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THE ANALYSIS OF HIPPED PLATE STRUCTURES

CHAPTER I

INTRODUCTION

1. SYNOPSIS:

Both theoretical and experimental investigations 

on the structural action of hipped plate structures are 

presented in this dissertation. Tests on a I/I4.O scale alu­

minum model of a hipped plate roof were conducted to check 

the assumptions and the analytical results. Investigations 

showed that the chance in the shape of the cross-section of 

such structures under loading, which is usually neglected 

in the present theory of design, affects the results materi - 

ally. Discrepancies in the results of solutions that neg­
lected the change in shape of the cross-section of 100$ and 

even up to 200$ and more for some cases were obtained.

The more exact theory for this problem as given 

by E. Gruber is mathematically complicated which may ex­

plain the reason for the present adoption of the approximate 

theory as established by Ehlers and Craemer. However, a 

more exact, but still practicable method of analysis that 

considers the change in shape of the cross-section is given 

here. The results of the different methods are compared with 

each other and checked against the experimental results.

1
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2. HISTORICAL REVIEW:

A hipped plate structure is a monolithic space

structure that is composed of straight plate or slab ele­

ments that intersect at an angle as shown in Fig. 1.1. No

beams or girders need be used as the plate elements are con­

nected rigidly together to form a structural unit that has

some of the characteristics of a shell type structure. The

ends of the plate elements are supported by diaphragms and

columns. These structures,which carry the loads applied to

the plates by a combined slab and beam action,are usually

built of reinforced concrete and are particularly applicable

to roofs, bins, and bunkers.
Pef

Hipped

eg

Fig. 
plate

1.1 
structures

The principle of hipped plate construction was

first developed by G. Ehlers in Germany in 192^, who wrote 
‘ (1) '

the first technical paper on this subject in 19^0. In 

his method of analysis he considered the different plates 

abed, Fig. 1.1, as beams supported at the cross and end 
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diaphragms A, B, C. Along the longitudinal edges the plates 

were assumed as being connected by nonsliding hinged joints. 

These joints were considered capable of transferring only 

edge shears T between the contiguous plate elements. Such 

connections neglected entirely the connecting moments trans­

mitted between the plates due to the rigidity of the joints. 

To simplify the solution the uniform loads on the plates were 

transformed to line loads p acting at the joints. These p 

loads were resolved into two components pep and pfg parallel 

to the two adjacent plates as shown in Fig. 1.1. The plates, 

acting as beams between the diaphragms, carried the loads p. 

At the same time, edge shear stresses T are created along 

the edges to maintain equal longitudinal strains along the 

common edges. This strain condition at each joint was used 

to determine the magnitude and distribution of the shear 

stresses T along the edges.

In 1952, however, E. Gruber presented a paper 

to the International Association for Bridge and Structural 

Engineering, in which he considered the effect of the rigidi­

ty of the joints, the connecting moments,acting along the 

common edges of the plates, and the effect of the relative 

displacements between the joints. As a first approximation, 

the hipped roof was assumed to be hinged along the joints. 

Then, by using this assumed hinged structure as a basic sys­

tem, he developed his exact solution in the form of simultaneous 



differential equations of the fourth order, which could be 

solved by rapidly converging series. For a hipped roof of 

r + 1 plates, i.e. r joints, the number of the equations en­

countered in the solution is 7r + 2. For a roof of five 

plates this will mean JO equations. As this solution is com­

plicated even when solved by the use of trigonometric series, 

it will not be given here. In his solution Gruber showed 

that the maximum longitudinal stresses on a cross-section 

and the maximum deflections for a roof with hinged plates 

were about twice as great as for the rigidly connected plates. 

He consequently concluded that the influence of the rigid 

connections ought not to be neglected, as had been the usual 

practice.

Later the theory was further developed and expanded 

in many respects by Craemer, Gruber, Ohlig, and others. The 

European literature on the subject, which is mostly in Ger­

man, is fairly extensive. All the treatments of the theory 

by the Germans are developed from elasticity equations in the 

form of simultaneous algebraic and differential equations 

which are mathematically involved. With the exception of the 

paperby E. Gruber, all writers have made the same simpli­

fying assumptions of neglecting the effect of the change of 

the shape of the cross-section of a hipped structure under 

loading although some considered the rigidity of the joints 

and the connecting moments along these joints. In other words,
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the effect of the relative deflections of the joints was not •

considered. The above assumptions which consider the rigid!- ,

ty of the joints but no change in cross-section form the basis 

of the present simplified theory as established by Craemer
(10) .and Ehlers.
In January I9L7, G. Winter and M. Pel of Cornell 

University published a paper ) on Hipped Plate Construction 

in the Journal of the American Concrete Institute in which 

they transformed the algebraic solution into a stress dis tri- 

button method, which has the advantage of numerical sirpll- . 

city over the other procedures. However, they also made the 

same simplifying assumption as Craemer and Ehlers, of neg­

lecting the effect of the relative deflection of the points. 

In their paper Winter and Pel state that the spreading,which 

may occur in such structures,and the effect of the relative 

displacements of the joints is neglegible although they pro­

vide no positive proof for this statement.
In a dissertation^^ submitted to the Cornell Uni­

versity in I9U8, M. Pel presented a method of analysis con­

sidering joint displacements. The method requires the solu­
tion of 6n + 1 simultaneous algebraic equations where n is |

the number of plates. For a roof of 5 plates as shown in 

Fig. 1.1, the number of equations is 6 x 5 + 1 = $1 equations.

None of the mathematical investigations mentioned 

above gave any experimental evidence to substantiate the as­

sumptions and analytical procedures that were used. It 
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appears that no previous experimental evidence from either 

actual structures or small scale models has been obtained to 

support the theoretical analysis.

In the development of the analysis which is pro­

posed in this thesis it was found necessary to depend upon 

a study of the deformations in small scale models to provide 

information upon which correct assumptions could be made. It 

will be shown in the following chapters that the translation 

of the edges of the plate elements materially affects the mag­

nitude and distribution of the internal stresses.



CHAPTER II

PRESENT ANALYTICAL METHOD

1. NOTATIONS

O

0!

23

Fig. 2,1

O, 1, 2, ... n, .. = Subscripts used to denote edges 

and plate elements,
h = Width of plate 12 ; or distance between joints 1 

1 2
and 2 measured along the center line of cross­

section of plate.

L = Span of roof between end diaphragms.

t = Thickness of plate 12. 
1 2

A = h x t = Cross-sectional area of plate 12. IS 12 12
S - Section modulus of plate 12, considered act-

1 2 6

ing as a beam,
△ = The component of the displacement of edge 1 per-
1 2

pendicular to plate 12.
△ = The component of the displacement of edge 2 per-

21

pendicular to plate 12.

7
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6 = The component of the displacement of edge 1 in

the plane of plate 12.

6 = 6
ei is

Qia = Shearing force per unit length, acting from joint 

1 on plate 12 in the direction parallel to A xa•

Tt = Shear stresses per unit length parallel to edge 1 

acting from joint 1 along the edges of the adja­

cent plates,
N = / T dx

0

Other notations are given where they are used.

N.B.: No particular sign convention was found necessary for 

the displacements, the forces, or the stresses. Any assumed 

displacements may be considered positive. A negative value 

in the result means an opposite sense of displacement to the 

one first assumed. Consistency in working out the solution, 

rather than a specified sign convention, is essential.



9

2. GEOMETRICAL RELATIONS BETWEEN EDGE DISPLACEMENTS IN
HIPPED PLATE STRUCTURES

X

If a point on an edge 2 moves under

loading to

following geometrical relations be­

tween the components of displacement

have :

Cotx

iO

A 23

Fig. 2.2 we

another point 2, then the

f£3

can be readily established. From

^1 2_______
COS(01-Ss)

Fig. 2.2

21 6-------------- ----------------- r
COS

Cot (^1-02)

Similarly:

1 2 ---  r + Cie cos (0, ) Cot (0Q- 0i )

and so on

Adding (2) and ($) we get the relative displacement between 

edges 1 and 2:
△ - 2i + is - ci* Cis + c 2•68a + c3»5qi . . (U)

where Ci, c8 and c3 are constants.
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Each of equations (1) and (2) for joints 1 and 2 gives the 

component △ of the joint displacement in terms of the two 

other 6 components of the same joint. Two similar equations 

can be written for every joint. Equation (U) gives the mag­

nitude of the relative displacement between the two joints 1 

and 2. Such an equation can be easily obtained for each in­

termediate plate in the roof. For a roof of 5 plates three 

such linear algebraic equations can be written. For a roof 

of 5 plates with symmetrical loading the number of equations 

can be reduced to one. As mentioned before no particular 

sign convention for the displacements is necessary but rather 

only consistency in the successive steps of the analytical 

solution is desirable. A negative sign of A in the final 

result means an opposite sense to the one first assumed.

5. BASIS OF THE ANALYTICAL APPROACH:

The following limitations that governed the appli­

cation of the exact solution given by E. Gruber will be 

discussed and used in the theoretical investigation :

(1) All plates are of rectangular shape.

(2) The length of each plate is more than twice 

its width.

(5) The structure is monolithically built. All 

joints are rigid.
(U) Each plate is of uniform thickness.

(5) The material is homogeneous and elastic.
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(6) In any plate, plane sections remain plane 

after deformat!on.

Ad. (1) E. Gruber gave a theory for plates of near rectangu­

lar shapes.The analysis is much more difficult 

as it requires solutions of simultaneous, linear, 

nonhomogeneous differential equations of the second 

■ order with variable coefficients.

Ad. (2) This limitation makes it possible to treat the plates 

as one-way slabs, to assume linear distribution of 

bending stresses, and to neglect the effect of tor­

sional rigidity. Experimental investigations appear 

to justify this assumption. The resistance to tor­

sion of the lateral beams was taken into account by 
Ohllg. '

Ad. (L|.) For plates with their thicknesses varying along their 

lengths, (ref. 8).

Ad. (5) Reinforced concrete is not a homogeneous material. 

Present statical analysis of reinforced concrete 

structures assume homogeneity of material and it 

therefore seems reasonable to make the same assump­

tion here. As to elasticity, it is debatable whether 

concrete could be treated as an elastic material. 

This question will be left for investigators on re­

inforced concrete to decide. The theoretical and 

experimental investigations given here are applicable 

to an elastic material. As for application to 
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reinforced concrete this thesis provides some light 

on the subject and it is recommended that further 

experimental and analytical studies be made on re­

inforced concrete models.

Ad. (6) Experimental investigations given in this thesis 

show that this assumption is justified. It should 

be noted that plane cross-sections of the entire 

structure do not necessarily remain plane after defor­

mation.

U. EQUILIBRIUM CONDITIONS FOR JOINTS AND PLATE ELEMENTS:

o

(a) Equilibrium of the joints :

Consider a hipped plate roof as shown in Fig. 2.3, 

with a span L larger than twice the width h of any plate. 

Loads on this roof (dead load, snow, wind, etc.) will be as­

sumed arbitrarily, as shewn in F1r. 2.L» Since the width h, 

of any plate, is small compared to its length L, each indi­

vidual plate, will carry the applied load w, transverse to 
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the joints. This fact also enables us to ignore the effect 

of torsional action that takes place in each plate. We can 

then treat the plates as a one-way slab. Consider any trans­

verse strip (0, 1, 2 of the roof of one unit width, that 

is some distance away from the supporting end diaphragms.

Cut out any joint, j^ say, from this strip in the manner shown 

in Figs. 2.5 and 2.6, by two planes R and S perpendicular to 

the two adjacent plates respectively.

e
I < I I
L>

If we now consider the forces acting on this portion of the 

joint, we find in a vertical cross-sectional plane through 

the middle of the joint element three kinds of forces acting# 

namely:

(1) Two forces and perpendicular to the two 

adjacent plates D and E respectively, •

(2) Two forces p^ and pe perpendicular to the Q. 

forces, and
($) Two bending moments and Me between the joint 

and each adjacent plate.
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In addition to these forces, shear stresses and 

torsional stresses will be acting on the vertical sides of 

the joint element. As the joint element is chosen smaller 

and smaller by making the planes R and S approach each other, 

the resultant of these latter stresses becomes smaller and 

smaller approaching zero as a limit, in which case, and Me 

become equal, and the forces 1.^, % and pe become con­

current . If we now consider the equilibrium of the joint ele­

ment in the plane of these forces, and draw the force vectors 

representing the four mentioned forces, Fig. 2.7, it is evi­

dent that the resultant of and Qq is equal and opposite to 

that of pj and pQ. Th$ forces and M represent the action, 

on the joint, of the adjacent plates, acting as a continuous 

slab, while the forces p represent the action, on the joint, 

of the adjacent plates acting as beams between the end dia­

phragms .

In planes R and S between the joint and each adja­

cent plate, there also exist shearing stresses T, and on the 

two transverse planes on both sides of the joint, normal 

stresses f. However, T and f do not enter into the equilib­

rium of the forces acting on the joint in a transverse plane 

as they are perpendicular to that plane.

(b) Equilibrium of a plate element:

Fig. 2.8 shows the forces acting on a plate element. 

In the figure N represents the resultant of the ed^e shear 
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stresses, T acting on the edge of the element at joint n. 

Otherwise the figure is self-explanatory. The edge shear 

force acting on the plate in a length x is given by:

X
N = T • dx • • • • • ( 1 )
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Effect of the edge shear stresses T on shear forces V act­

ing in a transverse vertical plane:

P Uadi
Illi ' 1 1 11 1 1 1 1 1 1111111 ' ' ' । ' । '

77 _ ____

Plate 12 i

a

Plate element

2.9

The edge shear stresses T and T on a plate 12 need not be I B
the same. If the edge shear force acting on a length dx of 

plate is denoted by A N = T. dx then the edge shears T will 

have a resultant on both sides of the element dx of

N = f T dx . . . • (1 )
i J i

These forces will produce normal stresses on both vertical 

sections of the plate element. Since these stresses, act­

ing on opposite vertical sections of the plate element, are 

not necessarily equal, this will give rise to horizontal and 

vertical shear stresses acting on the element. However, the 

resultant of the vertical shear stresses on both vertical 

sections of the plate element must add up to zero which can 

be readily seen when the effect of the edge shears T on the 

element is considered separately. For the plate element 

shown in Fig. 2.9, if we take moment of the forces shown 

about any point in the plane of the forces, then it can be 

seen that the resultants of the shear stresses on each of the 
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vertical sides must equal zero. From this discussion it can 

be noted that the shear forces V acting on a vertical side of 

a plate element, Fig. 2.8, is due only to the p loads since 

the effect of the edge shears T is zero.

5. STRESS DISTRIBUTION METHOD:

A numerical solution that is based on successive 
(12) 

approximations was developed by Winter and Pel as a means 

of solving the equations that arise in the Craemer and Ehlers 
method of analysis.^0) This solution is applied in a manner 

that is almost identical to the Moment Distribution Method 

that was developed by Professor Cross. In the latter method, 

an imaginary "locking" or restraint is applied at each sup­

port. The moment developed in the restraint is later re­

leased and distributed. In the distribution method for Hipped 

Plate Structures, a "non-shear" joint is first assumed be­

tween each two adjacent plates, and edge shear forces N are 

then gradually added so as to provide the final actual condi­

tion of continuity.

Fig. 2.10 P-forces
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Let us assume that the line load Pn,acting in 

the plane of the plate n,n+1, represent the resultant of the 

p forces transmitted from the joints n and n+1 to the plate 

n,n+lt (Fig. 2.10). The plate n, n+1 will carry the load Pn,n+1 

as a beam between the end diaphragms, Fig. 2.11. •

2

Fig. 2.11 
Monolith!c action of plates

If the plates were not joined along their common edges they 

would act as simple beams loaded with their respective P loads. 

In such a case the normal stresses due to bending in plates 

01, 12,.. would be as shown in Fig. 2.11 since with such sepa­

rate action the plates would deform independently. However, 

the monolithic action existing at the joints requires equal 

stress and strain conditions along the common edges. Hence, 

each of the plates, in addition to its piste load, P, is 

acted upon along its two edges, by the shear forces T. Al­

though the distribution of these shear forces, at this stage, 

is not known, it is evident that at any particular section, 

x, they add up to normal forces N% and N^, at top and bottom 
edge, of magnitude x

N = / T. dx .... (1)

0
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Any section, therefore, will be acted upon by two longitudi­

nal edge-forces, and in addition to the bending moment 

M caused by the plate loads P. Since at all points along a 

common edge, the shear forces T are equal and opposite to 

each other for the two adjoining plates, from equation (1) 

the resulting normal forces N are also equal and opposite to 

each other, in both plates, at all points along the edge. 

Let us assume that we know the magnitude and distribution of 

the P-loads acting on each plate, and that each plate acts 

independently and carries its load as an ordinary beam does. 

The bending moment is obtained from elementary structural 

theory. The fiber stresses at the edges corresponding to 

this bending moment are obtained. In general, fn n_^ and fn 

found this way are not equal. Consequently, longitudinal slid­

ing will occur along the joints. To eliminate this sliding, 

a couple of equal and opposite normal forces is introduced at 

the joint, Fig. 2.12.

M 
1,0ft

Fig. 2.12
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The additional normal stresses f• due to a normal force N 

acting at the edge n common to two plates a and b, Fig.

2.15, are as follows :

For plate a :

2
1 
Sa Put S% =

+ 3 ~p~ - (of the same sense as N) . . (2 )

N
A a (onnoslte sens' to N) 

A a * '
(3)

Similarly the additional normal stresses for plate b are 

readilv obtained (Fl^. 2.13)•

Stress diagrams due to N

Fig. 2.13

- 2 V n-i

If the original stresses at n in both plates are

different by an amount Athen the correct!on Afn will 

be distributed on both plates such that :

f ’n,n-l + ^’n,n+l

‘ k"Ta* 4 Tb= +
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Distribution factors at joint n:

, .±4______  
a Ab

Aa + Ab
Aa Ab

• (5)

. . . . (6)

Carry-over factors ;

From stress diagram due to N In Fig. 2.1$, it can 
be seen that a correction of^.^ at edge n in plate 1 a • is

Aa

accompanied by a stress -2 at the far end of the same plate . Aa

Hence the carry-over factor for any plate from end to end is 

equal to -1/2. Assuming that the magnitude and the distribu­

tion of the P-loads on each plate can be determined, the pro­

cedure for the stress distribution method is as follows :

(1) Compute the "free edge stresses," by assum- 
M ing that all edges are free f = — o

(2) Qompute the "unbalanced stress" 

^n - fn,n-1 "^n,n+1

(5) Balance, using distribution factors K 

(k) Carry-over. The carry-over factor is -1/2

(5) Repeat the procedure until satisfactory con­

vergence is obtained.
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(6) At the end of Step 5» stresses at all joints 

are balanced and known. In order to find out 

N at any joint, equation (2) may be used

N = e ^'n,n-l = ™n• f,n,n-l • * (2)

where f*  - n Is the correction, i.e., the sum n, n--L

of all distributed stresses at the edge n of 

the plate n,n-l.

Determination of the P-loads:

The usual procedure for the determination of the 

magnitude and the distribution of the P-loads, as adopted by 

Ehlers and Craemer theory,is to consider the plates of 

the roof in the transverse direction, to be acting as a con­

tinuous slab, supported at the joints by nonyielding supports. 

The shearing forces Q along the joints are readily computed, 

and from the consideration of equilibrium of the joint ele­

ment discussed before, the Q forces acting from the adjacent 

plates on to the joints, are resolved into p-forces parallel 

to the said plates. The resultant of the p-forces acting on 

a plate, along its two sides, gives the P-forces for that 

plate. Consequently, the P-forces obtained will vary along 

the plate, in the same manner as the external loads applied 

to the roof. This is also the same procedure used by Winter 

and Pel



CHAPTER HT

PROPOSED METHOD OF ANALYSIS

OF HIPPED PLATE STRUCTURES CONSIDERING

THE RELATIVE DISPLACEMENTS OF THE JOINTS

From consideration of the equilibrium of a joint

and a plate element discussed in Chapter II, it is clear

that the shearing forces % acting on both sides of a joint

are in equilibrium with the p-loads transmitted between the

joint and the adjoining plates. Hence the p-loads can be

numerically determined once the Q forces are known. The Q

forces represent the shearing forces in the roof plates per

unit of length along the joints. Referring to Fig. 3.1 rep­

resenting the vector diagram for the Q and p-forces, it is

clear that a small error committed in the computation of the

Q forces may result in a considerable error in the evalua-

tion of the p-loads.

Fig. 5.1

6a
be

Vector diagram 
for joint C

Vector diagram 
for joint B
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1. PROPOSED METHOD OF ANALYSIS:

I A

Fig. 5.2

, -11i । i i iii iy ' 
vTc '

\ I

V -I ---- V R

The propose^ method of analysis will be discussed 

in terms of its application to the roof shown above in Fig. 

5.2. The displacements of the joints are expressed in terms 

of their components A's perpendicular to the different plates 

of the roof.

The roof in the transverse direction is treated as 

a continuous slab with the joints given assigned displace­

ments a 1s. To determine the shearing forces Q acting along 

the joints of the roof, in its deflected position under load­

ing, we are only interested in the relative displacements A’s 

between each two consecutive joints. For this roof we need 

to work with three unknown values of A for unsymme tri cal 

loading, and only one △ value for symmetrical loading. With 

the A •s assumed and the applied load w on the roof given, 

the shearing forces along the joints are obtained in terms 

of w and the A * s. The Q forces are then resolved to obtain 

the P-forces. Using the method of stress distribution dis­
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cussed in Chapter 11, the final stresses in the roof are 

obtained in terms of w and the A ' s. Consequently the de­

flection ô of each plate element, acting as a beam in its 

plane is obtained in terms of w and the A • s. Hence we will 

have the planer deflections 6 of the plates in terms of the 

perpendicular deflections A . Substituting the values of 

the ô*s  into the geometrical expression for A , given in Chap­

ter II, we get the required values of the A * s .

The steps in the analysis can be summarized as fol­

lows:

(1) The first step is the calculation of the forces and the 

stresses acting at the edges of each element for the assump­

tion of nonyielding supports. The analytical procedure is 

simplified by using the stress distribution method discussed 

in Chapter 11.

(2) The second step is to express the shearing forces Q and 

the parallel forces P acting on each element in terms of each 

A value. This operation is most easily accomplished by as­

signing an arbitrary value to A , determining the correspond­

ing fixed-end moments, and then correcting for rotation at 

the ends of the elements by the moment distribution method, 

After the end moments are determined the Q and P forces are 

then calculated in the same manner as in Part (I). This 

operation must be repeated for each different A term. For 

unsymmetrical loading the number of A values for the structure
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in Fig. J.2 is equal to three, but only one unknown for sym­

metrical loading.

(5) After the Q and P forces are- expressed in terms of the 

△fs, the corresponding edge stresses are then calculated in 

the same manner as in Part (1).

(•L) From the values of the combined edge stresses from (1) 

and (3)» the displacements & parallel to the elements are com­

puted. These parallel displacements 6 are therefore in terms 

of the applied load and the transverse movements A . It will 

be found that there are only one set of A values that will 

satisfy the algebraic relations between the A’s and the ô's 

that are imposed by the geometrical requirements of the cross­

section and the equilibrium conditions. The values of the A's 

can now be calculated from the geometrical relations between 

the A '3 and 6's since the G's have already been expressed in 

terms of A's by the calculations in Steps (2) and (5).

(5) After the A 13 have been calculated, the edge stresses, 

shears, and transverse moments due to these transverse dis­

placements are now known as they have previously been expressed 

in terms of the A « s, These values are added algebraically to 

the corresponding values in Part (1) to give the final results.
The application of the above procedure to a 1AO 

scale aluminum model is illustrated in the following pages. 
This is followed by an example of a reinforced concrete hipped 

plate roof of seven plates.
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2. ILLUSTRATIVE EXAMPLES :
Example 1. The general dimensions of a 1AO scale aluminum 

model of a hipped plate roof are given in Fig. 5.5. The 

model is loaded with a uniform load w p.s.i., distributed 

all over the top plate CC’, and it is required to calculate 

the maximum longitudinal and maximum transverse stresses in 

the model, due to this loading.

_ 9. 40

A

à

ic

Fir. 5.5

6 -

I-™ 3. K.

W r

•7^5’ .

STEP 1. Case of external loads and non-yielding supports ; 

Consider a transverse strip 1.0 inch wide at the middle of 

the span. This transverse strip will be treated as a continu 

ous slab supported at the joints by non-yielding supports.

Moment Distribution Factors :

Joint C:

Member c k ck r
CB 5 1 5 .40

CC' 2 1 2 .Uo
5 i.oo

Fixed end moment at C = ^L_
12

The bending moments and shears for this case are given in
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Fig*5«U.  The ^-forces, i.e shear forces acting on the Joints

per unit length, are given in Fig. 5*5.

£__________ C r-rrr..- —-,c'__________1-------- 1----c—------------- '
k, J 5 " . j^3-S — , 4'3 5’ —

6 . «40

♦ <o.

o

_r 
rr

î I 
SI

-to.
+ 6 + U

! i
I
1——1 X

Bending Moment

S.F. Diagram

Shear forces

Shears
Fig. 5.U

Fi

c c

0
T 
V)

B.M. and

D-forces acting or joints

/
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DeterminâtIon of the P-forces acting on the plates:

Let us assume the positive sense for the P-forces be as indi­
cated in Fig. 5-6.

y / 
B

Joint P

Fig. ^.6
Determination of P-forces

Pab = +0.05 wh . =

P^e = “0.05 wh • (tan 8^ +

"0.1101^. wh -0*932  wh

PCG . = 0.0

where h = 3«50 inches

Joint C

•', . 1
P-forces A

on a strip 1.0” wide

+ 0.05 wh ___ 1____ = +0.0593 wh

cot 85) -O.5 wh 1 
sin ©b

= -l.0li.2U wh
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"Free Edge" bending moments and corresponding stresses at 

the middle section:

Each plate will be treated as a beam carrying the P-loads 

and spanning between the end diaphragms, with no edge shear 

T along the joints.

T B zc n aMab = ?ab ' *0595  wh) = +51.80 w lbs. inch

Mbc c pbc • ~ = (- 1.01l21i wh) * % = -5^0.0 w lbs. inch

Meo' = 0-0

Corresponding maximum fiber stresses :

Section modulus for plate AB = Sab _ x 2.50

Section modulus for plate BC = Sbc - .15 x

155k incti

266 inch3

p.s.l

+ + 2105.0 w— 9AA —
p.s.l

fccf = 0.0

These "free edge" stresses are shown in Fig. 5«7• The 

signs for the stresses depend upon the sense of the corre­

sponding P-loads.
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o o a o

B

C
- 2105.

B'

-235. iv

#■ 235.W

2/ûS. W

-2105.W

Fig. 3.7
11Free edge” stresses

The Mfree edge” stresses will be corrected to introduce the 

effect of shear stresses T acting along the common edges.

The stress distribution method discussed in Chapter 11 will 

be used here.

Stress Distribution Coefficients:

Joint B:

Kba = ---- be---- = -----^0---  = 0.58
Aba + Abe 2.50 + 5.50

Aba 2.50 _ 0 j p
Aba + Abe 2'50 + 5.50

Joint C:

Carry over factor - - 3
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Stress Distribution:
4:

A B c
r .58 ’ .42 .5 i • 5
1

-235• w + 235-w +2105.w -2105.w 0 . 0 ( 1 )

balance: + 1085- - 785. +1052. -1052.

Carry- : -542. -526. + 392. + 526.
over 
balance: -305. +221. 67. ! - 67-

Carry- : +152 - 33. — 110.
1
i + 33-

over 
balance: - 19. + 14. + 72. 1 — 72.

+ 10 1 — 36» !
— 7. i + 36.

- 21. ! + 15. + 21.5 ' — 21.5

'+ 10 ; -11. — 7- 1 * 11.

— 6 0 1 + 5. + 9. 11
9.

+ 3 * - 4. — 2. + 4.

— 2. + 2. + 3. 3-

+ 1
I [ : - — —— ■

-6oi.w +967-«
—1 •

! +967.W -614.w 1 -- 614.w----- (2)

The "free edge" stresses are given in line marked (1) In the 

table, and the stresses, after distribution, are given in 

line marked (2), and are shown on a section of the model in 

Fig. 5.8. These stresses represent the stresses at the middle 
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section for the case of external loads, neglecting the 

effect of the relative displacements of the joints, which 

will be considered in the next step.

— & O l »

S

F 1.7

c

B*

— ♦ *

-W

STEP 2. Effect of the relative displacements of the joints : 

Consider a transverse strip at the middle of the model 1.0 

inch wide, and let the relative displacement between edges 

B and C at the middle of the strip be given by :

& = + &cb (See Fig. 3*9)

Fixed end moment at C, with the edge B free to rotate

_EI △ _ .

where I * moment of inertia of a strip 1.0 Inch wide 
3

= 1.0 x — 183 x 10 inch

6
E = modulus of elasticity of aluminum = 10.5 x 10 p.s.l 

h = width of plate BC = 3*50"

= ~~ • ^ = E. △ x (l)|_,90) x 16^ « 156.5 △



The fixed end moments are distributed, and the moments and

the shear forces are given in Fir. 5.10. The Q-forces and the 

P-loads are given in Fig. 5*11.

- I

c'

0.0 - /.z

• UO

- AZ

- 4.0 \ ♦ u.o

Shea

-fo.

+ 6 -

- 4.0

r 4 0

♦ 4. 9

5 
B

Fig. 5.11a 
Q and p-forces

• C

__________c

— h--

Fig. 5.9

Fig. 5.10 
,B.M. and shears

c.o

B*
<­

M

P-forces A -kA Fig. 5-llb
on a 1.0” strip at middle
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STEP 5. Stresses at the middle section corresponding to the 

p-loads in Part (2):
The relative deflection △ between the edges B and C, is 

assumed to vary as a sine-curve, and hence the corresponding 

P-loads, bending moments and stresses will vary as a sine­

curve .

% ? f 
r - L i " .

, . L. — «3 5 0 „ —. — -—— I*  '

Bending moment at the middle of the span

- p -L- (See Appendix II)
° n a

T 2 _ %r r\2
"ab = Pab*  T=" "h) T5' =

«be = Pbc" = (+2-^9 V1 =

^c*  0*0

Corresponding maximum fiber stresses ;

fab = = -

pbc - ± - 353. -

The "free edge" stresses shown in Fig. are distri­

buted by stress distribution method, to include the effect 

of the edge shears T. The same coefficients and method used 

in Step 1 are used to get the stresses shown in Fig. 5'15»
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_ 2 8’7-3^

^329-7— Fig. 5'15
Stresses due to 

joints displacement

12^.1

_ 2 à 7- 3^-

+ 3297^

STEP 4. Determination of the displacements 6 parallel to 

the plate elements : .
The deflection at the middle of a beam loaded with a uniform 

load is given by 

f ôo = L2 (See Appendix II )

where fQ = difference between maximum fiber stresses at 

the middle of the span L

h = depth of beam
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The deflection at the middle of a beam loaded with a dis­

tributed load varying as a half sine wave is given by:

6o " E h ' (See Appendix II)

Hence, the deflections ô of the plate elements due to the 

two cases of loading discussed in Steps 1 and $ are as fol­

lows :

6ab =
(601. + 967)w

E x 2.50 o2 -
(529.7 + 287.5)°*  x 55.0e 

F x 2.50 TT 2

Putting = 156.5 A we get :

- 3
6ab = 7.65 x 10 w - .k57 zX (1)

6bc (567. + 61U)w 
E x 5.5O 55.o2 + (28".5 * 128.1)»< 55.0®

E x 5.50 K2

-3
- -5.50 x 10 w 4- 0.21Q5 A . • • . . . (2)
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Geometrical relations between components of displacements ;

a

v '4

v \1
%

cos 
cot 
cot

57.5. =0.^375
57.5, =0.6371
32.5 =1.571

a /, 6ab \
Abc - + cos 57.5J cot 57.5

= .6371 c + 1-186 Gab

△cb = x cot 52.5

= 1-57

Adding we get : △ = 2.2071 &bc + 1-186 6a^

Substituting the values given In equations (1) and (2) for 

6ab and 6bc we get :

~3
△ = 10.L|.6 x 10 w inches
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STEP 5» Edge Stresses :

Substituting the value for △ in the stresses obtained in

Part J, we get these stresses expressed in terms of the ap­

plied load w.

= 156.5 △ = 1.658 w

The maximum longitudinal stresses at the middle section of 

the model due to :

Case 1. External loads

Case 2. Relative displacements of the joints

Case 5. The above two cases added together are as

follows :

A

Fig. 5.15

A

B

Case ( 5)

-Uokw

+U97-w

- 61 .w

Maximum Longitudinal Stresses 

Edge Case (1) Case (2)

C -61U.W +210.w

B +967.w -L70.W

A -6OI.w +5I4.O.W

N.B. Notice how high the longitudinal stresses given in 

case (1) are, in comparison with those given in case (5)•
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Bending Moment Diagram on a transverse strip 1.0" wide

Case (1) Due to external loads and nonyielding supports :

Connecting Moment Mc - .05 w h

Mc = 05 W x 3.50s = 0.612 w lbs. inch.

A

m 
c'

B

A
whK_ I.53O w lbs. inch

Case (2) Due to Relative Deflection

of Joints :

M = 1.2 c
= 1.20 x I.638 w =

Case (J) The above two cases added

It

serious

bending

together give the resultant

Bending Moment Diagram

Fig. 5.16.

is important to notice the

change in the

moment caused

tive displacements of

transverse

by the rela-

the Joints,

the increase in the value of the

bending moment being:

.h=35 _ !

I.96 w lbs. Inch.

_ .J-— A=3.5"

B

Ca se 2

y 
% 
% 
CM

5Case

W X

x 100 = 213# at the middle of span CC•, and

x loo = -520^ at joints C and C* 
.612



Example 2. The same aluminum model of example 1, will be 

analyzed for the case of four concentrated vertical forced 

of 58-35 lbs. each, acting on the model as shown in Fig 5.1?. 

The maximum longitudinal and the maximum transverse stresses 

at the middle of the model will be calculated, and will later 

be compared with the experimental results obtained for the

same case

9.40

STEP 1. Case of external loads and nonyielding supports :

For case of external loads acting at the joints, the loads

W are resolved in the directions of the two adjacent
IT
plates, giving directly, the P- loads acting on the plates.

18

Pab 0.0

Pbc -0.466 W

pcc1 0.3925 W - 0.3925 W

•3 925*

0.0
fi

6 32.5

a
Fig. 3.18 P-loads

p a ' b '

P



"Free Edge" bending moments and corresponding stresses at

the middle section;

a - 5.44 W lbs. inch.

Corresponding maximum fiber stresses.

f = 0.0
ab

f = Mbc = -5.44 W = -h 20.45 W 
be s .26?

• V

f cc

These "free edge" stresses 

the same stress distribution 

ficients given in exemple 1, 

tribution shown in Fig 5«21.

are shown in Fig $.20. Using 

procedure end the same coef- 

we get the stresses after dis

Fig. 5.20
Free edge stresses

1 0

_ 5.80k IV

8.53 w

_ 4-26 W

8 53 W

_ 5.8CkW

Fig. 5.21 
Stresses after distribu 
tion (no relative dis­
placements )



STEP 2. Effect of the relative displacements of the joints ; 

The procedure and the results are identically the same as 

for example 1. ’

STEP 3. Stresses corresponding to the P—loads in Part 2;

Results are identical to those of example 1.

STEP U. Determination of the displacements 8 parallel to 

the plate elements ;
The deflection at the middle of a beam loaded with two con­

centrated loads at 1_ of the span, is given by
3

fQ L2" 23 ( See Appendix II)
ôo = ËTT * 216

where f = difference between maximum fiber stresses at 

the middle of the span L.

h = depth of beam
The deflection at the middle of a beam loaded with a dis­

tributed load varying as a half sine wave Ie given by:

Hence the deflections 6 of the plate elements due to the 

two cases of loading discussed in Steps 1 and 3 are as fol­

lows :
6 , = (4.26 + 8.53) W x 35.0 x 23 - 0.45? △

E x 2.50 216



6ab = + 622 w - 0.457 A

= 0.638 x 10“*W - .0457 A . . . . (1)

6 =t - (8.53+5.805) X 35.0s x 23 + 0.2195 A
bc --- Ex 3'30 216

- _ 536 W + 0.2195 △
Ë

— 4
3 - 0.510 x 10 W * 0.2195 A . . . (2)

Geometrical relation between components of displacement^. 

The geometrical relations between the components of the 

edge displacements of the model, hold true and are inde­

pendent of the applied loads. The same geometrical rela­

tion of example I will be used here, namely.

A = 2.2071 bbc + 1.186

Substituting the values given in equations (1) end (?) 

for 5 and 6 respectively, into the geometrical re­
ab bc ’

lation, we get
A = 0.928 x 10*  W inches

The positive sign of A indicates that A le assumed in 

the correct direction.

STEP 5. Edge stresses: Substituting the value for A in 

the stresses obtained in Part 3, ». these stresses ex­

pressed in terms of the applied load W.
— 6

, = E △ (14.90) x 10 = 156.5 4
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=»< = 156.5 x 0.928 x 10’" w = 0.01U5 w

w = I4. x 58.55 c 255«U lbs.

The maximum longitudinal stresses at the middle section of 

the model due to :

Case 1. External loads and neglecting the relative dis­

placements of the joints.

Case 2. Relative displacements of the joints.

Case 5. The above two cases added together.

are as follows:

fl

Maximum Lon cltvdln. J Stresses p.s.i.

Edge Case (1) Caso (2) Case (J)

C -1560 +n 5 5 -925.

B +2000 -QoO +1020.

A -1000 + 1122 + 122.

It is important to notice how hl ch the stresses due to 

Case (1) are, in comparison with the stresses due to Case 

(J), and that the stress at A in Case (5) has an opposite 

sign to the stress at A in Case (1).
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Bending moment diagram on a transverse strip 1.0 inch wide 

at the middle of the model:

Case Due to external loads and no relative displacements

between the joints : No transverse bending moment

accompanies thi s since the external loads are

applied directly at the joints

Case (2) Due to relative displacements of the joints :

Me 1.2

1.20 x .O145W

01?4w x 253.4

4.065

■ Maximum filer stresses corres-

ponding to this B.M.:

I65 x 10*  * 2

lbs. inch

Fig. 5.25 B.M.D. 
drawn on tension side

5

B

c

o

A

B

Bc

= +’ 1440. p.s. 1

Tensile force Pcct plate CC1

due to relative displacements of

the joints :

P cc , = 2.25 01L5W _
5.5

0092kW

I

00924 x 255.4 =2.16 lbs./inch run



Corresponding direct stress

p iZ
« ----- -----— = +16.6 p.s.i. (tension)
1 .0 x .IJ

In the above example it should be noticed that, 

although the German theory does not consider any transverse 

bending stresses due to the joints displacement, yet the 

maximum value for these stresses is equal to “ikh-O p.s.i., 

i.e. ikl/o of the maximum value for the longitudinal stresses 

which is equal to 10 20 p.s.i.

A comparison between the analytical results obtained 

here and the experimental values for the same problem will 

be given in.Chapter IV. For the sake of completion of this 

comparison, the analytical values for the joints displace­

ments will be worked out here.

Theoretical values for the components of joints displace-

Fig. 5.2k
Joints displacement

4)
1^0

In part (k) of this example the value of A is given by : 
—

△ * △ bC + △ cb = 0.923 x 10 W inches

Equation (1) in part (k) gives:
ôab = O.658 x 104 W - O.k57 △



us

= 0.63a x id4 w - 0.L2U x id4 w 

-4 .= .21U x 10 x 233.U

= .OOU97 inches (6ab model = .00U12 Inches)

Equation (2 ) in part (h ) rive s;

6^ = -0.51 x 10" v; + 0.2195 A 
be

= .OO713 inches (&bc model - .OO67 inches)

From geometrical relations between components of displace­

ments we get: *

Act = 1'57 = 1.57 x .00"13

= .0112 Inches (A^b model = .0111 Inches)

Ate = -4371 6bc + 1.186 ôqb

= .0105 inches model = .0092 Inches )

A comparison between analytical and measured values of the 
components of joints displacement is given on Sheet 3, Ap­

pendix 1.
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Example $ : To illustrate the procedure on a roof of a 
large number of plates, a seven plate R. C. hipped roof*  

given in Fig. 3-25 is analyzed. The plates of the roof are 

tangential to the semi-elliptic curved shell shown dotted.

*The analysis of this same roof, on the basis of the approx! 
mate theory is given in ref. 1g.

The roof carries a load of 20 lbs. per sq. ft« besides its

own weight.

uniferm super /cud

tn Ti~ 11 Lil! L lIu-l L.U.U J-Li-l-J
20 'b/sq ft

v / T

* 7,®

6X
7 4- g"c

Dead, w/ o/ 3-6pMe s r 36 Ibf ft Sur/ccc

Pfat'es I V 7 8.0

aL . /5:°

STEP 1. Case of external loads and non-yielding supports :

Equivalent uniform load on a horizontal projection

load on plate 2 - 20.0 + J^.O x "gg = 20.0 + r2.0 = 72.90 

lb/sq.ft.

” " " 3 = 20.0 - 36.0 X = 20.0 + 37.U = 57.110

lb/sq.ft• 

” " " L = 20.0 + 36.0 = 56.0

lb/sq.ft.
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Fixed End Moments :

FÆ.M. for plate 2 (one end hinged)

wh8 3.88~ = ^2.90 x ——-d = 137.2 lb. ft

F.E.M. for plate 3

_ wh8 .
“ 12 " 57-4.0 XX 12

2
= 242.5 lb. ft

F.E.M. for plate Ij.

wh8 ,- ~ = 56.O :
8.0 =

1 12 “ 298.5 lb. ft

Distribution Factors:

Joint C

Member c k ck

CB 3 I..40 4.20 Ji95

CD L 1.03 L.32 .507

8.52 1.0

Joint D

Member c k ck r
DC 4 1.08 4.32 .683
DD' 2 1.0 2.00 .517

6.32 1.0
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The bending moments and shears in a transverse atrip 

1.0 ft. wide at the middle of the roof for the case

ignoring the re la­

the joints are
of external loads and 

tive displacements of 

given in Fig. J.26.

72.9 A/s? 4 ' 514 'b hr h 5fc.o 6 Ay # |

s D
__ 3.88 _ 142 -

M. Dist. Coef

Carry o. Factors ;

Final

Reactions :

493 |507

’/2

•6?3 .3*7

0.0

Moments :

Moments

Shears in slab :

0-0

f *37  2 -242-5

0 0 4- 183-9 -183-9

t 94.2 189-0 \ 1 >89-9

94.2

+ 2142-5 - 29#' 5

t- 288-4 -288-M

5

372.9

2i3-i h 224-

443.1

C

B.M372-9
plotted on 

tension side, and
Reactions on Slab.

94.2

E



STEPS 2 and J. Bendiny moments, ?-loads and stresses due to

1

6

relative

re assumed

displacements of the joints:

Fi~.
’ r.t s d ? sal1

ansver re dl st’lacements A ’ s of tno jo

arbitrarily as s hc.wn it. Pi Fo r t ’ is roof a n d wi th

the load symmetrical as .-i ven tne nord, r of the unknown 

values is two, namely :

r). A 2 for pl; t •; 2 Oli is e mal ' c t ?.c relative dis- 

nla cement betaac: the joints B o1'1 C at t n e mi cole if the roof.

b). A 3 for plate J and is equal to tie relative dis­

placement be tween the joints C and D a b the i iddle of ttie reef. 

The fixed end moments due to As and A3 or plates 2 and J 

respectively, will re corrected for rotation at the joints 

of the plate elements. After the end moments are determined 

the à and P-forces are then calculatre. The re suits of tl is 

operat’on will be dven for △ 2 and A 3 on the following papes
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strip 1.0 ft. wideBondin'* moments and shears in a transverse

where

B free to rotate^

Shears in slab:
Reactiens

ixed end moment at Joint C with joint

2

•362

3.88 —

o. O

3.0

‘ -234

c

o. o

-59C

____ 7.12

— 0. 't 0* 26

0- O \ 0-0

D

•234=^

o.o

EI 
he

.36?^ '342:

'Mo Dist. Coef

. 234^1 0-0

70 ft. 6"

at the middle of the roof due to A B

Carrv o. Factor

/.yos^ I-

Moments : 0.o

Final Moments : ic.o

FIs. 5.28 536^



Bending moments and shears in a transverse strip 1.0 ft.

M. DI

F. E

Fixed end ied nt s Cmoment at and D
AEI

* hj

wide at the middle of the roof due to A

ft

A

k-
7 12

.3/7

B

3

Coef.:

0.0"20. D

Moments 0.0 0. O :

10.oFinal Moments

Shears in slab.;

React!ons : LO4Q «4

Fi

o. Factors :

-518*

Reactions on Slab

/. 609 * j
R.V. plotted on

■5>8*-

tension side, and

3
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Forces acting on joints :
Fleures 3.3O, $.51 and $.)2 respective]-; ^!ve tno forces^

acting at the joints due to
Case ( 1 ) . External lone a -. : ''O relative o 1 spin ce - 

ment of joints.

Case (2). Relative dlsr^ cg-e t^a of pla'e Vo. 2.

373

09k 03*

y3u

Case 1376

•73

f

■4W 
_L_

■23*

L

1.609^

per ft. of the span,*The forces are in kips 
section of the roof.

at the middle
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P-loads on plates:

Fi" nr es 5*55»  5-51 and 3.55 respectively .vive the P-loads

actiny or the plate elements for tlæ t’iree different cases

ne;.tioned before.

P-lc

1570-1570

,0

UgK-UM)

1

•'1

are in khs ; ?r . of the span, at the middle sp

tion of the roc f <
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"Free edge" stresses:

The "free edge" stresses in the plate elements for the three

different cases of loading are rlven below.

o 
o

+ 310. Fig.5 Case -1

- 330.

n
<n

+ 330.

B 
- 330.

os 
tn
: L«

O %)
Ô

1

Fig.5.37

c

Case -2^5,

V

*>

^4*4

Fir.3

Q

aso

-wo.

9o9.

Oo
<n

°C 
rO

-404.^1

am. gl ven kips per sq. ft. at the middle section

of the roof. Plus sign means tension.
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The "free edge" stresses are distributed by the stress dis­

tribution method to include the effect of the edge shear 

forces N acting along the joints. The stresses after dis­

tribution for the three different cases of loading are given 

below.
-S3. -gg.

-77.0

* ^,o

-77.0

204.Fig.$.59 - Case

^6^. o

- 3 Jo-

4

- Case 2

-370.

/ 3/2. ^3
* G !

' ‘7-- /

-w.- P1P.5.M

Stresses are in kips per si. ft.

t 3^ 2 • c*.
o'- J

6 #7-
- Case 5
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STEP U: The parallel displacements 6 of the plate elements 

for the three cases of loading are as follows:

0 . 0

Deflections △ and 6 are in ft.



Geometrical relations between components of displacement :

X

VV" ■

\ t> cl
\ \ (

û=b = 1-^î %e - 1-92 6dc

adding (1) and (2)

A, =Abc +\b “ 1-^7 &ba + 2.712 etc + 1.92 (I)



Acd = + fd0 ] cot (P-X)

M+ 1T-

^cd - 1.92 be ^dc (5)

adding

△a = ^cd * *dc

cot(Y)

6dc

1.92

ôdc '

Equations I and II C.o A *s  In terns o^ the ô's.

But our analytic "il jrduMcn /!ves the ô's in terms of A g 

end A3. Hence we ' - f -UKtlons in tre unkno'.vnsAg a 

A 3. Solving these two equations we get: 

dg = +.099 ft. '

a3 -.062 ft.

Consequently:

- +I.72 kips and ft. units

= - .8L " " " "
The positive sense for the deflections means that they are

in the same sense as were assumed, and the negative means

the opposite.
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STEP ? . Ed.^e Stresses :
Substituting the valuer for A2 and Aa stresses ob­

tained in part >, we -et these stresses express -d in terrs 

of the applied loads.
c^< 2 = +1.72 kips and ft. units

CX 3 --- -0.8'1 I* '• ” . ”

The maxirum longitudinal stresses at tlie middle section of 

tr.e model due to :

Case (a). External loads end no re la'ivc displacements 

of the joints

Case (b). Belati'.u 

joint s 

Case(c). The a bo

B /

A

Long!tudInal St

Edge Case (a

D -39.0

c +65.0

b -;".o

A +20! i.O

e di splacemrnts L 8 and between the

ve two ce sc s a d nd to nether

D ’

Fig. 3M

resues in kips per sq. ft.

) Case (b) Cas- (c)

+12 -76.O

-53 +12.0

+102 +25.0

-ic3 +96.0



CHAPTER TV

EXPERIMENTAL INVESTIGATT ON

1. DESCRIPTION OF THE NODEL:

A 1/kO 211 S.T. aluminum model was used for the 

experimental investigation of the distribution of stresses 

and strains in a hipped plate structure. The general di­

mensions of the model are shown in Figure la and Figure 

If on Sheet 1, Appendix I. The load was applied at four 

points on the model as shown by the arrows on the di a prams- 

in Figures la and lb. S.R. k resistance gages (Types Al 

and A12) were placed to measure the longitudinal strains 

at sections c, d, a nd e• (See Figures Ic, Id, le on Sheet 

1. These longitudinal gages were placed on both sides of 

the plate and connected in series to give the average strain 

Transverse strains were measured at eight points by rears of 

Type A7 resistance ga-s. These gage s are repro sent rd }y 

11 , 2 », 5», - - - - H * as indicated in Figures le, and Id.

Scale rela f im between model and pr c to tyre :



RELATIONS BETWm] STRESSES

Dimension Model Prototype

L 55.0 inches || x 40 = 117 ft.

H 9.4 " iA x 40 = 51 ft.

hi 2,5 " x 40 = 8.5 ft.

ha - h3 5-5 " 2^1 x !,o = 11.7 ft.

t .15 " .15 x ’lO - 5.2 inches

AYD STRAITS IY "CR-L AYD2.

PROTOTYPE:

Geometrical similarity holds between the model and 

the prototype, all the dimensions of the prototype being re 

duced to the same scale 1/L.O.

(a) Relation between deflections:

~ L model.Scale of Model L prototype

For a beam as shown in Fie 

at the middle is riven tv;

11.2 the deflection w

4 --  1— — --

Fir. L.2
J —— *e c W L r- . 1^g model_______  = £rn = "n . -2_____2

6 prototype S p '^p p • ^m

6 P
. . (1)

where n



To ge t m
6 P

we should have

5 m m E

i.e

6P P TH
m"= n (2)

^P ^P
n3 (5)

Theref ore if
6m

we satisfy ($), we will get ---  =
6P

n 1

and will have complete geometrical similarity

(b) Relation be tween strains

If

em En

eP P

T?

p

(5) is satisfied

TT'.is is evident

w m
La

n2

L

expression

we have

Relation between stresses :

m "m

p

s 

wp
Wm

'p
l

2

Substitutif the value of

m Em

p P

Equation (6) gives the

E=

(U)

('h) will be equal to uni

b r l c a 1 similarity

(5)

from equation ($), we get:

(6)

relation between the stresses for

case of geometrical similarity.
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For Em = E Aluminum = 10.5 * 10 p.s.i. 

&and Ep = E Concrete = $.0 x 10 p.s.i.

we get :

-^m 10.5 , c . .
~ “ = -^o = 5«5 tines
P P *

i.e.' 5500 p.s.i. in model are = 1000 p.s.i. in prototype.

Writing condition (5) in terms of figures we get:

i.e. 10 lbs. on model are equivalent in terns of equal

strain to U5?0 lbs. on the prototype.

5. RELATION R"T"EEI MEASURED STRAINS AND CORRESPONDING

■ STRESSES IN THE MODEL:

y

For a plate element of an elastic material under

S

the action of principal stresses as shown in F k.5,

Hoo" 's Law gives the following relations between stresses

and strains:

(1)

(2)



Multiplying (1) by / we get:

W/qn /Is

Consider a small rectangular element of a plate 

at point n, on the middle section of the model Fig. U.U» with 

its sides parallel to the two axes of symmetry of the model. 

Due to symmetry, such an element will have no shear stresses 

acting on its sides, and consequently its sides will be panel 

lei to the two principal axes of stresses at that point. If 

we denote the longitudinal fiber stress at the ton of the 

plate element by fVi, and that at tne bottom by ye, ° — 

write down equation (h) for both sides, we get :
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E

E__

Adding and dividing by 2 we get:

In these equations tensile stresses and strains are con- 
a

sidered positive. Equation (5) will be put in simpler and 

more convenient form for use in experimental investigation 

after the following discussion:

The forces causing direct stresses, wvlch act on 

the plate element at point n, are shown on F1. n.5» .

Fy
is the longitudinal direct force due to the 

external be -.ding moment acting on the -iddle section of the

model. It causes uniform compression across the entire thick 

ness of the element considered.

F : Is the transverse direct force due to the ten­

sile or compressive forces actin? from the joints, on the

plates in the transverse direction.



Mx : represents the bending moment acting on the 

roof slab in the transverse direction, and caused in this case 

by the relative deflection of the joints.
Referring back to the analytical solution of the same problem 

in example 2, it is useful here to indicate that.
(1) The longitudinal direct stress f-, at the middle 

plane of the top plate, due to Fy, is equal to -9^5 p.a.1.

(2) The portions of the transverse direct stresses 

c and fx at n caused by the direct transverse force Fx, are 

equal to :

f’ = +16.60 p.s.i .

f’ = +16.60 n.s.1.
XB

(J) The portions of the transverse direct stresses 

f and f , caused by the transverse bending moment ar® 
xi xb '

equal and of opposite signs:

f” = -1LLO p.s.i.
xi

f” = +l^O p.s.i. ■
x2 '

' (W The ratio of = * 1^1 - * 1.15^

This indicates the very small effect that the direct force 

Fx has on the stresses, compared to the effect of or Fy.

In equation (5) each of the strains eX1 and eXa 
can be split up into three parts as shown in Fi^. L.6.



Strains due to

e

Fir. k.-
Transverse strain

Now it can be easily noticed that :

(1) The portion e x due to direct transverse 

forces Fx is ne -legible compared to the other two components 
e”x and e”x due to Mx and Fy respectively. .

*

(2) The strains e’^ and e"x^ due to Mx are equal 

and opposite.

Therefore the term (exT + exa) in equation (h) can be put 

equal to : .
+ eXa = (ehx + e'xa> + (e"xx + e"x2) - (e'”xi + e"' x=)

= e"'X1 + e"'xE

= (hi + ha>

Substituting this in equation (5) we get:

l/2(f + f ) = E/2(ev + e ) ............... (6)
v *■  J 2 u 1 J W

The left hand side of equation (6) represents the longitudi­

nal stress at the middle plane of the plate. The right hand 



side represents the average of the longitudinal strains 

measured at the top and at the bottom surfaces of the plate.

Equation (6) can also be obtained directly if we put fx - 0 

in equations (1) and (2).

In our investigation, as far as the longitudinal 

direction is concerned, we are interested in the longitudi­

nal stresses acting at the middle plane of each plate.

As for the transverse direction, we are interested in both 

f„ and fv , i.e. the maximum positive and negative fiber 

stresses. For this reason the longitudinal strain gages, used 

to measure the longitudinal strain at a point, were fixed on 

the model, one on each side of the plate, and then coupled 

together in series. The reading of the strain indicator, there 

fore, gave the average strain 1/2(ev + ev ). Using equation 

(6), f (average ) = l/2(fyi+ fy^is readily obtained. In the 

transverse direction the gages m both sides of a plate were 

wired independently, and thus giving the transverse strains at 

the outer and inner surface of the roof separately.

U. SUMMARY OF EXPERIMENTAL RESULTS AND COMPARISON hi TH THEO

RETICAL VALUES :

The distribution of longitudinal strains at the 
middle section of the model, for a total load of 2^5*U  lbs. 

(53.55 lbs. at each point) is shown in Figure 2a. on Sheet 
2, Appendix I. The corresponding transverse strains -32, -96, 
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+ ]J^0 and +]]<.) micro -Inches are recorded in Figure 2b. The 

difference between the readings on the top and bottom of 

the plate are due to the transverse effect of the longitudi­

nal strains. The true value of the transverse strain is the 

average or

82 ■ 1111 and = 1119.

This checks quite closely with:
(-82) - (1/5)(78) = -108 micro-inches/inch

(+1U0) - (1/5) (?8) = +11'1 n n n

(.96) - (1/5)(73) = -122 n n !!

(+1U5) - (1/5)'78) = +117 n ft n

where (l/5)(73) is Poisson’s ratio (1/5) times the long!-

tudinal strain -78 micro-inches.

The longitudinal strains at sections d-d and 

e - e (see Figures Id and le) are shown in Figures 5a 

Jb on Sheet J. Transverse strains at section d-d are also 

shown in Figure 5c. These diagrams show that the action at 

section d - d is similar to that at the middle section c - c. 

in fact the strains at these sections are nearly proportional 

to the bending moments. At section e - e, however, where the 

translation of the edges is small, the distribution of strain 

approaches more nearly to that for ordinary beam action al­

though some effect of change of shape of the cross-section is 

apparent.



The vertical displacements of the edges are shown 

in Figure U and the horizontal movements in Figure 5 (see 

Sheets and 5 «) It is interesting to note that the verti­

cal movement of the elements AB and A 1B • is upward which 

agrees with the theoretical value that was obtained. This 

motion is comparatively small, but nevertheless, it is very 

significant. The horizontal movements of edges B and B*  are 

of the same order of magnitude as the vertical movement of C 

and C•. As shown on the diagrams, the calculated values of 

the displacements (see illustrative example 2, Chapter III) 

agreed quite well with the measured values. 

' The theoretical and experimental values of the
and transverse 

longitudinal/stresses are shown in Figures 6 and 7 on Sheets 

6 and 7. It should be noted that the experimental values 

indicate clearly that the structure does not behave as a unit 

according to the ordinary beam theory. The actual measured 

longitudinal stresses as shown in Figure 6 are fairly linear 

across each plate element, but are not proportional to the 

distances from the centroid of the entire cross-section. On 

the other hand, the longitudinal stresses obtained from con­

sideration of plate action without involving the effect of 
. . (12)the translation of the edges, as discussed by Winter and Pei, 

are considerably higher than the measured values. The measured 

stresses at edges A and A1 are opposite in sign from the com­

puted values for plate action when no translation is considered.
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However, when the relative displacements of the edzes, as 

shown in Figure 8, were considered in the solution proposed 

in this thesis the calculated stresses and displacements 

agreed, much better with the experimental results. A graphi­

cal comparison of the stresses for the different assumptions 

is shown in Figure 6. A comparison of the theoretical and 

measured edge translations is shown in Figure 8 on Sheet 8.

The correction diagram for the effect of transla­

tion is shown separately in Figure 6. It can be shown that 

if these values are multiplied by a proper constant and sub­

tracted algebraically from the values obtained by the ordi­

nary beam theory for the entire cross-sccti cn, the results 

will agree closely with the experimental values. On the other 

hand, if the stresses due to translation are multiplied by a 

proper constant and added algebraically to the results "ob­

tained from plate action which neglects the edge displacements, 

the combined effect agrees closely with the experimental re­

sults . This comparison, therefore, brings up the question as 

to which analytical approach may be desirable, a question which 

will be discussed in the next article.

The effect of translation of the edges has also been 

checked from the transverse stresses. Hie theoretical distri­

bution of maximum flexural stress in the transverse direction 

at sections c - c and d - d is shown in Figure 7*  The measured 

values of the stresses are indicated by circles. It can be 
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seen that the agreement is quite satisfactory and confirms 

the remarks previously made as to the importance of relative 

translation of the edges.

3. DIFFERENCE BETWEEN HIPPED PLATE STRUCTURES AND ORDINARY _ 

BEAMS : ■

In case of hipped plate structures the thickness 

of each plate element is relatively small compared to the 

other dimensions of the cross-section of the structure. Con­

sequently the section of the structure changes its shape under 

loading, and the part of the load carried by each plate ele­

ment varies according to the position of the load on the cross­

section. We also have forces and bending moments acting in 

the transverse direction. The idea of plane before deforma- 

tlon remaining plane after deformation does not hold for the 

cross-section as a whole, except under very special cases of 

loading, but it holds fairly well for each individual plate 

element, especially for cross-sections away from the diaphragm 

See the measured longitudinal strains given on Sheets 2 and 3.

When we speak of a member behaving under load as a 

beam, we are actually putting on it several restrictions. 

The thickness of the member should be large enough compared 

to the other dimensions of the cross-section so as to keep 

the cross-section from changing its shape when the member is 

deflected longitudinally under load'ng. The section will 



lust move parallel to itself and the whole cross-sectional 

plane before bending will remain plane after it. No trans­

verse bending or deflection can exist under the limitations 

for beam action, otherwise the section will chance its shape 

The longitudinal stress distribution over the cross-section 

is not affected by the manner in which the load is applied, 

or its point of application, so long as the load is symmetry 

cal with respect to the axis of the cross-section, Fig.

The share of each plate element of t^e member from the 

applied load is a constant ratio of the total load, a ratio 

which is defined by the share of the same plate element from 

the total shear stress diagram on the cross-section. Beam 

action can be a very special case of a ' Înped pinte struc­

ture under the following conditions »

External forces are either line loads or ccncen— 

trated loads acting only at t^e edges or distributed loads 

which are tangential to the plates, and distributed in a 

special manner such that the resultant P-load on each indi­

vidual plate is proportional to its corresponding share of 

the shear stress 1Vagram on < he whole section, assumed to 

act as a bear.. Any distributed load or concentrated load



acting in between the joints 

bending, and consequently, a 

cross-section.

will result in transverse

change in the shape of the

From this discussion it is evident that, if we 

try to solve a hipped plate roof similar to that of Fig. 

k.8, by beginning from the preliminary assumption of a beam 

action and trying to correct it to arrive at the stresses 

of a hipped plate structure, then we will have to apply two 

corrections for the stresses got from beam action, namely:

1. Stresses due to the difference between the 

plate loads P included in the assumption of beam action, 

and the plate loads P got from the actual external loads.

Under the preliminary assumption of beam action a certain 

portion of the total loads will have to be carried Lv each 

plate element which is not necessarily the case. However, g

beam action can be acquired bapplying certain restraining 

line loads along the joints, which must be removed by means 

of the first correction. The analytical work for carrying 

out this correction is very similar to that used in correc­

ting for the relative displacements of the joints.
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2. Stresses corresponding to the change in the 

P-loads due to the relative deflections of the joints must 

be determined, since the beam action does not take care of 

the transverse deflections. The procedure for this correc­

tion has already been discussed before.

It can be seen from the above discussion that the 

amount of the analytical work will be increased by trying 

to solve the problem from the beam action approach, in as 

much as we cannot escape the neccsnr; co. meet 1 on f or the 

relative displacements of the joints.



6. CONCLUSION'S :

The results presented In this dissertât ion Illus­

trate and emphasize the importance of a careful examination 

of the basic assumptions of anv theery by experimental tests 

before developing an analytical solution. The experimental 

study of a hipped plate structure by means of a model pro­

vided the following conclusions:

(a) A (2nS.T.) aluminum model is both convenient and satis­

factory for studyinn the structural action of hipped plate 

roofs.
(b) The results obtained from tests on a 1/LO scale alumi­

num model show that toe chanre in shape of the cross-section 

due to translation of the edges is important. It appears 
to dominate the structural action over tve middle 2/j of the 

span.

(c) An analysis by the Fhlers and Craemer theory as pro­

posed by Winter and Pei, or by beam action, does not amree 

with the test results unless tve values obtained by such as­

sumptions are corrected for the effect of relative edge 

translation. The longitudinal stresses obtained from the 

Ehlers and Craemer theory are considerably hl"her than the 

measured values. The following table gives the maximum longi­

tudinal stresses at the middle section of the model according 

to :



Case 1. The Ehlers and Craemer theory which neglects the 

effect of change of shape of the cross-section. 

Case 2. The experimental values obtained from tests on the 

model.
Case 5. The method of analysis proposed in this thesis which 

considers the effect of t- e change in shape of the 

cross-section.

Case L. Beam action theory.

8

fl

Fig. 4*9

Maximum Longitudinal Stresses p.s.l.
Edge Case (1) Case (2) Case (5) Case (U)

c -1560 -820 -925 "557

B +2000 +7^0 +1020 +166

A -1000 +578 +122 +1102

(d) The stresses in the transverse direction which rule 

for the design of the plates as a continuous slab, are even 

more seriously affected by edge translation. The values ob­

tained from the German theory are considerably lower than

the measured values. The necessary correction for such stresses 

may be up to $20^ (see example 1, Chapter III ) . In a case of 

concentrated loads at the joints (example 2, Chapter III), 
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while the German theory does not consider any transverse 

stresses due to the joints displacement, the maximum trans­

verse stresses were experimentally found to be l^^^ of the 

maximum longitudinal stresses. The following table gives 

the maximum fiber stresses due to transverse bending in a

strip 1.0 inch wide at the middle of the model according 

to : 

Case 1. Tne Ehlers and Craemer theory.

Case 2. The experimental valves obtained from tests on 

the model.

Case $. The method of analysis proposed in this thesis.

Maximum Transverse Stresses p.s.l.

Point Case 1 Case 2 Case $
d 0.0 *1170  Ï11M

e 0.0 *1260  fl'iW

• Similarly, the above discussion holds true for the case 

of distributed loads applied tanrentially to the plates, 

(e) It is recommended that more extended investigations 

be made by similar model studies. Some of t y-i points that 

are worth investigating are:

1. Effect of intermediate diaphragms.
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2. Behavior of models lust before failure.

5. Effect of chance of fickness t, width h, 

and span L of platelements, on the be­

havior of the model.

u. Effect of the shape of the cross-section 

of a roof on the behavior of the model.

5. Study of reinforced c ncrete models.

6 . Deep beam action.

7. Effect of additional spans in both direc­

tions •



APPENDIX I 

1. DIAGRAMS AND ryP'-RITG-'NIAL DATA .
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Theoretical and Experimental Valrer of Flee Deflections 

Total Load on Model - 2 . k lbs.

V1?

o

o
/ /

-k^aV

J_c

■

Deflect1o : is at the Middle o th.e Model

Deflections Theoretleal Experimental
Values in inches Value s in inches

5 a ’ : ’ .ook^ .00kl2

i .OOkT» . . 'Oki?

' a ’ .011'* .0007

na .0113 , .011k

△b ’ c ’ .0105 .9092

△ c ’ h ’ .0112 .0099

△ cb .0112 .0111

cc ’ .01-5 .0151

U. of rich. I. has far
I, 4. 4°
Sheet O
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APPENDIX II

BEAM ACTION THEORY

1. DISTRIBUTION OF EXTERNAL LOADS TO THE ELEMENTS OF A 

SECTION OF A BEAM :

Consider the forces acting on a small length dx of a beam, 

which 1s loaded with a load w per unit of le ng tn. The 

cross-section of the beam may be of any shape as shown in 

Fig. 6.1, and it is required to determine the amount of 

the vertical shear force V’ acting on a certain portion of 

the whole cross-sectional area, If V is the vertical shear­

ing force acting on the whole cross-sectional area, then 

the ratio X’ will provide a measure for the amount of the 

external load carried by that certain portion of the section 

of the beam.

| w.dx.

Xr 1
r * o
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Shear stress 
on cross-section
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The following notations will be used here :

v = The intensity of the vertical or horizontal shear stress 

at a point g in the cross-section.
7 * Statical moment of area,about the neutral axis,of the por­

tion of the cross-section beyond the horizontal layer 

containing the point g.

b = Width of the layer containing the point g.

I = Moment of inertia of the whole cross-section about the 

neutral axis.
S18 = Total horizontal shearing force acting on side 12 on 

an area equal to b.dx.
Other notations are shown on Flo. 6.1.

Consider the forces acting on the element 1122, and denote 

the moment of the normal stresses acting on both sides 11 

and 22 about point m by 7 say. 
?7s = / (fi - fB) dA . (c - y)

8 J

= (fti" ftg) ' - dA • (c - y)

n # -
= I (fti- fte) . C /y.dA - j Ve . dA 

' S S

put l(fti- ft.) = 

n 
/ y. dA — Q. •

s J 
and / v2.dA = I’ = moment of inertia of hatched 

3 • 
area only about the neutral axis

1
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.. (c*Q  - I’) . • • .(1)

Taking moment of all the forces acting on the element 1122 

about point m, and dropping terms of smaller magnitude, we 

get :
g • ( c — D) — = V ’ « <3x • • • • (2 )

but v q
S12 = v • b <dx = j

Dividing equation (2) by dx and substituting for the values 

of % and Si2 we get :

V "V— Q(c - D) - J (c • - I 1) = V *

v ’ = y (I » - 7D) .... (3)

Equation (3) rives the magnitude of the vertical shearing 

force V• acting on the croas-s^ct'onal area of th^ element 

1122.
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2. DISTRIBUTION OF ETERNAL LOADS TO THE PLATE ELEMENTS

OF THE MODEL UNDER THE ASSERTION OF BEAM ACTION

1 
Q 
T

la

o 
in
Ai

1

* <n 
«

' ’no 
%

Fl”. 6.2

Area of cross-section:

= 2 x .525 + x A55 = 2.015 inch^

Moment of area about CO * :

= A55 x 1.88 + .?25 x 5.I5 = 2.3a inch^

Center of gravity : 
□ QqY 2~%15" = 1,^55 Inch

Moment of inertia : 
3

1^ = (3.5 X + .455 X l.h.552)

+ 2(.2U2 X + J.55 X .6-952)

+ 2(.13 x ^22 + .525 x 1.6052)

= 3.657 inch*
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Portion of vertical load carried by side plates AB and A'P': 

Statical moment of hatched area about the neutral axis
1 2(2.5 x .150) x 1.695 = I.IO? inch3

5. LONGITUDINAL STRESSES AT THE MIDDLE OF THE MODEL ON THE 

BASIS OF BEAM ACTION:

These stresses are computed for comparison with stresses due
to other analytical procedures as shown in Fly. 6 on sheet 6, 

Appendix I. The total load on model is 255 * 7.U lbs. applied 

as shown in Figs. 1a and lb, on sheet 1.

Moment of inertia of hatched area about N. axis
3

I» = 2(.15 x + .15 x 2.50 x 1.695")

= 2.208 inch

Q.D = 1.105 x .UU5 = *491  inch

Portion V*  of shear carried by side plates AB and A’B', from 

total shear V carried by the whole cross-section

V*  = y (I» - ID) .... (5)

= x (2.208 - Ji91)

V*  * 0.1^2 V

i.e. under the assumption of beam action, plates AB and A1B’ 

carry o.^2 W, where W is the total load on the model.
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R.M. at middle section of model

_ 2^ x lbs. inch
2 5

Moment of inertia of cross section

I = 5.637 inch4

Stresses at edges A, R and C:

B-

A
* H02

r = M • c = +J^r x 2.91x5 = +1102 p.s.l.
4 I 3»^i'

c 1 ^^2 x jj.c, = + p.3.1.

fc = -T^ x 1J^5 - 557. p.s.l.
5.057

l. SOM2 RELATIONS BFT\"MN FIBER STRESSES AMD DEFLECTIONS

IN BEAMS :

From the theoretical discussions ri ven in Chapter II, it is 

evident that the edge forces N acting along the edges of any 

plate element vary along the span in the same manner as t ne 

Mfree edre" moments due to the R-loads vary. Therefore, if 

the P-loads acting on a given plate element vary as a sine 

curve, the corresponding "free edge"-Lending moments and 
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edge forces N will vary as a sine curve. Consequently, for 

this case the longitudinal stresses along the edges of the 

plate element will vary as a sine curve. Similarly, in the 

case of a uniform load w over the whole span of the plate 

element, the "free edge” bending moment, the edge forces N, 

and the longitudinal stresses along the edges of the plate 

will vary as a parabola. In general, the longitudinal stresses 

along the edges of a plate w111 vary in the same way as the 

”free edge” bending ra’ .ent diagram due to the P-loads. The 

deflection Ô at the middle of a plate element in its plane 

due to the P-loads and the corresponding edge forces N act­

ing on the said plate, will be given here for three kinds of 

P-loads.

Case 1. P-loads vary as a half wave of a sine curve :

direct- vitesses

Fig. 6.U

For a simple beam loaded as shown in Fig, é with a dis­

tributed load varying as a.half wave of a sine curve, the 

bending moment and consequently the maximum fiber stresses 

due to bending will also vary as such.
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Deflection at the middle is given by: 

where f = difference between fiber stresses at top and

bottom of any section x = fQ sin —y

f == difference between maximum fiber stresses at

middle section.

L = span of each plate element acting as a beam

between the end diaphragms.

h = depth of the beam.

o

. (1)
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Case 2. Uniform P-loads over the whole span :

Maximum fiber stresses vary as a parabola for this case.

F1". 6.5

Considerin? Fir. 6.5 above the difference between the top

and bottom fiber stresses at any section is given by

o (1 * L2 ‘ *2)f

Deflection at the middle is given by 
d

% = J (^ — x ) d

d = f • Sc
' oh

Working out the above integral we get •

A ro LS
6O = ST • 7” (2)
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Case

span

5. Two concentrated loads at one third points of the
1

Sc r /ten

direct stresses

(%

— 3 —*— ——

Fig. 6.6

b c

A
4 t

o

fo
Eh • (5)



APPENDIX III

COMPARISON OF THE THEORETICAL AND EXPERIMENTAL STRESSES 

AND STRAINS IN THE MODEL, "TTH TH" BASIC EQUATIONS OF EQUI­

LIBRIUM

1. CORRECTION DIAGRAM FOR STRESSES DOES NOT DISTURB THE 

EQUILIBRIUM CONDITIONS ;

The correction diagram for longitudinal stresses, for the 

effect of joints translation, is Shown separately in Fig. 6 

on Sheet 6, Appendix I. This diagram represents the neces­

sary correction in the longitudinal stresses, due to the 

relative translations of the joints, which should be added 

to the values obtained from the Craemer and Ehlers theory to 

obtain the longitudinal stresses given by the theory proposed 

in this thesis. It can be noticed further, that the latter 

values could be obtained if the values of the correction dia­

gram are multiplied by a proper constant and subtracted alge­

braically from the values obtained by the ordinary beam theory 

for the entire cross-section. In fact every one of the above 

analytical solutions satisfies the equilibrium conditions, 

and the correction diagram gives only the readjustment in 

the distribution of the longitudinal stresses as we change 

from one solution to the other. It should be noticed that 

the relative translations of the jo^ nts change the forces act­

ing on a plate element but do not change the resultant shear 

112
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force or bending moment acting on the entire section which 

are determined by the initial equilihri um conditions. In 

other words the total resisting moment or the resisting shear 

force at any section of the entire structure due to the rela­

tive translations of the joints is always zero. The correc­

tion diagram given on sheet 6 will be checked here for this 

condition :

Fig. 7.1. Correction diagram 
for longitudinal stresses

c

= te ns

_ ».2.575

___ I 
O'

t
? oo

5 Ml 

CM

-U
AO

,.o

Area of plate elements :
Aab = .1$ x 2.50 = .525 inch4

Abc * Acc' .15 x 5.5 = Ji55 inch1

Summation of longitudinal stresses :

S f.dA = 1.0 X .U55 + 2 [ 1

= .455 - .564 + •109 •

= .564 - .564

- 0.0 .



Summation of moments about any axis CC* Fie

_ 1.88 2.24
X —J-------— x x 2

5

5.547$25 X 2.713 + 525 X

1.62 1.62

0.0

correction diagram does not dis trub the equilibrium condi-

2
X

tions

2. CHECK OF PROPOSED THEOR ICAL STRESS DIAGRAM AT TFT FIDDLE OF

THE MODEL BY EQUILIBRIUM CONDITIONS

1Summation

• 13

Fi<

LI

?
A

. 1 " %
[

in
ci

L fl

%2

r. <ton

m F. —t

F. v. I
-925 _

stresses

U 3 (925 - 1020) x .455

+ 122) x .525

8k2 +837
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O.^ isThe difference of apparently within the ordi­

nary margin of error encountered in the use of the slide rule
A X f,dA = 0

1) Summation of moments about any axis CC,  Fir. ?.2 ;*

ZMCC- = -925 x .L55 x 4- 1020 X .u55 X x 2

+1020 x .525 x 2.715 + 122 x .525 x 5.5U7

= -26L + 582 + 898 + 1L1

: - +1557 lbs. inch

External bending moment at middle section

= * A x - +I56O lbs. inch o.k.

5. CHECK OF EX PERINATAL STRESS DIAGRAM AT THE MIDDLE SEC­

TION OF THE MODEL :

78.0

8'

ç 
13'

<n

£

1

%

Fig. 7 . 5 avera e strain 
at the middle section
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a) Summation of lonçltudinal stresses:

The unit strains e in mlero-inetes per inch at the middle sec­

tion are given in Fig. 2a on sheet 2, Appendix I. The average 

of the unit strains e on both sides of the middle section are 

shown in Fig. 7*5  above.

2-f.dA = E 2 e. dA

where e = — . (Hook * s Law)
E

approximating the curve joining the measured values of strains 

by a parabola we get :

e.dA = - 75.53 X Jl55 - 73.0 x .355

+ 70.5 x .355 + 2/5 X 2 x .355 x 2

+ 70.5 x .325 + 56.0 x .525 + 2/5 x 3.5 x .525 X 2

= - 53.25 - 55.50 + 52.10 + 1.215 + 22.92 + 11.70 + 1.516 

= - 69.75 + 69.339 

= 0.0 about

b) Summation of moments about any axis CO ,  Fig. 731* *

% = E . "S. e . dA . 2:

where z = distance of elemental area from axis CC’. 

le.dA.f = - 53.25 x 3.58 - 55.5 x 3.753

+ 52.10 x 5.127 + 1.215 x 5.33

+ 22.92 x 2/5 X 2.5 + 11.70 x + 1.516 x 1.25

= - 285.6 + 153.505

= 129.095
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A "Z «ce " 129.095 x E
= 129.095 x 10.5 x 106 x

= 1557 lbs. inch

External Bending Moment

= 116.7 x

= I56O lbs. inch o.k.


