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A TOPOLOGICAL STUDY OF THE LEVEL CURVEZ OF HARMONIC FUNCTIONS

INTRODUCTION

It is kXnown that the level c;lrves of any function f(x,v) which is
harmonic in a simply connected domain form a curve family which is regular
(locally homeomorphic to parallel lines) in the neighborhood of every point,
with the exception at most of an isplated set of points at each of which the
curve family has a singularity of the multiple saddle point type. The proof
that these local properties are sufficient to characterize topclogically the

level curve families of such harmonic functions is the main task of this

aper. This generalizes some of the results of several peapers by W. Karlan*

s

in which curve families which were regular (without sinpgularities) in the en-
tire plane were considered. It was proved in these papers that (1) every such
curve family 1s the level curve family of a harmonic function; (2) every such

family 1is the solution famlly of a system of differential equations . t{x,y),

dt
g% = £(xX,¥); and (3) the farlly can be decomposed into the sum of & denumerable

cocllection of ncn-cserlapping subfamilies each homecmorphic to the parallel

lines of a half-rlane. These results are all extended in this reper to the

* A detailed bibliography of papers referred to in the introductios
and the body of the text is appended. Roman numerals in brackets refer to the
bibliography.
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more general type of curve family with isolated branch points (i.e., multiple
saddle points). |

Section 1.0 is devoted to snumerating, without proof, some of the
rere imnortant properties of curve families ¥ which nre resular in some region
? o>f the orien-ed plane n. These thecrems essentiially stem from the work of
Foircare ard B:niixson or cirve families defined br a svs=er > differentisl
equetiors. Tnit tha <heorems listed in tals section are toypological in charac-
ter was shown by Kiplan, from which source they are guoted. In particular,
neighborhoods of points and arcs, the existence of cross-sections, and the
limit points in n of an open curve are discusséd. Several importsnt clasgical
theorems are given; for example, Theorem 1.5-3 which states that interior to
every closed curve is a singular point, and Theorem 1.k-4 which sczys that an
open directed curve which is bounded but has no singular point as a limit point
in one direction is asymptotic to a clocsed curve.

Finally, the important Theorem 1.6-1 due to Whitney is given. This
theorem states that if the curve family is orientable it is always possible to
find a function f{r,t) (p & point of R, t a~real rarameter) which may be inter-
preted as defining a continuous flow of particles along the curves of the'
family.

In Section 2.0 we restrict ourselves to curve families which are
regular everywhere in n exceyt for 1solated singularities. This set of sinpu-
larities 1is thén gshown to be both élosed and denumerable. The notion of index
of a regular curve family Is defined and two theorems are guoted from
Kerekjarto., The first of these (The;fem 1.2-1) gives the arithmetic relzticn
between the sum of the indices at all sinsular points and the topological in-

variants of the surface (with boundary) on which tke curve family is assumed
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to be defined; the second (Theorem 1.2-2) gives the index at a branch point in
terms of its multiplicity. Figure 1 gives a few pictures of isolated singu-
larities, and Figure 2 an example of a curve family with only isolated
singularitiag,

In Bection 3.0 we meke our final restrictions on F, namely that it
be regular in a region R consisting of all of n except for an isolated (de-
numerable) set of singular points B, at each of which the curve family has a
‘singularity of the branch peint type.(Figure la). A series of theorems is
then proved which mekes it possible to divide the curves of F into two classes{
the fegular curves, which extend to infinity in each direction, and the branched
curves, which havea branch point as limit point in at least one direction. It
%s shown that the collection of branched curves deconmposes into gubfamilies
which are actually connected, one-dimensional complexes with branch points as
vertices and branched curves as l-cells} these subfamilies are called trees
(Fizures 3 and 4). The use of this term is Justified by showing that not only
deces F contain no closed curves, but thet there are also no polysons formed by
branched curves, i.e., the trees contain no l-cycles (Theoren 3.2-1).

At this point two important potential difficulties present them-
selves, both concerned with the distribution of the branched curves as sub-
sets of n., PFirst, it must be shown that the individual trees are not patho-
logically imbedded in n; and second, the q?estion of how the collection of
trees 1s distributed on n must be examined more closely, as it may be seen, for
example, that the cclleétion of trees crossing a single cross-section Pq may be
s0 large that the points of intersection with PQ are dense on pq (see Figure 7).
The first question is settled by eatablishing a numbering gystem for the curves

of a tree (Theorem 3.k-1) which In a certain sense chafacterizes the tree
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{(Theorem 3.4-2); anq then noting that the tree may be mapped homeomorphically
onto a model tree in the xj-pldne made up of struight line segments and that,
by virtue of a theorem of Adkisson and Maclane, the homeomorphism may be ex-
tended to all of n. The second guestion is taken up In the next section.

Finally, we note that the complementary domeins of a tree and their
boundary curves (which will be called maximal chains) are discussed and a
notation established for them. They play an important role in later sections,
particwlarly 5.0.

Section 4,0 has as its purpose the generalization of the theorem of
Kaplan which states ﬁhat any family F, regular in a simply connected domain,
may be given as the family of level curves of a continuous fungtion without
relative extrema. The desired generalization (Theorem 4.1-4) is achieved by
making certain cuts in n extending from branch points to infinity along trees,
i.e., by removing certain chains of branched curves and their endpoints from
each tree; this being done so as to leave g gimply connected open subset R*
of n in which F*, the curves of F f1lling R*, 18 regular without singularities
(Figure i, cuts indicated by heavy lines)., Then, applying the theorem'of
Kaplan mentioned above, there must exist a function £* continucus on R* and
with the curves of F* as level curves. It is then shown that this function
may be extended to a function f defined on all of 7, which has the curves of
F as level curves and takes the same value on every curve of & given tree.

‘"The cutting operation described above is made possible by Theorem
h.lzl, which in effect settles the second possivle difficulty mentioned above,
This theorem states in essence that 1f we choose any point p of n and consider
the closed concentric circular dfécs Kn of center p and radius n, then for any

n, there are at most a finite number of trees which intersect K, on more than
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one ofhtheir curves. Thisg enables us to choose cuts so that they recede to
infinity but still include évery branch point.

In Section 5.0; it is shown that there exists a decomposition of F
intc a denumerable collection of subfamilies, S(ax), each consisting of all
curves crossging a cross-section rj(a) which extends from a point on a curve
C¥, called the initlal curve of the gubfamily, to infiﬁity. Each set S(a) is
homeomorphic as » curve family to the lines ¥y = constant of the upper half-
rlane, with C* mapring onto the line Yy = 0 and fj(a) onto the x-axis, Two
families S(a} and S(B) of the decormposition can overlap only on their initial
curves. In the event that our curve family F is exactly the level curves of
the real part of an analytic function, ther this is actuslly = decomposition
of the Riemann surface of the inverse functicn into fundamental domains,
Figure 4 shows such a decomposition by indicating with dotted lines the cross-
sectlons ri(a).

Finally, in Section 6.0, we show that every curve family F has a
complementary family G (Theorem 6.1-2) where we mean by a complementary family
of F a curve family of the same type, with the same sinmularities and to the
same multiplicity, and such that each of its curves is a cross-section of F.

\

The method of proof is to first note the existence of = complementary family
G* of F* in the region R* (= n - the 'cuts'), which was demonstrated by Karlan,
and then to modify G* near the cuts in such a way that when we replace the cuts
we get a family G of the desired type. The existence of con:inuocus functions

f and g with the curves of these families as level curves enables us to define
2 map T of n into the complex w-plane as follows: T(p) = (u,v), where u = f(p)
and v = g(p). This map carries the curves of F onto the lines u = constant

and is light and interior; hence, by Stoilow, 1t is topologically equivalent to
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an analytic function. Thus, there is a homeomorphism h from either (1) the
domain Daoconsisting of the z-plane, or (2) the domain Dl conslsting of
|z‘< 1, onto n such that P(z) = T[?(z) is analytic. Then the level curves

of  z) are homeomorphic under h to the family F, i.e., F is homeomorphic to

the level curve family of a harmonic function. It also follows at once that F

is homeomorphic to.a family defined by & system of differential equations.

1.0 -GENERAL PROPERTIES OF REGULAR CURVE FAMILIES IN THE PLANE

This section contains the statement of basic definitions and theorems
from W. Kaplan [IV] and [H] whieh will be used in this paper. Proofs will be

omitted.

1.1 Curve ¥amilies Filllng a Region

An open curve will mean a homeomorphic imsge of .an open interval, a

closed curve a homeomorphic image of a circle, and a half-open curve will mean

a homeomorphic image of a half-open interval. A curve will mean any one of
these threq. A family F of curves will be sald to fill a subset R of the Eu-
clidean plane n if every curve of F is in R and every point of R lies on one
and only one curve of ¥. If U is a subset of R such that each curve C of F
intersects U In a set UnC each of whose components is a curve, then we denote
by.F[p] the curve family £illing U whose cufves are the components of CsU for
all C in F. If the curve family F f1lls R and the curve family G fills S,

then F and ¢ will be ©alled homecmorphic if there is a homeomorphism of R onto

S such that the image of each curve in F is a curve in G. If p is a point of

R, R filled by a curve family F, then C, will denote the curve of F throuéh P.

b
i(R) will denote the interior of R.
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1.2 Regularity

! Henceforth, F will denote a curve family filling a subset R of T,
the oriented Euclidean plane. If R, denotes the rectangle ’x{s 1, iy}S?l, of
the xy-plane, and F4 the family of lines y = constant filling Ry, then F will
‘be said to be regular at a point p of R if there is a set U(p) to which p is

— —_—
i

U(p)i 1s homeomorphic to F,. F is

]

interior (relative to R) and such that F

then regular in R if F 1is regular at every point of R. A cross-section of F

(through the point r) is an arc Pa (to which r is interior), such that pg lies

in a subset R' of R which is open relative to R, and such that each curve of

: F[B} meets pg at most once. An r-neighborhood of a point p of R will mean
a set U(p) which (1) contains p, (2) is open relative to R, (3) whose closure
5753 lies in R, and is moreover such that (4) F[??;jl is homeomorphic to the

family Fl filling the rectangle Ry (above) of the xy-plane in such a way that

the inverse images of the lines ‘xi = 1 are cross-sectionsa,

Theorem 1.2-1: If a family F fills an open region R and is regular

r
in R, then each curve of ¥ is either open or closed in x. 'IV,1|
e )

Theorem 1.2-2: If a family F fills any region R and is regular in R,

then every point p of R has an arbitrarily small r-neighborhood U(p), end there

is a cross-section pq with p as endroint. If p is in the interior of R, then

there is a cross-section through p. Moreover if st is any arc lying on a curve

C of F, then there is, within any € -neighborhood U (st), an r-neighborhood
? €

containing st. lYI,l and IV,8j

- .
Theorem 1.2-%3: Let R = RIQRQ where F[ﬁl§ and FtRé] are both defined.

i

If p is an interior point of R and F{?i} and FL?%j are both regular at p, then

F is regular at p. [VI,?}
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1.3 The S-Families

By a homeomorphism y' = f(y) defined for 0<y<2, and with
£(O0)<f(l) = 1<f(2), points (O,y) on the line segment x = o, 0sy<2, can be
identified with points (1,y')-on the line x = 1, With this identification
made, the .rectangle Osxx1l, O£y=<2 plus the points (1,y') for O<y'<f(0)
and f(2)<y'< 2 becomes homeomorphic to a region G of n and the lines, y =
constant, filling the rectangle become a2 curve family Fl filling G. Any curve
family homeomorphic to Fl @(Gﬂ » where 1(G) denotes the interior of G, is

called an open s-family. Any curve family homeomorphic to Fl{:i(G)nG*j where

G* is the set of images of points (x,y) of the rectangle with y =21, will be

called a half-open s-family.

Theorem 1.3-1: Let F be a regular curve family filling the set R of

n. Let C be a closed curve of F such that F is regular at every point of C.

If C is in the interior of R, then there is a set Ro such that F[RO] has C as

an element and is an open s-family. If C is in R-i(R), then there is a set Ro

such that F[Ro—} has C as an element and is a half-open s-family. [VI, iia
- il i

1.4 The Sets L(C+) and L(C-)

If C is any open curve in F and it has been given a direction, then

by a positive (negative) limit point of C will be meant any point q which is

thé 1limit of a sequence P, = f(tn), where C is the imege of O<t<1l under f
and tn—->l (.tn—>0). The set of all positive (negative) 1limit points of the-
directed curve C will be denoted by L(C+) (by L(C-)). L{(C) is defined by
L(C) = L(C+) UL(C-). Clearly, L(C)IC is empty since C .is homeomorphic to
O<t<l.

Theorem 1.4-1: If C i1s an element of a regular curve family F, and

L(C+) contains a closed curve D of F, then L(C+) = D,
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Theorem 1.4-2: If C is an element of a regular curve family F and

if L(C+) = D, a closed curve of F, then to every point p of C corresponds an

€ -neighborhood, IIE(;ﬁ, such that every curve of F crossing UE (r) has D as

its limiting curve in (at least) one direction. [?V,ldw
-

Theorem 1.4-3: If F is a regular curve family filling R and p is in

R and, moreover, in L(C+) for some curve C of F, then every point of the curve

Dp of F through p is in L(C+). EV}%}
—

Theorem 1.k-k: If C is a directed open curve of F which 1s bounded

in the positive direction, but has no boundary point of R as positive limit

-
point, then L(C+) contucins (and hence 1s equal to) a closed curve of F. [ﬁv,l}j

The above theorems still hold if we replace L(C+) by L(C-).

1.5 Bays

Let the curve C of F meet the cross-section pq et points t and u
interior to py. Denote by (tu); and (tu), respectively the arcs on pq and C
determined by t and u and moreover assume t and u taken so that these arcs
intersect only at t and u,‘hence forming a simple closed curve X. If K con-
tains nelther p nor q in its interior, it is celled a Egz.

Theorem 1.5-1: If C is a closed curve of a regular curve family

F, and D is a curve of F such that L(D+) = C = L(D-), then an arc of D forms

part of a bay ipn F. The bay is interior to C if, and only if, D is. [?V,9é]

Theorem 1.5-2: Interior to a bay of a regular curve fanily F filling

. =
R there is a boundary point of R. [?V;lef

Theorem 1.5-%: Let C be a closed curve of a reguler curve family F

£illing R. Then interior to C there is & boundary point of R. [?V,lé}
poes )
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1.6 Orientable Regular Families

A regular curve family F f£illing the open region R is sald to be
orientable if it 1is possible to assign a directlon to each curve of F in such
a fashion that for each point p 6f R there is an r-neighborhood in which the
arcg are all similarly directed. Whitney [?f] has proved the following
theorem:

Theorem 1.6-1: If F is orientable and fills R, there is a function

f(p,t) defined for each p in R and t in -o<t<-+m, and simultaneously con-

tinuous in both variables, vwhich assigns to (p,t) the unigque point g = f(p,t)

in R lying on the curve C through p. f(p,0) = p and f(p,t) moves continuously

in the positive (negative) direction on C 2s t increases (decreases). If C is

an open curve, then for p fixed and on C, f(p,t) is a homeomorphism of

A

-o<t<<monto C.

2.0 CURVE FAMILIES VITH ISOLATED SINGULARITIES

2.1 TIscolated Singularities

By an isolated singularity of a regular curve family filling a region

R will be meant any isolated boundary point b of R, 1i.e., there is a neighbor-
hood of b which contains only the point b of - R. From this point on we

will only deal with families F which are regular in the ertire plane exceypt

-

for isolated singuldrities. In 1 ], W. Kaplan has completeiy classified the

—

structure of such a family in any neighborhocod of an isolated sinmuler point

(containing no other singular point).

Theorem 2.1-1: If the curve family F fills the region R consisting

of the entire plane n except for isolated singular points, and F is regular in
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R, tkhen the set of singulerities is closed in n.

Proof: Let S(R) = n - R denote the set of singuler points. Suppose
that p ie o limit peint of 3(R), then p is not in S(R) since the points of
this‘set are isolated from each other. We shall also prove p cannot be a
regular point whence it follows that S(R) has no limit points and is therefore:
closed. Now, corresponding to any regular point p, there is a set U(p), to
which p is 1interior relative to R, and a homeomorphisﬁ f of U onto Ro carrying
F{?:}onto Fé (section 1.2). It follows that either f(p) is interior to R,, or
that if f(p) is o; an edge of R, then the inverse image of the entire edge is
on the boundary of R, since p is an interior point of U relative to R. The
first is impossible 1f p is to be 2 limit point of S(R), and the second is im-

possible 1f S(R) is to be an isclated set of points.

‘Theorem 2.1-2: The singularities of the family F above are

denumerable.

Froof: Any non-denumerable subset of n must have a point of ac-

P4
cumulation vhich can certainly not be an isolated point.

2.2 Index

Following the definiticn giﬁen in Kerekjerto, [ix] s, b, 251 ff., we
define the 32995 of an 1solated singularity on a surface as follows: Let K
be any simﬁle closed curve contalning the isolated singularity b but no other
sinzgularities in its 1interior and let Ul’ v ey Un be a covering of K by r-
neighborhoods. Then; it Is clear that we may rerlace K by a simple closed
curve K' in gig Uy and such that K' is a polygon composed of sides which are
alternately {f) arcs of curves of f and (2) cross-sections of F. Every vertex

of the polygon K' is the intersection of a cross-section and a curve of F; we
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cell it an internal vertex if the curve of F which forms the side at thet ver-
tex enters the interior of K' at the vertex and in the other case we cull 1t

van %@3‘ vertéx. If we denote the number of internal vertices by € and ex-
ternsl vertices by & then the index is p{b)y = 1 - e—i—;——e— (see Figures la and 1b).
The following theorem due to Hamburger is proved in Kerekjarto, loc. cit.

Theorem 2.2-1: If Z is a closed two-dimensional manifold (with boun-

dary) of genus p and r boundary curves, and F 2.3 a curve family which is

regular on(}' except for isolated singularities bi’ i=1, .. ., n, then
n B
Z p(by) =2 - (2p + r) 1f & is orientable.
i=1 :
n
Z p(bi) =2 - (p+ 1) if Fis non-orienteble,
i=1

We also quote the following from the same source:

Theorem 2.2-2: If b is an isolated singularity of a regular curve

family F, and the number of sets L(C+) and L{C-) which egual b is k, then the

1 - X/2. (See Figure la.)

index, p{(b)

‘.

3.0 CURVE FAMILIES WHOSE SINGULARITIES ARE BRANCH POINTS

%.1 Branch Foints

If b is any boundary point of K, Rex, and F is a reguler curve
family filling R, and if b 1s such that there is a neighborhood U(b) for which
FEJ(b)-b] is homeomorphic to the level curve family of the real pert of
£(z) = z, n>>1, under the homeomorphism g carrying U(b) onto |z} <1 with b

going onto z = O; then we say that b is a branch point of F, that n is the

multiplicity of b, and thet the neighborhood U(b%) together with the
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homeomorphism g is an admissible neighborhood (U,z) of b (see Figure la for a
branch point of multiplicity 4). 1In the case of a branch point b of multipli-
" ¢ity r, then there eare precisely 2n curves in F[ﬁ] which may be directed sc
that L(C+) = b. It follows that the multiplicity is independent of the choice
of the neighborhood U. A branch point is clearly an isolated slngularity of
F; hence, if ¥ fills the entire plane except for branch points, Theorems 2.1-1
énd 2.1-2 will apply to P and R. Henceforth, this will be the only type of
curve family considered; thus F will always mean a curve fam!ly regular in

n - B where B is a set of branch points; and hence B 1is closed, discrete and

denumerable, and R open. Such a family will be called a branched regular curve

family filling n = RUB.

Theorem 3.1-1: The level curves of a function f(x,y) harmonic in a

simply-connected dimain are g branched regular curve fenily filling the plane.

This theoremvis well known and thé proof will not be gziven. ‘A de-
tailed proof may be found in Morse [%é], pp. 6-7., Throughout most of this
paper we will use the EBuclidean plane n zs a homeomorphic model for an open
simply-connected domain. It should be noted, however, that the converse of
the above theorem, proved in Section 6.0, states that given a branched regular
curve family F filling an open simply-connected domzin, then thére exiasts a
function f(x,y) harmonic on the finite plane, or such a function harmonic on

the unit circle, whose level curves are homeomorphic to F.

3.2 Cheins and Polygons of Branched Curves

As remerked above, from this point on, only branched regular curve
familes F filling the oriented planc, n, will be conzidered. The collection of

w

branch points will be denoted by B and the region n - B, in vhich F is reguler,
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by R, We may agsume the orientation in n ziven by a definite fixed homeo-
morphism h of the xy-vlane (or z-plene) onte n, and we will use only admissible
and r-neighborhoods whose nesocizted hamecmoryhism to the xy-rlzne is such that
if we return t- the neighborha>: in n via h then the res:lting homeomorphism
of the neighborhood onto itself is orientation preserving.

We shall alsc assume that all the curves of P are directed, so that
there shall be no ambiguity in the use of the symbols L(C+) and L(C-), al-
though we shall at times find it convenient to redirect curves of F. If

L(C) = 0, we call C a regul:r curve, and if L(C+) = beB, i.e., = branch point,

we shall say that C is a brancheé curve, branched at the positive end at t; we -

also call b the positive endpoint of € in this case. Similarly if

L(C-) = b'eB. We call ( coubly-branched if both L(C+) and L(C-) have endpoints,

and half-branched if only one has. It will subsequently Le shown that these
are the only poésibilities, i.e., L(C+) = 0 or = b, a single branch point,
(2nd similarly L(C-)}), so we shall not give eny name to the as yet possible
type of curve which might have more than one point in L(C+), (or L(C-)).

If beB the curves C which have b as endpoint tozether with their end-
rcints are called the star of b, 53t(t); and without their enapoints, except b,

the open star of b, open St(b). If b is of rwultiplicity n, then there are at

rmost 2n curves in St(b); it will be shown later that there are exactly 2n, 1i.e.,
that the two endpoints of a curve of F cannot colncide. It 1is useful to note
that by virtue of this remark and the fact that B is denumerable there are at
most a denumerable number of branched curves in F.

If Cy,. . . C, are n22 distinct branched curves of F with their end-

reints, which may be so directed that L(Cy+) = by = L(C1+l-), byeB and by
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distinct for 1 =1, . . ., n - 1, and 1f in addition neither L(Cy-) nor L(C,+)

C_a simple volyson of branched

is any of the bi's, then we call Cl’ - Ch

curves or a chain of brunched curves according to whether or not there is a
bo€B such that'L(Clu) = Dby = L(Cn+). A single curve will be called a chain 1Ff
its endpoints dc not coincide ané will be shown below to always be a chain,

i.e., as already remarked it will be shown that & curve cannot have two co-

incident endpoints. In brief, the curves Ql, e . Cn’ together with Lthelir
n

endpcints, for n 21 will form a chain, if the setL)Ci is homeomorphic to a
=1

n
closed line segment and a simple polygon iféjci is homeomorphic to & simrle
=1

closed ‘curve.

We shall call curves C, C' clockwise adjacent if they may be directed

80 that L(C+) = b = L(C'-), beB of multiplicity n, and in the map of some wd-
missible nsighberhood on 'z'<&.they map onto the radii @ = (1/n)x and €' = 0,
regspectively, of the level curves of the real part of 2T, Becéuse of our re-
strictions and conventions on crientation above this definition clearly is in-
dependent of the neichborhood cheosen, depending only.on the oriertation of .

C', C are a counterclockwise adjacent pair If C, C' are = clockwise adjfacent

palr, and in either case we shall ca2ll them adjacent. A chain Cyy o . . Cn is

called an adjacent chain 1f Cy» Cy,q @re clockwise adjacent for eanch 1 or 1f,

for each i, they are counterclockwise adjacent. We shall also consider in-
finite chains of branched curves: {. - -9 Cyy .,. C—l’co’cl’ .. Cj’ . j}.
If this collection is such that for every k<m the curves Cis - .« C, form s

chain, we shall czll the collection an infinite chain, and every'set,ck, . Cm

a subchain., If the collecﬁion hag no first or last element we shall often

call it doubly infinite and in the opposite case half infinite. A4n infinite
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chain will be called adjacent if every subchain is adjacent. ‘(Figures 2 and 4
illustrate many of the terms defined above.)

Theorem 3.72-1: A branched regular gurve family P filling = can con-

tair neither a1 closed curve nor a simple polygon of branched curves. (See

Ficure 35.)

Proof: We surpose that F does contain a closed curve or simple
rolygon K. We define on thé Xy-plane a family F' filling the surface
F = ‘{(x,y)'yx2 + yzasg}~as follows: (1) we fill the annular domain
Al ='{ki,y)| 1< %€ + ygs:i} wipn concentric circles and (2) we map K with its
interior cnto A, = {(x,y)l x2 4 yzs %}, so that the image K' of the curve K is
the circle x2 + y2 =1l. F' E\]:] is regular and F'[AQ] is regular except for a
possible finite number of isolated singular points bi, e e ey bé lying interior
to or on K;. Any such singular point must be the image of a branch point of F
lying inside K, or on K (if K is a polygon). If b' lies on K' and is a singu-
‘lar point of F', then in some neighborhood of b' there nmust be at least three
curves Cy, Cg, C5 which can be directed so that L(Ci+) =Db', 1.e., at least one
from the interior of K'. Hence the index p(b')<-1/2 by Theorem 2.2-2. If b'
is interior to K' and it is the image of a branch point of multiplicity n,
then the index p(b') =1 - n< -1, again by Théorem 2.2-2. Now by Theorem
1.5-% the family F' must contain at least one singularity, hence the;sum of the
indices of F' filliﬁg(3 is < -1/2, i.e., is negative. This, however, contra-
dicts Theor=zn 9.2-1,.which says that the sum of the indices must be 1 = 2 -
(2p+r) = 2 - (2.0 + 1) since the genus of J1is O and it has 1 boundary curve.
Thus it is impoésible for F to contain & closed curve or a simple polyson.

Theorem 3.2-2: A branched regular curve family F filling = can con-

tain no bays. (See Figure 6.)
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Proof: Suppose F contains a bay formed by the arc (tu)lon the cross-
section pq and the arc (tu)2 on the curve C of ¥F. We will let ¥ denote the
. : *
simple closed curve (tu)lu(tu)é and £ (X) its interior. Then p and q lie in

»* *
*%K), the complementary domain to «©(K), and we assert that Fl = F[?Q(}(Ki]
¥

O
is a regular curve family except for possible isolated singularities in O (K).
It is clear that Fl is regular in {;(K) except at branch printa, since (;(K)
is an open set of n. And at every point of K - (tu)l,Fl is repular, since, if
8 18 any such point, then s resular neighborhood U(s) inmnx - (tu)1 will furnish
a regular neighborhood, UfW{%U<C¢(KE], of 8 in Fl' This i3 true since the
image of this intersection under the homeomorphism of U(s) onts Roin the xy-
rlane will be the image v = 0 of C together with all of the rectangle to one>
side of this line. Similarly, if s is any pcint Qf K - (tu)ﬁ, we may choose
an r-neighborhood cf s in 7 - (tu)(,’3 such that the cross-section (tu)l in the
neighborhood maps on a line x = 0 of RO (qu, Lemma p. 15%). The image of the
interseétion of this neighborhood with K%Cf?K) is the line x = ¢ pluas all of
the rectangle to one side of this line, whicﬁ will clearly be an r-neighborhocd.
Finally, if we take an r-neighborhood of %t or u such that (tt)l mans on X = O
and t oﬁ the origin, so that C is the line y = 0, then the imuge of that part
of this neighborhood in Kuxﬁi(K) will be the part of R_ in one guadrant plus
the part of the lines x =0, y = 0 bounding i1t; again this is an r-neighborhood.
Now we map Kuxjf(K) homeomorphically éﬁﬁo the rizht half R, of the
circular disk R = {(X,y)j x° + ygs;i} in such a way that (tu)l meps onto the
di&me@g? X = 0. This maps F, on a family Fi regular ih R1 except for possiblé

singularities in the interior. Reflecting Rl in the y-axia onto RE’ the right

éemi-circle, will give us a family Fé, image of_Fi, regular in R? (and on its’
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boundary) except for poésible branch peints in its interior. Hence we have

defined 2 family ¥, by F{%i? = Fi and Ff§~? = 5, regular in R except for

el

—

possible branch polnts, by Theoren i.2~5. The familj F contains at least two
branch points, since by Theofem 1.5-2, the bay must contain a singularity. The
index at every such singular point is at most -1, but the sum of the indices
must, as 1in the prcvious thgorem, be +1. Hence cur azasswirtion that F con-
tained a bey is contradictofy.

Theorem 3.2-%: TIf L(C+) is bourided it consists. of a single branch

roint. (See Figure 7a.)

Proof: First,rwe note that by virtue of Theorem 1.4-k, together with
Theorem %*.2-1, every curve of F which 1s boundeé in thke positive direction must
contain at leazst one branch poipt in L(C+). Second, note that L(C+) is bounded
end closed, hence it can contein ot most a finite number of branch points.
Finnlly, if L(C+) contains more fhan a single branch point, i.e., if L(C+) £
beB, then for each branch point'p it contains, it must contain also at least

two adjacent curves of St(p). This is clear if we examine the image of the

admissible neighborhood of p, i.e., the level curve family of 7€ (z"). The imoge

of C cannot coincide with any of the 2n radial curves © = (k/n)w, k o, 1, . .
.3 2n, since p is not'its endpoint; hence it must clearly intersect the neigh-
borhood an Infinite number of times in at least one of the sectors between
these radii, and therefore have positive limit points on the two radii bounding
that sector; whence L(C+) contains the curves on which lie the inverse images
of the two redii, i.e., two adjacent curves ofASt(ﬁ), by Theorem 1.Lk-3, |

Thus, if we assume that L{C+) contains more thaﬁ a single branch

point, then it must contain a certain finite collection of curves branched at

these points, and hence a collection of chains. In this collection we will
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consider chains C%, -+ . C, which are maximal in the sense that a chain is

maximal if there is no longer chain in the coliecticn conteining it as a sub-
chain. For such a chain, the initizl and finil curves must each be half-

branched, for if cither, say for examrle Ci, were branched at each end, then

1
(since there are no polyzons in F), at the end not already linked to the chain,
é.g., ut the negative end, there would be = branch point, b = L(Ci-), and in
St(b) would be a curve C' in L(C+) adjacent to the end curve Ci of the chain

and yet which was not slready in the chain. C' could thus be added to the

. ¢ This is contrary to

chain to form a new and longer chain, ¢', ci ny -

l}
the‘definition of maximal chain, For the i-th maximal chain we shall let Li
denote the 1limit set of the unbranched end of an arbitrarily chosen but fixed
end curve of the chain. Now number a subcollection of the maximal shains =e
follows: Choose any one of the chains as the first, then take any maximal
chaln of Ll_as the second and in general choose as the k-th chain any maximal

chain of Lk- Clearly, Li must contain a maximel chain since it must just

7
as L(C+) contain a branch point together with other points of L(C+) =2nd hence
two adjacent curves, which can be extended to a2 maximal chain. Moreover, at
any stage Li may not contain the i-th chain itself for then one of the end
Eurves of the chain would be contaiﬁed in its own limit set. Moreover, it
cannot contain any preceding chain for we have the sequence L(C+) :LI:DLQ:D'
and again we get a curve contained in its own closure. By this process we
soon exhaust all of the n brénch paints of L(C+), although on the assumption
that L{C+) could contain more than a single branch point which we mede ini-

tially, the process set up above cannot terminate. Hence it is seen that our.

assumption cannot be true and that the theorem is correct.
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Theorem %2.2-4: An arc pg of R = - B i8 a cross-section i1f and

only if it meets euzch (finite) chain (including one-element chains, i.e.,

¥
curves) of F at most once. (See Figure 7b.)

Proof: If pg meets each curve only once, it is by definition a
crosg=-section. o

ILet K be either a single curve or a ch%in of curves of F and let pg
be a cross-section which is agsumed to meet K more than once. We may find
points i, u on pg such that the arcs (tu)1 znd (tu)2 on K intersect only at t
gnd u, since the itwo curves can intersect only a finite number of times on any
closed arc on K, s & consequence of the definition of a cross-section plus the
fact that for any curve C, L(C)NPC = 0. Ve denoﬁe by K' the simple closed
curve (tu)lu(tu)g. By Theorem 5.?-3 togethef with the fact that the number of
branched curves with endpolnts in K' is finite, we can find 2 curve C passing
through a point r interior to K! and which leaves K' in both directions., Let
m,n be the points on (tu):,L and on C con opposite sides of r at which C first
leaves K'. Then (mn)1 orn (tu)l and (mn)g on C form a simple closed curve in-
terior to K' and intersecting the boundary of K' along (mn)1 but it no other
points. It follows that t and u are exterior to this simple closed curve which
is therefore & bay, formed by the cross-section (tu)l and the curve C. This
contradicts Theorem 3.2-2. Thus, 1t is necessary th:t a cross-section have only
one point on ezch curve of ¥ or chain of T,

Theorem 3.2-5: L(C+) is either empty or contains a single branch

point.
Proof: We have already proved this theorem in the event that L(C+)

is bounded, and we have also shown that if L{C+) contains more than a single
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branch point, then {t must contain at least two curves adjacent at that branch
point. From this we can conclude that if the theorem is untrue, then L{C+)
must contain a regular point p. Consider the image in Ro of an r-neighborhood
of p. Let (xn,yn) be a sequence of points approaching (0,0), the image of p.
These clearly lie on an infinite number of different lines y = ¥y, each of
which 1s an image of an nrc of C. Hence C crosses any cross-section through

p an infinite number of times, which contradicts Theorem 3.2-4.

3.3 Trees

In this section we define an equivalence relation which decomposes
the oriented plane, n, into z collection of disjoint closed sets, each of which
is a sum of curves of F and points of B, and each of which is a tcpologlcal
tree of a certein type which we -define below:

Definition: Let the clcsed set T of the oriented plane be decom-

posable into the sum of an at most denumereble collection of subsets C,s each
closed in n, and satisfying the four following conditions:
(1) Each set Cy

open, or open line segment (whence we will refer to it as a curve).

igs the homeomorphic image of either a closed, half-

(2) Each set Cj has at most an endpoint in common with any Cg,
1 # J; and if we denote by St(h) the collection of all curves with b as end-
roint, then St(b) consists of a finite even number of curves =4,

(3) There isg a unique finite chain c(Ci,CJ) = (Ci’cil’ C Cik’cj)
. for every 1,J; i.e., each curve of the chain having an endpoint in

J
common with the preceding curve as In the definitions of 3.2.

from Ci to C

(4) The sets open St{b), congisting of the curves of St(b) without

their endpoints opposite b, and open C;, consisting of Cy without its endpoints,
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are both cpen sets in T (as a subspace of n).

Then we say that T is a tree. (See Figure 8.) Our use
of this term is much less general than is usual, but since we consider only
this specialized type of tree throughout, there shculd be no confusion in the
use of the term.

The deéomposition of any tree T into gets Ci is unigue quite clearly,
except for the numbering, and therefore we may speak without ambiguity of the
curves of T and Eﬁé endpoints of curves (or, i.e., branch points) of T. Note
that a tree 1s connected and, in fact, arcwise connected by (3) and that by the
uniqueness of the chains of (3) there can be no closed curve in T. Condition
(4) plus the fact that T is closed in n is equivalent to the following state-
ment: If (pn) is any sequence of points of T and P—»DET, then pET and all the
points of Pp after some N will lie either on =2 single curve Ci of T or on St(p)
depending on whether p is not or is an endpoint of some curve of T. In the
language of combinztorial topology eazach tree, as described above, is a locelly-
finite, connected, one-dimensional complex containing no one-cycles. In order
to exhibit this, it would be necessar§ to introduce arbitrarily an infinite
number of vertices tending to infinity on esch curve of the tree homeomorphic
to & half-open line segment. Once this is donhe, the statement is. clearly true.

It 1is clear that any regular‘curve C of a curve family F is a tree
with the decomposition being Cy = C. Now, among the élements of ocur famlly
F we define the relation joins as follows: C is sald to Join C' if end only

if there is a finite chaih ¢(C,C') of curves of F from C to C'. 1If we add to
. this definition that every curve joins itself, then this is easily shown to be
an equivalence relation on the curves of . We denote by TC the eguivalence

class of C, including with each curve its endpoint, i.e., Tg is the set of all
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curves of F which join C together.with their endpoints. These equivalence
classes are disjoint gets and will be shown below to be trees in the sense of

our definition.

Theorem 3.3-1: An erc pq on n is & cross-section of F if and only if

it lies_entirely in R = x - B and hes at most one point of intersection with

each set Tc.

Proof: If pq has only one point in common with each set Tc, since TC
is 1tse1f a sum of curves of F with their endpoints, then it will have at most
one point in common with each curve of F and hence be a crogss-section by
definition.

On the other hand, by Theorem 3.2-4, it is necessary that pq meet any
set Ty at most once if it is 5 cross-section, since if pgq met TC at peints r,s,
then etther Cr’és are the same curve or else there is a chain c(Cr,Cs) either
of which is impossible by that theorem.

Theorem %.3-2: Each set T~ _of a branched regular curve family F is =

tree in the sense of our definition.

Proof: 1In the event that C is a regular cur&e the theorem 1s trivial
since TC = C, &8 already noted. Now let TC contain a singular curve, then it
follows that it contains only such znd at most a countable number, since thefe
are at most a countable number of singular curves in F. Each curve of F, to-
gether with its endpoints, will.constitute & curve Cy of the decomposition of
Tc. Each such set is closed in w, since we inclﬁde endpoints, and 1s homeo-
morphic to either a closed or half-open segment, the latter if the curve ex-
tends to infinity in one direction. Thus (1) is satisfied. Condition (2) is,
however, also satisfied since ezch set Cy has at most an endﬁoint in common

with any set Cyy 1 # j, and, if b is any endpoint, then Sﬁ(b) contains at least
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four curves and always an even nuﬁber, 2n = twice the multiplicity of b as a
branch point. Likewise (32) is satisfied; i.e., the existence of a 'chain
c(C,C*) from CeTp to C'«eTr is part of the definition of Tos and the unigueness
is due to the fact that there can be no pelyzons of branched curves of F by
Theorem 3.2-1. Finally, we prove simultaneously that condition (L) is satis-
fied and that Tc is closed as a subset of n. Let P, be any seguence of points
of TC with a point p of ® as limit point. Now if p 1s & regular point of F,
then we take an r-neighborhood U(p) and note that unless every Py liee on the
same curve Cpk, which is necessarily Cp itself, we have a cross-section through
¢ which must cross TC more than once, gontrary to Theorem %.3-1; and, 1f p is a
branch point, then taking an admissible neighborhood of p, we observe that un-
less we assume all the points p,, n>N, to lie on St(p) we arrive at the same
contradictory conclusion by conaidering a cross-section from p intc one of the
sectors of the admissible neighborhood. Thus we conclude that the theorem
must be true,

We return to a discussion of a tree T which conforms to our defini-
{tion, but is not necessarlily a tree consisting of curves of a branched regular
| curve family. As previously noted, the decomposition of T into curves is
unique, and hence we may refer without ambiguity to the curves and the branch
poihts {or endpoints) of T. Sin;e T ié assumed to be imbeddedAin an orilented
rlane, a cycfic order is induced on the curves of St(b); hence our definitions
of adjacent curves and adjacent chains and so on apply at once to the curves of
T. These concepts will be used below.

It is convenient at this pcint to give some nttention to a theorem
due to Adkisson and Maclane [%] whick states that if T,T' are two homeomorgphic

Peano continua lying on spheres 5,S' respectively, then a hcmeomorphism from
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T to T' can be extended to a homeomorphism of S to S' if and only if it pre-
serves the relative sense of every pair of triods of T. Bv a triod,

t =-{?,E;%}, of T is meant any set of three arcs q,p,¥ in T which have only =
single point, called the vertex, in common. A homeomorphism is said to rre-
serve the relative sense of triods of T if every two triods tl,t2 which>have
the same sense (i.e., both clockwise or both counterclockwise) on S are carried
into two triods ti,té of T' which have the same sense on S'. Let us denote by ®
the plane n plus the point oo and by T the tree Tiplus the point . Assuming
for tﬁe moment that the set T is a Feano continua, the theorem above i3 ap-
plicable to our situstion, and it is a direct consequence of this theorem that
if T,T' are two homeomorphic trees on n and the xy-plane respectively, then

any homeomorphism between them may be extended to a homeomorphism of the planes
i1f and only if the relative sense of the curves ofvst(bl),st(be) is preserved
for every pair of branch points bl,'b2 of T. In order to show that this is a
conseguence of the thecrem, it must be shown that the relative sense of every
pair of triods of T is rregerved if this is true for every triod of T. This
fo;lows from Theorem 6 of the same paper which states that two non-intersecting
triods t; = [91’51;‘i]’ tsy = [ég,ag;Kg] have opposite Sensekon a sphere S if
and only if there exists on S a @-graph whose vertices are the vertices of tl
and t, and whose three (non-interse;ting) arcs.contain respectively the legs

ay and ap, B, and Be,‘Ki and)fg. Now it is clear from condit;on (%) in the de-
finition of a tree (the arcwise connectedness) that'given any triod with vertex
at o, 1t is possible to find at least one triod with vertex at a branch point
of T which does not intersect it but is, with it, part of a ©-graph. TFinally,

note that in a tree T the branch points and @ are the only possible vertices

of triods; The conclusion is immediate that we may restate the thecrem of
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tdkisson and Maclane, 28 we have above, for our own purpose here. It remains
to prove that T is e Peano space. This will be done in 3.4 and also in that
section a numbering system for the curves of T will be established by the use
of which it becomes apparent that it is possible to map the plane n cnto the
xy-plane by a homeomorphism which carries T onto a tree T' consisting entirely
of closed and half-open straight line segments (eech curve with two endpoints
becoming a single line segment, each curve with one endpoint a line segment
plus a ray extending to @ ). Trkis makes it clear that a tree as defined above
actually coincides with our intuitive notion, and that no matter how badly
'twisted' it may be it can actually be straightened cut, by a homeomorphism of
the entire plane, into a rectilinear tree.* Althouzh this result is not com-
pletely proved until Section 3.4, it will be established there independently
of the remainder of this section, and 1t will be convenient to assume it at
this point to be used in the theorems of this section. (See Figure 8.)

We now consider relations between a tree T and its complementary do-
mains. In this connection it is convenient to consider a special class of
adjacent chaina {of curves of T) which we shall call maximal chains. An
adjacent chain of curves of a tree is sald to be meximal if it is not a sub-
chain of any edjacent chain., It is an 1mmediate consequence of our definitions
that a chain of adjacent curves is maximal if and only if (1) it is doubly
infinite, or (2) it is half infinite and.its initial (or terminal) curve haé
only one endpoint, or (3) it is & finite chain and both its initial and terminal
curves have each only one endpoint (i.e., a curve of a tree with only one end-

point extends toc infinity in the direction opposite to that with the endpoint).

* In fact, this may be done so that any particular given chain goes
onto the x-axis.
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Moreover, since u “ree is 2 closed subset of n, so also is every maximal chain
e closed subset =nd is in fact an open curve extendinr to infinity in each
direction, thus dividing the plane into two Jordan domains.

Theorem 5.%-3: If T is itself & single curve, then it is its only

maximgl chain. When T contains more than one curve, then (1) each curve of T

is contained in exzctly twc maximal chains which intersect only on this curve

and (2) every branch point is contained in exmctly 2n moximal chains whose only

common point is the branch point itself, Conversely, the intersection of any

two maximal chains cun be empty, be a single branch point, or, at most a curve

of tHe tree.

Proof: Let Cl’ . e . Ck be any clockwise adjacent chain of two or

more curvea. Now if C1 has only one endpoint, then there 1s no curve C' ad-

Jacent to C; such that C', Ciy « -« Ck is a clockwise adjacent chainjy but, if
Cl hes two eadpoints, *hen there is exactly one curve C' such that C’, Cys -

Ck is = clockwise adjacent chain. Similar remarks apply to C If neither C

k’ 1
nor Ck has more than 2 single endpoint, then the chain is maximnl; in any
other case we mey extend the chain, one curve at a time added to the initial or
final curve, until we arrive at endcurves which have only one endpoint, or, if
ve do no£ come to a curve with one endpoint, indefinitely. In sany of these
cages, the resulting chain is maximel since it is an open curve extending to
infinity in both directioﬁs. Thus every such finite adjacent chz2in which is
not already maximal can be extended to a unique maximal chain,

If we begin with a single curve, € with at least one endpoint b, then

there is one curve clockwise udjacent to C in St(b) and one counterclockwisge

|2djacent. Thus in St(b) we have C,C' and C,C", unijue adjacent chains containing
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¢, one clockw;se and one counterclockwise. Hence, € is contmined in just ex-
actly two maximal chains, one of which contains C,C’, the other C,C". Similurly,
if b is a bfanch point, there are just 2n pairs of adjacent curves in St(b),
whence b is contained in 2n maximal chains.

Now consider the converse. If two chrins intersect, they surely
must have a branch point b in common. If this is their only point of inter-
section in open S5t{b), then they can intersect at no other point, since the
tree is-arcwise connected and can cont:zin no closed polyson. If they intersect
along two curves of St(b), they must be adjacent curves since the chains are ad-
Jacent éh&ins; hence by the preceding remarks on unigueness they must coincide.
This leaves only thé possibility that they intersect along a single curve of
St(b), and is this case cgein, since there are no closed curves in the tree,
they either have no cther intersection or they coincide.

Theorem %.3-4: Every maximal chain of a tree T divides the plane Into

two domains, whose complete boundary it is; and one of these dom:iins contains

ne points of T.

Proof: The first part of this theorem is ju=t the Jordan curve
theorem. The second part is clear intuitively,.but not too easily stated.
Using the Theorem of Adkisson and Maeclane, we first map n onto the xy-plsne so
that the maximal chain becomes the x-axis and every curve of T a chain of line
segments and moreovef, so that the orientation is preserved, i.e., every clock-
wise adjacent"pair of n will still be clockwise adjacent on the xy—plané, and
conversely., Now the éontention.is that 211 of the image of T, éxcept what is

on the x-axis, will lie in one half-plane, say the upper half-plane. If this

is not the case, then there will be a point (u,v) of the upper half-plane 2nd a
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point (x,y) of the lower half-plane, each in the image T' of T. Then, from
C'(u,v), the image-curve containing (u,v), there is 2 chzin to any image-curve
on the x-axis, i.e., on the given maximal chain. Let C be the last line seg-
ment on the last curve (of gome such chain) to lie in the upper half-plane
(except for one endpoint); i.e., the endpoint p of C lies on the x-axis, but
the rest of the curve lies in the upper half-plane. Similarly, we may choose

a line segment C' of T' which lies in the lower half-plane except for one end-
point q. Clearly, ¢ anq q are branch points. Now let Cl, Ca) 05, C), be curves
of the maximal chain, i.e.,, line segments on the x-axis, numbered from left to
right such that p is the common endpoint of the first pair, q of the second.
Then necessarily, Cl,CQ and CB’CM are each adjacent in the same‘sense, sny
clockwise., Then it is clear that if [?l,C,Cé], a triod with vertex p, are in
counterclockwise order, then [?5,0',0%], a triod with vertex q, will be in
clockwise order and conversely, gince we may easily form a ©-graph whose arcs
contain the legs of these triods, and apply Theorem 6 [#] (referred to above),
which would be impossible if Cl,Ce and CB’Ch ere each counterclockwise adjacent
and equally impossible if they were both clockwise adjacent. Thus ull of T'
must lie in the closed upper half-plane, or conversely; whence, the theorem is
immediate.

Now let C be a directed curve of T, a tree consisting of more than
one curve. Then we have seen that C determines exactly two maximal curves
which we shall denote by C* and C# with the following convention. As we move
along C* in the directlon corresponding to the positive direction on C, then
the complementary domuin of C* "to the risht” (this can clenrly be defined in =
topologically invariant manner, by a method similar to that above) will contnin

no points of -T, and as we move along C#t in the direction corresponding to the
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poslitive direction on C, the complsmentary domain "to the left” will contein no
points of T. These domains will Le denotzd O*(I*) and.é&#(:#} respectively and

also by O*(C) und LH#(C) respectively. Now as proved sbove, C* is the common

houndary of two Jordan domains, and the notution fcr one of them was given
above g O *(C*), the other will be denoted by.&ﬁf(ﬁ*). 3imilarly, Cﬁh divides
the plane into the domainsx?##(?#i and O*(C# . VWhen T 1s just z sinzle curve
then C,C* 2nd Cff sre 2ll the sume curve, and & *(C#\ = 0 =0OH(C*i. If we re-
verse the direction on'C, we must renlace :#3by * throushout. (See Figure 2.)

If we remove open C from C*“C#fwe zet either two or four hnlf-cren
arcs extendinz to infinity from the endpoint(s) of C; twe if C has one end-
point, four if it has two. W2 12t *{C+) denote the zarc from the positive end-
point of C lying on C*, and o #(C+) the arc from the positive endpoint of C
lying on C#ﬁ Similarly, we use the notation ¢*(C-) and S#(2-) for the arcs nt
the other endpoint. We also let J(C+) stand for o *(C+) rlus  FH(C), and d(C-)
for S#(7 ) plus ¢*(C-), and fin:lly, &(C) for S(C-)*d(C-).

The collection of 'all curves C* and C# =re then just the maximel
chairs of T, As already noted z2bove each of these maximal chains bounds two
domains, one of which contiins no points of T. A converse to this also holds,
i.e., denoting by ¥ the extended plane and T the points of T plus the point at
infinity, we have:

Theorem 3.3-5: IPf T is a tree of %, then © - T consists of an at

‘most countable collection of Jordan domains, each bounded by a simple closed

curve in T containing the peint ut infinity. The necessary and sufficient

condition that = cufve of T bound one of these domains is that it be & maximel

chain of curves of T.
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Corcllary 1: If T is a tree of a regular curve family F, then each

complementory domcin is o sum of sets Tp of F.

Coroll=ry 2: The complementiry domains, if infinite in number, tend

uniformly tc infinity with any se uence i ©of their boundary points.

Proof: By the theorem :uotzd “rom [I] at the becinning of this sec-
tion, =« ﬁuy sz marped on the xy-plane so th-t the image of T is rectilinear and
even s0 that a gijen arc (or chuin) of T soes onto the x-axis. It is clear
then that the complementary domsins are Jordan domains. The number of open
sets on the plune 1ls countable, hence thes number of complementairy domains must
be countable also. A boundary curve of a complementary domain must contain
the point at infinity, since T contains nc closed curves. Finally, it is
clear that n may be mapped onto trke xy-plane so that a given complementary do-
main meaps onto the upper half-plane and its boundary onto the xz-axis. Thus
each such boundary must be a maximal chain,

Corollery 1 follows from the fact that each set Tn is comnected and
dis jolnt from every other such set. If Corollary 2 were not trus we would

obtain 2n immediste contradiction to either property (4) of = tree or the fuct

that T is a closed subset of =«n.

%.4 A Numbering System for the Curves of a Tree

To facilitate further proofs it will be convenient to establish a
system for numberins the curves of a tree of n. The numbering rroceeds from an
aroltrartly chosen, directed curve C of T, which we shall call the base curve
of the tree. Using the orientation of the plane_together with the existence
of 2 unisue chain from the base curve C to each curve of T, we set ur = 1-1

corresypondence between curves of T and a collection of signed finite seguences,
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the particular collection depending on both T and C, the slgn of the sequences
depending only on the direction of C. (See Figure 8b.)
To the curve C itself we assign, ambiguously, the sequences +0, and

we write C = C(+0). If C has a positive endroint, we denote it by b(+0) and,

numbering in clockwise order, the curves of St b(+0) by {%(40:} c(+01), c(+02),
., C +Ou(+0§], where u(+0) is defined as the number of curves in St(b(+0))
less one, i.e., as twice the multiplicity of that branch point less one. We
then denote, 1f it exists, the endpoinf of C(+Ok) opposite b(+0) by b(+0k). We
follow exactly the same procedure =zt the other endpoint, 1if there is one, of
C(+0). This endpoint is denoted by b(-0) and the curves of St(b(-0)) are
numbered, again in the clockwise direction, [?( Oi}, c(-c1), c(-02), . . .,
C{:O‘( O:} If the chain c(C,C") from the base curve C to another curve C' of
T contains n curves, we shall éay that C' is of order n with respect to C. The

process above then has numbered every curve of T of order 1 or 2 by exactly one

finite seguence of one or two elements respectively (except for the ambiguity
in the numbering of C itself), Moreover, it assigns a unigue sequence to the
endpoints of the curve, with the endpoint being numbered with thé some number
as the curve of loweét ordef having it as endroint. Two eurves C,C' of the
same order will be clockwise codjacent (in that order) if the final integer of
the sequence of € is one less than that of the sequence for C'; and two curveg
C,C' with C of lower order than C° will be clockwise adjacent if the sequence
of C' 1s that of C with a final integer 1 added to it. Finelly, the chain from
the base curve to a curve C' consists of the curves whose numbering seqguences

are successive "lower segments

of the sequence numbering C', i.e., 1f o = Op2

{- + - P, numbers C', then Xy =0, @y = Op2, -« .01 =0pp . .. Pn-1-

R
!

=0Qp = Opy . . . P, 1P, number the curves of the chain from the base curve to
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Now if we assume that everything said above is true for every curve
of order n, it is very simple to show thét it may be extended in toto to the
curves of order n + 1; 1.e., let C' be any curve of T of order n + 1. Then C'
is the terminal curve of a chain ¢(C,C') of n + 1 curves, all of which except
C itself have already received their unique numbering, the next-to-last of them
by a sequence a of n terms, which sequence also numbers the comﬁon endpoint
b(a) of this curve and C'. As before, we number the curves in St(v(a)) in
clockwise order as {?(ai}, C(ax,1), C(w,2), . . . C[?,u(ai]. In this process
C' will receive a unique numbering, and the statements above will follow throwh

With the help of a little new terminology, we will express these facts
in a theorem. As above, a, £, etc., will denote finite signed seguences of
positive Integers and a,k will be the sequence whose first n elements corre-
spond to those of o, but whose final element is k; i.e., we adjoin one more
element, k, to @. Given two ccllections of sequence, A,A*, we denote by AuA*
the collection of all signéd sequences obtained by giving those in AApositive
sign and thogse in A* negaﬁive. Using this notetion we shall call a collection
A of finlte sequences admissible if:

(1) Every sequence has 0 as first element, positive integers for the

other elements, and O is a sequence of A.

(2) a,keA implies'a,k-lfA if k #1 and Implies aes 1f k = 1.

(3) For each utA there is defined an odd integer u(a) =0 and # 1

such thet if u(a)>C then a,1; @,2; . . . a,u{a) are in A but
not «,u(a)+l; and, if u(a) = O, then there is nc sequence of A
with a as lower segment, i.e., of the form a,p

n+lpn+2‘ © Pnyx-

(Note: If u(a) = O we call a a terminsl sequence.)




ENGINEERING RESEARCH INSTITUTE .
UNIVERSITY QF MICEIGAN ‘ L 34

Theorem 3.4-1: Given a tree T, & curve C of T, and a direction on C,

then there exist two unique admissible collections of finite sequences, A,A¥

such that there is a 1-1 correspondence between the curves of T and the signed

sequences AuA¥* (except for +0 being assigned to C), and such that there is

further a 1-1 correspondence between the endpoints of the curves of T and the

slgned sequences of the collection: AuvA¥* - iéll terminal sequencqg], these

correspondences being as described above and having in particular the

properties:

(1) If C(a) is any curve of T, then C(+0), C(az), . C(an_l), C(a)

is the chain from the base curve to C(a).

(2) c(a,k) has the endpoint b(a) in common with the lower order

curve C(a) and, if o,k i3 not a terminal sequence, the endpoint b(a,k) at the

opposite end.

{(3) c(a), C(p) of the same order n are clockwise [éounterclockwisé]

adjacent if and only if G = Bnrl and @ = an_l,k; R o= ﬁn_l,k+l {? = Bn_l,k—{].

c(a),C(p) of different order are clockwise [;ounterclockwisé] adjacent if and

only if B = o,1 [B = q,u(a)] .~

It is obvious but tedious to prove that maximal chains, the sets
J*(C+J,<{##(C+) and so on are numbered by sequences with certain characteristic

properties. We shall not develop this aspect, but will state one or two im-

portant properties below:

Theorem 3.4-2: Two trees T,T' of n, or a tree T of n and a tree T' of

the xy-plane, are homeomorphic under a homeomorphism which may be extended to

all of n if and only 1f we may choose and direct a base curve from each so that

the numberings of the two trees are then identical.
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25292: If the two trees are homeomorphic under such a homeomorphism
and on the same plane n so that orientation will be the same for each, or on
| the Xy-plane, from which n takes its orientation, then it is trivial that for
any directed curve C of T wevmay choose the homeomorph C' of C in T', and
giving it the direction induced by C, and using C,C' as base curves, we will
'get rrecisely the same numbering for each tree.
. ~ On the other hand let T,T' be two trees with identical numberings.
We first show that they are homeomorphic. We let P(2):C(a)-»C (a) be any
homeomorphism of C(a) onto C'(x) such that bl _1) meps onto b'(a,_q), then
f{a) coincidés with f(a,_ ;) at b(an_l), the orly point where their domains
overlap. The map £:T»T' defined by f(x) = f(a)x, for a such that xeC(a), is
1-1 and is continuous on each of a family of closed sets covering T. Now let

Rl .

X, be any sequence of roints on T such that x_-»xgT, then by property (4) of

n
trees, for:nEHN,xn will lie on C, or St(x), the latter if x is a branch point,
From the continuity of f on Cx‘and St(x) for every xéT, it follows that

1 f(x,)=>f(x). Hence, since x, was any sequence and x any point, £ is continuous
on T. It follows in the same menner that £-1 is continuous on T'. Thus f is

a homeomorphism from T to T'.

Now in view of the fact that for every branch point of‘T, the sense
in St(pr) must be preserved by f as defined zbove, and in view of our earlier
discussion of the theorem of Adkisson and Maclane, it remzins only to show thet
T is a Peano continuum to complete the proof of this theorem, where
T = T 00en = nvoo. TFirst, it is clear that T is8 a Peano continuum: it is con-
nected, and also locelly connected and locally compact due to the fact that open

C and open St(p) are open sets in T.. Moreover, T is closed in &, and on 7,

@ is a limit point 6f T but is also the only limit point of T, thus T is a
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closed, connected and hence a compact subset of x. Finally, T is locally
connected, for a compact continuum cannot fail to be loczlly comnected at a
single point (Whyburn XVI, 12.3, p. 19).

We now remark that this theorem makes it possible to construct a
rectilinear model of any tree T on the xy-plane, and sssures us that there will
be a homeomorphism of n onto the xy-plane carrying T onto this model. The
model is constructed by considering any numbering AvA* of T, and, using line
segments of length =1 as our elements, building up the model plece by piece:

We begin with a bese segment corresponding to the sequence +0, add segments
cofresponding to the 2nd order sequences, 3*rd order, etc., each time moving
further out from our bgse segment so that its dlstance from any n-th order seg-
ment approacheé infinity with n. 1In this process 1t is clearly possible to
construct the model so that the image of any one particular chain is a straight

line, e.g., the x-axis.

3.5 8Semi-r-neighborhoods and Cross-sections

For an arc pg, lying on an adjacent bhain of curves C . C it

1? n’

is rossible to get a serviceable analog of the r-neighborhood of an arc on a
| regular curve (c¢f, Theorem 1.2-2). By suitably directing Cy, we have both pq

and Cl’ « . e Cn as arcs on C¥, the latter containing the former. We will de-

1’
fine an open semi-r-neighborhocod of pg as any open set Uc[)*(CI) together with

& homeomorphism g of U onto the rectangle'ﬁl of the xy-plane, vhere
R1 = {(x,y) l -lsx<1, O0< y£1},, with g having the properties:
(1) g carries F[ﬁ] onto the lines y = constant in ﬁl
(2) g'l(hi) are cross-sections, where A;y 1 = 1,2 are, respectively,

that part of the lines x = -1 and x = +1 in ﬁl'
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(3) pg is mapped into the set {(x,y)‘ y = 0O, -l<:x<:£}
We shall finally call the set U(pz) = ng'l(ka,o), -1§JLS%}) a

semi-r-neighborhood of pg. U(pg) contains no branch points except those on CI

itself and lies entirely in xD*(CI)UCI,'which contains no points of 'I'c1 except
those on C;. We shall find it convenient to refer to a semi~r-neighborhcod of
a single point p, by which we shall mean one side of a regular neighborhood of
p if p 1s a regular point and one sector of an admissible neighborhood if p

1s a branch point.

2

Theorem 3.5-1: Any arc pg on an adjacent chain of curves Cl, n?

n>l, has an arbitrarily small semi-r-neizhborhood (there exists a neighborhocd

contained in U€(pq) for any € >0) in the complementary domain of T of which

the maximal chain containing the given adjacent chain is the boundary.

- Proof: We change the curve family F as follows: lLet Cl be directed

so that CI containg the chain Cl’ « « . C We leave F unchanged in 49*(01),

n*

the complementary domain of TCl in which U is to 1lie; but we map the lines y =
¢

constant of the lower half-plane, including the x-axis onto C;"&OﬂkC{) so that

the x-axis is mapped onto CI. Then by Theorem 1.2-3 this new family is regular

1
family; hence by Theorem 1.2-2, there 1is an arbitrarily small r-neighborhood of

in © and agrees with F in CIU‘Q*(C{). C¥ 1s a regular curve of this new

PqQ, call it V. Then U(pqg) = Vh{?f“iD*(CI)] will be our desired semi-r-
neighborhood.

Theorem 3.5-2: If a sequence of points q, on distinct curves Cp ap-

proach the point p, where p is a'regular point or a branch point, then there is

a curve C which may be so directed that p lies on C* and an infinite subseguence

Qp of {inA lies in O*(C*). If p' is any other point on C*, then there is a

sequence of points Tm on the same curves Cm containing the A such that rme>p'.
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Proof: Let T be the tree of ¥ which contains p, then there are at
most a finite number of complementary domains of T on whose boundary p lies,
and since the 4n lie on distinct curves, there must be a subseqguence Ay of
these points lying in one of these complementary domains. The maximal chain
which bounds this domein, can, for some suitable directed C te given as < *(C¥).
Now let p' be any other point on C*, Ve may take a seml-r-neighborhcod -U(pp')
of pp' in, Q) *(C*) and, if f:U(pp')é>Rl, then the curves C, containing q, map
onto lines y = ém for m2M. If f(p') = (x',0), then the points r, = f"l(x',km)
will be the desired segquence.

Theorem 3.5-3: An arc par is a cross-section of F if and only if (1)

i1t contains no branch points, (2) one of the domains ;5*(cq), 4Dnﬁcq) contains

p, the other q, and (3) pq and qr are each cross-gsections.

Proof: We first assume that the arc pqr is a cross-section through
q. Then (1) and (3) follow by definition of cross-section. By the Lemma
stated.jjm[éi} p. 158, there is an r-neighborhood of q, V(g), such that the
image of par in R, is the y-axls. BEvery curve crossing V(a) crosses pqr;
hence, no curve hus more thgn one line y = constant as image in RO' The point
q itself maps on (0,0) and Cq on the x-axls; hen;e, v - Cq splits into two
rdomains, one containing p and the other r. Moreover, one of these domains lies
in D*(Cq) and.the other in O (C ) for q is a point on the common boundary of
these two domains and hence every neighborhood of q contains pcints of each
domain.

Now, 1f we assume that pqr 1s an arc with the properties (1), (2) and
(), we may show that it is a cross-section by showing that it intersecis any
set TC 2t most gnce. This is clear at once if we remember that‘a set Tg cannot

have points in each of the doma ins (D*(Cq) and 4j¢ﬂcq) so that if pgr had more
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than one point in common with Tc, each ;uch common yojint would have to lie in
thg same domain, i.e., both on ra, or both on qr. ‘This 1s impossible, however,
since both of these arcs are cross-sectiona. Tt follows ﬁhat rqr is a cross-
section.

The following corollary is immediate:

Corollary 1: If C,C' both intersect a cross-section pq, and each is

directed to cross pq in the same direction, then either.? *(C)>DH*(C') or

C)e c').

Corollary 2: If an arc is such that any point on 1t is interior to

a_subarc which is a cross-section, then it is a cross-section.

Proof: Let pq be sﬁch an arc; then we may cover pq with a finite
number of r-neighborhoods which overlap. Then, applying the theorem repeatedly

a finite number of times, gives the result desired.

4

4.0 THE FAMILY F AS THE LEVEL CURVES OF A CONTINUOUS FUNCTION

In thisysection it will be shown that there is a continuous function
f(x,y) whose level curves are exactly the family F. The proof of this state-
ment will depend on our ébility to remove certain branched curvés of F to-
gether with their branch points so us to leave a subset R* of the plane n,
which is open connected, and simply connected and is such that F* = F[%* is a
regular curve family filling R*., Tt will then follow from [?i]that there is a
continuous function f*(x,y) defined on R* and having the family F* as level
curves. Finally, it is shown that f£*(x,y) may be extended to a continucus
function on all of the plane with the curves of F as level curves. 1In this énd

the next section we will restrict the uase of the term tree to those sets TC

containing singular curves.




ENGINEERING RESEARCH INSTITUTE  Page
UNIVERSITY OF MICHIGAN . 4o

4.1 The Numbering of the Trees of F

Theorem 4.1-1: If K i1s any compact subset of n, then there are at

most a finite number of distinct trees of F which intersect K on more than one

curve of the tree. Moreover, no more than a finite number of curves from any

one tree can intersect XK.

Proof: The second part of the theorem is an immediate consequence
of the fact that any point p which is a limit of a sequence of points p, of the
tree must be a point of the tree; and, in addition to thie, for n=N, p, must
lie in St(p) if p is a branch point, or on Cp if p is a regular ﬁoint. If an
infinite sequence of curves of a single tree intersected K, we could, by com-
pactness of K, choose a seguence of points on distinct curves of this sequence
which has a limit point, and hence could not conform to the requirements sbove
for a convergent sequence of péints on a tree.

We prove the first part of the theorem by assuming it falge and ar-
riving at a contradiction. Let T, (i =1, 2, . . .) be an infinite collection
of trees, each intersecting the compact set K on two curves Cy, Ci. By com-
pactness of K we mAy choose a sequence of the Ti‘s end & point Py & Cif\K to-
gether with a point q ¢ C; "K in each Ty of the sequence such that there exists

i

p. = lim py erd q = lim Q. By Theorem 3.5-2 we may assume p and g are each
i—=wm i->»00
regular points and that all of the points p, lie in the same complementary do-
main of the tree containing p and similarly with q. Moreover, it may be as-
sumed thet p and q are distinct, for otherwise, in =an r-neighborhcocd of the
point p = q we could easily find a cross-section intersecting both Cy and Cy
for gome 1. This is impossible by Theorem 3.3-1. It follows that p will have
a semi-r-neighborhood U(p) containing an infinite subsequence of the pi's and

not intersecting a similer semi-r-neighborhood U(q). This infinite subseguence
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will determine an infinite subsequence of the qi's, whi;h will itself have an
infinite subsequence approaching q and lying entirely in the semi-r-neighborhood
U(q) of q. This is really a sub-subsequence of the original q's and we wilil
renumber the original sequence so as to denote the sub-subsequence by 4y
i=1,2, . . .. The‘subaequence of the Py's determined by this sub-sequence
{qi} will be denoted Py (i=1,2, . . ., L.e., &e renumber ﬁhe terms of the
original sequence). Then we have for all i: picU(p), qieu(q) and pi,qf'rfnx.
(See Figure 11.) |
Now there will exist in U(p) a cross-section f which contains three

points pil’ pig, p15 from the sequence {bi}’ and a corresponding cross-section

¥'in U(q) containing points qil, qig, q13 from the sequence {q;j, all pointg
go chosen that pi2 lies between pil and p13 on ¥ and similaily q12 lies between

q, and q13 on ¥’. Than, denoting by cy the chain c(Cij,Cij) in TiJ’ J=1,

1
2, 3, we may define the following three arcs, xil, Ny s xiB having only their

endpoints Pi2 and qie in common: hil ig the arc (pigpil) on ¥ plus the arc

pilqil on ¢y plus the arc ay q12 on ¥!'. k13 is similarly defined with 1 re-

1l

placed by 3 in the subscripts above, and finally xi is the arc py qu on c,e
2 2 :

Two of these arcs, say le,kj , must form a simple closed curve [ containing
, o \

the third xJ% in ites interior. But this is impossible since each arc contains
a branch point, in particular the arc xja, thus enclosed in the interior (in
our example) would contain a branch point; and from this branch point issues =
chain éf curves of fj5, all distinct from kjs, which must leave r’at some point

r. This point r cannot be on le or T: since two trees cannot intersect, nor

Jo
can it be on ¥ or ¥’since then this cross-section would have two points on the
same tree, which is ruled out by Theorem *».3-1. Hence, we conclude that our

initial nssumption is impossible and that the theorem must bhe true.
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This theorem will be used to give a method of numbering all non-
trivial trees, i.e., trees containing singular curves. We choose any regular
point p on n and let Kn designate the circle (with its interior) of center p
- and radius n. Now the numbe; of trees cutting Kl is, of course, denumerable
and we nutber them in any order as Tyys TlE’ TlB’ . . . and choose from each a
curve Cyy, Cyo) 013, . . . respectively, which itself intersects Kl' By the
above theorem these choices of curves will be unicue for all except z finite
number of the trees, and for these Clj is chosen at random from any one of the
finite number of curves of the tree cutting Kl' Next we number the trees which
intersect K, but not K1 as Tyq, Tso, T25, . . . etc., and let C.y, Cop, C23.

. respectively be curves of these trees which themselves intersect Kz. Pro-
ceeding with this process we number the trees cutting Kn but not Kn-l as Tnl,
Tne’ Tn}’ . . . ete., and choose from‘each curves Cpy, Cpn, . . . cutting K.
This process will clearly number all the trees of ¥, and we chcose the curves
Cij as base curves of the trees,'hence‘determinigg within each tree Tij a num-

bering of its curves by sets of finite sequences A430Afj as described in 3.4.

Our method of numbering the trees guarantees that for m>n no tree ij inter-

sects K and, moreover, for all'n, there are at most a finite number of curves

of the set UJ (ij - Cpy) which intersect K . For future reference we shall
m, j msn J n

call the asbove method of numbering trees a standard numbering of the trees of F.
With these preliminaries we are able to define the curves which we

are going to remove from each tree in order to make the region R = n - B simply

connected. Let Tij-be any tree (with base curve cij) from the standard number-

ing'given above; and thus with numbering sejuences A, .vAY.. Let b(a) be any
137713

branch point of this tree with sequence a = eOk2 « . e kn-lkn with k # 1 (where
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e denotes the sign + or -). Any such b(a) will be called the initial point of

a cut, and the cut, a(b), will consist of all curves C(a,l), Cl{a,l,l),
C(a,1,1,1), . . . and so on ad infinitum, or until a terminal séquence'd,l,l .
., 1 1is reached, i.e., each cut is a chain of adjacent curves extending
from b(a) to infinity. We assume eﬁdpoints of the curves included,‘of course,
as.part of the cut; thus eaéh cut is of the form.g*{?(a){] or ddﬂé(a){], the

latter if b(a) is the positive endpoint of C(a) and the former if it is the
negative (see heavy lines in Figure 4). E:ch A\(b) is, again, an arc from b(a)
to infinity and includes all branch points numbered by sequences of the form
a,l,l . . ., 1. It is clear that every branch voint of the tree is on one and
only one cut A(b) and that no two cuts intersect at any point. We denote the
collection of =11 half-open arcs A{(b) on T by T, and by J the sum of &he séts
T over all the trees of F. The set R* = R - J contains no branch points and is

a union of curves of F. Let F* denote the family F{?*} £i1ling R*,

Theorem 4,1-2: R* is an open, arcwise connected, and simply con-

nected domain, and F* is regular in R*.

Proof: Let q be any pointbbf R* and let Kn be the first circle with
center at p (in the standard numbering scheme) which contains q in its interior.
Now consider how much of K, 18 removed when Eiis subtracted from n. None of V
the base curves cij are in s;since none of them are in a set A(b) for these
curves are assigned the sequence +0 in the numbering, which sequence is not of
the form a,l, . . .,'1.' And by Theorem 4.1-1 there can then be at most a finite
number of other curves (than base curves) of any Tij in X,. Hence there is
surely an r-neighborhood of q in Kn -:5 énd R* is therefore open and F* regular.

We wish to show that R* is arcwise connected. Since every point has

an r-neighborhood in R*, it is clear that R* is locally-connected. Hence, if it
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is connected, it is arcwise connected. Now since each cut A(b) is an arc,
extending from s point b to infinity,Athe set 3~fa> on the extended plane 7
can clearly be deformed continuously along itself to a single point, the roint
at infinity. It follows from Eilenberg {%Ii], Theorem 6, p. 77, that R* is
connected. |

Finally, if K is any closed curve in R¥* containing & point q of E?,
then q lies on a cut A(b) which extends to infinity from b and hence must
intersect K, contrary to the assumption that K is in R¥. Thus R¥ is gsimply
connected,

Theorem 4.1-3: Let B'eB be the set of 2l1 initial points of cuts

A(b), then we may define a collection of disjoint, open sets {Vb'beB'? sucn
that Vi=a(b). °

gggggz Referring to the closed circular discs Kn of our standard
numbering of the trees of ¥, we have noted already thﬁt only a finite number
of the cuts A(b) intersect any K,. We denote by B} = {b?i}the finite subset
of B' whose elements bg are for j =1, . . ., jn those initial points of cuts
which Iintersect K, but not X _,. Now, using the normality of n we are able to
flnd disjoint open sets covering the disjoint closed sets xl(b ) = x(b )nK
We define Vl(b ) as the intersection of the so chosen open sets covering xl(b )
with the interior of Kl' Then we find disjoint open sets covering each of the
closed sets xe(bé) = bi)ﬂ{% - 1(Kli} i = 1,2 and such, moreover, that the
open sets covering x?(og) do nct intersect Kl' Finally, we define V, (b Y,
i = 1,2 as the intersections of these open sets with the interior of K. Then
the sets Ve(bg) and Vl(bi)“vz(bi) arg non-intersecting open sets lying in the

interior of K, and covering x(bj)ni(KQ), i=1,2, for all b%'s in B; or B!.
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This process is continued indefinitely, covering every intersection of a »(b)
with a K,. Then, given any b&éB' it will be in Bﬁ for some n, hence will be of
the form by, and the cut x(b?) with it as initial point is covered by
o 's)
n n
= V. . ).
v(ey) = M vy

Theorem 4.1-4: Let F be a branched reguler curve family filling the

plane n. Then there exists s function f(p) such thet:

(1) £(z) is defined and continuous for all p in .

(2) for every real number k the locus f(p) = k consists of an at most

countable infinite collection of trees (including regular curves) of F.

(3) in every neighborhood of any peint p in n there are points q for

which £(q)>f(p) and points r for which f(r)<f(r).

Proof: We assume a stendard numbering of the non-trivial trees of F
and that thus the cuts »(b) and the setstifand R*, etc., are determined. This
theorem was proved in [iv by W. Kaplan for curve famililes regular throughout
an open, simply connected domsin; thus we may assume that there is a function
f*(p) defined and continuous in R¥ and with the properties above. We must
show that this function can be extended to a function f(y) with properties 1-%
above. The proof has three sections, A, B and C.

(A) TFirst it is necessary to prove that, given any tree T of ¥, the

value of f* is the same on each curve of T{%E}, i.e., on all curves of T which

lie in R*¥. 1Let C(+0) be the base curve of T in the numbering; we shall proceed
by induction on the order of the curves of T. If C(+0) has no endpeint, then it
is a regular curve, lies entirely in R* and the result is trivial. Assume it
hes a positive endpoint b(+C). Then C(+01) 1is in A(b(+0)) and hence not in R*

or T{%* , but the other curves of 3t(b(+Q)) are all in T[é;]. To prove that




ENGINEERING RESEARCH INSTITUTL |

Poge
UNIVERSITY OF MICHIGAN P L6

£#(p) has the same value on each of these it is only necessary to prove that it
has the same value on each peir of adjacent curves among them, for then the
value of f¥* on C(+02) is the same as that on C(fOB) and so on until fin=lly

we have thz value on C +Ou(+0i] tﬁ; game as that on C{+0). It is guite obvious
thet this must be sc, however, for if C,C' are adjacent curves of T{%{] nnd
ptC, qtC', then there 18 a semi-r-neighborhood U(py) In R¥; and, 1if P,eU 18 a
sequencé of points approaching p, then there is a seguence anCpn with qneU

y = f*(pn) and hence

and q, epproaching g. But, since qnfcpn we heve f*(qn

*(q) = lim f*(qp) = 1lim f*(p,) = f*(p). This same procedure actuzlly tells us
n->o n-» o

even more, i.e., that if Cy, . . . Cn i8 any chain of adJjacent curves with both
Cy,C,<R¥, then f* must have the same value on C,,C,.

Now let C(a,k) be a curve of T[%{] wvhose sequence is positive and of
order n + 1, and assume that f¥ has the same value on each curve of T{%f]
numbered by a positive sequence of order n or less. The sequence ¢ is of the
form @ = Ok, . . . kn_lkn; and wve consider two cases: (1) k. # 1 and (2) k=L
in either event k # 1 since C(a,k) is in R*, 1In case (1) b(a) is the initial
point of a cut, hence C(q,l) is the only curve of St(b(x)) in tke cut, and
moreover, the St(b(a)) contains the cﬁrve C(x) of order n. It fcllows by
precisely the same aréument as above that f* has the same value on each of the
curves of St{b(a)) in R* and in particular on C(a,k) as it has on the n-th order  §
curve C(a) and hence that it has on C(+0). In case (2) both the curves C(c)
and C(a,1) of St(b(a)) are in a cut. But the curves C(a,.1,2), Cla,_1,1) =C(a),
and Cfa,u(a)) form an adjacent chain wiﬁh the first and last curves in R*¥. On
the first curve f* has the same value as on C(+0) since it is of order_n, hence
it has this value also on the last, C(a,u(a)). Now, by going from adjacent

curve to adjacent curve, we see thet this must be the value of f* on each curve
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of St(b(a)) in R* and in particular on C(a,k). This completes the first step
in the proof. |

-(B) Next we define f(p) at every point of n as follows: f(p) = £¥({p)
for pER*, and f(p) = value of £* on T’%%} for peT. f(p) will then be con-
1 tinuoug at each point of R* since R¥ is en open subset of n and thus the ex-
tension cannot éffect the continuity of f in that domain. Now every point of
Qﬁ = 1 - R* liee on a cut A(b), which in turn lies in.a neighborhood V({A(b))
not containing points of any other'cut. What must be shown is that f(p) is
continucus at an arbitrary point q of an arbitrary cut »(b). Now let 4, be
any sequence of points approaching the point g of A{b). We shall denote by T
the tree.containing q; then since f(p) is constant on T we shall assume thet
each , lies on aAdistinct curve and none of them is8 in T. This involves no
loss of generality since the result is trivial otherwise. Moreover, we may
restr1c€ ourselves to sequences lying in a single complementary domain of T,
the reason being that any sequence g, with Gy f T can be decomposed into a
finite number of such subseqguences, containing all the terms of U2 but no two
having a term in common, since the number of complémentary domains of T con-
taining q on their boundary is finite. Now, Iif for each of these subsequences

we have f(q -» f(q), then f(3_)->f(q). Thus we need now to consider only a
» 0y ’ n .

sequence qﬁ-)q such that for some C*=g, anAD*(C*) for all n. C* is then in T,
and since no cut separates =, there is a curve C' on C* which is in R*. Let P
be any point of C' and U(ap) a semi-r-neighﬁorhood of gp in Q*(C*). Then, byn
Theorem 3.5-2 ther§ is in U a sequence p,= p with Cpn§ an and hence f(pn)=f(qn).
But p is in R* and f(p) is continuous in R*, therefore lim f(q,) = lim f(pn) =
f(p). But this 18 exactly what is needed for p,q are both on T and hence

f(p)} = £(q), so £ is continuocus at q.
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Property (2) of the theorem is trivial for f(p) since it is satisfied
by £* in R* and we have added only a denumerable number of curves to the
domain of f£* to get the domain of f.

(C) Finally we must prove property (3), i.e., that f(p) has no wezk
relative extrema. This is clearly equivalent to the following, &t least for
regular points: 1if p is a regular point, then f takes = different value on
every curve of every r-neighborhocd of p, or again equivalerntly, 1is monotone on
every cross-section. Since any arc pg on & curve ¢ has an r-neighborhood, this
implies that a function satisfies property (3) et every point of a curve or no
point of a curve. As to branch points, we can show at once that the condition
is satisfied there, for there is always a curve of St(b) in R*, hence in any
neighborhood of b we may find a point q of this curve and a neighborhood of
this point q inside that of 5. Now f£{q) = £(b) and in this neighborhood of q
there will be points Q7590 at which f is respectiveiy <, »>f(q), since we are in
R*, where we know T fo have property (3%). Since 4,3, are in the given neigh-
bortood cf b, we have proved our contention.

N&w we wish to show that 1f f has property (3) on every curve of
St(b) éxcept one, C, where b is any branch point, then f has property (3) on

4

C also. Let the curves of 5t(b) be numbered counterclockwise C = C,,C,, . . .

c m being the order of the branch point b. In U(b), an admissible neighbor- i

2!:1}
hood, we shall let s, denote any arc into the sector bounded by ci’ci+1’ such

that 84 without b, its endpoint 1s & cross-section, e.g., in the image of U on
|2| <l we ;ould take fof 84 ;adii into the respective gsectors. Then we indi-
cate by s; that f increases as we move from b on Sy by sz that £ decreases.
Clearly Cy has property (3) if and only if s;_l implies si and s;_l implies s;.

Hence if we have 51, then we have by induction SB for even J, and in particular

*
Bpm? vhence C, has prop?rty (3).
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Now let the curves of any cut A(b) be numbered Cy,C,y. . . beginning
with the initial curve and proceeding out from b. Cl is the only curve of
St(b) not in R¥ and hence it must have property (3). If the n-th curve C  hes
property (3) then C, 4y is the only curve of St(cnpcn*l) not having this pro-
perty since the other curves {than Cn) are in R*, thus C, 4 also must satisfy
the desired property. This proves by induction that every curve of every cut
has property (3) and hence f(p) has the property for all points of .

Corollary: The branched regular curve family F is orilentable as =

reguler curve family in R = n - B.

Proof: Exactly as in W. Kaplan{?V], Remark 2, p. 184-5,

5.0 DECOMPOSITION OF F INTO HALF-PARALLEL SUBFAMILIES

It is the purpose of this section to describe a decomposition of the
curve family F into a sum of subsets, which overlap at most along their boun-
daries, and such that each of them is homeomorphic as a curve family to the

Jdines v = k £111ing the upper half of the xy-plane.

L

5.1 Extended Cross-sections

‘Theorem 5.1-1: Let p be any regular point of =, Cp the curve of F

through p, and let C be a curve containing a point q such that there 1s a

crogs-gsection pg. Then theré will be & cross-section from p to an arbitrery

point q' of T¢ if and only if q'eC*, where C is directed so that p& H*(C).

Moreover, if q'eC¥ and'U(qq') ig any semi-r-neighbcerhood of qq', we may choose

the cross-section qq' as follows: qq' = qrqg' vhere gr lies on pg and rQ' is

in U(qa'). )
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Proof: Suppose q' to lie on C* and let U(qg') be any semi-r-
neighborhood of gq'. Now moving along pq from p the cross-section pg lies
entirely inside U(qq') from some point on, 8o we may choose some r on Pq,
with rq interior to U, letting prq now denote pg. We direct Cr so that
pred *(Cyp) and rqedf(C.), which we can do by Theorem %.4-5 since prq is a
vcfosé-séction. We replace rq by a cross-section rq' in U which is found as
follows: U is homeomorphic to a rectangle R, in the xy-plane by definition,
and we Jjoin in Rl the image of r to that of g' by a straight line, whose in-
verse image we take for rq'. Since the straisght line is a cross-section of the
lines y = k (image of F) rq' will be also a cross-section, and will lie in the
same domain zua(cr) as rq, since each cross the same curves in U. Hence, by
Theoren 3.4-5, we know that prq' is a cross-section.

It remains only to prove that if C' is any curve of TC not on'C*,
then there is no cross-section to C' from p. Now p lies in . O *(C*) and C' in
43#10*), hence any such cross-section, if it existed, would have to cross C*
and thus would have two points on TC, contrary to the assumption that it is =

‘cross-section.

Theorem 5.1-2: Let the trees of F be numbered as in Section &, i.e.,

in a standard numbering, using the concentric circles K, of center p and radius

n; further, let the cuts J/ be removed from F, leaving F* = F[R¥ . Then, out-

glde every circle K, lies at least one curve of ¥* which can be reached from b

by a cross-section lying in R*nJ*(C,). (See Figure 12.)
Proof: Denote by {b} the collection of 211 curves 1n.<3*(cp) which
can be reached by a cross-section from p lying in R*"dD*(CP). We direct each

curve of {Q} so that (D*(C)c,@#(cp). The existence of a cross-section from p
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to qtC makes this possible, i.e., direct C so that D #(C)apq. {C} will cer-
tainly nbt be empty since we assume p to be a regular point.

Now define on the curves of {b} the positive real-valued function
a(c) = G%g {aistance from x to é}. We have at once that € is outside K, if
and onli if d(C) >n. Also it is clear that . *(C)2,0*(C') implies that
d(C)<d(C'). To prove the theorem we must show that the numbers d(C) are un-
bounded. We assume that this 18 not so; then there is a least upper bound 4!
of d(C) for C in {q}. To show that this is impossible we chkoose N>d' and con-
sider intersections of curves of {C} with Ky. Every curve of {C} will then
intersect KN if d4(C) 1is bounded by 4', although by Theorem 4.1-1 only a ®inite
number of these curves lie completely inside KN. All but a finite number of
curves of {q} in fact, not onlj have both endpoints outside KN’ but contein
within themselves the on;y intersection of TC with KN' Hence, we may choose'?n
infinite sequence of curves Cm of {C} such that d(Cm)—bd' and Tcﬁﬁxﬁ = Cm“Knl
and CmﬂKN contains neither endpoint of Cm‘ Having chosen such a sequence we
find a subsequence qé of points from Cm which approach a regular point g as a

1imit and all 1lie on one side of the image of C_ in an r-neighborhood U(q)

Qq
(1.e., in the upper or lower half of R,, the image of U(q)). This may be done
as follows: First, by compactness of KN we may find qmacman (a subsequence of
the m's) which converges to some point g'. Second, 1f q' is a regular point;
wve let g = q' and choose a subsequence q& of the 4, 's all of whose points 1ie
in one side only of U(q). Third, if q' is a branch point, V(q') en admissible
neighborhood of a', then an infinite subsequence of the qm's will lie 1nAone
sector of V. If q is any regular point on either of the adjacent curves bcun-

ding this sector there will be a sequence of points q& on the same curves Cm as

the sequence approaching §3 and such that m->q. The qﬁ will lie on the same
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side of Cq~in any r-neighborhcod of g and is thus the desired sequence.,
Finally, we may choose a subsequence of qn'l which wé will denote by n such
that if gs is a cross-section from q to s in U(q), where s lies on the same
side of U(q) as the Gy, then the intersections Chngs tend monotonely to q on
qs, (Cn denotiné the curve on which r, lies). Thus we have d(Cn)e>d' monotonely
since I*(Cp)20*(Cpy)>C, for all n. We direct Cq 80 that D *(C;)=.0%(Cy).
Now choose in <94K0q) a semi-r-neighborhocd W of qq" where q" is any
point of Cg which 18 in R*, W is ch?sen 8o that its interior lies in R*, which
is possible by Theorem 4.1-4%. Now for n=ng, T, willl lie in W and since we
have .C)*(cno)z Cé_* and d#(cno’)acp, we may extend the cross-section
prnOCR*n.()*(Cp) to a crosg-section prnoq"c R¥n ,()*(Cp) by merely adding to it the
cross-section I:noq" in Wneo *(Cno) which is the inverse image of the straight
line joining the images of rno and q" in Rl, the image of W. This will be a
cross-section by Theorem 3.4-5. Now gince q" 1s o regular point of a cﬁrve

D and =Cn;

and ,o*(cq..)c,c)*(cn) for all n, whence d(Cqu)Bd'. Now it is easy, howvever,

Cqu, if we take 1its direction such that Cfu = Cé" sy we have 0#(0(, ..')aC
1 1

by taking an r-neighborhood of q" (which will lie in R*) to extend prp a” to =
slightly larger cross-section PTh 1"s, and since Csca*(cqr-), we have at once
o A

that ,O*(Cq--‘)a,a*(ce), where Cg; 1s directed as a curve of {C} Hence

d(Cg) > d(Cqu) 2d'. This is contrary to the assumption that d' is a bound of
d(C). Hence-d(C) is unbounded, which is what was to be proved.

By an extended cross=-section, we shall mean any open or half-open arc

in R = n - B which meets each curve of F at most once. An extended cross-

section is sald to tend properly to infinity in R 1in a given direction on it,

if it tends to infinity in that direction in such a way that the curves neeting

it tend uniformly to infinity with their intersection points with the cross-
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section. We shall also speak of an extended cross-section in R* which will

a)
be an extended crose-section as above, and lie entirely in R* = - J, i.e.,

L}

it meets only curves of F¥*,

Theorem 5.1-3: If p is any regular polint on a curve C of F¥, then

there is an extended cross-section in R* from p, which lies in AD*(CP) and

tends properly to infinity.

Proof: Ve consider a curve C in F* and p any point on.it. As before
Kn will denote a circle with center at p and radius n; and for any point 8 we
shall let Qu(s) denote a circle with center atjs and radius so chosen that
Qn(s) contains K . Now we. choose a régular curve Cl in.Z)*(Cp)nR* for which
there is a cross-section Pa, in g)*(cp)ng* from p to g, on Cy. Direct Ci 80
that 4)*(CPJ=A)*(01) and choose in 2}*(Cl)nR* e curve C2 outside of Ql(qi) and
such that a cross-section 4;495 in 2)*(Cl)nR* exists with 9 on 02‘ Having
chosen Cn and qn!.Cn in this manner, we choose for Cn+1 any regular curve out-
side of Qn(qn) for which there is a cross-section U9, 1 in A)*(Cn)nR* to
q,,7 on C,,. We direct C . so that Q) *(C,)» H*(Cph.1)- We can continue this
process indefinitely by Theorem 5.1-2. Then the curves pql, pqlqe, pq1q2q3.
will all be cross-sections by Theorem 3.4-5., They approach a curve rwéxtending
from p to infiﬁity in X)*(Cp)ﬂR* which is an extended cross-section axtending
from p‘to infinity in R*. The curves intersecting rwtend uniformly to infinity
with any‘sequence of their points of intersection tending to infinity on r1;
since if r on r‘is beyond B then C, lies outeide Kn. Thus r1is an extended

cross-section tending properly to infinity in R¥*.
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5.2 HBalf-parallel Subfamilies of F

Theorem 5.2-1: The get S of curves of F crossing an extended, hz=1f-

open cross-section‘ﬂ tending to infinity from a point p on CT is homecmorphic

to the family of parellel lines y = k, k>0, filling the upper half of the xy-

plane. If C; is directed so that ‘5*(Cp) cohtains[j, and if C' is any open arc

on C;, pEC', then this homeomorphism may be chosen to msp C' onto the x-axis,

and{j onto the y-axis, y=0.

Proof: The set S fills a region of the plane in which it is clearly

a reguler curve family for, if 3 1s any point on the houndary curve()ﬂscg, we
have in S a semi-r-neighbdrhood U(pq) within which we can find an arbitrarily
small r-neighborhood of q. And, if q is a point on some other curve C of 5,
then we denote by p' the intersection of C with'~', and there will exist =n
r-neighborhood U(p'q) by Theorem 1.2-2, which will lie in S (since every curve
in 1t croésesrj). Within this neighborhood again, we may find zn arbitrarily
small r-neighborhood of

The family S is not only regular, but orientable, for each curve of
S crosses r] exactly once and thus fj divides S into two regions A and B and
we shall say a curve hag posltive direction if this direction on it carries us
from A into B. Then, by Theorem 1.6-1, thereria a function f(p,t) defined on
S with the properties described in that theorem. 'We let T, 0< < @, be a

rarameter onrl and restrict p to'j giving us f[%(t) ?] s homeomorphism from the

upper helf-plane to 3, cf I&}

We shall mean by # half-parallel subfamily of F the collection of all
curves of P which intersect an extended cross-section r1tending from a yoint p

on 1 curve Cp properly to infinity. And we ehgll mean by a complete
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half-parallel subfamily of ¥ the curve C; together with all curves of F cross-
ing[ja(cp being so directed that 2)*(Cp)=r1). Each of these sets is homeo-

mornhic to the lines y = k, k 20 of the half-plane; the first will be denoted

by S end the second by S5*. Clearly S¥»S and when C, is a regular curve they

are identical. Cp 1s called the initisl curve of S, C; of g%,

If'r'(q) is any half-open cross-section of F tending from a regular

‘
point q properly to infinity, then the boundary of S5([7), the collection of
curves intereecting,r] is besat described in terms of maximal chains C*,Cg: and
the sets 4(C+), L(C-) defined in Section 3. We shall refer to these latter

two sets as mixed maximal cheins, since they consist of two subchains of maxi-

mal chains, one clockwise adjacent, the other counterclockwise adjacent, e¢.3.,
J(C+) = J?C+)uc{#(c+) (which may be empty). 4(C) will denote d{C+)vdl(C-).
It is empty if and only if € 1s a regular curve,

Theorem 5.2-72: The boundary of S([7) is a collection of maximal

chains C*,C# and mixed maximal chains 4(C) where (C) is on the boundary if

and only if C is in S([V). From each set T, of F there is either (1) no point,

(2) exactly one maximal chuin, or (3) a set J(C) of Tn on the boundary of S({).

(1), (2) and (3) are mutually exclusive. (See Figure 13, T, for case (2) and
T, for case (%))

Proof: Suppose CeS([7) is a singular curve, then o(C) is in the boun-
dary of S([1), for (1) if we consider any point q on d(C) there exists a semi- /
r-neighborhood U(pg) containing q and p = Cnf' (since C lies on an adjacent -
chain with q); choosing a sequence of points PP, pneUn[j , we can find a
seguence qAEU such that qnecpn for all n»and q,>q. Whence q is a limit point

of points of S([7). But (2), if g 1s in J(C) it is on a curve of Ty other than

~

1 ’ -
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C and Cq canngt infersect[j hence Cq is not in S(P), and thus q is on the
boundery of S({'). Moreover, no other curves of TC can in this case be on the
boundary of S([), for S([7) is clearly contained in O*(C)uCuv O#{C), a comple-
mentary domain of &(C), whereas every other curve of TC lies in one or two
other complementary domains of c{U:).l (Note: o(C) divides n into at most
three Joréan domains.)

On the other hand, suppose that C is a.cu:ve of ¥ on the boundary of
s(f"). Then, directing C so that D*(C) contains the initial point of r], we
note that if p 1s a point on C, limit point of a sequence Py of S(P), then
there is z semi-r-neighborhood U(pg) of any arc pa on C* and a sequence Q,~>q
with qnecpn, and hence a sequence in S(['), from which we conclude that q is
either in S([') or on its boundary. If C* does not cross r', then q will be on
the boundary and C* is a boundary curve of S(["). When this 1is the case C*
divides into two domains Q*(C*)=S([7) and O #(C*)=T,-C*, whence no other point
of Ty than those of C* is on the boundary of S([1). But, 1f C* crosses [ at a
point p on a curve C', then we are back in the previous case and Jd(Cc') =

[?*“Cﬁg]' C' is the boundary in Tp of S([7). |

Theorem 5.2-%: Let ['(q) be a cross-section from g on the curve Cq

of F*, and tending properly to infinity in R* in each direction. Further, let

h be any homeomorphism of R* onto the xy-plane, then h[]j(q)] is a cross-section

of the family h{F¥] (filling the xy-plene) which tends properly to infinity in

both directions on the xy-plane.

‘Proof: On the xy-plane we let Kn denote a circle of radius n, center
h(q) and we must show that for every n there are pgints Ay s rﬂ on r1' = h Hj(qﬂ
such-that every curve of h(F*) intersecting [1' at points beyond qﬁ,rﬁ will lie

outside Kn' If this is not the case we will be able to find a seguence of pointJ
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t, on [1' such that each Ceyp intersects a fixed one Ky of the circles K . Now
the inverse image of KN is a simple closed curve in R* containing q in its
interior. .We will denote by Cn the inverse image of ctﬁ and by tn the inverse
image of tﬁ. Every C, must then intersect K and hence intersect some circle
with center at g which contains K. But this contradicts the assumption that
r1(q) tended properly to infinity in R*, since we have a sequence t, approach-
ing infinity on [j(q), but the curves Ctn do not approach infinity. Hence the
theorem muet be true.

W. Kaplan introduced the notion of admissible ccllections of finite
seguences in ofder to number the half-perallel subsets of a repgular curve
family filling en open simply connected domaein. The concept is so similar to
that zlready considered in, the numbering of curves of a tree that we shallvbe
able to use the séme notation as in'tﬁat section. We =hall, however, reserve
the term admissible for collections of the type of Section 3.4 and, after
Kaplan {%iL we shall call a collection A of finlite seqguences allowable 1f

(1) A contains the one element seguence 1 and no other onc element
sequences, and

(2) a,keéA implies a,k-1¢A if k >1 ond implies aéA 1f k = 1.

Now, if we have a regular curve family F' filling the xy-plane, and
if we have assigned to each point (x,y) an extended cruss-section |1(x,y) tend-
ing properl& to infinity in both directions, then for any fixed curve Cl it was
shown'in,{éi]that we can decompose F'{bIUZ)*(Cli] into a collection of non-
overlapping, half-perallel subfamilies S(x) which will be numbered by the finite
sequences {a} of an allowable collection A. Each helf-parallel family S(«)

will be the set of all curves intersectins a cross-section (j(a) tending from
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an initial curve Cy to infinity and lying on some r'(x,y) as chosen above; C,
will be the only curve of S(a) mapped onto the x-axis in the homeomorphism of
S(a) onto the lines y = k =0 and the complete boundary of S(a) will be, in
eddition to Cy, Just exactly the curves Ca,k' Note that when we writé Cq we
mean to indicate that C, is &n initial curve of some S(a) in the decomposition
of F', wheréas C(a) will as above indicate thet C is the curve of a numbered
tree which has been assigned the signed sequence @ in the numbering of the tree.
As a corollary to the preceding Theorem 5.2-3 plus the proof\of the
facts mentioned in the preceding paragraph from [IV} we can immedlately state

the following theorem:

Theorem 5.2-4%: Given the family F* = F[R*| and sn srbitrary reguler

curve C, of F*, we can decompose F*[§10K5*(Qli] which is the same as

F[éluz)*(cl)nR* into & collection of non-overlapping half-parallel subsets

s{a), eech S(a) being 211 curves intersecting e cross-section rj(a) tending

from a curve Cy in F* properly to infinity in R*. (See Figures 4 and 13.)

In order to study the relation between an arbitrary iree T of F and a
glven decomposition of ™ into sets S{a) (afA, as described above), it is con-
vénient to adopt some new notation. A(T) will denote the subset of A contain-
ing all sequences a such thzt S(a)sT # O; and AL(T) the subset of all seguences
of A(T) of order n. We denote by N(T) the smallest integer N such that An(T)
is not empty. It is clear thet rq(a) can have at most one point on T, and
S(a)rT is a curve of F* or is empty. If rj(a)nT is the initial point of rj(a)

we.gay that [ﬁ(a), or S(a), begins a2t T; in thie case C, = S(a)aT. When

rj(a)nT is a point of [j(a) other than the initial point, then {j(a), or S(a) is

said to straddle T. In the former case S(«) lies in one domzin of T, in the
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latter in two. Using these notations, we may state the following preoperties:

. (1) If @,B are distinct elements of A with f¢A(T), and ¢ either an
element of A(T) or such that points of T lie on the boundary of S(a); then
s(a), S(B) cannot e-a.ch have a point in the same complementary domain of T.

(2) If Ayg(T), W = N(T), has one element @, then either S(a) strad-
dles T, or if S(a) begins at T, then Cy*nR* = 3(a)»T, i.e., C.* has Just one
curve in R*. (See T, in Figure 13 for S(a) straddling T,.)

If AN('I‘) has more than one element, then every element of AN(T) is of

the form P, k for fixed R of order N-1 ané C for e,ktAN(T) are Just those

R,k
curves in R* of a maximsl chain C*, (See Figure 13, the tree Tl.)
; (3) Llet ¥ be an element of VAN”{(T), then every lower segment of ¥
of order =N(T) is in A(T), i.e., for O< j<k we have TN+3€AN+J(T).

(4) A necessary condition that S{a) straddle T is that aéAN(T) and
i1s the only element of %(T)'

First we prove (1). Let ,0*(C) be a complementary domein of T, boun-
ded by C* on T. Suppose that S(2) and S(8) both have points in AO*(C). Then
there 1s a point P, on r'("cx), pg on [—](B), e.ach in A*(C). Now since PA(T),
[Y(f) has a point a, on C* and p,q,, an arc on P(ﬁ), lies in O *(C)vC*, In.

either of the possibilities for « men?:ioned above, there wpuld be a vceint :1_1
on C* which was a 1imit point of points q, in S(a). If aea(T) then Gy may be
taken on r'(a), otherwise g, will be in A)*(C), since S(a)e O*(C). It follows
by arguments used many times above that there is a cross-section frcm qy on C*
into AH*(C), which always may be shown to cross a .curve also crossed by Frl. .

This curve would have to be in both S(a) and 3(f) which is impossible since

a,f were assumed distinct.
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Lemma: If aeA(T) and a,k ¢ A(T), then no sequence ¥ of A(T) can have
@,k as é lower segment.

Proof: Cg ) lies on the boundary of S(a) but is not in T, nor is
any curve of S(a,k) in T by hypothesis. Assuming Ca,k directed so that
S(Q’k)=43*(ca,k): we have two possibilitiee: (1) the entire curve Céfk is on
the boundary of S{a) and is all of this boundary on T' = Tca,k’ or (2) there
exists C = T‘ns(a} such that Ca,kchC) where d(C) is on the boundary of 3(a)
and 1is all of this boundary on T'. In case (1) every curve of CéfknR*, being
on the toundary of S(a), is a curve Ca,k' for gome k'. We have_()#(céfk)=T,
since it contains S(a) which intersects T. In case (2) dJ(C) = 4(C+)v d(C-)
divides x into three domains (or two if one of the sets dJ{(C+) is empty); one
of these which we denote Dl contains C and hence S(a@) and T. The others con-
tain all other curves of T'. d(C) is the complete boundary in T’ of S(a),
hence every curve of d(C) R¥ is a curve Cq, k' Tor some k'.

The remainder of tﬁe proof depends on the fact that S(f)uS(pP,k) is
NEEREEEIR

such that X is in A(T) then, S(¥) must clearly have points in gﬁ(ccfk) above
b

always o connected set. If there exlsts any sequence ¥ = a,k,n

in case (1) or in D, in case (2), these being the domains of T' in which T lies.

r

Moreover, the set || s(a, k,ny

J=0 '

this set lies in 2*(Cq k) in case (1), and in D, or Dj in case (2). Thus this
. ’ .

e . kj) is connected, and 3(a,k) which is in

'set has points on either Céik or d(C), i.e., for j # O there is a curve of Cg?k
. >

or §(C) as the case may be in S(a,k,n . nj). But each suck curve as already

ll

pointed out is a curve Cq,k' Which is a contradiction.
The lemma implies in particular, that if aand @, n;, . . . anA(T)

then @, n n, £A(T), 3<r. Hence (3) will follow if we prove that every

l,"- . . J
sequence of A(T) contains a lover segment in AN(T).
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Now we turn to an examination of the possibilities for AN(T) and
completion of the proof of (3). Suppose that a is an element of AN(T). Then
either (1) S(a) straddles T, or (ii) begins at T. 1In the former case let
C = S(a)aT, then d(C) is the complete boundary of S(a) in T and we know that
every curve in R¥* of d(C) is in the collection {ba,k}’ Moreover, 4 (C) divides
n into three (or two) domains Dl’De’(Di) of which the firat contains Cl,.gnd
of T, only the curve C. Now let ¥ be any sequence of A(T). 3(¥) must, by (1),
lie in D, or Dﬁ' But };{S(Yi) is a connected set containing Cy (i.e., Ca;l),
hence points of Dl and also points of D2 or DE' It must then centaein a curve
Ca,x ©°f d(C), and therefore S(a), i.e., a is a lower segment'of"K. Since this
is only possible if ¥ is of order >N we conclude is the only element of AN(T),

In the case (ii) where S(&) begins at T, we have Ca on the boundary
of S(R), where 8 is of order N-1 and a = R,k. In fact, Céf-is the complete
boundary on T of S(B) {Ehe curves of CgfnR* are all of the set Cﬁ,k‘ which
therefore are in AN(Tﬁ; and we have @#(cg)as(e), A*(CX)=s(x). Now let us
suppose that 'KFA(T), then S(%) by (1) cannot lie in.,@d«:d?), hence must lie
in 2)*(0;?). But }:{S(B}) is connected and has & point in Z}%Qcé#), namely,
any'point of Cl' Thus this set has a point on Cé?ﬂR* end hence a curve ca,k"
It follows that every sequence of A(T) has a lower segment in AN(T). This
proves (1) and completes the proof of (3).

To prove (4) we need show only that if S(a) straddles T then nc lower
segment of @ is in A(T). If a = B,k, so that B is the lower segment a  _,,
then if any lower segment of a is in A(T), B is also by our lemma. Then C,,
being on the boundary of S(B), we necessarily have S(B), S(a) 'in different do-

mains of Tc,. This is impossible unless T = T02 for we would ctherwise have

points of T in two different domains of Tcg.
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As above we consider the branched regular curve family F with a
regular curve Cy of P and the decomposition of the corresponding F* {:Cl“@*(cl):]
into sets S(a) with initial curves C(2). Then we have the following:

Theorem 5.2-5: The complete half-parallel subfamilies S¥(a) = S(a)“cc*;

-
decompose F E’)*(Cl)u C,| into a family of half-parallel subsets which intersect

—

only at peints of their initial curves, i.e., 3*(a)2S*(f) = C where C¥* = cx
and C# = Cg.
Proof: First to prove that every curve of Fn‘r—LClv O*(Cl)] is included
in this decomposition we note that every curve of F* [Cl" o*(cla is automatically
included, being already in a set S(a) of the decomposition of that part of the
simply connected region R¥* included in O*(Cl). We have only to consider
curves of 5; let C be a curve of F[Clu ‘)*(Clﬂ which is not in R* znd let T
denote the tree which cont=ins it. Then no crqss-s.ec'tion r’ (X) has a point on
C. C will be on the boundary of two dist{nct sets S(@) and S(R) in b*(c) and
/D#(C) respectively. They cannot coincide since if they did then it would
mean that S(a) = S(B) would straddle T, for otherwise the set S(a) lies> in &

single domain of T. Moreover, in thls case, since P(a) would have to lie in

two domains both having C as common boundary (and only C), it would have to

contain a point of C, which is clée.rly impossible if C is not in R*.

Now, if either a or R, say a, is of order =>N(T) then, since o,k
for some k is in A(T), by‘(‘f),‘a must also be in A(T). Thén by (4), C, must
lie on T, whence we have at once that C¥ = C¥>C and hence C is in S*(a). Thus

it remains to show that elther o or f# must be ‘of order =>N. Assume a is of
order < N, then by (1) all of C*¥ is on the boundary of S(a) and every curve of

C*sR* 1s in the set {ca,k} Now, since B,k' for some k' is in A(T), B is of
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order =N-1: If f is of order N-1, it must then be equal to a by (1); or if
it 18 order N, then it is of the form &,k for some k. This latter would mean
that the coﬁmon boundary of the domains containing S(a) and S(B) would be the
curve Ca,k which must then colncide with the curve C, contrary to assumnption
that C is not in R*. Hence B in this case must be of order =>>N. On the other
hand, if a is of order N, then either f§ is of order >N or Cq and CB lie on
the same maximal curve(?#' Cﬁ’ and in this case cuilte cle#rly, C; and C;
cculd not have =z doundary curve c‘in common. Hence either @ or 8 is of order
>N and we have shown that in this event C is in either S*{a) or S*(B).

Next it must be chown that if C, is the initiel curve of a set S(a),
then for any S(p) which intersects CX, the intersection must be along Ca; Let
C be the curve of intersection, i.e., C = C*n (B). Thus, o, A(T) where T is
the tree containinz C,. Now S(a) and S(pg) cannot have points in the same com-
plementary domain of T, which means in particular that S(B) cannot estraddle
T, since one complementary domain of C is 4)*(0&). Hence CB = C which was to

be proved.

Corollury: The family F can be decomposed into complete half-

varallel subfamilies which overlap only along their initisl curves.

Proof: We merely begin with any regular curve C, and decompose both

. 1
CJ_UA)*(C.‘L) and Clv Z)#(Cl) as above.

-

6.0 THE FAMILY F AS THE 1EVEL CURVES OF A HARMONIC -FUNCTICHN

It is the purpose of this section tc prove that corresponding to any

branched, regular curve family F, there exists a harmonic function whose level

\ L)
curves form a family homeomorrhic to F. This is 2 generalization of a similar
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theorem proved by W. Kaplan [Y} for regular curve families filling n. The
method here closely parallels that of {V}. A mupping T, from n to the w-plane
is defined which carries the curves of F onto the lines u = constant. It is
noted'thut Tl is light and interior and hence topologically ejuivalent to an

analytic function. This gives the desired theorem at once.

5.1 Complementary Curve F-milies

Given a branched regular curve family F filling =, we sh2ll call an-

other such family, G, filling n complementary to F if (1) the singularities of

G are exactly those of F and each is of the same type, i.e., a point b is an
n-th ordef branch point of G if and only if it is an n-th order branch point of
F; and (2) every curve of G is a cross-section* of F. It follows at once from
this definitioﬁ and Theorem %.2-% that if G is complementary to ¥, then F is
complementary to G. Hence we may speak of two complementary families, ¥ and G,
filling n. They will have a common set of singular points, B.

The major result of this section is to establish that every branched

regular curve family ¥ hae a complementary family G. In {?V] it is shown that
this, in effect,’is true when B = 0, i.e., for any regular famlly filling =x.

This result immediately-gives us a faglly G* complementary to F*¥ in R* = s - :i,
for we may by IEV] map ¥*¥ onto a family F' filling the xy-plane and defined by
differential equations, %% = P(x,¥y); %% = g(%x,¥). The orthsgonal trajectories

define a family G' complementary to F' and the inverse image G* of G' 1s then

the desired complementary family to F*¥. The method we shall use to establish

* We must extend the definition of a cross-section slightly as fol-
lows: an open, or half-open arc is a cross-section if every closed sub-arc
on it is a cross-section.
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the existence of a family G, complementary to F will be to first consider 7*

and its complementary family G¥, both defined in R* and then to modify G¥*
slightly near the boundary of R*, i.e., necar the cute x(b), so that it will be-
come a family G of the desired type when Ei, the boundary of R*, is added to R¥.
Theorem 4.1-3 tells us that we may cover jwith a collection {VE(D)J} of dis-
joint open sets; we shall assume such a covering, and moreover, assume that
each VcUE[}(bi] an € -neighborhood of A(b) where €=>0 is fixed. Any modifica-
tion in G¥* willvactually take place deep inside V, i.e., in an open set whoae
closure lies in V. We shell asctumlly discuss the modification for one such V
and, assuming similar modifications have taken place .n each V, ve will denote
by G* the modified G*. 64 will be shown to be such that when s added to R¥
6¥ becomes a set g complementary to F. Several preliminary steps must be taken
before the transition from G* to G* can be andejuately described.

First, we must define a semi-r-neighborhood of a cut r(b). We let C

be that curve of St(b)aR¥ which is clockwise adjacent to the initial curve of

A(b), 1.e., Coex(b) 1is an adjacent chain; and we assume C directed so that

Cex(b)=C¥*. NWext, we let Rl denote the rectangle Ry without the corner point
(1,0), i.e., Rl = {(x,y) |C£ysl, -l x< } {(l O)} and F, denote the
family of lines, y = a, filling Rl Now let U be a set contained in

O*(C) [:<9*(C*;] together with a homeomorphism k: U~*Rl with the properties
(1) F[_] is mapped homeomorphically by k onto F ; (2) the inverse image of

‘X = -1 1s a cross- section, and the inverse image of the half-open segment con-
sisting of that part of x = 1 in‘ﬁl is a cross-section tendinz to infinity {but
not properly) in one direction; and (%) k takes A(b) onto the right half of the

x-axis in Ry with k(b) = (0,0); an arc on C then maps onto the left half of the
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x-axis. Then we shall refer to that part of U which is mapped onto §i, except

for the edges x = +1, ¥y = 1, as a seml-r-neighborhood of »(b).

Theorem 6.1-1: If Vﬁi(b{} is any open set containing A(b) and ¥ is

O

eny cross-section through reCnV, C*sCui(b) 2s ubove, then there is in O *(C) 2

— —_—
semi-r-neighberhood U{}(b | with U=V 2nd bounded on one side by ¥ (i.e., the
I

image in,ﬁl‘of'K under k is x = -1).

Proof: The proof will consist of two parts, the first, part (A),
being the choice of a set U, 8o be a candidate for the desired semi-r-
nelghborhood; and second, part (B), being the description of the homeomorrphism
from U to Rl. (See Figure 1k.)

(A) Ve begin by choosing on C a regular point Dy 80 chosen that it
{s inside V and is separated frem b on C by ¢, p = C1¥ . Next we choose a
sequence Dy, Ppy -« + + Pp oo - - of resular points on A (b) which approach in-

n

finlty monotonely along A(b). Then P, will denote the arc on C* joining

n+1

these two points; and for each such pair n >0, we choose a seml-r-neighborhood

;Un’ ﬁncj)*(C)nV and having the further property that 5H‘U€n(pnrn¢l)’ an En—

pRA

neighborhocd of the arc PrPpe1? where En4>0. Moreover, we let Ur be chosen

0, and we shall assume that when we refer to the imege of

o that U, 1PU,,1 =

Un in R, the homeomorphism will always be chosen so that the positive direction

1l
on the x-axis ccrresyponds to the direction from b to infinity on »(b). Now let
pq be any arc on ¥ which liea entirely in ﬁo(popl); there must be such an arc
since p lies between Pq and p1 2nd hence in ﬁo, and ¥ is a cross—éection throuzh

p. Consider for a moment the imuge in R, of ﬁo, let (¥(y),y) be the image of

1
pa, defined for Osys<a<l with p->(%(0),0) and qa;({(a),a) and C, —=>(y = a).

The image of ﬁoﬂﬁi will lie in the lower right hand corner of Rl’ and we may
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LY

£ind two points (x',2) and (x",b), the second in the imagé of UO"Ul and with
¥(z2)<x', a>b and go chossn that the points may be connccted by a straight
line (hence =2 cross-sectién of Fl) not intersectins the image of pa. We let
Qns 9, denote the inverse images respectively of theese two points and chl the
crossssection consistin~ of the inverse imagze of the lire. Note that, by
choice of qo as inverse imaze of (x',z2), both g, qo 1ie on the szme curve of F.
1# we now direct all curves C' crossing pa so that O*(C)= o*(C'), that is, so
thet AQHF C')>n(b), then clearly A}#(Cq)=10ql (except for qoacq). Now in ﬁlﬂﬁg
we chobse @ point g, of ,Q#(cql) and ccnnect 97,9, by a cross-secticn lying in
ﬁl’ which may be done again, by taking the inverse image of a straight line
connecting their image points in the map of U1 onto Bl. We repeat this process 
for all n, each time, however, choosing 9, as indicated but with the additional
restriction thatbtn = thqn is such that t, approaches p. We thus obtain &
sequence of arcs, Godqs U290 - o) erch of which is a cress-sectlon by
Theorem 3.5-2, hcence they approach half-oren cross-section r]tending from 4q
to infinity. Every curve croesiqg pa . except C* will crose rj cince tn =
ank;»p by our choice of Ay - Now the arc from p to infinity on Cc*, the croes-
gection pg on ¥, the arc qqoron CL and finslly the arc r]f“on 4y to infinity
form an arc extendins to infinity in each direction and thus dividing = into
two domains, one intericr to V{i(b:} It is this 1atter domain that we denote
by U; it will be our semi-r-neighborhood. It remains to find the map k from
u to'ﬁl. |

(B) We shall dencte by 3 the collection of all curves of F crossing
vq on ¥, and by ¥ the domain of © - ¥ contzining x{(b) takén together with pg,
its bouﬂdary 1n 2, Now in Thecrem 5.2- l, by use of the function defined by

VWhitney (Theoren 1.6-1) we were oble to map all curves crossing an extended
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croass-section onto the lines y = & of a half-plane. Hence it is obvious that

in a similar manner we can mar S by some homeomocrphism kl onto the lincs y = @

of the strip Osys 1l so that C* maps onto y = O and pg onto x = -1. k., then
takes g(onto Ri, that purt of this strip to the left of x = -1, i.e,,
RX = {Fx,y) ‘O:;y:§+1, -1 x-:cé}. The image of U under kl will be that vor-

tion of R" bounded by (1) a segment on y = 1 Joining (-1,1), the image of ¢, to
(x',1), the imege of gy, slus (2) a curve %a given by (fgy),y) whick is the
image of [1, and honce & cross-section, together with (3) u1ll of the x-axis in
E; and (4) the line x = -1.

Now let Ri dencte the rectangle Rl without the line ¥ = 1. Then kQ
defined by kez(x,y)-a('i,a:) where X = x for -1S$x<0, X = ;:—l' for 0<x =<1 and

1 onto Ri holding all of Ri to the left of the

x-2xis fixed, ond shrinkins eech curve y = &, along itself to the right of the

vy = ¥, is a homeomorphlsm from R

y-axis.' ¥, goes into a curve ‘%L siven by x = %@jyﬁ, where 1lim V;(y) = 1,
L [ =t y__)C)

The closure of this half-open erc connests & point (% (1),1) on the top edge of

Ri to (1,C), the lower right hand corner, and thus splits Ri into two domains,

the one of wkizh lying %o thke left of this arc is the imaze of U under the

combined homeomorphisms k;ky. This portlon of R, is then mapped onto ﬁl by o

2+2x

third homcomorphicm k. defined ms follows kz:(X,¥y)-»{X,y) where x = =5 7=y - 1,
p) 1+ Po(y)

p)
§ z vy, k3 holde the lines x = -1 and y = O fixed, takes ench line y = & slong

itself and maps Lf? onto trhe line ‘F whose equation is x = +1. Hence,

3
k = k5k2kl is a homeomorphism of U onto By with the desired properties, and U
is a geni-r-neighborhood of »(b) in the sense of our definition.

Since nothing in the shove proof depended on the fact thet b was the

initial point of a cut, we cin state the following corollary to the proof above:
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Corollary: Let A(b) be a cut with a finite number of curves, the

last of which begins at the branch point b' and extends to infinity, and let

this last curve be denoted by Cn and the curve counterclockwise adjacent to it

by Cl (i.e., so that with C, properly directed C.,C, form =n adjacent chain

(02}

lying on Cfs. If ¥ is a cross-section through peC,, then there is, inside any

open set V(X(b)) containins p, a semi-r-neighborhood U of CO with the cross-

section W as one boundary curve.

We shall call & semi-r-neighborhood of type II any which extends thus

to infinity along a cut; the earlier defined semi-r-neighborhood (of a finite

-

arc) will then be of type I.
We ncow proceed to define for each A(b) a certain possibly infinite
collection of closed sets Wo,wl, . . . all contailned inside V(>(b)). These are

the sets in which G¥ will be modified. W, is the closure of a semi-r-
]

neichborhood of type II, and if the number of curves in X\(b) is finite, then
there will be = last set WN of this collection which 1s also the closure of 3
neighborhood of type II. All the other sets Wi will be closures of neighbor-

hoods of type I. These sets will be chosen as follows: First, let b _= b,

o

Py, by, . . . be the branch points on »{b) and let the curves in R* of each

St(bi) be numbered with two indices, the first being that of b the second

i’
being given by a counterclockwise numberinz of the St(b{) proceeding from the

first curve to follow counterclockwiae after a curve of St(bi)nx(b) to the last

‘to precede o curve of Stfby)ax(h) in the counterclockwise orderine: € = Cnp,

+

Coyrs - - - Con]; Ci1e Cyn + « - Cin.,3 « - - @ebec. (ee Fimure 15.) Second,

choone regular points 655 on each C,.l anrd short crose-sact Long ‘Ki, through Ry
. ° a4, . .l

the 1’11 being in cach cnse nan are on o curve of G¥ and hobh fy and ‘Kiﬁ,beinm

&

chosen no as o 1le In V(). Nou we chooge our gotn W, ar follows: Wr,c'l()\.) ie
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the closure of a semi-r-neighborhood of type II, bounded on one side by an arc
To0%00 " XOO_and on one side, of course,.by (soobo)ux(b). Next, in the domain
bounded by (the maximal chain of) the adjacent curves COO’cOi we choose n semi-
r-neizhborhood of type I of the arc SgoBc1 °P these curves, which is bounded

by the zres spaty, on ¥o0 e-.nd_::'Olso;L on xoi and whcse closure‘lieg in V()\) anq
will be our Wl. Similarly, we.choose wg, . - . wnl-l’ zach a closure of a type
I neighborhood in V(») and bounded by arcs on some Xbi' It may be that bo is
the only branch point of »(b), in which case the next set Wnl is the last and
must be of type II, bounded on cne side by an arc SOnltonl on'!bnl. Otherwise,
we choose for W, = semi-r-neighborhocd of type I of FOnlbOblsll’ an arc on the
adjecent chain Clnl,c',cll (C' being thg curve of »(b) with endpoints bO’bl)'
the neighborhood being so chosen that its ends are arcs BOnltOHl and rllsil on
anl and ¥,y respectively, and that it lies in V(A). This process is continued
‘|until we have chosen semi-r-neighborhcods on both sides of every curve of St(bi)
in R* for all by and on both sides of each curve of »(b). Then A\(b) will be
contained in the interior of the set W = lzjwi' W is bounded by an open arc r1
extending to infinity in each direction; and r‘consists aither of one infinite

-

cross-section of F*, not in general a2 curve of G*, plus an infinite number of

arcs alternately on curves of F* and on curves of G* (the latter of the form
rijsijtijcxij); or else r1consists of a finite number of such alternate arcs on
F* and G* plus two half-open cross-sections of F*Vextending to infinity. The
first case occurs when the number of neighborhoods of tyre II is one, the second
when it is two. [j iies entirely inside V(1) and V¥, whiéh consists of r]plus
that one of its complementary domains imside V(k), is a closed set. The Wi's
cleerly intersect on curves of F, namely on »(b) plus arcs bisij onn each curve

in R* of every St(by) for by in A(b). We denote by % the set of all points
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vhich lie on the common boundary of two or more Wi's. A point of % which is a-
regular point clearly lies on the intersection of just two such sets, whereas
each branch point b; lies on the intersection of 2m, where m is the multiplicity
of bi' Wae denote by W; the set wi - » and by W* the set W - {, and finally by
V* the set V(A) - X. Then let G* = G¥ [v*J and F* = F*EV*-} . 1

Now each W, has agsociated with it 2 homeomocrphism kn’ of wn onto Rl
11if it ie of type I, aﬁd onto ﬁl if it 1e of type II. 1In order that the modi-
fication of G* to §* which we are going to make will not destroy the relation-
ship between G* and F* we will actually achieve 1t by a homeomorphism h of R*
(R* = R; - %) onto itself which is the identity outside of each set W, but
which inside such a set carries each curve of F* onto itself, i.e., it may be
visualized as "sliding" the points of a curve of G*, along the curves of F* to
which they beiong, to their new position. Actually, Qe shall describe this
opératiog-piecewise, for each w; and, in fact, as a homeombrphism on the lmage
curves in Ry (or §1 as the case may be).

We begin by defining a typical homeomorphlsm fI on the image of

f*{?ij, 6*[?; under k; for W, of type I (see Figure 16e). The image will be

* _ n
Rl = Rl

| respectively. . The former will, of course, be just the lines y = a, O<a<l, the

- (x-axis), and we denote the images of the curve families as Fi, GI,

latter being a regular curve family filling RY, complementary to F{, and having
._améng its curves fhe two 1ines»x = +1, iméges of arcs 6n two of the curves *13
of G*. It will be seen that G{ consists exactly of the curves whose inverse
images cross c’', the inverse image of ¥y = 1 in Ri, for, if we consider any
curve of G* with a point inside wi, it 1s clear that 1t must leave wi in each

direction, there being no branch points interior to_wi; end hence, 1t musat

either cross C' or heve two endpoints on 3(b). It could scarcely have both
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endpoints on A(b), however, withdut crossing some curve of F¥* twice inside W,,
which is impossible. Moreover, no curve of G* will cross C' more than once,
‘since C' ie a cross-section of G*., Thus we may define a function FI mapping
Rivénto iteelf as follows: Let x = f(X,y) be defined by f(x,1) = x and f(x,y)
= constant on each curve of G¥, and let v = g(x,y) be defined by g(x,y) = y.
Then it follows from the above remarks and the work of Kaplan [%i} and[?IIi]that
this is & homeomorphism of BI onto itself which takes each curve of %z onto it-
self and each curve of Gi onto a l;ne Xx =b, -1<b<1l, the lines x = +1 being
held pointwise fixed, as is the line y = 1, i.e., all of the boundary of R{ on
vhich fI is defined is held pointwise fixed. h w; is then defined by ki—lfIki,
and if thus defined h maps ﬁ*{?{} onto itself, tékes 5*{?* homeoniorphically
onto a new family G¥ ]’wﬂ which is still complementary to F* and vhich is iden-
tical té G* on the bougaary of W;. Since ki'is actually a homeomorphism of
all of W, onto Ry, it will now map F @i} and G* E«i] so that the curves F* EJ;{ ,
8¥(hi} will mép onto the lines y = a and x = b, respectively. We re-denote ki
-

by ii to emphasize that it acts on G*. Thus it is clear that every curve of

8*{?{) has exactly one endpoint, unique to 1it, on »x and exaectly one endpoint
unigque to it on the curve of F* forming the opposite side éf wi. The regularity
of G* which we have achieved at A is precisely what is needed. We assume a
similar homeomorphism defined for every index 1 such that Wi is of type I; then
h will be defined on every set of W except the one or two neighborhoods of type
IT.

Now let us suppose that we are deéling with a neighborhood of type II,
say Wy, with its associated homeomorphism ks onto ﬁl' Again let Fi, Gi denote

the images of the respective families of WOAin‘ﬁi =R, - (x-axic), the former

being the lines y = a, and the line x = -1 being a curve of the latter, but not
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in general the line x =:41. fII Qill be given as the composition of four homeo-
morphisms of ﬁ: onto itself (see Figure 16b). Before we can describe fl’ the
first of these, we must note that there is in WO et least one curve ¥ of G¥,
distinct from the arc rgpspg on.XbO (inverse image of x = -1), whose image HVi
in ﬁl joins a point (x",0) to a point (x',1), where -l<x", x'<0, 1.e.,
curve of G* joining one side of WO to the other, and intersecting each at a
regular point of R¥, i.e., not on X\(b). That such a curve exists follows from
the fact that in the family G*, regular in R¥*, the arc TaoSgp ON & curve of G¥
has an r-neighborhood U (by Theorem 1.2-2) with UeR*. The‘curves\csco and Ctoo
have small arcs entirely in this neighborhood, since they are cross-sectlons of
G*, and_each'of these will be croséed by an infinite number of curves of G* on
each side of SOOtOO’ one of which will serve our purpose; namely, one crossing
that part of each of these arcs which is the inverse image of the segments
(-1,1) to (0,1) and (-1,0) to (-¢0), 1> € =0. *Vl will be given by e continuous

function x = ‘7‘i(y), O=y<1l, and we shall use it to define fl:Ri—bRI given by

fl:(x,y)A;(§,§)'where:

L . L tetn]x - (A -Yes) .
1 +‘Va(y)

r -l xs%(y);

5 - E, - VJE(yﬂlx-'Vty(%;gy) - Y/E(yﬂ_ for kf/l(y)sxs +1
1

—

Y=Y _
(where we have Vé(Y) = (x'-x")y + x", this being the equaticn of the line join-

ing {(x',1) to (x",0), the curve into whichqfi is mapred by fl).

* /, into YZ, the line

X = x'. fl 1s given by f2:(x,y)+>(i,§)'where:

The next homeomorphism, fe:R;4>R* will carry ¥
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- (1 +x)x+ [x' ’yé(lz] for -1€ x=%5(7);

1+ ¥5(y)

(1 - x4+ [x' - #o(y)]
1 - 75(y)

1
)

for ¥o(y)sx=1l

Y=Yy

Bach of these homeomorphliems holds the boundary curves x = +1, y =1
pointwise fixed. To describe f5 we firs_t denote by M that portion of ’ﬁi which
lies on or to the left of ¥#,, 1.e., M = {(x,y) l--ls x<x', OSysl} . Mis
bounded on each side by & line x = constant whicfa is the image of a curve of
G* under the composition of the above maps, and bounded on top and bottom by an
image of a curve of F¥, The image of F* in M is the family of lines y = a.
Hence by precisely the same argument as in the definition of fI for the neigh-
borhood of type I above, we may find a homeomorphism fB:M->M which holds the
boundary of M pointwise fixed, takes; each curve y = a onto itself, and takes
the image family of G* om;.o the lines x = b, -1sbs<x'. We extend f; to all of ‘
,1\?/1‘ by defining it as the identity on the rest of this set. Again, f3 will be a
homeomorphism leaving the boundary curves x = +1, ¥ = 1 pointwlse f'ixed, as
vell as the curve ¥} and all of B to the right of ¥j.

1

Finally, we define a homeomorphism fl‘:R*l*a-Ri, ageln by giving

f:(x,y)=>(%,y) as follows:

X = (fh(y) + l)(—]-f—-;—lj_) -1 for -l x<x!
x = (1 'V/M(Y))(]_ ~ ,) +*/L for x'<sx<+1
Y=v¥
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where }, denotee the line x = ¥, (y) = (x' - 1)y + 1 joining (x',1) to (1,0),

this being the image of yg under fh' The image of M under fh will be denoted

by M,y and will be the trapezoid bounded by Vﬁ, the x-axis, the line x = -1,

‘and the segment from (-1,1) to (x',1) on the line y = 1. f) takes the lines

y = a onto themselves and the lines x = b, -1<b<x' of M onto a family of non-

intersecting straight lines joining the points of the top edpge of Ml to the

bottom (as listed above). fh leaves the lines x = +1 and y = 1 pointwise fixed.
Now we define fII:RI-*ﬁI as the homeomorphism fhf5f2f1’ and we define

h!W6 as_ko‘lfIIko. Then h}ws is a homeomorphism of Wg = wo - % onto itself

which is pointwise fixed on the boundary of WS in R*, i.e., on tOOSOO’ on Ctoo’

and on the extended cross-section whigh bounds one side of Wy. b also takes

0

o

the curves of G*fﬁ?} homeomorphically onto a family G* at the same time map-
 ping each éurvé of F* onto itaelf. Now, if as above for ki’ we re-dmnoum kg

by ko, then we have a homeomcrphism of zll of WO onto Rl which takes X\ onto the
x-axis between ( 1,0) and (1,0), with by mapping onto (0,0), and s,y onto ¢1,0),
| and which moreover, takes the curves of F onto the lines y = a and takes part of
8* onto the straight linés joining the top and bottom of Ml “8 described above,
the remalnder of E* map?ing onto‘a rezular family filling the rest of Rl. Thé

curve ¥ of 5*, tmage of + under h|W¥* divides WO into two domeins, one of which

0
maps onto Ml, the other onto Rl - Mi. We shall denote the one which maps onto

M;, together with ite boundary, hy’an the boundary consisting of two curves
of 6* namely, rggspgo and 4, together with,CrOO and ega0y ww(b) in F. It.is
obvious that M, in Rl can be mapped onto Rl by a homeomorphism g g which holds
x = -1 and y = O pointwise fixed, takes each line y = & into jtself, and
‘finally moves the image curves of E* in Ml onto the lines x = b, -l1sb=l,

keeping, of course, their lower endpoints fixed, thus taking the'line i} onto
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~

x = 1. Then gko:ﬁo—>§l with F going onto the lines y = constant and G* onto

the lines x = constant. %0 is then again, like W,, a semi -r-neighborhcod of
A(b), hence of type II, but of a kind which is bounded by curves of two com-
plementary families and has associated a homeomorphism gﬁo which maps the

curvee of the respective families onto the lines parallel to the axesvon §1'

Hereafter, we shall denote gﬁ nerely by ® Note that this is similar to the

0 e’
case when we had a semi-r-neighborhood of type I. -

Now if WN"is a second neighborhood of type II in W, then it must be
the last Wy defined for x(b) and on it we define, in a manner entirely parallel
to the above discussion, fII’ h‘Wﬁ, ﬁN’ §N, etc. Thus we have defined h WI
for 211 1, and since the Wi are overlapping closed sets of V¥ (with only a
finite number containing any given point) such that h is actually the identity
along their overlapping boundaries as well as onij, the boundary of W, we have
| defined a homeomorphism h of W* onto iteelf (W¥ =W - 2). Assume that h is
gimilarly defined for a set W{cv{}(bi] for every cut X(b) contained in \ﬁ, and
we define h as the identity outside the wh's. we remark tﬁat the collection of
all the séts WK for »(b) in fi together with the set = - i?é’wl’ is a collection
of overlapping closed sets which has a locally finite character, 1.e., every

neighborhood of any point meets only a finite number of the closed sets. This

18 clear because the cuts, A, recede to infinity, and eachAWK lies in an

€ -neighborhood of the cut k,- €>0 being fixed.‘ Then it follows that h is a
homeomorphism of T* onto 1tself, where by R* we meen R* - [}<% x(bg]. h carries
ever& curve of F* onto itself homeomorphically, and every curve of G*[%%} nomeo-
morphically onto a family G* which is complementary to F* in R* and which co-

incides with G* except in the interior of the W, 's.
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It remzins to prove that by adding the boundary points of R*, i.e.,
T - ﬁ*, the curves of*a% become curves of a family e} complementary to F in =.
To prove this we must first prove that 6 4s regular in R =n - B. Now if p is
a point of R*, £his is clear, since G = G» (which is homeomorphic to G*) in
some neighborhood of p. In fact, it is clear that there is an arbitrarily
small r-neighborhood of p whose closure maps onto RO = {(x,y)l"x‘sl, lyrsi}
so that the lines x = constant are the imapges of the curves of 5, those lines
y = constant the image curves of F.

Now, however, suppose that p is a regular point on XYSY. Then p will
be on the common boundary of just two of the neighborhoods wi, aince p is not
& branch point. lLet wh,wm be the two neighborhoods. Then p is interior to

WnUW

? and it follows from Theorem 1.2-3 that G ﬁnyw%ﬂ is regular at p, since

g is regular in Wn and in Wm separately, as may te ssen from the existence of
the magps ﬁn,ig onto R, (or % as the case may be) with 5 mepping onto the

1 1l . .
lines x = constant. It follows that G 1s regular at every point of R, so that
the singularities of E are contained in the set B of singularities of F, and

lare thus isolated. Now each branch point is in a cut, and hence will be

bifx(b) for some i_and gome A(b). by is on the common boundary of Jjust 2m sets
W,s where m is the multiplicity of bi' Then it is clear that there are just
exactlyvem cﬁrves of E[ﬁ], ene in each of these sete which have bi as a limit
point in one direction. Thus, 1f W, has bi on its boundary, then in the homeo-
morphism ﬁg:wn"Rl the point bi will map onto é point (1,0) ard the Inverse imags
of the line x = a is the §lngle curve of EE’n] which has b, as a limit point.
It follows at once that bi is a branch point of multiplicity 2m of ¢. Hence we
have established that G ies a branched regular curve family with the same branch
points as F. Again, just as above, it is clear that it is possible to find an

[
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arbitrarily small neighborhood U of each bi which is homeomorphic to |zj<l, und
moréover, with a homeomorphism k cerrying Ffﬁ] on@o the level curves oftﬁﬁ(zm)
and G{?} onto the ievsl curves oftJ??zm).

Finally, to complete the proof thet G is complementary tc F, we note
that by Corollary 2 to Theorem %.5-3 we have at once thaﬁ every curve of G is

’

a eross-section of F. This completes the proof of the fellowing:

PTheoren 6.1-2: Every branched regpular curve family F has at least

one complementery famlly G as described above;

.2 The Fundamental Theorem

Given cny branched regular curve family F on xn, we have shown the
existence of a complementary family G; and also, we have shown that each of
these fomilies is the level curve family of a contlnucus function f(p) and g(p)
respectively. This ensbles us to define a single-valued mapping Tl from the
plane n to the complex w-plane &s follows: Tl(p) = u + iv where u = £(p) and

v .= g(p). Tl(p) is clearly continuous, because f and g are continucus.

Morcover, T, is loecally a homeomorphism on R and is at most m-to-1 in the

1

neighbornood of an m-th-order branch point. To show this, it is gufficient

to consider the special neighborhoods mentioned in the proof of the previous
theorem, i.e., for every regular pcint we consider only a neighborhood U such
that there is a homeomorphism cf U onto the rectangle Rl of the xy-plzne such

v = constant and G[ﬁj ontc the lines x = constant.

o

that F[ﬁ] goes onto the lines

Then Tl becomes a map of Rl

v = constant onto u = constant and x = constent onto v = constant. It 1s

clearly a homeomorphism since it 18 monotone on each line x = constant and each

onto a rectangle in the uv-plane carrying, the lines

-
line y = constant. This is exactly as 11&%11{} It is ecually easy to show that

. . .
in 2 neighborhood V of a branch point, where F{?J‘and G[?] mnap onto zﬁkzm) and
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cQ%z“) respectively under a homeomorphism of V onto |z|<1, Ty carries V onto an
open set and is at most m-to-1, where m is the multiplicity of the branch point
Tt follows that T, 1s not only interior but light (since for every point there
is a neighborhood in which f and g take on the same value only a finite number
of times in the neighborhood). It follows from Stoilow [%II%] and Whyburn
~E¥v%1th&t Tl is topologically equivalent to an analytic function W = sﬁkz),
i.e., there exists a homeomorphism p = h(z) of the plane n onto either the
domain Dy = {é||z|<%} or D, = {il]z]{co} of the z-plane such that ,
Flz) =Ty EI(Z] is snalytic. The family F' of level curves of the real part
of Hz) are just those curves mapping onto the lines u = constant of the

w-plane and hence are homeomorphic to F ﬁnder h. ‘It is thus proved that:

Theorem 6.2-1: Given any branched regular curve family F there ex-

ists a function harmonic in either the finite plane or the unit circle vhose

level curves are homcomorphic to F.

Since if the function u(x,y) is harmonic in a domain D, its level

curves setisfy the differential equations EE Ug) dt = -u, we have at once:

Theorem 6.2-2: Given any branched regular curve family F, then

there 1s & solution family of a System of differential egquations to which it

is homecmorphic.
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