 and Nersective Iryay tomaignatr colls ir Tisses: Cuhtuse with Pruicllim Extants... author Inor Cormman unversiry of Michigan orte 1949 degre Ph. pualcation no. \qquad

COPYRIGHTED

by
IVOR CORNMAN
1949

CYTOLOGICAL PHENOMENA OESERVED DURING SELECTIVE AND NONSELECTIVE INJURY TO MALIGNANT CELLS IN TISSUE CUTTURE WITH PENICILLIUM EXTRAGTS AMD WITH NITROGEN IUSTARDS.

Ivor Cornmen

A discertetion submitted in partial fulfillment of the recuirements for the degree of Doctor of Philosophy in the University of Michicen.

June 1949

Committee in Charge:
Prof. A.F. Shull, Chrm.
Frof. W.C. Steere
Prof. P.O. Okkelberg
Prof. F.H. Test
Prof. A.E. Woodvera

CONTENTS

INTRODUCTION

PENICILLIUM EXTRACTS

PERTINENT LITERATURE
INITIAL EXPERIMENTS
Meterials and Methode
Results
Conclusions
CURRENT RESEARCH: SCREENING
Method
Materials
Results
Conclusions
SURVEY OF EFFECTS OF PENICILIIM IMPURITIES
Damace to Tumor Cells
Inhibition of Mitosis in Nomel Cells
Metebolic and Enzymetic Eifects
Effects on Plants anc Microorgenisms
DISCUSSION

NITROGEN MUSTARDS
HISTORY
Inhibition of Cell Division by Musterd Gas
Inhibition of Cell Division by Nitrocen Mustards
N1trocen Mustaras in Chemotheraoy of Cancer
Alteration of Mitosis by Mustaras

MATERIAL AND METHODS
Tissues
Nitrocen Mustards
Culture Method and Scoring of Results
RESULTS
Cytological Effects
Effects During 24-hour Exposure
Difects Following Return to Normal Medium
Relative Activity of Different Mustards
Susceotibilities of Different Tissues
DISCUSSION
Cytological Effecte
Comparative Effectiveness of the Mustards
Tissue Suscentibilities

SUMMARY

REPERENCES
PENICILLIN
MUSTARDS

EXPLAMATION OF FIGURES

INTRODUCTION

In a cancer research program, tissue culture can make two paramount contributions. First, a research into the etiology and characteristics of the malignant transformation enables one to isolate and study the neoplastic cell, or even to change a cell from normal to neoplastic outside the animal body (Earle 1947, Gey and Gey 1947). Second, in the search for chemicals to be used in the therapy of cancer, the naked mammalian cells can be ernosed directly to the comounds tested, thus avoicing the obstructions of somatic toxicity or detoxification which complicate in vivo studies.

The first tyne of contribution is essentially descriptive. One can list and describe the cualitative changes seen, and follow the seauence of events in the livinc cells. The second, the screening of substances for possible chemotheraneutic value, recuires a quantitetive approach. Before one can definitely state that a substance is or is not worth further testing, he must establish criteria of damage. He must find a repetitive pattern by which both normal and malignant cells reveal injury and then estrblish an objective scale by means of which the degrees of damage can be compared. He thus reduces the millions of decisions ebout thousands of cells in hundreds of cultures to a few numbers which tell whether one comound is better than another by the standards established in the test.

A resort to tissue culture necessarily removes the results one step from the whole-animal exmeriments minch rive more definitive answers as to chemotheraneutic value, but tissue
culture is to be regaried as a sensitive feeler to indicate the airection which the final therapy may follow. Tissues in culture may reasonably be expected to reveal the action of a substance comprising a minute portion of a complex mixture, or reveal a weakly ective homolorue of the comoound which may later exhibit e theraneutic value.

The substances chosen for this attempt to establish tissue culture as a screening technioue vere crude Penicilifum extracts and fractions as examples of heterogeneous mixtures, and the nitrogen mustards as examples of a large family of commounds known to be extremely active biologicelly.

Of the various culture methods the roller-tube technidue (Gey 1933, 1936) offers two main adventeges in that up to 20 fregments of tissue can be plented, thus permitting an adeauete sampling of the tissue to be tested, ana also because normal and malignant tissue can be grown side by side, so that there can be no duestion as to differences in the composition or concentration of the medium reaching the two tyoes of tiseue. This exact control is requisite in tests thet are necessarily conducted at threshold concentration where slicht differences in dosage give considerable differences in effect.

The initial wori with crude venicillin in these studies Was carried out at the Wistar Institute and finenced by a erant to Dr. Werren H. Lewis from the Internetionel Cancer Pesearch Foundation. To Dr. Levis the author is deenly indebted, and also to Dr. Margaret Reed Levis for her cracious edvice and sssistence.

Recent work on Penicillium filtrates and penicillin fractions, and the nitrogen mustard studies were conducted ass a part of the chemothereny screening program at the SloanKettering Institute.

Because of the extreme diversity of the substances studied, these two groups of substances nsidered in senarete sections.

PENICILLIUM EXTRACTS

PERTINENT LITERATURE
There would be little purpose to outlining the history of penicillin and its many clinical uses, inasmuch as the work of Dr. M.R. Lewis has shown that the factor affecting sarcomas In tissue culture is seperete from the bacteriostatic agent. Several reviews are already available: Ferrell 1945, Waksman 1045 , Fleming 1946, Merck \& Co. Bibliography loti. Work antedating Fleming has been surveyed by Brunel 1944.

Experimental work with "impurities" from Penicillium culture fluid which has appeared subsequent to the publication (Conman 1944 a, b) of the initial fincince of the selective effect reported here will be discussed later.

INITIAL EXPERIMENTS

Materials and Method

Rets of the King A and of the Mister albino strains, and mice of the black $\left(C_{57}\right)$ and the Dace Albino (B.A.) strains were used. The A strain was kindly sumiled by Dr. Helen Dean Kine. Each of these inbred strains had proved to be 100 per cent
susceptible to the grafts of sarcomas that had been induced in the strain (M.R. Lewis and Lichtenstein 1937). Six rat sarcomas (King A No. 11, No. 89, No. 104, No. 120, and No. 132, and Wistar No. 304) and two mouse sarcomas $\left(C_{57}\right.$ No. 350 and B.A. No. 37) were used in the cultures. These spindle cell sarcomas had been induced by subdermal injection of dibenzanthracene or benzpyrene (W.H. Lewis 1939). The normal fibroblasts were derived from fragments of muscle from rats or mice, 1 or 2 days old, of the tumor-host strain. Roller-tube cultures (Gey 1933, 1936 and Lewis 1935) with usually 8 to 10 fragments of a tumor and an equal number of muscle fragments I to 2 mm . in diameter were grown in a medium composed of 2 drops of chicken plasma, 2 drops of chick embryo extract, 5 drops of human placental serum and 7 drops of Locke's spline solution. The olpettes used measure dj 18 to 20 drops to the cubic centimeter. Extensive outgrowth was obtained in 24 to 72 hours, and at this time a record was made of the extent of growth. The initial medium was then replaced by a medium of 7 drops of Locke's solution, 5 of serum, and 2 of plasma, enō, in the experimental tubes, 1 to 3 drops of penicillin solution were substituted for an equal quantity of locke's solution. The penicillin solution was prenered from Scuibb or Reichel sodium self of penicillin dissolved in 0.85 per cent sodium chloride, and filtered through a sterile Seitz filter. Such pharmaceutical penicillin preparations contain substances in addition to the nenicillin.

The duration of exposure was veried, dosepe usually being continued until a definite selective effect vas observed. After the effect of the drur hed been studied, the oenicillin medium res reoleced by a Locke's solution plua serum plus plesme medium, and the recovery processes were etudied. In those instences rhere the injured tumor explants showed renewed growth, half the explents were imolanted into an animel of the strain netive to the sarcoma to test whether the viable cells were malimnent or stromel (host) cells. In all, 38 tubes, treeted and untreated, were studied.

- Results

The malignent cells were consistently nore injured then the nommel ones (Figs. 1 and 2, 4 anc 5). With adecuate dosege it wes found possible to damere enc rill the outgroving cells of ell six ret tumors end one of the mouse tumors without killing the cells which srew from the frements of normal muscle. These malisnant cells firet reacted to the penicillin by essumine a cranular, onadue apneerance, with or without vacuoles. This was the initiel response to a heavy dose of the drue or the full extent of resnonse to a threshold dose. If the penicillin was removed at this point, all cells recovered. In the higher concentration, along with increasing crenularity and darkening of the cytonlasm, there was a retraction of the elongate processes, producing cells irregularly rounced. Unon orolonged exposure the cells disintegreted. Even if venicillin was removed after the cells had rounded un, some
of the cells never recovered. This sequence of changes is not peculiar to penicillin, but is the usual reanonse to many cytotoxins and moderately toxic compounds. In the hicher concentrations of penicilinn, the normel fibroblests follored the seme sequence of changes. Hovever, there ves the very importent difference that a concentretion of penicililn sufficient to cause the rounding uo of some of the fibroblests, In most instences caused the death of all the melirnent cells. A dose too weak to produce any visible cytoloricel chences was nevertheless selective in that it inhibited erowth of the malignant explants, while growth of the nomal explants was unaffected. In the untreeted control tubes the outerowth of the sarcona eoualled and usually exceeded the outgrowth of the normal cells.

To obtein a quantitative stetement of the results, damage to the cells cen be clessified as incioient franularity of 50 per cent or more of the cells, and increased irregularity and refractility of the cell boundery), merked damace (roundinc,

Table I

Number of Exnlents of Sercome Cells and of Formel
Fibroblasts Showine Different Gredes of Demese. Combined Totels of $2 l l$ Exneriments.
In-

None cipient Marised Lethal Total

Colonies of	112	92	57	0	261

Normal Tissue
Sarcoma
0
29
208
104
341
coaculation, or disinterration of the cells, short of 100 per cent), or lethal (no living cells visible). Table I shows the totels of exnlants classified accoraing to their damage. A further subdivision of the comparisons better reveals the extent of the selective effect. In those tubes in which the 112 normel colonies were not at all ariected, there were 29 of sarcoma which showed an incinient effect, 114 which showed marked damage (Figs. 2 and 5), and 23 which were dead. In tubes showing incipient effects unon 92 normel colonies, 70 tumor crowths showed marked damace and 46 vere completely killed. In tubes in which the 57 nomal colonies shoved marked damage, 24 colonies of tumor vere marisedly demaced, and 35 were killed. The over-all effect was clear cut. Not only was the malimnent tissue dameced more then the nomel throuchout the series, but in numerous instances the malimnent cells were killed when there was no visible effect unon the normel.

These ficures include results obtained with tube cultures of rat tumors and of mouse C_{57} No. 350. Rat tumor 120 was less affected than the others, but the selective effect of penicillin unon the malignent cells of this tumor was uncuestionelle. The behavior of the mouse tumor B.A. No. 37, on the contrery, nroved to be so like that of normal mouse tissue in its reaction to nenicillin thet the presence of a selective effect was aoubtful. In 3 tubes there were 10 muscle colonies showing incinient effect, 16 showing marked damage, and 4 dead, as against the cultures of No. 37 which showed 18
markedly damaged colonies and 7 dead. A dose heavy enough to kill the malignent celle had also killed some of the normal, end the slight amparent adventage of the normal is of questionable aienificence.

The time at which demege apoered varied with the different cultures and doses, but typically, by use of a dose at the selective lethal level, an incipient damare of tumor cells could be detected at 12 hours. There was marked damage at 24 hours, and complete killins of the growth zone at 48 hours. By 48 hours, however, there was sometimes a new srowth of tumor cells, already pushing out from the exnlents. If this reviving growth was then given fresh mecium free from penicillin, the tumor cells grew vigorously. If the fresh medium contained beniciliin, hovever, this new growth in turn was killed off. Four to six days (1.e. two to three chences of nenicillin medium fere usueliy oufficient to eliminate 211 tumor cells from exolents 2 mm . in diemeter. Then when the medium free from neniciliin ras edied no tumor cells crew out, or if the sercoma exnlents were imnlented into rets, no tumors formed. With explents of 1 mm . Diemeter, hovever, 2 doys sufficed to kill the malimnant cells, as determined microsconically end by imnlentetion.

The strome included in the exolents of the verious tumors pesnonded much the seme $2 s$ did the fibroblasta rroving from the muscle frecments, but wes nerinens slifhtly more suscentible than the normel and grew more slowly than either muscle
fibroblasts or melicnant cells. In sone tube cultures it was noscible, without killing the nomel celle, to kill all cells In the tumor erolsnts (Ret tumors $104,132,304$, and mouse tumor $C_{57} 350$), but there mey not have been eny stroma Incluced in these explents. More frecuently: onorently deed exrlents (initiel micretion zone disintefreting end no new cells migrating from the exolents during treetment) recovered enough in a medium free from nenicillin to send forth at least a few stromel cells. These long, fusiñom cells resembled fibroblasts rather then the otout, multioolar malignant cells.

As a innal sefeguard ageinst wrongly classifying viable malignant explente as xilled, those pieces which chored no growth and those which showed a growth of strome or of some doubtfully malimnant cells (Figs. 2 and 5) were imolented in younc rodents of the corresponding inbred strein. The failure of these cells to grow into tumore showes thet the estimetion of lethal effect had been conservetive in thet some melienent exnlants graded as merely damaced failed to produce tumors. Colonies in 4 tubes greded as 100 ner cent lethel, failed to oroduce tumors when implanted into enimals; and out of 21 tubes creded as mrobably containing surviving tumor cells, only σ contained tissue capable of oroducing tumors. To verify the susceotibility of the control animels, they were given imolants of untreated es well as the penicillin-trested tumor tissues.

In 2 cultures the dosage in Oxford units wes deternined by becteriological assey of the nenicillin solution (Cornman
$1944 \mathrm{~b})$. Ret tumor 304 was killed et a level of 59 units per cc. of Reichel lot lC533. The muscle fibroblects in these cultures showed merked damese. The melicnent cells of rat tumor 132 were markedy comered (without any denefe to the normal fibroblasts) by 75 units ner cc. of Scuibb control 87225 and by 73 units ner cc. of Souibb control 91478.

Conclusions

The evicence showed fairly conclusively that the acent producing the selective danece was in the renicilin preparations. The effect incresced whin the incresse in cosage, while in control tubes, icentical excent for the leck of oenicillin, the melienent cells grew at leaft as well as the fibroblests.

Consiceration must be riven to the nossibility that the medium fivors the growth of the cells derived from the muccle, and that nenicillin acts by merely lowerine the life-supportinc nowers of the medium, whereunon the oreome succumbs first. The sustained superiority of erovth of the maliment cells over the normal, hovever, indicates that the nedium vas entirely adecuate. Omittinc plesma or eddine embryo extrect durine the nenicillin treatment dia not eliminate the selective lethel effect. Tests with different media may prove fruitful, hovever, in revealinc whether venicilin ects unon en intrinsic peculiarity of malimnent celle or merely unon z suscentibility created in vitro.

CURRENT RESEARCH: SCREENING

In order better to characterize the selective acent in crude penicillin, numerous Penicillium filtretes and frections of crude penicilin were subjected to a screenine procedure.

At this point one must institute a system of objective evaluation thereby many preparations can be tested and compared to renlace the slover exnloretory method of renestedly dosing a fev cultures to obtein selective killine.

Method

The roller-tube method as modified by the Geys was used throuchout. The tigsues were held in blace by a chicken Dlesma clot. The standero sumernetent nutrient medium was composed of 2 perts of belenced selt solution, 2 of humen plecental serum, and one of embryo extrect, (halî embryo, helf belenced seline). The serum comonent was sometimes modified to decrease the amount of lysis (colcheber, Cornmen, and Ormsbee 1947).

Two or three rows of 8 to 10 frecments were planted in each tube. Usually one row comprised fetel skin and the others were frements of one or two tumors. When two tumors were grown in tize seme tube, they were teken from different strains of mice to evoia contamination unon bioescey.

After 24 hours crowth in norms medium, eech irfement was erecied as to vigor and cytolocicel concition. Fresh mediun was edded, containine movn cilutions of Penicilizum filtrate or weighed lyonhilized filtrete. Emosure to the
penicillin was usually continued for 24 hours. At the en of this time, damage to the tissue was evaluated and then the fragments were either returned to normal medium for study of the extent of damage end subsequent cytological behavior, or they were inoculated into mice to bioassay the residual malignancy.

The evaluation of effects was made as objective as nossible. To do this, growth, lysis of medium, and certain cytoloricel changes were chosen as criteria of effects (Fig. 7). They were divided into 4 successive levels of intensity. Granularity end rounding were graded eccoraine to degree, as shown in Fig. 7, and also as to frequency. Here again values of 1 to 4 were assigned when $1-25 \%, 26-50 \%$, $51-75 \%$, and $76-100 \%$ of the cells showed increased granularity or rounding. When these Dercentaces of cells had died an ad broken down, they were scored as grades of disintegration.

With such a scoring it is possible to estimate just how much alteration has occurred during the 24 hours exposure. Furthermore, since untreated cultures were run simultaneously, one can correct for the chances which occurred in the same tissues exposed merely to the normal nutritive medium. Thus, if we indicate exposed tumor as \mathbb{T}_{E} and untreated tumor as \mathbb{T}_{C} with parallel notations for fetal skin N_{E} and ${ }^{N} \mathrm{C}$, with times at 24 and 48 hours, we can formulate the index of damage to skin as $\left(\mathbb{N}_{\mathrm{E}}{ }^{48}-{ }^{N} \mathrm{E}^{24}\right)-\left(\mathbb{N}_{\mathrm{C}} 48-\mathbb{N}_{\mathrm{C}}{ }^{24}\right)$. That is, the chance in disintegration, granularity, rounding, and inhibition of lysis in the untreated skin during the second 24 hours is
subtracted from the change in the treated skin during the same 24 hours. The difference represents the effect of the nenicilin during the 24 -hour exposure. The index of damage to the tumor is similarly obtained es ($T_{\mathrm{E}} \mathrm{H}^{2}-\mathrm{T}_{\mathrm{E}} 24$) $\left(T_{C} 48\right.$ _ $\left.\mathbb{T}_{C} 2.4\right)$. In screening compounds which may have some therapeutic value, we are interested in obtaining greater damage to the tumor tissue. This is gauged by the selective index and is obtained by subtracting the skin index of damage from the tumor index of damage. Where skin is damaged more then the malignant tissue, the selective index is of course negative. Following the 48 hour scoring, each row of malignant tissue was inoculated into a mouse to test the viability of the tumor tissue. The normal tissues were cultured another week and given a final score.

Materials

Fetal mouse skin woes used es a source of normal epithelial and mesenchymel cells. The tumors were sarcoma LO46AII and carcinoma MA337, both from mice. Not all preparations were tested on both tumors.

For initial tests the filtrate was diluted to $\frac{1}{1}$ and $\frac{1}{4}$ with culture medium. Usually fetal skin was tested alone in the preliminary determination of toxicity (cf. Chart 1). Higher dilutions were tested when the filtrate proved active, or when it was too toxic. Dr. Chester Stock sunnlied filtered fluid from Penicillium (tentative identification) cultured under a variety of conditions (No. 38). One set of fractions was prepared by Dr. J.F. Mahoney of the
V.D. Laboratory, Marine Hosoital, U.S. Public Health Service. These included crude filtrete from Penicillium notatum and various components obtained by precinitation and adsorotion. Fractions 261, from P. chrysosenum (?) were sunnliec by Merck \& Co. The methods of extraction have not been reverled.

Results

Anelysis of a large number of experiments showed thet if all selective indices were crouped remerciess of the chemical used, most were included within that nart of the curve ten noints on either side of the zero. The distribution is skewed to the right, givinc a few selective incices beyond forty. Accoringly, a selective incex of ten was judeed insignificant. In the range eleven to twenty we believe the selective effect is doubtful but worth further testing. Indices from twenty-one to forty we consicer as indicating thet the substance is significantly selective.

> The majority of the Penicillium cerivetives tested
negative (S.I. 10 or less). All four from the U.S. Public Health Service were inactive, as were two prenaretions of 229. The latter is of snecial interest -- and disanointment -because the strain of Penicilifum is thet which Meyer (2945) used for damesing tumor tissue in vitro.

Seven fractions of Penicillium 261 were also negative, but one fraction disoleyed doubtrul ectivity: e selective index of 14 at a 5% concentration.

Penicillium grown at SIoon-Ketterino yieloed come nositive filtrates, demending on the conditions of culture. Number 38 yielded six thet were negative, two that were doubtful, and two that were nositive.

The fractions giving high selective indices did not kill the malignant tissue comoletely. When reimolented in mice, the treated explants formed tumors.

The data for filtrate $38 d$ are given in deteil in Cherts 1 and 2. First the anpoximate toxic level wes determined by exposing skin to media containing 25% and 50% of the filtrete. The damage score jumped from 10 at the beginning of the exposure (24 hours) to 17 and 21 at the end (49 hours).

A lower concentration was then chosen to test for selective ectivity in tubes containing both fetal skin end tumor LO46AII. Tube 3 had 6 fragments of skin and 6 of tumor LQ46AII; tube 4 nad 4 of skin and 5 of tumor.

After 24 hours, both the tumor and the sion explents scored 9 to 10. Growth is recorded, but not incluced in the damege score. At the end of 48 hours, after 24 hours exnosure to 5% of the filtrete, the score for the skin was still low, but the tumor score hed risen to 14 to 18 per explent. Toteling the 24 -hour score for tube 3 we get 60 , and 66 for 48 hours. Its total damaoe is then 6. The tumor, however, went from 57 to 99, a damace of 42 . The control tube, containing no Denicillin, did not chence durins the second 24 houre, therefore the individuel ficures heve not been listed in a chert. Thus the change inauced in the skin by neniciliin in tube 3 is

Preliminary determination of toxicity, using fetal mouse skin, and Penicillium 38d diluted $1: 2$ and $1: 4$.

Remarks:

BIOASSAY:

Animal	Tube \#				
			Date and Result	Date and Result	Date and Result

Demare scores for fetal skin and tumor Lo 46 exposed to Penicillium 38d filtrate diluted 1:20. Dept. 107 Tissue Culture Laboratory

Substance Tested 380 Tube \# 3 Conc. 5%
Normal
$\angle 946 A 1 I$
Tube \# 47 Conc. 5\%
Normal $\angle 946$ III

Growth
$333: 3: 33,4 \operatorname{lal}_{4} 1444131$
Inhib. Leys $4.4: 4454531431413141$

Total:

119690

Remarks:

graded at 6-0, or 6, while the nenicilifn-induced demece to the tumor is $42-0$, or 42 . The selective camass to the tumor is then 36. The totals in tube 4 are calculated on a basis of 6 explants, from the averages of the 4 and 5 explants present. Here the skin stayed at 60 , while the tumor went from 60 to 91 . No adjustment need be made for the control tube, since its change was zero, so the selective index for tube 4 is 31 , and the average for the two tubes is 34. Not all the tumor cells were killed, despite the high selective index, as shown by the positive bioassays. The cells from the skin continued heal thy for 2 week in tube 3 , but went downhill in tube 4 (6-dey reading).

Conclusions

This screening method, although different from the earlier experiments wherein exposure was continued until the malignant cells were killed, also reveals a factor in some Penicillium preparations which selectively nemeses tumor tissue. The two tests are supplementary in that the first shows that in a complex mixture such as crude neniciling, a substance can be detected end controlled so that it will selectively kill molienent cells in tissue culture, leevine the monmelirnent cells more or less healthy. The second technique enables one to screen severs l substances simultaneously and quickly evaluate their notentiality for damacine tumor cells, even though the 24 -hour exposure does not kill. More intensive tests are now in order, to determine whether the factors detected by the second technique can be made to kill melienent
cells without damaging neighboring normal cells.

SURVEY OF EFFECTS OF PENICILLIN IMPURITIES

Interest in additional physiologically active agents produced by Penicillium hes grown in several fields of research.

Damage to Tumor Cells

Meyer (1945), using an in Nitro technique which is not selective, i.e. not controlled by simultaneous exposure of normal tissue, was able to render mammary adenocarcinoma inactive on transplantation back into the host strain. Pieces $3-5 \mathrm{~mm}$. In diameter were exposed to crude Penicillium filtrate or to Tyrode solution. Only those in Tyrode were viable. The impurity responsible was stable at $100^{\circ} \mathrm{O}$, was adsorbed in carbon, but was not soluble in ether or chloroform.

Reports have come to the author of many futile attempts In different laboratories to induce regression of tumors in a number of experimental animals. It is herd to evaluate such results inasmuch as the composition of the penicillins was not known, and they were not assayed in tissue culture.

However, Beard (1944) obtained regression of EMGE sarcoma in rats. Tumors disappeared completely in some rats Where subcutaneous injections of 333 Oxford $U . / c c$. began the day the tumor was inoculated. Injection of 333 or 666 units Into rets bearing large tumors induced a decrease in size but did not destroy the tumor.

In nine of twelve mouse mammary acenocercinomes and one of two sarcomas, there was a decreased rate of growth
during penicillin treatment. Dobrovolskaia-Zavedskaia. (1946 a,b) believes thet the accelereted crowth of the other three resulted from petholooical dile.tetion of the blood vessels, as there was little mitotic activity. A distinct zone of cellular demace was found in the trested turiors, and this necroced, but unaffected cells outside this zone resumed growth when the treatment was stomec.

We micht note in passing that filtrates from Ascercillus (Kica 1947) and Snorosarcina (Cohen, Borsook and Dubnoff 1947) are demaeine to tumor celle in vitro.

Drs. Mahoney and Arnold at the U.S. Merine Hospital observed repression of a pestric cercinome folinoing two intensive courses of penicillin treatment toteling 13,500,000 units. Cancerous lesions remainine after suraicel resection of part of the affected stomach disapoeared, and there was no indicetion of petholosicel concition tro years leter. A lowgrade souamous-cell cercinoma in another netient was saturated with nenicilin by electroohoresis (follorinc e licht course of intramuscular nenicilin). The cancer healed in two months and showed no relanse three years later (personel comrunication).

Inhibition of Mitosis in Normel Cells

Bucher (1947 b), in aereement rith N. R. Levis (Ight)
found thet mure denicilin was nontoric in tiseue culture.
Rabbit fibroblests exposed ten hours to pure nenicilin G showed mitotic activity eaual to the controls. Commercial
penicillins, on the contrary, inhibited growth of cultures in the renge of 100 - 200 Oxforc units (Bucher $1045 \mathrm{a}, \mathrm{b}, 1947 \mathrm{a}$). The mitotic coefficient first decreased, then increased as metaphase was prolonged. Chromosome orientetion on the suindle was retardec, and sometimes the chromosomes became nycnotic, or were scettered throurh the cell. These manifestations increased when older solutions were tested, unecuivocally cemonstrating thet impurities vere resnonsible. Penicilin duicinly decomposes in solution.

Mitosis in cultured hen mecrophages wes delayed and diminished by adoition of $1 / 500$ penicillin (notency not given) to this mecium (Jacoby 1g4I).

Crude filtrate induced a brief leukonenia, then leucocytosis in rebbits (Recoienini and Brillenti 1047). Cleavace of Arbacia eccs wes delayed and finally stopoed by commerial nenicillin at $333 \mathrm{me} / \mathrm{L}$ (Henry and Henry 1945). Clowes has reported that an impurity is resnonsible for the cleavee-inhibiting action of nenicillins he has tested (cr. Burk et 2.]. 1947).

Arbacie ecss exposed to the seme nenicillins as tested by Burk (cf. below) revealed the same order of notency for mitotic inhibition as he foune for motebolic supmescion. The most active was his "Penichromin", nercentibly celaying cleavere at $5 \mathrm{mc} / \mathrm{L}$. Most penicilins fell within the rence revorted by Henry ene Henry, retercins clenvace ot $300 \mathrm{mo} / \mathrm{L}$. Penicillium 26iE and K vere the most effective. Licuia filtretes 34 K delayed cleavase then diluted l:l0, and 229 M at 1:100 (Cornmen, unnublished).

* Metabolic and Enzymetic Effects

A potent inhibitor of resniretion and rycolysis was found in crude peniciling by Burk et al. (IOL? a,b), and DuBuy et al. (1947). Destruction of the incluced nenicililn by nenicillinase only bartly removec the metsiolic sumprescor. There was no difference in effects on adenocercinome, sercome, and normal tissues from edults or embryos.

Inhibition of the action of urease by cruce nenicillin is reported by Scuai and Jeliner (1044), Vareas and Escubós (1945) and Kun (1948). Smolens, McAleer and HoLeren (1047) revort detoxificetion of bacterisi toxins by cruce neniciilin. The effects on the frog's nervous syctem ney be relsted to these fincinge (Taomina 1946, Koll ros Io47).

Effects on Plants and Mcroj̈rentsms

_Mitosis in wheat seeding roots wes sumpesed by filtretes from Penicillium cultures (Gerola 1046). Keening in mind the fact thet roots are in senerel inhibited by concentrations of auxin which stimulate stems, this mey heve some bearing on de Ropp's discovery of a stimuletory effect on nroliferation of sunflower stem in culture by comerciel but not by nure nenicilin. He surreste it may be due to incole acetic acid.

Welch, Randall and Price (1947) heve inverticeted an enhencement factor present in venicilin wincis rencers it more ective afeinst bacteria. A compreble fector was reported also by Hirsch (1944). Pertislly nurified nenicillin is also more active egainst Trenonema (Dunhen anc Rake 1945).

Fischback, Eble and Levine (1947) trecec the enhancement factor to o-hydroxymenylacetic acia.

DISCUSSION

While the serch for the selective lethel acent -or acenta -- demonetratec to be nresent in crude nenicilin is promessinc, it by no means follows a direct or simnle course. Even when a strain of Pentilitum is knorn to orocuce a factor, not every filtrete gives e nositive test. Penicillium 38 oroduced active substences only under certein conoitions. Penicillin production is also closely linked to the method of culture. One can reasonebly hone thet after further experimentetion, moulds cen be induced to yield more of the anticencer agent, juat as venicilin procuction cen be incrsesed under controlied conditions.

In viev of the myripe substances procuced by monle, and the meny effects elready recordec for cruce renicillin, we can not at bresent be justified in oscuminc thet the selective anticancer acent founc in different Penicilifum preperations is one comoound.

There is elready cood evidence, revieved in the breceding section, thet indole acetic and hydrovynenylacetic acias are in nert resonsible for the suppressive effects of cruce penicilin on proliferation in lower orgenisms.

Sea urchin eqes are beinc used in an attemst to obtain correlation of the metrbolic effects on one hen, with the anticancerous effects on the other, using normal cell division s the midale cround. Correlation between metabolic end cleavece
effects hes been rood. Correlation with the tissue culture studies hes not been impressive, but only e fer filtrates have been tested on both egos end cultures.

NITROGEN MUSTARD

HISTORY

Inhibition of Cell Division by Mustered Gas:

Bis β-chloroethyl) sulfide

Scattered observations on the effects of sulfur mustard presaged its striking effect on cell proliferation Which were discovered later to be typical of all mustard. Grenulocytopenia was found to precede death following lethal exposure of human being or experimental animals to mustard gas, bis (B-chloroethyl) sulfide (Krumbhaar 1919, Werthin and Weller 1919, Fluty and Wieland 1921, Richter 1932, Muntsch 1934, Meier 1938, and Drew s 1939). Significantly, the effect is exerted whether it enters vie the skin or the lungs.

These peripheral blood changes were traced to inhibition of broliferstion in the marrow by Krumbinear and Krumbhara (1919) in the human organism, end by Papnenheimer and Vance (1920) in rabbits. These studies hove been extended by Kindred (1946, 1947) who traced the hyonlastic trend in rat marrow. Graef and his coworkers (1946, 1948) have described marrow depletion in mammals ana birds.

Lymphocytovenia is also revealed by the more complete studies of peripheral blood changes. Its origin in inhibition of mitosis in the rat thymus and lymph nodes has
been demonstrated by Kindred (1947). Graef and his coworters (1945, 1948) emphasize the abruptness of the effect since there is lymphocytic fragmentation and loss of weipht in the thymus, lymph nodes and soleen as esrly as ten hours after heavy dosage.

The prominent alterations found in the hematonoietic system do not reflect a selective response other then on the rate of oroliferation. Proliferation was elso helted in the cornea (Friecenveló, Buschse ano Scholz 1948) and the intestinel epithelium (Friedenvald and Scholz, Ref. 54 in Ginmen anc Philios). Mitosis in reseneratine mat liver aronned shernly after sulfur-musterd administration in doses mich did not decrease the nhosphorus uptare by liver cells (Noxchek IOU6). Proliferation in the besal leyers of mouse skin wes inderinitely sunpressed by renested anpicotion of surfur musterd (Fell and Allson 1948 b$)$. Chick embryo fibroblasts in cuiture ceased diviatne when the concentration reached $500 \mathrm{me} / \mathrm{L}$ (F eli and Allsopn 1048 a).

Lillie, Clowes and Chambers (1919 a,b) conducted the first experiments on inhibition of avision in echinocerm eors (Apbecia and Asterias). They emphesized the lone latent period between the short exoosure and the eventual disruntion of cleavage.

Mitosis is alco inhibited in blants as revealed by the studies of Koller on mitotic and chromosomal abnormalities in Tradeccantia pollen rrains (Ref. 57, Gilman and Philios), and by the observations of Kinsey and Grent (1947 a) on yeast
cells.
Desnite these sumestive Lescs, end soeculation on selective damaere to the nucleus compereble to x-rey efeecto (Flury and Hielend 2921), there apoere to have been no eerly ettempt to destroy melienant growth rith the sulfur musterds. Recently Bass and Freeman (1046) inruced rearession of mouse lymnhoma and lymphoid Ieuxemia rith bis- (B-chloroethyl) sulfide. However, a myelocenous leukemia, memmery carcinome, suindle cell cercinome and a meliment melenome did not recpond.

Inhibition of Cell Division by Nitrosen Mustards

With the edvent of studies on nitrocen musterds, the leukonenic effect of musterds was rediscovered. Most results of experiments in which it was found that nitrogen mustaris displeyed the seme demering effect unon myelocenous and Iymphatic proliferation as does mustard ces are not yet available in the onen literature (cf. Gilman and Philins I946).

The results of Graef, Karnofsky and Smith with ethyl bie-, methyl bis-, prooyl bis- and tris- β-chloroethyl amine, were reported briefly in 1946. In their leter paner (1948) the eriects of HN2 on the blood and mexrow in rets, mice, rabbits and hens are described in detcil. There wes eeriy Ieukocytosis with the lymnocyte count dropnine first, then the grenulocyte. Hematopoietic cells in the sternel and femoral marrow of rets and rabbits begen to degenerate vithin eifht hours after injection of lethel doses. Cells and nuclei became enlarged, and some rere comoletely destroyed. Mitoses
had censed after eight hours. Thereafter, depletion of the marrow progressed rapidly to almost complete aplasia in forty to ninety hours. All cell types decreased simultaneously excent the persistent megakeryocytes with bizarre nyonotic nuclei.

Denletion by simultaneous cell destruction end mitotic inhibition was also the typical picture in lymphoid tissue. The lymphocytes fragmented, usually by keryorrhexis, and the germinative centers in the nodes, spleen, and thymus were lost. Lymphoid tissue lost about a fourth of its original weight on each of three successive days after injection of HN2. Degenerative and inflammatory changes in the intestine appeared so early that no specific effects on proliferation were discernible. Meiosis in the testes did not anear to be affected.

These results are almost completely in agreement with the blood studies of Kindred (1947), who found lymohonenia and granulocytonenia with WN, but only lymphopenia in FHIand HN3- poisoned rets. Sicnificently, thymus lymphocytes in nitro showed changes like those in situ. HN3 at I molL produced nuclear demsee in two hours. The nucleus became opaque, then the chromatin broke into small vesicles mich later flowed together, and finally the nuclear membrane seemed to dissolve.

Shrek (1047) hes also resorted on 1 n nitro chances in myeloid and lymphatic cells treated wt nitrogen mustard.

Cells in situ which permit more neerly direct annlicetion of the musterc ere those of the comea. Friedentrald, Buachke and Scholy (ig43) shoved thet inhibition of epithelisi mitosic becen et 70 minutes. Mitoses resched e minimum at 18 hours, then incressed, overchootinc the control counts at 40 to 50 hours, when $3.7 \mathrm{~mm} / \mathrm{L}$ of HM? was eronpec into the eye of e ret. The cells continued to incresse in size throughout the experimental neriod.

This crowth of cells devrived of proliferative nower was dramatically demonstrated by Gillette and Boienstein (1946) anö Bocienstein (1947 2,b) in embryos of Ambystome meculatum. Exposure to $10 \mathrm{mg} / \mathrm{L}$ of HN 2 for 45 minutes stonned all mitosis, but jermitted the cells of the eye, nervous system, intestine, and skin to differentiate and grow to meny times the normal size.

Exbosure of sea-urcin ecrs to HN2 before or eiter fertilization slowed or blockec cleavese (Cennan and coworkers cuoted by Gilmen and Fhilins, Ref. 52, and by Berron et al. 1948). Barron's groun renorted thet exposure of the snerm to 10-3 M FN2 before fertilizetion elso slored clepvare, end $10-4 \mathrm{lf}$ dosece resulted in delayed blectulation and abnormal nlutei.

Division of Chilomones, a unicellular nlent, was inhibited by $1.9 \times 10^{-5} \mathrm{M}$ HN3 (Hutchens ans Poōolsky 1048). Yeast multinlicetion was inhibited by 5×10^{-8} molar HN2 (Kinsey and Grent 1047 b).

IItrocen Mustards in Chemotherevy of Cencer

Thet the leukonenic action of nitrocen musterd wes so ouickly seized unon, in contrast to the wey in which this therapeutic lead was innored when it wes first diccovered with sulfur musteris, cen almost certanly be ascribed to the current ontimism in the chemothereneutic atteck on cencer. The pioneer Work by Gilman, Goodman, Lindskor, end Dourherty in 19:2 (Gilmen and Philios, Ref. 65) was followed by intensive clinicel stucies in meny laboratories. The remonse of the nomal blood picture to the muctards wes like that in experimental enimels. Typicelly, folloving injection of the methyl-bis(Jacobson et 2.I. 1946, Spurr et … 1947) and tris- β-chloroethyl amine (Rhoads 1946) granulocytovenie Followed lymohocytonenia. In the marrow, the myeloid series rere damaced firct, end there followed a depression of the erythroid series. The impescion was geined of a socis? senaitivity of premyelocytic staces, the myelocyte maturine but not divicing under the influence of the mustard (Suurr 1047).

The leukopenic ection oi methyl-bis and tris wes found to onerate in reducinc the cell count and cinical symptoms of chronic lymphatic, and to a lesser extent, of myelocenous leuremias (Jecoivson et al. 1946, Goocmen et al. 1946, Rhoeds 1046, Sourr et al. 1947, Kernofely et al. 1947). Wilkinson and Fletcher (1947) were more successful in trestine the chronic myelocenous tyoe, hovever.

Remissions vere elso reported by the sbove authors in ceses of Fodmans disease and lymiosarcoma, end in ceses of Hockens by Ammones (10L7), Tesfel (1047) and Homeyr (10\%).

A newer mustard, $1,3-\mathrm{bin}_{1}-$ bis $-(\beta$-chloroethyl)-aming]propene has been tested att the Memorial Hospital (Erslev et al. 1947). Unlike the simpler musters, this tetrakis structure consistently reduced the cell count in acute, as well as in chronic myelogenous leukemia, but not in chronic lymphatic leukemia.

The effect on tumors not derived from the heme tic tissues hes not been consistent as with leukemias (Hawkins and Farmer 1947; Boyland, Koller and Warwick 1947).

Therapy of leukemias and tumors in mice has yielded quantitative data which cen best be considered later in the discussion.

Although malignant proliferation is thus extensively stopped, there appears to be no selective action of the nitrosen musteràs upon cancer cells (Rinoede 2946). Rather, cells are affected in proportion to their rete of proliferation (Gilman and Philips 19H6).

Alteration of Mitosis by Musteras

There appears to be enourh similarity in the cytolorical effects of sulfur mustard and nitrogen musterds to justify their consideration together.

Retardation of mitosis is inferred by Friedenwald, Buschke and Scholz from the presence of $134-110 \%$ mitoses in corneal epithelium exposed to $0.5-0.03 \mathrm{~mm} / \mathrm{L} \mathrm{EP}$, as compered with counts in the control eyes. Another indirect measure of retardation of division ts aveilezle from the wonk of Kinsey
and Grent (1947 a,b). The averepe rate of proliferetion of yeest cells was decreased for several ceneretions eiter a few nours exposure to $M / 1000$ and $1 / 500$ sulfur musterd. Horever, the visible heteroceneity of the populetion efter treatment leaves open the ossibility that some cells were prolifersting normelly while others were not budiine et ell.

Direct observation of sloving of mitosis in one ponulation of cells is noscible vith nerine erre. Timins of fifty ner cent cleavere of Arbecia eces revealec that retardetion is a tyoicel effect of many nitroeen mustercis. Continuous exposure to HN2 at 0.5 mMoler, HN3 et 0.04 mMoler and bis- [bis- β-chloroethyl)-emino]-ethane at 0.3 mMoler increased the time between firct and second cleaveces 200 400%. Internhese and formation of the mitotic ficure were both nrolonged (Cornman, unpublished).

Earlier stuaies with marine eges, using short exposures of the fertilized or unfertilizea ege (cf. Gilmen and Philipg 1946 and Philips and Gilman 1947) revealed a specific interohase block which wes not readily apoerent in the above exneriments, wherein the eggs were continuously exposea.

Morpholocical chences seen in mouse eoidermis repeatecily exposed to sulfur musterd included clumped and leceing chromosomes, polyploicy, multipolar soindles and multinucleetion (Fell anci Allsonn ly 48 b). In ret corneal ensthelium, there res pycnotic fracmentetion of the nucleus in proportion to the mitotic activity. Friedenrela anc Buschke (1948) surnest tiret a vremitotic stete is selectively effected by the musterc, vinile leter steres continue to combletion.

Meier and Schär (1947), on the other hend, exposing chick fibroblests to $0.01 \mathrm{mo/L}$ HN2 in tissue culture, found thet the proohases were normal, but thereafter the chromosomes were scattered without orientation on the persistent snindle. Fell and Allsop (1948 a) exposed chick fibroblests to sulfur mustard, and found abnormal mitoses most consnicuous at 50 and $100 \mathrm{mg} / \mathrm{L}$. These included spindies that were multipoler or . eccentricelly situated, chromosomes that lacged or frasmented, and multinucleation.

Sulfur mustarc in regenerating ret livers prevented cells from initiating mitosis, while cells in metanhase and ananhese apparently continuect to completion. No chromosomal aberretions were found (Mershak 1946).

Koller (1947) found the cytolosicel effects of nitrocen mustards and ionizine pedietions closely comprable. Both incuced stickiness and lexping of ciromosomes, incomplete soincle formation, and sunoression of witosis in the Welker ret carcinoma. Koller, Ansari, anci Robson (Ref. 57, Gilmen and Philios) also induced chromosome breaks in Tracescentia nolien mitosis with sulfur musterd, a radiomimetic phenomenon of considerable sipnificance. Identical abnomelities were found in the cells of a costric carcinome of a natient treated with HN2: chromosomes beceme frecmented, clumped, pyenotic, or adhered as anaphsse bridges (Soyiand 1947).

More subtle chromosomal changes are detectable only genetically. Mustera mas induced mutetions in Drosonila (Auerbach 1947, Auerbach end Robson 1947, Slizyncka 194?) and
in Neurosnora (Hororitz et al. 1945).
This historicel summary is not comnlete in covering musterd reseerch, nor in givinc creait to many workers in the field. Complete accounts are not avallable because of security restrictions, but some references to vartime research ere available as nersonal communications in the more recent erticles listea here. Olinicel stuãies which lena velght to the findincs or the pioneer thereneutic vorl, but do not extend the cytolopical information, es well as the many pepers coverinc the chemical ana biochenicel behovior of the mueteres re outside the scone of this naper and have been omitted.

MATERIAL AMD VETHODS

Tissues

Most tisaues were obtained from mice. The normel tissue was fetal mouse skin, which provided both mesenchymal and epidermal tiscue for commerison wioh sercomas and carcinomes.

Three seromes were used. Sarcoma 180, a tumor which can be maintainea in any strain of mice, was grown ana biosssayed in CFW albinos. This was the only heterologous tumor used. L946AII, a fibrosercoma orisinatire in Jackson Nemorial Laboratory mice ves maintaned in 057 blecks, line ó, from Bar Harbor. Earle's in-vitro-induced sercoma strain L was obtained throuch the generosity of Dr. Kenneth Alsire. This tumor, identified here as 202L, was maintained in O3H mice of e line started with breeders from the Jetional Oncer Institute, kindly sunplied by Dr. Welter Heston.

Three carcinomas were also studied. Acenocercinome E060 wes grown eno bioasseyed in 057 black, Ine o mice, the strain of origin. Another, classified as an aneolestic carcinoma of the skin (1025) was obtained from Dr. Jabob Furti, elone with a lune cercinome which curing revested trenciers in mice has become sercomelike (MA 3s7). These vere maintained in $A K$ mice, the strain of oririn.

A few experimentr with HN3 mece use of evien tiscue for comarison with the resnonses of memmerien tissues, and streins of mouse and humen fibroblests which hed been isolated eerlier and meintained in tissue culture.

Mitrogen Mustaros

The hydrochlorides of ifve conseners were chosen, the simolest being methyl-bis- (- -chloroethyl)-anine hycrochloride. Next was tris- (Bchloroethyl)-amine hycrochloride. These compounds, usually referred to as HN 2 and $H N 3$ in the literature, are reoresented in formulae I and II, Fig. 8. The others contain four chloroethyl radicals (the tetrakis series). III is bis- [bis- β-chloroethyl)emino] -ethane dihydrochloride, of which only an impure sample was available; IV is $1,3-$ ois- [Dis(β-chloroethyl)amino] -propane dihydrochloride; V is 2 -chloro-1,3-bis-[bis- β-chloroethyl)amino $]$-pronane dinydrochloride. These compounds will be referred to by number for the ooke of brevity. The compounds vere discolved in neutral nhysiological sodium chloride and neutralized with NaHCO_{3} or phosphate-buffered saline 1 to 3 minutes before they came in
contact with the tissues.

Culture Method and Scorinc of Effects

The preliminary screening followed the prosram described for the recent studies of crude penicillins (page 14). Where more data about the cytological chances or about the lethel dose level in vitro were needed, the rigid scoring system was not followed, and observations were suited to the neture of the informetion destred.

RESULTS

Cytolocical Effects

Effects During 24-hour Exposure

The initial responses of nomal and malisnent tissue at threshold doses (the effective levels of cifferent musterds are listed in Table II) resembled those seen durine the action of most deleterious asents. The cells became more sranuler and more obacue (the latter resulting probably from the increased grenularity). Fibroblests and soincile cells (including those of the lung carcinoma MA387) rounded up, changing from their fusiform shepe (ililform processes) to oval or spherical (lobate processes, or none at all). This rounding hes been observed to procress throush a shrivelining stere where the cell membrane surcested a slicht crenation. Possibly a brief superficial wrinkling alvays occurred, but had pessed into the more smoothly convex contour by the time the cells were observed. The cell beceme more refractile, poscibly because of the increased thickness. Enithelial cells did not rounc un at eny cosece.

Table II Threshold Doses and Type Resnonses of Nomal and Melienent Cells to Mitrocen Musterde.

Skin MA387 L946 202L 180 I025 E060 I $\mathrm{H}_{3} \mathrm{CNO}_{\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{2}}$
Dose Renpe

$$
\text { II } \quad \because\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{3}
$$

Dose Rence
in mg / L.

$$
2.3-3201-3202.8-160 \quad 10-100 \quad 1-120 \quad 2.3-50 \quad 10-100
$$

Lorest Dose to
Damere: 24 hrs. 10-20 20 10-20 $10 \quad 2 \quad 20810$
Lowest Dose to
Kill: $24 \mathrm{hrs} . \quad 30-40 \quad 40$ 20-40 $40 \quad 5-10 \quad 40 ? 40$
Lowest Dose:

Dose Renge

$$
\begin{array}{llll}
\text { Skin } & \text { MA 387 } & \text { L946 } & 130
\end{array}
$$

$$
\mathrm{V} \quad\left(\mathrm{Cl}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right)_{2} \mathrm{NOH}_{2} \mathrm{CHCl}_{2} \mathrm{CH}_{2} \mathrm{~N}\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)_{2}
$$

Dose Rance
in me / L
Lowest Dose to
Demece: 2 li hrs.
Lowest Dose to
Kill: 24 hrs.
Lowest Dose:
Neg. Bioassay
Conc. Yielding
Giant Cells
Conc. Causing
Blisters
Number of Explants Tested
$1.3-71.7$
$7.2-24.4$
7.2-71.9

I- 3

$$
29-53.8>14.4 \quad 17.9
$$

>71.7
14.4
>71.9
>35.8
714.4
>35.8
4 8.

121
18
73150 blistering of normal cells of epithelial origin, whether they were from mouse enicermis or chick brain. The blister lifted the membrane in a crescent-shaped protuberance which woes nonrefrectile, presumably being filled with aqueous fluid derived from the cell or from the medium.

Of the malignant tissues, only the lune carcinoma MA 37 showed blisters, and in only one experiment. In this manner It behoved Inge epithelium sithourh the cell shape and growth pattern fere those of a eercone. At letha levels (Third Rents, Table II) granularity and mounding wore more severe, and the cells becen to तisinterrate. Concentrations strong enough to kill instantaneously, fixed the cell without
altering the shape or other cytonlasmic features.

Effects Following Return to Normal Medium

Moderately affected cells recovered normal shape, granularity and refrectility. Biisters disampered if the cell survived. Cell division occurred in such cultures, but we can not say whether the cells showing earlier cytonlasmic chances were those which divided.

Cells mortally affected but not killed during exposure to the mustard continued on the way toward disintegration. The situation was confused at the umper dosace levels by fixed cells which, though dead, reteined a normal structure. Continued cultivation was necessary to establish their nonviability. The dose preventine in-vitro survival of normal tissue after removel of the musterd is listed in Teble II under Bioassay. Tumor tissue res testod in a similar fashion, as well as by bioassay in mice.

Over the entire rence of effective concentrations large celle made their apoerance, sometimes during the 24 -hour period of exposure (Fifth Renks, Table II). Mouse dermal fibroblasts grew to giant proportions while maintaining the normal nuclear and cytoplasmic features shown in Fis. 9. This cell can be compared in size with Fis. lo, a bhotorraph of the larcest cells found in the control cultures. The cell in Fig. 9 is exceptionally large, measuring about 5.6 mm , but as this photograph and Fis. Il show, the entire population exhibits a trend toward increased size compared to an average ponuletion of normal cells, Fig. 12. In Fic. 13, cells

Were traced at a magnification of 200 on centimeter coordinate paper to permit comparison of areas. The largest of the untreated cells (A) averaged 600 sq. μ; cells treated at a medium dose (B) averaged 1700 so. μ and in the culture given a dose lethal for most cells the average vas $2800 \mathrm{sq} . \mu$. Epithelial cells of the skin did not show sienificent enlereement.

Both carcinomas and sercomas have yielded cells of abnormally large size following nitrogen-mustard treatment. These large cells did not appear with the frequency and regularity that typified the response of dermal fibroblasts, but it was possible to ind them often in treated cultures of carcinoma MA 387, and sarcoma 202L. Individual cells of 202L occasionally reached giant proportions (Fig. 14) as compared with the untreated, where even binucleate cells did not get as large (Fig. 15). Carcinoma E060 also yielded cells (Fig. 16) far beyond the size of any found in the controls (Fig. 17). Chick fibroblasts responded with less frequency and at higher concentrations, but the greatest increase in size found so far was observed in chick fibroblasts (Fig. 18 vs. controls, Fig. 19).

These cytological changes were induced in at least one of the tissues by mustards I, II, IV and V, but at different concentrations for each mustard, as listed in Table II. Mustard III was not thoroughly tested because of its impurity.

Mitotic activity decreased as Fifentism increased in any experimental series of graded doses. In the cultures from which photographs 3 and 12 were taken, no cells were
found in mitosis. An occasional abnormal mitosis was found following an intermediate dosage (FiE. 20), but similar tripolar mitoses are also found, thouch rarely, in untreated cultures.

Relative Activity of Different Mustards

Compared for milligram concentretion per kilogram of culture fluid, the toxicity and cytolofical effectiveness decreased with increase in molecular weicht. Mustarc III 1,3-bis- [bis- $(\beta$-chloroethyl)anin] -ethane, was an exception, barely altering the cell at $256 \mathrm{me} / \mathrm{K}$, and not lethal even at $512 \mathrm{me} / \mathrm{K}$, but the semple aveilable was impure.

Converted to milimolarity, the concentrations reouired to nroauce a threshold cytolocical effect were I: $0.051 \mathrm{mM} ;$ II: $0.049 \mathrm{mM} ;$ IV: $0.033 \mathrm{mM} ; \mathrm{V}: 0.067 \mathrm{mM}$.

At this point it is adviseble to cell attention to the instability of the nitrogen mustards in alkeline solution (Golumbic, Fruton and Bercman 1946; Gilman and Philips 1246). So fast do they react with the medium, that there is aiveys the question of what concentration actually reached the cells, although the experimental medium was washea over the cells Within one to three minutes after the mustard was neutralized. It proved impractical to attempt to define effective levels closer than by a factor of two.

Suscentibilities of Different Tissues

With one exception, ell tissues, normal and melienant, were equally susceptible to the nitrocen muctards insofer as
this method of culturine and evelueting nermits one to determine. The exception was sercoma 180 , which is peculiar enons the test tumors in thet it is heterolocous. Both in-vitro visible damare and in vivo behavior suoseouently (bioassey) shored a sencitivity et one tenth the concentration which affected other tissues. Table II shows thet the hicher suscentibility obteined, mhetever the musterd used, excent for in-vitro damage with comoound. IV.

Mouse and human fibroblests maintained in cultures severel months were as sensitive as mouse fibroblests growing from freshly explented fetal gkin. Prolifereting chick heart or brain, on the other hand, survived doses trice thet which killed normel mouse cells, and 40 times thet rendering sercome 180 ineffective.

The mustards, then, distincuish between cells of widely different animels, or they cen enhance the latent incombetibility of host and heterolosous tumor (5 2 80) but they rive no evidence of a selective action on melienent cells as aceinst host cells.

DISCUSSION

Gytoloricel Effects

Granularity, rounding, anc disintecretion are nonspecific resnonses of little interest in analyeis of the svecific eifects of nitrocen musterds.

Blistering of eoitheliel cells is unusual. It was seen earlier in chicl fibroblests by Fell anc Allonn (1943 a) with HiN2, but rertime restrictions nrohibited nubiicetion
(cf. Kemossky et al. 2947 a). It io nerhens too obvious a comparison to point out that the vesicant action of the nitrogen musterds anvers at least sunerficielly similar at the cell surface and at the body surface. However, loss of fluid from the cells may be en essential part of the toxicity pattern, inasmuch as the pharmacological symptoms of mustard poisoning include fluid loss. Observation of the living cells has not revealed whether water was lost through these blisters. They disanpesed when the cell recovered, but were not seen to burst.

The growth of cells to extraordinary size hes been reported as a typical effect of nitrogen musterds in rat corneal epithelium (Friedenvald, Busch ice ana Scholz lola), In amphibian embryonic cells (Gillette end Bodenctein 1946) and in mammalian sarcoma cells crown on the chorioallantois (Kernofsky et al. 1947 a). All these studies point to a fairly general propensity of the nitrogen mustard for causing proliferating cells to enlarge instead of divicinc: mouse normal, sarcomatous and cercinometous tissues, and chick normal tissue. The enlarged cells are typically uninucleate, and while unable to divide, are able to differentiate -- in amphibian embryos et least. Mouse fibroblasts maintain their normal shape despite enormous increase in size. They are not "giant cells" in the sense used by the pathologist, encompassing reaction cells which are usually round and multinucleate.

In tissue culture, large cells begin to appear at concentrations which decrease the mitotic count. At higher levels, where most of the cells are larger than normal, no mitoses remain. No giant cell has been found which shows any evidence of mitosis. To all appearances, the sequences of synthesis and growth persist in the absence of ability to proliferate. The response within any population of cultured cells is erratic. Some cells continue to divide while others grow. At higher doses, some cells see killed, while others, presumably those protected within the explant, persist and enlarge. The large cells do not survive more than two weeks in the experiments with prolonged culturing in normal medium, nor cen they be trenenlented as roller-tube or slide cultures.

The relationsing between cell overgrowth and inhibition of division hes been discussed recently by Eisenstark and Clark (1947) as it ambles to radiation. We are thus able to extend the already numerous comparisons with x-ray effects. The clinical response of leukemics, the muterenic effects, the breakage of chromosomes, and the lone latent period, all ere radiomimetic effects reported in tie literature discussed in the preceding pages.

Comparative Effectiveness of the Mustard

On a mole basis, the mustaras re e about equivalent in producing threshold cytological damage. This is not the case when the LD 50 for mice is converted to milimols
(unpublished data supplied by Dr. Josenh Surchenal and by the Army Chemical Depertment, Edeewood Arsenal):

		Cytologice. mM LD 50	
I	Methyl-bis $(\beta$-chloroethyl $)$ amine HCl	. 051	. 027
II	Tris (β-chloroethyl)emine HCl	. 049	. 009
IV	$\left.1,3-\frac{\text { bis }}{-\left[\frac{b i s}{}-(\beta)-\mathrm{ch}\right.} \text { pronene aroethyl)amino }\right]-$. 033	. 009
V		067	. 039

Anslow et al. (1047) rebort a comparable hicher toxicity of HN3 in comperison with HN2 in the mouse and rat (HN2 being slichtly more toxic to the rebbit).

In ability to kill an intact mouse then, only II and IV ere equal, I and V being one-third ena one-fourth as effective. This underlines the value of the tissue culture method for getting closer to the reaction between cell and experimentel acent, by-passinc detoxification and "weakest-link" mortelity resulting from damace to one system or orcan.

It is of theoretical interest to note that neither in-vitro nor in-vivo toxicities substantiate the reasonaible expectancy thet the totrakis compounds hevinc two bis-chloroethylamino croups should aisplay an effectiveness double thet of the bis compounds. Quite probebly a molecule can react only once and rarely gets into a nosition where both ends can combine with e celluler commonent.

Tissue Suscentibilities
The uniformity with which normal and malisnent cells
respond to nitrogen musterds is disappointing; but in keeping with the extensive findings in clinical use. Nitrogen musters damage proliferating cells, healthy and neoplastic, to the same degree (Rhoads 1946).

Sarcoma 180 is the exception, responding at $1 / 10$ tine concentrations required to affect other tumors. The quicker cytological response in vitro perhaps only reflects the instability of $S 180$ under the conditions of culture. It is one of the most difficult tumors to maintain in tissue culture. Negative bioassays following relatively low doses cen be compered to the ease with which x-ray confers immunity to this heterologous tumor, but not to homologous tumors (Goldfeder 1945).

The resistance of chick tissue to nitrogen musters is in keening with the findings of Kemofsky (Kemorsky et al. 1947 a.). Sarcoma 180 was Filled et $0.1 \mathrm{mc} / \mathrm{ecs}$ mile the 12-dey chick required $0.9 \mathrm{~m} / \mathrm{ege}$.

Critique of Tissue Culture as e Cancer

Chemotherapy Screening Method

From the point of view of the experimental cytologist the cytological results and toxicity data could reasonably be an adequate raisin d'etre for the experiments reported here. However, in undertaking such studies, we have posed the question of utility in a chemotherapy norman.

Two requirements need to be setisiled to justify the use of tissue culture for the screening of compounds. First, one must demonstrate a selective effect: dance to
malignant tissue in excess of the sustained by normal tissue. Second, one must evaluate the cytological chances so that objective criteria can be applied in the processing of a large number of substances.

These requirements seem fairly adequately met by the penicillin experiments. A selective effect was found, and a scoring system was devised which permitted separation of a few Penicillium filtrates from a larger number of inactive preparations.

The possibility is very great that the selective factor, if it can be isolated, will not be of therapeutic value. One expects many valueless "finis" by each of the numerous screening technicues used in afferent laboratories. Nor cen tissue culture be regarded as the only initial "coarse mesh" in such a screening ororram. It will not uncover every substance of value. Wusterds, fo: instance, exert no selective effect in cultures, but they have proved to be of very real therapeutic value.

SUMER

1. Exploratory experiments exposing normal and melienent tissue simultaneously to cruaje penicillin reveal a factor selectively lethal to mouse and rat sarcomas.
2. It hes been possible, by establishing objective criteria of cellular demace, to show that some Penicillium filtrates enc filtrate fractions are more demerine to mouse sarcoma and carcinoma then to embryonic mouse cells.
3. The visible cytological changes are: increased granularity, opacity, rounding end refrectility.
4. Nitrogen mustarcs inhibit proliferation without inhibitinc
the growth of malienent and embryonic mouse cells.
5. Damaced celle are rounded un, crenuler, anc refrectile. Carcinoma and fetal epithelium sometimes show blisters a.t the cell surface.
6. Effectiveness in me/L of the mustarcs decreases with increase in molecular weight. They all produce cytonlesmic alterations and mitotic inhibition at about 0.05 mh .
7. Mouse sarcome 180 is the most sensitive of the tissues tested. Next come the other sercomas, the cercinomas, and the embryonic skin, all about ecually sensitive. Embryonic chick cells were more resistant than any mamelion cells investigated.
8. The visible cytolocicsl effects of crude nenicillin end of nitroeen musterds are reversible, but cells which enlerce instead of dividing have not been observed to divice at any later time.
9. Tissue culture can be used to detect substences which selectively demege malicnant cells. Criteria of damece can be tabulated to permit an evaluation of a large number of compounds screened by simultaneous ewosure to nomel and malimnant cells.

REFERENCES

PENICILLIN

Beard, H.H., 1944. The effect of nenicillin and choline unon the apperance, erovth and disemperance of the Enge sercoma in rats. Erper. Ked. \& Surg. 2:286-239.

Brunel, J., 1944. Qui e découvert le jénicilline? Rev. caned. de biol. 3:333-343.

Bucher, O., 1946 a. Die Wirikung von Peniciniln auf Gewebekulturen. I. Die Beeinflussunc der Zellteilunc durch Penicillin "Roche". Schreiz. med. Vchnschr. 76:290-293.

Bucher, O., 1946 b. Die Wirkunc von Penicillin euf Gewebekulturen. 2. Weitere Mitteiluncen über die Wircung von Peniciliin "Roche"; vercieichende Untersuchuncen mit Penicillin "Ciba". Schreiz. mod. Wehnschr. 76:375-378.

Bucher, O., 1047 a. Die Virkuno von Penicilin auf Gevebekulturen; Untersuchuncen mit Penicillin "Lilly". 3. Vercleich der Cytotoxiziẗ̈t verschiedener Penicillin Präparate. Schveiz. med. Wchnschr. 77:171-173.

Bucher, 0., 1947 b. Die Wirkune von Penicillin auf Gewebelculturen. 4. Cytopharmakolosische Untersuchuncen mit reinem Peniciliin G. Schweiz. med. Wchnschr. 77:849-852.

Burk, D.; Du Buy, H.; Fischer, C.; Hearon, J. and othere, 1947 a. Ketaboiic inhibitions of microorganisms ana animal tissues and tumors by penicillin, penicillin impurity, strentomycin, and cobalt, and some aplications to metabolic icentificetion, asaay, eno mode of action. Progress renort at the meetinc of the Antibiotios Stuay Section, Bethesda, Maryland, May 2, 1947.

Burk, D.; Hescelbach, M.L. and Fischer, C.E., 1947 b. The inhibiting ection of anormous end crystelline benicillin and strentomyin menarations on the metabolism of tumors and other tiscues. Cancer Research 7:712.

Chembers, R.; Cemeron, G. and Kopac, K.J., Iglu. Neoplesm studies. XI. The effects in tissue cultures of $\mathbb{N}, N, N^{1}, \mathbb{N}^{1}$-tetramethyl-o-menylenediamine anc other compounds on malimnent lymph nodes. Cancer Research 3:293-295.

Cohen, A.L.; Borsook, H. and Dubnoff, J.W., 1947. The effect of a Sporosercina ureae preparation on tunor cells in vitro. Proc. Soc. Exper. Bicl. \& Med. 66:440-444.

Cornmen, I., 1944 a. Survival of normal cells in venicillin solutions lethel to maliment celle. Science 99:247.

Cornmen, I., 1944 b . A selective Iethal effect of penicillin on sercoma celle growing with normal tiscue in roller tube cultures. J. Gen. Physiol. 28:113-118.

Dobrovolskaila-Zavadskaía, N., 1946 a. La néthode des controles individuele dens les recherches biologicuea de tumeurs, et se vérification par létude de I'efiet de le péniciliine. Compt. renc. Soc. de biol. 140:425-427.
Dobrovglskaila-Zavadskaia, N., 1946 b . L'effet de la pénicilline sur les tumeure chez la souris. Bull. Assoc. frenç. D. I'étude du cencer 33:ユ92-222.
Du Buy, H.; Euris, D.; Fischer, C.; Hearon, J. and others, 1047. Metebolic inhioitions of tumors and other celle by verious antibiotics ane cobalt. Uth Internat. Sencer Reseerch Concr. Abstracts 0.40 .

Dunhem, W.B. and Rake, G., I945. Tine relative activity of nertiaily ourified benicilin end of cryetelline penicillin G on Trenonema naliscum. Am. J. Symh., Gonor., \& Ven. Dis. 29:214-2.28.
Earle, W.P., 1947. Procecure for the fixation, staininc, and mountinc of mole mounts from tissue cultures Crown in Carrel D 3.5 flesks. J. Nat. Cencer Inst. 8:83-89.
Fischbech, H.; Eble, T.E. and Levine, J., 1947. Orthohydroxybinenyacetic acid from an amorphous penicilin. Science 106:373-374.
Fleming, A., 1946. Penicillin; ite brecticel applicetion. Blakiston Co. Philedelphia.
Gerola, F.M., 1946. Escreti funcini emitosi celluleri. Atti Accad. Naz. de1 Iincei, Rendiconti. ser. 8, 1:001-305.

Gey, G.O., 1933. An improved technicue for messive tiscue cultures. Am. J. Cancer 17:752-756.

Gey, G.O. and Gey., M.K., 1936. The meintenence of humen normal cells enc tumor cells in continuous cuature. I. Preliminary revort: Cultivation of mesoblestic tumors and normel tissue and notes on methode of cultivetion. Am. J. Cancer 27:45-76.

Gey, G.O. and Gey, M.K., 1947. Further observations on the conversion of normal into melirnent cells in vitro. Cancer Research 7:729.

Goldhaber, P.; Cormmen, I. and Ormsbee, R.A., IO47. Experimental alteration of the ability of tumor cella to lyse nlasma clots in Vitro. Proc. Scc. Exoer. Eiol. \& Med. 66:590-595.

Henry, R.J. and Henry, M.D., 1945. The effect of nenicilin on eges of the sea urchin, Arbecia punctuleta. J. Gen. Physiol. 28:405-413.

Herrell, W.E., 1945. Penicillin and other antibiotic acents. W.B. Saunders Co. Philadelphia.

Hirsch, J., 1943/44. Penicillin Studien in vitro. Compt. rend. ann. et erch. Soc. turoue sci. phys. et net. (12) 1-88.

Jacoby, F. cited in Abrehan, E.P.; Chain, E.; Fletcher, U.M.; Gardner, A.D. and others, 1941. Further opservations on penicillin. Lancet 241:177-188.

Kidd, J.G., 1947. Effects of an entibiotic irom Asnerpillus fumiretus Fresenius on tumor cells in vitro, andits Dossible identity with gliotoxin. Science 105:511-513.

Kollros, J.J., 1947. The convulsive effect of Denicillin on an emohibien nervous system. J. Cell. \& Somo. Physiol. 29:185-188.

Kun, E., 1948. Inhibition of glycolysis in vitro by impure oenicillin. Science 108:117-110.

Levis, M.R. and Lichtenstein, E.G., 1937. Studies on the transplantability of induced and soontaneous tumors occuring in mice of sure invred streins. Growth 1:375-383.

Levis, M.R., Iol4. The iailure of purified nenicilinn to retard the growth of grafts of sercome in mice. Science 100:314-315.

Lewis, W.F., 1935. Ret melimnent cells in roller tube cultures and some results. Carnecie Institute of Washincton, Contributions to Embryology 25:161-172, (Pub. No.150).

Levis, W.H., 1939. Dibenzanthrecene mouse sercomas; histoloyy. Am. J. Cancer 37:521-530.

Merck \& Co., Inc., 1946. Brochure with bibliocrephy: penicillin; supplement. Rehrey, I.J.

Yeyer, J.R., Iq45. Indfcios de oristência de uma substéncia antineoplasica formada nos llouidos de cultura do "Penicilyium notetum." Ara. Inst. biol., Sao Prulo 16:307-314.

Meyer, J.R., I946. Tentatives para seperação da oubsténcía antineoplásica oue se forma nos ilquidos de cultura de "Penicillium notatum." Ara. Inst. biol., SẼo Paulo 17:163-173.

Recrianini, O. and Brillenti, F., l947. Prove biologiche sull' azione della neniciliina crude (crude filtrate): Boll. Soc. itel. biol. sper. 23:19-20.
deRopo, R.S., 7946. Penscillin as a blant hormone. Mature 158:555.

Scudi, J.V. and Jelinek, V.C., 1944. On the inhibition of urease by penicilifn. Science 100:312-313.

Smolens, J.; McAleer, D.S. and McLeren, C.S., 1947. Antidotel properties of crude Penicilifum notatum filtrete. Proc. Soc. Exper. Biol. \& Med. 65:172-175.

Taomina, A., 1946. Richerche sui caretteri fisici e farmecologici dei brodi filtreti ottenuti de culture di Penicillium notatum invecchiste. Boll. Soc. ital. biol. sper. 22:897-898.

Varges, J.J. and Escubós, J.M., Io45. Estudio exnerimental sobre alcunos aspectos de la ección de la ureasa y su inhibición por la Peniciline. Rev. esoan. fisiol. 1:50-57.

Weksman, S.A., 1945. Microbial enteronisms enc entibiotic substances. Comonwealth Fund. New York.

Welch, H.; Randell, W.A. and Price, C.V., 1947. Amorihous ve. crystelline nenicilín. Mimeo.

MUSTAPDS

Anslow, W.P., Jr.; Karnofexy, D.A.; Jereer, B.V. and Smith, R. W., 1947. The toxicity and hinmacolonicel action of the nitromen musterds and certein releted comounds.
J. Phermecol. \& Exper. Theren. 91:224-235.

ApThomas, M.I.R. and Cullumbine, H., 1947. Nitrocen mustards in Hodgkin's disease; report of 21 cases and. 4 of other reticuloses. Lencet 252:899-901.

Auerbach, C., 1947. The induction by mustara ges of chromosomal instabilities in Drosomila melanosaster. Proc. Roy. Soc. Eainburgh B62:307-320.

Averbach, C. and Robson, J.I., 1947 a. The rrocuction of mutations by chemical substences. Proc. Roy. Soc. Edinbureh B62:271-283.

Auerbach, C. and Robson, J.M., lath b. Tests of chemical substances for mutesenic ection. Proc. Roy. Soc. Edinburgh B62:284-291.

Berron, E.S.G.; Seegmiller, J.E.; Mendes, E.G. and Nerahera, H.T., 1948. The efect of nitronen mustercs on the respiration and fertilization of see urchin sperm and eces. B1ol. Bull. 94:267-274.

Bess, A.D. end Freeman, M.L.H., 1946. Response of certein mouse tumors to bis (β-chloroethyl) sulfide (mustexd gas). J. Netl. Cencer Inst. 7:171-176.

Bodenstein, D., 1947 a. The effect oi nitrocen mustards on proliferating embryonic tissueg. Cancer Research 7:49-50.

Bodenstein, D., 1947 b . The effects of nitrogen mustards on embryonic mphibien developnent. Pert l. Ectodermal effects. J. Evper. Zool. 104:311-34.

Boylanc, E., 1947. Cytological effects of nitrogen mustards. A.A.A.S. Cancer Conference, Auc. 13, 1947. To be publisheo.

Boyland, E.; Koller, P.C. and Warwick, O.H., 1047. The effects of chloroethylamines on tumors. ith Internat. Cancer Research Cong. Abstrects D. 89.

Drews, M., 1939. Untersuchuncen über die kinisch nechweisbere Resorotivwiricung bei Heutschédimuncen durch Dichlorodiëthylsulfid bei der Katze. Ztschr. f. d. ces. exper. Me . 105:29-45.

Eisenstark, A. and Clark, G.L., 1947. Electron microcrephs of x-ray-treated Escherichia coli cells. Science 105:553-555.

Erslev, A.J.; Burchenal, J.H.; Karnofsky, D.A.; Craver, L.F. and Rhoade, C.P., 1947. The clinical evaluation of nitrogen mustero derivatives in leukemia. Lth Internet. Cencer Research Congr. Abstracts 7.55 .

Fell, H.B. and Allson?, C.B., 1948 a . The ection of mustard cas ($\beta \beta^{\prime}$-aichlorodethylsulphice) on living cells In Vitro. Cancer Reseerch 8:145-161.

Fell, H.B. and Allsopp, C.B., 1948 b . The effect of reveated annlicetions of mirute auantities of musterd gas ($\beta \beta^{\prime}-$ dichlorodiethylsulphice) on the skin of mice. Cancer Research 8:177-181.
Flury, F. end Welend, H., 1921. Über Kempfeerverciftuncen. VII. Die phemakologische Mrkune des Dichlorethyleulfids. Ztschr. f. d. ges. exper. Med. 13:367-483.

Friedenweld, J.S. end Buschke, W., 1048. Nuclear fremmentetion oroduced by musterd and nitromen musterds in the corneal epithelium. Bull. Johns Hovkins Hosp. 82:161-177.

Friedentald, J.S.; Buschke, W. and Scholz, R.O., lote. Effects of musterd and nitrogen musterd on mitotic and would healins sctivities of the corncel epithelium. Bull. Johns Honkins Hosp. 82:148-160.

Gillette, Roy and Bodenstein, D., 1946. Specific develomental inhibitions produced in amphibian embryos by a nitrogen mustarā compound. J. Exper. Zool. 103:1-32.

Gilman, A. and Philipe, F.S., 1946. The biolocical actions and theraneutic apolications of the β-chloroethyl amines and sulfides. Science 103:409-415.

Goldfeder, Anna., 1945. Further studies on the relation between radiation effects, cell viability, end induced resistance to malignant growth. Radiology 44:283-292.

Golumbic, C.; Fruton, J.S. and Bergmenn, M., 1946. Chemical reactions of the nitrogen musterd gases. I. The transformations of methyl-bis (3 -ciloroethyl) amine in water. J. Org. Chem. 11:518-535.

Goodman, L.S.; Wintrobe, M.M.; Dameshek, W.; Goodmen, M.J. and others, 1946. Nitrocen mustard therapy. J. A. M. A. 132:126-132.

Greef, I.; Karnofsky, D.A.; Jager, V.B.; Krichesky, B. and Smith, H.W., 1948. The clinical eno Dethologic effects of the nitrogen and sulfur mustards in leboratory animals. Am. J. Peth. 24:1-47.

Graef, I.; Kernofsky, D.A. and Smith, H.W., 1946. The clinical end natholocic effects of the vesicant nitrosen and sulfur mustards. Federation Proc. 5:221-222.
Hawkins, J.W. and Farber, S., 1947. The action of nitrocen mustard on certein tumors in children. 4th Internat. Cancer Research Concr. Abstracts D. 56 .

Hofmeyr, H.O., Iq4. Clinical emeriences with nitrocen musterd in Hodghin's disease. South Airricen li. J. 21:195-198.

Horowitz, N.H.; Houlehen, M.B.; Huncate, M.G. and Vricht, B., 1946. Musterd gas mutations in Meurosnora. Science 104:233-234.

Hutchens, J.O.; Podolsky, B. and KoMehon, T. M., 1948. Effects of tris- β-chloroethyl)-amine on respiration, carbohydrete and protein synthesis, end cell division in Chilomonas. Federation Proc. 7:59.

Jecobson, L.O.; Spurr, C.L.; Berron, E.S.G.; Smith, T. and others, 1046. Nitrogen musterd thereny. J. A. M. A. 132:263-271.
Kernofsky, D.A.; Burchenal, J.H.; Ormebee, R.A.; Cornmen, I. and Rhoa.ds, C.P., 1947. Exverimental observations on the use of the nitropen musteras in the treatment of neoplestic disease. Americen Association for the Advancement of Science. Approaches to Tumor Chemotherany, The Association. Washington, D.C. p.293-305.

Karnofsky, D.A.; Crever, L.F.; Rhoeds, C.P.; Abels, J.C. end Mcelroy, M.E., 1947. An evaluation of methyl-bis (β-chloroethyl) anine hydrochioride and tris (β-chloroethyl)emine hydrochloride (nitrocen musterds) in the treatment of lymohomes, leulsemia and allied ciseases. Americen Association for the Advencement of Science, Abrroaches to Tumor Chemotherevy. The Ascociation. Veshineton, D.O. p.319-337.

Kindred, J.E., I 146 . A cuantitative study of the hemonoietic oreans of elbino rets followinc intrevenous injection of mustara and nitrosen musterde. Anet. Rec. 94:474.

Kindred, J.E., 1947. Histologic chences occurrine in the hemopoietic orgens of elbino rats efter sincle injections of 2-chloroethyl vesicents. Arch. Path. 43:253-295.

Kinsey, V.E. and Grent, W.M., 1947 a. Action of mucterd ges and other poisons on yeast cells. I. Effect of musterd gas on the rate of cell division. J. Cell. \& Como. Physiol. 29:51-64.

Kinsey, V.E. and Grant, W.M., 1947 b. Action of mustard gas and other poisons on yeast cells. II. Study of the relationship between inhibition of cerbohydrate metabolism and ininibition of growth by verious poisons, and effects of other toxic agents on yeast. J. Cell. \& Comp. Physiol. 30:31-42.

Koller, P.C., 1947. The behavior of the tumour cell under the influence of irradiation and chemicels. 4th Internat. Cencer Research Congr. Abstracts 0.142.

Krumbhaar, E.B., 1919. Role of the blood and the bone marrow in certein forms of cas noisoning. I. Peripherel blood chenges and their simnificance. J. A. M. A. 72:39-41.

Krumbhear, E.B. and Krumbhaar, H.D., 1919. The blood and bone marrow in yellow cross gas (mustara cas) poisoninc. Chenges produced in the bone marrow of fatal ceses. J. N. Research 40:497-507.

Lillie, R.S.; Cloves, G.F.A. and Chembers, R., 1919 a. Preliminary report of experiments on the action of aichloroethylsulfide (musterd aes) on the cells of marine organisms. Science 49:382-385.

Lillie, R.S.; Clowes, G.H.A. and Chembers, R., l919 b. On the penetration of dichloroethylsulphice (mustard cas). into marine orgenisms, and the mechenism of its destructive action on protonlasm. J. Pharmacol. \& Exper. Therep. 14:75-120.

Nershac, A., 1046. Effect of musterd cas on mitosis and p32 unteke in receneratine Iiver. Proc. Soc. Exper. Biol. \& Med. 63:118-120.

Naier, G., 1938. Experimentelle Untercuchuncen zur Frace der Allremein-Schädiruncen durch Dichlorciethylsulfid (Gelblreuziempfstoff). Ztechr. f. d. ces. exper. Med. 103:458-478.
Meier, R. anc Schär, B., 1947. Différentiation de l'action antimitotioue sur ia cellule animale, in vitro. Experientia 3:358-366.

Muntsch, O., 1934. Die Blutveränderuncen bei
Kampfgeserkrankuncen als diagnostisches Hilfsmittel. Klin. Wohnschr. 13:482-485; 529-532.

Papnenheimer, A.M. and Vance, M., 1920. The effects of intravenous injections of dichloroethylsulfide in rabbits, with special reference to its leucotomic action. J. Exper. Med. 31:71-94.

Philips, F.S. and Gilman, A., 1947. The relation between the chemicel constitution and biologicel action of the nitrosen mustards. American Association for the Advancement of Science. Approaches to Tumor Chemotherapy. The Association. D.285-292.

Phoads, C.P., 1946. Nitrogen mustards in the treatment of neoplastic disease. J. A. M. A. 131:656-658.

Richters, C.E., 1932. Die Tiere in chemischen Krieg. Verlags Buchhenclung von Richerd Schoetz, Berlin.

Schrel, R., 1947. A comparison of the reaction of cells to nitrogen mustard anô x-rays. 4 th Internat. Cancer Research Congr. Abstracts p. 54.

Slizynska, H. and Slizynski, B.M., 1947. Genetical and cytolocicel studies of lethals induced by chemical treatment in Drosomila melanosaster. Proc. Roy. Soc. Edinburgh B62:234-242.

Spurr, C.L., 1947. The cinical application of a nitrocen mustard compound methyl bis (β chloroethyl) amine to the treatment of neoplastic disorders of the hemonoietic system. A.A.A.S. Cancer Conrerence, Auc. 13, 1947. To be nublished.

Sourr, C.L.; Jacobson, L.O.; Smith, T.R. ane Barron, E.s.G., 1947. The clinical application of a nitrogen mustard comound methyl bis (β chloroethyl) anine to the treatment of neoplastic disorders of the hemopoietic system. Cencer Research 7:51-52.

Teffel, M., 1947. Experiences in the treatment of neoplestic disease with nitrogen musterc. Yale J. Biol. \& Med. 19:971-977.

Werthin, A.S. and Weller, C.V., I919. The medical aspect of mustera gas poisonins. C.V. Fosby, St. Louis.
Wilkinson, J.F. and Fletcher, F., 1947. Effect of β-chloroethylamine hydrochlorides in leukemia, Hocckin's aisease and polycythaemia vera; report of eighteen cases. Lencet 253:540-545.

EXPIANATION OF FIGURES

Figs. 7 and 2. Muscle (Fig. I) and sarcoma 132 (Fig. 2) erowing in the same tube after 12 days' exporure to Denicilin. The vicorous erowth of the muscle forms a migration zone as broad as the diameter of the orieinal exnlant, whereas the sercome shows only a snerse frince of cells and scattered, rounded, moribund cells. A white bar iniicetes the eore of the exolant. X 45.

Materials for Fiss. I - σ fixed in Bouin's and steined in hematoxylin.

Fig. 3. Sarcoma 132 untreated. The 5 days' growth is ecuel to the 12 days' growth of the muscle in Fir. I. $\times 45$.

Fig. 4. Muscle (Fic. 4) and sercona II (Fic. 5) growine in the same tube after six deys' exposure to benicillin followed by 2 days in normal medium. The cells in the muscle migration zone are the normal fibroblastic type. X 100 .

Fis. 5. Sercoma rrovinc in asne tube as the mucle fibmoblests shown in Fic. L. Whe scrome mirretion zone is comosed ony of deromed celle and debris of disintscmoted celle. Tie effect wes mpesed only as "merred dememe" inesmuch as some epperently vieble cells remein, but five sister colonies from the same tube, implented into one ret, friled to roduce a tumor. X IOO .

Fir. 6. Untreated cells of tumor 132. Seme explant as in Fic. 3. X 100.

Fig. 7. Oriteria for grading inhibition and damage of tissue cultures. The grades for lysis are inverted since there is less lysis with greater inhibition.
GRADING OF GROWTH AND LYSIS IN TISSUE CULTURES

	GRADE	0	1	2	3	4	5
I $\mathbf{5}$ $\mathbf{8}$ \mathbf{S}	EXTENT OF GROWTH	NONE	FEW MIGRATING CELLS	CELLS EMERGING ALONG $1 / 4-1 / 3$ OF PERIPHERY	1/3-3/4 OF EXPLANT ENCIRCLED	COMPLETE ZONE OF GROWTH	GROWTH ZONE as wide as EXPLANT
	GRADE OF INHIBITION	4	3	2	1	0	
	EXTENT OF LYSIS	NONE	SMALL PERFORATION OF CLOT	CLOT RETRACTED FROM 1/4-1/3 OF PERIPHERY	1/2-3/4 OF EXPLANT ENCIRCLED	COMPLETE ZONE OF LYSIS	
$\underset{ }{ }$							

GRADING OF GRANULARITY AND
ROUNDING IN TISSUE CULTURES
GRANULATION
figure 7

> Fig. 8. Formulae of Nitrogen Mustards
> I Methyl bis- (β-chloroethyl)amine, or HN2.
> II $\frac{\text { Tris }}{\text { or }}$ HN3. ch.
> III $\frac{\text { Bis- }-[b i s-(\beta-c h l o r o e t h y l)-}{\text { amino }}$-ethane.
> IV I, 3-bic- [bis-(β-chloroethyl)amino -propane.
> V 2-chloro-l, 3-b1s- [bis- \mathcal{B}-chloroethyl)-amind -pronane.
> These were used as the hyorochlorides (I \& II) or dihydrochlorides (III, IV, V).

III

IV

ㅍ

Figure 8

Figures 9-20
Normal fetal mouse skin, mouse carcinoma E060 and sarcoma 202 L Were grown in normel medium for 48 hours, then exposed to 10,20 and $40 \mathrm{mg} / \mathrm{L}$ of HN3 (compound II) for one day. Embryonic chick heart was exposed to $100 \mathrm{mg} / \mathrm{L}$. They were retumned to normel medium and fixed 5 days after termination of the exposure. Fixative: 10\% formalin; stain: Harris hemelum. X 200 in figures $14-17$ and 20; X 100 in others.

Figs. 9-12
Fig. 9. Mouse fibroblasts grown to gigantic proportions following exposure to $10 \mathrm{mg} / \mathrm{L}$.

Fic. IO. Normel mouse fibroblasts, the larcest to be found in the control culture. Fig. 1l. Typical population of enlerced cells folloring exposure to $40 \mathrm{mg} / \mathrm{L}$. . Fig. 12. Tyoical population of untreated mouse fibroblasts.

Fig. 13. Tracince of nomal and exposed mouse fibroblests on centimeter coordinete paper. A: The larcest cells to be found in the control tube; sverace ares. $600 \mathrm{sg} \cdot \mu \mathrm{E} . \mathrm{P}$ Romesentetive sample of cells exposed to $20 \mathrm{mc} / \mathrm{L}$; average area $1700 \mathrm{sc} . \mu$.
C : Rempesentetive sample of celle exnosed to $40 \mathrm{~mm} / \mathrm{L}$; averase area 2800 sq. μ.

Figure 13

Fis. 14. Sarcoma 202L after exposure to $20 \mathrm{me} / \mathrm{L}$.

Fig. 15. Largest cells (note binucleation) in the untreeted culture of 202 L .

Fig. I6. Cercinoma EOSO after exposure to $40 \mathrm{me} / \mathrm{L}$. As in any epithelium the cell bounderies are indistinct. Compare size of nuclei.

Fig. 17. Untreated E060. Cell rounding up for division in lover richt.

Fig. 18. Giant ifbroblest from chick heart following exposure to $100 \mathrm{mc} / \mathrm{L}$. The nucleus and nucleoli are clearly visible in the center. The thin cytoplasm extends ecross the midale third of the photogremh. Fie. 19. Untreated chick fibroblasts. Fig. 20. Tripoler mitosis in chick fibroblast exposed to $100 \mathrm{~ms} / \mathrm{L}$.

