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ABSTRACT

Team-based learning (TBL) is common in engineering courses, especially in introductory
courses and senior design projects. Even though TBL provides students with benefits, not all
students are able to benefit equally from the TBL methodology. Coming from vastly different
backgrounds (academically and non-academically), students of a team may have different
perspectives, aspirations, or personalities. This paper talks about the different models created to
predict team performance, clustering students based on their characteristics, and explaining the
relationship between the students’ latent traits and their characteristics. The dataset that is used in
this paper includes student personality inputs, self-and-peer-assessments of teamwork, and
perceptions of teamwork outcomes. The data is available via Tandem, a team-support tool
developed by the Center for Academic Innovation at the University of Michigan. Using this
information, we developed several Bayesian models to predict if a team is working well, several
clustering models with the aim of finding ways to group students into teams more effectively,
and a few algorithms to predict Q-matrices which are crucial in explaining the relationship
between latent traits and students’ characteristics in cognitive diagnostic models. These models
are able to help faculty members and instructors to gain insights into finding ways to separate
students into teams more effectively so that students have a positive team-based learning
experience.

Keywords: Bayesian, cognitive diagnostic models, engineering education, Tandem,
team-based learning, unsupervised learning, Q-matrix
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CHAPTER 1.BACKGROUND
In the 1980s, a new learning method, team-based learning (TBL), was first introduced to

solve various problems that arose from large class settings [1], [2]. TBL was first implemented in
business schools [1], but team-based pedagogy can now be found across engineering, medical,
and social sciences programs all around the world. Team-based work can provide students with a
wide array of benefits, such as training students to become leaders, providing a platform to give
and receive feedback, sharing ideas, and working with others with different backgrounds, both
academically and non-academically. In most cases, TBL is useful for students with no working
experience since it can serve as a microcosm of the real world and prepare students for the
workspace.

Even though TBL provides students with many benefits and opportunities to learn
multiple skills, not all students are able to benefit equally from TBL methodology. Since students
of a team are usually from different backgrounds, each student may have different perspectives,
aspirations, or personalities. For example, in engineering education, it is common for some
students in teams to be perceived as not contributing fairly to the team deliverables by the rest of
their teammates due to poor performance and low quality of work [3]. Gender has also been
found to be related to unbalanced work distribution in engineering teams where women may do
more work related to planning or communication, while men may do more technical work [4].
Thus, it is extremely crucial for faculty members and instructors to address these issues properly
to create a positive teamwork environment and learning experience for their students.

In order to allow students to reap the benefits of TBL, teamwork assessment and support
tools such as Comprehensive Assessment of Team Member Effectiveness (CATME) or Tandem,
a team-support tool developed by the Center for Academic Innovation at the University of
Michigan [5], can be used to monitor the students’ performances and notice any changes within
the team [3], [5]–[8]. Some teamwork assessment and support tools are also able to provide
real-time insights so that faculty members and instructors can monitor student teams and see the
teams’ progress. For example, with the help of teamwork assessment and support tools, faculty
members and instructors were able to understand how team harmony affects the overall team
performance, or how students can be clustered based on their personalities and traits [3], [6].
These tools provide an opportunity for faculty members and instructors to investigate small
relationships and trends that might have not been detectable in small samples. Furthermore,
teamwork assessment and support tools also allow faculty members and instructors to use
student feedback and personalize the help provided.

In this paper, we used data available via Tandem. This paper provides an introduction to
using prediction, clustering, and diagnostic models in the field of engineering education. The
prediction models provided predictions for students’ responses to the “Working Well” item, a
variable that indicates how well the team is working together internally (see Fig. 2). For
clustering, the models grouped students of similar personalities and traits into the same group
based on their responses to the survey questions (see Fig.1). In the diagnostic section, we
provided an expert-defined Q-matrix and ways to estimate Q-matrices in engineering education.
This paper can be seen as a preliminary guideline in using data collected through the
team-support tool to create positive learning experiences not just in the field of engineering
education, but also in all fields where teamwork plays an important part of the curriculum.
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All of the code used to generate the models used in this paper is available in the paper’s
git repository [9], and all data used in this paper can be requested through writing submitted to
the Center for Academic Innovation. Results from the models were generated through batch jobs
within the Great Lakes HPC Cluster provided by ITS Advanced Research Computing at the
University of Michigan [10]. Thus, these models are able to handle more data that will be
coming in from future semesters, thus making them scalable and reusable.
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CHAPTER 2.DATA
This study utilized data collected via Tandem which was first implemented in 2019 and

has since collected responses from more than 5000 students. In this paper, data from the
“Beginning-of-Term” survey (BoT) and the weekly team check surveys (TC) were studied.
These two surveys are described in the subsections under the Data section. The data were studied
and used to create the prediction, clustering, and diagnostic models. These models are described
in detail in Chapters 3 to 5.

2.1. Surveys
The data used in this paper was from the University of Michigan first-year engineering

students. The dataset responses were collected from students enrolled across 14 different sections
of an introductory engineering design course, ENGR 100, between Winter 2020 and Fall 2021
(four semesters total). Owing to the COVID-19 pandemic, the latter half of Winter 2020, Fall
2020, and Winter 2021 courses were conducted online or in a hybrid mode. Nonetheless,
team-based learning components were present in all courses. We decided to not include the data
of the students whose answer to the Gender question was not Male or Female due to the small
amount of data present (65 students).

2.1.1. Beginning-of-Term Survey (BoT)
The beginning-of-term survey (BoT) is given to the students at the start of the semester

before they have met their course teams. This survey asks about individual characteristics found
to be relevant in teamwork literature, such as personality characteristics, previous teamwork
experiences, and teamwork preferences. Items in the BoT are based on validated scales in the
literature for constructs relevant to teamwork, but to keep the overall survey short, they are
single-item and sometimes even double-barreled, based on user testing conducted by the
developer of Tandem [5]. 835 BoT survey responses and eight questions from the BoT were used
in this study. Students move a slider over seven points for the five questions: “Extraversion”,
“Procrastination”, “Belongingness”, “Control”, and “SpeakUp”. For the remaining three
questions (“BT_PastGroups”, “BT_PastPositive”, and “GroupPreference”), students will choose
only one response for each question. These eight questions were chosen as they are most
representative of a student’s personality and traits. Fig. 1 shows the survey questions and answer
choices from the BoT that were used in this study.

2.1.2. Team Check Survey (TC)
The team check survey (TC) is generally given weekly to students and is designed to be

mobile-friendly and fast. Students are asked to rate the team (not individuals) overall on five
items, which are “working well”, “sharing of work”, “sharing of ideas”, “team confidence”, and
“logistics/challenges”. The dataset consists of 4104 TC survey responses collected from 764
students. Students answered each item on a 9-point Likert scale. In the semesters included in this
study, when students responded to one or more of the five items with a 7 or lower (students tend
to use only the very top of the scale if they think that their team is doing well), they could
additionally select from a list of common teamwork problems the issues that their team was
experiencing. All students also were shown an optional text-entry space that they could use to
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alert instructors regarding issues that their team was facing [5]. Fig. 2 shows the survey questions
and answer choices asked in the TC.

Where would you place yourself on the following scales? [7 stops on the scale]

[Extraversion] In groups, I tend to listen more than speak. ←→ I often speak up in groups.

[Procrastination] I usually do work close to a deadline. ←→ I get working on a project as soon as it is
assigned.

[Belongingness] I expect to fit right into the $Course. ←→ I expect to feel pretty out of place in
$Course.

[Control] I think it's good to share work, even if my
team might finish tasks differently than me.

←→ I’d rather pick up extra work so I know it’s
done right.

[SpeakUp] I’d rather hold back ideas or preferences if my
group stays happy.

←→ It’s easy for me to speak up about my ideas
or preferences even if it disrupts my group.

Where would you place yourself on the following scales? [4 radio buttons]

Not at all Once or Twice Several Times Many Times

[BT_PastGroups]
Working with a team

Where would you place yourself on the following scales? [5 radio buttons]

Strongly Disagree Disagree Neutral Agree Strongly Agree

[BT_PastPositive]
My past teamwork experiences
were generally positive.

Where would you place yourself on the following scales? [3 radio buttons]

[alone]
Work alone

[partner]
Work with one partner

[group]
Work in a group

[GroupPreference]
If given an option, I’d prefer to

Fig. 1. Snapshot of survey questions and answer choices asked in BoT. “$Course” is replaced by
text describing the course (or sometimes, non-course context).

8



Where would you put your team on each of these scales? [9 stops on the scale]

[Working Well] We often have problems working together. ←→ We work really well together.

[Logistics] We often face logistical barriers (for
example, we cannot find convenient
meeting times).

←→ We have no problems with logistics (for
example, we all stay in touch about the projects).

[Team Confidence] I worry we don’t do well on this project. ←→ We’re definitely going to do well on this project.

[Equal Workloads] The workload is not distributed evenly. ←→ Everyone is pulling their own weight.

[Sharing Ideas] Only one or two people contribute ideas
for our projects.

←→ Everyone evenly contributes ideas for our
projects.

Fig. 2. Survey questions and answer choices asked in the TC survey.

2.2. Technology
We used Python and Stan on Google Colab to build all Bayesian models in this paper. For

clustering and diagnostic models, we used R and Rstudio. For the diagnostic models, the Jupyter
Notebook was also used to run the Restricted Boltzmann Machine-based Q-matrix estimation
algorithm.
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CHAPTER 3.PREDICTION

3.1. Introduction
In this paper, we created prediction models to predict the students’ responses to the

“working well” variable, a variable that indicates how well the team is working together
internally (see Fig. 2). We define a team to be working well if the “working well” variable is
greater than 7 and vice versa. Technically, the models can also predict different variables of
interest by changing the inputs provided. For example, instead of “working well”, we can also
predict “sharing ideas” or “equal workloads” by making other variables in the BoT and TC
become independent variables.

3.2. Bayesian Models
The prediction section consists of three different Bayesian models: Simple Logistic

Regression, Hierarchical Logistic Regression, and Ordered Logistic Regression. The first two
models assume the likelihood function of the Bernoulli distribution due to the binary response
variable. The third model was created using the original response variable, “working well”,
which can hold nine different values. Since the nine different values can be treated as nine
different categorical variables, the models assume the likelihood function to be of the ordered
logistic distribution. The third model would consider the team to be working well if the predicted
score was greater than seven and vice versa. All three models were tested for their accuracy by
comparing the predicted response with the actual response collected from the survey. All three
models were written using the Stan programming language with help from its documentation
[13].

3.2.1. Simple Logistics
The first model assumes that the response variable holds only zeros or ones. Therefore, the
likelihood function was designed to be of the Bernoulli distribution as shown in Equation (1).
Bernoulli distribution is a discrete probability distribution of a random variable that takes the
value 1 with probability p and the value 0 with probability q = 1− p. In this paper, a Bernoulli
distributed model with logit parameterization was used because the parameterization would be
more numerically stable. The calculation can be simplified [13, Ch. 15.2].

(1)𝑦
𝑖
 |  𝑥

𝑖
 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(σ(β𝑇𝑥

𝑖
)),   ∀𝑖 ∈ {1,..., 𝑛}

where
σ(𝑡) = 1

1+𝑒𝑥𝑝(−𝑡)
β ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  2)

3.2.2. Hierarchical Logistics
A hierarchical logistic regression model was used as the data contain binary response variables
and group structures, which in this model refers to the different course sections and genders.
Twenty-eight group clusters, formed through the combination of fourteen courses and two
genders, were created for this hierarchical logistic regression model. The Cluster Index was
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calculated using Equation (2) where the male gender has a value of one while the female gender
has a value of zero.

Cluster Index = ID*2 + Gender - 1 (2)

For example, male students in Course 2 will be assigned Cluster Index 4 while female students in
Course 2 will be assigned Cluster Index 3. The second model also assumes that the response
variable holds only zeros or ones. Therefore, the likelihood function was designed to be of the
Bernoulli distribution as shown in Equation (3).

(3)𝑦
𝑖𝑗

 |  𝑥
𝑖𝑗

 ~ 𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(σ(β
𝑗
𝑇𝑥

𝑖𝑗
)) ,  ∀𝑗 ∈ {1,..., 28} , ∀𝑖 ∈ {1,..., 𝑛

𝑗
}

where
σ(𝑡) = 1

1+𝑒𝑥𝑝(−𝑡)

β
𝑗
 ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (µ,  σ2)

µ ~ 𝑁𝑜𝑟𝑚𝑎𝑙 (0, 5)
σ2~𝑈𝑛𝑖𝑓𝑜𝑟𝑚(− ∞, ∞)

3.2.3. Ordered Logistics
The third model assumes that the response variable holds values from one to nine. Therefore, the
likelihood function was designed to be of the Ordered logistic distribution. The predicted values
of this model hold values from one to nine. Then, the predicted values will be converted into
ones (if greater than seven, based on the cutoff described in the Team Check Survey section) or
zeros (seven or lesser) to be compared with the binary response variable to test the accuracy of
the model.

OrderedLogistic(k| ,c)η

1 logit -1 ( ) if− η − 𝑐
1

𝑘 = 1,
logit -1 ( ) logit -1 ( ) if andη − 𝑐

𝑘−1
− η − 𝑐

𝑘
1 < 𝑘 < 𝐾,

logit -1 ( if (4)η − 𝑐
𝐾−1

) − 0 𝑘 = 𝐾

where
η = β𝑇𝑥

𝑖
β ~ 𝑁𝑜𝑟𝑚𝑎𝑙(0,  2)

3.3. Results
In order to evaluate and provide statistical inference on the model, the NUTS-HMC

sampler was used to produce a set of draws from the posterior distribution of a model
conditioned on the training data [14]. HMC-NUTS sampler uses the Hamiltonian Monte Carlo
(HMC) algorithm and its adaptive variant, the no-U-turn sampler (NUTS), to produce a set of
draws from the posterior distribution of the model parameters conditioned on the data [15]. Each
model was trained on 80% of the full data while the remaining 20% was used for testing. The
evaluation from the diagnostic statistics is helpful in determining what should be changed in
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fitting the next models. In the following subsections, some posterior distributions were plotted to
check if any of the parameters contain zero within the 94% highest density interval (HDI). The
predictive log-likelihood and accuracy will also be used to measure how well each model
performs and fit the data. For the ordered logistic model, the predicted values hold values from
one to nine. In order to find the accuracy of the model, any value greater than 7 will be treated as
one and zero otherwise. The transformed predicted values will then be compared to the true test
response.

From Table 1, all three Bayesian models had high accuracy (>75%) in predicting whether
the students feel that their teams are working well. These three models also had good
performances as the R-hat values were lower than 1.1, meaning that the chains had all
converged. Among the 20 different variables, the number of statistically significant variables for
Simple Logistics, Hierarchical Logistics, and Ordered Logistics were five, four, and seven
respectively. In this paper, we consider a variable to be statistically significant if the posterior
distributions of the beta do not contain zero within the 94% highest density interval (HDI) [16].

Among the variables, the four variables that were chosen by all three models were
'TC_Logistics', 'TC_IdeaEquity', 'TC_Workload', and 'TC_Confidence'. These four variables are
also the questions asked in the weekly TC surveys distributed to the students. This means that
given the BoT and the TC for a particular week, the model is able to inform the instructors if the
team is working well or not for that week.

'TC_IdeaEquity_Dir' is the changes (positive, neutral, or negative) in 'TC_IdeaEquity’
from the previous to the current week. In the case of the first team check, their values will be
zero. Although 'TC_IdeaEquity_Dir' and ‘Gender’ were not chosen by all three models, it was
still chosen by the ordered logistics model suggesting that they are related to the team’s
work-well score. Additionally, both the logistics and ordered logistics models contain the
variable ‘Control’, suggesting that the variable is related to the team’s work-well score as well.

Fig. 3. A portion of the four posterior distributions of the beta ('TC_Workload', 'TC_Logistics',
'TC_Confidence', and 'TC_IdeaEquity') for the Logistics Regression model.
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Table 1. Results for the Bayesian models.

Models
Accuracy

(%) R-hat (<1.1) Divergence

Number of
significant
variables Names of variable chosen

Logistics 77.17 TRUE FALSE 5

['Control', 'TC_Workload',
'TC_Logistics', 'TC_Confidence',
'TC_IdeaEquity']

Hierarchical
Logistic 78.89 TRUE FALSE 4*

['TC_Workload', 'TC_Logistics',
'TC_Confidence',
'TC_IdeaEquity']

Ordered
Logistics 77.10 TRUE FALSE 7

['TC_Workload', 'TC_Logistics',
'TC_Confidence', 'TC_IdeaEquity',
'Control', 'Gender',
'TC_IdeaEquity_Dir']

* Among the 20 different variables, four of them were chosen by more than 60% of the 28
cluster groups.
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CHAPTER 4.CLUSTERING

4.1. Introduction
Cluster Analysis is an approach that groups a set of objects such that those objects in the

same group are more similar to each other than to those in another group. Although there are a
variety of cluster models that can be used, this paper used two different clustering methods that
can be easily implemented (hierarchical clustering and K-means clustering) to divide the students
into clusters based on how they responded to the eight BoT questions (see Fig. 1). For
hierarchical clustering, a dendrogram was plotted and the best number of clusters was chosen
based on the plot. For K-means clustering, different methods such as the elbow method and the
silhouette method were used to decide the optimal number of clusters.

After clustering, students of the same cluster are more similar to one another compared to
students of other clusters. For both clustering methods, the resulting clusters were assigned to the
original data, and the statistics for each variable were calculated to show how each cluster has
different values for each variable. By clustering the students, faculty members and instructors are
able to understand more about the personality distribution of their students. Besides, the
clustering information here can be used together with the diagnostic information in the next
chapter to understand more about how students in each cluster will respond to the survey
questions.

4.2. Hierarchical Clustering
Hierarchical clustering is a clustering method that builds a hierarchy of clusters. The

hierarchical clustering used in this paper was agglomerative Hierarchical Clustering. This is a
"bottom-up" approach where the process can be summarized as follows:

1. Each observation starts in its own cluster,
2. Pairs of clusters are merged to form a new cluster as they move up the hierarchy.
3. Step 2 is repeated until one cluster is left.

We used the complete-linkage clustering method defined by Equation (5). In this case, we used
the Euclidean Distance. This hierarchical clustering process was performed using the hclust
function from the stats package in R [17].

(5)𝑚𝑎𝑥{𝑑(𝑥, 𝑦) :  𝑥 ∈ 𝐴,  𝑦 ∈ 𝐵}

where
d(.) is the distance between x and y.
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Fig. 4. A simple illustration of the Hierarchical Clustering method.

4.3. K-means Clustering
K-means is a prototype-based, simple partitional clustering algorithm that attempts to find K
non-overlapping clusters [18]. The K-means clustering process can be summarized as follows:

1. K desired number of clusters is chosen by the user to form the K initial centroids.
2. Each data point is assigned to its closest centroid and formed a cluster.
3. The centroid of each cluster will be updated based on new points added to the cluster.
4. Steps 2-3 are repeated until no point changes cluster.

Suppose is the data to be clustered. Then, the proximities of the data point to the𝐷 = {𝑥
1
,  ..., 𝑥

𝑛
}

cluster centroids are as follows:

(6)
{𝑚

𝑘
},1≤𝑘≤𝐾
min

𝑘=1

𝐾

∑
𝑥∈𝐶

𝑘

∑ π
𝑥
 𝑑𝑖𝑠𝑡(𝑥, 𝑚

𝑘
) 

where
is the weight of x,π

𝑥
is the number of data objects assigned to the cluster ,𝑛

𝑘
𝐶

𝑘

is the centroid of the cluster ,𝑚
𝑘
 =  

𝑥 ∈ 𝐶
𝑘

∑
π

𝑥 
𝑥

𝑛
𝑘

𝐶
𝑘

K is the number of clusters set by the user.
d(.) is the distance between object x and centroid ,1 ≤ k ≤ K.𝑚

𝑘

In this case, we used the Euclidean Distance. This K-means clustering process was
performed using the kmeans function from the stats package in R [17].
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Fig. 5. A simple illustration of the K-Means Clustering method.

4.4. Results
The data was trained with hierarchical clustering and K-means clustering. Based on the result
from the clustering algorithms, each data will be assigned a cluster group. For the dataset that
was used in this paper, we decided to separate the data into three clusters for both hierarchical
clustering and k-means clustering. For hierarchical clustering, the decision to separate the data
into three clusters was through looking at the dendrogram that was plotted to ensure that the
number of clusters makes sense [19]. For K-means clustering, the decision to separate the data
into three clusters was through different algorithms that were designed to help find the number of
clusters, such as the elbow method, the silhouette method, and the gap statistic method.

In the elbow method, the cluster value, K, which has the most rapid decline in the sum of squared
errors (SSE) is chosen. For the silhouette method, K with a silhouette value closer to 1 is chosen.
Silhouette value is the highest when the data points are more compact within the cluster to which
it belongs (cohesion) and far away from the other clusters (separation). Lastly, the best K in gap
statistics is the one that maximizes the gap statistic value, the change in within-cluster dispersion
under the null distribution. The dendrogram plotted from the hierarchical clustering was also
used in aiding the selection of the best number of groups [20]–[22].

The total number of assigned groups was six (three from hierarchical clustering and three from
K-means clustering). For each group, the mean score for each of the eight BoT variables was
calculated and recorded in Table 2. In order to make sure that the mean scores of eight variables
recorded in Table 2 were different across clusters of the same clustering method, we used the
Kruskal-Wallis rank sum test and pairwise comparisons using the Wilcoxon rank sum test with
continuity correction as the post hoc test in our hypothesis test.

From the table, we can see that for hierarchical clustering, students in Cluster 1 tend to have high
“Speak Up” scores but low “Belongingness” scores, students in Cluster 2 tend to have high
“Procrastination” scores, and students in Cluster 3 tend to have high “Control” scores but low
“Extraversion” scores. For K-means clustering, students in Cluster 1 tend to have high “Control”
and “Extraversion” scores, students in Cluster 2 tend to have high “Belongingness” scores but
low “Speak Up” scores, and students in Cluster 3 tend to have high “BT_PastPositive” scores but
low “Control” scores.
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Table 2. Results of the clustering models.

Hierarchical
Clustering

Cluster Control Speak
Up

Extra
version

BT_Past
Groups

BT_Past
Positive

Group
Preference

Procrast
ination Belongingness

1 3.64 5.22 4.99 2.69 4.00 2.26 3.61 2.71
2 3.44 3.68 4.36 2.60 3.81 2.29 4.58 3.47
3 4.83 3.41 2.72 2.61 3.61 2.12 3.34 3.44

K-means
clustering

Cluster Control Speak
Up

Extra
version

BT_Past
Groups

BT_Past
Positive

Group
Preference

Procrast
ination Belongingness

1 5.04 4.97 5.39 2.74 3.81 2.11 4.41 2.75
2 3.82 3.24 3.10 2.43 3.69 2.05 3.95 3.95
3 2.46 4.89 5.10 2.78 4.11 2.59 3.81 2.61

17



CHAPTER 5.DIAGNOSTICS

5.1. Introduction
The diagnosis section consists of the estimation of Q-matrices and using these Q-matrices

to provide insight into the dependency between the variables of BoT and the TC. In this paper,
we used the GDINA function from the CDM package [23], [24] to retrieve the delta matrices that
are essential to the estimation of the Q-matrices. The initial Q-matrix given to the GDINA
function is always 1J x K. Both the Lasso and the Truncated L1 penalty (TLP) terms were used as
tuning parameters to retrieve the delta matrices which were then converted to Q-matrices
following a similar expectation–maximization (EM) algorithm in [25]. Besides using the GDINA
function, we also used the restricted Boltzmann machines (RBMs) algorithm to estimate
Q-matrices. For RBMs, the Q-matrices were estimated following a simplified version of the
algorithm in [26]. We also used our experience to come up with one expert-defined Q-matrix
(Table 4) to compare with the matrices estimated by the models. All the estimated Q-matrices
were refined by minimizing the residual sum of squares (RSS) between the real responses and
ideal responses using the Qrefine function from the NPCD package [27].

5.2. Cognitive Diagnostic Modeling (CDM)
We used cognitive diagnostic models (CDMs) to understand the relationship between the

latent traits that are related to what the TC surveys are characterizing and students’
characteristics collected in the BoT. CDMs are psychometric models that provide information
about a person’s proficiency in solving particular items [28]. We recognize that the survey
questions in TCs and BoT do not have correct answers and one does not require any specific
proficiency to answer the questions. Nonetheless, CDMs can still be used to capture the
relationship between the latent traits that are related to how the students perceive their team
experience (questions in the TC) and how the students perceive their own personalities and
preferences (questions in the BoT). This motivation can be justified as other studies have used
CDMs to learn more about team formation and relationships [29] and between questions in
surveys [30].

5.2.1. Q-Matrix
One important component of CDM is the Q-matrix as it contains information on the

dependency structure between the J test items and K latent variables [25], [26], Q-matrix can be
effectively used to design more intervention strategies. One famous usage of CDMs in the
applied world is to study the dependency between mathematical questions and their latent skills
for the topic of fractions as shown in Table 3.

Table 3. Q-matrix corresponds to three math questions and three latent attributes.
Questions Addition Subtraction Convert mixed numbers to improper fraction
2 3

4 + 1 1
2 1 0 1

2 3
4 − 1 1

2 0 1 1

2 3
4 − 1 1

4 0 1 0
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‘1’ in the Q-matrix means that Skill K is required for the mastery of Item J and vice
versa. Thus, Q-restricted latent class models have gained popularity in fields such as educational
proficiency assessments, psychiatric diagnosis, and many more disciplines [25]. In this paper, the
Q-matrices were either estimated from the GDINA model or defined by experts. Workload,
Confidence, and Sharing Ideas are three latent traits of students related to what TC is
characterizing. Table 4 shows the Q-matrix defined by the experts.

Table 4. Experts defined Q-matrix, Q0.
Items Workload Confidence Sharing Idea

Control 1 0 0
SpeakUp 0 0 1
Extraversion 0 0 1
BT_PastGroups 0 1 0
BT_PastPositive 0 1 0
GroupPreference 1 1 0
Procrastination 1 0 0
Belongingness 1 1 1

5.2.2. Generalized-Deterministic Inputs, Noisy "and" gate (GDINA) model
The GDINA model assumes a conjunctive relationship among attributes, where it is

necessary to possess all the attributes indicated by the Q-matrix to be capable of providing a
positive response [25]. The GDINA model requires a Q-matrix and for each cell of the𝐽 × 𝐾
Q-matrix, is 1 if the kth attribute is required to answer the jth item positively. Nonetheless,𝑞

𝑗𝑘

GDINA separates the latent classes into latent groups, which represent the2
𝐾

𝑗
∗

𝐾
𝑗
∗ =

𝑘 = 1

𝐾

∑ 𝑞
𝑗𝑘

number of required attributes for item j [31]. According to [31], we can let be the reducedα
𝑙𝑗
∗

attribute vector whose elements are the required attributes for item j. For example, if only the
first two attributes are required for item j, then the attribute vector reduces toα

𝑙𝑗

. Using reduces the number of latent groups to be considered for item j fromα
𝑙𝑗
∗ = (α

𝑙𝑗1
, α

𝑙𝑗2
)' α

𝑙𝑗
∗

2K to 2 where = . Then the probability that examinees with attribute pattern will answerκ κ 𝐾
𝑗
* α

𝑙𝑗
∗

item j correctly is denoted by
(7)𝑃(𝑋

𝑗
= 1|α

𝑙𝑗
∗ ) = 𝑃(α

𝑙𝑗
∗ )

Although there are multiple link functions discussed in [31], this paper uses only the
identity link function which is given in Equation (8).
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where
is the intercept for item j;β

𝑗0
is the main effect due to ;β

𝑗𝑘
α

𝑘
is the interaction effect due to and ;β
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𝑘
α
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is the interaction effect due toβ
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𝐾
𝑗
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5.2.3. Delta-Matrix

The delta matrix returned by the function will be converted into a𝐽 × 2𝐾 𝐽 × (2𝐾 − 1)
binary matrix with the intercept column removed. The idea behind this is that since ,δ = β × 𝑞
if is not 0, is definitely not 0, where and are elements in Equation (8). Values that areδ 𝑞 β 𝑞
close to 0 in the delta matrix (smaller than 0.1) will be forced to be 0 and everything else to be 1
as shown in Equations (9) and (10). The binary matrix will be collapsed into a𝐽 × 2𝐾 𝐽 × 𝐾
binary matrix by grouping up the latent attributes that are required to master the item .𝐽

Let , , and be the binary representation index of ithα ∈ {0, 1} 1 ≤ 𝑘 ≤ 𝐾 δ
𝑗𝑖

= α
𝑖𝐾

... α
𝑖1

element in the jth row of the delta matrix. will be transformed to have a value of 1 if it isδ
𝑗𝑖

greater than the threshold and 0 otherwise.

where = 1 (9)𝑡
𝑗𝑘

=
𝑘 = 1

𝐾

∑ δ
𝑗𝑖

α
𝑖𝑘

= 1 iff 0 (10)𝑄
𝑗𝑘

𝑡
𝑗𝑘

≠

For example, let , , , and thresholdδ = (1. 4, 1. 32, 0. 08, 2. 1, 0. 0003, 0. 0001, 0) 𝐽 = 1 𝐾 = 3
= 0.1, then applying Equation (9), we get,

δ = (1. 4, 1. 32, 0. 08, 2. 1, 0. 0003, 0. 0001, 0) ⇒ (1, 1, 0, 1, 0, 0, 0)
𝑡 = (2, 2, 0)

Applying Equation (10), we get, . In (9), the columns of the𝑄 = (1, 1, 0) 𝐽 × (2𝐾 − 1)
binary matrix refers to (Attr1, Attr2, Attr3, Attr12, Attr13, Attr23, Attr123). The matrix is then
collapsed into a matrix by summing up all the 1s into their respective latent attributes,𝐽 × 𝐾
where the columns refer to (Attr1, Attr2, Attr3). If 0, then it will become 1 as shown in𝑡

𝑗𝑘
≠

(10).

The estimated Q-matrix in (10) is expected to be identifiable only up to rearranging the
orders of the columns. This is because when estimating the Q-matrix, the columns do not contain
information about the latent attributes. (e.g. the nth column of the Q-matrix might not refer to the
nth latent attribute). Thus, the estimated Q-matrix will be reordered so that each column shows
the lowest possible average Tucker index congruent coefficient with the True Q-matrix’s
columns. This process was done using the orderQ function in cdmTools [32].
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Algorithm 1: Q-matrix estimation

Input: , λδ
𝐽×𝐽

Output: Estimates 𝑄
𝐽 × 𝐾

Initialize t = 0.1
for seed = 1,...,50 do
for each penalty term in λ do

1. Record the Akaike information criterion (AIC) and the Bayesian information criterion
(BIC) of the model.

2. Retrieve the matrixδ
𝐽×2𝐾

end
end

Obtain the models with the lowest five mean AIC and five mean BIC for LASSO and TLP

for each selected model do
1. Perform Equations (9) and (10).

end

5.3. Restricted Boltzmann Machines (RBMs)
RBMs are generative stochastic artificial neural network models that can learn

probability distributions over a collection of inputs. RBMs were initially invented by Paul
Smolensky under the name Harmonium [33]. RBMs used in this paper will follow the model
design in [26]. Visible units are denoted by and hidden units by𝑅 = {𝑅

1
,... 𝑅

𝑗
} ∈ {0, 1}𝐽

. RBMs are characterized by the energy functions with the jointα = {α
1
,... α

𝑗
} ∈ {0, 1}𝐾

probability distribution given by:
(11)𝑃(𝑅, α; θ) = 1

𝑍(θ) 𝑒𝑥𝑝{− 𝐸(𝑅, α; θ)}

where is the partition function given by𝑍(θ)

(12)𝑍(θ) =
𝑅∈{0,1}𝐽

∑
α∈{0,1}𝐾

∑ 𝑒𝑥𝑝{− 𝐸(𝑅, α; θ)}

and is the energy function given by𝐸(𝑅, α; θ)

(13)𝐸(𝑅, α; θ) = − 𝑏𝑇𝑅 − 𝑐𝑇α − 𝑅𝑇𝑊α =−
𝑗=1

𝐽

∑ 𝑅
𝑗
𝑏

𝑗
−

𝑘=1

𝐾

∑ α
𝑘
𝑐

𝑘
−

𝑗=1

𝐽

∑
𝑘=1

𝐾

∑ 𝑅
𝑗
𝑤

𝑗,𝑘
α

𝑘

In Equations 11-13, are the model parameters, are visible biases,θ = {𝑏, 𝑐, 𝑊} 𝑏 ∈ 𝑅𝐽

are hidden biases and is the weight matrix describing the interactions between𝑐 ∈ 𝑅𝐾 𝑊 ∈ 𝑅𝐽×𝐾
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the visible and the hidden units. The hidden and visible units are conditionally independent as
there are no “R-R” or “ - ” interactions [26].α α

Fig. 6. Relationship between the weight matrix and the Q-matrix.

On the left-hand side of Fig. 6 is the weight matrix, W, for RBMs. For indicates𝑤
𝑗,𝑘

≠ 0
the presence of interaction between the visible and hidden units. Although the GDINA model
violates the conditionally independent assumptions of RBM, it was shown in [26] that the
Q-matrices for these models are estimable.

5.4. Results
From the prediction section in Chapter 3, it is observed that the four variables of the TC

are the main variables that can be used to predict the outcome of the team’s work-well score.
Nonetheless, instructors are also interested in understanding why the students choose to answer
the four TC questions with high or low scores. We hypothesize the students’ TC responses might
be related to the student’s personal traits and characteristics which can be obtained from the eight
BoT questions used in this paper. Table 5 contains the results for the information criterion for the
twenty-six estimated Q-matrices.

20 different Q-matrices were estimated using Algorithm 1 and 5 different Q-matrices
were estimated using the RBM algorithm. In order to determine the Q-matrix that can best
express the relationship between the J items and K latent skills, the 25 estimated Q-matrices and
one expert-defined Q-matrix were accessed again using the GDINA function, and the Q-matrix
with the lowest AIC and the lowest BIC were returned. From Table 5, Model 13 has the lowest
AIC, and Model Q0 has the lowest BIC.

From Table 5, we can observe that the two preferred Q-matrices are not the same, but
they have a lot of similarities. For example, for the variables SpeakUp and Extraversion, both
matrices agree that they are related to Sharing Idea, and the variable Procrastination is related to
Workload. Lastly, it is important to ensure that both Q-matrices are identifiable because an
identifiable matrix is crucial for the consistent estimation of the model parameters of interest and
valid statistical inferences [25], [34]. Both the Q-matrices 13 and Q0 are generically identifiable
after checking with the identifiability conditions in Theorem 4 of [35, Sec. 5].
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Table 5. Results for twenty-one Q-matrices.

Q_matrix AIC BIC Q_matrix AIC BIC
1 7435.3 7714.3 14 7432.9 7655.1
2 7437.7 7650.4 15 7442.8 7646.1
3 7432.4 7654.6 16 7432.9 7655.1
4 7437.7 7650.4 17 7431.8 7672.9
5 7432.4 7654.6 18 7432.9 7655.1
6 7432.4 7597.9 19 7430.7 7671.8
7 7431.4 7615.7 20 7447.9 7717.4
8 7431.4 7615.7 21 7440.2 7624.6
9 7431.4 7615.7 22 7449.0 7623.9
10 7427.6 7687.6 23 7486.7 7633.2
11 7450.2 7729.1 24 7476.9 7632.9
12 7449.7 7653.0 25 7539.1 7704.6
13 7426.9 7686.9 Q0 7429.6 7576.2

Table 6. Q-matrix 13 (left) and Q-matrix Q0 (right)
Attr1 Attr2 Attr3 Attr1 Attr2 Attr3

Control 1 1 1 Control 1 0 0
SpeakUp 1 1 1 SpeakUp 0 0 1
Extraversion 1 1 1 Extraversion 0 0 1
BT_PastGroups 0 0 1 BT_PastGroups 0 1 0
BT_PastPositive 0 0 1 BT_PastPositive 0 1 0
GroupPreference 1 0 1 GroupPreference 1 1 0
Procrastination 1 1 1 Procrastination 1 0 0
Belongingness 1 1 1 Belongingness 1 1 1

Attr1,2,3 are Workload, Confidence, Sharing Idea respectively.
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CHAPTER 6.DISCUSSION AND FUTURE DIRECTIONS
For the prediction section, the Hierarchical Logistic Regression model had the highest

accuracy. Even though the accuracy is higher, the computational time for that model to run 4
chains is longer (1.5 hours) compared to the Logistic Regression model (5 minutes). The runtime
for the Ordered Logistic model (1.75 hours) is similar to those of Hierarchical Logistic
Regression. Therefore, the simpler Logistic Regression model is preferred compared to the other
models. Some improvements could be made to the models in the future. Penalty terms such as
Lasso, Ridge, and Elastic nets can be used to increase the accuracy of the Bayesian models.
Since the ordered logistic regression also performed extremely well in estimating the teams’
work-well scores, we believe that the bounded discrete distributions might also be another way
to predict team outcomes in the future.

For the clustering section, context experts (in this case, engineering faculty and/or
engineering students) should make sense of the clusters generated by the models by
characterizing them according to the students’ characteristics. The data used in this clustering
only contained the students’ responses to the eight BoT questions and excluded information such
as gender, race, and course sections. Thus, the goal would be to have a database of different
clusters of students and their associated characteristics as described by their team members so
that when new clusters appear as similar to clusters in the database, the instructors would have a
more comprehensive understanding of the personalities of students in such clusters to put
students into groups that best fit the students.

For the diagnostic section, we were able to obtain two preferred Q-matrices that can best
express the relationship between the items asked in BoT and latent skills observed in the weekly
TC. In the future, researchers can try to improve on the Q-matrix estimation by using other CDM
models such as DINA, DINO, SDINA, or by using other estimation algorithms such as EM
stepwise estimation with a provisional Q-matrix [25]. Moreover, context experts should also look
at both the estimated Q-matrix and the expert-defined Q-matrix to make sure they make sense.

As students respond to a variety of questions that reveal information about themselves in
various surveys, it is a challenge for faculty members and instructors to keep track of each
characteristic and observe changes or trends among students in a team. With the help of team
formation tools such as Tandem or CATME, faculty members and instructors are now able to use
the data collected to understand the team dynamics and provide help if problems arise. This
paper is a first step towards using students’ responses collected from teamwork assessment and
support tools to predict team performance, clustering students based on their characteristics, and
explaining the relationship between the students’ latent traits and their characteristics. Hopefully,
more research in this area will be conducted to ensure students can enjoy positive teamwork
experiences.
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