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THE ANALYSIS OF HIPPED PLATE STRUCTURES
CHAPTER I
INTRODUCTION
l. SYNOPSIS:

_Both theoretical and experimental investigations
on thebstructural action of hipped plate structures are
presented In thls dissertation. Tests on a 1/1,0 scale alu-
minum model of a hipped plate roof were conducted to check
the assumptions and the analytical results, Investigstions
showed that the chanze in the shape of the cross-sectlon of
such structures under loading, which 1s usually neglected
in the present theorv of design, affects the results materi-
ally. Discrepancies in the results of solutfons that neg-
lected the change in shape of the cross-section of 100% and
even up to 200% and more for scme cases were obtained.

The more exact theory for this problem as given
by E. Gruber 1s mathematically complicated which may ex-
plain the reason for the present adoption of the approximate
theory as established by Ehlers and Craemer, However, a
more exact, but still practicable method of analysis that
considers the change in shape of the cross-section 1s given
here. The results of the different methods are compared with

each other and checked against the experimental results.




2. HISTORICAL REVIEW:

A hipped plate structure is a monolithic space
structure that is composed of stratcht plate or slab ele-
ments that intersect at an angle as shown in Fie, 1.1. No
beams or girders need be used as the plate elements are con-
nected rigidly togethe; to form a structurel unit that has
some of the characteristics of a shell type structure. The
ends of the plate elements are supported by diaphrarms and
columns. These structures,which carry the loads applied to
the plates by a combined slab and team action,are usually
built of reinforced concrete and are particularly applicable

to rocfs, bins, and burkers.

{V/////// Fie. 1.1 5

Hipped plate structures L

The princlple of hipned plate constructicn was
first developed by G. Thlers in Germany in 192!, who wrote
the first technical paper(l) on this subject In 1530, 1In
his method of analysis he considered the different plates

abecd, Fir, 1.1, as beams supported at the cross and end




diaphragms A, B, C. Along the longitudinal edges the plates
were assumed as being connected by nonsliding hinged joints.
These Jjoints were considered capable of transferring only
edge shears T between the contliguous plate elements. Such
connections neglected entirely the connectins moments trans-
mitted between the plates due to the'rigidity of the Jjoints.
To simplify the solution the uniform loads on the plates were
transformed to line loads p acting at the joints. These p
loads were resolved into two components p.y and Pfg parallel

to the two adjacent plates as shown in Fig, 1.1. The plates,

acting as beams between the dlaphragms, carried the loads p.
At the same time, edre shear stresses T are created along
the edges to maintain equal longitudinal strains along the
common edges, This stralin condition at each joint was uysed
to determine the magnitude and distribution of the shear
stresses T along the edges.

In 1932, however, E. Gruber presented a paper (3)
to the International Associstlion for Bridge and Structural
Engineering, 1in which he ccnsidered the effect of the rigidl-

ty of the joints, the connecting moments acting along thé

common edges of the plates, and the effect of the relative
displacements between the Joints., As a first approximation, ;
the hipped roof was assumed to be hinged along the Joints, %

Then, by using thls assumed hinsed structure as a taslc sys-

tem, he developed hls exact solution in the ferm of simultareous



differential equations of the fourth order, which could be
solved by rapidly converging series. For a hipped roof of

r + 1 plates, 1.e. r Jolnts, the nﬁmber‘of the enuations en-
countered in the solution is 7r + 2. For a roof of five
plates this will mean 30 equaticns, As this solution is com-
plicated even when solved by tlie use of trironometric series,
it will not be glven here. In his solution Gruber showed
that the maximum longlitudinal stresses on a cross-section
and the maximum deflecticns for a roof with hinged plates
were about twice as great as for the rigidly connected plates.
He consequently concluded that the influence of the rigild

connectlons ought not to be neglected, as had been the usual

practice.

Later the theory was further developed and expanded
in many respects by Craemer, Gruber, Ohlig, and others. The
European literature on the subject, which is mostly in Ger-
man, 1s falrly extensive. All the treatments of the theory
by the Germans are developed from elasticity equations in the
form of simultaneous algebralc and differential equations
which are mathematically involved. With the exceptlion of the
paper(E) by E. Gruber; all writers have macde the same simpli-
fying assumptions of neglecting the effect of the change of
the shape of the cross-section of a hipped structure under

loading although some considered the rigidity of the joints

and the connecting moments along these Joints. In other words,



the effect of the relative deflections of the Joints was not
considered. ~ The above assumptions which consider the rigidi-
ty of the joints but no change in cross-section forp the basls
of the present simplified theory as established by Craemer

and Ehlersflo)

In January 1947, G. Viinter and M. Pel of Cornell
University published a paper(lz) on Hipped Plate Construction
in the Journal of the American Ccncrete Institute in which
they transformed the alrebraic solutfon Into a stress distri-
bution method, which has the advantage of numerical sirmpli-
city over the other procedures. However, they also made the
same simplifying assumption as Craemer and Ehlers, of neg-
lecting the effect of the relative deflection of the joints,
In their paper Winter and Pel state that the spreading, which
may occur in such structures,and the effect of the relatlve
displacements of the joints is neglegible although they pro-
vide no positive proof for this statement.

In a dissertation(li) submitted to the Cornell Uni-
versity in 198, M. Pel presented a method of analysis con-
sidering joint displacements. The method requires the solu-
tion of 6n + 1 simultaneous al~ebraic equations where n 1s
the number of plates. For a roof of 5 plates as shown in
Fig. 1.1, the number of enuations 1s 6 x 5 + 1= 31 equations.

None of the mathematical investigations mentioned
above gave any experimental evidence to substantiate the as-

sumptions and analytical procedures that were used. It

:
i



appears that no previous experimental evidence from either
actual structures or small scale models has been obtained to
support the theoreticasl analysis.

In the development of the analysis which 1s pro-
posed 1In this thesis it was found necessary to depend upon
a study of the deformations in small scale models to provide
information upon which correct assumptions could be made., It
will be shown in the following chapters that the translation
of the edges of the plate elements materially affects the mag-

nitude and distribution of the internal stresses.

|



CHAPTER II
PRESENT ANALYTICAL METHOD

1, NOTATIONS:

Fif’o 2.1

il

0, 1, 2, «+.. Ny .. Subscripts used to Jenote edges
and plate elements.
h12 = Width of plate 12; or distance between jolnts l
and 2 measured along the center line of cross-

section of plate.

L = Span of roof between end dlaphragms,

t12 = Thickness of plate 12.
Alg=nh x t = Cross-sectional area of plate 12.
12 12
th® .
512 == Section modulus of plate 12, considered act-

ing as a beam.

A = The component of the displacement of edze 1 per-
pendicular to plate 12.
A = The component of the displacement of edge 2 per-

pendicular to plate 12,



61g = The component of the displacement of edge 1 in

the plane of vlate 12,

o] = 0
21 1R

O
il

1a Shearing force per unit length, acting from Jjoint

1 on plate 12 in the direction parallel to Alz'

T. = Shear stresses per unit length parallel to edge 1
acting from joint 1 along the edges of the adja-

cent plates.

N= [Tax
Other notations are glven where they are used.,
N.B.: No particular sign conventlon was found necessary for
the displacements, the forces, or the stresses. Any assumed
displacements may be consldered positive. A negative value
in the result means an opposite sense of displacement to the

one first assumed., Conslistency in working out the solutilon,

rather than a sbecified sign convention, 1s essentilal,




GEOMETRICAL RELATIONS BETWEEN FDGE DISPLACEMENTS IN
HIPPED PLATE STRUCTURES

If a polnt on an edee 2 moves under

loading to another point 2, then the
/ ]

following geometrical relations be-
tween tre components of displacement

can be reacdlly esteblished. From

Pirm, 2,2 we have:
0
I 6
A = 12 - 8,-6.. .
e _cos(81-82) €.,|x Cot (6,-6.) (1)
_ 5. .
P = - 20 C 6y~ . 2
21 _612 005(51‘92)Jx ot (61-62) (2)
Similarly: .
e}
D = Q1 + & Cot (6o-8 . (
12 LCOS(QO -91) lﬂdx ( (o] 1) 5)

Adding (2) and (3) we get tre relative displacement between

edees 1 and 2:

A "‘Azl +A12 = cy10y39 * Cp*0ga * Cz4003

and so on.

where c3, cg and cs are constants,

()
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Each of equations (1) and (2) for joints 1 and 2 gives the
component A of the joint displacement in terms of the two
other & componénts of the same joint. Two similar equations
can be written for every joint. Equation (L) gives the mag-
nltude of the relative displacement between the two joints 1
and 2. Such an equation can be easily obtained for each in-
termediate plate in the roof. For a roof of 5 plates three
such llinear algebraic equations can be written. For a roof
of 5 plates with symmetrical loading the number of equations
can be reduced to one. As mentiocned before no particular
sign convention for the displacements is necessary but rather
only consistency in the successive steps of the analytical
solution 1s desirable. A negative sign of & 1in the final

result means an opposite sense to the one first assumed.
5« BASIS OF THE ANALYTICAI APPROACH:

The following limitations that governed the appli-
catlon of the exact solution glven by E. Gruber(a) will be
discussed and used in the theoretical investigation:

(1) All plates are of rectanpular shape.

(2) The length of each plate is more than twice

its width.

(3) The structure is monolithically bullt. All

Joints are rigiq.

(L) Each plate 1s of uniform thickness.

(5) The material 1s homogeneous and elastic.




Ad.

Ad.

Ad.

Ad.

(1)

(2)

(4)

(5)
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(6) In any plate, plane sections remain plane
after deformation.
E. Gruber gave a thecry for plates of near rectangu-

(7) The analysis 1s much more difficult

lar shapes.
as 1t requires solutions of simultaneous, lilnear,

nonhomosenecus differential equations of the second

* order with variable coeffliclents.

This limitation makes 1t possible to treat the plates
as one-way slabs, to assume linear distribution of
bending stresses, and to neglect the effect of tor-
sional rigidity. Experimental investigcations appear
to justify this assumption. The resistance to tor-

sion of the lateral beams was taken Into account by

onlig. (9!
For plates with their thicknesses varying along their
lengths, (ref. 8).

Reinforced concrete 1s not a homoreneous material.
Present statical analysis of reinforced concrete
structures assume homogeneitv of materlal and 1t
therefore seems reasonable to make the same assump-
tion here. As to elasticity, it 1s debatatle whether
concrete cculd be treated as an elastic material,
This question wlll be left for investigators on re-
Inforced concrete to decide. The theoretical and

experimental investigations given here are applicatle

to an elastic material., As for application to
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reinforced concrete this thesis provides some light
on the subject and it is recommended that further
experirental snd analytical studles bte made on re-
inforced concrete models.

Ad. (6) Experimental investigations given in thls thesis
show that this assumption is justified. It should
be noted that plane crogs-sections of the entire

structure do not necessarily remain plane after defor-

mation.

!ie ERUILIBRIUM CONDITICNS FOR JOINTS AND PLATE FLFMEITS:

/," - (\ /ff‘;{_f/’ /

| - L
/

N

~
T B —~
~ h\/

\ \

Fir., 2.3 Fiz. 2.1

(a) Equilibrium of the Jjoints:

Consider a hipped plate roof &s shown in Fio. 2.3,
with a span L larger than twice the width h of any rlate.

Loads on this roof (dead load, snow, wind, etc.) will be as~-

sumed artitrarilv, as shcwn in Fir. 2.L. Since the width h,

of any plate, 1s small compared to its length L, each indi-

vidual plate, will carry the applied load w, transverse to
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the joints. This fact also enables us to lgnore the effect
of torsional actionvthat takes place in each plate. We can
then treat the plates as a one-way slab. Consider any trans-
verse strip (0, 1, 2 ..), of the roof of one unit width, that
1s some distance away from the supporting end diaphragms.

Cut out any Jjoint, Jh say, from this strip In the manner shown
in Figs. 2.5 and 2.6, by two planes R and S perpendicular to

the two adjacent plates respectively.

Fig. 2.5

Fioc. 2.7

If we ncw consider the forces acting on this portion of the
joint, we find in a vertical cross-sectional plane through
the middle of the joint element three kinds of forces acting,
namely:

(1) Twe forces Q3 and Qg perpendicular to the two
ad jacent plates D and E respectlvely, ’

(2) Two forces P43 and pg perpendicular to th Q
forces, and

(3) Two bending moments My and Mg between the Joint

and each adjacent plate.
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In addition to these forces, shear stresses and
torslional stresses will be acting on the vertical sides of
the joint element. As the joint element is chosen smaller
and smaller by making the planes R and S approach each other,
the resultant of these latter stresses becomes smaller and
smaller approaching zero as a limit, 1In which case, Md and My
become equal, and the forces T4, Pgs 7 &nd p, become con-
current. If we now consider the equllibrium of the joint ele-
ment 1in the plane of these forces, and draw the force vectors
representing the four mentioned forces, Filg. 2.7, 1t 1s evi-
dent that the resultant of Qd and Qe 1s equal and opposite to
that of pq and Pg. The forces 7 and M represent the action,
on the Joint, of the adjacent plates, acting as a continuous
slab, while the forces p represent the action, on the Jolnt,
of the adjacent plates acting as beams between the end dla-
phragms,

IA planes R and S btetween the joint and each adja-
cent plate, there also exist shearing stresses T, and on the
two transverse planes on both sides of the joint, normal
stresses f., However, T and f do not enter into the equilib-
rium of the forces acting on the joint in a transverse plane

as they are perpendiculsr to that plane.,

(b) Equilibrium of a plate element:

Fig. 2.8 shows the forces acting on a plate element.

In the figure N represents the resultant of the edre shear
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stresses, T acting on the edge of the element at Joint n.
Otherwise the figure is self-explanatory. The edge shear

force acting on the plate in a length x i3 given by:

Nz./'r.dx N ¢ 5
o
Qn,,,u
/9}’ Ma DH"
On, /V
{":K\ \'IL
U ///<*\, ~

~ N
AN
o ER
A < AN Wi
- . \ Qnu,,,

— & \ ™~ ' b’no'*DH"‘

. BH"”

'Jn,l ?:- ,b Mn#/
7.,
)
Fio. 2.8

Equilibrium of a plate element
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Effect of the edge shear stresses T on shear forces V act-

ing in a transverse vertical plane:

P load
AR NE NR AR A NE RN
— T | ry, AN Nran
Plate 12 ; Plate element
= | =
’ T | A AN, MrAN,
i —pt TX -

Fir, 2.9

The edge shear stresses T1 and T2 on a plate 12 need not be
the same. If the edge shear force acting on a length dx of
plate is denoted by AN = T, dx then the edge shears T will

hhave a resultant on both sides of the element dx of

X
N1=/T1dx .. .. (1)
These forces will produce normal stresses on both vertlical
sectlons of tne plate element. Since these stresses, act-
ing on opposite vertical sections of the plate element, are
not necessarily equal, this will give rise to horizontal and
vertical shear stresses gcting on the element. However, the
resultant of the vertical shear stresses on both vertical
sections of the plate element must add up to zero which can
be readily seén when the effect of the edge shears T on the
element 1s considered separately. For the plate element
shown in Fig. 2.9, if we take moment of the forces shown

about any point in the plane of the forces, then it can be

seen that the resultents of the shear stresses on each of the

|
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vertlical sides must equal zero., From this discussion it can
be noted that the shear forces V acting on a vertical side of
a plate element, Fig. 2.8, 1s due only to the p loads since
the effect of the edge shears T 1s zero.

5. STRESS DISTRIBUTION METHOD:

A numerical solution that 1s based on successive
12
approximations was developed by Winter and Pei( ) as a means
of solving the equations that arise in the Craemer and Ehlers

method of analysis.(lo)

This solution is applied in a manner
that 1s almost identlcal to the Moment Distribution Methnd
that was developed by Professor Cross. In the latter method,
an imaginary "locking"” or restraint 1s applied at each sup=-
port. The moment developed in the restralnt 1s later re-
leased and distributed. In the distribution method for Hipped
Plate Structures, a "non-shear" joint is first assumed be-

tween each two adjacent plates, and edge shear forces N are

then gradually added so as to provide the final actual condi-

tion of continuity.

Y o

AN
N

FPig. 2.10 P~forces
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Let us assume that the line load Ph,n+y 8cting in

the plane of the plate n,n+l, represent the resultant of the
p forces transmitted from the joints n and n+l to the plate

n,n+l, (Fig. 2.10). The plate n,n+l will carry the load Ph,n+l

as a beam between the end dlaphragms, Fig, 2.11.

‘2

Fi-. 2.11
Monolithic action of plates

If the plates were not jolned along their common edges they
would act as simple beams loaded with their respectivé P loads.,
In such & case the normal stresses due to bending in plates
01, 12,.. would be as shown in Fig. 2.11 since with such sepa-
rate action the plates would deform independently. However,
the monolithic action existing at the joints requires equal
stress and strain conditions along the common edpes. Hence,
each of the plates, in addition to its prlste 1lcad, P, 1is
acted upon along 1its two edges, ty the shear forces T. Al-
thourgh the distribution of these shear forces, at this stage,
i1s not known, it is evident that at any particular section,

x, they add uﬁ to normal forces Ny and Np, at top and bottom

edge, of magnitude -
N = /T. dX e . . L (1)
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Any section, therefore, will be acted upon by two longltudi-
nal edge-forces, Nt and Nb' in addition to the bending moment
M caused by the plate 1lcads P, Since at all points along a
common edge, the sliear forces T are equal and opposite to
each other for the two adjoining plates, from equation (1)
the resulting normal forces N are 21s0 equal and opposite to
each other, 1In toth plates, at all points along the edge.

Let us assume that we know the magnitude and distribution of

the P=-loads acting on each plate, and that each plate acts
independently and carries its load as an ordlnary beam does,
The bending moment 1s obtained from elementary structural
theory. The flber stresses at the edges corresponding to

thls bending moment are obtained. In general, fn,n-l and fn,n+1

found this way are not equal. Consequently, longitudinal slid-
ing will occur along the Jjoints. To eliminate this sliding,
a couple of sequal and opposite normal forces 1s Introduced at

the joint, Fig. 2.12.

Net

Fig. 2.12 n-1
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The sdditional rormal stresses ! due to a normal force N
acting at the edre n common to two plales a and b, Filg.
2.13, are as follows:

For plete a:

1 = -+ a L =
T'n,n-1 A 5 S Put S, = Ag x 7
N N N
= —K; + 3 j[éz hfga (of the same sense as N} . . (2)
. N N 2N
f'n-1,n = "Ry T 2 .- 1. (oprosite sens. o N) . . . (3)

Similarls tre additionel normal stresses for plate b nre

readilv ortained (Fir, 2.132).

Stress diagrams due to N: $ 2 ‘ n+l
‘ q;’{ A - i.’ n ——
Fiz, 2.13 A )
Sy T T T ni
Aa.

If the oririnal stresses aut n 1n hoth plates are
different by an amount Af _, ther fhe correction Afn will

re distrituted on moth plates such that:

Affl = r'n’n-l + f'n,!’H‘l
N N ) 1 1
= — ) — T — —
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Distributlon factors at joint n:

N
L Ka Ay
K = = . . . .
= ks 1 A, + Ap (5)
Ag Ap
5 X
Aa Ab

Carry-over factors:

From stress diagram due to N in Fig., 2.13, 1t can

be seen that a correction of U % at edge n in plate 'at' 1is
a

accompanled by a stress -2 % at the far end of the same plste.
a

Hence the carry-over factor for any plate from end to end is
equal to -1/2, Assumihg that the magnitude and the distribu-
tion of the P-loads on each plate can be determlned, the pro-
cedure for the stress distribution method is as follows:

(1) Compute the "free edre stresses,” by assum-

ing that all edges are free f = %

(2) Compute the "unbalanced stress”

Afn = fn,n—l 'fn,n+1

(3) Balance, using distribution factors K

(l.) Carry-over. The carry-over factor is -1/2
(5) Repeat the procedure until satisfactory con-

vergence is obtalned.
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(6) At the end of Step 5, stresses at all joints
are balanced and known. In order to find out

N at any jJoint, equation (2) may be used

ny,n-1
N = I ° f'n,n-1 = ‘"AE—“ « f'nyn-r -« (2)

where ', n-1 i1s the correction, i.e., the sum

of all distributed stresses at the edge n of

the plate n,n~1l.
Determination of the P-loads:

The usual procedure for the determination of the
magnitude and the distritution of the P-loads; as adopted by

(10) 1s to consider the plates of

Ehlers and Craemer theory,
the roof in the transverse direction, to be acting as a con-
tinuous slab, suppohted at the joints by nonylelding supports.
The shearing forces Q alone the joints are readily computed,
and from the consideration of equllibrium of the joint ele-
nent discussed before, the Q forces acting from the adjacent
plates on to the joints, are resolved into p-forces parallel
to the said plates. The resultant of the p-forces acting on
a plate, along 1its two sides, glves the P-forces for that
plate. Consequently, the P-forces obtalined will vary along

the plats, in the same manner as the external loads appllied

to the roof. This is also the same procedure used by Winter

and Pei.(lz)




CHAPTER TIT

PROPOSED METHOD OF ANALYSIS
OF HIPPED PLATE STRUCTURES CONSIDERING
THE RELATIVE DISPLACEMENTS OF THE JOINTS

From conslideration of the equilibrium of a joint
and a plate element discussed in Chapter II, 1t 1is clear
that the shearling forces Q acting on both sides of a jolnt
are in equilibriuﬁ with the p-loads transmitted between'the
Joint and the adjoining plates. Hence the p~-loads can be
numerically determined once the Q forces are known. The Q
forces represent the shearing forces in the roof plates per
unit of length along the Jjoints. Referring to Fies. 3.1 rep-
resenting the vector diagram for the Q@ and p-forces, 1t is
clear that a small error committed in the computétion of the
Q forces may result in a considerable error in the evalua-

tion of the p-loads.

< D
B E
A
Qéa ‘ Féd
Qe . Fig. 3.1 l
L Q;dK
Eal/ﬁ,c
. Qb ﬂb
Vector diagram Vector dlagram
for joint B for joint C

23
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1. PROPOSED METHOD OF ANALYSIS:

Filg. 3.2

The proposed method of analysls will bte discussed
in terms of its applicatlion to the rocf shown above in Fig.
3,2. The displacements of the Joints are expressed in terms
of their components &'s perpendicular to the different plates
of the roof.

The roof in the transverse directlcn 1s treated as
a continuous slab with the joints given assiagned displace=-
ments A's. To determine the shearing forces Q acting along
the joints of t%e roof, in its deflected position under load-
in7, we are only interested in the relative displacements &'s
between each two consecutive joints. For this roof we need
to work with three unknown values of A for unsymmetrical
loading, and only one A value for syrnmetrical lcading. With
the 4 's assumed and the applied load w on the roof glven,
the shearing forces 3 along the jJoints are obtalned In terms
of w and the A 's. The @ forces are then resolved to obtain

the P-forces., Using the methed of stress distribution cls-

-
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cussed in Chapter II, the flnal siresses in the roof are
obtained in terms of w and the a4 's, Conssquently the de-
flection & of each plate element, acting &s a beam in 1its
plane 1s obtained in terms of w and the 4 's. Heﬁce we will
have the planer deflections & of the plates In terms of the
perpendicular deflections 4 , Substituting the values of
the 6's into the geometrical expression for 4 , glven in Chap-
ter II, we get the required values of the 4 's,

The steps in the analysis can be summarized as fol-

lows:

(1) The first step 1s the calculation of the forces and the
stresses acting at the edges of each elemenht for the assump-
tion of nonyielding supports.  The analytical procedure 1s

simplified by using the stress distribution method discussed

in Chapter II.

(2) The second step is to express the shearing forces 9 and
the parallel forces P acting on each element 1n terms of each
A value. This operation 1is most easlily accomplished by as-
signing an arbitrary value to & , determining the correspond-
ing fixed-end moments, and then correcting for rotatlon at
the ends of the elenents by the moment Alistributlion method.

After the end moments are determined the Q and P forces are

then calculated in the same manner as in Part (1). This
operation must be repeated for each different A term. For

unsymmetrical loading the number of A values for the struecture



in Pig. 3.2 18 equal to three, but only one unknown for sym-

metrical loading.

(3) After the Q2 and P forces are expressed in terms of the
A'8, the correspondinec edre stresses are then calculated in

the same manner as in Part (1).

(l.) From the values of the combined edre stresses from (1)
and (3), the displacements € parallel to the elements are com-
putéd. These parallel displacerents 0 are trerefcore in terms
of the applied lon3 and the transverse rmoverments & . It will
be found that there are onl» one set of A values that will
satisfy the algetralc relations between the A's and the &'s
that are imposed by the ceometrical requirements of the cross-
section and the equilibrium conditions. The values of the &'s
can now be calculated from the geometrical relatlions between
the At's and 6's since tre &'s have alreadv bteen expressed 1n

terms of A's by the calculations in Steps (2) and (3).

(5) After the 4 's have been calculated, the ed7e stresses,
shears, and transverse moments due to these transverse dis-
placements are now known as thev have previously been expressed
in terms of the A's., These values are added alsebralcally to
the corresponding values in Part (1) to glve the final results.
The application of the arove procedure to a 1/110
scale alﬁminum model 1s illustrated in the followlne pares,

This 1s followed by an example of & reinforced concrete hipped

plate roof of seven plates.
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2. ILLUSTRATIVE EXAMPLES:

Example 1. The general dimensions of a 1/1i0 scale aluminum
model of a hipped plate roof are given in Flg. 3.3. The
model 1is loaded with a uniform load w p.s.l., distributed
all over the top plate CC', and 1t 1s required to calculate
the maximum longltudinal and maximum transverse stresses in

the model, due to thls loading.

940 . o
L Fir. 3.3

3TEP 1. Case of externai loads and non-yielding supports:
Consider a transverse strip 1.0 inch wide at the middle of
the span. This transverse strip will be treated as a continue-
ous slab supported at the joints by non-ylelding supports.

Moment Distribution Factors:

Joint C:

Member c k ck r
CB 3 1 2 .50
cc! 2 1 2 .10

5 1.00

Fixed end moment at C = Eﬁi
12

The bending moments and shears for this case are glven in

/
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Fige. 3.i. The 2-forces, 1.e. shear forces acting on the joints

per unit length, are given in Fig. 3.5,

A e Cr"rrr"“r—*"'"-jcl 8’ 4
! ’ . -
by 4357 i 435 e h3 5T el
1

-6 4o

i

=10, ¢+ 10.
+ 6 + 4

ré.:-é.

. s
*”“ﬁF”w Bending Moment

|
f
i
|

3TN 5
« ! . . H ©
N y ~
s j\_ e « 3.F. Diagram
<! A
S AN
8 CN
|
|
R Ty o T
; S o B -
N s ﬂ“@ £y Shear forces
3 e qw i :
! ! | L
Figz. 3.4
B.M. and Shears
X
gl g
g | .o
. ‘J- S &
1{/'5 < &
‘B E
A Py

Fiz. 3.5
T={orces actine on joints
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Determination of the P-forces acting on the plates:
Let us assume the positive sense for the P-forces be as indi-

cated in Fig., 3.6.

Fig. 2.5
Determination of P=-forces 4 pog 4
-forces
on a strip 1.0" wide
- . l = +0.05 wh __1 = +0.0 h
= +0, . w ———e .

P = =0.05 wh « (tan 8, + cot 8y) =0.5 wh .
be > b b > sin 6

= «0.1104 wh =0.932 wh = =1.0L2 wh

where h = 3,50 inches
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"pree Edge" bending moments and corresponding stresses at
the middle section:

Each plate will be treated as a beam carrying the P-loads
and spanning between the end dlaphrsgms, with no edge shear

T along the joints.

11

L® =
Mab = Pab . o (+ .059% wh) ﬁ%fg = +31.80 w lbs. inch

]

P 2 2
Mpe = Pbe . .g: (- 1.0L2L wh) - % = -540,0 w 1bs. inch

M,or = 0.0

Corresponding maximum fiber stresses:

=2
Section modulus for plate AB = Sgy - 1% x 2,507 _ 1350 1 neh
2 3
Section modulus for plate BC = Sy, = .15 x 2g2 = .266 inch
M
b 1.80 w
f = + ——a—- = + L——K = + 2 .O w posoio
} ab -— Sab — .155 - 55
M
be 60,0 w
= — = hd = . .s'i.
Tye + Soe s + 2105.0 w D
fcc' = 0.0 P

These "free edge" stresses are shown in File. 3.7. The
signs for the stresses depend upon the sense of the corre-

sponding P-loads.
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90 0.0
2105w _2105. W
5. c C' 210
+ 2105w +2/05 w
B B"
+235.w $ 235w
.
4
-23S.w A Al -235 w
Flzg. Z.7

3\

t

"Free edge" stresses

The "free edge" stresses will be corrected to introduce the
effect of shear stresses T acting along the common edges,
The stress distribution method discussed in Chapter TII will

be used here.

Stress Distribution Ccefficlents:

Jolnt B:
A
be 3,50
K = = = 0.58
ba oAy, + Ape  2.50 + 3.50
A -
ba 2.50
= = < = 0.2
Koe = Bpm + Apg 250 + 3.50 ~
Joint C:

ch -ch = 0050

Carry over factor = -5
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strees Distribution: &
A B . C
! .58 . b2 .5 .5
1 \ .
\-235. w + 235.w % +2105.w -2105.w © 0.0  —--—- (1)
balance: + 1085. ‘ - 78s. +1052. -1052.
| |
Carry- :-542. 1 ~526. + 392. + 526.
over
balancel -305. \ +221. + 67. - 67.
| |
Carry- :+152 i - 323. - 110. .+ 33,
over : l
balance: - 19. + 1L, + 72. | - 72,
: t
| l
+ 10 |- 36. - 7. , + 36.
- 21. | + 15. + 21.5 ' - 21.5
'+ 10 - 11, - 7. U+ 11,
| |
- 6- ] + 50 + 9 i - 9n
i
+ 13 - L, - 2 + L
- 2. + 2. + 3. - 3.
+ 1 ’
, 1
= e SRS SN
~601.w  +967.w | +967.% —6lh.w | - 6LlL.W_____ (2)

The "free edge" streeses are given in line marked (1) in the

table, snd the stresses, after distribution, are given 1ln
line marked (2), snd are shown on & section of the model 1n

Fig. 3.8. These stresses represent the streases at the middle
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section for the case of external loads, neglecting the
effect of the relative displacements of the Joints, which

will be considered in the next step.

-6lu.w

+967.W

-6ol.w g

STEP 2. Effect of the relative displacements of the joints:
Consider a transverse strip st the middle of the model 1.0
inch wide, and let the relative displacerment between edces

B and C at the middle of the strip be given by:

A - Abc + Acb (See Fig. %.9)

FPixed end moment at C, with the edre B free to rotate

EI & _
5% T wm T3¢

where 1 = moment of inertia of a strip 1.0 inch wide

3
-6
= 1.0x411§- = 183 x 10 inch

6
E = modulus of elasticity of aluminum = 10.5 x 10 p.s.i.

h = width of plate BC = 3,50"

oL =-E—B-I- . %=E. 5 x (1L.90) xléé = 156.5 A
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The fixed end moments are distributed, and the momente and

the shear forces are given in Fie., 3.10. The Q-forces and the

P-loads are given in Fig. 3.11.

- B c c' 8 A
¥ P ” " !
' -4-—»*17: 3.5 ote----3.5 .___._...__ﬁ:Jgﬁ._.q !
; i
' - -l
Q i i
| e T :
i !
69| Lo | |
[
- !
o9, i
-10. ter0.
+6-irh o !
a.0 -4.01eh.n —40%4#.0
j
6.0 b2l MZA 12l 20 0.6 6. M.
s 3 T 3
i ) ¥ -
2.2 = , N o~ * ~ :‘ ~5:‘h01’5‘
AN |
. ~
o Fig. 3.10

RBR.M. and shears

Flg. 3.1lla
A @ and p-forces

A Fig. 3.11b P-forces A
on a 1.0" strip at middle

E
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STEP 3. Stresses at the middle section corresponding to the
P-loads in Part (2):

The relative deflection A between the edges B and C, 1s
assuned to vary as a sine-curve, and hence the corresponding
P-loads, bending moments and stresses will vary as a sine-

curve.

&:eé‘_n‘”l

e = T——— [

—.{:_:__:.‘.e ' ] i

- L=350__

Bending moment at the middle of the span

LE
= Pg == (See Appendix II)
_ L= o .0%
Map = Pap® == (-1.12 = 1%5- = -50.40 =<
_ L® _ = 0% _
Mpe = Poe” 72 = (+2.615 77) 2%ﬁr = +9l,.,10 =
MCC' = 0.0

Corresponding maximum flber stresses:

ol
_ -ab . 50.4¢ _
fab = Sgp -~ w1zsh = T
L1
fre = 2 TP 1353, o

The "free edge" stresses shown in Flg. 212, are then distri-
buted by stress distribution method, to finclude the effect
of the edge shears T. The same coefficients and method used

in Step 1 are used to get the stresses shown in Fig. %.13.

4



0.0 °
+ 353,
-~ 353 -353. %
_372.x -372.L
372, 0 Fig. 3.12 v 372,04
i "prce edpeé stresses
- 2873 \1 287 3ok
¢ 3297 Fiz. 3.13 | 4 329.7 0«

Stresses due to
joints displacement

STEP li. Determination of thre displacements & parallel to
the plate elements:
The deflection at the middle of a beam loaded with a uniform

load is given by

f
::_.9-0 =2 3
6o = E% L (See Appendix I71)
where fo = difference between maximum fiber stresses at

the middle of the eran L

h = depth of bsam
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The deflecticon at the middle of a beam loaded with a dis-

tributed load varying as a half sine wave 1s piven bv:

b = TR = (See Apvrendix II)

Hence, the deflections 6 of the plate elements due to the
two cases of loading discussed in Steps 1 and 3 are as fol-

lows:

(F01, + 967)w _ (329.7 + 267.3)=< zc Q%

) = zc = X
Car E x 2.50 h% x 32.0 F x 2.50 e

Putting =< = 156.5 A we get:

bgp, = 7463 x 10w - 5T A Ce e e . (1)
& = - 1967' + 61}4)" _i_ 2 (28’7.5 + 128.1)°< 15.02
be Ex3.50 *L3~>% " E % 3.50 Y

!

-5.50 x 10° w + 0.2195 A N -3
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ceometrical relations between components of displacements:

Fie. 3.1

A = (bpe + ___6.92__.) e cot 575
c cos 57.5

= 6371 6y + 1.186 064y,

Doy = Ope X cot 22.5

= 1.57 &,

Adding we get: £ = 2.2071 &, . + 1.186 0.y,

Substituting the values gliven in equations (1) and (2) for

6,1, and Op, we get:

-3
A =10.146 x 10 w inches
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STEP 5. Edge Stresses:
Substituting the value for A 1n the stresses obtained in
Part 3, we get these stresses expressed 1n terms of the ap-
plied load w.
< = 156.5 48 = 1.638 w

The maximum longitudinal stresses at the middle section of
the model due to:

Case 1, External loads

Cfase 2. Relative displacements of the Jjolnts

Case 3, The above two cases added together are as

follows:
(o) C'
B 8
A A
Fig. 3.15

Maximum Longlitudinal Stresses p.s.l.

Edge Case (1) Case (2) Case (%)
C =51 W +210w -uouﬁ
B +967 .w -L70.w +497.w
A -501.w +54L0.w - 61l.w

N.B. Notice how hizh the longitudinal stresses given 1n

case (1) are, in comparison with those given in case (3).
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Bending Moment Diagram on & transverse strip 1.0" wide:
case (1) Due to external loads and nonyilelding supports:

Connecting Moment M, = .05 w h®

Mg = .05 w x z,50% = 0,612 w 1lbs. inch.

2 =2
!%1. = wx i:BiQ = 1.530 w 1lbs. inch.

Case (2) Due to Relative Deflection

of Joints:
M = 1.2 =%

c 4////,/3{
¥
= 1.20 x 1.638 w = 1.96 w 1bs, inch. e

Case (3) The above two cases added

together glve the resultant ‘

e e e ]

!

E

l

Bending Moment Dlagram ! %
%

I

i ' I
Fig. 3%.16. \1 o
i

It is important to notice the

serious change in the transverse

-
. e o e e e e

pending moment caused bv the rela- 1
!
tive displacements of the joints,

the increase in the value of the

bending moment belng:

Case 3

1516 x 100 = 212% at the middle of span CC!, and

Fig.- 3%.16

Ll—(:)-%g— x 100 = -320% at joints C and C'.



11

Example 2. The seme sluminum model of example 1, will be
enalyzed for the case of four concentrated vertlcal.forceé
of 58.35 lba. each, acting on the model as shown in Fig 3,17.
The maximum longitudinal and the maximum trsnsverse stresses
;t the middle of the model will be celcuated, snd will 1lster

be compared with the experimentsl results obteined for the

same case.

Fiz. 3,17

STEP 1. Csase of external loads and nonyielding supporta:
For casse of external loads ecting at the joints, the loads
W are resolved in the directions of the two adjacent

platees, giving directly, the P- loads gcting on the plates.

Fig 3.18. 3025w
2 < —
Pab = Pgtbl = 0.0 Wt l:-’-”{b \:lw/“
c <’
B
Pcc' = 0.3925 W - 0.3925 W = 0.0

Fig. 3.18 P-loads



"Free Edge" bending moments and correasponding stresses at

>

the middle section:

P P
Mab =7 Ma'b' = 0.0 "—LG'~%4-”J-—P{'-LB-H

My, = - M = —.L66 W x L *——““———-L‘3i°"“———ﬁJ
c ctb! -3-

|

= - 5.44 W 1bs. inch. Fis. 3.19
Corresponding msximum fiber stresses: P — e
8 e’
fo = 0.0 i, L
tve Sense fov P31
g = Mbc = "‘5.““ W = + 20.“’5 W
be 5,. 266
£ , =0
cc

\

These "free edge" stresses are shown in Fig 3.20. Uslng
the same gtrees dlstributlion procedure and the ssme coef—

ficlents given in exsmple 1, we get the stresces after die-

tribution showvn in Fig 3.21.

6.c o.c
- 2PO4SW T T - 2045 W
~
20.14\5»// TS+ 20.45W '
+o.o : | c.o Fig. 3.20
Free edge stresses
0.0 &.C
- 5.8C4W _ 5804w
+8.53wW 853w Flg. 3%3.21
Stresses after dlstribu-
426w 426 W tion (nc relative dls-

place—ernts)
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STEP 2. Effect of the relative displacements of the joints:
The procedure snd the results are identicslly the same asg

for example 1.

STEP 3. Btresses corresponding to the P-loads 1n Part 2

Results are identical to those of example 1,

STEP L. Determinztion of the displacements & parallel to
the plate elements:

The deflection at the middle of a beam losded with two con-

centrated loade at 1 of the sapan, i=f given by

3
£ L 2 (See A I1)
. _o _23 ee Aprendix
5% = g n * 716
where fo = difference between meximum fiber stresres at

the middle of the 8spsn L.
h = depth of beam
The deflection st the middle of a beam losded with s dls-
tributed losd verying a< a half sine wave 1< glven by:
£, . L*

8. = 3 )
° E b T

Hence the deflections 6 of the plate elements due to the

two cases of lbading discussed in Steps 1 and 3 are as fol-

lows:

5., = (L.26+8.53) W x 35.6 x 23 - 0.457 A
) E x 2.50 21




+ 670 W - 0.457 L

o)
ab i

0.638 x 107 ‘W — .0L57 A

A & 9

6. = - (R.53+5.808) W x 35.0% x 23_ + 0.21954
be % X 3. 50 516

- 536 W + 0.21955
E

-4
- 0.510 x 10 W + 0.2195A

. e e (2)

Geometrical relstion between cnomponents of dleplscemente:

The geometricel relatioﬁs between the components of the

edge displacements of the mndel, hold true and ave inde-
rendent of the applied loeds. The same geometrical rels-—
tion of example 1 will be used here, namely:

A = 2.2 o) + . 6
071 oo 1.186 ab

Substituting the values given in egustions (1) end (2)
for éab and ébc reapectively, into the geometricsl re-
lation, we get

A = 0.928 x 10 W inches
The positive sign of 4 incicates that & 18 gssumed 1in

the correct direction.

: \
STEP 5. Edge stresses: Substituting the value for A in

the stresses obtalned in Psrt 3, we getl these stresses eX-

pressed in terms of the spplied lo=ad W.
-6
o< = E A (14.90) x 10 = 156.5 48
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-4 ,
o< 156.5 x 0.928 x 100 W = 0.,0145 W

1

W=, x 58.35 = 233, 1bs.
The maximum lonritudinal stresses at the middle sectlon of
the mocdel due to: |
Case 1. External loads and neclecting the relative dis-

placements of the Joints,
case 2. Relative displacements of the Jolnts,

Case 3. The abnove two cases added tcretrner,

are as follows: ’

O

Maxisum Lon=sftvAdin.l Siresses p.s.i.

Edge Case (1) Case (2) Case (3)
C -1350 +1 75 -025.

B +2000 ~Q:0 +1020.

A -1000 +1122 +122,

It is importunt to notice row hiwvh the stresses due to
Case (1) are, in comparison with the stresses due to Case
(3), and that the stress at A 1. Case (3) lias an opposite

sion to the stress at A 1n Case (1).
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Bending moment diagram on a transverse strip 1.0 inch wide,

at the middle of the model:

Case (1) Due to external loads and no relative displacements

tetween the joints: No transverse bending mcment
accompanies this case, since the external loads are

applied directly at the Jjoints,

Case (2) Due to relative displacements c¢f the jolnts:
MC = 1.2 <L
C Cl
= 1,20 x .01l 5W 7 TR
a ./, , '
= 017LW x 233, T/ B
= }1.065 lts. inch. P 4
- Maxirmu filler stiresses corres- )
B c c
pondine to this R.M.:
. gl !
f =+ I - i 5
- L.06 1 °
. 1065 13
=+ 1835 x 10° * 2 }
= $ 140, p.s.i. "lg. 3.25 B.M.D.

drawn on tension side

Tensile force p ., in plate CC!

due to relative displacements of

the joints:

cct

H

)

1
2.27 & = 2.23 x 20L1o¥

W
T 5.6 L0092

L0092} x 233.), = 2.15 1bs./inch run
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Correspondlin: direct stress

2.16
=%
1.0 x .13

= +16.6  pe.s.i. (tension)

In the above example it shculd te notlced that,
althouzh the German theory does not ccnslider any transverse
vendins stresses due to the joints displacement, yet the
maximum value for trese stresses 1s equal to 7140 p.s.ie,
1.e. 11174 of the maxirmam value for the longlitudinal stresses
which is equal to 1020 p.s.l.

A<comparison between the analytical results obtained
here and the experimental values for the same problem will
be given in. Chapter IV. For the sake of completion of this
comparison, the analytical values for the loints displace-

rments will be worked out here,

Theoretical values for the components of joints displace-

ment ¢

, Filg. 3.2l
Bpe Joints displacerent

In part (L) of tris example the value of A 1s glven by:
-4

A = Abc + Ach = 0,923 x 10 W inches

Equation (1) in part (L) gives:

-4
6ab = 00658 X 10 "‘1’ - O.,L57 A
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i

. -4 -y
0,633 x 10 W - 0.,Lh2L x 10 W

-4
L2l x 10 x 233,04

i

.00l{112 inches)

!

1

.00 97 inches (6, model
Bquation (2) in part (1) ~ives:

8 ~0.51 x 10% W + 0.2105 A

bc

H

.0067 inches)

H
{i

.0071% inches (6bc model

From geometrical relatlons between components of displace-

merts we get: -
Dep = L1e57 pe = 1.57 x .05715

= ,0112 inches (8, model = .0Ll1 inchres)
Apg = 5371 Bye + 1155 Eon

= .Olb5 incnes (Abc model = .0092 incles)

A comparison between analytical and measured values of the
components cf joints displaocerent is rlven on Sheet 8, Ap-

pendix I,

I T)



Fxample 3: To 1llustrate the procedure on & roof of a
large number of plates, a seven plate R. C. hipped roof”
given in Fip. 3,25 18 analyzed. The plates of the roof are
tangential to the semi-elliptic curved shell shown dotfed.
The roof carries a load of 20 lbs. per sq. ft. besides 1ts

own weight.

20 b/sq Ft. \waiform syper foad
[T TIioTe O TIIITIITIT

3 Vl//”*iﬁ—“ i |
3 W - .
/ “Dl ¥ \/\3:
2 ]/ . 7 8¢
7 .

[ r5.0

T -

Dead wt of 3.Cplates = 36 Ib[sq [t surface

Flates + ¥y 7 are 5.0 Mhrck

Fig. 3.25 ' ‘

9TEP 1. Case of external loads and non-yleldlng supports:

Equivalent uniform load on a horizontal projection

2000 + 5@.0 X i.lo_

t

iload on plate 2

20,0 + ©2.0 =72.90

3.38
1b/sq.ft.
" ""m 2= 20,0 ~ 36.0 x %f%%-: 20.0 + 37.l = 57.40
1b/sq.ft.
" " ]l = 2C.0 + 36.0 = 56.0
1b/sq.ft.

The analysis of this same roof, on the basls of the approxi=-
mate theorv is given in ref. Li.



50

Fixed End Moments:

F.E.M. for plate 2 (one end hinged)

f
]

wh? ek
w = T2.90 x 2—5— 137.2 lb. ft.

F.E.M. for plate 3

th 4
=1 - 57.10 x ZT%E = 212.5 1b. ft.

F.E.M. for plate [l

0
I - == 56.0 x 12 = 298.5 1b. ft.

Distribution Factors:

Joint C
Hember c k ck r
CB 3 1.0 .20 Ji193
CD L 1.03 L.32 .507
8.52 1.0
Jolint D
Member c k ck r
DC L 1.08 .32 .683
DD’ 2 1.0 2.00 .317

6.32 1.0
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The bending moments and shears in & transverse strip

1.0 ft. wide at the middle of the roof for the case ¢.
|-
of external loads and ignoring tle rela- 0 {
tive displacerents of the joints are////// 4
piven in Fig, 2,26, C//,///////3 :
\ t
%
! H
I |
2
B ’
| !
! \ ; f
1 s
al s .
72.3 ’5/5‘7-/’4: 574 Ib/sq. £t 56.0 /6/5?.)’(“i
; ‘ " l l ]‘ } ) T ) ] |
5 j }, f:Tgl_l L1 Jﬁ} N J_TBJ__J__L__L_ﬂ%j_T%
338D e B 77
| z
! !
¥. Dist. Coef.: 493 ,-507 .623 317 B
Carry o, Factors: 0.0 /2 C.0 E
¥ -/ l
¥. E, Moments £137.2 |-242-5 +242.5 -298.5
Final Moments :loo ,183.9|-183.9 ,288.6 -2884
! .
Shears in slab :r 94.2 /aa.oﬁfmg zrs-lmzzm ':
= . f
Reactions - 194%2 }443,I ‘
B N |
o D \_i
141-43.|‘u

B.M. plotted on
tension side, and ¢
Reacticns on Slab.



gmEPS 2 and 3. BPendins moments, T-lcods and stresses due to

relative displacements of the jolints:

2
i
B
N PL~. 5.27
B, Jetnts dfenlicur ont

m*-

“e tyrrnsverse dlsnlsceverts A's of the joinic rre scsumed
arcitrarily &s showr 1 Ri-, 2,27, Fer tilz roofl ardowith
e load avrmetrical as civer tre nmomber o f o the unboowr
vailues 1s two, narely:

Ve A g for plits Ooand is eunl Yo the relative dise

- N .- , 4 Y. B PO .
yInoorment, betwoorn Lhe

t). As for plate 3 and 1s equal to i}e relatlive dis-

nlacercnt btetween tre Joints C arnd D ot the 1ddle of tre ronl,

~~y

e fiyxad end rorerts éue to Ay srd D, of plates 2 and 3
respectively, will to corrccted for rotatlorn 2t tls jolnts

o the plate elemernts. After the ernd morents =re Aetermined

t'e 3 ond P-forces are then caleulatod, The regults of tYis

operaiton will ve +iven ferd p und 85 orn tre followlnm par-es




Bendin~ morents and stears In a transverse strip 1.0 ft. wilde

et the middle of the rocf due to 4 g: &
#ixed end rmoment at Joint C with joint D
3 free to rotates 4
El Ao > 3 '
?—— L) - =
“h. " Lo 5 =%, // Ci

A9 '

where hy, = 5,70 ft. ¢

A

I

A, T
o 388 e 702 e .. .E0 ]
i

/'__———Af\-—*\ |
BF L 4 2

‘M. Dist, Coef.:

Carrv c. Facters: 0.0 12 0.0
o e e e ——— * S — »
{
Fo. . Moments: o, +3.00¢, 1 0.0 0-0! 00
‘ | |
|
Final Moments: im0 #1405 |- [.405< - o.?so;!ro.zea, ‘
| |
Shears in slab:t.aeza‘z 36254, {1 2342, 234 0.0
| i
Reacticns: 4,362,,1 * .59¢ =, l,zjgsg |
6*1 PR Y
w® I, 7,/}3 0:26 7 |
I % U
ST o #-234,,‘2
Fie, 3,28 .56 >,
“.M. plotted on ¢.
tension slie, and ’
Reactions on Slat.
| 362‘*7_
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Bending rniomerts and stears In a transverse strip 1,0 ft.

wide at the mlddle of the roof due toA 5: é.
Fixed end nmorent at loints C arnd D JE
h}._‘,.ho | 4
3 |
!
; |
] i !
' .
4 !
- 5
B e i Ay T S .
A;_ i T — - ..\_..m-__.__.—’__". :
.o 382 e 702 S S LA
! |
M. Dist, Coef.:|___ 13,0507, INNNNL? 2T T '
Carry o.Pactcrs: _o0 ! _te | 0.0 !
F. be Momentss: ine aof—ass ~&,e44] 0.0
| |
Final Moments: oo #2 Mot 1o 2.1yt - 15504 #1455 o, ‘
| K i i
| ! !
Shears in slab: . .
l.SSIO—g .55/a“;1lt.518=¢3 5/8=3I 0:0 |
Reactions: L.sslaz.j tﬁoé7a% l~5*'“3 |
2 : /\Y "Q:
/ !
-5)8*3 i
Fir. 3.29 1.609 ok 5 |
R,¥, nlotted on ¢.

tension sidé, and

Reactions on Slah,

L5851 %y
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Forces acting on joints:

. . o X
Firures 3.30, 3.31 and 7.32 resypectivels ~ive tle forces
acting ut tre joints due to

™ ) 3 -~ - - + ~ :
cese (1). Bxternezl londs -0 1 n0o relutive O

case (2. Relative disrl.ce et Ag cf plite Yoe 2.
t Aa 1" L " 3.
43
B 379
«t,
094
17.3.50 = Case 1 .
234.‘;«_:
-59494-Z
36204,

- Case 3%

3+
The forces are in kips per ft. of the span, at the middle
sectlion of the rocof.
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P-loads on plates:

i
o
P

wres 5.

N

%, 3.3 and 3%.35 respectivelr zive the P-loads™
acting o the plste ele~ents for fthe thwree different cases

aitioned tefore,

15761570

(.83-.83),

“P-lcuds are 1.0 kirs . 2r ¢, of the span, ot tre middle sec-

tion of the rocf.
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"Free edge” stresses:

The "free edge"” stresses Iin the plate elements for the thrree
2 p

different cases of loading are smiven below,
4 J (<} o)
. 6 O ? )
% n o s 9 o
PA " | 0
" L ™M
+ H
-4l g ML '
PRIYIV N ‘ ' AL
- 330 -330.
+330.0 4 FiF.3.35 - Case-1l + 330
»
A "
L o )
v o Ly \:
> s ¥ .
+ T \Lj
/ \\T _S'ZanLz
! + 526,
; $ 26504,
Fig.%3.37 - Casgse 2 - 265,04
) ~
X ¥ -
@ 9 ST )
P s X :
RN . %
+ * ~
/ \c)—‘“o""'s
1
|
+?.‘;O.°‘~_z
+Hol. 4,
Fl¢ro3.72 - Zase 2 - ol =,

givar v irvs per sq. ft. at the middle section

4 ~ .
Strr 504 are

of the roof. Plus sign means tension,
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Tre "free edge"” stresses are distributed by the stress dis-
tribution method to include the effect of the edge shear

forces N actling along the Jolnts. The stresses after dis-

tritution for the three different cases of loading are given

below.
- 88.
+ 65,0
-7%0
+ 204, Fig.5,59 - Case 1 L 204.
i
) # 159,04, + /59 o2, :
-370.742
; |
]
*3cox + 360,05,
2
- 31324, F17.3.1,0 = Case 2 | 313, -,
#3728 3 + 3720 0n 3
’ "7')3 + 617 0t 3
512, 0t Fie.2.l11 = Ca:
3

-5/2'9‘3

. Stresses are in kips per s:, ft.



59

The parallel displacerents O of the plate elements

STEP L
for the three cases of loading are as follows:

2

% ~
" N
4 -
%
.‘z_. o 1 z .
o Fig.3.4% - Onse 2

Sd,(': ce O

5 are in ft.

Deflections A and
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Geometrical relations hetween components of displacerent:

—¥_ 4
€.

!
R

. c‘.‘ﬁ
Abc - LCOS('{;C Tt éhc} cot (20-¢)
Gbe
= rZ Y + &{(] 1'0‘?5
NIRRT e I
Ay o = 107 B g + 1,075 Byq A
A = —61 .+ __3.93_.9__] cot((S—X)
cb e coa(p=Y)
- &
_ dC .
= i C--{_c + T-T':-—,L—Z' ] 1. ,:;LB
Acb = .L’/“LE Cbc + 1092 6dc . - . . (:j:. ‘

adding (1) an2 (2)

A ::ﬁbc +Acb = 1.47 bra + 2.71F Bre + 1.92 8ac (1)



Gb C

A < S
cos (B=Y¥) Ca

Acd = [ 2

1

A1

-— 7 4
Acd - 1.Q2 c)bc + 1."-)'.-:‘ 6dc . . . . (3)
Adc = 6dc - cot (Y)

= LS > )

5’5“ édc 3 L] . 'y (uL)

eddins (3) ard (.):
Aa = ACd + Adc = 1.G2 Cip + S L1601 é’.tC R . . o (II)
Tquetions I wurd IT ¥ ross o Ave in terms o° the O's.
But our snalvticil sclocfcon cives the O's iIn tcorms of A g
end A 5. Herce we v oausmbionsg in v waxrowns Bg Anc
A,. Solving tleso twe equaticns we get:
A, = +,0089 ft. .
A, = -,082 Tft.

Consenquently:

H

+1.72

Lol

)

oG

a "

The positive sensc for tt
in the same

the opposite.

sense as were assumed,

kirs and ft. units

1t 17" 11"

e deflections mesns that trely are

and the necatlive means
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sTeP 5. Edye Stresses:
Substituting tre valuer for A, and By in the stresses ob-
teined in part 5, we ~et these stresses express-d in terms
of the applied lozds.
o< 5, = 41,72 ¥ips and ft, units
oL g = -C.84 1 v " om
The maxirim lpnvitudinal stresses «t the middle sectlion of
thhe mciel due to:
f:ae (a). LExternal loads nond nc relative ilsnlacements
of the Joints

Case (b). Relagive diaplaceme-ts A, and AL “etween the

Fig. 3.6

Longltucinel Stres-es in kips per sq. fte.

Ldge Case (a) Case (b) Caz (c¢)
D -37.0 +12 -76.0

C +45,.0 -3 +12.0

R -0 +102 +25,,0

A +2011 .0 -1C2 +956.0




CHAPTER IV
EXPERIMENTAL INVISTIGATION

1. DESCRIPTION OF THE MODEL:

A 1/M10 2 $.7. aluminum model was used for the
expepimental investiration of the distribution of stresses
and strains in a hipped plate structure. The general dl-

mensions of the model are shown in =icure la and Fioure

1f on Sheet 1, Appendix I. The load was applied at four
points on the model as shown by the arrcws on the dlasrams
in Flgures la and 1b. S.R. L resistarce gages (Tvoes Al

and Al2) were placed to measure tlre longitudinal stralns

at sections ¢, d, &nd e. (See Firures lc, 1ld, le on Sheet

1. These lonritdinal cages were placed on both slces of
the plate and connected in series *o glve the averane strain,
Transverse stralnsg were measured at el:-ht points by mcans of
Type A7 resistance gases., These gazes are represent o b
1v, 2'9

20, - = = « 8t as Indicated in Fleures lc, snd 1d.

Scale relation between model and nretotyre:
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Dimension Model Prototype
L 25.0 inches %% x L0 = 117 ft.
Q
H 9.l " Q.ly x 40 = 31 ft.
12
hq 2.5 " 3%% x Lo = 8.3 ft.
lag = hg, 505 " ii‘g’ X ’LO = 11.7 ft.
t .13 " .12 x .0 = 5.2 inches

2. RELATIONS BETWI'TH 3TRNSSTS AND CZTRATYS

PROTOTYPE:

T oML AND

Georietrical similaritv holds hetween the model and

ti;e prototype, all the dimensions of the nrctotype belng re-

duced to the same scale 1/10,

(a) Relation between deflections:
L. model L 1
ale of Mcdel = : = e— = =
Se © L prototype Ly n =710
For a rear: as shown in FPiec. L.2 the deflection W
at the middle is #iven v ¢ * I
o R
6 = NIJ
[[OBET Flr, el
1y 3 "
5 model _ &5 - L . p * p
& prctotype % p Wp L p Pyp Tm
- ® m _ ‘Jm ° ER 1
L I ) 6 - ry E hd .r_l. * L] L] » (1)
p ”O [ m

1
- Lo

where n =

AN




Sm
To et = n, we should have:
, % p
[>) W )
%ﬂz:ﬂ.#.%nn A 3
P p m
E
W= 0, pR
ioe. Wm = \Np A E n . . e . . (5)
P
Therefore, if we satisfy (3), we will get 6n1= n = 1
‘ T8, lo
end will have complete geometricrl si~ileritye.
(b) Relatiocn between strains:
e f E W L=_ E
m.m, p_.m 5,2
er O fp L2, Wy Ol
o, Zp o,
—T'Eln. n2 . L] - [ ] Q(LL)

If (3) 1s satisfled, exrression (") will be equal to unlty.

This 13 evident since we have -cometrical sinilarlity.

(c) Relntion between stresses;

o P .
fm o Lo _Ym 1
fp L zm "Vp .'v\e,—p n 2 - - . - . ( 5 )

Substituting the value of W, from equation (3), we get:

T E
= =g N (-9
p p

Equation (6) gives the relation between the stresses for

case of peometrical similarity.
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(=3
10.5 x 10 p.s.tl.

For E, = E Aluminum =
and Ep = E Concrete = 3,0 x lébp.s.i.
we et

2.0

f En,
-—-n_’l = e— = 1—0—'_5. = 5.5 times
f Ep

1.8.‘3500 p+.s.i. in model are = 1000 p.,s,1i, in prototype.

Writing condition (3) in teerms of figures we pet:

Vi E
m_m oz _ 10.5 1, _ 1
Wy B, T3 o) = 157

j.e. 10 1lbs. on model are equivalent 1 terms of eaqual

strain to 4570 1bs. cn the prototype.

2. RELATION RTTWETN MTAGURED STRAINS ATUD CORRESPONDING

- STRESSES IN THE MODEL:

4

For a plate element of an elastlc matcorial under
the action of principsl stresses as shown in Fis. 1.3,
Hoo 's Law gives the following releuticns tetween stresses

and strains:

fx £,
ex -E:- ﬁ. ‘_E . . . » 'y (1)
T f
= L o M. X v
ey 3 /A E . . . (2)




f
/‘A.exz /‘A-_E}.:._/“.._% . . - 0(3)

Adding (2) and (3): -

£ ]
ey +M .o, = 7% (1 - 7)

or

Consider a small rectanrular element of a plate
at point n, on the middle sectlon of the model Fic, b, with
its sides parallel to the twc axes of syrmetry of the model.
Due to symmetry, such an element w11l have no shear stresses '
acting on 1ts sides, and ccnsenquegntls 1ts sides will he vpnrrel- (
lel to the two principal axes of stresses at trhat noint. TIf
we denote the lcn-itudinal fiter stress at thé tow of the
plate element by f?1’ and that ot the tottom by fyg’ n~d

write down equatlcn (L) for both sides, we ret:
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b
Ty, = 1~ M% (éy, + /* ¢ ©xa)

E
fYa = 1. %

(®y= + ST exp)

Adding and diﬁiding bty 2 we get:

~ -

E
ey, v £y, = Tom | eley, + ey ¢ 5 (ex, * exg)|  (5)

In these equations tensile stresses und strains are con-

a
sidered positive. Eqvation (5) will »e put in simpler and
more convenient form for use 1n exverimental investication

after the following discussion:

Tne forces causlne direct stresses, which act on

the plate element at point n, are shown on Fi-~. "aDe

XM
X
N
2
e
e
/ 1
G
L 5
ﬁ
x4
pde
'.l

Fy : 13 tre longituiiral direct force due to the
external Lo ding moment acting on the —iddle sectlon of th
rodel. It causes uniform conpression across the entire thick-

nass of tie elament cmsidered,

¥ : *3 the trensverse Airect force due to tie ten-

sile or compressive forces actine {rorm the jolnts, cn the

plat=ss ir Le transverse directlon.
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Mx : represents the bendlng moment acting on the
roof slab in the transverse direction, and caused in thls case
by the relative deflection of the joints.

Referring back to the analytical solution of the sare problem
in example 2, 1t 1is useful here to indicate that:

(1) The lon~itudinal direct stress f, at the middle
plane of the top plate, due Lo Py, is equ2l to =925 p.s.i.

(2) The portions of the transverss direct stresses
fx, and fx2 at n caused br the direct transverse force Py, are

equal to:

£ = +15.40 p.s.t.

Hy
1

+14.40 pn.s.i.

(3) The portlons of the transverse direct stresses

f and f. , caused hy the transverss bending moment Ny, are
Xy Xg x

equal and of opposite sicns:

f"xl = -1LL.].+O plsiin

f"x2 = +1,,0 p.s.1.

1] 7’
=~ X 1‘- *
(L) Tre ratlo of e - + =2 = 4 01,15%

N

[
Q

Th1s indicates the ver: small effect that the direct force

Fy has on the stresses, conpared to the effect of Mx or Fy'

In equaticn (5) each of the strains ex, and ex

can be split up inte three narts as shown In Flaz. .6,




Straeins due to:
e, ‘%'é e, ?L | _'\$\ \\\\

O\

|

—

1 '

Fif’,o ['_o"‘
Transverse sgtraln

Now it can be easily noticed that:

(1) The portlion e'y due to direct transverse
forces Fy 1s ne -legirle compsared to the other two components

e", and e"; due to My and Fy respectively,

(2) Tve strains e", and ey due to My are equal

and opposite.
Therefore the term (®x;, + ©x_) in ejuation (5) can be put

equal to:

-

" 1]
®xy + ex, = (e'xl +ety )+ (elx, ¥ e'x;) - (e"lxl + e"'xz)
= ne + i
° T x © Xy
/.A
= —— +

Substituting this in equation (5) we rpet:

1/2(fyl + fYa) = E/E(ey1 + e_ ) e e e . e (8)

Te
The left hand side of equation (%) represents the longitudi-

nal stress at the middle plane of the plate. The right hand




side repressents thé averege of the lonltudinal strains
measured at the top and at the hottom surfaces of the plate.
Equation (6) can also be ottained directly if we put fy =0
in equations (1) and (2).

In our investigation, as far as the lonnitudinal
direction is concerned, we are interestec¢ in the longitudi-

nel stresses f_ acting at the middle plane cof each plate.

y
As for the transverse direction, we are interested in btoth

fx1 and fXg’ i.e. the maximum positive and negative flikter

stresses. For thils reason the longlitudinal straln gages, used

to measure the longitudinal strein at a point, were fixed on
the model, one on each side of the plate, and then coupled
together in series. The reading of the strain indicator, there -
fore, gave the averase strain l/2(eyl + eyz). Using equation
(6), £y (averaze) = 1/2(fg + fy,)1ls readily obtalned. In the
transverse direction the gazes rn hoth sides of & plate were
wired independently, and tus glvinc the transverse strains at

t+he outer and inner surface of the roof separately.

'+ SUMMARY CF EXPFPRIMEMTAL RE3TLTS AND CCIPARISON "ITH THzO-

RETICAL VALUES:

The distribution of longitudinal s+trailns at the

middle section of the mcdel, for a total load of 222 ., 1bs,
(58.3%5 1bs, at each point) is shown in Figure 2a. on Sheet

2, Appendix I. The correspondinc transverse strains -32, =96,
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+1,0 and +1;3 micro-inches are rccorded in Firmure 2b. The
difference between the readinps on the top and hottom of
the plate are due to the transverse effect of the lon~itudi-

nal strains. The true velue of the transverse straln 1s the

averaze or

] A '
.@.?__E_JLJ:.Q = :111 and 2'__.5}.4;1 - 1119‘

Tris checks quite closely with:

(-32) - (1/2)(78) = =108 micro-inches/inch
(+14,0) - (1/3)(78) = +11. " " n
(-96) - (1/2)(73) = =122 " " "
(+1L3) - (1/2)/78) = +117 " n "

where (1/%)(73) 1s Poisson's ratio (1/3) times the longl-

tudinel strain =73 micro-inzhes.

The longitudinal strains at gsections 4 - 4 and
e - e (see Figures 1ld and le) are shown in Flr~ures 3%a and
3b on Sheet %. Transverse strains =t sectlcn 4 - d are &l1so
shown in Figure 3c. These dlasrams show that the action at
section d = d 1s similar to that at the middle section ¢ - c.
In fact the strains at these sections are nearly proportional
to the bending moments. At se;tion e - e, however, where the
translation of the edzes is small, the distribution of strain
approaches more nearly to that for ordinary beam action al=-
though some effect of change of shape of the cross-section is

apparent,




The vertical displacements of the edges are shown
in Filgure }{ and the horizontal movements in Ficure 5 (see
Sheets I} and 5.) It 1s interesting to note that the verti=
cal movement of the elements AR and A'B' 1s upward which
agrees with the theoretical value that was obtalned. This
motion 1s comparatively small, but nevertheless, 1t is very
significant. The horlizontal movements of edges B and B! are
of the same order of magnitude as the vertlcal movement of C
and C'., As shown on the diagrams; the calculated values of
the displacenents (see i1llustrative example 2, Chapter I11)
agreed quite well with the measured values.

The theoretical and experimental values of the

and transverse '
1ongitud1nal/stresses are shown in Fipures 6 and 7 on Sheets
6 and 7. It should be noted that the experimental values
indicate clearly that the structure does not behave as a unit
according to the ordinary beam theory. The actual measured
-longitudinal stresses as shown in Figure 6 are fairly linear
across each plate element, htut are not proportional to the
distances from the centroid of the entire cross-section., On

the other hand, the longzitudinal stresses obtained from con-

sideration of plate action without 1nvolving the effect of "
; (12)

the translation of the edges, as discussed by ¥Winter and Pe
are considerably higher than the measured values., The measured
stresses at edges A and A' are oprosite 1in sign from the com-

puted values for plate action when no translaticn 1s considered,
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However, when the relative displacements of the edzes, as
shown in Figure 8, were considered in the solution nroposed
in thls thesls the calculated stresses and displacements
agreed much better wlth the experimental results. 4 graphie-
cal comparison of the stresses for tle different assumptions
is shown in Figpure 6. A comparlson of the theoretical and
measured edre trunslationes 1s shown in Ficure 8 on Sheet 8.
The correction disgram for the effect of transla-
tion is shown separately in Figure f. It can he shown that

i1f these values are multiplied by a proper constsnt and sub-

tracted algebraically from the values o*talned by the ordl-
nary beam theory for the entire cross-zsccticn, the results
will agree closely with the experimentsl values., On the other
hand, 1if the stresses due to translasticn are multiollied vty a
proper constant and added algebraically tc the results oh-
tained from plate action which neglects the edge displwcements,
the combired effect agrees closely with the experimental re-
sults., This comparison, therefore, brings up the question as

to which analytical approach may be desiratle, & question which

will be discussed in the next article,

The effect of translation of the edrmes has also been ‘
checked from the transverse stresses., The theoretical distri-
bution of maximum flexural stress in the transverse direction

at sections ¢ - ¢ and d ~ d is shown in Flgure 7. The measured

values of the stresses are indicated ty circles. It can be
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seen that the agreement 1is qulte satisfactory and confirms
the remarks previously made as tc the importance cf reletive

translation of the edges.

5. DIFFFRENCE InPWEREN HIPPED PLATE STRUCTURES ATD CRDINARY

BEAMS @

In case of hipped plute structures tr.e trichkness
of each plute element 1s relatively small corpared to the
other dimensions of the cross-section of thre structure. Cor-
sequently the section of tre structure chanres 1its shape under
loading, and the part of the load carrisd by each plate ele-
rent varies accordine to the position of the load on the cross-
section. We also have forces and bendins moments actinc in
the tranaverse direction. The 1dea of plane before deforma=-
tion remaining plane after de“crmation :ioes not hold for the
crosas-section as a wrole, s¥cept under very sprecial cases of
loadine, b»ut it holds fairly well for each irdividual plate
element, especiallr for cross-sections awev from the diaphragm.
See the measured longitudinal stratins riven on Sreets 2 and 3.
Wnen we speak of a member behav?ng under load as a
beam, we are actually putting on it several restrictions,
The thickness of the member should he lsr~e encurh compared
to the other dimensions of the cross-section so as to keep
tre cross-section frcm changing its shape w-en the member 1s

AAAAA

deflected longitudinally under lo=a'ns. Tre section will




iust move parallel to itself and the whole cross-sectional
plane before bending.will rerain plane after it. Yo trans-
verse bending or deflectlon can exist under the limitatlions
for beam actlion, otrerwise the section will chanre 1ts shape.
The longitudinal stress distribution over the cross-section
1s not affected by the manner Iin which the loed 1s =voplled,
or its point of application, so longz as the load 1s syrmetri-

cal with respect to the axls of the crcsse-section, Fl-. a7

4 L AN

Stear Stress

D/f‘gra/r/ Fig. )"”.7

The srare of cach plate element of thre ~ember from the
applied lozd 1is a ccrnstant ratio of the total load, =& ratio
which is defined by ti.e share ol the same plate elerment from
the total shear stress dia-zram on the croes-section., Ream
action can be a very scecial case of a “Inped plate struc-
ture under the following conditions:

Exterral forces are elther line londs or ccrncen-
trated loads acting only at tQe edres or distribhuted lowds
which are ta-zentlal to tre plutes, and distrivuted in a
special —armer such that the resultant P-load on eacl. indi-
vidusal plate 1is rroportional to 1its corresponding share of
the shear stress MWa~rem o the whole secition, assumed to

act ac & bLear, Any Sistributed lozd cr conrentruted load




acting in between the Joints will result in transverse
bending, and consequently, a change in the shape of the

ecross-sectlion,

J Fire 1.3

From this discussion 1t is evident that, 1f we
try to solve a hilpped plate roof similar to that of Fig.
lL.8, by beginning from the preliminary assumption of 2 beam
action and trvin~ to correct it to arrive at the stresses
of a hipped plate structure, then we will have to apply two
corrections for the stresses ~ot from team action, namely:

l. Stresses due to the difference ltetween the
plate loads P included in the assumpt'on of beam action,
and the plate loads P ot from the actual external loads.
Under the preliminary assumition of heam action a certaln
portion of the tctal losads wi!ll have to bte carri=sd YL+ each
plate elerment wrichi 1s not necessarilv tre case. FHowever,
bheam action can te ac-uired %+ agpplying certain restraining
line loads along tne Jjoints, wrich must be removed ©v means
of the flrst ccorrecticon. The analytical wcrk for cerriving
out thils correctlion is very similar to that used'in correcs-

ting for the relative displacements of the Jcints.




2. Stresses corresponding to the change 1in the
P-loads due to the relatlve deflectlions of the jolnts must
e determined, since the beam action does not take care of
the transverse deflecticns. The procedure for thls carrec-
tion has already been dlscussed bhefore.

It can re seer. from thie abcve discusslon that the
amount of the analvtical work will te increased v trving
to solve the problem from the beam actlon appreoach, in as

mucr as we cannot escare ti:e necescar - ccrrection for the

relative displacements or the inints,




6. CONCLUSIONS:

The results presented in this dissertstion 1llus-~
trate and emphasize the importance of a careful examinaticn
of the baslc assumptlons of anv trecry bty ex—=rimental tects
before developling an analvticnl soluvtion, The expe~irmertal
study of a hipved prlate structure by means of a nodel prc-
vided the fcllowing conclusions: P

() A (2/,3.7.) aluminum mocel 1s toth ceonvenient and satis-

factory for studyins t-e structural acticn of hipped plate

roofs.,

(b) The results obta’ned from tests on a 1/.L0 scale aluml-
num rcdel show that tre chanre in shape of tre crcss-gsection
due to translation of t e edres is Important. It appears

to dominate the structural action over tie middle 2/3 of tre
span.

(c) An analysis by tie *hlere and Crasermar thecorr as pro=-
posed by viinter and Pel, or by bteam action, does nct arree
with the test results unless tre velues ottained by such as-
sumptions are corrected nr the effect of relative edge
'translation. The lorcituiinal stresses c*tained from the

Ehlers and Craemer theory are considerably hi~her thzn the

measured values. Tre followinr tatle gives the maximum longl- i
tudinal stresses at tre middle section of the model according

to:



™
¢
20

case 1. The Fhlers and Craemer thsory wnich neglects the
effect of change of shape of the cross=-section,

case 2. The experimental values ohtained from tests on the
model.

Case 3, The method of analyesis propored In this thesis which
considers the effect ~f tie change in shape of the
cross=-section,

Case L. Bear action theory.

Fig. .9

Maximum Longitudinal Stresses p.s.l.

Edge Case (1) case (2) Case (3) case (li)
C -1340 -320 -925 =537
B +2000 +71.0 +1020 +146
A -1000 +378 +122 +1102

(d) The stresses in the transverse directlion which rule
for the design of the plates as a coentlinuous slab, are even

more seriously affected by edpe translation. The values Ob=

tained from the German theory are counsiderably lower than
the measured values. The necessary correction for such stresces
mav be up to 320% (see example 1, Chapter II71)., In a case of

concentrated loads at the joints (example 2, Chapter 111),



while the German theory does not consider any transverse
stresses due to the joints displacement, the maxlmum trens-
verse stresses were experimsentallv found to be 15L% of the
maximum lon~itudinal stresses, The following table glves
the maximum fiber stresses due to transverse bending in a
strip 1.0 inch wide at the mi-dle of the mecdel according
to:

Cage 1, Tne Ehlers and Craemer theory.

Cusz 2. The experimental valves ortained frcm tests on

the model,

Crse 3, The method of anslysis proposed in this thesls,

Vaximum Transverse Strcsses p.s.l.

Point Case 1 Case 2 Case 3
a 0.0 71170 1.0
e 0.0 31260 110

Similarly, the atove discussion holds true for the case

of distributed loads applied tanrentiallr to the plates,
{e) It is recommended that more extcnded Investimatlions
ve made bty similer model studies, Sorme of the rcints that
are worth investigating are:

1. Effect of intermediate diaphrarms.



Behavior of models just before faillure,.

D

I'fect ¢ chance of t-ickness t, width h,
and span L cf plates elroments, on the be=-
havier of the model,

Effect of the srape of the cross-section
of a roof on the bhehavicr of the model,
Study of reirforced c ncrete models,

Deep beam action.

Effect of additional spuns in loth direc-

tions.,.




APPENDIX I

1. DIAGRAMS AND FYPWRIMTNTAL DATA.
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Theoretical and Experirental Vsluves of Fice Deflections

Total Load on Model = 273, 1krs,

Al——— 2
Deflactions at the Middle n* thre Model
Deflections Theoretical Cxperimental
Vvalues in ircres Values in Inches
Eor o Neloish | .00L12
& v .00l a7 . .ol
B og L0117 .0097
b g .0117 . .0114
Brirgn .0105 .J062
By L0112 .009¢%
Aan 0112 0111
B L0173 .N131
Uv. of F%chi, ié ~aafar
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APPENDIX II
BEAM ACTION THEORY

1. DISTRIBUTION OF FXTERNAL LOADS TO THE FLIMINTS OF A

SECTION OF A BFAM:

Consider the forces acting on a small length dx of a team,
which 1s loaded with a load w per unit of lensgth. The
cross-section of the beam may be of anv shape as shown in
Fig. 6.1, and it is required to determine the amonnt of
tre vertical shear force V' acting on a certaln portion of
the whele cross-sectional area, If V is the vertical shear-
ing force acting cn the whole ercss-2ecticnal arez, then

v

the ratio 7 will provide a messure for the amount of the

external load carrled by that certain portion of the section

of the beam,

fw.dx
[rﬁTrmﬁrﬁTﬂ ;
*}—ﬂl—k m —'——-)‘t' e
— \ N z// . ' - 4
A A
18 x'\\g_dz ! / /// ,"(/ oo
v T B s
{| \\ 5/2 ,’/
Lo |
-1 I I - v B i}
| o 1
A |
Shear stress Cross-éection
on cross-gsection Fir, 6.1
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following notations wlll be used here:

The intensity of the vertical or norizontal shear stress
at a point g in the cross-section.

Statical moment of area about fthle neutral axis,of the por-
tion of the cross-section bevond the horizontal layer
containineg the point g.

Width of the layer containing the point g.

Moment of inertia of the whole cross-section atout the
neutral axis.

= Total horizontal shearing force acting on side 12 on

an area equal to b.dx.

Other notations are shown on Fir, £,1.

Consider the forces acting on the element 1122, and denote

the moment of the normal stresses acting on becth sides 11

and

put

and

22 about poilnt m by A say.

n

N o= Jm - r) e (e - )
= (f,- fta) - % - dA . (c - ¥)
1 . n n
= < (fty- frg) o c'/y.dA -‘//yz . dA]
L e o
1 _ My =M am
S(ft,- Ttg) = 252 = "¢
n
J veda = Q
£,
//ya.dA = I' = moment of inertia of hatched
2

area onlv about the neutral axis




104

.'.?=QIM(C-Q-I') A & B

Taking moment of all the forces acting on the element 1122

about point m, and droppling terms of srmaller rarnltude, we

get:
Syg * (c = D) ="nN=V"', dx e e . e (2)
bat
Siz = Vb edx = % % + b . dx
45
:!—Q.dx
A

Dividing equatfon (2) by dx and substituting for the_values

o N and S, we zet:

~

v
T e - D) = % (¢ «+ 7 -~ I1) =V

V'=%(I'-’w) e e . . (3)

Squation (3) rives the mamm?!tude of the vertical shearing

frrce V' acting on the cross=-sect’onal area of the element
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2. DISTRIBUTICN CF ¥YTERNAI LOADS TO THE PLATE ELEMENDS

OF THF MCD=L UNDER THE ASSUMPTION OF BrAM ACTION

315“ )
L
TF o ey
i v c
00 3
B | -~ / -
~ 08 Y ANeddral azus
Y T 2ean e T T
‘ ! (beavs Mgavy)
} 2\
N
s o o‘
0 N
N :

Area of crosse-section:

= 2 x 4325 + % x ,'155 = 2,015 1inch?®

Moment of area about CC':

. ~ -~ 3
= 055 x 1.55 + ,22% x 3.1% = 2,30 inch

\
Center of ~ravity:

- _ 2.59
T T o = 0,4‘» s v}
V4 5,015 1.1135 1inch

Yoment of inertla:

3
(3.5 x 22 + 155 x 1.1:352)

L. = X 33 .
3
+ 2(.2&_2 X —1;-].-—;—8- + .,qC;l} x .!?'952)

2.50°
2(.13 x ;T%— + ,2325 x 1,6095%)

+

3,637 inch’
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Portion of vertical load carried by side plates AB ard A'P':
Statical moment of hatched area atout the neutral axls
1= 2(2.5 x .130) x 1.695 = 1.10% inct

Moment of inertia of hatched area atront N, axis

3
2(.13 x 2229 + 13 x 2,50 x 1.695%)

T
12

n

i

4
2,208 inch

7.D = 1.10% x L5 = .91 inch

Portion V! of shear carried by side plates AB and A'B', from

total shear V carrled by the whole cross-section

v'=lI]-(1'-QD) P €Y

= 37%37 x (2.208 - .1191)

vt o= 0172V

i.e. under the assumption of beam action, plates AR and A'B!

carry o.172 W, where W 1s tre total load on the model.

3. LONGITUDINAL STRFSSES AT THE MIDDLE CF THY MODEL ON THE

BASIS OF BREAM ACTION:

These stresses are computed for comparison with stresses due
to other analytical procedures as shown in Fig. 6 on sheet 6,
Appendix I. The total load on model is 232, 1hs., applied

as shown In Figs. la and 1lb, on sheet 1.
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R.,M. at middle section of model

= g-izl’i x 235 = 1340 1bs. inch

Moment of 4inertla of cross section

I = 3.637 inch’

Stresses at edrzes A, B and C:

+ HO2

-
it

]

+1102 p.s.1.

i

r, = +x222 X LS

- -~ [ + 15’40 . -io
ST X 5 P.s;

1350

—<2= x 1.1,%25

3.637

it

- 537. p.s.i,

fC

e SONE RELATICONS RET.THN FMIBFR STRTSLRS AND DEFLFCTIONS

IN BrAMS:

From the theoretical Adtscussions riven in Chapter II, it 1s
evident that the edge forces N acting along the edpes of any

plate element vary ulong the span In the same manner as the

"free ed>e”™ moments due to the P=loads vary. Therefore, if

tte P-loads acting on a ~lven plate element vary as a sine

curve, the corresponding "free edee" .bending moments and
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edge forces N will vary as a sine curve. Consequently, for
this case the longltudinal stresses alonc the edres of the
plate element will vary as a sine curve. Similarly, in the
case of a uniform load w over the wnhele span of the plate
elament, the "free edre" bending moment, the edge forces N,
and thre 1ong1tgdinal gstresses along thé edres of the plate
will varv as a parztola. In reneral, the lonpltudinal stresses
nlonm the edpes of & plote will vary in the same wayv as the
"free edve" bendin- ~orent dlacram due to tre Felosds. The

deflection & st tre imlddle of a plate eler

(@]

nt iIn its plane

due to the Peloads and tre correspondine edre forces N act-

ing on the suld pl-te, will he given here for three kinds of

P-loads.

Cece 1., P-lo=ads varv as a hnlf wave of a sine curve:

[ T Sacf",f,; I R
! B I I A e e
' 4 <
IJ. DEER v
R A A—
[
Arrect slresses / F= é?‘m%g

Pcr 2 simple beam loaded as shown 1In Fir, £JL with a dis-

tributed load varving as a.nalf wave of a sine curve, the

%

rendins moment and consenquentlv the maximum fiber stresses

due to rending will alsc vary as such,.



109

Deflection at the middle is gilven by:

f . dx
d¢ = n
where f = difference between filber stresses at top and
bottom of any section x = f  sin E%

f, = difference between maximum flber stresses at

middle section.

L = span of each plate element acting as a beam

between the end diaphragms.

h = depth of the beam.

Eh

L ]
*
O
i

i
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Case 2. Uniform P-loads over the whole span:

Maximum fiber stresses vary as a parabola for this case.

Cross Secf on

ﬂ'I'T—n_l'TT_[T'TI'TITTW‘T"-!_TT IRVEENRIAD

. L ~

o éc ‘: 7%(:{ Fi T o 605
A
— 2 '

Considering Fils., £.5 alicve the difference retween the top
and bottom filber estroszes at any section is riven by

L]
il
)

Deflection at the :iddle i3 ;7iven by

d A
Lox/(g-—X)d”rb

Working out the above integral we get:

£ 2
_ To L
60 = " TR . . . o (2)
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Case 3. Two concentrated loads at one third pcints of the
t

span:
Crcss S_—,rf/.o L L
/"7——‘ 76"- B '—*——— /3 i /3 , L/a———a-q
- e e
! |
/ B H {
( N \\ { Figo 6.6
4/ e
Lo
divect sfresses
;Y C
6, = /\ - 49 +/X c 49
a b *
L L ;
: zf 2
= -0 dx X « 0 dx
/ T X ER +/ Th
o
f
.- 92 g= 27
= E"” L 21 . . L (5)




APPENDIX TIII

COMPARISON OF THE THEORETICAL AND EXPERIMENTAL STRESSES
AND STRAINS TN THE MONEL, "ITH TH™ RASIC TAUATIONS OF EUI-
LIRRIUM '

1, CORRECTION DIAGRAM FOR STRESS®S NDOFS NOT DISTURB THE
ERUILIBRIUM CONDITIONS:

The correction diagram for loneitudinal stresses, for the
effect of Joints translation, 1s 3hown separately in Fir. 6

on Sheet 6, Appendix I. This diagram reprcsents the neces-

sary correction in the longlitudinal stresses, due to the
relative translations of the Jjoints, which should be added

to the values obtalned from the Craemer and Ehlers theory to
obtain the longitudinal stresses given by the theory proposed
in this thesis. It can »e noticed furtiier, that the latter
values could be obtained if the values of the correction dia-
gram are multiplied by a proper constant and subtracted alge-
bréically'from the values obtained by the ordinary beam theory
for the entire cross-section., In fact every one of the above
analytical solutions satisfies the equilibrium conditions,
and the correction diaspgram gives only the readjustment in

the distribution of the longltudinal stresses as we change

from one solution to the other. It should be noticed that
the relative translations of the jo'’nts chanrfe the forces act-

Ing on a plate element but do not change the resultant shear

L]

112
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force or bendlng rioment acting on the entire section which
are determined by the initial equilihrium conditlons. 1In
other words the total resisting moment or the resisting shear
force at any section of the entire structure due to the rela-
tive translations of the Jjoints 1s always zero. The correc-
tion diagram goiven on sheet 6 will pe cliecved here for this

condltion:

tzdesnsion

vt
—

N

- 224>

—

3
-+ 2575 =

N

Fig. 7.1. Correction dlurran
for longituiinal stresses

Area of plate elerents:

A = #13 x 2,50 = .325 ilach

Ape = Ager = .13 x 3.5 = 55 tneh’

Summation of longritudinal stresses:

T f.dA = 1.0 x Ji55 + 2 [,h55(1-0:§-24l N 5,25(2°i75£2-2h)}

I
[ ]
=
N
oal
L]
\J1
O
=
+~
+
[
(.
(@
O
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‘1

Summation of moments about any axis CCt, Fleo, T7.1:

1.0 ~ - 2.2 r .
ZMcc' = "2 X .:,_LS:’ X 1 388 - 2)4- x .)4-35 x - 388 =2
= 1.62 - 1‘62
= 0.0

>

S, correctlion diasram does not distrub the equilibrum condi-

tlions,

2. CHTCK OF PROPOSTD THECRTTICAL STRESS DIAGRANM AT TFI MIDDLE OF

TH® MODEL BY BRUILIBRIUM CCNDITIONS

< \ 'oo‘
~ X !
St =l
& \Hloae
:\". Nt sves= tension
A . \w
Filer, 7.2 w122 fooot

a) Sumnmation of lc:~-itndinal stresses:

< f.dA = - 525 x 155 = (925 - 1020) x .}455

it

+(1020 + 122) x .325

~L21- L2l + li6s + 232 + 10

i

i

- 32 + 837
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The difference of EEE = 0,.6% is apparently within the ordi-

nary marzin of errcor encountered in the use of the slide rule.

LT f.dA =0

») Summatlon of moments about any axis CC', Fle, T7.2:

.

ZMCC‘ = -925 X Q}J.SS X bza—((:;- + 1320 X .»LS}

+1020 x .325 x 2.713 + 122 x .3%325 x 3,517

=26l + 582 + 598 + 11

Ll

+1357 1hs. inch

1

External bending moment at middle sectlion

= 252~4x 5250 = +1350 1bs. inch o.k.

2, CHICK OF EXPHRINFNTAL STRWSS DIATRAM AT THE VIDDLE SEC-

TION CF TH= MODEL:

| ~78.0
- /‘7L_

micTo /;rclwes/mc/!

Plg. 7.5 s&vera e strain
at the middle section
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a) Summation of longitudinal stresses:

The unit strains e in micro-incrcs pecr inch at the middle sec-
tion are given in Fic, 2a on sheet 2, Appendix I. The average
of the unit strains e on both sides of the middle section are
shhown 1In Fig. T.% above.

Zf.dA = EZ e.dA

where e= % ) (Hook's Law)

approximating the curve Joining the measured values of strains

by a parabola we get:

< e.dA = 75.3% x J155 = 78.0 x 1455

+ 70.5 x 55 + 2/3 x 2 x .:55% x 2

+ 70.5 x .Z25 4+ 36,0 x .3%325 + 2/3 x 3.5 x .325 x 2
= - 3,,25 = 35,50 + 32,10 + 1.213 + 22.92 + 11.70+1.516
= = 69.75 + 69.149
= 0.0 about

k) Summation of moments about any axis CCt', Fie, 7.3:
S M= E «2e.dA.2

where z = distance of elemental area from axis CC!',

Ze.dA.Z = - 3,25 x ;.38 - 35.5 x 3.753

+

22,10 x 3,127 + 1.213 x 3.4

+ 22,92 x 2/3 x 2.5 + 11.70 x 5%2 + 1.516 x 1.25
283.6 + 15.505

= 129.095

it
'




Y

.M = 129,095 x E
129.095 x 10.5 x 10° x Tlc')'s

1357 1lbs. inch

External Bending Moment

= 116.7 x 235

1360 1bs. inch o.ke.

"




