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ABSTRACT

The MinION is a revolutionary handheld DNA sequencer that is inexpensive, portable, and can

perform real-time sequencing. MinION is increasingly used in Precision Medicine applications.

However, the MinION lacks portable compute power. This thesis introduces two clinical appli-

cations of the MinION and identifies and solves performance bottlenecks through hardware and

software solutions to enable portable microbial diagnostics. Finally, we discuss how our acceler-

ated solutions will fit on a laptop with a GPU.

More than 99% of DNA fragments in a typical human sample are non-target (human), which

may be skipped in real-time using theMinION’s Read Until feature. We analyze the performance

of the Read Until pipeline in detecting target microbial species for targeted viral pathogen de-

tection and microbiome abundance estimation. We find new sources of performance bottlenecks

(basecaller in the classification of a fragment) that are not addressed by past genomics accelerators.

While SquiggleFilter and DTWax are our solutions for targeted viral pathogen detection, RawMap

is for untargeted microbiome analysis. We also discuss accelerating the bottleneck step in the DNA

mapping software (Minimap2) used in all of MinION’s sequencing workflows.

For targeted virus detection, we discuss SquiggleFilter which is a portable and programmable

hardware-software solution that directly analyzes MinION’s raw squiggles and filters everything

except target viral DNA fragments. SquiggleFilter avoids the expensive basecalling step and uses

hardware accelerated subsequence Dynamic Time Warping (sDTW). We show that our 14.3W

13.25mm2 accelerator has 274× greater throughput and 3481× lower latency than existing GPU-

xii



based solutions while consuming half the power. DTWax overcomes the on-chip memory limita-

tions of SquiggleFilter by optimizing its high-accuracy sDTW algorithm for GPUs resulting in a

∼1.92X sequencing speedup and ∼3.64X compute speedup: costup.

For the untargeted classification and analysis of microbiome, we discuss RawMap which is

a machine-learning-based smart and efficient solution that reduces sequencing time and cost by

∼24% and computing cost by∼22%. We also discuss how RawMap may be used as an alternative

to the RT-PCR test for viral load quantification of SARS-CoV-2.

Minimap2 is a software used in all MinION workflows. minimap2-accelerated (mm2-ax) is

a heterogeneous design for sequence mapping where minimap2’s bottleneck step is sped up on

the GPU with bit-exact output. mm2-ax on an NVIDIA A100 GPU improves the bottleneck step

(chaining) with 4.07 - 1.93X speedup: costup over a SIMD baseline.

Finally, we envision a portable solution to microbial diagnostics with a laptop connected to the

MinION. DTWax can perform targeted virus detection on the GPU and RawMap does untargeted

microbiome classification on the CPU. Post-sequencing tasks like basecalling, alignment (using

mm2-ax) and variant calling use the GPU.

xiii



CHAPTER 1

Introduction

1.1 Long read sequencing

Genomic technologies are revolutionizing clinical diagnostics and public health. By 2025, Ge-

nomics is expected to produce 40 exabytes of data (20X of that of YouTube)[3]. Apart from

being used to track the origin, transmission and evolution of infectious agents like SARS-CoV-

2, genomics is used in various diagnostics tests including microbiome analysis, tumor analysis,

childhood and rare disorders and non-invasive prenatal screening[4].

Sequencing has been becoming exponentially cheaper over the several years[5]. A $100 so-

lution to sequence a human genome is right around the corner[6]. Among the available sequenc-

ing technologies, long read sequencing is gaining more popularity with improved raw read accu-

racy, reduced end-to-end sequencing times, lower costs of adoption, and ease of portability [7, 8].

Longer reads help span highly repetitive regions in the genome which short reads cannot. This

helps applications like denovo assembly and structural variant calling [7, 9]. A recent study used

long read sequencing to showcase the world’s fastest blood-to-variants workflow for genetic di-

agnosis at the point-of-care [8]. This further underlines the emerging significance of long read

sequencing.
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1.2 Oxford Nanopore Technology’s MinION sequencer

Oxford Nanopore Technology (ONT) is a company that manufactures MinION DNA/RNA long-

read sequencers. MinION is attractive because of many factors:

Figure 1.1: MinION sequencer in our laboratory.

Long reads: MinION sequencers are capable of measuring long strands of DNA or reads, and

can theoretically sequence any strand, regardless of length. The current world record stands at over

4 million bases [10].

Cost: The MinION only costs $1,000, and offers affordable specimen preparation kits ($100/use)

and flow cells ($125/use assuming 4× re-use). In comparison, it costs $80,000-$100,000 to pur-

chase even the most affordable “Next Generation Sequencing” machines.

Real-time: MinION sequencers provide real-time, streaming output from the device. Stream-

ing signal output enables on-the-fly secondary analyses, and the ability to stop sequencing as soon

as the desired coverage (redundancy in sequencing a certain region of the genome) is reached.

Read Until is a feature that lets us instruct the MinION to eject a read if we think it is not a target

and selectively sequence only the target read. As shown in Fig.1.2, when a DNA fragment passes

through the nanopore, it may be analyzed in real-time to classify it as belonging to the target DNA

of interest or not. If it is a target, we completely sequence it and if it is a non-target, Read Until

enables us to instruct the MinION to reverse the potential on the pore and eject the fragment. Read

Until is a feature that is useful in our clinical applications of interest where more than 99% of the

DNA is human and ejecting them would help save sequencing time and cost.
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Figure 1.2: Read Until selectively sequences only target DNA read

Portability: A key feature that sets the MinION sequencer apart from all other sequencers in

terms of wet-lab, sequencing and compute. However, MinION lacks the portable compute power

that is required for real-time sequencing using Read Until.

Figure 1.3: A basic MinION sequencing pipeline

As an artifact of the wet-lab process (DNA extraction and library preparation), DNA in the

input sample gets fragmented. We call these DNA fragments, reads. A MinION has 512 channels,

each of which can sequence reads approximately at the rate of 450 bases per second. A nanopore

(a nano-scale channel) senses the DNA molecule that passes through the pore by measuring the

characteristic disruptions in electric current density. Decoding this noisy but characteristic output

signal of the MinION (squiggle) helps us understand the DNA base (A, G, T, or C). This decoding

of squiggles to bases is performed by the basecaller as shown in Fig. 1.3. Guppy is an ONT-

proprietory basecaller based on a deep neural network that runs on a GPU but is slow and inaccurate

for some of the real-time tasks we describe in the upcoming chapters.

The output of the basecaller is basecalled reads. These reads are read by an aligner. ONT
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recommends Minimap2 as an aligner. Minimap2 does approximate string matching to find the

approximate region of match for the query string on a target reference genome and can also perform

base-level alignment. As we explain later on, Minimap2 also has a performance bottleneck due to

the irregularity of workload and lack of parallelism in existing implementations.

ONT MinION has a variety of applications as listed on their website, some of which includes

microbiology, cancer, population genomics, infectious diseases and human genomics. We develop

efficient hardware-software solutions for performance bottlenecks in applications with MinION

including viral pathogen detection and human microbiome estimation. As a final contribution, we

accelerate Minimap2 which is used in all MinION workflows.

1.3 Motivation and Organization

We introduce two clinical applications of the MinION sequencer– viral pathogen detection and

microbiome abundance estimation. The Read Until feature of the MinION may be used to save

time and cost by filtering out the high fraction of non-target human DNA reads (up to 99%).

However, we find new sources of performance bottlenecks (basecaller in the classification of a

read) that are not addressed by past genomics accelerators. This problem is further amplified by

the sequencing throughput expected to grow by 100X in the near future.

Chapter 2 (SquiggleFilter) talks about a portable virus detector– a novel and programmable

hardware accelerated dynamic time warping (DTW) based filter that directly analyzes MinION’s

raw squiggles and filters everything except target viral reads, thereby avoiding the expensive base-

calling step. However, SquiggleFilter can only identify one microbial species of size 100Kb at a

time due to its limited on-chip memory. This limits us to infectious viruses (almost all are less than

100Kb in size).

To overcome SquiggleFilter’s problem of limited on-chip memory, Chapter 3 talks about

optimizing the SquiggleFilter algorithm for GPUs[11]. GPUs are more easily programmable, scal-

able, and more widely available.
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For our second application of microbiome abundance estimation, we need to be able to identify

several large bacterial genomes with each bacterial genome being in the order of millions of bases.

Chapter 4 discusses an efficient machine learning-based Read Until filter where we do not need

to program in the reference genome. RawMap is a microbial species-agnostic (untargeted) Read

Until classifier for filtering non-target human reads. RawMap is offered as a plug-and-play CPU

solution to existing Read Until pipelines and we demonstrate sequencing time and cost savings

with RawMap in microbiome abundance estimation. We also discuss how RawMap may be used

as an alternative to the RT-PCR test for viral load quantification of SARS-CoV-2.

Chapter 5 is our attempt at identifying and solving the performance bottleneck of Minimap2,

the state-of-the-art aligner used for almost all long-read processing workflows including the two

clinical applications under our consideration, Whole Genome Sequencing, targeted gene panel

sequencing, and in-operation-room decision making. We transform Minimap2’s bottleneck step to

expose better parallelism and accelerate it on the GPU with bit-exact output.
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CHAPTER 2

SquiggleFilter: An Accelerator for Portable Virus

Detection

2.1 Introduction: Virus Detection for Pandemic Preparedness

The COVID-19 pandemic caused by the SARS-CoV-2 virus continues on a global scale. Today,

diagnostic tests are widely available to detect SARS-CoV-2. Most of these tests involve some

form of Polymerase Chain Reaction (PCR), a common technique for exponentially amplifying

DNA/RNA. In order to detect a virus such as SARS-CoV-2, custom “primers” are first designed

and manufactured which will only attach to and amplify specific regions of DNA/RNA in the target

virus’s genome. After PCR, the virus’s presence or absence can be determined based on whether

the amplification was successful or not.

A significant shortcoming of the current approach is that PCR primers are targeted to a specific

virus. Custom primer design is a complex, error-prone, and time-consuming process [12] [13].

Even though SARS-CoV-2’s RNA was sequenced in early January 2020, validated SARS-CoV-2

specific PCR primers took several months to develop [13] [14]. Lack of mass testing capability

in the early stages of SARS-CoV-2 made it difficult to detect and control its spread, leading to a

catastrophic pandemic. While we now have adequate testing capability for SARS-CoV-2, it is not

unlikely for another novel virus like SARS-CoV-2 or its variants to emerge in the near future [15],

and if it does, we need to be prepared with adequate testing infrastructure in place to detect and

control its spread in the early stages.
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We envision a programmable virus detector (one that constructs whole viral genomes) that can

be deployed worldwide. As soon as an emerging novel virus is discovered and sequenced, the

reference genome of the novel virus would be distributed to all the devices, instantly turning them

into targeted detectors.

Our solution uses Oxford Nanopore Technologies’ (ONT) MinION Mk1B (henceforth, re-

ferred to as the MinION). We replace targeted PCR with universal PCR [16], which amplifies all

DNA/RNA. Thus, it avoids the problem of custom PCR primer design and deployment mentioned

earlier. However, this introduces a different problem, as up to 99.99% of the DNA/RNA in a typ-

ical biological specimen (e.g. saliva) is non-viral [17] (non-target) and most belongs to the host.

Amplifying all DNA/RNA preserves this ratio, resulting in the vast majority of sequencing and

computing time and cost stemming from processing non-target DNA/RNA.

In order to solve this needle-in-a-haystack problem, we use Read Until [18]. As reads (DNA/RNA

fragments) are sequenced, they need to be analyzed in real-time. As soon as the computer classifies

that the read is non-viral, the sequencer is instructed to eject it, which saves the time and cost of

sequencing non-viral reads (greater than 99% of all reads). Unfiltered viral reads are used to con-

struct the whole virus genome using reference-guided assembly (alignment and variant calling).

The MinION, however, does not have any on-board computing power to perform such sec-

ondary analysis. In this paper, we analyze the performance of the Read Until bioinformatics

pipeline for efficiently sequencing viral pathogens, and realize a portable computing solution that

can be integrated with MinION.

We discover new performance bottlenecks that are not addressed by past genomics accelera-

tors [19, 20, 21, 22, 23, 24, 25, 26]. In particular, we find that the Deep Neural Network (DNN)

basecaller (software that translates MinION’s electrical squiggles to AGTC bases) dominates the

computing time ( 96%). The aligner and variant caller, which have been the targets of recent

accelerator research, constitute a much smaller fraction of compute. We also find that a current

edge GPU is inadequate to keep up with the throughput of the MinION. Also, its high latency in

classifying a read prevents us from taking advantage of the latency-critical Read Until feature of
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MinION.

Converting squiggles to bases using a compute-intensive basecaller, and then aligning to check

if a read belongs to the target virus is needlessly expensive for classifying it. Instead, we skip

the basecaller altogether by directly comparing each read’s squiggles to the precomputed expected

signal profile of the target virus’s entire reference genome (the “reference squiggle”). By skipping

the compute-intensive basecaller step, we improve efficiency significantly.

We present SquiggleFilter, a hardware/software co-designed filter which identifies non-target

reads by directly comparing the real-time measured squiggles to the target virus’s precomputed

reference squiggle. A classification decision is made based on the degree of match. We develop a

custom subsequence dynamic time warping (sDTW) algorithm [27] to perform this classification.

It includes solutions that improve accuracy by adaptively examining longer read prefix lengths

when needed. It also includes customizations that result in area efficient hardware.

sDTW-based SquiggleFilter is significantly more efficient than a DNN-based basecaller, and

its regular compute-bound characteristic makes it amenable for hardware acceleration. sDTW

is a dynamic programming algorithm [28] whose complexity is proportional to the product of the

length of the reference (R) and query (Q). Its regular memory access pattern allows us to build a fast

and space efficient 1D systolic array accelerator for sDTW with a constant number of processing

elements. Fortunately, we find that almost all epidemic viruses have genome references of length

50,000 (R) bases or smaller (see Figure 2.9) [29]. As a result, our accelerator can easily complete

the classification in ∼2R cycles (forward and backward of reference strand), and still meet the

strict latency requirement for leveraging Read Until.

Our work makes the following contributions:

• we demonstrate that basecalling is the computational bottleneck in the virus sequencing

pipeline. Read alignment and variant calling – targets for prior accelerator work – are not

the bottleneck.

• we identify direct squiggle alignment (first proposed in [30]) as a more efficient alternative

to basecalling and alignment when enriching low-concentration viral specimens with Read
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Until.

• we propose multi-stage sDTW and several modifications to vanilla sDTW to realize an ac-

curate and efficient hardware accelerator.

• we co-design a sDTW hardware accelerator to filter non-viral reads, for variable read prefix

and almost all infectious viral genome lengths

• we demonstrate that this hardware, unlike current approaches, will enable Read Until to scale

with rapidly increasing nanopore sequencing throughput

• we quantify accuracy and efficiency of our classifier using real-world metagenomic datasets,

including datasets collected from our wet-lab experiments for Read Until.

Results: We design an edge device with compute capabilities similar to a Jetson Xavier

System-on-Chip [31] consisting of SquiggleFilter, an edge GPU, and an 8-core ARM processor.

We show that our proposed SquiggleFilter can accurately distinguish target viral DNA/RNA from

background human DNA/RNA. We evaluate accuracy using non-contagious lambda phage virus

data sequenced in our own lab. In terms of efficiency, we show that our SquiggleFilter acceler-

ator has 274× higher throughput than the conventional software pipeline (using a basecaller) on

an edge GPU while only consuming an area of 13.25mm2 and power of 14.31W. SquiggleFilter’s

throughput is 233.65M samples/s, which far exceeds the maximum throughput of 2.05M samples/s

on a MinION [32], and is adequate to handle up to a 114× increase in MinION’s throughput in

the future. The latency for classifying any read is 0.043ms, which is insignificant to Read Until

decision’s critical path.

2.2 Background: State-of-the-art Virus Detectors

2.2.1 Need for a Virus Detector

While SARS-CoV-2 was discovered – and its RNA genome sequenced – by early January 2020,

it was not until several months later that mass testing was available worldwide. Figure 2.1 shows
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Figure 2.1: Progression of US COVID-19 testing [1]

the steady increase in daily COVID-19 tests performed within the United States [1]. A widely

established global testing infrastructure would have helped control the spread of the virus early on,

possibly saving hundreds of thousands of lives.

Given the increasing frequency of viral outbreaks, experts are concerned that it is only a matter

of time before a new virus threatens the globe [15]. Thus, we need a virus testing technology

that can be widely deployed ahead-of-time, and reprogrammed to detect and identify mutations in

novel viruses as soon as they emerge.

In this work, we focus on controlling the spread of novel infectious viruses in their early stages,

as soon as they are discovered and sequenced. Our goal is to enable a universal rapid test that can

determine the whole genome of a target virus using reference-guided assembly. Targeting a specific

virus enables us to make significant optimizations that help us reduce time and cost of sequencing

and compute.

2.2.2 State-of-the-art Virus Detectors

Table 2.1 lists commonly used tests and ONT-based sequencing solutions for SARS-CoV-2. None

of the methods except direct RNA or DNA sequencing are programmable, and therefore, are not

effective in controlling the pandemic in its early stages. Antigen (paper) tests detect specific surface

proteins on the virus. They are cheap, portable, and fast. However, they have low sensitivity and

can only detect viruses present at high concentrations.

Molecular tests identify specific regions of interest in a virus’s genome and amplify this DNA
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Tests
Diagnostic

Power Programmable Time
(min)

Cost
($)

Antigen-based test
Paper [33] presence 15 5

Non-sequencing molecular test
RT-LAMP [34][35] presence 60 15

RT-PCR [36] presence 120-240 <10

Sequencing based molecular test (30× coverage)
ARTIC [37][36] 98 targets 305 100
LamPORE [38] 3 targets <65 -NA-
RNA: 1% virus whole genome ✓ 240 110

0.1% virus [39] whole genome ✓ 1206 190
DNA: 1% virus whole genome ✓ 320 105

0.1% virus [40] whole genome ✓ 470 120

Table 2.1: A comparison of popular commercial and ONT sequencing-based virus detectors for
SARS-CoV-2.

if present in the specimen. Polymerase Chain Reaction (PCR) is a common technique used for

amplification. It has high sensitivity [41] but requires thermal cycling, which can be slow and

expensive. LAMP (Loop Mediated Isothermal Amplification) is a more recent technology that

obviates the need for a thermal cycler, but its primers are more complicated to design than PCR.

If amplification was successful (i.e., target DNA is present), it can be detected using fluorom-

etry or colorimetry. Most clinical tests for SARS-CoV-2 stop here. However, by sequencing the

amplified specimen, we can assemble portions of virus’s genome, depending on the number of

targets amplified. ARTIC and LamPORE [38] amplify 98 and 3 genes respectively, and then use

ONT’s nanopore sequencing.

Current solutions for virus detection use multiplex primer sets specific to a virus. Primer design

is a complex, error-prone and time-consuming process [12] [13]. Thus, they are not an effective

solution for early pandemic control. The COVID-19 pandemic highlights this problem, where

designing and distributing target-specific primers was challenging, especially when supply chains

broke amidst the pandemic.

An alternative to developing custom primers is to directly sequence the specimen following

amplification with universal primers, which non-selectively amplify all DNA. This amplification
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step is required to increase the quantity of DNA, which greatly reduces average capture time (the

time required for a DNA strand to enter a nanopore) and therefore sequencing time. The wet-

lab protocol followed, Sequence Independent Single Primer Amplification (SISPA) [43, 44], is

universal and hence can be used on all RNA viruses. SISPA has four major steps: (1) RNA

extraction, (2) complementary DNA generation, (3) PCR amplification, and (4) final sequencing

specimen preparation.

A significant hurdle to SISPA-based sequencing is that following amplification, the specimen

contains the genetic material of the target virus among a sea of human and bacterial DNA/RNA.

The proportion of target virus DNA/RNA can be as low as 0.01% percent [17]. As a result, the

time and cost of sequencing and data processing for this approach is significantly greater than that

of custom primer-based solutions.

If this cost barrier can be overcome, this approach would enable detection of novel viruses

without requiring months to develop and distribute virus-specific primers. Read Until can greatly

increase the efficiency of sequencing by filtering out non-target reads using the virus’s reference

genome. Current Read Until approaches are limited by insufficient throughput, but our hardware

accelerated SquiggleFilter ensures the future scalability of Read Until on higher throughput se-

quencers.

2.2.3 Insufficient Compute Power for Read Until

Figure 2.2: Sequencing and wet-lab is portable. Compute, though portable, is insufficient for Read
Until.
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Although the MinION has its advantages, it has no inbuilt computing power to make Read Until

decisions. A slow read classification results in wasted sequencing time. We additionally find that

commodity GPUs are undesirable in terms of both throughput, latency and power.

2.3 Compute Bottlenecks in Portable Virus Detection

Our goal is to build a cost and time efficient sequencing pipeline for determining the whole genome

of a targeted virus, but without using custom primers for target amplification. We seek to reduce

time and cost using the Read Until feature of Oxford Nanopore (ONT)’s palm-sized MinION

sequencer.

To this end, we constructed a software pipeline using state-of-the-art bioinformatics tools and

analyzed its performance. Our profiling results expose new performance bottlenecks that are dif-

ferent from those targeted in past accelerators for human genome sequencing [19, 20, 21, 22, 23,

24, 25, 26].

2.3.1 Bioinformatics Pipeline

Figure 2.3: A Read Until pipeline for targeted reference-guided assembly of a virus genome.

The MinION sequencer measures electrical current signals that represent the bases (A, G, T, C)

moving through each pore, recording approximately 10 samples for each base. All the active pores

(up to 512 in the MinION) concurrently produce squiggles for the reads flowing through them.

These squiggles can be analyzed in real-time as the reads flow through the pores.

Figure 2.3 illustrates the analysis pipeline for the squiggles. A basecaller translates squiggles

into bases. The latest basecallers (such as ONT’s Guppy [45]) use compute-intensive DNNs, which
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must be large and deep to attain state-of-the-art accuracy. Guppy processes reads in chunks of

2000 samples, and uses five bidirectional LSTM layers for encoding followed by a custom CTC

(Connectionist Temporal Classification) decoder. ONT provides two versions of its basecaller: a

high-accuracy version (Guppy), and another that trades off accuracy for performance (Guppy-lite).

In our Read Until pipeline, squiggles of a read are basecalled in real-time. After a short prefix

of a read has been basecalled, it is then processed by an aligner (MiniMap2 [46]) that aligns the

read to the target’s reference genome. If a good alignment is found, then the read is classified as a

target and passed on to the next stage. Otherwise, a signal is sent to the MinION device, instructing

it to eject the non-target read from further sequencing. Thus, the critical computing path for Read

Until includes both the basecaller and aligner.

The target reads are collected and analyzed by a variant caller (Racon [47] followed by Medaka[48]).

We seek to cover every position in the reference genome by 30 reads (30× coverage). The variant

caller analyzes the reads piled up at each reference genome location, and identifies any genomic

differences (“variants”) between the sequenced and reference viruses. As the variant caller is not

involved in Read Until decisions, it is off the critical path.

2.3.2 Performance Bottlenecks

Figure 2.4: Basecalling is the bottleneck in a Read Until assembly of a SARS-CoV2 genome from
specimens with a) 1%, and b) 0.1% viral reads.

Figure 4.3 shows the performance bottlenecks of the bioinformatics pipeline (Section 2.3) used to

assemble the whole SARS-CoV2 genome, evaluated on the CPU and GPU in Table 2.3. The results
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are shown for two representative biological specimens, one where the target viral reads constitute

1% of all the reads, and the other 0.1%.

We observe that a large fraction of computing time (96%) goes towards basecalling. This is in

spite of using the more efficient, but less accurate, Guppy-lite.

Compute spent towards aligning (MiniMap2) and variant calling (Racon and Medaka) consti-

tutes significantly smaller fraction, especially for specimens with low viral load (0.1%). In contrast,

prior work on genomics accelerators targeted aligners and variant callers used for reference-guided

assembly of human DNA [19, 20, 21, 22, 23, 24, 25, 26]. There are several reasons for this signif-

icant difference, discussed next.

All the reads are aligned to a target viral genome to classify them as target or non-target. This

alignment step, however, is significantly less compute intensive compared to aligning to a human

genome, because viral genomes are much shorter (≈30,000 bases) than human DNA (3 billion

bases).

Only a small fraction of target reads (1% to 0.1%) need to be processed for reference-guided

assembly of a viral genome. Therefore, the variant caller is invoked only for a small fraction of

sequenced reads. Also, given that viral genomes are shorter, we find that the variant caller does

not consume much compute resources. Furthermore, the variant caller is not on the critical path

for using Read Until, as it is not required for classifying reads.

We find that even a 250W Titan GPU has barely enough basecalling throughput (with low

accuracy Guppy-lite) to keep up with a MinION’s maximum sequencing throughput. An edge

GPU (e.g., Jetson Xavier’s) is several times slower than that, and therefore it cannot process all the

sequenced reads in real-time to exploit the latency sensitive Read Until feature.
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Figure 2.5: Sequencing throughput is increasing exponentially [2].

Sequencing throughput, however, continues to grow, as shown in Figure 2.5. Oxford Nanopore

Technologies (ONT)’s GridION is only slightly larger, but has 5× the sequencing throughput of

a MinION. ONT announced in 2019 that they are working with MinION prototypes that provide

16× sequencing throughput of MinION devices available in the market today. Within the next few

years, they plan to release a production flowcell with 100× greater throughput [49].

Currently, the MinION does not have any on-board compute capability. Our goal is to map

all the secondary compute analysis onto an edge system-on-chip so that it can be integrated with

the MinION. We address this growing computing need with our small, low-power accelerated

SquiggleFilter, which greatly reduces the basecalling and alignment computation required for non-

target reads.

2.4 SquiggleFilter: A Squiggle-level Targeted Filter using Dy-

namic Time Warping

As discussed in Section 2.3, classifying a read being sequenced by analyzing its short prefix as tar-

get or not, in real-time, is the compute bottleneck. Additionally, basecalling for this classification

consumes the most compute time.

Instead of using a basecaller (DNNs) and MiniMap2 aligner to classify a read’s prefix, we

discuss SquiggleFilter’s algorithm that directly aligns each read’s electrical signals (query) to the

target viral genome’s precomputed electrical signal (reference). As a majority of the reads are
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non-targets, we reduce latency and save much of the work done in basecalling and aligning these

non-target reads.

SquiggleFilter aligns the query squiggle with a precomputed reference squiggle of the viral

genome using a variant of the dynamic time warping (DTW) algorithm [50]. Recent work has

eschewed sDTW due to it’s Θ(NM) complexity [51, 52, 53, 54], but we demonstrate that since

both queries (read prefixes) and virus genomes are short, it is a practical solution for viral read

enrichment. We further demonstrate its effectiveness on real sequencing data for a SARS-CoV-2

specimen.

Finally, we propose multi-stage sDTW filtering to improve efficiency, and discuss several im-

provements to conventional sDTW that help realize an efficient hardware accelerator.

2.4.1 Constructing the Reference Squiggle

In order to align raw signals to a reference genome, the known sequence of bases must first be con-

verted to an expected current profile [55, 30, 56]. As a strand of DNA passes through a nanopore,

the current measured is affected by 5-6 adjacent bases simultaneously. A lookup table is provided

by ONT which contains the expected current (in pA) for every possible combination of six bases

(“6-mer”) [57]. This conversion is demonstrated in Figure 2.6, after which the expected signal is

normalized using the mean and standard deviation.

Figure 2.6: Aligning reference bases to expected currents.

2.4.2 Normalizing Query Squiggles

Figure 2.7a shows a contrived minimal example of multiple raw nanopore signals corresponding

to the same sequence of bases. Due to a variable rate of DNA/RNA translocation through the
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nanopore, these signals are out-of-sync (transitions between current levels do not occur simultane-

ously). Using Dynamic Time Warping (discussed next) solves this issue, and signals are aligned to

the expected signal profile (shown in red in Figure 2.7b). Slight differences in applied bias voltages

at each nanopore cause the measured currents to differ significantly, which is why normalization

within each read is additionally helpful (Figure 2.7c).

Figure 2.7: a) Three raw current measurements (“squiggles”) for the same sequence of bases. We
then show squiggles aligned to the expected signal b) without, and c) with normalization.

2.4.3 Subsequence Dynamic Time Warping

Dynamic Time Warping (DTW) is a dynamic programming algorithm which is commonly used to

align out-of-sync signals [27, 58]. Our filter applies subsequence DTW (sDTW), a slight modifi-

cation of standard DTW which allows the entire query signal to align to any small portion of the

reference, rather than forcing end-to-end alignment of both sequences.

The original sDTW algorithm works as follows for subsequence query Q of length N , reference

sequence R of length M , and scoring matrix S:

1 def sDTW(Q,R):

2 S = zeros(N,M)

3 S[0,0] = (Q[0]-R[0])2

4 for i in range(1,N):

5 S[i,0] = S[i-1,0] + (Q[i]-R[0])2

6 for i in range(1,N):

7 for j in range(1,M):

8 S[i,j] = (Q[i]-R[j])2 + min(S[i-1,j-1], S[i,j-1], S[i-1,j])

9 return min(S[N,:])
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Figure 2.8: Dynamic time warping algorithm.

The above algorithm dynamically computes all possible alignments of the query Q to reference

R (keeping only the best ones) while allowing arbitrary many-to-one or one-to-many mappings

between the two signal profiles. It is illustrated in Figure 2.8. Matrix S records a running tally of

the net squared differences between the two signals (using the best alignment of Q[0 : i]). At the

end, S[N, j] (highlighted top row in Figure 2.8) contains the alignment cost of Q to a subsequence

of the reference R[x : j], where x is the start of the best alignment ending at j. The minimum

value in this row corresponds to the least squared difference in signal between alignments of the

signal to the reference, and thus the cost of the optimal alignment.

2.4.4 sDTW for Virus Detection

The majority of viruses which are responsible for human epidemics have relatively small single-

stranded RNA genomes [29], as is demonstrated in Figure 2.9.

Figure 2.9: Epidemic virus genome lengths.
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The two notable exceptions are smallpox and herpes simplex, which have larger and more

chemically stable double-stranded DNA genomes. Because most viruses have small genomes, we

design our filter to operate on viruses with single-stranded genomes of length less than 100,000

bases. Equivalently, the filter works on viruses with double-stranded genomes less than 50,000

bases long. At such short reference genome lengths, it is computationally feasible to compare

reads to the entire reference genome for filtering. This would not be a feasible solution for complex

organisms such as humans, with genomes approximately 3 billion base pairs long.

2.4.5 sDTW is an Effective Filter

We seek to design a solution that is capable of detecting all strains of a particular viral species.

It is therefore important that our filter is tolerant to variants in the sequenced genome relative to

the reference genome used by our filter. We found that reference-guided filtering can be accurate

regardless of viral strain, since the number of mutations between different strains is low. Table

2.2 presents the number of single base mutations between an assembled virus genome for several

known SARS-CoV-2 strains, relative to the original Wuhan reference assembly [59]. No insertions

or deletions were observed. Strains were defined using NextStrain’s [60] classification of all se-

quenced SARS-CoV-2 genomes into groups of shared ancestors, or “clades”, and data was sourced

from the GISAID database [61].

Clade Mut. GISAID ID Lab of Origin Country

19A 23 593737 SE Area Lab Services Australia
19B 18 614393 Bouake CHU Lab Ivory Coast
20A 22 644615 Dept. Clinical Microbiology Belgium
20B 17 602902 NHLS-IALCH South Africa
20C 17 582807 Public Health Agency Sweden

Table 2.2: There are few mutations between SARS-CoV-2 strains, relative to the Wuhan reference
genome.

Since there are only a handful of mutations between various SARS-CoV-2 strains, the final

sDTW alignment cost will not be significantly impacted. This cost is used to determine whether

20



a given read aligns to the viral reference genome by comparing it to a constant threshold. If

the alignment cost exceeds the chosen threshold, then the squiggle did not match well with any

subsequence of the reference genome’s expected current profile, and the read can be discarded.

Figure 2.10 shows that a static threshold can be used to distinguish between viral and human DNA

fragments (discarding reads above the threshold and keeping reads below the threshold) even when

only a few thousand signals have been captured. Due to the slight overlap in final alignment costs,

some reads will be incorrectly classified when using a static threshold.

Figure 2.10: sDTW cost distributions for reads of 3 prefix lengths, aligned to the lambda phage
genome.

2.4.6 Multi-stage sDTW Filtering

We observed that as a read’s sequenced prefix length increases, the sDTW alignment cost is more

accurately able to distinguish between target and non-target DNA (there is a decrease in overlap be-

tween cost distributions in Figure 2.10). However, waiting to make a Read Until decision increases

the proportion of non-target DNA sequenced.

Therefore, instead of a single-stage filter that chooses a constant read length and threshold, we

can filter in multiple stages. The first stage examines a shorter read length (e.g. 1000 samples), but

chooses a less aggressive threshold that may let many non-target reads through. Non-target reads

filtered and ejected using Read Until at this stage would be very short. If a read is retained, it is

sequenced further. The second stage then examines the longer read prefix (e.g. 5000 samples), and

filters using a more aggressive threshold. Intermediate results can be stored to avoid recomputation.
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In this way, several stages enable the classifier to filter a majority of non-target reads after seeing

only a short prefix. Only reads with initial low-confidence are sequenced more before a decision

is made. We have designed our hardware accelerator with this (optional) capability.

2.4.7 sDTW Algorithm Improvements

We propose several modifications to sDTW which help improve either our accelerator’s efficiency

or accuracy of non-target read filtering.

Absolute Difference: We reduce hardware area and avoid multiplication by using the Manhat-

tan distance instead of Euclidean (abs(Q[i]-R[i]) instead of (Q[i]-R[j])2).

Integer Normalization: Our solution uses 8-bit fixed point arithmetic during normalization,

with no significant impact to classification accuracy (see Figure 2.17).

No Reference Deletions: Since the MinION averages 10 samples per base pair, it is unneces-

sary during sDTW computation for a single squiggle value to be able to align to multiple bases.

We removed the possibility of reference deletions entirely from our dynamic programming com-

putation, so that S[i,j] = abs(Q[i]-R[j]) + min(S[i-1,j-1], S[i-1,j]).

Match Bonus: This final modification improves filtering accuracy. We found that reads with

higher average translocation rates generally have higher alignment costs. To ensure sDTW align-

ment costs solely represent quality of alignment and are independent of translocation rate, we

implemented a “match bonus” that rewards reads for matching additional reference bases, reduc-

ing the alignment cost for each matching base by a constant (10) scaled by the number of signals

aligned to the previous reference base (thresholded to 10).

2.4.8 Need for an Accelerator

Despite the reduction in computation when compared to basecalling, sDTW alignment is still too

slow to run on commodity hardware. sDTW alignment does avoid expensive floating point op-

erations, instead requiring 8-bit integer comparisons and additions/subtractions. sDTW also has

a smaller memory footprint (60,000 reference bases) compared to Guppy-lite (284,000 weights)
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when filtering SARS-CoV-2. Despite memory and operation complexity advantages, however, the

number of operations required for sDTW (1,400 million) is greater than that of Guppy-lite (141

million). This is still more efficient than Guppy (2,412 million). In order to meet current and future

MinION device requirements for Read Until, it is necessary to design an accelerator.

2.5 Accelerated SquiggleFilter

Figure 2.11: System-on-Chip design with the accelerated hardware filter on ASIC integrated with
NVIDIA GPU and 8-core ARM v8.2 64-bit CPU

We present a System-on-Chip for reference-guided assembly of target viruses, shown in Fig-

ure 2.11. Its capabilities are similar to a Nvidia Jetson TX2, except for our SquiggleFilter ac-

celerator. Our SquiggleFilter accelerator classifies and filters non-target reads, which constitute

greater than 99% of all reads in most biological specimens. Thus, a large fraction of computing

identified in Section 2.3 is handled by our SquiggleFilter accelerator. Furthermore, our accelerator

enables low latency read classification, allowing us to use Read Until to eject non-target reads after

sequencing only a short prefix.

Target reads (and any false positives) are processed off of Read Until’s critical path. Only these

small fraction of reads need to be basecalled, aligned, and variant called. We find that we can

perform these computations on an edge GPU (basecaller) and ARM processor (aligner and variant

caller), and still construct the whole viral genome in approximately 10 minutes. Unfiltered non-

target reads (false positives due to sDTW algorithm) will fail to align to the viral reference genome
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after basecalling, and so they will be discarded without affecting the accuracy of conventional

reference-guided assembly. The final assembled genome and raw sequencing data is written to a

32GB eMMC 5.1 flash memory, which is sufficient to store one day’s worth of sequencing data.

We now present the 1D systolic array based SquiggleFilter accelerator for our squiggle-level

classification algorithm discussed in Section 2.4. It can be programmed to target any novel viral

genomes less than 100K bases. It supports variable query length. That is, it can classify read

prefixes of different lengths, and thereby supports multi-stage filtering. The size of the systolic

arrays and buffers are derived from our analysis of real-world metagenomic data.

2.5.1 SquiggleFilter Design

Figure 2.12: SquiggleFilter Tile. N=2000 PEs are connected with streaming inputs and outputs.
The last PE determines the classification by comparing its cost to a threshold every cycle. c is the
cycle and i is the PE index.

SquiggleFilter consists of 5 independent tiles (one tile is shown in Figure 2.12). Each can be

individually power-gated based on desired filtering throughput. This number was chosen to meet

the expected 100× future increase in sequencing throughput. Each read is assigned to an available

tile for classification. As a read is sequenced, squiggles from a MinION R9.4.1 flow cell are

streamed into DRAM in real-time. From there, squiggles are fetched into a tile’s query buffers.

Two ping-pong query buffers enable simultaneous squiggle loading and normalization. Once the

desired length of read prefix has been sequenced, the raw squiggles of a query are normalized and

then stored across the processing elements connected in a 1D systolic array.

Each tile also stores a copy of the precomputed reference signal (loaded from flash during
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an initialization phase) in a reference buffer. The reference samples are then streamed into the

systolic array. The entire sDTW matrix is computed in a wavefront parallel manner as described

in Section 2.4.7. The final PE determines the final minimum alignment cost, and sends a control

signal to the MinION to eject the read if the final cost exceeds a predetermined threshold. Non-

ejected reads are sequenced in full and stored in memory.

The number of cycles required to classify a new read is the read prefix length (2000 samples)

plus the reference genome length (60,000 samples for SARS-CoV-2).

Reference Buffer: We chose to use a separate buffer (100 KB) for each tile, even though all the

reference buffers across the tiles store the same information (viral genome’s reference squiggles).

This allows us to reduce access latency and provide sustained throughput to each tile with just one

read port. The area cost of duplicating the references is negligible, as reference buffers constitute

only 6.98% of total tile area.

Furthermore, our design is independent of reference length and limited only by the reference

buffer size provisioned. By loading a new precomputed reference signal onto the on-board flash,

SquiggleFilter can easily be reprogrammed to detect a novel virus.

Variable Query Length: As discussed in Section 2.4.6, there exists a trade off between classi-

fication accuracy and sequencing length of queries. We find (Section 2.7.4) that read prefix length

of 2000 samples yields the most savings using Read Until, when we use a single threshold. There-

fore, we use a 1D systolic array of size 2000 PEs.

Our SquiggleFilter design can handle variable read prefix lengths that are multiples of 2000

squiggle samples. To support query lengths longer than 2000 samples and multi-stage filtering, we

configure the last PE such that it can optionally write the sDTW costs every cycle to DRAM. This

consumes significant memory bandwidth. However, it enables sDTW computation to continue if

greater classification accuracy by analyzing a longer prefix is desired. These intermediate costs are

then loaded from DRAM and used to initialize the PEs (similar to initial normalized query) prior

to computing the costs for a 4000-sample prefix length.
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2.5.2 Processing Element

Figure 2.13: SquiggleFilter Processing Element.

Each PE computes a cell in the sDTW matrix every cycle, using the final algorithm described

in Section 2.4.7. At cycle c, each PE (Figure 2.13) checks for the minimum among its previous

neighbor’s c − 1 and c − 2 cycle’s outputs, modified by a bonus which rewards matching new

reference bases. This minimum is then added to the absolute difference of the current query and

reference values. Each PE stores the resulting costs and bonuses from its last two cycles for the

next PE. Additionally, the last PE contains logic to compare its cost to a predefined threshold

which determines whether or not to eject the read. This threshold can be reprogrammed on the

SquiggleFilter based on software analysis of the target strain, but we have found it to be relatively

robust across species and sequencing runs. Each PE is 1203µm2 and requires 1.92mW when

synthesized for a 28nm TSMC chip.
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2.5.3 Normalizer

Figure 2.14: SquiggleFilter Normalizer.

Normalization rescales the raw signals in order to improve classification accuracy when performing

sDTW [62], as discussed in Section 2.4.2. The normalizer, shown in Figure 2.14, is a query

preprocessor which streams in 10-bit samples from the query buffer for accumulation. After every

n = 2000 samples, the normalizer updates the mean and Mean Absolute Deviation (MAD), defined

as follows:

mean = x̄ =
n∑

i=1

xi

n
MAD =

n∑
i=1

|xi − x̄|
n

Thereafter, the streamed-in samples are transformed with mean-MAD normalization. The output

normalized value is filtered for outliers and then re-scaled to a reduced precision 8-bit integer

which is then fed to the tiles for sDTW classification. We find that 8 bits of precision is sufficient

for accurate classification (Figure 2.17). For efficiency, we do not convert the ADC sample to

floating point, but instead use fixed-point values in the range [−4, 4].

2.6 Implementation

Human DNA datasets containing MinION R9.4 and R9.4.1 flow cells were obtained from the

Nanopore Whole-Genome Sequencing Consortium [63] and the ONT Open Datasets [64]. The

SARS-CoV-2 dataset contains raw MinION R9.4.1 data available from the Cadde Centre [65]. We

sequenced lambda phage DNA in our own laboratory using the ONT Rapid Library Preparation

Kit [66] following the Lambda Control protocol with a MinION R9.4.1 flow cell.
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We performed basecaller profiling measurements using a Titan XP GPU (server

class) and Jetson Xavier GPU (edge class). Their specifications are provided in Ta-

ble 2.3. We evaluated both Guppy (dna r9.4.1 450bps hac.cfg) and Guppy-lite

(dna r9.4.1 450bps fast.cfg) without modification using Guppy version 4.2.2 [45]. Min-

iMap2 version 2.17-r954-dirty [46] aligned basecalled reads.

First, we measured the basecalling throughput of Guppy and Guppy-lite on a dataset of 33,004

full-length reads. Next, we used the proprietary Python libraries ont-fast5-api version

3.1.6 [67] and ont-pyguppy-client-lib 4.2.2 [68] to basecall the same reads in chunks

of 2000 signals, thereby simulating Read Until on the same dataset. The Python code was in-

strumented to record latency information, and we tuned the number of reads simultaneously in-

flight to optimize performance. This online Read Until processing (due to smaller batch size)

resulted in 4.05× lower throughput for Guppy-lite and 2.85× lower throughput for Guppy on the

Titan XP. Using these measurements and the relative peak throughputs of the Jetson and Titan, the

Read Until performance of the Jetson Xavier was estimated (necessitated by the unavailability of

ont-pyguppy-client ARM binaries for fine-grained Read Until control on the Jetson).

Edge GPU Edge CPU GPU CPU

Model Jetson AGX ARMv8.2 Titan XP 2× Intel Xeon
Xavier E5-2697v3

Cores 512 Volta 8 3840 Pascal 56
Clock 1377MHz 2265MHz 1582MHz 2600MHz

Table 2.3: Architectural specifications of evaluated GPUs.

A memory-efficient multi-threaded implementation of sDTW was written in Python for accu-

racy analysis, and tested on 1000 reads from each of the datasets mentioned above. In order to

determine the relative benefits of Read Until using different classification latencies and accuracies,

we developed an analytical model to estimate sequencing runtime. This model accounts for factors

such as average read length, desired coverage of the reference genome, average DNA capture time,

and the Read Until parameters mentioned previously.

The design was first functionally verified via emulation on Amazon Web Service’s EC2 F1
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instance, which uses a 16nm Xilinx UltraScale+ VU9P FPGA. Further, SquiggleFilter was syn-

thesized using the Synopsys Design compiler for 28nm TSMC HPC and the design is clocked at

2.5GHz. 32GB 256-Bit LPDDR4x is connected to the System-on-Chip along with an 8-core ARM

v8.2 64-bit CPU.

2.7 Results

2.7.1 SquiggleFilter Hardware Synthesis

ASIC Element Area (mm2) Power (W)

Normalizer 0.014 0.045
Processing Element 0.001 0.002
Tile (1×2000 PEs) 2.423 2.780

Query buffer 0.023 0.009
Reference buffer 0.185 0.028

Complete 1-Tile ASIC 2.65 2.86
Complete 5-Tile ASIC 13.25 14.31

Table 2.4: SquiggleFilter ASIC synthesis results.

Table 2.4 shows SquiggleFilter synthesized to a 13.25mm2 ASIC that consumes 14.21W when

performing single-stage filtering and clocks at 2.5GHz. It contains 5 fully-independent tiles (which

could be individually power-gated to improve energy efficiency). The latency for classifying a

2000-sample read from SARS-CoV-2 is 0.027ms, and for lambda phage is 0.043ms, due to its

longer reference genome. This adds insignificant latency to each Read Until decision’s critical

path, since it takes around 500ms to sequence a sufficient number of bases to make an accurate

decision. The single-tile classification throughputs for SARS-CoV-2 and lambda phage are 74.63M

samples/s and 46.73M samples/s respectively, which are both considerably higher than MinION’s

current maximum output of 2.05M samples/sec). Additionally, if each tile is configured to perform

multi-stage filtering, it will write intermediate results to DRAM, consuming only 10 GB/s main

memory bandwidth per tile. Since Jetson Xavier’s main memory supports 137 GB/s, our 5 tile
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design is feasible.

2.7.2 Performance Analysis

Latency: Figure 2.15a compares GPU-based basecalling latency to our SquiggleFilter accelera-

tor’s latency. Note that we show only basecalling latency as it is the most time consuming step

(96% of compute time) of the virus classification pipeline. The measurements demonstrate that

it would be impractical to use the high-accuracy Guppy basecaller as its latency is greater than

one second, in which time more than 400 bases would have been unnecessarily sequenced for

non-target reads. We found that Guppy-lite provides sufficient accuracy for Read Until classifi-

cation as downstream aligner MiniMap2 is able to account for incorrect basecalls when aligning

reads. However, a 149ms basecalling latency for Guppy-lite translates to an additional 60 bases

sequenced for each read during classification. Since most non-target reads can be discarded after

around 200 bases, this overhead is significant. In comparison, the common-case 0.04ms decision

latency of SquiggleFilter ensures that not even a single base pair is unnecessarily sequenced.

Figure 2.15: a) Latency, and b) throughput of Guppy, Guppy-lite and SquiggleFilter during Read
Until.

Throughput: Figure 2.15b compares the basecalling throughput of Guppy-lite measured over

GPU configurations to SquiggleFilter accelerator’s classification throughput. An edge GPU such

as the Jetson does not have sufficient compute power to basecall data from all pores in real-time

and keep up with the maximum sequencing throughput of the MinION. We calculated that the

Jetson’s throughput would be approximately 95,700 bases per second, which is only 41.5% of the
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MinION’s maximum output of 230,400 bases per second. In the worst case, Read Until can only be

performed using 41.5% of the MinION’s pores when basecalling using Guppy-lite on the Jetson.

The remaining 59.5% of pores are unable to use Read Until, and will sequence full-length human

reads. In contrast, SquiggleFilter’s throughput far exceeds MinION’s and GridION’s sequencing

throughputs.

2.7.3 sDTW Algorithm Accuracy

Figure 2.16a compares sDTW accuracy to basecalling and alignment on a dataset of 1000 lambda

phage and 1000 human reads, with a line plotted for each prefix length. The MiniMap2 alignment

quality and sDTW alignment cost thresholds (for determining which reads to sequence and which

to reverse) are swept through the range of possible values to show threshold-dependent accura-

cies. Although the Read Until accuracy obtained by basecalling and aligning slightly outperforms

sDTW, this is to be expected since alignment algorithms such as MiniMap2 use numerous scoring

heuristics and have matured significantly over the past two decades [46].

Figure 2.16: SquiggleFilter Read Until a) accuracy, and performance on b) lambda phage and c)
SARS-CoV-2 datasets.
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Figure 2.17: Accuracy results for modifications to the standard sDTW algorithm.

Figure 2.17 shows the maximal F-score for all of our algorithm modifications and standard

sDTW on the same dataset. As expected, accuracy generally increases along with sample prefix

length. We found that using both integer normalization and absolute difference for our distance

metric reduce filtering accuracy slightly, a compromise which was expected. Eliminating reference

deletions results in a slight accuracy improvement. Combining all three of these optimizations

results in the lowest accuracy (but most efficient) of all configurations tested. We find that by

including our “match bonus”, we can recover lost accuracy and outperform the baseline, with a

minor performance penalty. Figure 2.18 furthermore demonstrates that there is no a significant loss

in filter accuracy until there is more than a 1,000 base difference between the reference genome

and viral strain sequenced.

Figure 2.18: SquiggleFilter accuracy is robust against random (lambda phage) reference mutations.
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2.7.4 Benefits of Read Until

Figure 2.19: Time saved is cost saved for sequencing.

Read Until not only saves sequencing time, but also cost. Figure 2.19 shows our wet-lab experi-

ment. After sequencing for a while, washing the flow cell with nuclease and re-multiplexing (rapid

alternations of pore voltage bias direction, shown with dotted black line) leads to control and Read

Until pores having the same number of active channels. This means that Read Until does not dam-

age the flow cell any more than normal sequencing, but enables more experiments to be run over

the lifetime of any flow cell.

The single-threshold Read Until design space was first explored for our lambda phage dataset.

Figure 2.16a shows the accuracy of SquiggleFilter for a variety of Read Until prefix lengths (each

line), and for all reasonable sDTW alignment cost thresholds (points on each line). Given this ex-

perimentally measured accuracy, the total expected sequencing time to perform Read Until for

lambda phage was calculated using our analytical model, and is shown in Figure 2.16b. We

found that the best single-threshold configuration for SquiggleFilter outperforms Guppy-lite on

this dataset by 12.9% in terms of Read Until runtime. By using multiple thresholds, we can reduce

runtime by a further 13.3%.

A similar analysis was then performed for the SARS-CoV-2 dataset, and the results are shown

in Figure 2.16c. Optimal sDTW alignment cost thresholds were taken from the Read Until runtime

minima from Figure 2.16b, and the corresponding Read Until runtimes using those thresholds are

marked for the SARS-CoV-2 dataset.
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2.7.5 Looking Forward: Scalability

Figure 2.20: Future SquiggleFilter Read Until benefits.

Sequencing throughput is expected to increase by 10−100× within the next few years, due to new

nanopore chemistry enabling a denser configuration with many more channels per flow cell [49].

Figure 2.20 shows that without further improvements to basecalling throughput, current GPUs will

be unable to keep pace with new sequencing technology. As a result, the time and cost savings

gained through Read Until will be largely lost. We can see that Guppy-lite’s slight edge over

SquiggleFilter in terms of accuracy has already been lost due to its inability to perform Read Until

on 512 pores. In contrast, our SquiggleFilter accelerator can tolerate a 114× increase in sequencing

throughput.

2.8 Related Work

The MinION was released in 2014 as the first commercially available nanopore-based DNA/RNA

sequencing device [69]. The first Read Until software pipeline was developed two years later,

in 2016 [30]. In this seminal work, raw nanopore signal was first segmented into events, and

then events were aligned to a lambda phage reference using subsequence Dynamic Time Warping

(described in Section 2.4.3). Event segmentation is used to detect the most likely positions in

the raw signal where a new base has entered the pore, and could be considered a rudimentary

form of basecalling. In fact, it has been used as an essential preprocessing step in several older
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basecallers [45]. Unfortunately, the throughput measured by this original work on an 8-core ARM

processor is 40× lower than the current maximum MinION output.

As basecalling throughput and accuracy has gradually increased over the last few years, the

standard approach for Read Until pipelines has been to basecall the signal and use an aligner to

determine if each read aligns to the target genome [52, 53, 70, 51]. This method achieves the

highest accuracy, but is not scalable. When pairing a server-class GPU with a handheld MinION

device, it is just able to perform Read Until with the required throughput, albeit with significant

latency (as shown in Section 2.7.2).

UNCALLED, a more recent work, skips basecalling by doing approximate alignments in 3

steps: event segmentation, FM-index look-ups, and seed clustering [54]. However, we evaluated

UNCALLED and observed that it requires longer prefix lengths for accurate alignment. 23.63%

of 2000-sample long chunks from our lambda phage dataset were not alignable. After segmen-

tation, UNCALLED uses an FM-index to filter reads. UNCALLED aligns only ∼76% of the

lambda reads of 2000 samples on a modern Intel i7-7700 desktop processor taking 16ms per read.

Moreover, ∼14% of reads take 353ms per read to be aligned as more samples are required for a

decision. ∼10% of the reads, however, are left unaligned. On an edge device with an ARM core

and lower memory bandwidth, performance would be worse. No existing software-only solution

has adequate throughput and low enough latency to effectively perform Read Until on an edge

device.

In contrast, our approach shifts to a minimalistic sDTW alignment algorithm, and by designing

hardware to accelerate the simple and regular sDTW computation, we can easily meet the desired

throughput and latency requirements on an edge device. General purpose DTW accelerators have

already been designed to solve alignment problems in other domains such as audio signal process-

ing [71] and astronomy [62], but nanopore viral DNA/RNA filtering required several application-

specific optimizations to meet the desired latency, throughput and accuracy requirements. Our

design involves several algorithmic modifications to vanilla sDTW (described in Section 2.4.7),

uses an on-chip buffer for efficient repeated alignments to the same reference, replaces all floating-
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point computation with integer arithmetic for increased efficiency, uses multi-stage filtering for

optimal Read Until results, and has been evaluated on a novel virus (SARS-CoV-2).

There has recently been significant work on designing hard-ware accelerators for genomics ap-

plications [19, 20, 21, 22, 23, 24, 25, 26], but these accelerators focus on human genome sequenc-

ing. As a result, they efficiently align many (usually short) basecalled reads to a long reference

genome with high throughput and accuracy. As noted previously in Section 2.3.2, our problem has

very different computational needs. We must selectively filter short noisy raw signals (squiggles)

with sufficiently high throughput and low latency to effectively exploit Read Until. We achieve

this by replacing the basecaller and aligner with SquiggleFilter.

2.9 Availability

The software and RTL design of SquiggleFilter are publicly available at: https://

github.com/TimD1/SquiggleFilter
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CHAPTER 3

DTWax: Accelerated Dynamic Time Warping on

GPU for Selective Nanopore Sequencing

3.1 Introduction: SquiggleFilter’s limitations

With SARS-CoV-2 evolving and adapting to its new environment[72] and becoming immune-

evasive[73], there is a possible threat from a variant that can evade our current gold standard

tests and fuel a surge in cases. Reverse Transcription Polymerase Chain reaction (RT-PCR) is

the current gold standard[74] for SARS-CoV-2 diagnostic testing. Prior works have shown that

RT-PCR requires the design and manufacture of custom PCR primers which is a complex, time-

consuming, and error-prone process[75, 13, 12]. This limits the utility of RT-PCR in the early

stages of a pandemic. Dunn and Sadasivan et al.[75] developed SquiggleFilter, a portable virus

detector that could be re-programmed to speed up the sequencing of reads from a viral target of

interest. SquiggleFilter is an ASIC, envisioned to work alongside Oxford Nanopore Technology’s

(ONT) MinION MK1B (or simply the MinION), a recent-to-market portable DNA sequencer that

does not have any compute built into it. However, SquiggleFilter can only be programmed with

references of size less than 100Kb and it being an ASIC, is not easily scalable.

Additionally, GPUs are becoming a more common choice for accelerated computing on

sequencers– ONT sequencers GridION, PromethION, and MinION MK1C have GPUs built into

them[76]. GPUs are also widely available in workplaces and on cloud platforms. While Squig-

gleFiter’s subsequence Dynamic Time Warping (sDTW) algorithm was optimized to work on an
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ASIC, we adapt and optimize it to work on the more common GPUs.

3.2 Background: Compute and Accuracy challenges in Read

Until

3.2.1 Guppy is inaccurate and slow for Read Until

The state-of-the-art selective sequencing pipeline[77, 53] uses Guppy-fast for basecalling and Min-

imap2 for classifying the reads[77] as shown in Fig. 4.3. Guppy is a deep neural network-based

software that converts the raw signal output of the MinION (noisy squiggles) to bases. However,

Guppy has a two-fold performance problem. Prior works have demonstrated how Guppy is slow

and does not have the required throughput to handle the throughput of the MinION[75, 78, 79, 80]

and SquiggleFilter[75] pointed out how the increasing throughput of the MinION amplifies this

problem. We demonstrate the same problem in Fig. 3.2b. Secondly, Guppy is unable to accurately

basecall small chunks of data. ∼40% of the bases sequenced from a sample of average read length

2 Kbases is unclassified as shown in Fig. 3.2a because Guppy could not basecall these very short

fragments accurately[80].

Figure 3.1: State-of-the-art selective sequencing pipeline uses Guppy-fast for basecalling and Min-
imap2 for classifying the reads

Hardware-accelerated SquiggleFilter[75] was proposed as a replacement for the Read Until

classification using Guppy followed by Minimap2.
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Figure 3.2: Guppy cannot classify a high percent of sequenced bases and also has a throughput
problem with Read Until. (a) ∼40% of the bases sequenced are non-target in a 99.9: 0.1 non-
target: target mix with an average read length of 2 Kbases. (b) Guppy followed by Minimap2
cannot match the throughput of a future MinION even on a high-end cloud instance that uses an
A100 GPU for basecalling.

3.2.2 SquiggleFilter

While traditional RT-PCR tests rely on complex custom primer design and time-consuming wet-lab

processes for target enrichment, MinION can be controlled to selectively sequence only the target

virus of interest using the Read Until feature. Utilizing the Read Until feature requires making real-

time classifications during sequencing but the current MinION does not have any compute power.

Dunn and Sadasivan et al.[75] demonstrated how basecalling is the bottleneck and constitutes∼88-

96% of Read Until assembly and how this problem was amplified with the projected 100X increase

in ONT’s sequencing throughput. Their solution, SquiggleFilter[75], uses hardware accelerated

subsequence Dynamic Time Warping (sDTW) to perform Read Until.

SquiggleFilter addresses the compute bottlenecks in portable virus detection and is designed to

even handle the higher throughput of a future MinION. SquiggleFilter is programmable and offers

better pandemic preparedness apart from saving time and cost of sequencing and compute. How-

ever, SquiggleFilter’s limited on-chip memory buffer only lets it test for viral genomes smaller than

100Kb. Additionally, SquiggleFilter uses a modified version of sDTW algorithm where the accu-

racy dip from various hardware-efficiency focussed optimizations are overcome with the match
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bonus[75]. The match bonus is a solution to a problem on the ASIC and performing this on the

GPU can introduce branch divergence. We eliminate the match bonus, retain the assumption of

reference deletions and optimize sDTW to run on GPUs.

3.2.3 subsequence Dynamic Time Warping

sDTW is a two-dimensional dynamic programming algorithm tasked with finding the best map

of the whole of the input query squiggle in the longer target reference. In sDTW’s output matrix

computation, parallelism exists along the off-diagonal of the matrix and therefore, the computation

happens in a wavefront parallel manner along this off-diagonal. Diagonals are processed one after

the other. If the query is assumed to be along the vertical dimension of the matrix and the target

reference along the horizontal dimension, the minimum score on the last row of the matrix will

point to the best possible map of the query to the reference. This score may be compared to a

threshold to figure out if the query is a target or not. The sDTW cost function is defined as follows:

Algorithm 1 sDTW algorithm
Input: Query (Q) of length N, reference (R) of length M and score threshold (T) for classification.

Output: Target or non-target

1: S← zeros(N,M)

2: S[0,0]← (Q[0]-R[0])2

3: for i← 1 to N step: 1 do

4: S[i,0]← S[i-1,0] + (Q[i]-R[0])2

5: for i← 1 to N step: 1 do

6: for j← 1 to M step: 1 do

7: S[i,j]← (Q[i]-R[j])2 + min(S[i-1,j-1],S[i,j-1],S[i-1,j])

8: if min(S[N, :]) < T then

9: return “Q is target”

10: else

11: return “Q is non-target”
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3.2.4 Prior Work

Since the MinION’s release in 2014, there has been a few attempts in improving the benefits of

Read Until[75, 78, 79, 77, 53, 81, 80], of which only SquiggleFilter[75] has the optimal combina-

tion of accuracy and throughput to keep up with a future MinION. The softwares performing Read

Until can be broadly classified into two categories based on the inputs they operate on- signal space

and basecalled space. Softwares operating in the signal space attempt to classify the input squiggle

as a target or non-target while softwares operating in the basecalled space rely on the basecaller

to transform raw squiggles to bases in real-time which is computationally expensive. We observe

that the basecaller also basecalls smaller signal chunks poorly. The basecalled read prefixes may

then be classified as a target or non-target.

Readfish[77] and RUBRIC[53] classify basecalled reads to detect targets using mapping tools

like Minimap2. We show that ONT’s proprietary basecaller Guppy suffers from not being able to

basecall ∼10% of the reads confidently leading to them being unclassified by Minimap2. Addi-

tionally, Guppy, a deep neural network, also suffers from low throughput on high-end GPUs and

cannot meet the real-time compute requirements of a future MinION.

Three of the signal space-based methods rely on event segmentation- a pre-processing step

where raw squiggles are segmented into events to detect positions in the signal where we are

more likely to see a new base. The very first attempt at Read Until[30], UNCALLED[78], and

Sigmap[79] use event segmentation as a pre-processing step. Loose et al.[30] uses sDTW on

python to perform Read Until from events on a CPU. This yields sub-optimal performance. UN-

CALLED follows up with FM-index look-ups and seed clustering to find a target map. Although

UNCALLED has a good mapping accuracy for smaller genomes, We observe that UNCALLED

does not have the necessary throughput to match the compute requirements of a future MinION.

Sigmap does seeding followed by Minimap2-style chaining on the seeds to identify a target map.

But we observe that Sigmap needs a relatively long read prefix to identify a sufficient number of

seeds and this turns out to be 4000 raw samples. Additionally, we observe that Sigmap has lower

mapping accuracy than UNCALLED.
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SquiggleNet[82] is a convolutional neural network-based software for classifying squiggles

into target or non-target. However, SquiggleNet[82] is slower than guppy followed by Minimap2

and only achieves similar mapping accuracy to Guppy followed by Minimap2. SquiggleFilter[75]

is a programmable ASIC that can match the throughput of a future MinION and yield optimal Read

Until benefits. However, the initial cost of adoption is high as ASIC needs to be economically

manufactured at scale and shipped in order to be deployed worldwide. GPUs on the other hand

are already widely available at workplaces, shipped along with some of the sequencers, and also

available on the cloud.

DTW has been parallelized in the past for various different applications on architectures in-

cluding FPGAs[83, 81], Intel Xeon Phis[84], big data clusters[85], customized fabrics[86] and

even GPUs[87, 88]. HARU[81] is a recent work that implements SquiggleFilter’s algorithm on a

budget-constrained FPGA. HARU cannot match the maximum throughput of the current MinION

and is not a solution that can match the planned 100X throughput of the MinION. Crescent[89] is

a recent closed-source implementation of SquiggleFilter’s algorithm directly on the GPU but ends

up being 29.5X lower in throughput than DTWax possibly because of several reasons including not

utilizing warp synchronized register shuffles for data sharing between threads and fewer number of

cells computed per thread. cuDTW++[90] is the best-performing prior work on GPU which accel-

erates DTW. However, cuDTW++ is∼2.6X slower than DTWax and is built for database querying

of very small queries and not for subsequence Dynamic Time Warping that is required to perform

Read Until. Additionally, the normalization step is performed very inefficiently.

3.2.5 Our contributions

In this work. we present DTWax, a GPU-accelerated sDTW software for nanopore Read Until

to save time and cost of nanopore sequencing and compute. We adapt SquiggleFilter ASIC[75]’s

underlying sDTW algorithm to suit a GPU in order to overcome the limitation with reference

lengths SquiggleFilter had. While sDTW was optimized for integer compute on the ASIC, we

fine-tune sDTW for high throughput on the GPU. While SquiggleFilter uses integer arithmetic
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and Manhattan distances on the ASIC, we use floating point operations and Fused-Multiply-Add

operations on the GPU. We also demonstrate how to utilize some of the GPU’s high throughput

tensor core’s compute power for non-ML workloads.

As a first step, we speed up the online pre-processing step (normalization) on FP32 tensor

cores using the batch normalization functionality from the CUDNN library traditionally used for

machine learning workloads. DTWax is optimized to make use of the high throughput Fused-

Multiply-Add instructions on the GPU. Further, we use FP16 and FP16 tensor core’s Matrix-

Multiply-Accumulate (MMA) pipe for higher throughput for sDTW calculation. Using FP16 helps

us process the forward and reverse strands, thereby extracting more parallelism to help improve the

latency and throughput of classification. We also make use of offline pre-processing of reference

squiggle index for coalesced loads, cudastreams for better GPU occupancy, intra-, and inter-read

parallelism, register shuffles, and shared memory for low-overhead communication while process-

ing the same query.

DTWax achieves ∼1.92X sequencing speedup and ∼3.64X compute speedup: costup from

using nanopore Read Until for a future MinION (with 100X the current throughput) on an A100

compared to a workflow that does not use Read Until.

3.3 Methods

3.3.1 Offline pre-processing

ONT has published a k-mer current model[91] which provides a reference to map a 6-mer to an

expected value of the current output from the MinION. We use this k-mer model to map the ref-

erence genome of the target virus to a noise-free FP16 squiggle reference. The squiggle reference

will be of length (target length - 6 + 1). We also pack two FP16 values (one from the forward

strand and another from the reverse strand) into a half2 reference word (built-in CUDA datatype

of two FP16 half-words). Further, we make use of the prior knowledge of the target reference to

ensure coalesced global memory reads by re-ordering the target reference offline.
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3.3.2 Online pre-processing: Normalization

The output squiggle of the MinION (query) is read from ONT’s proprietary FAST5 file format. The

raw integer data is then scaled to pico-amperes (float32). The first few samples (1000) are trimmed

to cut adapters and barcodes off. We re-purpose the CUDNN-Batchnorm to z-score normalize the

1-dimensional FP32 query current signal. CUDNN utilizes tensor cores and performs normaliza-

tion at a very high throughout (∼6X the throughput of sDTW). The signal is then rounded off to

FP16 and copied into a half2.

3.3.3 DTWax: architecture

Figure 3.3: Efficient intra- and inter-matrix communication in DTWax

We adopt the segmented-sDTW architecture introduced in prior works[90] where each segment

is a fixed number of cells in a row whose scores are computed by a thread. DTWax breaks down

the processing of longer target references into multiple sub-matrices, each processing a fixed num-

ber of target bases. The reference length processed per sub-matrix is configurable and is set to 832

bases for optimal performance on an A100. Within a sub-matrix, each thread is responsible for pro-
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cessing a configurable but equal number of cells (cells per thread is called a segment). Wavefront

parallelism exists along the off-diagonal segments in the sub-matrix as shown in Fig.3.3. Thread 0

is the first to finish its computation inside the sub-matrix while thread 31 is the last to finish. Target

reference is loaded into registers (one FP16 reference sample each for forward and reverse strands

into a single half2 datatype) from global memory using coalesced loads.

For intra-sub-matrix communication, we exploit warp shuffles for efficient register-to-register

transfers within the same warp. This is an idea demonstrated by Schmidt et al[90] but not com-

pletely explored. Threads in a warp use warp shuffles to transfer the query sample, the minimum

score of the segment, and the score of the last cell in the segment to the thread on its right. In-

stead of using a global reduction to find the final minimum score for DTWax, we use the efficient

warp-shuffles to pass the minimum scores of the segments between threads. Inter-sub-matrix com-

munication happens via shared memory transfers instead of relying on global memory. A thread

block processing a read writes the last column of the sub-matrix into the shared memory and reads

it back while calculating the consecutive sub-matrix for the same read.

3.3.4 Intra- and inter-read parallelism

Using all the warps on an SM to process a single query would mean that the last warp remains idle

and is ineligible for compute for an initial period of time. Therefore, we choose to process one

read with a thread block of only 32 threads. We have intra- and inter-read parallelism. Every query

is processed by a thread block of 32 threads. Within a thread block, we have intra-read parallelism

from 32 parallel threads each computing a segment of the sub-matrix. Across the GPU, we have

inter-read parallelism as there as multiple concurrent blocks operating on different reads on any

given Streaming Multi-processor (SM).

3.3.5 Coalesced global memory access

The offline re-ordering of the target reference enables us to perform coalesced reads from global

memory (as many loads as the length of one segment in a sub-matrix) before computation starts in
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the sub-matrix. The normalized target reference is an array of half2 datatype. This enables the

vectorized processing of the input query signals on the high throughput FP16 pipe. Additionally,

after the normalized query is read from the global memory in chunks of 32 half2 query samples

using a coalesced load of 128B, it is then efficiently transferred between threads of a warp using

warp shuffles.

3.3.6 FP16 for 2X throughput

SquiggleFilter[75] has demonstrated that the information from the ONT sequencer may be cap-

tured using 8 bits. While the ASIC was custom-designed for integer arithmetic, GPUs are designed

for high throughput floating point arithmetic. Among the floating point pipes available, we use the

high throughput FP16 pipe on A100 (2X throughput compared to FP32) for DTWax. Computation

with respect to the forward strand of the target reference happens on the first FP16 lane while the

second FP16 lane computes with respect to the reverse strand. Utilizing half2 FP16 pipes (FP16

vectorization) not only helps us to increase throughput but also improves the latency by 2X because

we concurrently process both the forward and the reverse strand of the target with respect to the

query in every cell of the sub-matrix.

3.3.7 Utilizing tensor core pipe

HFMA2.MMA pipe on the tensor core has one of the highest throughputs on A100. We re-

formulate the addition in the cost function of DTWax to a Fused Multiply-Add operation in order

to utilize the otherwise under-utilized HFMA2.MMA pipe. We are then able to better throttle the

compute instructions between HFMA2.MMA and the remaining FP16 pipes instead of increasing

the traffic on the FP16 pipe.
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3.3.8 Assuming no reference deletion

Using the same assumption from SquiggeFilter[75] that viral strains have minimal reference dele-

tions, we observe our accuracy of mapping using DTWax improves and our new cost function

becomes simpler as we now only have to find a single minimum per cell instead of two minimums.

Line 7 from Algorithm 1 is simplified to:

S[i,j]← (Q[i]-R[j])2 + min(S[i-1,j-1],S[i-1,j])

3.3.9 Optimizing occupancy and branch divergence

We ensured high SM utilization by finding the right balance between the number of resident warps

on the SM and shared memory utilization. Further, we keep the GPU occupancy high by issuing

concurrent asynchronous workloads to the GPU using cudastreams. Memory transfers to and from

the GPU are overlapped with compute on the GPU.

We reduce the branch divergence via partial loop unrolling. The first sub-matrix does not read

from shared memory and the last sub-matrix does not write into shared memory. Unrolling the first

and last sub-matrix computations of the query-target matrix helps improve performance.

3.3.10 Configurability and scalability

DTWax can be reprogrammed to test for any target reference of interest. Unlike some of the prior

works[90, 75], DTWax can be reporgrammed to test for longer target references. Further, one may

easily try and scale DTWax across multiple GPUs for higher throughput on longer or multiple

target references.
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3.4 Implementation

3.4.1 Experimental setup

For all our GPU evaluations we use an NVIDIA A100 GPU on Google Cloud Platform’s (GCP)

a2-highgpu-1g instance with 40GB of memory and 85GB of host memory. Our CPU baselines are

evaluated with hyper-threading enabled on GCP c2-standard-60 (30 Intel Cascade Lake cores and

240 GB of memory). pyguppy-client and DTWax use GPU while other software use CPU.

NVIDIA Nsight Systems [92] is used to visualize concurrent CUDA events, and NVIDIA

Nsight Compute[93] is used to profile GPU events.

We use public datasets used by SquiggleFilter[75]. We sequenced lambda phage DNA on a

MinION R9.4.1 flow cell following the Lambda Control protocol at the University of Michigan’s

laboratory using the ONT Rapid Library Preparation Kit [66]. Human datasets (sequenced with

MinION R9.4 and R9.4.1 flow cells) are obtained from ONT Open datasets [64] and the Nanopore

Whole-Genome Sequencing Consortium [63].

We use UNCALLED v2.2, Sigmap v0.1, Minimap2 v2.17, pyguppy-client v0.1.0 and Cen-

trifuge v1.0.4-beta. We optimally configure the software for better mapping accuracy. We config-

ure Sigmap for better event detection by setting “–min-num-anchors-output 2 –step-size 1”. We

turn off minimizers in Minimap2 for better mapping accuracy by setting “-w=1 -k=15”.

3.4.2 Optimal GPU configurations

In order to optimize DTWax’s throughput on A100, we introduce more inter-read parallelism by

fitting 32 blocks on each of the 108 Streaming Multiprocessors on the GPU. We process one read

per thread block of size 32 threads. We observe that having multiple concurrent warps per read

resident on the SM may not be beneficial as there may be a long latency in the last warp of a

read getting valid inputs from the previous warp and starting to calculate useful values. Using

Nsight Compute, we maximize the number of reference bases processed per thread (segment size)

to 26 amounting to a total of 32x26 reference bases processed per thread block. In order to reduce
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global memory transactions, we use shared memory for inter-sub-matrix communication. A shared

memory of size 500B is allocated per block to store the output of the last column of a sub-matrix

calculated by the last thread in a thread block. This is read by the thread block when it processes

the next set of 32x26 reference bases.

3.4.3 Incremental Optimizations

Figure 3.4: A series of performance optimizations enable DTWax to handle more than 2X the
projected future sequencing throughput

DTWax is a compute-bound kernel. Fig.3.4 gives the reader a better understanding of the

relative benefits of some of the main optimizations that go into DTWax.

3.5 Results

DTWax is the most accurate Read Until classifier as shown in Fig. 3.7. The sequencing speedup

and compute time savings from DTWax are higher for longer reads as shown in Fig. 3.8.

We use two metrics to evaluate the benefits of using DTWax– sequencing speedup and compute

speedup: costup. Sequencing speedup is defined as the speedup in the end-to-end sequencing time

from using DTWax for Read Until over a conventional nanopore sequencing workflow that does
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Figure 3.5: DTWax yields ∼1.92X sequencing speedup and ∼3.64X compute speedup: costup .
(a) DTWax yields the best sequencing speedup of ∼1.92X over a conventional pipeline that does
not use Read Until on reads of length 2000 bases. (b)DTWax yields the best compute speedup:
costup of ∼3.64X. The prefix length used for classification is 250 bases for the best performance
in both cases.

not use Read Until. Accessing an NVIDIA A100 GPU instance on the cloud is priced ∼10%

higher than the CPU instance we use for benchmarking. Hence, we normalize the compute time

savings from using DTWax for Read Until to the cost of the cloud GPU instance to estimate

compute speedup: costup. Further, we also compare the F1-score of DTWax in making Read Until

classifications.

DTWax yields up to ∼1.92X sequencing speedup and ∼3.64X compute speedup: costup with

a future MinION of 100X throughput when compared to a sequencing workflow that does not

use Read Until as shown in Fig. 3.5. Additionally, we observe that using a prefix length of

250 bases yields the best benefits from using Read Until on a dataset of average read length 2

Kbases. One may also observe that savings from ont-pyguppy client degrades with increasing

read-prefix lengths used for classification because ont-pyguppy cannot process streaming inputs

and concatenate to outputs. Therefore, ont-pyguppy-client has to basecall the entire prefix again.

Sigmap is unable to extract events from signals less than 400 bases. Please note that DTWax and

pyguppy-client are GPU solutions and we label them using dotted lines on all the plots.

Fig. 3.6 shows that DTWax can handle more than 2X the throughput of a future MinION and
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Figure 3.6: DTWax can handle more than 2X the throughput of a future MinION and has ∼7.18X
lower latency than pyguppy-client followed by mappy. (a)Unlike pyguppy-client followed by
mappy, DTWax operating at a granularity of 50 bases can handle twice the throughput of a fu-
ture MinION (b)DTWax takes only ∼14 milliseconds to classify 50 bases and is ∼7.18X faster
than pyguppy-client followed by mappy .

‘

Figure 3.7: DTWax is the most accurate Read Until classifier. (a) DTWax has an F1-score of
∼92.24% and is the most accurate Read Until classifier using a prefix length of 250 bases. (b)
DTWax is better at filtering non-target (human) reads out than pyguppy-client followed by mappy
while being almost comparable in successfully retaining target reads

.

has ∼7.18X lower latency than pyguppy-client followed by mappy using a prefix length of 50

bases. Because of this, we operate DTWax at a processing granularity of 50 bases over a prefix

length of 250 bases to make a Read Until classification decision. To explain the performance of
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Figure 3.8: DTWax yields higher benefits on longer read lengths. In (a) and (b), we see increasing
benefits from using Read Until on higher read lengths and DTWax is the best solution for read
lengths shorter than ∼50Kbases.

pyguppy-client on longer prefixes, we profile pyguppy-client using NVIDIA nsight-compute and

observe that the GPU occupancy is higher with longer prefix lengths resulting in better benefits

from longer prefix lengths. UNCALLED seems to have a very high one-time fixed cost for path

buffer management for storing output forest of trees and there is negligible cost with added prefix

lengths. Although Sigmap is the best in terms of throughput and latency, it cannot extract useful

information from 250 bases and has lower F1 scores in classifying prefix lengths longer than 400

bases as shown in Fig. 3.7.

3.6 Availability

The GPU software of DTWax is publicly available at: https://github.com/

harisankarsadasivan/DTWax/tree/FAST5.
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CHAPTER 4

RawMap: Rapid Real-time Squiggle Classifier for

Read Until

4.1 Introduction: Read Until for Microbiome Estimation

Novel infections and pandemics are on the rise [94]. In the context of the COVID-19 pandemic,

changes to the human microbiome are increasingly understood as a biomarker [95, 96, 97] which

can help in patient risk stratification and mitigate disease severity [98]. Understanding the human

microbiome can also provide additional benefits such as providing prophylactic and therapeutic

tools to improve human health [99] and thereby, increasing colonization resistance against infec-

tions [100]. Along with microbiome identification and quantification, viral load is another metric

linked to COVID-19 disease severity and mortality and helps in risk stratification [101].

As a means to estimate the microbiome, DNA sequencing has immense potential to transform

personalized healthcare through the early discovery and detection of diseases. Metagenomic abun-

dance estimation (relative quantification of taxa) from long DNA reads is a less explored domain

as we learn in Section 4.2. Moreover, efficient enrichment and sequencing of microbial DNA

from non-target-rich metagenomic samples with unknown microbial constituents is an unsolved

problem.

Oxford Nanopore Technology’s (ONT’s) portable long-read DNA sequencer, MinION, has a

minimal operational and logistical footprint, and real-time capabilities, making it a unique candi-

date for this purpose [53]. Assays of SARS-CoV-2, Ebola, Zika, tuberculosis, and various other
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pathogens have been successfully conducted using MinION [102]. Nanopore sequencers monitor

the electrical signal fluctuations from a strand passing through a nanopore channel and decode the

specific DNA/RNA sequence. Sequencing costs us both time and money. Flowcell washes and

longer sequencing times degrade the quality of a flowcell over time. Replacing degraded flowcells

and wet-lab reagents adds to sequencing cost. In order to reduce the sequencing and compute foot-

print, it is essential to ensure only target microbial reads are completely sequenced and non-target

human reads are ejected. Finally, we show that the time saved in nanopore sequencing is cost saved

in Section 4.6.8.

Human samples can have a significant fraction of non-target reads – greater than 99% of total

reads are non-target human reads in most clinical respiratory samples [103]. Sequencing these

non-target reads would otherwise be a waste of sequencing time and cost. Moreover, it is im-

portant to not miss target reads in order to accurately characterize the microbiome. Undetected

target reads especially from a low-abundant species can offset the relative abundance. Hence, prior

works choose to sequence all of the unclassified reads [52]. We follow the same practice when

performing Read Until.

The state-of-the-art (baseline) Read Until pipeline, Readfish [52], sequences unclassified reads

and iteratively updates the alignment index for read Until target classification. For microbiome

abundance estimation, Readfish uses a software pipeline consisting of a basecaller (Guppy [104]

is a deep neural network that decodes raw squiggle output from the sequencer to bases), an aligner

(Minimap2 [105] maps DNA read to the target genome using approximate string matching), and

a metagenome classifier (Centrifuge [106] classifies the read into a taxonomic rank).

However, Readfish has a two-fold performance problem – low throughput and accuracy (on

small signal chunks) of the basecaller. Prior works have shown that real-time basecalling using

deep neural networks cannot keep up with the throughput of the sequencer and this problem is

amplified by the projected growth in future sequencing throughput [75]. Additionally, prior works

have reported the inaccuracy of Guppy in basecalling small signal chunks [78, 79]. We observe

that this translates to 59.5% of the sequenced bases being unclassified (as shown in Figure 4.2) in a
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99:1 host: target sample with an average read length of 8.29 Kbases. We analyze and observe that

these unclassified bases are basecalled with low Phred quality scores as shown in Figure 4.1 and

hence, aligners like Minimap2 and BLAST are unable to align them.

We envision a portable, fast, and inexpensive diagnostic solution for the digital enrichment of

the human microbiome and downstream applications including microbiome abundance estimation

and viral load quantification. Our fast and accurate diagnostic solution can decentralize sequencing

and democratize personalized healthcare. We propose an efficient CPU-only software solution to

classify these low-quality read prefixes using RawMap, a squiggle space Read Until classifier. Our

feature engineering enables RawMap to identify non-linear and non-stationary characteristics of a

raw read prefix and distinguish the host from the target in a simple 3-D feature space with very low

computational overhead. RawMap is also capable of identifying previously undetected microbial

species and is offered as a “plug-and-play” solution without disrupting the baseline Read Until

pipeline. Our proposed RawMap augmented pipeline 1 saves ∼24% sequencing time and cost

whereas pipeline 2 saves ∼22% compute time. Our evaluations are performed with respect to a

baseline Read Until pipeline on a 99:1 host: target sample with an average read length of 8.29

Kbases.

Additionally, we demonstrate how RawMap may be utilized to skip the expensive basecall-

ing step and perform viral load quantification in a sample mix of human and SARS-CoV-2. In

some settings, viral load is linked to disease severity and mortality and helps in risk stratifica-

tion [101]. Colorimetry-based Reverse Transcription-Polymerase Chain Reaction (RT-PCR) test

is the most commonly used method for viral load quantification [107]. However, RT-PCR-based

tests often have complex primer design, manufacture, and distribution steps [75] and may have

a significant number of false positives from various sources of contamination if the assay is not

well-validated [108, 109]. In the end, we present a case of using RawMap to skip the expensive

basecalling step for sequencing-based viral load quantification.
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4.2 Related Work

Metagenomic data analysis and abundance estimation are well-studied for short reads [110, 111,

112, 113, 114, 115] but that is not the case for long reads. MetaMaps [116] is a long-read abun-

dance estimator it is resource hungry. Centrifuge [106] is resource efficient and works for both

short and long reads. But, we observe that using Centrifuge alone does not produce sufficiently

accurate results as discussed in Section 4.5.1.

Read Until is an emerging domain of research. The first attempt at Read Until sequencing

used a signal space technique called subsequence Dynamic Time Warping where a raw nanopore

query signal is aligned to an in silico signal representation of a reference sequence [117]. How-

ever, this method is not scalable to reference sequences larger than tens of kilobases as the runtime

is quadratic in the reference length. SquiggleFilter [75] (ASIC) and HARU [81] (FPGA) are

hardware-accelerated Read Until solutions but their performance is optimal only for a small ref-

erence target (order of Kilobases) as they are constrained by the hardware’s small buffer size and

hence, are not suited for abundance estimation of multiple target microbial references (typically

millions of bases).

Readfish, the most widely adopted ReadUntil pipeline today [52], uses a basecaller followed

by an aligner, Minimap2 to make a decision on a small chunk of data in the basecalled space.

However, this method fails to bring out optimum savings as we find that a very high fraction of

sequenced bases are from non-target reads as they get basecalled with low-quality scores and are

hence, unintentionally sequenced. Additionally, the basecaller Guppy cannot meet the increasing

throughput of the sequencer [75].

UNCALLED [78] uses a probabilistic k-mer approximation from the signal space followed

by alignment using BWA-MEM to identify target reads and perform metagenomic classification.

However, we do not compare directly with UNCALLED because of two reasons. UNCALLED

needs to know the constituents of the sample apriori to form the reference index for classification.

This is not possible in situations where the target microbiome/infectious agent is unknown. UN-

CALLED cannot use a non-target (human genome in this case) reference because UNCALLED is
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shown to not scale to references above 100Mb and performs poorly on highly repetitive references.

Secondly, UNCALLED’s k-mer approximation is directly dependent on a k-mer reference current

model which is retired by ONT for all newer and future nanopore chemistries. Sigmap [79] is an-

other Read Until classifier in the signal space that detects events and does Minimap2-style [105]

chaining to attempt to map the read to a target. However, Sigmap also needs to know the con-

stituents of the input sample apriori and creates an index which is ∼20 X the index size of UN-

CALLED for a single target.

SquiggleNet [82] is the only prior work that can classify long-reads of unseen microbial

species. SquiggleNet uses a deep learning model. However, SquiggleNet is shown to be only

as accurate as Guppy followed by Minimap2, and is slower [82]. This does not solve our problem

of accuracy and throughput.

The viral load has commonly been estimated from time-consuming wet-lab enriched tests [101,

118]. Recent efforts have focussed on direct sequencing from high throughput short read se-

quencers [119]. However, there exists no prior work discussing viral load quantification from

direct nanopore long-read sequencing, to the best of our knowledge.

Although the trends in pore occupancy with Read Until have been previously studied [52, 78],

Read Until resulting in reduced sequencing cost has not been quantitatively discussed before.

4.3 Background and Motivation

4.3.1 Microbiome Abundance Estimation

Human lung microbiome is the aggregate of all microbiota that reside on or within lung tissue and

biofluids. Characterizing the abundance of the human microbiome helps researchers to understand

the health status of the human lung [120]. Lung microbiota composition can be a biomarker of

existing health conditions. Hence, the accuracy of microbiome abundance estimation is important.

Species abundance as defined by Centrifuge [106] does not incorporate the variability of nanopore

read lengths and ploidy (number of sets of chromosomes in a cell) of species. To fix this, we define
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cell number microbiome abundance of species j, Aj as follows:

Aj =

Bj

ljpj∑S
k=1

Bk

lkpk

where Bk is the total number of bases that correspond to species k, lk is the genomic reference

length of species k, pk is the ploidy of species k and S is the total number of species discovered,

excluding the host.

For evaluation, in our case where the ground-truth abundance is known, the error in estimated

abundance is quantified using two metrics: mean deviation and maximum deviation.

Mean deviation =
1

S

S∑
k=1

|ek − gk|

Max. deviation = max {ek − gk} ∀ kS

where ek is the estimated abundance and gk is the groundtruth abundance of species k.

As discussed, we do not need to sequence the human DNA to calculate microbiome abundance.

It has been discovered that non-target human reads in most clinical respiratory samples can be

greater than 99% [103]. Hence, it would be ideal to discard the non-target reads and sequence the

target microbial reads alone if it would help save sequencing time and cost.

4.3.2 Cost of nanopore sequencing

There are two components to the cost involved- sequencing and compute. The cost of sequencing

includes flowcell cost and reagent cost. A MinION flowcell costs $475 and can sequence up

to 50 Gigabases(Gb) on average during its lifetime. We estimate a fixed reagent cost of ∼$21

(with QIGEN’s QIAamp DNA Mini Kit for extraction, ONT’s SQK-RAD004 for library prep, and

SQK-RBK004 for a 12-way barcoded run) per experiment, and a variable flowcell cost of ∼$6 per

every hour of sequencing (based on estimated flowcell throughput of 0.59Gb/hr). Reduced time to

answer means the flowcell may be used for other applications within its lifetime. ONT has defined
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a protocol for real-time selective sequencing, which we leverage to save pore-use time during a

single run. Reduced pore-use time can lower flowcell costs incurred from a single run. We show

that sequencing time saved is flowcell cost saved in Section 4.6. For the sake of simplicity, we will

refer to the variable flowcell-related cost as sequencing cost. Further, compute-related costs can

stem from the costs of using cloud or shared computing resources.

4.3.3 Read Until Pipeline

Our baseline, a two-stage pipeline for microbiome abundance estimation is derived from Read-

fish [52] but with minor modifications. Guppy is used for basecalling the squiggles. We customize

Minimap2 for better accuracy as discussed in Section 4.5. Centrifuge, a metagenomic classifier

with a microbial and human index constructed from NCBI non-redundant nucleotide database op-

erates on full-length basecalled reads. Centrifuge does the species-level classification and identifies

those taxonomy IDs which get more than 0.005% reads assigned. Reference genomes correspond-

ing to those species’ identified by Centrifuge are downloaded in real-time from the online RefSeq

database to keep our memory footprint small. Subsequent read prefixes are mapped by Minimap2

on an expanding set of references generated from Centrifuge operating on full-length reads. If

Minimap2 detects a non-target, the read is reversed. All unclassified reads from Minimap2 are

sequenced so that Centrifuge can iteratively build the ‘refined index’- an alignment index for Min-

imap2 constructed on-the-fly from a small set of target species detected by Centrifuge. In summary,

Centrifuge, a low memory footprint, less accurate classifier is used to build a ‘refined index’ for

the highly accurate mapper, Minimap2 to make Read Until decisions.

4.3.4 Inefficiency of the baseline pipeline

The baseline Read Until pipeline cannot classify and detect 59.5% bases sequenced because they

are basecalled with lower Phred quality scores as shown in Fig. 4.1 for a 99: 1 host: target sample

with an average read length of 8.29Kb. Further, it is observed that low-quality reads translocate

slowly at a median rate of 270 bases/s. We cannot eject the unclassified reads because Centrifuge
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Figure 4.1: Unclassified reads from Guppy followed by Minimap2 have a lower mean Phred quality
score compared to classified reads as seen in this probability density function of Phred quality
scores.

needs them for building the refined index. The percentage of unclassified non-target bases (99%

of 59.5% ) sequenced is an even bigger problem for long reads as shown in Fig. 4.2. Reducing

these unclassified non-target bases would help reduce irrelevant data footprint, and improve time

and cost savings. We realize that classification is a simpler and different task from basecalling. We

engineer features from the squiggle space and classify the unmapped read prefixes.

Figure 4.2: 59.5% of the total sequenced bases are unclassified in a 99:1 host: target sample with
an average read length of 8.298Kb.

With RawMap, we propose an efficient CPU-only solution to identify non-target reads missed

by Guppy. RawMap does not alter the standard Read Until pipeline much, it is a “plug-and-

play” solution which grabs information from the squiggle domain to classify a read prefix using a

very efficient algorithm in a 3-D feature space. RawMap learns from the non-linear non-stationery

characteristics of squiggles to identify microbes from host. Additionally, RawMap is microbial
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species-agnostic – it can classify microbial species it is not trained on.

4.4 Methods

Our Read Until pipeline for abundance estimation is a modified version of the metagenomic en-

richment pipeline [52] which uses Guppy for basecalling, Minimap2 for Read Until decisions,

and Centrifuge for generating ‘refined index’, a set of species detected in the sample. Minimap2

classifies using the refined index of detected organisms’ genomes and instructs MinION to eject

host reads. Centrifuge classifies Minimap2’s unclassified reads and detects organisms absent in the

refined index. Additionally, we use Minimap2’s results on the read-prefixes for accurate abundance

estimation (we can see that Minimap2 produces consistent accurate mappings above 450 bases in

Fig. 4.6).

However, there exists a problem of unclassified reads with Minimap2 because Guppy base-

called these reads poorly as indicated by their poor base quality scores in Fig. 4.1. Basecalling is

the complex process of translating raw nanopore signal to a base sequence and Guppy’s network

is designed for this particular task. Classification is, however, a much simpler problem and utilizes

global signal-level information which Guppy may not be focusing on. Therefore, we explore the

raw nanopore data space for additional signal characteristics and engineer features out of it for the

task of read classification.

Nanopore squiggles (raw data) are also very similar to EEG as they both are non-linear and

non-stationary. Prior works have used Hjorth parameters to extract the time domain properties of

non-stationary signals like brain EEG [121]. It is known in the past that genomic sequences can

be transformed into a phase signal representation to extract Hjorth parameters in order to classify

metagenomic data [122, 123]. This is based on the idea that the characteristic changes in the

phase signal can identify one species from another. We extend this idea by modifying the Hjorth

parameters to work on noisy squiggle space for Read Until to find characteristic current transitions

in the read prefix to distinguish microbes from host.
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Figure 4.3: Proposed pipeline 1 with RawMap as a secondary filter classifying Minimap2-
unclassified-reads, plugged-in after Guppy and Minimap2, yields best savings in sequencing time
and cost for 99:1 sample with an average read length of 8.298 Kbases.

Figure 4.4: Proposed pipeline 2 with RawMap as the primary filter helps skip Guppy and Min-
imap2 for most of the non-target reads and offers best compute time savings.

4.4.1 RawMap augmented Read Until pipelines

We present RawMap, a direct squiggle-space microbial species-agnostic Read Until classifier for

identifying target microbial reads. RawMap is a “plug-and-play” solution which may be plugged

into the baseline Read Until pipeline as shown in Fig. 4.3. In the proposed pipeline 1 with Read

Until, RawMap is combined with Minimap2 for rapid microbiome abundance estimation. Here,

Minimap2 acts as the primary classifier for target versus non-target while RawMap acts as a sec-

ondary classifier which identifies the non-target read-prefixes Minimap2 could not and instructs

the MinION to eject them. We also demonstrate a very efficient solution with pipeline 2 in Fig. 4.4
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where RawMap acts as a fast primary classifier that tries to reduce the workload for the compute-

intensive Guppy. Guppy and Minimap2 are acting only on reads that RawMap classifies as target

and lets through. There is also a secondary instance of RawMap fine-tuned to classify reads un-

classified by Minimap2. We compare the benefits of each of these pipelines in Section 4.6.

RawMap’s algorithm has three main components: signal pre-processing, feature extraction,

and Support Vector Machine (SVM) based classification. Signal pre-processing normalizes the

noisy nanopore signal, feature extraction calculates the modified Hjorth parameters and the SVM

classifier does the target vs. host classification.

4.5 Implementation

4.5.1 Read Until baseline for abundance estimation

Similar to the recent work on adaptive sampling for metagenomic enrichment [52], we have a

Read Until pipeline with Guppy for basecalling, Centrifuge for iteratively building the ‘refined

index’ which consists of species detected and Minimap2 trying to map every read-prefix to this

‘refined index’. Unmapped reads are sequenced in full for Centrifuge to build the ‘refined index’.

However, our baseline pipeline does not use Centrifuge for abundance estimation but has an ad-

ditional final stage to do this because we find that a customized version of Minimap2 is better

at abundance estimation than Centrifuge as shown in Fig. 4.5. It is observed that the minimizer-

based seeding in Minimap2 helps only with the speed of alignment and turning it off can improve

the number of reads mapped without affecting the accuracy of mapping as in Fig. 4.6. We turn

off the minimizer-based seeding in Minimap2 by using the command line parameters ‘-w 1 -k

15’ during the construction of the ‘refined index’. This is referred to as customized Minimap2 or

minimap2 custom.

In the last stage of the pipeline, we take batches of 1000 microbial read classifications from

Minimap2 to calculate the cell number abundance. We sequence until the ‘refined index’ does

not change and the estimated microbiome abundance does not deviate more than 5% on an average
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Figure 4.5: Customized Minimap2 with refined index is more accurate than Centrifuge for abun-
dance estimation.

from the previous estimation for two successive iterations. For our experiments with Zymo micro-

bial community standard, it is observed that we need to sequence until approximately 8000 target

Zymo High Molecular Weight (HMW) reads (∼1X Zymo HMW coverage). For our evaluations,

we stop pipelines 1 and 2 as soon as 8000 target Zymo reads were sequenced and identified.

Figure 4.6: (a) Customized Minimap2 with refined index has better accuracy of mapping. (b)
Customization helps us classify more reads compared to Minimap2.

4.5.2 Implementing RawMap

We trim the first 2000 raw data samples to eliminate adapter stalls and non-informative adapter-

barcode regions and then process the next 450 bases equivalent (∼6667 samples) of raw data. The

median and Median Absolute Deviation (MAD) of this raw data are then calculated. Outliers are
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filtered out as follows: only raw data within a range of 5 MAD deviations from the median are

considered for further processing. The filtered channel-scaled current values are then Median-

Median Absolute Deviation (MED-MAD) normalized by the signal pre-processor. This squiggle

segment y corresponding to 450 bases of a read is then mapped to a 3-D feature space using

a modified version of Hjorth parameters by the feature extractor. It is observed that MED and

median are robust to the outliers and hence, yield cleaner nanopore signals. The Hjorth parameters

are modified by calculating the variance from MED and MAD instead of the originally used mean

and standard deviation. We define modified Hjorth parameters as follows:

Activity = var(y)

Mobility =

√
var(y′)

var(y)

Complexity =
mob(y′)

mob(y)

where y is the normalized raw data segment corresponding to 450 bases, y’ is the first-order

difference of the signal and var is the modified variance.

Activity captures the signal power, mobility is the mean frequency and complexity is the change

in frequency. The modified Hjorth parameters help us find a localized region where the microbial

signals map to, as shown in Fig. 4.7.

RawMap uses a Support Vector Machine (SVM) with a Radial Basis Function kernel. For

pipeline 1, the SVM is trained on 6000 squiggles each of human and Zymo from a 50:50 barcoded

run with 10-fold cross-validation to capture the non-linear and non-stationary characteristics of the

nanopore squiggles. For RawMap to be tuned as a primary classifier for pipeline 2, 100K squiggles

of each Zymo and human were used to capture the high variation in current characteristics. AUC

was used as a scoring metric for model validation instead of accuracy and hyper-parameters were

tuned using grid search.
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Figure 4.7: Target(Zymo) squiggles are highly localized in the modified Hjorth space as shown in
blue. For illustration, only 1000 feature vectors each of target and non-target are shown here.

4.5.3 Configurations

For our Read Until baseline, we use the ONT recommended version of Minimap2, v2.17 for ONT

long reads and we turn minimizers off for better classification accuracy. Guppy v4.0.11 in high-

accuracy mode is used for basecalling and is invoked using ONT’s pyguppyclient server for Read

Until. Centrifuge v1.0.4 with a human and microbial nucleotide (NT) index is used as explained

under Section 4.3.3. We further add the capability to calculate cell number abundance to Min-

imap2. RawMap is evaluated using a single-threaded execution on an Intel Xeon E5-2697 x86

processor. Guppy runs on NVIDIA GeForce GTX-1080.

4.5.4 Wet-lab

All sequencing libraries were prepared using ONT’s Rapid Sequencing Kit (SQK-RAD004). We

conduct two types of experiments: barcoded and unbarcoded. In our barcoded experiments, ONT’s
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Rapid Barcoding Kit (SQK-RBK004) is used for barcoding quantified host and target separately

for ground truth abundance generation. The barcoded experiments are run with extracted human

DNA from Coriell’s NA12878 and ZymoBIOMICS High Molecular Weight DNA Mock Microbial

community (‘Zymo HMW’, cat #D6322). The non-barcoded experiment is run with HeLa human

extracted genomic DNA (New England BioLabs, cat# N4006) and ZymoBiomics Microbial Com-

munity DNA Standard (‘Zymo’, cat# D6306).

Finally, we conduct an experiment to understand how Read Until damages the flowcell. For

this, we divided a new high-quality flowcell into two equal sequencing regions: half the active

pores sequencing full-length reads and the remaining half rejecting every read at 450bp. The

pore status (control vs Read Until) is chosen in a checkerboard fashion and is fixed. The number

of active pores is normalized to the number we started with for both sets. After 6.5 hours of

sequencing, the flowcell is then washed and MUX-ed to the same set of sequencing pores as before.

Comparing the percentage of active pores that recovered in both regions would tell us the damage

caused by Read Until.

Additionally, the wet-lab protocol suggested for viral load quantification is ONT’s proposed

Sequence Independent Single Primer Amplification (SISPA) pipeline [124] for metagenomic se-

quencing. Here, full-genome amplified RNA is reverse-transcribed and sequenced as cDNA. This

protocol is independent of the viral species present and hence, universal.

4.5.5 Definitions & datasets

“Premix” refers to biologically mixing the prepared libraries of NA12878 and Zymo HMW prior

to sequencing. “Premix”-ed sequencing runs have unique barcodes for Zymo HMW and HeLa.

“Post-mix” refers to datasets sequenced independently from HeLa and Zymo and mixed digitally.

“Zymo HMW-subset” is created by using only four out of eight different Zymo HMW species for

training and the remaining four for testing.

We have 4 pre-mixed datasets (50:50: for training, 99:1:Run 1, 99:1: Run 2, and 99:1: Run 3).

The zymo-HMW subset is from Run 1. We also have 2 post-mixed datasets (50:50: for training,
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and 99:1: for testing ). We have 200K-1.4M reads in each of the datasets. Training and testing are

always performed on different datasets, training on 50:50 and testing on 99:1.

Zymo and Hela datasets sequenced in our lab are available at

DOI:https://doi.org/10.5281/zenodo.7349378. The viral load quantification study is per-

formed on 7K SARS-CoV-2 [125] and 105K human cDNA reads [126] which are already

publicly available.

4.6 Results

4.6.1 Read Until Benefits

Figure 4.8: Pipeline 1 saves ∼24% sequencing time and cost compared to the baseline Read Until
pipeline.

The two proposed pipelines offer savings in terms of sequencing and compute time with respect

to baseline Read Until pipeline. In Section 4.6.8, we show that sequencing time saved directly

translates to sequencing cost saved. Our proposed pipeline 1 yields the best sequencing time and

cost savings with respect to baseline Read Until pipeline ( ∼24% of savings) as shown in Fig. 4.8.

Pipeline 2 performs slightly worse than pipeline 1 because of RawMap’s lower classification accu-

racy compared to Guppy followed by Minimap2.

Pipeline 2 is beneficial if compute time and cost is a concern (Cloud GPU instances are ∼10%

costlier than their CPU counterparts). Pipeline 2 yields a 22% compute time savings compared to
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Figure 4.9: Pipeline 2 yields 22% compute time savings compared to the baseline and pipeline 1
because we skip the expensive basecalling step for primary filtering.

baseline and pipeline 1 (Fig. 4.9). This is because non-target human reads are filtered out from the

basecalling-aligning path by RawMap.

Figure 4.10: Higher read lengths give better sequencing time and cost savings in a 99:1 host:
microbial mix.

It is observed that we get higher Read Until benefits from longer average read lengths

(Fig. 4.10). The blue-dashed line depicts the maximum benefits attainable with a 100% accu-

rate classifier with zero latency of compute. Additionally, Read Until also yields higher benefits

when the host contamination is high i.e, when we are looking for a needle in a haystack (Fig. 4.11).
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Figure 4.11: Higher host: target ratio yields better sequencing time and cost savings for an average
read length of 8.29Kbases.

Figure 4.12: RawMap does untargeted classification as well as targeted classification.

4.6.2 Untargeted classifier

In pipeline 1, RawMap complements Minimap2 and improves overall pipeline accuracy and se-

quencing time while it improves compute time in pipeline 2. Additionally, we also evaluated

RawMap as an untargeted filter (capable of correctly detecting new microbial species RawMap is

untrained on) as shown in Fig. 4.12. Here, RawMap is freshly trained on a total of 12000 reads

from four Zymo HMW species (Pseudomonas aeruginosa, Salmonella enterica, Enterococcus fae-
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Figure 4.13: RawMap can be customized for different wet-lab protocols by retraining.

calis, and Listeria monocytogenes) and human from a 50:50 premixed barcoded sample. RawMap

is then tested on 800K reads of both human and four other Zymo HMW species (Saccharomyces

cerevisiae, Escherichia coli, Staphylococcus aureus, and Bacillus subtilis) from a new sequencing

run of 99:1 premixed barcoded sample. The confusion matrix values obtained in this case are very

close to when RawMap was trained on all 8 species (targeted classifier) of Zymo HMW and human

as shown in Fig. 4.12. Hence, RawMap can function both as a targeted and an untargeted (micro-

bial species-agnostic) classifier. This is particularly advantageous for cases where we do not know

the input constitution mix.

4.6.3 Sensitivity to Wet-lab

However, RawMap seems to be sensitive to the wet-lab protocols followed. RawMap is retrained

for a different set of wet-lab protocols (new extraction techniques and no barcodes). Without

re-training, RawMap did not perform as expected on 100K reads from 99:1 post-mixed run of

extracted HeLa and ZymoBiomics Microbial Community DNA Standard sequenced (purchased

from differently extracted sources) as shown in Fig. 4.13. This is because RawMap is trained to

capture nuances in electrical signals of the host and target and the signal: noise ratio is a function

of wet-lab protocols followed. However, as shown in Fig. 4.13, RawMap produced good results

when retrained on 12000 reads from 50:50 HeLa: Zymo non-barcoded post mixed run which used
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the same set of wet-lab protocols (differently extracted DNA and no barcodes) and tested on 200K

reads as shown in Fig. 4.13.

Figure 4.14: Pipeline 1 and baseline produce the best abundance estimate well within the tolerance
limit.

4.6.4 Abundance estimation

We also observe that pipeline 1 produces more accurate abundance estimates than pipeline 2 while

being faster than the baseline. We observe that pipeline 1 has an estimated cell number abundance

with an average deviation of 8.97% and a maximum deviation of 24.8% from Zymo HMW‘s

ground truth. This is in line with what the baseline pipeline identified as shown in Fig. 4.14. The

difference is that pipeline 1 is faster than the baseline. Pipeline 2’s result is comparatively more

erroneous because RawMap as the primary classifier consistently misses a certain fraction of reads

which are viable for abundance.
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Figure 4.15: RawMap introduces negligible overhead compared to other components in the Read
Until decision-making path for 450bp.

4.6.5 Compute efficiency

RawMap on a CPU is 1327X faster than Guppy-followed-by-Minimap2 which uses a GPU. This

stems from the fact that RawMap is a highly efficient C++ program that performs a simple set

of linear and statistical operations and hence, requires less compute compared to the deep neural

network used in Guppy. Fig. 5.7 shows the insignificant compute burden introduced by RawMap

on the baseline Read Until pipeline. This motivates the use of RawMap as the primary filter in our

proposed pipeline 2 instead of Guppy followed by Minimap2.

Figure 4.16: Pipeline 2 ROC: SVM with Radial Basis function kernel and three features yields the
best base savings compared to a linear kernel and additional features.
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4.6.6 Training

RawMap uses a Support Vector Machine (SVM) with a Radial Basis Function (RBF) kernel as it

gives the best AUC (as shown in Fig. 4.16). AUC was used as a scoring metric for model validation

and hyper-parameters were tuned using grid search. Additionally, we also tried both linear and

RBF kernels, and 11 additional features from the EEG space including Petrosian and Higuchi

fractal dimensions, Fischer information, Hurst exponent, third and fourth moments, windowed

maximum, minimum, and median (size=10), absolute change and correlation as shown in Fig. 4.16.

Figure 4.17: (a)RawMap is good at classifying SARS-CoV-2 from human. (b) ROC for human vs
SARS-CoV-2 classification.

4.6.7 Viral load quantification

We also demonstrate how pipeline 2 may be used for efficient viral (SARS-COV-2) detection and

load quantification. Since the Zymo community standard is not representative of the virus, we

re-train RawMap. RawMap is re-trained on a 50: 50 digital mix of target SARS-CoV-2 and hu-

man host cDNA (12K reads) and then tested on a digitally mixed 99:1 host: target mix (100K

reads). RawMap correctly retained ∼89% of all SARS-CoV-2 reads while filtering out ∼95%

of the human reads (Fig. 4.17). Therefore, only a small fraction of human reads are sent to the

compute-intensive step of Guppy basecalling. Minimap2 filters out the small number of additional

human reads that RawMap missed. This translates to ∼14 viral copies in the test dataset if SARS-

74



CoV-2 RNA is 30Kbp long and the average read length is 475 bases. If the volume of the wet-lab

sample is available, the number of viral copies per µl can then be estimated. This demonstrates

a pipeline for viral load quantification that is computationally less expensive, as we skip basecall-

ing and alignment. If one prefers more accurate viral load estimation, pipeline 1 may be adopted.

In the future, when a viral community standard is available, RawMap may also be re-trained to

function as an untargeted classifier for virus versus host cDNA.

4.6.8 Read Until’s effect on pore-life

Figure 4.18: Flowcell wear-out characteristics: Read Until does not clog pores any more than
normal sequencing as evident from the equal percentage of active channels recovered after wash.

We demonstrate that Read Until does not hurt the pore any more than normal sequencing does.

There is no significant difference between the active number of channels between the control and

the Read Until regions of the flowcell after washing followed by MUX-ing (at time marked with

vertical dotted black line) as shown in Fig. 4.18. The slightly higher active channels with Read

Until pores is because of some channels getting temporarily unclogged from using Read Until as

noted in prior works [78]. Therefore, using Read Until (with reduced time to answer) will let us

pack more useful work into the lifetime of a flowcell.

It should be noted that the Read Until benefits from experiments may depend on many factors
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including sample mix constitution, average read length, and capture time of the experiment. We

provide an analytical model (explained in the Supplementary section) to help estimate the savings.

4.7 Availability

The RawMap software is publicly available at: https://github.com/

harisankarsadasivan/RawMap.

4.8 Supplementary Material

4.8.1 Modeling Read Until Benefits with RawMap

Benefits from Read Until can vary based on the sample constitution, wet-lab protocols, and also on

the quality of the flowcell. However, we try to present a simplified analytical model to formulate

the benefits of Read Until. We try to understand the model parameters that matter the most. We

formulate the fraction of bases saved from sequencing with Read Until and analyze the trends in

a simple case where we only have one Read Until classifier in the pipeline – Guppy followed by

Minimap2 or RawMap. This model helps the reader to interpret the results section. Analyzing

sequencing time savings can be done in a similar fashion by including average capture times in the

formula for base savings.

4.8.2 Variables and assumptions

Zt is the number of target microbial reads to be sequenced for accurate abundance estimation. For

our model, we assume it to be 8000 based on our experimental results. f is the fraction of target

microbes in the input mix. X is the fraction of reads alignable using modified (high accuracy)

Minimap2 and is measured to be 90%. The average capture time for a strand is measured to

be two seconds. The translocation rate via a nanopore is 450 bases/s. The first 200 bases of a

read-prefix are trimmed and not used as it is non-informative. The subsequent 450 bases are used
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for Read Until classification. Factoring in the latencies for basecalling and aligning on an Intel i7-

7700K CPU, 571 bases would have translocated in the forward direction by the time a classification

decision is ready for a read. RawMap’s classification latency is negligible as shown in the results

section and adds up to just one extra base sequenced. TP is the true positive rate of RawMap -

the rate of classifying a target as a target. TN is the true negative rate of RawMap - the rate of

classifying a non-target as a non-target.

4.8.3 Modelling the baseline

The total number of reads (target and non-target) to be sequenced for accurate abundance estima-

tion can be written as:

N =
Zt

X.f

The total number of full-length reads sequenced by the baseline, Fb comes from target microbial

reads identified by Minimap2 and also the unclassified reads:

Fb = (1−X).N +X.(f.N)

The total number of partial length reads sequenced in the baseline, Pb is the number of human

reads identified by Minimap2:

Pb = X.(1− f).N

The total number of bases sequenced in the baseline, BPb is the number of bases contained in

full-length and partial-length reads :

BPb = Fb.Rl + 571.Pb
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4.8.4 Modeling pipeline 1

The total number of full-length reads sequenced with RawMap, Fr comes from target microbial

reads identified by Minimap2 and RawMap:

Fr = X.(f.N) + (1−X). {TP.(f.N) + (1− TN).(1− f).N}

The total number of partial length reads sequenced identified as non-target by Minimap2 is the

same as the baseline, Pb.

The total number of partial length reads sequenced and missed by Minimap2 but identified as

non-target by RawMap, Pr is as follows:

Pr = (1−X). {TN.(1− f).N + (1− TP ).(f.N)}

The total number of bases sequenced with RawMap added, BPr is bases contained in full-

length and partial-length reads :

BPr = Fr.Rl + 571.Pb + 572.Pr

4.8.5 Bases saved from sequencing

The percentage of bases saved from sequencing with our proposed pipeline with RawMap com-

pared to the baseline is calculated as follows:

%BPsaved = 100

(
1− BPr

BPb

)

where BPb is the number of bases sequenced in the baseline pipeline and BPr is the number of

bases sequenced in the proposed pipeline.
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CHAPTER 5

Mm2-ax: Accelerating Minimap2 for Accurate Long

Read Alignment on GPUs

5.1 Introduction: Minimap2 is slow

Amongst the many post-sequencing steps in long read processing workflows, sequence mapping

and alignment is one of the first and amongst the most time and cost consuming steps. Sequence

alignment [127] in bioinformatics is a way of arranging the primary sequences of DNA, RNA or

protein to identify regions of similarity while sequence mapping is a subset of alignment and only

finds the approximate origin of query sequence in the target. We observe that sequence mapping

and alignment is slow and users often spend costly cloud instance hours to keep up with high

throughput sequencers [8]. This problem can worsen as the focus shifts to longer reads.

Additionally, we find that General Purpose Graphics Processing Units (GPGPUs or simply

GPUs) are becoming increasingly popular for genomics processing. Several high throughput se-

quencers from Oxford Nanopore [128] (GridION and PromethION series), Thermofisher’s Ion

Proton 48 [129] and MGI’s DNBSEQ-T7 [130] have in-built GPUs. Many popular genome se-

quencing workflows also utilize GPUs for computation [131, 48, 132].

In this work, we present minimap2-accelerated (mm2-ax) which speeds up minimap2 (mm2)

on the GPU without loosing mapping accuracy and demonstrate its time and cost benefits.
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5.2 Background

5.2.1 Minimap2: A brief overview

Figure 5.1: Minimap2 operates in 3 main steps: seeding, chaining and base-level alignment. Our
optimizations to chaining are shown in blue box. Boxes with green fill show chaining sub-tasks
which we perform on the GPU instead of CPU.

Minimap2 (mm2) [133] is the state-of-the-art DNA/mRNA sequence mapper and aligner for

the most popular long read sequencing platforms like Oxford Nanopore Technologies (ONT) and

Pacific Biosciences (PacBio) [134]. While BLAST[127] (using seed-extend paradigm) remains a

powerful tool for full genome alignment, it is very slow especially on very long reads. For faster

alignments, more recent aligners[135, 136, 137, 138, 139] including mm2 filter seeds prior to the

final step of base-level alignment. mm2’s algorithm is based on the seed-chain-align paradigm

(detailed in Fig. 5.1) and has an offline pre-processing step to build index from target reference.

In the offline pre-processing step, the reference genome is indexed to a multimap using a hash

table with the popular time and space-saving k-mer samples called minimizers [140] as the key

and minimizer locations on the reference as the values.

Seeding is fast and identifies short fixed-length exact matches (minimizer seeds) between a

read and a reference sequence. When mm2 processes a sequenced read, minimizers from the read

are used to query the reference index for exact matches (anchors). These anchors are then sorted

based on position in the reference and then passed onto the next step, chaining.

Chaining takes anchors sorted based on position in the reference as the input and identifies

collinear ordered sub-sets of anchors called chains such that no anchor is used in more than one
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chain. mm2 implements chaining via 1-dimensional dynamic programming [141] where a complex

problem is recursively broken down into simpler sub-problems. In summary, chaining sub-selects

a few regions (chains) on the target reference and reduces the work for the next step of base-level

alignment.

Further, if base-level alignment is requested, a 2-dimensional dynamic programming

(Needleman-Wunsch[142] with Suzuki-Kazahara formulation [143]) is applied to extend from the

ends of chains in order to close the gaps between adjacent anchors in the chains.

mm2 is considered accurate and has multiple use cases [133]. It may be used to map long noisy

DNA/cDNA/mRNA reads, short accurate genomics reads, to find overlaps between long reads and

for aligning with respect to a full reference genome or genome assembly. It is only for full genome

or assembly alignment that mm2 proceeds from chaining to the last step of base level alignment.

For a more detailed understanding of how seeding and base-level alignment operates, one may

refer to prior literature [144, 133]. In the context of this work, we discuss chaining in-depth as it is

the bottleneck stage in mm2 we optimize.

5.2.2 Minimap2: Sequential chaining

Figure 5.2: Chaining explained. (a) In Minimap2, every current anchor (A2 (r2, q2, l2) in this
case) attempts to sequentially chain its predecessors within a pre-calculated predecessor range. If
the chaining score with a predecessor is greater than the score value stored at current anchor A2,
the new chain score and index of the predecessor is updated at A2 (in the direction of the arrow).
(b) The chain score with a predecessor is computed from anchor gap cost (evaluated as a function
of reference gap, query gap and average length of all anchors) and overlap cost.
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Chaining is the second step in mm2 and sub-selects regions on the target reference where the last

step of base-level alignment may be performed. An anchor is a short exact-match on the reference

and is a 3-tuple (coordinate on the reference sequence, coordinate on the query sequence, length of

the anchor). Chaining performs 1-dimensional dynamic programming on the input sorted anchors

(from the seeding step) to identify collinear ordered sub-sets of anchors called chains such that no

anchor is used in more than one chain. The chaining task can further be sub-divided into 4 sub-

tasks: predecessor range selection, optimal chain score generation, finding maximum score from

start and end of chains, and backtracking and primary chain identification.

Predecessor range selection is performed for every anchor in the output sorted list of anchors

from the seeding step in order to dynamically calculate the number of preceding anchors (0-5000)

to which chaining is attempted. While Guo et al. [145] chose a static predecessor range of 64 for

every anchor, mm2 does a dynamic calculation of the predecessor range by finding all predecessors

within a distance threshold.

Optimal chain score generation finds the preceding anchor within the predecessor range which

yields the maximum chain score, if it exists, for every anchor. Chain score for every pair of anchors

are derived from gap between anchors on the reference, gap between anchors on the query, overlap

between anchors and average length of anchors as shown in Fig. 5.2b (adopted from Kalikar et

al. [144] and shown here for clarity). Optimal chain score generation is the most time consuming

sub-task in chaining and is sequential within a read. For every anchor in a read, mm2 proceeds

sequentially through all the predecessors to generate chain scores and to find the optimal chain

score as shown in Fig. 5.2a. However, mm2 has a speed heuristic based on MAX SKIP parameter

which breaks out of the sequential predecessor check if a better scoring predecessor is not found

beyond a certain number of total attempts (MAX SKIP number of attempts) for any anchor. Prior

works [145, 144] have shown that removing this speed heuristic (by setting MAX SKIP to infinity

or INF) enables intra-read or more specifically intra-range parallelism (parallelizing the chain score

generation with respect to all predecessors for any given current anchor) in chaining and also

improves the mapping accuracy.
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The third sub-task identifies the maximum of scores at start and end of every chain per anchor

and is sequential for every read. Predecessor range selection, chain score generation and finding

maximum of scores at start and end of chain takes most of the time (97.42%) in chaining.

Backtracking and primary chain identification together takes only 2.58% of chaining time.

Backtracking extends every anchor repeatedly to its best predecessor and ensures no anchor is

used in more than one chain. Primary chain identification finds primary and secondary chains

based on overlaps and estimates a mapping quality for each primary chain based on an empirical

formula.

5.2.3 Minimap2 profile

Figure 5.3: Summary of approximate time spent in seed-chain-align. mm2 takes longer to map
long noisy ONT reads and spends a greater percent of total mapping time in chaining. X-axis
shows the sequencing technology with mean read length of each sets of 100K randomly sub-
sampled reads.

We profiled a single threaded CPU execution of mm2 on randomly sub-sampled 100K reads of

ONT and PacBio HiFi on an Intel Cascade Lake core and observed different profiles as previously
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noted [144]. Fig. 5.3 shows that for ONT, chaining is the bottleneck while alignment is the

bottleneck for PacBio. Further, the percentage of time spent in chaining for ONT reads longer than

100Kb is as high as ∼68%. When the workload is normalized for the number of bases aligned,

we also see that the long noisy ONT reads takes longer than PacBio HiFi on an average to align a

base.

Let us consider the randomly sub-sampled ONT dataset with 100K reads of mean read length

8.25Kb (second bar from the left in Fig. 5.3 ). This sub-set dataset is representative of the 60X

HG002 dataset with N50 as 44Kb [146] (N50 is an average read length metric used in genome

assembly). Optimal chain score generation and finding the maximum of scores at start and end

of a chain contribute to a significant part of the time spent in ONT chaining (90.9%). The other

contributors to chaining are relatively smaller: predecessor range identification (6.6% of chaining),

and backtracking and primary chain identification (2.5% of chaining).

Irregularity of workload (ONT reads vary in read lengths — a few hundred to a million bases),

memory accesses, computation, and control flow associated with mm2 makes accelerating it a

difficult task. Further, mm2 does not have any intra-read parallelism in chaining. Optimal chain

score generation and finding the maximum of scores at start and end of a chain (which contribute

to a total of 90.9% of the time in chaining) are implemented sequentially in mm2.

5.2.4 Prior Work

There have only been a few prior works [144, 145, 147, 148] which try to improve the performance

of (accelerate) mm2. Zeni et al. [147] and Feng et al. [148] accelerate the base-level alignment

step which is no longer the dominant bottleneck as reads have grown longer in length. Guo et

al. [145] and Kalikar et al. [144] remove the MAX SKIP heuristic for speed in mm2 in order to

extract intra-range parallelism and parallelizes chain score generation for each anchor (MAX SKIP

is set to INF). While Guo et al. [145] correctly identifies chaining as the bottleneck for longer

reads, introduces the concept of forward transforming the chaining algorithm and accelerates it on

GPU and Field Programmable Gate Array (FPGA), this work fails to guarantee output equivalency
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to mm2 with MAX SKIP set to INF. We find that it misaligns (produces mismatched primary

alignments) ∼7% of the reads with lengths above N50 while also failing to align ∼2% of those

reads from our ONT 60X HG002 dataset. This decrease in mapping accuracy is mainly because

Guo et al. follows a static predecessor range selection unlike the dynamic selection in mm2 and

also because the chaining score update rules are not modified accordingly with the transform.

mm2-fast [144] is the most recent prior work in accelerating mm2 and accelerates all three

steps in mm2 utilizing Single Instruction Multiple Data (SIMD processes multiple data with a

single instruction) CPUs. While mm2-fast parallelizes chain score generation, we identify certain

sections of chaining which are not parallelized. We profiled mm2-fast on the 100K sub-sampled

reads from ONT and find that 34.08% of the total time spent in doing chain score generation and

finding the maximum of scores at start and end of chains is in sequential code and not parallelized.

mm2-fast does not use SIMD lanes when predecessor range is less than or equal to 5, for finding

maximum predecessor score index and finding maximum of scores at start and end of chains for

every anchor. This motivates the need for a better parallelization scheme.

5.2.5 Our contributions

In this work, we optimized the dominant bottleneck of mm2 in processing long noisy reads, chain-

ing, on the GPU without compromising accuracy. We show mm2-ax has better speedup and

speedup : costup compared to mm2-fast, a SIMD-vectorized version of Minimap2 on 30 Intel

Cascade Lake cores. As discussed, mm2 presents a difficult task to parallelize with sequential

chaining step and irregular workloads, memory accesses, computation, and control flow. Prior ef-

forts at accelerating chaining either produces alignments significantly deviant from mm2 [145] or

still does some amount of sequential execution within chaining and can benefit from a better paral-

lelization scheme [144]. Hence, we attempted to better utilize the inherent parallelism in chaining

without compromising accuracy on GPUs which are becoming increasingly popular for genomics

workflows. To this end, we forward transform the predecessor range calculation to successor range

calculation so as not to lose mapping accuracy and also forward transform the optimal chain score
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generation to introduce intra-range parallelism. Forward transformed chaining eliminates the need

to sequentially find the maximum of all chain scores from all the SIMD lanes and instead enables

better utilization of Single Instruction Multi-Threaded (SIMT is similar to SIMD but on a GPU)

parallelization scheme on a GPU. Additionally, we also benefit from inter-read parallelism by con-

currently processing multiple reads on the large number of Streaming Multiprocessors (SMs) on

the GPU.

We designed a heterogeneous system where the bottleneck step, chaining, is sped up on the

GPU while seeding and base-level alignment happens on the CPU. We exploit the low memory

footprint of mm2 and trade-off memory for performance via better occupancy of the GPU resources

by the highly irregular workload in mm2 chaining. Minimal branch divergence, coalesced global

memory accesses and better spatial data locality are some of the optimizations.

We compare our accelerated minimap2 (mm2-ax) on GPU to SIMD-vectorized mm2-fast on

CPU. Our evaluation metrics include accuracy, speedup, and speedup : costup. We show that mm2-

ax produces 100% identical alignments to mm2-fast (same accuracy as mm2 with MAX SKIP set

to INF) and delivers 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup with respect to

mm2-fast on ONT 60X HG002 dataset.
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5.3 Methods

5.3.1 Parallelizing chaining: forward loop transformation

Figure 5.4: Forward transforming predecessor range selection to successor range selection: The
cell with solid black outline represents the current anchor for which predecessor/successor range
calculation is performed. The arrow starts from the predecessor/successor and points to the current
anchor A3 whose range is updated sequentially.

Figure 5.5: Parallelizing Minimap2’s chain score generation (shown in a) by forward transforma-
tion (shown in b). Additionally, we retain mapping accuracy by modifying the score comparison
check (> to >=) with all anchors except the immediate neighbor to enable farther anchors to take
precedence over neighboring anchors to be forward chained.

Chaining in mm2 identifies optimal collinear ordered subsets of anchors from the input sorted list

of anchors. mm2 does a sequential pass over all the predecessors and does sequential score compar-

isons to identify the best scoring predecessor for every anchor. The exact chaining algorithm used

in mm2 is not parallelizable and hence, mm2 is only able to utilize inter-read parallelism. Prior

works [144, 145] have shown that removing the speed heuristic in chaining by setting MAX SKIP

to INF enables intra-range parallelism (parallel chain score generation for all predecessors for any
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given anchor, i.e, parallelizing the inner for loop in Algorithm 2) and improves mapping accuracy.

However, the total amount of work to be performed per anchor increases. We apply the same

configuration in mm2-ax.

We find that ∼34% of the run time in mm2-fast’s optimal chain score generation and finding

maximum of scores at start and end of all chains is spent sequentially. Chain score generation

when the predecessor range is lesser than or equal to 5, finding maximum chaining score from

among the 16 vector lanes and finding maximum of scores at start and end of all chains are all

performed sequentially. In order to make better use of intra-range parallelism in chaining, we for-

ward transform predecessor range selection (Fig. 5.4) and optimal chain score generation (Fig. 5.5

and Algorithm 2). This saves us the sequential passes which mm2-fast does to find the maximum

chaining score.

In this context, forward transformation refers to changing the order of computation to parallely

evaluate successor anchors instead of iterating through predecessor anchors. This enables us to

perform chain score generation and update in parallel as shown in Fig. 5.5. Although the forward

transformation of optimal chain score generation is first introduced by Guo et al. [145], in order

to retain mapping accuracy, we implement two novel modifications. First, we calculate dynamic

successor range instead of a static range of 64 for every anchor prior to chaining. We efficiently

implement the successor range calculation with few iterations based on insights from cumulative

distribution function of predecessor ranges for all anchors (discussed later in Fig. 5.6b). Secondly,

the chain score update policy is modified from > to ≥ (except for the immediately neighboring

anchor) for the forward traversal as shown in Fig. 5.5b. This ensures that farther anchors get

precedence over nearer ones for forward chaining.
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Algorithm 2 Forward transformed chaining in mm2-ax

Input: L : {a1, a2, ..., an} - List of anchors sorted according to the reference positions

Output: S, P: Maximal chaining score for each anchor in L and their optimal predecessor’s in-

dices; V: maximum of scores at start and end of chain for every anchor.

1: for i← 1 to n step: 1 do

2: end← i + 5000

3: while delta in {0, 16, 512, 1024, 2048, 3072, 4096, 5000} do ▷ Speed heuristic to select

range

4: if reference gap ( ai, ai+delta) is too large then

5: end← i + delta

6: break

7: while reference gap ( ai, aend) is too large do ▷ Dynamic successor range selection

8: end← end - 1

9: for j← i+1 to end step: 1 do

10: if query gap ( ai, aend) is too large or negative then

11: continue

12: sj ← S[i] + ai.l - ( gap cost(i,j)+overlap(i,j) )

13: if sj >= S[j] and ! ( sj == S[j] and S[j] == aj .l ) then ▷ Find better successor to

chain

14: S[j]← sj

15: P[j]← i

16: if P[i] >= 0 and V[P[i]] > S[i] then ▷ Find maximum of scores at start and end of chain

17: V[i]← V[P[i]]

18: else

19: V[i]← S[i]
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5.3.2 Heterogeneous system design

mm2-ax is a heterogeneous design (uses specialized compute cores, GPUs in this case) which

performs seeding and successor range identification on the CPU and efficiently implements optimal

chain score generation and finding maximum of scores at start and end of chain on the GPU. The

output scores and optimal successor index arrays from chaining are returned to the host CPU

for backtracking. From mm2’s profile in Fig. 5.3, optimal chain score generation and finding

maximum of scores at start and end of chain contribute 90.6% of chaining time and is accelerated

on the GPU. Seeding, successor range identification or forward transformed predecessor range

identification (6.6% of chaining), backtracking and primary chain identification (2.5% of chaining)

and base-level alignment are performed on the CPU.

Further, the heterogeneous design also helps us better balance the workload and reduce resource

idling on the GPU, as discussed in below sections.

5.3.3 GPU occupancy: Condensed workload vector and workload balancing

We find that ∼67% of the input anchors do not start a chain and this contributes to the sparsity of

the successor range vector which is to be input to optimal chain score generation. In order to better

occupy the GPU resources with the irregular workload, we perform successor range identification

(steps 3-8 in Algorithm 2) on the CPU to convert this sparse input vector of successor ranges

which defines the workload in chain core generation, into a condensed one with non-zero successor

ranges. This incurs a GPU and host memory trade-off for better performance by ensuring GPU

threads do not idle on anchors with a successor range of zero. Further, the compute overhead on

the host CPU from successor range identification is minimized by implementing a speed heuristic

(steps 3-6 in Algorithm 2) to reduce the number of iterations in identifying the successor range for

every anchor. This is based on the observation that ∼67% of the anchors on an average have a

predecessor/successor range of zero and ∼93% have a range lesser than or equal to 16.

Further, we also implement a series of additional measures to ensure better GPU occupancy,

as we realize that this is one of the most important problems [56] while dealing with ONT reads
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of variable lengths and predecessor ranges. To ensure GPU occupancy from workload balancing,

we bin and batch reads of similar lengths together onto the GPU. For example, reads of length

2Kb-3Kb, 3Kb-4Kb and 4Kb-5Kb are binned together. For smaller read lengths (<= 10Kbp),

we define each concurrently launched workload at a coarser grain, i.e, as many reads as it takes

to concurrently occupy all the SMs on the GPU. For longer reads, we observe that this does not

yield the optimal performance because long reads present a case of highly imbalanced workloads

as reads are more variable in length and any SM which may finish early remains unused. For

example, in 50-150Kb range, reads are highly varying in read lengths, and it is difficult to find

multiple reads within 1Kb variance in lengths. Hence, for longer reads we keep bin ranges wider:

45-50Kb, 50-100Kb and 100-150Kb. For longer reads, we follow a two-fold strategy for higher

GPU occupancy. First, we define fine-grained workloads, i.e, with only as many reads as it takes

to occupy an entire SM. Second, we always follow up very-long read bin workloads with fine-

grained workloads of shorter read lengths (2Kb). This twofold strategy helps better balance highly

imbalanced workloads of very long reads.

For better GPU occupancy, we also launch multiple concurrent GPU kernels (functions) using

CUDA streams (GPU work queues). As soon as a hardware resource gets free on the GPU, the

scheduler executes the next kernel. Additionally, each Streaming Multiprocessor (SM) concur-

rently processes multiple reads.

Data transfer between the CPU and GPU are overlapped with compute on the GPU by issuing

asynchronous memory copies on CUDA streams. We also benefit from the higher bandwidth of

HBM2 and the eight copy engines on A100.

5.3.4 Inter-read and intra-range parallelism

A server-class GPU like NVIDIA A100 has 108 SMs. The key to high performance on the GPU is

to ensure that all the SMs always have useful work to do and there are sufficient Single Instruction

Multi-Threaded (SIMT) warps/sub-warps (groups of threads) concurrently on the GPU to hide the

relatively higher global memory access latencies (i.e, ensure higher warp occupancy). While we
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utilize only inter-read parallelism (concurrently processing multiple reads per SM) for finding the

maximum of scores at start and end of chain, we utilize both inter-read and intra-range parallelism

(via forward transformation) for the optimal chain score generation. Intra-range parallelism comes

from concurrent warps (sets of 32 parallel threads) performing chain score generation in parallel

for all successors within the successor range of a given anchor.

The next anchor attempts to chain only after it’s previous anchor’s optimal chain score gener-

ation step is completed. To this end, we have a thread synchronization barrier ( syncthread() )

waiting on all the threads to finish chain score generation and update for all the successors of a

given anchor. Please note that Guo et al.[145] uses more synchronization barriers (six of them) in

the chain score generation kernel. However, we only need one as we reduce the number of points

of branch divergence by combining multiple condition checks together.

5.3.5 Data locality

We observe optimal benefits from optimizing for better spatial data locality rather than temporal

locality. Temporal cache locality refers to re-use of data in cache, while spatial cache locality

refers to use of data from adjacent storage locations. For example, we pre-fetch data for a group

of successors per current anchor in each concurrently processed read into L1 cache for better

performance from improved spatial data locality. We use the PTX instruction prefetch global l1

to prefetch the successor anchor’s inputs (query and reference coordinates) and chaining output

(score and parent values) from global memory to L1 cache in a coalesced fashion for every set of

32 successors per anchor.

While Guo et al. [145] attempted to exploit temporal locality from using shared memory

(memory shared between parallel threads of a read ) with a static successor range, this approach

does not prove beneficial with a dynamic successor range because of limited scope for any benefits

from temporal data locality. Frequent cache misses due to different successor ranges lead to data

transfer latency from shared memory to registers, adding up to outweighing any benefit from using

shared memory at all. We therefore use more registers per GPU thread instead of utilizing shared
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memory.

We also coalesce global memory reads and writes for successor anchors to reduce the total

number of transactions to high-latency global memory.

5.3.6 Minimal branch divergence

Conditional branches are kept to a minimum in our implementation by combining conditions when

successors are not updated after score generation. This helps reduce branch divergence, which

affects performance on the GPU. There are only two conditional blocks for every read that is

processed within the chain score generation kernel (one for score generation and the other for

update, as seen in Algorithm 2). On the other hand, Guo et al.[145] has nine conditional blocks

evaluated per read.

Further, we utilize CUDA’s warp-synchronized integer intrinsics to efficiently perform opera-

tions like logarithm and absolute differences. clz() lets us efficiently calculate logarithm during

the chain score generation step from counting the leading zeros and subtracting this count from the

number of bits in int32 datatype (32). sad() enables us to efficiently compute the overlap cost

from the absolute difference of query gap and reference gap (shown in Fig. 5.2b).

5.4 Implementation

5.4.1 Experimental Setup

Minimap2 (mm2) is a fast evolving software with 7 new releases on the master branch and 2 new

branches incorporating mm2-fast in the year 2021 alone. We decided to accelerate Minimap2

v2.17 which is used in Oxford Nanopore’s variant calling pipeline with Medaka [48]. Kalikar et

al. [144] has accelerated Minimap2 versions v2.18 and v2.22. mm2 v2.18 and v2.17 produce

equivalent results in chaining and are, hence, comparable.

We demonstrate the benefits of our chaining optimizations on a server class NVIDIA A100
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GPU. Our evaluations are performed on Google Cloud Platform (GCP). Speedup is normalized

to a costup factor to evaluate a speedup : costup metric in order to take into account the usually

higher GPU costs on the cloud. Our costup factor on GCP is 1.33X, but this would be lower if

one were to use Amazon Web Services (AWS). mm2-ax is evaluated on a single GCP instance of

a2- highgpu-1g with 85GB of host memory and one NVIDIA A100 GPU of 40GB memory. We

compare mm2-ax to the SIMD accelerated mm2-fast (fast-contrib branch of mm2) on a single GCP

c2-standard-60 instance (30 AVX-512 vectorized Intel Cascade Lake cores and 240GB memory).

We use NVIDIA Nsight Compute [93] for profiling GPU events and Nsight Systems [92] for

visualization of concurrent GPU events. Seqtk [149] is used for random sub-sampling of DNA

sequences. We used Perf [150] for profiling mm2 on the CPU.

To ensure better GPU resource utilization with nanopore reads of varying length (few hundred

to a million bases), we bin reads based on read lengths before batching their sorted anchors onto

the GPU for chaining. For example, reads of length 1-2 Kilobases (Kb) go to the same bin, reads

of length 2-3Kb go to the same bin etc. However, for longer read lengths, we bin 50K-100K,

100K-150K etc. because it is relatively harder to find reads closer in read lengths.

The reads within a bin could still present an unbalanced workload as the predecessor ranges

of every anchor is different. This binning may be done very efficiently during basecalling as the

basecaller has access to read lengths, and hence the overhead introduced is negligible. We also try

to fit in as many reads as possible on to the GPU’s DRAM for every read bin. We measure the

compute time for optimal chain score generation and sub-task to find maximum of scores at start

and end of chain on the GPU and compare it to that of the SIMD baseline to evaluate SpeedUp

metric (compute time taken by CPU baseline mm2-fast divided by time taken by mm2-ax on GPU).

We then divide this with 1.33X to normalize for cost and calculate the speedup : costup metric.

The overhead presented by successor range selection over predecessor range selection on the host

CPU is very negligible ( < 2.8% of total CPU time) and is, hence, not considered for our analysis.

Further, it is worthwhile to note that successor range identification can outperform predecessor

range identification using SIMD vectorization on the host CPU as our forward transform essentially
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makes successor range identification parallelizable.

Further, we also evaluate mapping accuracy of mm2-ax vs mm2-fast (or mm2 with MAX SKIP

set to INF). Mapping accuracy is defined as the number of reads from mm2-ax producing bit-exact

chains to mm2-fast. If any of the 12 fields in mm2-ax’s Pairwise Alignment Format (PAF) format-

ted output differs from that of mm2’s in the primary alignments, we treat the read as misaligned.

The datasets we use are publicly available [151, 152, 153, 154] — HG002 genome sequenced by

ONT PromethION with 60X coverage and 15Kb and 20Kb PacBio HiFi reads with 34X coverage.

5.4.2 Optimal GPU configurations

Of the two chaining sub-tasks offloaded to the GPU, chain score generation takes approximately

greater than 95% of the time on the GPU. Hence, we discuss how we performed design-space

exploration to identify the optimal GPU kernel launch parameters for this sub-task. Kernel launch

parameters refer to a predefined configuration with which a kernel or function may be executed on

the GPU. In this context, we can define the chain score generation kernel launch parameters as a

3-tuple (thread blocks per SM, number of concurrent reads processed per block in an SM , number

of parallel threads per read). In this context, thread blocks are groups of parallel threads within an

SM which may or may not be processing the same read.

We find the register requirement per thread on an NVIDIA A100 GPU to figure out the achiev-

able upper bound of GPU kernel launch parameters on the A100 GPU. Using NVIDIA’s Nsight

Compute Profiler, we profiled mm2-ax and observed that we require 53 registers per thread for

the optimal chain score generation kernel, and this observation helps provide an upper bound on

the maximum number of parallel threads that can be launched on the SM in our case. From Fig.

5.6b, one may try to fit more concurrent reads with 16 or 32 threads per read, but it is observed

that this configuration hurts spatial cache locality across reads and is hence, not beneficial. The

optimal configuration is observed to be in the direction of higher concurrent reads per SM instead

of per thread bock and towards more threads allocated per read for chaining. This is because hav-

ing more threads per read enables better spatial data locality in L1 cache through larger coalesced

95



global memory accesses. We find that (9 thread blocks per SM, 1 concurrent read per thread block,

128 parallel threads per read) is the best performing kernel configuration. This is followed by (3,

3, 128) and (1, 4, 256).

Figure 5.6: Workload is sparse and irregular. (a) ∼67% of anchors fed to the chaining step do not
start a chain. (b) Predecessor range is less than or equal to 16 for ∼92% of all anchors and goes as
high as 5000 only for a small fraction of total anchors.

From Fig. 5.6a, we observe that ∼67% of anchors fed to the chaining step do not start a

chain. This observation helps us to ensure better arithmetic intensity (more computations per byte

of data fetched from high latency global memory). In this regard, we perform successor range

identification on the host CPU and condense the sparse vector of successor ranges to a dense one

with non-zero successor range before offloading the chain score generation sub-task to the GPU.

Further, Fig. 5.6b informed us to efficiently implement successor range identification. 67% of the

anchors have predecessor ranges equal to zero, and greater than 92% have predecessor ranges less

than or equal to 16. We use this information to efficiently implement successor range selection by

reducing the number of total iterations.

We did a design space exploration to identify the granularity of dispatching work to the GPU for

optimal performance. While concurrently dispatching coarse grained workloads (each workload is

defined with as many reads as it takes to fill all the 108 SMs on A100) yielded the best results for

reads smaller than or equal in length to 10Kb, coarse grained workloads do not work well for longer

reads as any SM that finishes early may idle. Concurrently dispatching fine-grained workloads
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(each workload is sized with as many as reads as it takes to fill only a single SM) yielded the best

performance for reads longer than 10Kb. Concurrent fine-grained dispatches with each workload

sized to fill 2 and 4 SMs closely competes but gives slightly lower benefits. Additionally, a fine-

grained workload for longer reads is always followed by fine-grained workload of smaller reads

(we choose 2Kb) to yield a better performance. This is because multiple fine-grained workloads

of smaller reads can better load balance without adding a significant tail to the critical path.

5.5 Results

mm2-ax demonstrates a 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over SIMD-

vectorized mm2-fast baseline as shown in Fig. 5.7a. It is observed that coarse-grained load dis-

patching to the GPU is better for read lengths smaller than 10Kb while fine-grained load dispatch-

ing to each SM is better for longer reads. In Fig.5.7b we show the chaining performance gain

factor without including the data transfer related costs (memory allocation, asynchronous memory

copies on CUDA streams and data serialization).

Figure 5.7: (a) mm2-ax yields 5.41 - 2.57X speedup and 4.07 - 1.93X speedup : costup over
SIMD-vectorized mm2-fast baseline. (b) The chaining performance across various read lengths
may be further improved by ∼1.3-2.3X if we can engineer to hide the data transfer related costs.

Additionally, we also evaluate the mapping accuracy of mm2-ax with respect to mm2-fast on
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the complete 60X HG002 ONT dataset and we observe that all the output chains match in all the

first 12 fields of the output Paiwise Mapping Format (PAF) file. As mm2-ax is limited by the

DRAM capacity of the GPU, we use minimap2 modified with our forward transformed chaining

logic on the CPU to evaluate accuracy on the very large 60X HG002 dataset. We then compare and

validate the output PAF file to the outputs of both mm2-fast and mm2 modified with MAX SKIP

set to INFINITY.

5.6 Discussion

Figure 5.8: mm2-ax is memory bound. (a)Roofline Plot: Chain score generation is memory bound.
Operating point is shown in a red cross mark. (b) Theoretical warp occupancy on the GPU is
bounded by the number of registers used by each thread.

We only discuss the profile of the most time-consuming kernel of mm2-ax on the GPU, optimal

chain score generation. Here we present the profile of optimal chain score generation kernel on

the 2Kb bin of reads. From Fig. 5.8a, we see that the chain score generation kernel on the GPU is

memory bound. Unless we increase the arithmetic intensity of the kernel, we cannot transform it

to a compute bound kernel. From Fig. 5.8b, we observe that high register usage per thread limits

the theoretical number of active warps per SM on the GPU. The higher the warp occupancy, the

better the kernel is in hiding the relatively longer global memory access latency on the GPU. The

achieved number of active warps per SM is 12 (33% of the theoretical maximum). One way to

ensure there are enough warps on the SM is by integrating asynchronous FIFOs at the input and

output of chaining to better manage input and output out of the GPU. One may also try to better

hide the data transfer related costs to gain further improve in performance.
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Further, it may be noted that one may further improve performance by making the range of

read lengths that go into a bin even smaller. In our case, the HG002 dataset presented reads in

50-150Kb range to be highly varying in read lengths and hence, we defined long read bins with

higher variance in read lengths. It is also worthwhile to consider porting the entire mm2 software

to the GPU as most long read sequencing workflows are now shifting to GPUs.

5.7 Availability

mm2-ax is currently closed-source. However, a docker image is publicly available to test the

software: https://github.com/hsadasivan/mm2-ax.
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CHAPTER 6

Portable Microbial Diagnostics

We envision a future where clinics and homes are equipped with MinIONs that may be connected

to a laptop for portable microbial diagnostics. With the portable VolTRAX, the wetlab preparation

is soon to be accessible to the common man. On the laptop, we hope to see DTWax being used for

targeted pathogen detection, and RawMap for untargeted classification and microbiome abundance

estimation. mm2-ax will perform mapping and alignment.

On the laptop, the CPU cores can be utilized for untargeted microbial classification using

RaMap. The GPU can be utilized for real-time Read Until using DTWax and offline steps like

basecalling and variant calling. It is possible that mm2-ax may be developed further to run all the

stages of Minimap2 on the GPU.

We strongly believe a laptop is the ideal portable client device for a future MinION due to

several reasons. Firstly, it might be challenging to have a custom SquiggleFilter chip on every

MinION because of its limited on-chip memory and the rapid improvements in ONT’s sequencing

technology and algorithms. Further, the high amount of data parallelism in the sequencing output

and algorithms suggests a strong case for using GPUs. However, we estimate that not even a

superior edge platform like the NVIDIA Jetson Orin AGX has the necessary compute power to

keep up with a future MinION sequencer (Orin AGX’s GPU offers ∼7X lower throughput than

A100) to perform Read Until. From our measurements, we note that an NVIDIA RTX 3080

Ampere GPU is well-equipped to handle the throughput of a future MinION. RTX 3080 is only

∼1.65X slower than an A100 for mm2-ax and DTWax. This will only improve as NVIDIA ushers
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in the latest generation of GPUs with the DPX instruction set for dynamic programming. RawMap,

on the other hand, is a lightweight software and can utilize the CPU cores to match the future

MinION’s sequencing throughput.

Additionally, it is also possible that the MinKNOW software can upload the results to a prompt-

based AI software that can keep track of patient history, make diagnostics and answer any questions

the patient may have.
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CHAPTER 7

Conclusion

The MinION is a handheld DNA sequencer increasingly used in Precision Medicine applications

but lacks onboard computing, limiting its portability. This thesis introduces two clinical applica-

tions of the MinION and identifies and solves performance bottlenecks through hardware-software

solutions to enable portable microbial diagnostics. Finally, we discuss how our accelerated solu-

tions will fit on a laptop with a GPU.

More than 99% of DNA reads in a typical human sample are non-target (human), which may

be skipped in real-time using MinION’s Read Until feature. This thesis analyzes the performance

of the Read Until pipeline in detecting target microbial species for two different applications–

viral pathogen detection and human microbiome abundance estimation. We find new sources of

performance bottlenecks that are not addressed by past genomics accelerators.

SquiggleFilter (ASIC-based) and DTWax (GPU based) are our programmable solutions to tar-

geted pathogen detection. RawMap is a smart and efficient species-agnostic (untargeted) classifier

on the CPU for human microbiome abundance estimation. We also discuss mm2-ax which accel-

erates the bottleneck stage in Minimap2 software used in all MinION sequencing workflows.

In designing a universal virus detector, we identify the basecaller as a significant bottleneck

in filtering non-target reads. This compute problem is only going to get worse, as the through-

put of nanopore sequencers is expected to increase by 10-100× in the near future. We address

this problem using hardware-accelerated SquiggleFilter for filtering non-target reads without base-

calling them. SquiggleFilter is programmable and portable. We show that our 14.3W 13.25mm2
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accelerator has 274× greater throughput and 3481× lower latency than existing approaches while

consuming half the power, enabling Read Until for the next generation of nanopore sequencers.

SquiggleFilter’s programmability is limited by the size of the on-chip memory. We adapt

SquiggleFilter’s underlying subsequence Dynamic Time Warping (sDTW) algorithm to the more

easily programmable and scalable GPUs. To make sDTW performant on the GPU, we do offline

pre-processing of target reference to ensure coalesced loads from global memory, reduce branch

divergence, and utilize FP16 vectorization and tensor core pipes. Further, we use warp-shuffles

for efficient intra-sub-matrix communication and shared memory for low-latency inter-sub-matrix

communication. Further, we assume no reference deletions to improve both the throughput and

F1-score. We show that DTWax on an NVIDIA A100 GPU achieves ∼1.92X sequencing speedup

and ∼3.64X compute speedup: costup over a sequencing workflow that does not use Read Until.

sDTW-based techniques are not fast enough to classify multiple large target bacterial species.

RawMap is a smarter and more efficient CPU-only microbial species-agnostic squiggle-space Read

Until classifier that is developed as a “plug-and-play” solution to complement the baseline Read

Until pipeline. We perform feature engineering to extract non-linear non-stationery characteristics

out of ONT squiggles and learn the differences between human and microbe using a Support Vector

Machine.

RawMap is 1327X faster than the state-of-the-art solution and improves the sequencing time

and cost, and compute time savings from using Read Until. We demonstrate two different pipelines

to optimally utilize RawMap. RawMap as a secondary filter (pipeline 1) yields ∼24% sequencing

time and cost savings whereas RawMap as a primary filter (pipeline 2) yields ∼22% compute

time savings compared to the baseline Read Until pipeline. We also show that RawMap can serve

as an untargeted filter (classify unseen species) with nearly the same accuracy. Additionally, we

also present how RawMap may be utilized instead of RT-PCR tests for viral load quantification of

SARS-CoV-2.

Minimap2 is the state-of-the-art aligner used in all MinION workflows. We identify chain-

ing as the bottleneck step that constitutes up to ∼67% of the total alignment time. We address
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this problem with mm2-ax (minimap2-accelerated), a heterogeneous design for accelerating the

chaining step of minimap2 with bit exact output. We implement various optimizations to ensure

better occupancy and workload balancing on the GPU. Some key optimizations include forward

transformed chaining for better intra-read parallelism, workload condensing, trading-off host and

GPU memory for better performance on the GPU, better spatial data locality, and minimal branch

divergence. We show mm2-ax on an NVIDIA A100 GPU improves the chaining step with 5.41 -

2.57X speedup and 4.07 – 1.93X speedup: costup over the fastest version of minimap2, mm2-fast,

benchmarked on a single Google Cloud Platform instance of 30 AVX-512 vectorized cores (Intel

Cascade Lake).

Finally, we discuss how all these solutions can fit onto a laptop with a GPU such as an RTX

3080. The GPU can be utilized for real-time Read Until using DTWax and also for offline steps

like basecalling and variant calling. It is possible that mm2-ax may be developed further to run

all the stages of Minimap2 on the GPU. The CPU cores can be utilized for untargeted microbial

classification using RaMap.
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[122] K. Kupková, “Alignment-free visualization of metagenomic data by genomic signal pro-
cessing,” Complexity, vol. 100, p. 3, 2014.

[123] K. Kupkova, K. Sedlar, and I. Provaznik, “Reference-free identification of phage dna us-
ing signal processing on nanopore data,” in 2017 IEEE 17th International Conference on
Bioinformatics and Bioengineering (BIBE), pp. 101–105, IEEE, 2017.

[124] ONT, “Metagenomic analysis of SARS-CoV-2 respiratory samples via Sequence-
Independent Single Primer Amplification (SISPA) and nanopore sequencing,” 2020.

[125] N. R. Faria, “First cases of coronavirus disease (COVID-19) in Brazil, South America,”
2020.

[126] D. Kim, J.-Y. Lee, J.-S. Yang, J. W. Kim, V. N. Kim, and H. Chang, “The architecture of
sars-cov-2 transcriptome,” Cell, 2020.

113



[127] S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, “Basic local alignment
search tool,” Journal of molecular biology, vol. 215, no. 3, pp. 403–410, 1990.

[128] “ONT products.” Oxford Nanopore Technologies https://nanoporetech.com/
products, Mar 2022.

[129] “Ion proton™ sequencer specifications: Thermo fisher scientific - US.” Ion Pro-
ton https://www.thermofisher.com/us/en/home/life-science/
sequencing/next-generation-sequencing/ion-torrent-next-
generation-sequencing-workflow/ion-torrent-next-generation-
sequencing-run-sequence/ion-proton-system-for-next-
generation-sequencing/ion-proton-system-specifications.html.

[130] “DNBSEQ-T7: High-speed,high flexibility and ultra-high throughput sequencer-mgi-
leading life science innovation.” MGI https://en.mgi-tech.com/products/
instruments info/5/s.

[131] K. Shafin, T. Pesout, P.-C. Chang, M. Nattestad, A. Kolesnikov, S. Goel, G. Baid, M. Kol-
mogorov, J. M. Eizenga, K. H. Miga, et al., “Haplotype-aware variant calling with pepper-
margin-deepvariant enables high accuracy in nanopore long-reads,” Nature methods, vol. 18,
no. 11, pp. 1322–1332, 2021.

[132] “GPU applications: High performance computing.” NVIDIA https://
www.nvidia.com/en-us/gpu-accelerated-applications/.

[133] H. Li, “Minimap2: pairwise alignment for nucleotide sequences,” Bioinformatics, vol. 34,
no. 18, pp. 3094–3100, 2018.

[134] “Sequence with confidence.” PacBio https://www.pacb.com/, Mar 2022.

[135] H. Li, “Aligning sequence reads, clone sequences and assembly contigs with bwa-mem,”
Arxiv, 2013. Preprint at https://doi.org/10.48550/arXiv.1303.3997.

[136] B. Langmead and S. L. Salzberg, “Fast gapped-read alignment with bowtie 2,” Nature meth-
ods, vol. 9, no. 4, pp. 357–359, 2012.

[137] S. M. Kiełbasa, R. Wan, K. Sato, P. Horton, and M. C. Frith, “Adaptive seeds tame genomic
sequence comparison,” Genome research, vol. 21, no. 3, pp. 487–493, 2011.
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and K. Yelick, “Logan: High-performance gpu-based x-drop long-read alignment,” in 2020
IEEE International Parallel and Distributed Processing Symposium (IPDPS), pp. 462–471,
IEEE, 2020.

[148] Z. Feng, S. Qiu, L. Wang, and Q. Luo, “Accelerating long read alignment on three proces-
sors,” in Proceedings of the 48th International Conference on Parallel Processing, pp. 1–10,
2019.

[149] H. Li, “seqtk toolkit for processing sequences in fasta/q formats,” GitHub, vol. 767, p. 69,
2012.

[150] Torvalds, “Linux/tools/perf at master · torvalds/linux.” Github https://github.com/
torvalds/linux/tree/master/tools/perf.

[151] H. P. R. Consortium, “HG002 data freeze (v1.0) ONT 60x cov-
erage reads.” AWS https://s3-us-west-2.amazonaws.com/
human-pangenomics/index.html?prefix=NHGRI UCSC panel/
HG002/hpp HG002 NA24385 son v1/nanopore/downsampled/
standard unsheared/.

[152] H. P. R. Consortium, “HG002 data freeze (v1.0) PacBio HiFi 15Kb reads.”
AWS https://s3-us-west-2.amazonaws.com/human-pangenomics/
NHGRI UCSC panel/HG002/hpp HG002 NA24385 son v1/PacBio HiFi/
15kb/m64012 190920 173625.Q20.fastq.

115

https://github.com/torvalds/linux/tree/master/tools/perf 
https://github.com/torvalds/linux/tree/master/tools/perf 
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/
https://s3-us-west-2.amazonaws.com/human-pangenomics/index.html?prefix=NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/nanopore/downsampled/standard_unsheared/
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/15kb/m64012_190920_173625.Q20.fastq
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/15kb/m64012_190920_173625.Q20.fastq
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/15kb/m64012_190920_173625.Q20.fastq


[153] H. P. R. Consortium, “HG002 data freeze (v1.0) PacBio HiFi 20Kb reads.”
AWS https://s3-us-west-2.amazonaws.com/human-pangenomics/
NHGRI UCSC panel/HG002/hpp HG002 NA24385 son v1/PacBio HiFi/
20kb/m64011 190830 220126.Q20.fastq.

[154] K. Shafin, T. Pesout, R. Lorig-Roach, M. Haukness, H. E. Olsen, C. Bosworth, J. Armstrong,
K. Tigyi, N. Maurer, S. Koren, et al., “Nanopore sequencing and the shasta toolkit enable
efficient de novo assembly of eleven human genomes,” Nature biotechnology, vol. 38, no. 9,
pp. 1044–1053, 2020.

116

https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/20kb/m64011_190830_220126.Q20.fastq
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/20kb/m64011_190830_220126.Q20.fastq
https://s3-us-west-2.amazonaws.com/human-pangenomics/NHGRI_UCSC_panel/HG002/hpp_HG002_NA24385_son_v1/PacBio_HiFi/20kb/m64011_190830_220126.Q20.fastq

	Dedication
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	Abstract
	Introduction
	Long read sequencing
	Oxford Nanopore Technology's MinION sequencer
	Motivation and Organization

	SquiggleFilter: An Accelerator for Portable Virus Detection
	Introduction: Virus Detection for Pandemic Preparedness
	Background: State-of-the-art Virus Detectors
	Need for a Virus Detector
	State-of-the-art Virus Detectors
	Insufficient Compute Power for Read Until

	Compute Bottlenecks in Portable Virus Detection
	Bioinformatics Pipeline
	Performance Bottlenecks

	SquiggleFilter: A Squiggle-level Targeted Filter using Dynamic Time Warping
	Constructing the Reference Squiggle
	Normalizing Query Squiggles
	Subsequence Dynamic Time Warping
	sDTW for Virus Detection
	sDTW is an Effective Filter
	Multi-stage sDTW Filtering
	sDTW Algorithm Improvements
	Need for an Accelerator

	Accelerated SquiggleFilter
	SquiggleFilter Design
	Processing Element
	Normalizer

	Implementation
	Results
	SquiggleFilter Hardware Synthesis
	Performance Analysis
	sDTW Algorithm Accuracy
	Benefits of Read Until
	Looking Forward: Scalability

	Related Work
	Availability

	DTWax: Accelerated Dynamic Time Warping on GPU for Selective Nanopore Sequencing
	Introduction: SquiggleFilter's limitations
	Background: Compute and Accuracy challenges in Read Until
	Guppy is inaccurate and slow for Read Until
	SquiggleFilter
	subsequence Dynamic Time Warping
	Prior Work
	Our contributions

	Methods
	Offline pre-processing
	Online pre-processing: Normalization
	DTWax: architecture
	Intra- and inter-read parallelism 
	Coalesced global memory access
	FP16 for 2X throughput
	Utilizing tensor core pipe
	Assuming no reference deletion
	Optimizing occupancy and branch divergence
	Configurability and scalability

	Implementation
	Experimental setup
	Optimal GPU configurations
	Incremental Optimizations

	Results
	Availability

	RawMap: Rapid Real-time Squiggle Classifier for Read Until
	Introduction: Read Until for Microbiome Estimation
	Related Work
	Background and Motivation
	Microbiome Abundance Estimation
	Cost of nanopore sequencing
	Read Until Pipeline
	Inefficiency of the baseline pipeline

	Methods
	RawMap augmented Read Until pipelines

	Implementation
	Read Until baseline for abundance estimation
	Implementing RawMap
	Configurations
	Wet-lab
	Definitions & datasets

	Results
	Read Until Benefits
	Untargeted classifier
	Sensitivity to Wet-lab
	Abundance estimation
	Compute efficiency
	Training
	Viral load quantification
	Read Until's effect on pore-life

	Availability
	Supplementary Material
	Modeling Read Until Benefits with RawMap
	Variables and assumptions
	Modelling the baseline
	Modeling pipeline 1
	Bases saved from sequencing


	Mm2-ax: Accelerating Minimap2 for Accurate Long Read Alignment on GPUs
	Introduction: Minimap2 is slow
	Background
	Minimap2: A brief overview
	Minimap2: Sequential chaining
	Minimap2 profile
	Prior Work
	Our contributions

	Methods
	Parallelizing chaining: forward loop transformation
	Heterogeneous system design
	GPU occupancy: Condensed workload vector and workload balancing
	Inter-read and intra-range parallelism
	Data locality
	Minimal branch divergence

	Implementation
	Experimental Setup
	Optimal GPU configurations

	Results
	Discussion
	Availability

	Portable Microbial Diagnostics
	Conclusion
	Bibliography

