
Accident Analysis and Prevention 193 (2023) 107285

0001-4575/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

How do people perceive driving risks in small towns? A case study in 
Central Texas 

Xiao Li a,*, Greg Rybarczyk b,c,d, Wei Li e, Muhammad Usman e, Jiahe Bian f, Andong Chen e, 
Xinyue Ye e 

a Transport Studies Unit, University of Oxford, South Parks Road, Oxford OX1 3QY, UK 
b College of Innovation and Technology, University of Michigan-Flint, Flint, MI 48502, USA 
c Michigan Institute for Data Science, The University of Michigan, Ann Arbor, MI 48108, USA 
d The Centre for Urban Design and Mental Health, London SW9 7QF, UK 
e Department of Landscape Architecture & Urban Planning, Texas A&M University, College Station, TX 77843, USA 
f School of Planning, University of Cincinnati, Cincinnati, OH 45221, USA   

A R T I C L E  I N F O   

Keywords: 
Traffic risk perception 
GIS 
Transportation safety 
Spatial analysis 
Risk analysis 

A B S T R A C T   

The number of studies investigating the relationship between perceived and objective traffic risk from drivers’ 
perspective is limited. This study aims to investigate this dynamic within an understudied transportation envi-
ronment – small towns in Texas, USA, defined as incorporated places with a population of less than 50,000. A 
web-based survey was distributed to six small towns in central Texas to ascertain perceptual traffic risk factors 
and personal characteristics. A participatory GIS exercise was also conducted to collect where high-risk locations 
were perceived and to correlate them to high crash zones. This study spatially examined the relations between 
perceived and observed risk locations and statistically identified a set of contributing factors which could make 
crash-intensive areas more perceivable by road users. The results indicated that road users’ perceived risk lo-
cations are not always associated with high crash rates. The match rate between perceived and observed risk 
locations varied significantly across studied sites. We found that some personal and built environment factors 
significantly impacted people’s sensitivity to perceiving crash-intensive locations. The binary logistic regression 
model was accurate (74.13%) in highlighting whether a perceived risk location matches observed risk locations. 
The results emphasize the importance of considering perceived and objective risk simultaneously to gain a better 
understanding of traffic risk mitigation, especially in underserved small towns.   

1. Introduction 

Road fatalities continue to be a global public health crisis. According 
to the World Health Organization, nearly 1.2 million people die each 
year on roads globally (World Health Organization, 2018), and in low- 
to middle- income countries, it is the tenth leading cause of death (World 
Health Organization, 2020). Traffic fatalities disproportionately impact 
persons aged 15–24 (International Transport Forum, 2018). Efforts to 
curb these trends is a critical objective, as evidenced by a recent United 
Nations (UN) road safety strategy (United Nations, 2019). Vision Zero, 
initiated in Sweden, is focused on reducing traffic deaths in cities by 
applying a holistic approach to designing safe streets (Ferenchak, 2022). 
The United States has also recognized this public health crisis and has 
resultantly helped implement “Complete Streets” programs in many 

cities, where the goal is to elevate safe travel for all modes, including 
automobiles (LaPlante and McCann, 2008). Clearly, reducing travel fa-
talities and lowering risk remains a top priority throughout the world. 

Researchers and practitioners have studied traffic risk for decades. 
Historical crash data (e.g., traffic crash reports) recorded by law 
enforcement agencies is the primary data source in existing road safety 
studies. Many studies have been conducted to explore the spatiotem-
poral distributions (Nie et al., 2015; Rhee et al., 2016), uncover the 
leading factors (Huang et al., 2018; Song et al., 2006), and forecast the 
likelihood of objective traffic risks (Cai et al., 2017; Lee et al., 2018) 
using crash data. However, compared to the intensive studies on 
objective traffic risks, studies on subjective traffic risks, such as traffic 
risk perception, are relatively few. Perceived traffic risk is commonly 
defined as a road user’s subjective interpretation of risk when involved 
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in different traffic situations (Deery, 1999). Researchers have gradually 
acknowledged the importance of traffic risk perception due to its im-
pacts on many societal levels. For example, traffic risk perception can 
directly impact road behaviors and consequently impact safety out-
comes (Nordfjærn and Rundmo, 2009; Wang et al., 2002). The percep-
tion of risk also weighs heavily on neighborhood satisfaction, which is 
positively correlated with traffic safety (Lee et al., 2017). The connec-
tion between physical activity and perceived risk has also received much 
attention in the literature, albeit with inconclusive results. Therefore, 
understanding the human mechanisms of how traffic risk is conceived of 
and realized can have significant implications for road safety planning 
and enhancement (AlKheder et al., 2022; Kononov et al., 2007; 
Schneider et al., 2004). 

1.1. Related studies 

A growing number of studies were conducted to understand the 
human mechanisms of traffic risk perception, mainly focusing on two 
topics: (1) the relations with different influential factors (e.g., driving 
behaviors, built environment, sociodemographic features) and (2) the 
relations with traffic crashes. 

Prior studies have examined the influential factors impacting road 
users’ risk perceptions from different aspects. For example, Machado- 
León et al. (2016) performed face-to-face interviews with 492 drivers to 
explore how risky driving behaviors impact drivers’ perceptions of crash 
risks and how the perception varies among socially different drivers. A 
stated preference ranking survey was performed to measure the re-
spondents’ crash risk perceptions. Their results showed that people’s 
risk perception of dangerous driving behaviors is significantly impacted 
by their driving experience and socioeconomic characteristics, such as 
income, household size, and gender. AlKheder et al. (2022) conducted a 
survey to explore what factors impact pedestrians’ perceptions and how 
their perceptions correlate with walking frequencies. Findings showed 
pedestrians with a higher level of worry in walking have a noticeably 
lower walking frequency. Time of day and built environment features (e. 
g., walkability index, the density of shops and businesses) significantly 
impact pedestrians’ perceptions of risk for walking. A similar study by 
Rankavat and Tiwari (2016) explored how built environment features 
affect pedestrians’ perceptions of crash risks in neighborhoods (where 
they reside) and crash-intense areas. The results indicated that built 
environment and traffic features, such as the number of lanes, road 
median width, sidewalk width, etc., impact perceived travel risk. 
Although these findings are meaningful for incorporating traffic risk 
perception into urban/transportation planning, the implications of 
perceived risk in road safety applications are still unrevealed without 
linking them with objective traffic risks, such as crashes. 

Researchers have made preliminary attempts to compare perceived 
risk locations and actual crash observations. For example, Karim (1992) 
invited students and staff members to rank a list of locations selected 
from a university campus based on their perceived crash risks. The au-
thors found a close similarity between the ranking of perceived risks and 
actual crash counts for these locations, indicating that high-risk areas 
are perceivable by road users. In a similar study, Lee et al. (2016) sur-
veyed school-aged children from eight elementary schools, using 
stickers on printed maps indicating high-risk locations in their school 
zones. These pinpointed locations were spatially aggregated to the 
closest road intersections; the counts of pinpointed locations for the 
intersections were used to represent the perceived risks by students. The 
authors created different models based on the intersection characteris-
tics (e.g., exposure, road infrastructure, traffic signs) to estimate the 
number of pinpointed locations and crashes for each intersection. The 
results showed that some variables remained consistent relationships 
with both perceived and observed risk measures, implying that the risk 
perceptions of school-aged children are relatively accurate. Similarly, 
von Stülpnagel and Lucas (2020) examined cycling crash risk observa-
tions and perceptions. They collected crowdsourced hazards reported by 

cyclists to represent the perceived cycling risks, which were then 
compared with police-reported bike crashes. Models were created to 
estimate the number of crowdsourced hazards and bike crashes for in-
tersections. This study found a high similarity of contributing factors for 
objective and subjective cycling risks. However, Schneider et al. (2004) 
reported different results. They examined the distribution of police- 
reported pedestrian crashes and locations with high perceived risk 
within a university campus. A total of 312 pedestrians and 110 drivers 
were invited to mark risky locations on printed maps through a mail 
survey. They found the distributions of actual crashes and perceived 
risky locations were significantly different and attributed to varying 
levels of traffic exposure, crosswalk density, and sidewalk conditions. 

1.2. Knowledge gaps and research objectives 

Although some efforts have been made in the past to compare the 
relationship between objective traffic risks (e.g., perceived risk loca-
tions) and subjective traffic risks (e.g., crashes), several important 
questions remain unanswered. First, most studies used crash count/ 
frequency to represent objective traffic risks and compared them with 
perceived traffic risks. Note that many studies have demonstrated that 
using crash count/frequency to quantify traffic risk is problematic due to 
the fact that it does not take into account the amount of traffic flow, 
potentially misclassifying busy (high-volume) but safe segments/areas 
as high risk (Li et al., 2021a; Yao et al., 2016). Therefore, comparing 
perceived traffic risks with appropriate objective traffic risk measures 
requires additional exploration. Second, studies have shown that 
perceived risk locations may not match up with the observed dangerous 
locations in terms of crash risks (Duncan and Hughes, 2002), which 
poses a new question: What factors contribute to the “spatial match” 
between perceived traffic risk and observed crash risk? Third, most prior 
studies were conducted in highly populated areas (e.g., urban areas or 
university campuses). Many studies have indicated that rural and un-
derserved communities are more vulnerable and thus more likely to 
observe crashes (Chimba et al., 2018; Li et al., 2022). This could be 
attributed to differences in road design (Blatt and Furman, 1998), built 
environment (Cabrera-Arnau et al., 2020; Svenson et al., 1996), as well 
as drivers’ driving attitude and risk perception (Rakauskas et al., 2009) 
between rural and urban areas. However, to date, there is a dearth of 
investigations on perceived traffic risk in underserved communities, 
which requires more attention. 

These unanswered questions leave us with an incomplete under-
standing of the (geographical) relations between perceived and objec-
tive traffic risks and the influential factors contributing to the “spatial 
match” between them, especially in small and rural communities. While 
we build on earlier studies of this genre (Noland, 1995; Rankavat and 
Tiwari, 2020; Schneider et al., 2004), this study set out to collectively 
address the aforementioned research gaps. Thus, this research has three 
objectives: (a) descriptively describe perceived risk from persons 
residing in six rural Texas small towns; (b) empirically and spatially 
explore perceived and observed associations and patterns; and (c) esti-
mate the binary spatial relationship (matched or unmatched) between 
perceived and observed traffic risk locations using a logistic regression 
model accounting for perceived, personal/household, and neighbor-
hood factors. 

2. Study area and data 

2.1. Study sites-Six small towns in Central Texas 

The study areas include six small towns in Central Texas, including 
Caldwell, Copperas Cove, Harker Heights, Huntsville, Madisonville, and 
Nolanville, as illustrated in Fig. 1. Note that this study defines small 
towns as incorporated places with<50,000 population (The United 
States Office of Management and Budget, 2022); we also included rural 
villages that share the same postal distribution routes. We chose these 
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sites because they are typically small and rural communities with pop-
ulation sizes ranging from 3,993 to 45,941 (United States Census Bu-
reau, 2021). Our sampled towns contain a relatively high percentage of 
low-income; their demographic and economic developments are pro-
jected to grow steadily compared to the Texas average (Austin Capital 
Advisors, 2021). 

2.2. Data sources 

This research integrated four types of data to match previous studies, 
including survey-based perception data, historical crash records, road 
inventory data depicting the geometric design of roadways, and the 
neighborhood features characterizing built environment and location 
efficiency (i.e., density of development, diversity of land use, accessi-
bility to destinations) relevant information (Table 1). 

The web-based survey collected respondents’ perceived risk 

locations, risk factors, and their personal information from the six 
selected small towns, detailed in Section 3.1. To quantify the observed 
crash risk, zonal crash rates were calculated based on officially recorded 
crash records and traffic exposure data, such as road length and traffic 
volume. This study retrieved five years (2016–2020) of crashes from the 
Texas Department of Transportation (TxDOT) Crash Records Informa-
tion System (CRIS). To control for neighborhood effects on the spatial 
relation between perceived and observed risk locations, we collected 
and generated a list of explanatory variables from different government 
sources. The roadway relevant-explanatory variables were generated 
based on the roadway data from TxDOT RHiNo 2020. Built environment 
& location efficiency variables were retrieved from the Smart Location 
Database 2021 (SLD 2021) released by the United States Environmental 
Protection Agency (U.S. EPA). The U.S. EPA SLD contains 90 different 
socioeconomic variables and environmental correlates aggregated to the 
Census Block Group (CBG) level for the entire nation (Ramsey and Bell, 
2014). This database has been used in similar studies on travel behavior 
and planning analysis (Rybarczyk et al., 2018; Yang et al., 2020). We 
want to emphasize that while the data collection periods for these 
datasets are not perfectly synchronous, we are confident that the crash 
data (2016–2020), roadway characteristics data (2020), and built 
environment data (2021) offer reliable insights into safety outcomes, 
road infrastructures, and neighborhood attributes that are unlikely to 
have undergone significant changes over a few years. The survey data 
collected from August 2021 to May 2022 can effectively capture their 
impacts on people’s perceptions. The impact of the asynchronous timing 
is this study is minimal. 

3. Methods 

This study was conducted in four main steps, as illustrated in Fig. 2. 
First, we conducted a web-based survey to collect local residents’ 

Fig. 1. Selected rural towns in Texas, USA.  

Table 1 
Data sources and purpose.  

Data Type Data Source Purpose 

Perception Data Web-based survey 
(August 2021 - May 
2022) 

Collecting perceived risk 
locations, perceived risk factors, 
and survey respondents’ personal 
information. 

Crash Records TxDOT CRIS 
(2016–2020) 

Calculating crash rate and 
characterizing crash relevant 
information 

Road Inventory TxDOT RHiNo (2020) Calculating crash rate and 
characterizing roadway relevant 
information 

Built Environment 
and Location 
Efficiency 

U.S. EPA SLD (2021) Characterizing built environment 
and location efficiency relevant 
information  
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perceived risk locations, perceived risk factors, and personal informa-
tion. Next, crash and road inventory data were used to calculate the 
crash rates for tessellated uniform grids, which were used as the 
objective risk observations to compare with the perceived risk locations. 
Then, we labeled each perceived risk location as “matched” or “un-
matched” based on whether it spatially overlaps with any high crash risk 
grids determined by the crash rates. Meanwhile, we collected and 
generated a list of features to characterize each perceived risk location 
from four perspectives: perception-relevant factors, respondent’s per-
sonal factors, roadway-relevant factors, and built environment & loca-
tion efficiency factors (see details in Section 3.3.2.). Last, we performed 
statistical tests to assess what factors significantly impact the binary 
spatial relations (“matched” and “unmatched”) between perceived risk 
locations and observed risk grids, then applied logistic regression to 
model this relationship. Different approaches were employed to reduce 
irrelevant and intercorrelated explanatory variables. The following 
sections highlight these steps in detail. 

3.1. Web-based survey for perception data collection 

We constructed a web-based survey to collect respondents’ de-
mographic details, perceived risk locations, and the corresponding 
perceived risk factors associated with each location. Since one of the 
main purposes of the survey was to ask respondents to geolocate the 
locations with traffic safety concerns, a map-based response was 

desirable as it could provide all the necessary geographical details. 
Therefore, we opted for a web-mapping tool—Maptionnaire, which al-
lows participants to map their perceived risk locations and further 
specify the types of location (e.g., a place of interest [POI], an inter-
section, a road, or a neighborhood) and the perceived risk factors 
through associated questions (Fig. 3). The survey was filled out 
completely using Maptionnaire and then linked with Qualtrics. Qualtrics 
was used to ascertain each respondent’s personally identifiable infor-
mation, such as demographic information, the number of operable 
household automobiles, valid driver’s license, the time elapsed since 
acquiring a license, any traffic citations in the past two years, age, 
gender, marital status, household income, employment status, and res-
ident’s current city. Both the databases from Maptionnaire and Qualtrics 
were then exported and joined to create one combined database of all 
the information. Through Maptionnaire, participants reported up to 
three high-risk locations based on their perception and answered asso-
ciated questions for each location to specify the location type and the 
accompanying reasons, such as poor road surface, high speed limit, 
aggressive drivers, heavy traffic, poor lighting, poor quality surrounding 
environment, or too many pedestrians and/or bicyclists. Survey records 
with low quality responses (e.g., extremely short response time, many 
unanswered questions, pinpointed locations outside of their residential 
areas) were excluded from this study. 

In this study, an IRB approval for human subject research was ob-
tained from the institutions with which the authors are affiliated. To be 

Fig. 2. Research workflow.  
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eligible for the survey, participants needed to be 18 years of age or older 
and residents of the selected six cities, possessing an inherent under-
standing of the city’s traffic context. Only one participant is allowed per 
household. Survey flyers were distributed using the United States Postal 
Service Every Door Direct Mail (EDDM) service within the study sites, 
which contain the link to the web-mapping tool—Maptionnaire to 
pinpoint perceived risk locations. 

3.2. Zonal equivalent property damage only (EPDO) crash rate derivation 

As introduced above, although respondents’ perceived risk locations 
were mapped as points, they could represent four types of location with 
different vector types (e.g., point: POI, intersection; line: road; polygon: 
neighborhood). Meanwhile, since these locations were manually pin-
pointed, positioning errors could be introduced, making it difficult to 
pinpoint them precisely on the map, especially for the point and line 
locations. To effectively accommodate the positioning errors and 
compare with different types of locations, we divided each city into 
equal-sized tessellated grids and calculated the Equivalent Property 
Damage Only (EPDO) crash rate for each grid to represent the observed 
crash risk. 

Two factors need to be considered during the tessellation process: 
grid shape and size. This study chose to use the hexagonal grid during 
the tessellation process. Many studies examined the effects of different 
geometric zoning systems on transportation studies (Chmielewski and 
Kempa, 2020; Ghadiri et al., 2019). Compared to other commonly used 
grid shapes (e.g., square, rhombus, triangle), the hexagon is most similar 
to a circle and outperforms other shaped grids in transportation studies, 
such as planning (Chmielewski and Kempa, 2020) and trip production 
models (Ghadiri et al., 2019). Concerning grid size, since each mapped 
point could represent a location ranging from a POI to a neighborhood, 
we believe census blocks—the smallest census data unit—could be 
comparable to perceived risk locations. Please note that the size of 
census blocks in urban areas is much smaller than in rural areas. Given 
that most perceived locations were collected from small Texas cities, 
generally classified as urbanized areas, we used the average size of 
census blocks in Texas urban areas statewide (0.05 square mile) as the 
grid size. 

A crucial step in traffic safety studies is to select and generate 
appropriate safety performance measures. The crash rate is one of the 
most used safety measures, which quantifies crash risk by normalizing 
the crash counts based on traffic exposure (The U.S. National Highway 
Safety Administration, 2019). According to the definition provided by 
the Federal Highway Administration (FHWA), the crash rate for 
roadway represents the number of crashes for every 100 million vehicle 
miles traveled (VMT), which can be calculated through Equation (1) 
(The U.S. National Highway Safety Administration, 2019): 

Rseg =
Cseg*100, 000, 000

365*N*V*L
(1) 

where Rseg represents the segment-level crash rate; Cseg is the count of 
crashes occurred on the segment; N represents the number of years; V 
indicates the traffic volume (AADT) of the segment; L indicates the 
segment length (in miles). 

One limitation associated with the traditional crash rate calculation 
is that it fails to account for crash severity. In response to this issue, the 
EPDO method was proposed, aiming to incorporate crash severity by 
assigning weights to different types of crashes (e.g., fatal, injury, and 
property damage-only [PDO]) based on their societal costs. This results 
in the development of an EPDO score. As recommended by the 2010 
Highway Safety Manual, the societal cost of a fatal crash is estimated to 
be $4,008,900, equivalent to 541.7 PDO crashes in cost; the societal cost 
of an injury crash is $82,600, equivalent to 11.2 PDO crashes (American 
Association of State Highway and Transportation Officials, 2010). 
Therefore, the EPDO score (EPDO) for a specific site can be expressed 
using Equation (2): 

EPDO = 541.7*Fatal Crashes + 11.2*Injury Crashes + PDO Crashes
(2) 

In this study, we integrated the EPDO method with crash rate 
computation to derive the zonal EPDO crash rate—normalizing the 
EPDO score by considering the aggregated traffic exposure within each 
gird using Equations (3–4) (Li et al., 2022): 

Rgrid =
EPDOgrid*100, 000, 000

Egrid
(3) 

Fig. 3. Example of Maptionnaire online survey for collecting perceived risk locations.  
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Egrid =
∑r

j=1

∑n

i=1
Li*Vij*365 (4) 

where Rgrid indicates the zonal EPDO crash rate of a hexagonal gird; 
EPDOgrid is the EPDO score for the grid during the study period; Egrid is the 
aggregated grid-level traffic exposure; n represents the number of seg-
ments within the grid; i is the i-th segment; r represents time span of the 
crash data (in years), set as 5 in this study; j is the j-th year, Li is the 
length of i-th segment (in miles), and Vij indicates the traffic volume of 
the i-th segment at the j-th year. In accordance with past research, we 
selected the top 20% of grids in the ranking of their crash rates to 
represent the observed risk locations in each of the study cities (Li et al., 
2021a; Thakali et al., 2015; Yu et al., 2014). 

3.3. Classification and characterization of perceived risk locations 

3.3.1. Generating the binary dependent variable 
After obtaining the observed risk locations through the crash rate 

calculation, we performed the spatial overlay analysis on the perceived 
risk locations (points) and observed risk locations (grids) to check 
whether perceived risk points fell in or outside of the high-risk hexag-
onal grids. The result was labeled “matched” (1) or “unmatched” (0). 
This binary result was considered the dependent variable in our 
regression model. 

3.3.2. Characterization of perceived risk locations 
Past research has demonstrated that people’s perception to traffic 

risks can be impacted by personal reasons (DeJoy, 1989), character 
traits (e.g., gender, education, income) (Deery, 1999), road and traffic 
conditions (Leviäkangas, 1998), and built environment conditions 
(Ewing and Dumbaugh, 2009). To match this body of work and 
comprehensively explore the potential factors impacting the “spatial 
match” between perceived and observed risk locations, we compiled a 
list of variables to characterize each collected perception records from 
four perspectives: individual perception, personal attributes, roadway 
factors, and neighborhood context and composition features. Table 2 
lists the initial explanatory variables and their data sources considered 
in this research. 

3.4. Statistical tests, model development, and result evaluation 

3.4.1. Exploratory data analysis [EDA] 
To meet our first two objectives (a, b), we employed several EDA 

techniques to understand statistical and geographical traffic risk trends. 
Traditional descriptive analysis was first applied to participants’ 
perceived risks as they related to location and environmental charac-
teristics. We also created geo-visualizations to showcase spatial re-
lationships between observed risk zones (i.e., hexagonal grids) and 
perceived traffic risk locales. In addition, chi-squared tests of indepen-
dence and unpaired two-sample Wilcoxon tests (aka, Wilcoxon rank sum 
test or Mann-Whitney test) were also applied to assess whether each 
categorical and numerical explanatory variable was associated with the 
binary response variable (i.e., “matched” and “unmatched”). The chi- 
squared test of independence is commonly used to assess whether two 
categorical variables are likely to be related. The Wilcoxon test is 
designed to assess differences between two independent groups when 
the dependent variables are continuous but not normally distributed. 

3.4.2. Model development and feature selection 
To meet our third objective (c), we developed a binary logistic 

regression model to investigate the impacts of various variables from 
four key categories on the probability of a traffic risk match between 
perceived risk and objectively measured high risk traffic zones. Logistic 
regression is a well-established statistical method commonly used to 
estimate the probability of an event occurring based on selected 
explanatory variables, particularly for modeling binary outcomes 

Table 2 
List of selected explanatory variables.  

Variable Name Data Type Value (Categories/ 
Description) 

Data 
Source 

Perception factors 
Perceived location 

type 
Categorical Place of interest (POI); 

Intersection; Road; 
Neighborhood 

Survey 

Perceived poor road 
surface 

Binary Yes or No Survey 

Perceived high speed 
limit 

Binary Yes or No Survey 

Perceived many 
aggressive drivers 

Binary Yes or No Survey 

Perceived heavy 
traffic volume 

Binary Yes or No Survey 

Perceived poor 
lighting 

Binary Yes or No Survey 

Perceived poor 
surrounding 
environment 

Binary Yes or No Survey 

Perceived many bikes 
and pedestrians 

Binary Yes or No Survey  

Personal attributes 
Number of cars 

within your 
household 

Numerical Number of vehicles in the 
respondent’s household 

Survey 

With a valid driving 
license 

Binary Yes or No Survey 

Length since licensed Categorical <1 month; 1 month to 1 year; 
1 year to five years; Over five 
years 

Survey 

Involved in crash in 
past two years 

Binary Yes or No Survey 

Received any citation 
in past two years 

Binary Yes or No Survey 

Age Categorical Generation Z (19–25 years 
old); Millennials (26–41 years 
old); Generation X (42–57 
years old); 
Boomers (58 + ); Unwilling to 
response 

Survey 

Gender Categorical Female or Male Survey 
Marriage Categorical Married or with a partner; 

Divorced, windowed or 
separated; Never married 

Survey 

Education Categorical No Bachelor’s degree; 
Bachelor’s degree or higher; 
Unwilling to response 

Survey 

Total household 
income 

Categorical Under $50 k; $50 k-$100 k; 
Over $100 k; Unwilling to 
response 

Survey 

Employment Binary Yes or No Survey 
Retired Binary Yes or No  
City Categorical Caldwell; Copperas Cove; 

Harker Heights; Huntsville; 
Madisonville; Nolanville 

Survey  

Roadway factors (aggregated to the gird-level) 
Road density (mile/ 

square mile) 
Numerical Length of roadway (in mile) 

per square mile 
RHiNo 
2020 

Traffic exposure Numerical The sum of roadways’ length 
multiplies their traffic volume 
for each grid, obtained using 
equation (3) 

RHiNo 
2020  

Built environment and location efficiency factors (aggregated at the 
Census Block Group [CBG] level)  

Percent of zero-car 
households 

Numerical Percent of zero-car households 
at the CBG level 

SLD 
2021 

Percent of one-car 
households 

Numerical Percent of households with one 
automobile at the CBG level 

SLD 
2021 

Percent of two-plus- 
car households 

Numerical Percent of households with two 
or more automobiles at the 
CBG level 

SLD 
2021 

(continued on next page) 
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(Subasi, 2020). This approach aligns perfectly with the modeling pur-
pose of our study. 

To enhance the stability and performance of the logistic regression 
model, we standardized numerical variables measured at different scales 
to a range of 0 to 1. This normalization process ensures that all variables 
contribute equally to the model’s performance, thereby reducing the 
potential for bias and improving the model’s reliability and accuracy. 

Feature selection is a crucial step in developing predictive models. By 
selecting the most relevant features from a dataset, we can avoid over-
fitting, reduce dimensionality, expedite the training process, and, most 
importantly, enhance the model’s interpretability by focusing on the 
most influential predictors. Different feature selection methods have 
been proposed and widely adopted, such as stepwise regression, Lasso 
regression, recursive feature elimination, elastic net regression, among 
others. In this study, we used variance inflation factor (VIF) statistics 
and stepwise regression to conduct the feature selection. VIF is 
commonly used to assess multicollinearity in regression analysis, which 
quantifies how much the variance of an estimated regression coefficient 
increases due to the presence of multicollinearity among predictor 
variables. High VIF values indicate strong correlations among predictor 
variables. To address multicollinearity issues, we adopt an iterative 
approach. In each iteration, we remove the variable with the highest VIF 
value. This removal, in turn, tends to reduce the VIF values of the 
remaining variables. This process continues iteratively until all the 
remaining variables’ VIF values fall below the recommended cut-off 

threshold of 10 as suggested by previous studies (Rybarczyk and 
Shaker, 2021). After addressing multicollinearity, we conducted step-
wise regression to further refine the model by excluding insignificant 
variables. Stepwise regression systematically adds or removes variables 
from the model based on their statistical significance. The process 
typically starts with an initial model, and at each step, variables are 
either added or removed based on specific criteria, such as Akaike in-
formation criterion (AIC), until the optimal model is achieved (Fother-
ingham et al., 2000). 

3.4.3. Model performance evaluation 
Logistic regression generally yields the probability of an event 

occurring. In this study, we used a threshold of 0.5 to divide the 
modeling results into two groups, indicating the “matched” (coded as 1) 
and “unmatched” (coded as 0) locations to ensure that our results are 
generalizable (Peng and So, 2002). Then, we compared the modelled 
results with the binary “ground truth” data to access modeling accuracy. 
We employed five-fold cross-validation to evaluate the model perfor-
mance. This validation method is widely used and effective in scenarios 
with limited data. It randomly divides the original dataset into five 
subsets of equal size. The validation process is then performed five 
times, with each subset serving as the testing dataset while the 
remaining four subsets are used as the training datasets in each iteration. 
This approach ensures unbiased evaluation results and helps in effi-
ciently assessing the model’s performance even with a limited data 
sample (Li et al., 2021b). Two evaluation indices were generated in this 
study: accuracy and the Kappa coefficient. 

4. Results 

4.1. Respondent demographics 

In fulfilling our first two objectives (a) and (b), we surveyed people 
from six towns in Central Texas from August 2021 to May 2022. A total 
of 286 respondents met the inclusion criteria and contributed 406 valid 
responses indicating perceived risk locations. The ages of respondents 
ranged from 19 to 81, with a mean value of 44.87. Of the respondents, 
42% identified as male and 58% as female. About 43% reported a 
household income under $50,000. Most respondents (85%) held a valid 
driving license, and over half (54%) held a bachelor’s or higher degree 
when answering the survey. Further details can be found in Appendix A. 

4.2. Perceived travel risk statistics and locational relevance 

The result of the Maptionnaire exercise showed that respondents 
were most concerned about risk near intersections, consisting of 43.3% 
of the sample. Road segments and POIs received a similar number of 
responses, making up 25.4% and 21.7% of the total. Neighborhood 
conditions near their chosen locales received the least number of re-
sponses, which consisted of 9.6% of the total (Fig. 4a). Participants 
noted that “heavy traffic volume” was the most commonly perceived 
risk factor, which comprised 58.9% of the sample (Fig. 4b). Secondary to 
this were “aggressive drivers” (38.9%). In addition, Fig. 4b indicates that 
the built environment also contributed to the perception of travel risk. 
The condition of the roadway (i.e., “poor road surface”) and street 
lighting (i.e., “poor lighting”) accounted for 16.8% and 16.3%, 
respectively. 

Perceived risky locations as determined by the participants (red 
points) as well as elevated high-risk zones (pink hexagons) are displayed 
in Fig. 5. Among the six selected cities, Huntsville received the most 
responses, with 123 locations reported by our participants, making up 
30.3% of the total, followed by Nolanville (87, 21.4%), Harker Heights 
(86, 21.2%), Copperas Cove (67, 16.5%), Caldwell (31, 7.6%), and 
Madisonville (12, 3.0%). 

Fig. 5 clearly illustrates that perceived risk locations are not always 
spatially matched with observed risk locations, and likely dependent on 

Table 2 (continued ) 

Variable Name Data Type Value (Categories/ 
Description) 

Data 
Source 

Gross residential 
density 

Numerical Gross residential density 
(household/acre) on 
unprotected land 

SLD 
2021 

Gross population 
density 

Numerical Gross population density 
(people/acre) on unprotected 
land 

SLD 
2021 

Gross employment 
density 

Numerical Gross employment density 
(jobs/acre) on unprotected 
land 

SLD 
2021 

Jobs per household Numerical Jobs per household at the CBG 
level 

SLD 
2021 

Employment and 
household entropy 

Numerical The mix of employment types 
and occupied housing. 

SLD 
2021 

Employment and 
household entropy 
(trip based) 

Numerical Employment and Household 
entropy based on vehicle trip 
production and trip attractions 

SLD 
2021 

Street intersection 
density 

Numerical The number of intersections 
per square mile at the CBG 
level 

SLD 
2021 

Regional diversity Numerical A measure quantifies the 
deviation of the CBG ratio of 
jobs/pop from the regional 
average ratio of jobs/pop  

Jobs within 45 min 
auto travel time 

Numerical The number of accessible job 
opportunities within 45 min 
auto travel time 

SLD 
2021 

Working age 
population within 
45 auto travel time 

Numerical The number of working age 
population within 45 min auto 
travel time 

SLD 
2021 

National walkability 
index 

Numerical A measure quantifying the 
likelihood and feasibility of 
walking at the CBG level 

SLD 
2021 

Percent of low-wage 
workers 

Numerical Percent of low-wage workers at 
the CBG level 

SLD 
2021 

Percent of medium- 
wage workers 

Numerical Percent of medium-wage 
workers at the CBG level 

SLD 
2021 

Percent of high-wage 
workers 

Numerical Percent of high-wage workers 
at the CBG level 

SLD 
2021 

Smart location index Numerical An index indicating the 
location efficiency, ranging 
from 0 to 100. The higher the 
score, the more efficient the 
site is. 

SLD 
2021  
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local conditions. Fig. 6 shows the overall and city-level matched and 
unmatched percentages between perceived and observed risk locations. 
The overall percentage of matched locations is 55.4% (Matched = 225, 
Unmatched = 181), which aligns with the existing findings that iden-
tifying crash sites based on perception is difficult (Duncan and Hughes, 
2002). Among the six selected cities, Huntsville received the highest 
percentage (86.2%) of matched locations, and Nolanville received the 
lowest percentage of matched locations (19.5%). It implies that the 

spatial relations between perceived and observed risk locations are not 
spatially consistent, which could be impacted by regional sociodemo-
graphic and built environmental factors. 

4.3. Statistical test results 

Table 3 lists the chi-square test results for a selection of categorical 
explanatory variables, which show a statistically significant association 

Fig. 4. Statistics of perceived risk information: (a) distribution of perceived risk types; (b) frequency of perceived risk factors.  

Fig. 5. Survey-based perceived risk locations and crash-based observed risk locations (grids) in six studied cities.  
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with the response variable. All these variables are either perception- 
relevant factors or respondent’s personal attributes. The results show 
that when a perceived location is specified as an intersection by the 
submitter, it is more likely to match the observed crash risk zones. The 

respondent’s personal factors also significantly impact whether their 
perceived risk locations matched observed traffic risks. For example, 
people without a valid driving license are more sensitive to observed 
traffic risks, leading to a higher percentage of “matched” locations. 
Household income is also significantly associated with the response 
variable. People from high-income families (Over $100 k) had an 
obviously lower “matched” rate. The ratios of “matched” locations were 
also significantly different across cities. 

Similarly, we performed the unpaired two-samples Wilcoxon tests on 
the continuous explanatory variables. Table 4 lists the significant vari-
ables, which include three demographic variables (Percent of zero-car 
households, Percent of one-car households, and Percent of two-plus-car 
households), three density variables (Gross residential density, Gross pop-
ulation density, and Gross employment density), four diversity variables 
(Jobs per household, Regional diversity Employment and household entropy 
[trip based], Employment and household entropy), one design variable 
(Street intersection density), two accessibility variables (Jobs within 45 min 
auto travel time and Working age population within 45 auto travel time), and 
two compound measures (National walkability index and Smart location 
index). The result indicates that the “matched” locations generally show 
a significantly higher value in most of these variables except Percent of 
zero-car households, Percent of two-plus-car households, and two transit 
accessibility variables. It implies that people’s perception regarding 
traffic risk is more likely to align with the observed crash risks in the 
regions with a higher density, diversity, walkability, and location effi-
ciency. However, the locations with a higher percentage of zero-car/ 
two-plus-car households or higher transit accessibility usually show a 
lower rate of “matched” locations between perceived and observed 
traffic risks. 

Descriptive statistics of all variables are provided in Appendix A and, 
a full list of statistical test results for all candidate explanatory variables 
is detailed in Appendix B. 

4.4. Modeling results 

A binary logistic regression model was implemented to distinguish 

Fig. 6. The percentage of matched and unmatched perceived risk locations within each city and across all samples.  

Table 3 
Chi-square tests for selected categorical explanatory variables.  

Variable name Count Unmatched Matched 

Perceived location type 
χ2 = 41.00; p-value =
0.000*** 

POI (n = 88) 52 (59.09%) 36 
(40.91%) 

Intersection (n = 176) 48 (27.27%) 128 
(72.73%) 

Road (n = 103) 54 (52.43%) 49 
(47.57%) 

Neighborhood (n = 39) 27 (69.23%) 12 
(30.77%) 

With a valid driving 
license 
χ2 = 5.11; p-value =
0.024* 

Yes (n = 353) 165 
(46.74%) 

188 
(53.26%) 

No (n = 53) 16 (30.19 %) 37 
(69.81%) 

Total household 
income 
χ2 = 14.11; p-value =
0.003**   

Under $50 k (n = 165) 70 (42.42%) 95 
(57.58%) 

$50 k-$100 k (n =
123) 

48 (39.02%) 75 
(60.98%) 

Over$100 k (n = 84) 52 (61.90%) 32 
(38.10%) 

Unwilling to response 
(n = 34) 

11 (32.35%) 23 
(67.65%) 

City 
χ2 = 101.24; p-value 
= 0.000*** 

Caldwell (n = 31) 18 (58.06%) 13 
(41.94%) 

Copperas Cove (n = 67) 23 (34.33%) 44 
(65.57%) 

Harker Height (n = 86) 47 (54.65%) 39 
(45.35%) 

Huntsville (n = 123) 17 (13.82%) 106 
(86.18%) 

Madisonville (n = 12) 6 (50.00%) 6 (50.00%) 
Nolanville (n = 87) 70 (80.46%) 17 

(19.54%) 

* p < 0.05, **p < 0.01, ***p < 0.001. 
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the “matched” and “unmatched” perceived risk locations to meet our 
third objective (c). Although our statistical tests identified a list of var-
iables (listed in Section 4.3.) significantly associated with the response 
variable, some are collinear and cannot be included in the same model. 
To address this issue, we first used VIF statistics to remove intercorre-
lated variables. Then, we performed the stepwise feature selection to 
determine the optimal set of variables for the final model. Note that, to 
make the model replicable in other regions/cities, we excluded the 
variable City from this model even though it is statistically significant. 

Table 5 displays the OR’s (i.e., odds-ratios) and coefficients from the 
binary logistic model. We found that perceived location type-
—intersections (p = 0.000) were important with the odds (OR = 3.32) 
increased when perceived locations were intersections. 

The model outcomes also provided evidence that roadway and 
neighborhood factors influenced traffic risk match rates. Of the roadway 
factors, street intersection density was statistically significant (p =
0.015). For each one unit increase in street intersection density, the odds 
of a successful match increased by 304.5. Although only marginally 
significant (p < 0.10, OR = 0.45), we found that road density negatively 
affected successful match rates. The neighborhood factor, smart location 
index, was statistically significant (p = 0.003) and exerted a strong 
negative influence on the successful match: for each unit increase the 
odds of a successful match decreased by a factor of 0.06. However, gross 
residential density (p = 0.019) and gross employment density (p =
0.013) exhibited a positive and significant effect. The match odds 
increased by a factor of 1.55 and 1.48, respectively, for each unit in-
crease. We also found that accessibility— working age population 
within 45 min auto travel time (p = 0.000, OR = 0.07), exerted a sta-
tistically significant, albeit negative, effect on the spatial alignment 
between observed and perceived risk locations. 

To evaluate the model’s performance, we conducted a five-fold cross- 
validation. The detailed results can be found in Table 6, showing an 
average accuracy of 74.13% across all folds, with a standard deviation 
(SD) of 2.39%. Additionally, the average Kappa coefficient was found to 
be 0.48, with a SD of 0.05. These results suggest that the proposed 

logistic regression model performed well in distinguishing whether a 
perceived risk location matches the observed crash risk, achieving a 
satisfying level of accuracy and agreement with the actual outcomes. 

5. Discussion 

5.1. Key findings and policy implications 

The majority of the past crash analysis research has not examined 
objective and perceived traffic risk together (Rankavat and Tiwari, 
2020), leaving us with an unclear picture of how to accurately mitigate 
and forecast traffic risk. Considering the importance of perception for 
examining traffic risk (Rahman et al., 2021), this study has forwarded a 
new means to analyze risk by comprehensively integrating observed 
crash data with perceived traffic risks in six rural Texas rural commu-
nities. We have resultantly provided new evidence on how geography, 
perception, personal traits, and built environment/location efficiency 
affects traffic risk match rate in such areas. The methodology instituted 
in this research consisted of EDA, participatory GIS, spatial analysis, and 
binary logistic modeling. The results demonstrated that perceived traffic 

Table 4 
Results of unpaired two-samples Wilcoxon tests for selected continuous 
explanatory variables.  

Variable name W 
value 

p-value Unmatched Matched 

Percent of zero-car 
households 

23,151  0.017* 0.04 (0.06) 0.03 (0.08) 

Percent of one-car 
households 

12,671  0.000*** 0.28 (0.19) 0.41 (0.26) 

Percent of two-plus-car 
households 

27,741  0.000*** 0.67 (0.19) 0.55 (0.33) 

Gross residential density 15,136  0.000*** 0.36 (1.16) 1.62 (1.80) 
Gross population density 13,214  0.000*** 0.93 (3.47) 4.34 (5.16) 
Gross employment density 12,787  0.000*** 0.10 (1.17) 1.18 (3.87) 
Jobs per household 15,389  0.000*** 0.38 (0.96) 1.06 (2.15) 
Employment and 

household entropy (trip 
based) 

17,452  0.013* 0.59 (0.42) 0.61 (0.34) 

Employment and 
household entropy 

17,755  0.026* 0.53 (0.51) 0.59 (0.52) 

Regional diversity 16,815  0.003** 0.27 (0.47) 0.46 (0.65) 
Street intersection density 14,249  0.000*** 17.20 (60.40) 64.80 

(85.40) 
Jobs within 45 min auto 

travel time 
22,967  0.027* 1.59e4 

(4.66e3) 
1.51e4 
(5.27e3) 

Working age population 
within 45 auto travel 
time 

26,607  0.000*** 1.91e4 
(7.41e3) 

1.24e4 
(8.46e3) 

National walkability index 15,238  0.000*** 6.67 (5.17) 7.67 (4.17) 
Smart location index 14,703  0.000*** 51.00 (51.10) 68.50 

(32.2) 

* p < 0.05, **p < 0.01, ***p < 0.001. 
The cells under “Unmatched” and “Matched” list the median values for each 
variable along with the interquartile range in the parenthesis. 

Table 5 
Logistic regression results for distinguishing “matched” and “unmatched” 
perceived risk locations.  

Explanatory variables (β) OR (95% CI) p-value 

Perception relevant factors 
Perceived location type    
Intersection (reference = POI)  1.20 3.32 (1.74,6.37)  0.000*** 
Road (reference = POI)  − 0.08 0.92 (0.45,1.87)  0.816 
Neighborhood (reference = POI)  − 0.42 0.66 (0.26,1.67)  0.376  

Respondent’s personal attributes 
Involved in crash in past two years    
Yes (reference = No)  − 0.65 0.52 (0.24,1.11)  0.091⋅ 
Retired    
Yes (reference = No)  − 0.35 0.71 (0.36,1.38)  0.308 
Total household income    
Under $50 k (reference = Unwilling to 

response)  
0.07 1.08 (0.39,2.94)  0.884 

$50 k-$100 k (reference = Unwilling to 
response)  

− 0.19 0.83 (0.3,2.25)  0.709 

Over $100 k (reference = Unwilling to 
response)  

− 0.62 0.54 (0.19,1.5)  0.237 

Number of cars within your household  0.53 1.7 (0.47,6.2)  0.419  

Roadway factors 
Road density (mile/square mile)  − 0.80 0.45 (0.19,1.03)  0.060 ⋅ 
Street intersection density  5.72 304.5 

(3.02,3.07e4)  
0.015*  

Built environment and location efficiency factors 
Smart location index  − 2.78 0.06 (0.01,0.4)  0.003** 
Gross residential density  0.44 1.55 (1.08,2.23)  0.019* 
Gross employment density  0.39 1.48 (1.09,2.01)  0.013* 
Regional diversity  − 0.58 0.57 (0.18,1.75)  0.324 
Working age population within 45 

auto travel time  
− 2.69 0.07 (0.02,0.19)  0.000 *** 

β = Estimated coefficients; OR = odds ratio, 95% confidence intervals (CI) in 
parentheses. 
⋅ p < 0.1, * p < 0.05, **p < 0.01, ***p < 0.001. 

Table 6 
Model performance assessment with five-fold cross-validation.  

Evaluation Indices Accuracy Kappa Coefficient 
Mean SD Mean SD 

Value  74.13% ±2.39%  0.48 ±0.05 

SD denotes standard deviation; 
The value cells show the average value of five folds +/- the standard deviation. 
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risk is complicated, even for rural communities. The EDA analysis 
showed that the built environment and traffic volume contributed to the 
perception of risk. We also discovered significant geographic disparities 
between perceived traffic risk and high crash rate zones - signifying that 
risk is invariably a local phenomenon necessitating context-sensitive 
solutions. The magnitude of traffic risk matches was reduced in the 
smallest communities and suggests that progressive interventions are 
needed. Our binary logistic model was robust, and demonstrated that 
several statistically significant coefficients were important when 
modeling the spatial relations between perceived and observed risk 
locations. 

Our first research objective (a) was to examine perceived traffic risk 
in six rural Texas communities. The majority of respondents noted that 
elevated risk primarily corresponded to roadway conditions. We found 
that intersections presented the most risky situations, and is aligned with 
past research (Abdel-Aty and Keller, 2005). The built environment (i.e., 
neighborhood and poor surrounding environment factors) had negli-
gible impact, which is in contrast with some research pointing to the 
importance of neighborhood design and socio-economic status (SES) 
conditions as critical factors for driving risk (Morency et al., 2012; Toran 
Pour et al., 2017). The presence of active travelers (i.e., bicyclists and 
pedestrians) had little effect on perceived risk. Confirming the impor-
tance of multi-modal transportation interventions (i.e., traffic calming) 
as a proven means to reduce the perception of dangerous traffic situa-
tions (Alveano-Aguerrebere et al., 2018; Ewing and Dumbaugh, 2009). 

In meeting our second objective (b), the EDA and spatial analysis 
outcomes demonstrated that traffic risk match rates varied statistically 
and spatially throughout our communities. Our findings showed that the 
match rate between perceived and observed traffic risk differed signif-
icantly within and across our study cities. The lowest match rate was in 
Nolanville (19.5%) and the highest was in Huntsville (86.2%). The GIS 
analysis showed a heterogeneous spatial relationship between perceived 
risk locales and high-risk zones in each community. The largest com-
munity, Huntsville, displayed numerous high-risk zones throughout the 
city. This is likely due to a prevalence of risky traffic environments (i.e., 
intersections), high population densities, and high vehicle miles traveled 
(VMT) due to its close proximity to Houston, all of which are conducive 
to higher traffic accidents. The smaller communities exhibited lower risk 
match rates and may in part be due to a higher portion of unreported 
traffic incidents. The mismatch suggests that additional traffic risk 
mitigation measures are needed in small underserved communities. A 
worthy intervention is from Park et al. (2017), where they advocated for 
a “community roadwatch,” which utilizes digital technologies, social 
media, sensors, and active citizen participation to assist law enforce-
ment officials with reducing traffic incidents. An additional prudent 
intervention would be a Complete Streets policy in underserved com-
munities such as these, which would undoubtedly help reduce traffic 
risks and improve public health outcomes (Clifton et al., 2014). 

Post Chi-square and Wilcoxon tests, we uncovered several significant 
factors (i.e., perceptual, roadway, and built environment/location effi-
ciency) of explanatory variables influencing traffic risk match rates. 
Respondents without a valid driver’s license were more sensitive to 
observed traffic risks, leading to more “matched” locations. Stated 
differently, less driving experience corresponded with more caution 
regarding various traffic situations and is contrast to some previous 
works positing the opposite (Castro et al., 2014). Similarly, respondents 
without recent involvement in a crash (within the past two years) were 
weakly associated with increased match rates (p < 0.1), pointing to the 
cautious behavior being able to better identify risky situations. Whereas 
those who were involved in a traffic crashes may not be as cautious due 
to over-confidence and not fully able to recognize dangerous traffic 
scenarios, hence the lowered match rate. To align perceived and real 
traffic risk among this group, we propose that public education cam-
paigns be enacted in these types of communities in accordance with 
research from Williams (2011). By providing the public with clear data 
on actual risks, as well as actionable steps to take, the perceptions may 

be more in line with reality. In terms of roadway, built environment, and 
location efficiency associations, we found several factors statistically 
important factors affecting match rates. This is promising, given that 
many past studies have identified similar factors in traffic perception 
(Vanderbilt, 2009; Zhang et al., 2022). Moreover, many of these factors 
were also discovered in our binary logistic regression outputs. 

The last objective (c) in this research was to estimate the binary re-
lationships between observed and perceived risk locations and explan-
atory variables representing: perceptual, personal factors, roadway 
conditions, and built environment/location efficiency variables. A 
notable perceptual factor influencing match rates was “intersection”, 
which corresponded to high match rates, and corresponds to other 
studies which found similar evidence (Prajapati and Tiwari, 2013; Yang 
et al., 2023). We also noticed that exposure to traffic crashes weakly 
negated successful matches. This suggests that persons involved in a 
traffic crash in rural communities are generally riskier, which is in part 
to the transportation environment (e.g., less traffic controls, high speeds, 
low VMT, etc.) (Rakauskas et al., 2007) and thus is not weighed heavily 
when detecting dangerous travel scenarios. Relying on previous 
research from (Rakauskas et al., 2009), we also suggest that targeted 
safety education programs, versus engineering or enforcement, would 
be preferred by persons in rural communities such as this. The result 
would potentially be that people would be better able to recognize 
hazardous situations and elevate travel safety. Interestingly, we found 
that smart location index and the number of working age population 
within 45 min auto travel showed an inverse relationship with the 
response variable. This indicates that location-efficient communities, 
typically characterized by density, vibrancy, high walkability, and 
transit accessibility, are safer in terms of transportation than commonly 
perceived. These findings suggest that incorporating location-efficiency 
principles into urban planning has the potential to contribute signifi-
cantly to a safer traffic environment. We also found that two neigh-
borhood vitality factors—residential density and employment 
density—significantly increased traffic risk match rates. This implies 
that in these neighborhoods there’s a heightened traffic risk awareness, 
which is likely due to the fact that there are more “eyes on the street” 
both of which have shown to moderate traffic accidents and urban 
stressors (Guerra et al., 2022; Jacobs, 1961). These particular neigh-
borhoods should be modeled by planners and policy-makers and applied 
to other neighborhoods experiencing confusing traffic risk levels as an 
accident reduction strategy. 

5.2. Potential safety applications based on perception data 

While crash data is the primary data source in road safety assess-
ments, it is not always available, particularly in low-income countries 
where their official data only capture 17% of road fatalities (World 
Health Organization, 2018). This study implemented a binary logistic 
regression model to distinguish whether perceived risk locations align 
with crash-based risk locations. Demonstrating an accuracy of 74.13%, 
tells us that it could effectively enhance the reliability of using percep-
tion data as an alternative in road safety assessments when crash data is 
unavailable. 

Our findings also show that the “match rate” between perceived and 
observed traffic risks varies significantly across our studied cities. Note 
that this study, like most existing studies, used crash data to represent 
the objective crash risk. However, this approach has its limitations since 
most traffic incidents and near-misses are not recorded. Referring to the 
Heinrich pyramid, the ratio between near misses and serious injuries is 
around 300:1. While this ratio cannot be directly applied to safety 
studies, it implies that a considerable amount of traffic risk events was 
underrepresented or even excluded in crash-based safety studies. 
Recently, a growing number of studies have provided evidence that 
traffic incidents and near misses can be perceived by local residents and 
road users. Therefore, the “match rate” between perceived and observed 
traffic risks is important, and should be valued-added measure to 
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quantify the complexity of traffic risks. When the rate is low, it may 
imply the community has a higher portion of unreported risk events (e. 
g., near misses and incidents). It could alert the local authorities to re- 
consider whether the crash-based assessment could accurately repre-
sent crash risks, especially for small and rural towns whose crash records 
were less maintained. 

5.3. Limitations and future work 

Despite the research contributions above, we acknowledge that 
examining the relationship between observed and perceived risk is 
complicated and dependent on the methodology selected. For example, 
previous research has highlighted differences in perceived risk between 
pictures, videos, and real-world driving experiences (Charlton et al., 
2014). This evidence demonstrates that the results of this study should 
be taken with caution. 

We also acknowledge that the following limitations exist in this 
study. First, due to the difficulty of data collection, we only obtained 406 
valid responses from six small cities in central Texas. Although the 
sample size is sufficient to support this pilot study, the findings from this 
study might be only applicable to Texas small and rural communities. As 
mentioned earlier, we have observed a significant variation in the 
“match rate” between perceived and observed traffic risks across the 
cities we studied. This variation suggests that different cities may have 
distinct crash risks (perceivable or unperceivable), which could be better 
captured by considering different sets of urban and road features. To 
achieve a higher modeling accuracy and effectively account for these 
variations, we suggest local authorities/researchers conduct an exten-
sive data collection to gather more samples for their site and then build 
tailored models to explore the unique characteristics and crash risk 
factors prevalent in this location. Meanwhile, in contrast to constructing 
models with fixed parameters, utilizing advanced techniques such as 
random parameter modeling has demonstrated effectiveness in 
capturing potential heterogeneous effects of exploratory factors across 
observations (Guo et al., 2020, 2019). This can lead to improved 
modeling accuracy and is a promising avenue for future studies. Second, 
this study majorly collected data from small and rural communities. 
Although it could fill the knowledge gap regarding the lack of rural 
studies, a comparison with urban settings would be highly recom-
mended to reveal the differences in traffic risk perception between 
urban and rural regions straightforwardly. Third, this study primarily 
explored the spatial relations between perceived risks and crash risks. 
But, as previously mentioned, near misses and traffic incidents account 
for a significant portion of traffic risk events and are directly perceivable 
by road users. It would be meaningful to investigate the relations be-
tween perceived risks and unreported traffic risks (e.g., near misses and 
incidents). Lastly, we did not account for pandemic-related effects in the 
crash data, which could certainly have confounded the analysis of risk 
factors based on pre-pandemic data from 2016 compared to data from 
2020 when mobility was heavily impacted. Resultantly, the results re-
ported here could overestimate risk perception related to traffic safety. 
Moving forward, it will be important for future research to re-evaluate 
travel behavior patterns, mode preferences, and risk perception in a 
post-pandemic context. 

Our future efforts will focus on three perspectives: First, we will 
expand the study area and collect nationwide data to produce and 
validate more generalizable results. Second, a comparison between 
urban and rural settings will be added to highlight their differences and 
inspire rural- and urban-specific practices to leverage perception data in 
safety studies. Last, we will explore the association between perceived 
and unreported traffic risks. Currently, traffic incidents and near misses 

can be captured from multiple data sources, for example, mobile apps, 
social media, and traffic flow data, among others. In the future study, we 
will leverage these multi-sourced traffic incident data to investigate how 
they impact people’s perception of traffic risk. 

6. Conclusions 

Traffic risk perception directly impacts road users’ traffic behaviors 
and can lead to different traffic risks. This study used a participatory GIS 
tool to collect perceived risk locations from six small towns in Central 
Texas and compared them to observed traffic risks. We spatially exam-
ined the relations between perceived and observed risk locations and 
statistically identified a set of contributing factors that could make 
crash-intensive areas more perceivable by road users. A binary logistic 
regression model was also developed, which could effectively distin-
guish whether perceived risk locations align with crash-based risk lo-
cations. The main findings are outlined as follows:  

• First, our results highlight that road users’ perceived risk locations 
are not always associated with high crash rates. The match rate be-
tween perceived and observed risk locations varies significantly 
across studied cites. A low match rate could potentially indicate 
more unreported traffic events (e.g., incidents and near misses) in 
this region. 

• Second, some personal and built environment factors can signifi-
cantly impact people’s ability to perceive crash-intensive locations. 
From a personal perspective, people without a valid driving license 
are more likely to identify observed risk locations. Meanwhile, the 
perceptions of low- and middle-income road users show a higher 
match rate with the observed risk locations than the high-income 
people. From the built environment perspective, the regions with a 
higher density and diversity, their crash-intensive zones are more 
likely to align with people’s perceptions. Location-efficient com-
munities are safer in terms of transportation than commonly 
perceived.  

• Last, through the proposed binary logistic regression model, we 
could effectively determine whether perceived risk locations match 
observed risk locations with an accuracy rate of 74.13%. This reveals 
the potential value of using perception data as an alternative to crash 
data for conducting road safety assessments. 
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Variable Name Mean(SD)/Frequency(%) Variable Name Mean(SD)/Frequency(%) 

Perceived location type  Age  
Place of interest (POI) 88 (21.67%) Generation Z 41 (10.10%) 
Intersection 176 (43.35%) Millennials 140 (34.48%) 
Road 103 (25.37%) Generation X 84 (20.69%) 
Neighborhood 39 (9.61%) Bommers 89 (21.92%) 
Perceived poor road surface  Unwilling to response 52 (12.81%) 
Yes 68 (16.75%) Marriage  
No 338 (83.25%) Married or with a partner 283 (69.70%) 
Perceived high speed limit  Divorced, Windowed or separated 52 (12.81%) 
Yes 59 (14.53%) Never Married 71 (17.49%) 
No 347 (85.47%) Total household income  
Perceived many aggressive drivers  Under $50 k 165 (40.64%) 
Yes 158 (38.92%) $50 k-$100 k 123 (30.30%) 
No 248 (61.08%) Over$100 k 84 (20.69%) 
Perceived heavy traffic volume  Unwilling to response 34 (8.37%) 
Yes 239 (58.87%) Employment  
No 167 (41.13%) Yes 237 (58.37%) 
Perceived poor lighting  No 169 (41.63%) 
Yes 66 (16.26%) Retired  
No 340 (83.74%) Yes 65 (16.01%) 
Perceived poor surrounding environment  No 341 (83.99%) 
Yes 33 (8.13%) City  
No 373 (91.87%) Caldwell 31 (7.64%) 
Perceived many bikes and pedestrians  Copperas Cove 67 (16.50%) 
Yes 29 (7.14%) Harker Heights 86 (21.18%) 
No 377 (92.86%) Huntsville 123 (30.30%) 
Number of cars within your household 1.48 (0.86) Madisonville 12 (2.96%) 
With a valid driving license  Nolanville 87 (21.43%) 
Yes 353 (86.95%) Road density (mile/square mile) 0.98 (0.38) 
No 53 (13.05%) Traffic exposure 2.37e7(2.96e7) 
Length since licensed  Percent of zero-car households 0.05 (0.05) 
<1 month 1 (0.25%) Percent of one-car households 0.39 (0.18) 
1 month to 1 year 54 (13.30%) Percent of two-plus-car households 0.56 (0.19) 
1 year to 5 years 52 (12.81%) Gross residential density 1.38 (1.38) 
Over 5 years 267 (65.76%) Gross population density 3.49 (3.24) 
Never licensed 32 (7.88%) Gross employment density 2.37 (5.44) 
Involved in crash in past two years  Jobs per household 5.47 (25.94) 
Yes 49 (12.07%) Employment and household entropy (trip based) 0.53 (0.21) 
No 357 (87.93%) Employment and household entropy 0.55 (0.25) 
Received any citation in past two years  Regional diversity 0.42 (0.33) 
Yes 111 (27.34%) Street intersection density 62.24 (68.47) 
No 295 (72.66%) Jobs within 45 min auto travel time 1.46e4(4.48e3) 
Gender  Working age population within 45 auto travel time 1.62e4(6.93e3) 
Female 190 (46.8%) National walkability index 7.55 (2.65) 
Male 216 (53.2%) Percent of low wage workers 0.32 (0.14) 
Education  Percent of medium wage workers 0.38 (0.09) 
No Bachelor’s degree 165 (40.64%) Percent of high wage workers 0.29 (0.13) 
Bachelor’s degree or higher 204 (50.25%) Smart location index 57.55 (26.57) 
Unwilling to response 37 (9.11%)    

Appendix B. Statistical tests for association assessment.  

Chi-square test Wilcoxon signed-rank test 

Variable name χ2 p-value Variable name W p-value 

Perceived location type  41.00  0.000*** Number of cars within your household 20,345  0.987 
Perceived poor road surface  1.57  0.210 Road density (mile/square mile) 22,577  0.060 
Perceived high speed limit  1.77  0.183 Traffic exposure 19,464  0.445 
Perceived many aggressive drivers  0.01  0.929 Percent of zero-car households 23,151  0.017* 
Perceived heavy traffic volume  3.75  0.053 Percent of one-car households 12,671  0.000*** 
Perceived poor lighting  0.94  0.333 Percent of two-plus-car households 27,741  0.000*** 
Perceived poor surrounding environment  2.45  0.117 Gross residential density 15,136  0.000*** 
Perceived many bikes and pedestrians  1.42  0.234 Gross population density 13,214  0.000*** 
With a valid driving license  5.11  0.024* Gross employment density 12,787  0.000*** 
Length since licensed  9.334  0.053 Jobs per household 15,389  0.000*** 
Involved in crash in past two years  2.50  0.114 Employment and household entropy (trip based) 17,452  0.013* 
Received any citation in past two years  0.31  0.578 Employment and household entropy 17,755  0.026* 
Education  4.09  0.130 Regional diversity 16,815  0.003** 
Gender  1.12  0.289 Street intersection density 14,249  0.000*** 
Age  1.54  0.820 Jobs within 45 min auto travel time 22,967  0.027* 
Marriage  3.04  0.219 Working age population within 45 auto travel time 26,607  0.000*** 
Total household income  14.11  0.003** National walkability index 15,238  0.000*** 
Employment  1.17  0.279 Percent of low wage workers 18,960  0.232 
Retired  0.30  0.582 Percent of medium wage workers 22,433  0.078 
City  101.24  0.000*** Percent of high wage workers 21,100  0.530    

Smart location index 14,703  0.000*** 
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* p < 0.05, **p < 0.01, ***p < 0.001. 
Chi-square tests were performed with categorical variables. 
Wilcoxon signed-rank tests were performed with numerical variables. 
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