of agent-based modeling (ABM) and genetic algorithms 

(GA), we are able to generate computational models capable of giving rise to growth and 

patterning.  

In Chapter 4, I demonstrate the use of the ABM-GA framework for the study of 

morphogenesis and patterning of the post-implantation amniotic sac embryoid (PASE) model. 

The models generated using evolution are tested in a variety of in silico experiments and are 

shown to be able to capture some of the dynamics seen in vitro. 
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Finally, in Chapter 5, I summarize this dissertation work and provide perspectives on 

future efforts in combining the use of in silico modeling, machine learning, and stem cell-based 

in vitro models of development for the study of embryogenesis and organogenesis. 
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Chapter 2 Machine Learning-Assisted Imaging Analysis of a Human Epiblast Model 

The work in this chapter has been published in Integrative Biology82. 

2.1 Introduction 

Human embryo development is a complex process in which cells go through major 

reorganization and progressive fate specification. Pre-implantation human development leads to 

the formation of the blastocyst, a hollow sphere of trophectoderm cells with an inner cell mass 

(ICM) composed of both epiblast cells (i.e. embryonic stem cells), which will later form the 

embryo proper, and hypoblast cells, which will later go on to form the yolk sac. Once the 

blastocyst begins implantation into the uterine wall, there are a number of developmental events 

all working in parallel and affecting each other in ways we still don’t understand. These 

processes include the invasion of trophectoderm cells into the uterine wall and their 

differentiation into cytotrophoblast and syncytiotrophoblasts as well as the development of the 

epiblast into a lumenal rosette structure enclosing a central cavity. Soon after, the epiblast cells 

next to invading trophectoderm cells differentiate into the amnion, with the remaining epiblast 

cells next to the hypoblast remaining pluripotent, leading to the formation of a bipolar epiblast-

amnion tissue. While crucial to a successful pregnancy, these developmental events are difficult 

to study due to both technical limitations and ethical considerations19,83. For years, researchers 

have tried understanding human development with the use of animal models including mouse 

and monkey models1,2,9,48,84. Recently, there have been increasing efforts towards the 
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development of in vitro models of human development with the use of human pluripotent stem 

cells (hPSCs) including human embryonic stem cells (hESCs)21,85–87.  

Studies have shown that hPSCs have an intrinsic property to self-organize and 

differentiate to form complex in vivo-like structures. Leveraging this capability, researchers have 

successfully created a variety of hPSC-based embryo models that recapitulate key steps in early 

human development28,33,34,46. A developmental process of particular interest to our group has 

been the formation of lumenal hPSC cysts and the differentiation of hPSCs into amnion cells. 

Shao et al.33were the first to show that hPSCs could differentiate into amnion cells. They 

engineered a 3D biomimetic platform with a soft gel bed made with the basement membrane 

matrix GeltrexTM and a 3D matrix overlay made with a low concentration of GeltrexTM diluted in 

culture medium. In this system, hPSC clusters would undergo lumenogenesis and form lumenal 

structures containing a central cavity. Over time, three types of cysts resulted from lumenal 

hPSC clusters: cyst composed of amnion cells, cysts composed of undifferentiated hPSCs, and 

asymmetric cysts containing amniotic cells at one pole and undifferentiated hPSCs at the 

opposite pole (Figure 2.1). The percentage of each type of cyst was shown to depend heavily on 

the initial cell plating density. While BMP-SMAD signaling was found to be important for 

amnion differentiation, the mechanism(s) that led to the initiation of amnion differentiation in the 

3D structure has remained elusive.  
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Figure 2.1 Development of hPSC clusters into three distinct types of lumenal structures: amniotic cyst, pluripotent 
cyst, and asymmetric cyst. Amniotic cysts are composed of amniotic cells, whereas pluripotent cysts are composed 
of undifferentiated hPSCs. Asymmetric cysts contain amniotic cells at one pole and undifferentiated hPSCs at the 
opposite pole. 

 

The ability of hPSCs to self-organize and differentiate into in vivo-like structures in in 

vitro settings posits the existence of endogenous developmental programs. Consequently, a 

crucial characteristic of in vivo-relevant, stem cell-based embryo models is their ability to 

leverage these programs in order to capture the progressive nature of human development. 

Triggering these developmental programs, however, is not a trivial endeavor; it requires cell 

culture environments engineered with correct dimensionality as well as correct mechanical and 

biochemical properties. Having taken the necessary first step of creating a hPSC model that 

recapitulates a developmental period of interest, the next step becomes the elucidation of the 

mechanisms at work in the system. In vivo, progressive development entails branching of distinct 

lineages and progressive differentiation into cell types with increasingly restricted potential88. 

Studying these processes in hPSC models in a tractable manner requires the use of computational 

tools that minimize manual curation and bias. Machine learning tools have come to the forefront 
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and are increasingly used to parse the mechanisms at work in these systems. To date, however, 

many of these efforts have been directed towards the application of single-cell RNA-sequencing 

(scRNA-seq) data analysis tools89–93 or examining global features of the observed structures at 

discrete time points94,95. While these approaches are useful, their discrete nature limits their use 

for understanding how factors in the local cell microenvironment trigger and guide cell state 

changes that lead to the emergence of relevant structures. Understanding this requires the ability 

to continuously monitor individual cells in the system and record division events for later lineage 

tracing.   

There have been several efforts towards the creation of classifiers for the identification of 

dividing cells. While the methods are varied, the models can be divided into two categories: (1) 

models that use spatial features96–98 and (2) models that use both spatial and temporal features99–

105. Many of the models that rely only on spatial features for classification utilize morphological 

feature extraction that leverages the clear differences in visual characteristics between dividing 

and non-dividing cells96–98. Models that lack temporal information, however, face the additional 

challenge of having to consider how the timing at which the event is captured will affect the 

features of interest. This is not an issue for spatiotemporal models in which many stages of the 

division process can be captured and used for the classification. However, rather than focusing 

on the nucleus, which shows the most obvious visual changes during division, many of the 

existing models rely on phase contrast microscopy images99–102,104,105 that complicate 

classification because of the confounding factor of varying cell shape. In this work, we present a 

computational tool for the comprehensive analysis of live cell imaging data of hPSC cyst 

formation using a unique nuclear GFP H9 hESC reporter line. Using Python, we created a 

pipeline that is able to process the images and identify all individual cells in a developing hPSC 
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cyst. The pipeline captures information on both the cell properties and cell neighborhood at each 

time point. Further, we trained a machine learning model for event recognition that is able to 

identify changes in cell state such as division and death by looking at spatiotemporal properties 

of the nuclei. With this tool, we hope to parse the relationship between the properties of the local 

environment and cell-level decisions that lead to emergent behaviors like hPSC cyst formation 

and growth.  

2.2 Materials and Methods 

2.2.1 Cell culture substrate preparation 

An array of 100 μm-diameter circular adhesive islands was created using a two-step 

micropatterning method as described previously106. Briefly, a poly-dimethylsiloxane (PDMS) 

elastomeric stamp with an array of circular posts was generated using replica molding from a 

silicon mold fabricated by standard photolithography and deep reactive ion etching (DRIE)107,108. 

The center-to-center spacing between adjacent posts on the PDMS stamp was 150 μm, and the 

post height and diameter were 30 μm and 100 μm, respectively. The PDMS stamp was coated in 

1% Geltrex (Thermo Fisher Scientific; derived from Engelbreth- HolmSwarm tumors similarly 

as Matrigel®) solution for 24 h at 4 °C and subsequently rinsed with distilled water and blown 

dry with nitrogen. Before stamping, the cell culture substrate was prepared by coating a glass 

coverslip with PDMS and treating it with ultraviolet (UV) ozone (UV-ozone cleaner; Jelight, 

Irvine, CA) for 7 min to oxidize the PDMS surface. The PDMS stamp was then placed in 

conformal contact with the PDMS-coated coverslip for 5 s to transfer Geltrex from the stamp to 

the coverslip. To restrict cell attachment to the circular adhesive islands, the coverslip was 

treated with Pluronic F127 NF dissolved in PBS (0.2%, w / v; BASF, Ludwigshafen, Germany) 

for 1 h at room temperature and rinsed with distilled water. The coverslip was then immersed in 
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mTeSR (STEMCELL Technologies) for a minimum of 2 h to further block the non-

functionalized surface of the coverslip. Finally, the coverslip was submerged in mTeSR medium 

containing 1% Geltrex for 1 h. The coverslip was washed with PBS before cell seeding. 

2.2.2 Generation of mTnG cells 

For live cell imaging of hESC cyst formation, a membrane tdTomato, nucleus-EGFP 

(mTnG) H9 hESC line was generated. H2B-EGFP was PCR amplified from a gift plasmid 

Tcf/Lef:H2B-GFP (Addgene plasmid #32610). The PCR product was then ligated into the 

ePiggyBac vector with a constitutively active puromycin selection cassette109. membrane-

tdTomato was PCR amplified from a gift plasmid pQC membrane TdTomato IX (Addgene 

plasmid #37351). The PCR product was then ligated into the ePiggyBac vector with a 

constitutively active neomycin selection cassette109. These two plasmids (1.5 μg each) were co-

transfected with 1 μg pCAG-PBase (ePiggyBac transposase helper plasmid obtained from Dr Ali 

H. Brivanlou109) using GeneJammer (Agilent Technologies) into H9 hESCs that were plated at 

50,000 cells cm−2 24 h prior to transfection. Puromycin selection (2 µg mL-1) and G418 selection 

(250 µg mL-1) started at 4 days after transfection. The cells were selected for 7 days. After 

selection, the cells were dissociated to single cells and replated at low density (400 cells cm-2) for 

clone picking. 12 clones were hand-picked and evaluated for brightness and pluripotency. 3 

clones were expanded at the end (mTnG #1, 2, 3). mTnG #1 hESC line has the brightest 

fluorescent signal and is used in the current study.  

2.2.3 Cyst formation assay 

Cultured hESC colonies were dissociated into single cells with Accutase (Sigma-Aldrich) 

at 37 °C for 10 min before the cells were centrifuged and re-suspended in mTeSR1 medium 
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containing 10 μM ROCK inhibitor, Y27632 (Tocris), to avoid dissociation-induced apoptosis110. 

Cells were then plated onto coverslips pre-coated with circular adhesive islands at a density of 

300,000 cells cm-2. To establish 3D ECM overlay, culture medium was changed to fresh 

mTeSR1 medium containing 10 μM Y27632 and 4% (v / v) Geltrex 2 h after initial cell seeding. 

Y27632 was removed 24 h after initial cell seeding, at which time the coverslip was transferred 

to fluorescence microcopy for live cell imaging. 

2.2.4 Live cell video acquisition 

mTnG hESCs on the coverslip were imaged using the Zeiss Axio Observer Z1 inverted 

epifluorescence microscope enclosed in the XL S1 incubator (Carl Zeiss MicroImaging) to 

maintain cell culture at 37 °C and 5% CO2. Fluorescence images were recorded with a 20× 

objective for a period of 24 h, with an exposure time of 3 s and a time frame of 10 min to 

minimize phototoxic effects on cells. A GFP filter set was used for fluorescent imaging of the 

nuclei of mTnG hESCs. 

2.2.5 Image pre-processing 

A customized Python program was used to process raw images collected from live cell 

imaging using fluorescence microscopy. First, contrast was enhanced using adaptive image 

enhancement developed by Peng et al111. Specifically, each pixel in the image is normalized 

using the mean and variance of a local region surrounding the pixel. This local region is 

determined adaptively. For a given pixel, the program starts from a given initial size and expands 

until the standard deviation of the region is equal to or more than a given threshold. For 

computational tractability, maximum radius was set at 5 pixels. The threshold is in the range of 

0.2 to 0.8 and is meant to ensure that the local region has enough relevant structures to classify a 
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pixel as being part of the background or part of an object. After obtaining the region size, the 

pixel is normalized by subtracting the local mean and dividing by the local standard deviation. 

This will account for varying background intensity and varying contrast, respectively. A 

background mask is then obtained by binarizing the resulting image with a binary threshold 

(cv2.THRESH_BINARY). This background mask is further refined with a dilation (cv2.dilate, 

kernel size = (3,3), iterations = 2) followed by an erosion (cv2.erode, kernel size = (5,5), 

iterations = 2). Multiplying this resulting background mask by the original image eliminates 

background noise. Second, contours of cells were identified with the use of adaptive gaussian 

threshold (cv2.adaptiveThreshold with blockSize = 23, C = 1) (Figure 2.3b). For each pre-

processed image, contours were extracted with the use of cv2.findContours with 

cv2.RETR_TREE and cv2.CHAIN_APPROX_NONE. The third step is to carry out 

segmentation to find individual cell contours (Figure 2.3d). The pipeline measures the area and 

circularity of each contour. Contours identified as individual cells are stored. The contours 

identified as cell clusters undergo concavity point-pair segmentation, a method developed by 

Farhan et al. based on finding concavity point-pairs using a variable-size rectangular window112. 

In brief, using an established interval, a list of contour coordinates is first extracted from the 

binary image of the cell cluster. For each coordinate in the list, lines are drawn to the next two 

points in the list. Once a line passes through the image background (i.e., a pixel with value 0), 

the algorithm finds the contour coordinate at which the line no longer passes through the 

background and establishes this coordinate as a concavity point. After filtering the resulting point 

list to account for contour irregularities, the program finds the directionality vector of each 

concave area. Using this vector, each concavity point establishes a rectangular window in which 

to search for other concavity points. Once all concavity points have paired up, a line is drawn 
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between them and the cluster is segmented. Farah et al. validated the method with the use of 

three data sets, two of which contained bright field microscopy images of yeast cells, and one 

which contained fluorescent microscopy images of yeast cells112. They showed that the concavity 

point-pairing segmentation method was highly effective, with precision averaging at 0.98112. 

2.2.6 Image selection for CNN-LSTM 

The machine learning classifier used was a deep learning model consisting of a 

convolutional neural network (CNN) connected to a long short-term memory (LSTM) network. 

The data set for supervised training contained sequences of three time points showing three 

different classes of cells: dividing, dying, and non-dividing. These sequences of dividing, dying 

and non-dividing nuclei were manually cropped from live cell videos (Figure 3a). The sample set 

contained 450 samples, with an equal amount of every class.  

2.2.7 Parameters for CNN-LSTM 

The CNN-LSTM model was constructed using keras.Sequential, which yields a linear 

stack of layers. The CNN layers consisted of a repeating pattern of convolution, max pooling, 

and batch normalization followed by one dropout and one global max pooling layer. The CNN 

model output for each sequence of images was passed on to an LSTM layer via a 

TimeDistributed layer. This layer extracts features from each image in the sequence and passes it 

to the LSTM. The final layers in the model create a fully connected network with the use of 

dense layers. Rectified linear units (ReLU) were used as the activation function in all of the 

convolutional layers and dense layers, except for the last one. The last dense layer used softmax 

activation in order to carry out multiclass classification. The model was compiled using Adam as 

the optimizer, categorical crossentropy for the loss calculation, and accuracy as the metric 
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evaluated by the model. The number of epochs was 100. During training, callback with 

ModelCheckpoint was used to store the best model based on validation accuracy. A 70-20-10 

split was used to create the training, testing, and validation data sets. Because the data set is 

small, data augmentation was carried out using a data generator class. Using this generator, the 

data set was randomly shuffled and images were transformed using rotation (range of 5), shifts in 

height (range of 0.1) and shifts in width (range of 0.1). Transformations in this data generator 

class were carried out using the Keras ImageDataGenerator class. One-hot encoding was applied 

to the labels before training. 

2.2.8 Video analysis pipeline 

Live cell videos were analyzed with a Python pipeline. Images were pre-processed and all 

individual nuclei were identified. A cell tracker python class was used to give each cell a unique 

identification (ID) number and track cells from one time point to another using Euclidean 

distance. The nuclei were cropped from the image and stored in a Python dictionary. For event 

recognition, the cropped nuclei of the current time point and the cropped nuclei from the 

previous two time points were passed as input to the CNN-LSTM classifier. Whenever a new 

cell would appear in the environment, the parent cell would be identified using a parent score 

(ps) parameter. Newly divided cells tend to be small, bright, and similar in size. For this reason, 

the ps takes into account both the classification of the cells in the previous time point and the 

similarity in area and brightness of the nuclei between the new cell and the possible sister cell. 

The cell with the highest ps in the local neighborhood of the newly appeared cell would be 

assigned as the parent. At this point, the daughter cell with the parent ID receives a new ID, and 

the parent ID of the daughter cells is stored. The number of neighboring cells and the average 

distance to neighbors are stored for each cell at every time point. The output of the video cell 
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analysis is a Python DataFrame with the cell IDs, cell positions, number of neighbors, average 

distance to neighbors and parent IDs for each time point.  

2.3 Results 

2.3.1 Cyst formation analysis pipeline 

Analysis of the morphogenesis of a multicellular structure at discrete time points can give 

insight into the system-level dynamics governing its growth and development. However, 

important cell-level dynamics and the degree of stochasticity and heterogeneity in a multicellular 

system remain difficult to elucidate. To better study the dynamic process of hPSC cyst 

formation, we developed an experimental platform to provide a biomimetic niche for the 

formation of hESC cysts in a controllable and robust manner. Specifically, an array of 100 μm-

diameter circular adhesive islands was created on a coverslip, before hESCs expressing 

membrane tdTomato and nucleus-EGFP (mTnG) were seeded onto the coverslip. Two hours 

after cell seeding, culture medium was changed to fresh mTeSR1 medium containing 10 μM 

Y27632 and 4% (v / v) Geltrex, to establish a 3D ECM overlay. The coverslip was transferred to 

a Zeiss Axio Observer Z1 inverted epifluorescence microscope 24 h after cell seeding. To track 

the dynamics of hESC cyst formation, live cell imaging was conducted for 24 h with a depth of 

focus that captured all the cells in the system. Given their self-organizing property, hESCs 

confined on adhesive islands on the coverslip formed small clusters and underwent epithelization 

and lumenogenesis. Throughout cyst formation, cells showed limited movement ability in the z-

direction. Live cell imaging data were then processed with the use of a Python pipeline capable 

of image processing, cell tracking, and event recognition. With these extracted data, a 

comprehensive characterization of cell states and actions during hESC cyst formation could be 
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conducted, using a workflow that includes image processing with machine learning, and the 

characterization of cell state and cyst growth (Figure 2.2).  

 

Figure 2.2 Workflow for live cell imaging data analysis of cyst formation, including in vitro experimentation, video 
analysis, and system characterization. 

2.3.2 Event recognition and image processing 

Parsing the relationship between cell actions and their local microenvironment is a 

necessary step for elucidating the mechanisms that drive hESC cyst formation and development. 

As a first step to carrying out this analysis, we sought to develop a machine learning model 

capable of detecting two important changes in cell state: division and death. While CNNs are 

often used for image classification, we sought to add robustness to the model by also leveraging 

temporal information with the use of an LSTM network. CNN-LSTM has been utilized for 

imaging analysis to detect mitotic cells recorded using time-lapse phase-contrast microscopy102. 

Following this logic and utilizing mTnG hESCs that show significant changes in nuclear shape 

and area for both dividing and dying cells, we trained a CNN-LSTM classifier. The classifier 

identifies three cell states: dividing, dying, and non-dividing (Figure 2.3a). While the use of a 

single image could lead to correct classification, the CNN-LSTM model is able to leverage 

information on the temporal changes in nuclear shape using live cell imaging data (Figure 2.3b). 



 33 

By using a set of 450 manually labeled images with an equal number of each class, with a 70-20-

10 test-train-validation split and data augmentation, a 96.3% overall accuracy in event 

recognition was achieved using the CNN-LSTM classifier (Figure 2.3c). 

 

Figure 2.3  (a) Input image sequences to CNN-LSTM classifier. Images show the GFP channel of imaged mTnG H9 
hESCs. The top, middle and bottom rows correspond to a dividing, dying, and non-dividing cell, respectively.  Scale 
bar, 10μm. (b) CNN-LSTM framework followed by a multilayer perceptron (MLP) for multiclass classification. (c) 
Confusion matrix for CNN-LSTM classifier.  
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 Having successfully trained a machine learning model for event recognition, we next 

sought to create an image processing pipeline capable of identifying individual cell nuclei. While 

there are a number of computational tools available for identification and tracking of cells in a 

multicellular system113–115, identifying and tracking cells within a forming cyst presents unique 

challenges that require the use of more catered approaches. For example, in our test of the 

commonly used watershed method for segmentation, it is difficult to carry out correct 

segmentation of cell clusters, likely because of the compact arrangement of cells in hESC cysts. 

Additionally, global thresholding methods were unsatisfactory for finding hESC clusters, likely 

because of variations in nuclear GFP intensity. To address these challenges, we devised an 

imaging processing pipeline uniquely suited to carry out thresholding and segmentation in tightly 

packed hESC cysts. The image processing steps consist of thresholding, denoising, 

segmentation, and identification of individual cells in hESC cysts (Figure 2.4). For the 

segmentation step, we utilized adaptive local enhancement111 to enhance the contrast between 

nuclei and background. For binarization, we utilized adaptive Gaussian thresholding to ensure 

that cells that are slightly out of focus can still be identified. After binarization and denoising, 

hESC clusters were segmented with the use of concavity point pairing analysis112. Cells are 

given a unique identification (ID) number and tracked from one time point to another with the 

use of Euclidean distance.  
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Figure 2.4 Image processing pipeline. Cell cluster is first isolated from original images obtained from live cell 
imaging of mTnG H9 hESCs (GFP channel is shown here) (a), before going through adaptive local enhancement 
and adaptive Gaussian thresholding (b). The image is then denoised with the use of open, erode, and filtering by 
connectivity (c). Cell clusters are segmented with concavity point analysis and individual cell contours are 
established (d). Bounding rectangle is then inputted into cell tracker (e), and cells are given a unique ID (f). Scale 
bar, 50 μm.   

 

2.3.3 Live cell data processing and system characterization 

As mentioned earlier, the experimental platform for the formation of hESC cysts consisted of an 

array of micropatterned Geltrex islands with a diameter of 100 μm generated with a two-step 

micropatterning process106 (Figure 2.5a). After a period of 24 h in which mTnG hESCs were 

allowed to attach and cluster onto the adhesive islands, the experimental platform was transferred 

to a fluorescent microscope for live cell imaging for a period of 24 h (Figure 2.5b&c). To avoid 

cytotoxic effects, images were recorded at intervals of 10 min.  



 36 

 

Figure 2.5 hPSC cyst formation experiment. (a) Cartoon of experimental platform consisting of micropatterned 
adhesive islands and a 3D Geltrex overlay. (b) Experimental protocol timeline. (c) Live imaging of a hPSC cluster at 
different time points. In this assay, the mTnG H9 hESC line was used. Scale bar, 50 μm.   

 

 Having obtained live cell data from various hESC cysts, we processed the images using 

the Python pipeline. Figure 2.6 shows the growth profiles of four different hESC cysts. The 

growth profiles vary greatly between the cysts. While there are periods of a sustained increase in 

cell number like the one seen in Figure 2.6a between 500 min and 750 min, we can also find 

periods of a sustained decrease in the number of cells as seen in Figure 2.6c between 0 min and 

250 min. Regardless of the growth profile, however, the number of cells seem to plateau for all 

the cysts.  While the final cell numbers might be similar among the four hESC cysts, there are a 

number of different growth trajectories that could not have been inferred from looking at the 

final cyst configuration. In the context of modeling human development, this information 

facilitates the study of how these changes in growth dynamics correspond to relevant cell 

specification events. Further, as cells progressively differentiate and more populations appear in 
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a system, we can start to study the growth dynamics of specific populations and how they relate 

to correct form and function in the structure. 

 

Figure 2.6 Growth dynamics of four different hPSC cysts. Left and right columns show the cysts after 24 hours of 
growth and the number of cells in the cyst through the period of 24 hours, respectively. In this assay, the mTnG H9 
hESC line was used. Images show merged nuclear EGFP (green) and membrane tdTomato (red). Scale bar, 50 μm.   
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 Lineage tracing is a powerful tool for parsing the mechanisms guiding morphogenetic 

events in a multicellular system. It has many uses including providing insight into the timing of 

differentiation of cell types of interest and helping identify lineage-specific precursor cells. 

Combined with the ability to record properties of the local cell microenvironment, it can help 

parse when and why different cell types arise. Figure 2.7a shows a network representation of the 

cyst shown in Figure 2.6a at different time points. Edges between cells of a given cyst are 

connected to each other based on an established threshold distance. The solid line going from 

one time point to another indicates a chosen cell lineage, with an additional dotted line indicating 

cell divisions. Having tracked a cell and established its lineage, we can characterize the local cell 

density experienced by the cells in the lineage throughout time. As can be seen in Figure 2.7b, 

the number of cells in the neighborhood and the average distance from neighbors of the selected 

cell continue to vary even after cell number in the cyst has plateaued (Figure 2.6a). We can also 

see from Figure 2.7d that the cyst radius continues to increase after cell number has plateaued, 

suggesting that structure growth does not necessarily correlate with increased cell number. From 

the MSD plot in Figure 2.7d we can see that the average MSD in the system remains low 

throughout the 24 hours. This is likely a result of the confinement provided by the adhesive 

islands in which the cells exist. As different cell types start to arise, this pipeline output can be 

used to assess differences in movement dynamics between different cell populations and their 

spatial segregations. For example, mesoderm cells, which are studied in our post-implantation 

amniotic sac embryoid (PASE) model33, are known to be more migratory as compared to other 

populations like epithelial ectoderm and endoderm cells. While the model presented here is 

limited to the first 24 h of cyst formation, future efforts can be devoted to extending this 

timeframe to include important events such as symmetry breaking caused by the appearance of 
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amnion-like cells (AMLCs) in the PASE. In our PASE model, we found that the initial cell 

seeding density has a significant effect on morphogenesis and differentiation of hESCs33,106. 

With the information that can be obtained from this pipeline, we can begin to understand the role 

of initial conditions like cell seeding density, and we can begin the work of relating changes in 

the local environment with cell-level decisions that lead to the cyst-level growth and patterning.   
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Figure 2.7 Characterization of hPSC cyst formation dynamics. (a) Network representation of a cyst at different time 
points. The color of the nodes in each plane indicates the time point. Each node represents a single cell in the cell 
cluster. Connections between cells are established based on a threshold distance. Cell lineage of the gold-colored 
cell is shown with the black line connecting the cell at different time points. Dotted lines indicate instances of cell 
division. (b) Average distance to neighbors and number of neighbors corresponding to the gold-colored cell in a as a 
function of time. (c) Average mean squared displacement (MSD) of all the cells in the cyst as a function of time. 
Dark blue points and bars represent the average MSD and the range of MSDs, respectively. (d) Radius of the cyst as 
a function of time. 

 

2.4 Conclusions 

The successful generation of human embryo-like structures is a crucial step in advancing 

fundamental understanding of human development, without using intact, natural human 

embryos. However, limitations on the insights gained through analysis of human embryo-like 

structures at discrete time points drove us to create a live cell video processing pipeline catered 

for the unique challenges of our system. With the use of both spatial and temporal information, 

we were able to create a machine learning model for event recognition. Furthermore, this model 

was integrated into an image processing pipeline that leveraged specialized image processing 

tools for the identification and tracking of individual cells in our system. With this integrative 

pipeline we were able to characterize the cell states and actions during the dynamic growth and 

morphogenesis of lumenal hESC cysts. Combining this tool with reporter lines for cell types of 

interest, we hope to advance in our goal to elucidate the mechanisms driving lumenogenesis, cyst 

growth, and cell fate specification in our in vitro hESC models of human development.   
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Chapter 3 Agent-Based Modeling-Genetic Algorithm Framework for the Study of 

Morphogenesis and Patterning 

 

3.1 Introduction 

The development of the human body is arguably the most complex process that occurs in our 

lifespan. In this process, the developing embryo must undergo proliferation, reorganization, 

lineage diversification, and dozens of cell fate specification events. These processes are guided 

by endogenous signaling that is affected by and allows for the correct interpretation of 

exogenous signaling (i.e. the cells receive ‘instructions’ from the environment that, combined 

with endogenous signaling, trigger the correct state changes). As the individual cells take actions 

based on their local microenvironments, global form and function emerge. Through self-

organization, an initially unstructured cellular system attains complex structure and pattern via 

seemingly endogenous programs116. This self-organization can be subdivided into self-patterning 

and morphogenesis116. Self-patterning is initiated by a symmetry-breaking event where a 

subpopulation of the cells undergoes cell fate change. Maturation and stabilization of the self-

patterned structure can be guided by a variety of mechanisms including reaction-diffusion 

mechanisms, gene regulatory networks, and cell-cell interactions. Morphogenesis is the process 

by which the structure achieves a complex, functional form via cell divisions and movement.   

The self-organizing abilities of our developing cells has been heavily leveraged in the field of 

stem cell-based models. In the last decades, researchers have built stem cell-based models that 
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are able to capture a wide array of key developmental processes in in vitro structures coined 

embryoids and organoids. In these in vitro models, the mechanical and chemical characteristics 

of the environment are used to trigger the seemingly endogenous developmental programs of 

stem cells that lead to self-organization. To date, researchers have been able to create models of 

the amniotic sac, neural tube, optic cup, and intestine among many others33,116,117. In these 

systems, structures undergo processes including polarization, lumenogenesis and symmetry 

breaking (Figure 3.1). While the specific mechanochemical factors that lead to these structures 

are unique, some key unifying features include the ability of structures to undergo symmetry 

breaking in homogeneous environments and a high sensitivity to initial cell cluster size33,116,117.  

Parsing the mechanisms that lead to the emergence of form and function in stem cell models is 

nontrivial and further complicated by cell-level heterogeneity and low efficiency. Computational 

modeling presents itself as a promising method for exploring possible mechanisms. Because of 

its ability to model cells as discrete agents, agent-based modeling (ABM) is particularly suited 

for the study of multicellular systems.  
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Figure 3.1Schematic showing symmetry breaking and growth as seen in in vitro stem cell-based models. 

 

Building a model when a system is new and there are many unknowns is understandably 

difficult. Even with some a priori knowledge, some parameter values required for the simulation 

might be difficult or even impossible to measure76. Parameter estimation techniques then become 

necessary. Approximate Bayesian computation (ABC) is one such method for parameter 

estimation118,119. This method compares simulations from a model with experimental data and 
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accepts simulations if the statistics for model data lie within an acceptable distance threshold. A 

faster adaptation of this method called approximate approximate Bayesian computation (AABC) 

was used by Lambert et al. for parameter estimation in an ABM of kidney branching120,121. 

While useful for estimating parameters, these methods do not address the need for uncovering 

morphogenesis rules. A possible approach to rule establishment is machine learning methods like 

deep learning (DL), which are capable of learning models from data without the need for prior 

domain knowledge122. An example of this is the work done by Wang et al. where they used deep 

reinforcement learning to study cell movement during embryonic development of C.elegans123. 

DL methods, however, have limitations when it comes to building ABM logic; they require a 

differentiable loss function124,125 and lack transparency, which makes interpreting and trusting 

these models difficult126,127. A promising approach to model building is the use of genetic 

algorithms (GA). GA are a parameter space exploration method based on the mechanisms seen 

in evolution78–81. While GA are ubiquitous in fields such as computational evolution and 

robotics, they have yet to be used to their full potential in the field of multicellular systems. In 

this chapter, we present a novel combination of ABM with a GA. This ABM-GA framework 

evolves populations of ABMs. With the use of selection, mutations, crossovers, and 

reproduction, our GA yields rule sets that plausibly capture key aspects of self-organization and 

self-patterning.  

3.2 Materials and Methods 

3.2.1 Agent-based model in NetLogo 

The ABM was constructed in NetLogo, a widely-used and open-source ABM platform128. In the 

model, cells exist in a hexagonal lattice with a field of view limited to their six immediate 

neighbors (Fig 3.2a). To facilitate finer diffusion profiles, the cells are larger than a single patch, 
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with size ratio of 1:19 (cells:patches). Each position of a cell’s neighborhood might be occupied 

by either a single cell, an array of matrix, or an array of lumenal space. Cells can die, move, form 

lumenal space, divide, secrete factors (activating and/or inhibiting signals), and differentiate 

(Figure 3.2b). The cell’s neighborhood composition will determine which rule it follows, with a 

total of 20 morphogenesis rules for the different possible compositions (Figure 3.2c). 

Differentiation may take place via two mechanisms: (1) contact-mediated differentiation wherein 

differentiated cells are assumed to have inductive effects on their pluripotent neighbors and (2) 

presence of activator exceeding some established threshold. 

 

Figure 3.2 Agent-based model. (a) Field of view of a cell. (b) Possible actions carried out by a cell in response to the 
local microenvironment. (c) ABM rules for each type of neighborhood composition. 
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3.2.2 ABM-GA framework 

The goal of the GA is to discover rule sets that plausibly capture features of self-organization and 

symmetry breaking as seen in stem cell-based models. In our GA, which was constructed using 

Python, we evolve populations of ABMs (i.e. each ABM is an ‘organism’ in a population 

undergoing evolution through the GA). Each model has a genome that specifies 31 model 

parameters. These parameters can be divided into three categories: initial conditions (2 rules), 

morphogenesis (20 rules) and differentiation (9 rules) (Figure 3.3). There exists a set of possible 

morphogenesis rules that a cell might follow given the composition of its local neighborhood. 

The ABM differentiation process is modular in order to accommodate different possible 

mechanisms. Evolving parameters include (1) cell type (differentiated or undifferentiated) 

responsible for activating signal secretion, (2) amount of activator being secreted, (3) cell type 

responsible for inhibitory signal secretion, (4) amount of inhibitor being secreted, (5) direction 

(basal or apical) of activating signal secretion, (6) direction of inhibitory signal secretion, (7) 

differentiation threshold, and (8) period of exposure needed for differentiation.  
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Figure 3.3 Genetic algorithm setup. Each model or ‘organism’ in the population has a genome containing the model 
parameters of interest. These can be divided into (1) initial condition parameters, (2) morphogenesis rules, and (3) 

patterning parameters. 

 

In order to evolve the population of models towards the desired functionality, we established 

four distinct fitness objectives or parameters. Two of the parameters pertain to patterning and 

two pertain to morphogenesis. For morphogenesis, each organism has a structure score and a 

lumen score. The structure score accounts for structure integrity and cell connectivity. And the 

lumen score accounts for number of lumen. For patterning, there is a sections score and a 

proportion score. The sections score is the inverse of the error between the target number of 

differentiated and pluripotent sections and the actual number of differentiated and pluripotent 
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sections in the cyst. Similarly, the proportion score is the inverse of the error between the target 

proportion of differentiated to pluripotent section area and the actual proportion. The target 

number of sections, target proportion of cell types, and target number of lumen can be changed 

according to the particular system under study. Given our multi-objective fitness evaluation, we 

used the non-dominated sorting GA, NSGA-II129, to rank the models in order to undergo 

selection for the next generation.  

The ABM-GA framework functions as follows. At initiation of evolution, a population of a 

desired size is randomly generated by assigning random values to each position in the genome. 

For all positions in the genome in which the value is an integer, a range within which to choose a 

random value from is given at initialization. For all positions in the genome that pertain to a 

morphogenesis rule, there exists a pool of actions from which to randomly draw from (Figure 

3.4). In order to mitigate overfitting, a user-defined percentage of morphogenesis rules are 

assigned the value of ‘do-nothing’ in order to render them nonfunctional. A child population is 

then generated with the use of mutations, and the combined populations are run in NetLogo 

(Figure 3.4). The fitness of structures resulting from the NetLogo run are then evaluated based 

on how well it corresponds to the target structure and composition. The next parent generation is 

constructed by selecting the highest-ranking individuals identified by the nondominated sorting 

algorithm as well as by a configurable percentage of crossovers and new randomly generated 

organisms. The connection between the Python GA and NetLogo is established using the 

PyNetlogo library130.  
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Figure 3.4 ABM-GA framework. The GA initializes with a population of randomly generated organisms. The 
population is evaluated by first running the models in NetLogo and then carrying out fitness assessment and genetic 

manipulation in Python. This process is repeated for each generation for an established amount of time. 
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3.3 Results 

Having had established the framework, we sought to understand how an evolving 

population behaves in time. The primary outputs we were concerned with were the sections score 

and the diversity in the population. Because parameter space is large, we wanted an evolutionary 

approach that would preserve diversity in the population by favoring exploration over 

exploitation. We ran the framework for a section objective of four for a total of 100 generations 

(Figure 3.5). The GA parameters were set as follows: population size of 100, percentage of 

nonfunctional morphogenesis rules of 70%, mutation rate of 0.5, retention of top 2 organisms, 

20% of the new generation from crossovers, and 10% of the new generation from new randomly 

generated organisms. In Figure 3.5 we can see a random sampling of the evolving population for 

generations 0 and 100. The average sections score of the population was relatively constant 

throughout evolution (Figure 3.5b). As a proxy for diversity, we looked at the number of species. 

Models were grouped into the same species if they shared at least 70% of their genome. For this 

population of 100 models, the number of species remained above 50 throughout evolution, 

indicating that diversity was indeed being preserved (Figure 3.5c). Finally, we looked at the 

percentage of nonfunctional morphogenesis rules (Figure 3.5d). Interestingly, this value 

remained relatively constant throughout evolution.  
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Figure 3.5 ABM-GA framework output for a section objective of four. (a) Sample organisms from generations 0 and 
100. (b) Average sections score of the evolving population at each generation. (c) Number of species in the evolving 

population at each generation. (c) Average ratio of nonfunctional rules of the evolving population at each 
generation. 

 

While diversity was preserved at the population level, we also sought to understand 

diversity within the set of successful models. In Figure 3.6a, we can see some sample successful 

organisms from generations 0-15, 50-60, and 90-100. The number of species for this subset of 

organisms seems to grow as evolution proceeds (Figure 3.6b), leading us to believe that our 

exploration-favored GA approach can be successful at generating a diverse set of possible 

solutions. 
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Figure 3.6 Subset of successful organisms resulting from the ABM-GA framework for a section objective of four. 
(a) Samples of successful organisms from generations 0-15, 50-60, and 90-100. (b) Number of species through time 

within the subset of successful organisms. 

 

In order to assess if the ABM-GA is able to yield a variety of patterns, we ran the 

framework for two additional sections objectives: six sections and two sections. The GA 

parameters were set as follows: population size of 100, percentage of nonfunctional 

morphogenesis rules of 70%, mutation rate of 0.5, retention of top 2 organisms, 20% of the new 

generation from crossovers, and 10% of the new generation from new randomly generated 

organisms. Each population was left to run for 100 generations. The behavior was found to be 

consistent across the different runs; the average sections score, the number of species, and the 

percentage of nonfunctional rules remain fairly stable throughout evolution (Figure 3.7a,b,c). 

The sections objective was met for each of the populations (Figure 3.7d,e,f).  
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Figure 3.7 ABM-GA framework output for different sections objectives. (a) Average sections score of the evolving 
population at each generation for an objective of six, four, and two sections respectively. (b) Number of species in 
the evolving population at each generation for an objective of six, four, and two sections respectively. (c) Average 

ratio of nonfunctional rules of the evolving population at each generation for an objective of six, four and two 
sections respectively. (d-f) Sample patterned organisms of the evolving population at generation 100 for an objective 

of six, four, and two sections respectively. 
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volume of samples and in which parameter space is large. In silico models present themselves as 

a great complement to in vitro experiments. But because these embryo and organ models are 

generally poorly understood, building such models becomes difficult. The ABM-GA framework 

presented in this work lays the foundation for a novel approach to model building as it pertains to 

the context of morphogenesis and patterning. The framework presented in this work is highly 

abstracted and modular, allowing for the modeler to begin with the simplest model possible and 

add details and complexity as needed. As shown, the framework is able to yield models that 

generate structures with specific desired patterns. Having this set of ‘successful’ models, the next 

step then becomes a more comprehensive comparison between the in silico model and the in 

vitro reality. Further filtering of the resulting models can be done by investigating whether the 

models can capture specific known behaviors of interest such as the effect of initial conditions on 

final structure composition. Having found those in silico models that demonstrate the most 

similarity to the in vitro reality, future work can focus on the use of such models for parameter 

space exploration, hypothesis testing, and prediction.  
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Chapter 4 Agent-Based Model of Epiblast Growth and Patterning  

4.1 Introduction 

One of the strict requirements for a successful pregnancy is embryo implantation into the 

maternal tissue. During this process, the epiblast cyst undergoes a major symmetry-breaking 

event that gives rise to the amniotic sac (Figure 4.1). In order for this to happen, cells at the 

maternal tissue-facing pole of the epiblast cyst must undergo differentiation into squamous 

amniotic ectoderm. This development of the amnion, or amniogenesis, is a critical 

developmental milestone131,132. Despite its importance, our understanding of the mechanisms 

underlying this cell fate decision and the stabilization of this asymmetric structure is very 

limited. 

 

Figure 4.1 Schematic of epiblast cyst growth and development into the asymmetric amniotic sac during embryo 
implantation. 
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In the work done by our group, Shao et al. were the first to show that hPSCs could 

differentiate into amnion cells32. In this system, hPSC clusters would undergo lumenogenesis and 

form lumenal structures containing a central cavity. Given a biomimetic environment consisting 

of a soft gel bed made with the basement membrane matrix GeltrexTM and a 3D matrix overlay 

made with a low concentration of GeltrexTM diluted in culture medium, the cells in the cyst 

would undergo amniogenesis to give rise to squamous amniotic cysts. In later work done by 

Shao et al., they identified a very small subset of stable asymmetric cysts in the system33. Time-

lapse data revealed that morphogenesis involved lumenogenesis, growth, and thinning of a 

section of the cyst (Figure 4.2a). Characterization of the cells showed that these asymmetric cysts 

consisted of squamous amniotic cells at one pole and undifferentiated hPSCs at the opposite 

pole, much like what we see in the post-implantation human amniotic sac structure. This 

asymmetric cyst was named post-implantation amniotic sac embryoid (PASE)33.  

 

Figure 4.2 Developmental trajectory of PASE. (a) Representative time-lapse phase-contrast images showing 
dynamic morphogenesis during the development of a PASE. Time stamps indicate the total hours of culture. Scale 

bars,50 µm. (b) Cartoon showing the time course of PASE development in vitro, compared with human amniotic sac 
development in vivo. 
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Interestingly, the efficiency for the generation of this asymmetric structure was shown to 

be heavily dependent on initial cell plating density. At the highest plating density tested (70,000 

cells cm−2), all cysts were composed of pluripotent columnar cells on day 4 (Figure 4.3a). At the 

lowest plating density tested (20,000 cells cm−2), all of the structures became squamous amniotic 

ectoderm-like cysts by day 4 (Figure 2b). And at some intermediate plating density (50,000 cells 

cm-2), the percentage of PASE structures peaked. Later work done in our lab by Esfahani et al. 

further solidified the importance of initial cell numbers. In this work, amniogenesis was shown to 

be cluster-size dependent; clusters that began with 4-7 cells would develop into amnion cysts 

while clusters that began with more than 8 cells would form pluripotent epiblast cysts106. 

Because amnion fate occurred only within a narrow window of cyst sizes, this work suggested 

that amniogenesis is linked to a community sensing mechanism. 

 

Figure 4.3 (a) Bar plot showing the percentage of asymmetric cysts formed on day 4 at different initial plating 
densities (indicated on the x-axis); all other conditions are identical. Data represent the mean ± s.e.m. The 

denominator of each fraction indicates the total number of cysts quantitated for that condition; the numerator of each 
fraction indicates the number of asymmetric cysts among the quantitated cysts. P-values were calculated using 

unpaired, two-sided Student’s t-test. *P < 0.05. n = 3–5 biological replicates. n = 3 independent experiments. (b) Bar 
plot showing the percentage of fully squamous amniotic ectoderm-like cysts and fully columnar cysts under low-

extreme and high-extreme cell plating densities. ND not detected. Phase-contrast images show representative 
squamous (left) and columnar (right) tissue phenotypes observed at these extreme conditions. n = 3 independent 

experiments. Scale bars, 30 µm. (c) Schematic summarizing the effect of initial cell plating density on the formation 
of the asymmetrically patterned epithelial cysts. 
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In the PASE model, endogenous bone morphogenetic protein (BMP) signaling is 

believed to trigger amnion differentiation, and Noggin (a known BMP signaling inhibitor) is 

believed to be involved in the stabilization of the asymmetry46,133. Knowing that patterning in 

this model could be controlled by the interaction of these two morphogens, our ABM which 

permits for the secretion and diffusion of an activator and inhibitor, has the potential to help 

parse out how BMP and Noggin work together to bring about genetic asymmetry. Further, with 

this framework, we hope to gain insight into possible mechanisms guiding growth and 

lumenogenesis.     

4.2 Materials and Methods 

In this work, we employ the ABM-GA framework presented in Chapter 3. The agents in 

this model are the cells. In an environment consisting of a hexagonal grid, each cell has six 

neighboring positions. These positions might be filled by other cells, matrix, or lumenal space. 

Cell actions can be divided into two categories: morphogenesis and patterning. Morphogenesis 

actions include dying, moving, and dividing. Patterning actions include differentiating, secreting 

activator, and secreting inhibitor (Figures 3.2 & 3.3). Cells will take actions based on the 

composition of their local neighborhood and their identity (pluripotent or differentiated).  

As explained in Chapter 3, we utilize a genetic algorithm to construct ABMs. In brief, a 

population of models is evolved through mutations, crossovers, and selection guided by four 

fitness objectives: number of sections, proportion of one section to another, number of lumen, 

and structure integrity. For this study, the most important fitness objectives were structural 

integrity and that the number of sections in the cyst is 2.  
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Figure 4.4 ABM-GA framework. The GA initializes with a population of randomly generated organisms. The 
population is evaluated by first running the models in NetLogo and then carrying out fitness assessment and genetic 

manipulation in Python. This process is repeated for each generation for an established amount of time. 
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new randomly generated organisms. Each population was left to run for 100 generations. Figure 

4.5 shows results from selected models from the 100th generation. For each model, the simulation 

was run in NetLogo 100 times. The graphs show the ratio of each possible cyst outcome. 

‘Patterned’ refers to cysts that showed the desired asymmetric pattern consisting of two sections, 

‘unpatterned’ includes both fully differentiated and fully pluripotent cysts, ‘other pattern’ refers 

to incorrectly patterned cyst in which there was symmetry breaking that led to more than two 

sections, and ‘incorrect morphology’ includes cysts that either lacked a lumen or lacked 

structural integrity. 

 

Figure 4.5 Efficiency of chosen successful models generated with the ABM-GA framework. Models were evaluated 
100 times. Bars indicate the ratio of each possible outcome (patterned cyst, unpatterned cyst, incorrectly patterned 

cyst, and cyst with incorrect morphology). 
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The ABM-GA yielded a variety of models that are fairly successful at achieving 

patterning (Figure 4.5). The next question then becomes, can any of the models capture 

interesting dynamics seen in our in vitro systems? One of the most interesting aspects of our 

system is the observed effect of initial cell number. As stated previously, in all of our models 

pertaining to amniogenesis and amnion cyst-like structures, final cyst fate depends heavily on 

initial cell number33,95,106. To test if this effect can be seen in our models, we chose four 

successful models and ran the NetLogo simulation using a range of initial cell numbers, going 

from 30 percent less cells to 60 percent more cells than used in the original run (Figure 4.6). For 

each model, the graph shows the ratio of patterned cysts and the ratio of unpatterned cysts 

obtained after 100 simulation runs. Under each graph, we show a final structure for each tested 

initial cell number.  
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Figure 4.6 In silico experiment varying initial cell number. For each chosen successful model, a simulation was run 
with varying cluster sizes, starting from an approximately 30 percent smaller cluster to an approximately 60 percent 

larger cluster. The corral-colored line indicates the original cell cluster size. Under each graph, we show a final 
structure configuration for each tested initial cell number.  
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 One of the main advantages of in silico models is the ability to run low-cost experiments. 

For the purpose of demonstrating this, we ran a series of knock out (KO) experiments using our 

subset of successful models. First, we carried out knock outs of relevant patterning parameters in 

the genome including (1) the initial amount of homogeneous activator in the environment, (2) the 

amount of inhibitor released by the cells, and (3) the amount of activator released by the cells 

(Figure 4.7a). As expected, knocking out the initial activator (i.e. setting the amount to 0) meant 

that no model could yield patterning, as the initial signal is necessary for the initiation of 

chemical secretion by the cells (Figure 4.7b). Interestingly, while knocking out inhibitor 

secretion by the cells significantly decreased the number of successful structures, knocking out 

activator secretion by the cells did not (Figure 4.7b).   

 

Figure 4.7 Patterning genes KO experiments on the subset of successful organisms. (a) Schematic of the genome 
showing the three parameters that were knocked out (2, 23, and 24). (b) Box plot showing the average ratio of 
successful structures for all the successful models for each experimental condition (indicated on the x-axis). P-

values were calculated using two-sided Student’s t-test. *P < 0.05.  
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A second set of KO experiments was done for investigating the importance of the morphogenesis 

rules (Figure 4.8). The KO of a morphogenesis rule was carried out by setting the value of that 

rule to ‘do nothing’ so that the cell did not respond to that specific neighborhood composition. 

Knocking out rule 5, which pertains to a neighborhood made up of cells, significantly decreased 

the percentage of successful structures (Figure 4.8b). Knocking out rule 6, which pertains to a 

neighborhood composed of cells and matrix, also significantly decreased the percentage of 

successful structures. KO of the remaining rules pertaining to a neighborhood of cells and matrix 

(Figure 4.8c) or a neighborhood of cells, lumen, and matrix (Figure 4.8d), did not lead to any 

significant decrease in the percentage of successful structures. 

 

Figure 4.8 Morphogenesis rules KO experiments on the subset of successful models. (a) Schematic of the genome 
showing the ten parameters that were knocked out (5-8 and 15-20). (b-d) Box plots showing the average ratio of 
successful structures for all the successful models for each experimental condition (indicated on the x-axis). P-

values were calculated using two-sided Student’s t-test. *P < 0.05. **P<0.01. 
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4.4 Discussion 

The formation of the amniotic sac is a pivotal event for the successful development of the human 

embryo. Yue et al. were able to model it with the use of hPSCs and uncover some of the 

signaling mechanisms involved in the process33.  However, the low yield of the asymmetric 

PASE structure and the lack of controllability of its symmetry breaking makes in depth 

mechanistic studies with this model difficult. Little is known about what makes a cell in this 

seemingly homogeneous cluster in a seemingly homogeneous environment differentiate. And it 

is still unknown how this differentiation event stops in order to give rise to a stably asymmetric 

structure. In this work, we began the task of unraveling the mechanisms underlying 

morphogenesis and patterning of the PASE with the use of an ABM-GA framework. We showed 

that this method can yield ABMs that give rise to asymmetric cysts resembling the PASE 

structure. Further, we showed that a select group of models can partially capture the effect of 

initial cell number on final cyst fate with lower initial cell numbers leading to fully differentiated 

cysts. Additionally, we demonstrated how these models can be used to carry out in silico 

experiments such as KOs in order to understand the importance of different model parameters. 

Interestingly, KO of the cell’s ability to secrete inhibitor significantly decreased the number of 

successfully patterned structures while KO of the cell’s ability to secrete activator did not. This 

suggest that, in our in silico models, an initial amount of activator in the system combined with 

inhibitor secretion is enough to bring about correct patterning. Future work needs to be done to 

determine if this is also true for our in vitro system. With regards to morphogenesis rules, only 

the KOs pertaining to an all-cell neighborhood and a cell and matrix neighborhood led to a 

decrease in the percentage of patterned structures. This result is not surprising given that at time 

0, cells exist in a cluster surrounded by matrix. Consequently, knocking out rules related to these 
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neighborhoods will hinder proper cyst morphogenesis. It is important to note that these KO 

experiments only show the effect of the KOs on the average success rate of a group of models, 

without looking at the effect on any specific model. Future work can be done to examine the 

effect of KOs on specific models and parse how exactly the disruption in morphogenesis leads to 

a disruption in the patterning.  

This study presents a preliminary proof of concept that ABMs can be built with little to 

no a priori knowledge and still yield interesting results. More work is to be done, however, both 

in terms of exploring the importance of different parts of the model genome and increasing 

model complexity via more realistic reaction-diffusion simulations.  



 67 

Chapter 5 Summary and Future Works 

5.1 Summary 

In this work, we sought to create novel tools to study the emergence of form and 

function, specifically during the development of the epiblast cyst. This endeavor required the 

ability to both characterize and model our in vitro stem cell-based model of epiblast cyst 

morphogenesis. In Chapter two, we presented a novel machine learning-assisted imaging 

pipeline that permits the careful characterization of cell-level events occurring in our system. 

While attempts were made to connect specific local environments (cell density) to specific cell 

actions, a direct causal relationship could not be established. Stochasticity and heterogeneity 

make the mechanistic studies of our systems difficult. In order to address the need for a platform 

capable of yielding mechanistic insights, chapter three presented a novel ABM-GA framework 

for the generation of plausible models of morphogenesis. The framework was shown to be able 

to generate diverse sets of ABMs that yielded structures with desired patterning. In Chapter four, 

we applied this framework for the generation of models of asymmetric cysts resembling the 

amniotic sac. With preliminary in silico experiments, we showed that the framework was able to 

output models that partially captured interesting behaviors of interest, specifically the effect of 

initial cell number on final cyst composition. We further showed that correct structure formation 

was heavily impacted by just a few model parameters including inhibitor secretion and 

morphogenesis rules involving the presence of cells and matrix. Used together, these tools have 
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the potential to shed light into the mechanisms guiding growth, movement, and cell fate 

specification in in vitro models of human development. 

5.2 Future works 

5.2.1 Characterization of cell-level events in the PASE model 

In Chapter 2 we presented a machine learning-assisted image analysis tool capable of 

tracking individual cells and recognizing important cell-level events such as death and division.  

With this integrative pipeline we were able to characterize the cell states and actions during the 

dynamic growth and morphogenesis of lumenal hESC cysts. A logical future direction of this 

work is to use this tool to study the development of the PASE model. Preliminary data from our 

lab has identified ISL1 as a specific marker of nascent amnion. If an amnion reporter line were to 

be created, we could use live cell imaging to gain insight into the process of symmetry breaking. 

Some interesting questions to tackle are: (1) Which cell or cells are the first to differentiate? (2) 

Coming from an agent-based modeling perspective, can we predict which cells will differentiate 

based on the cell’s local neighborhood composition? (3) What are the temporal dynamics of 

differentiation (i.e. in what order do cells differentiate and when does this differentiation stop to 

give rise to a stably asymmetric cyst)? (4) Why can different initial cell numbers lead to different 

cyst compositions? To start tackling this question we can start by investigating cell-level events 

in cell clusters of different sizes. Are cells generally following the same behaviors or is cluster 

size changing cell behavior? Understanding how initial conditions affect symmetry breaking 

could not only shed light into the mechanisms involved in symmetry breaking but also help in 

the development of strategies to increase the efficiency and facilitate future mechanistic studies. 

5.2.2 Modifying GA to generate more robust models of morphogenesis and patterning 
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The current ABM-GA framework is able to yield models that comply with a variety of 

sections objectives. Desired behaviors such as different cyst outcomes depending on the initial 

cell cluster size are not considered during evolution. Future work with the ABM-GA framework 

could involve the incorporation of this and other behaviors as additional fitness objectives. For 

the purpose of considering the effect of initial cell number, the models would have to run at least 

three times (low, medium, and high starting cell number) during the evaluation. The population 

could then evolve in such a way that models that are able to yield fully differentiated cysts at low 

starting numbers, fully pluripotent cysts at high starting numbers, and asymmetric cysts at an 

intermediate starting number are favored during the selection process. Because simulations in 

NetLogo are one of the components of the framework that take the most time, the increase in 

model runs would make this approach more computationally expensive. To mitigate this, future 

work could be done to utilize more efficient ABM platforms such as MESA, a Python ABM 

library.  

In Chapter 3 we introduced the construction of models with a controllable percentage of 

nonfunctional morphogenesis rules in order to mitigate possible overfitting. Results showed that, 

when starting with a percentage of nonfunctional rules of 70, complexity remains fairly constant 

throughout evolution. This result indicates that morphogenesis and patterning can be achieved 

with simple rule sets. In future work, the percentage of nonfunctional rules could be increased, 

even to 100 percent. It would be interesting to investigate how model complexity evolves and to 

determine the minimum set of rules required for successful structure formation. Further, models 

of differing complexities could be compared to determine the effect of complexity on model 

robustness. 
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5.2.3 In depth analysis of the two-section cyst ABM to investigate possible mechanisms at 

work in our in vitro amniotic sac model 

In this work, we established the potential of the framework-generated ABMs for studying 

morphogenesis and patterning. More work can be done, however, to use this framework’s output 

to its fullest potential. More KO experiments can be carried out in select models in order to 

determine which rules are most important for morphogenesis and patterning. Results can be 

compared between different types of models in order to determine if there are any rules that are 

indispensable for correct structure formation. Care should be taken so that in silico KO 

experiments can be mapped to in vitro KO experiments for validation of findings. Further 

validation of the ABM can involve experiments with initial activator, initial cell number, and 

addition of inhibitor. By comparing in silico and in vitro results, models can be either discarded 

or validated. Validated models can then be used to carry out further in silico experiments and 

gain novel insights into the mechanisms at work during morphogenesis and patterning.  

  In Chapter 2 we showed that we are capable of tracking individual cells and recognizing 

important cell-level events such as death and division. Having obtained the cell tracking output 

from various videos, we sought to relate these events to specific local environments (i.e. number 

of cell neighbors and distance to each one). Whether because of the effect of stochasticity or a 

lack of information, a causal relationship could not be established, even with the use of machine 

learning approaches. Having a set of potential ABMs, it would be interesting to see how closely 

the in vitro system behaves to the in silico models. 

5.2.4 Use of ABM-GA framework to explore general mechanisms behind morphogenetic 

events in hPSC models 
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The field of stem cell-based models of development has advanced greatly in the last few decades. 

We have seen that hPSCs have an amazing ability to self-organize and recapitulate key 

morphogenetic events seen in vivo. In addition to our amniotic sac model, researchers have 

developed models of the neural tube, the optic cup, and the intestine among many others33,116,117. 

Events including polarization, lumenogenesis, and symmetry breaking are seen in most if not all 

the systems. Further, the systems show a high sensitivity to initial cell cluster size. While each 

system has been studied in isolation in order to understand the mechanisms behind growth and 

differentiation, there exists no unifying mechanistic picture that is able to capture the principles 

behind self-organization and explain the role of cell plating density on symmetry breaking. Using 

our ABM-GA framework we can begin to tackle this challenging task. The work would begin by 

generating models that capture morphogenesis and patterning as seen in different hPSC-based 

models. Having constructed the models, we can explore commonalities between the models and 

try to identify the rules that play the most important roles in correct growth and differentiation. 
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