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ABSTRACT

This thesis concerns two invariants of projective varieties in positive characteristic, namely,

the F -signature and a new invariant called the Frobenius-alpha invariant. For a projective

variety X and an ample divisor L on X, both invariants measure asymptotic properties of

Frobenius splittings of |mL|m≥1, i.e., the linear systems defined by multiples of L. In the

first part of the thesis, we present joint work with Seungsu Lee, where we prove that for a

fixed projective variety X, the F -signature of ample divisors on X extends to a continuous

function on the ample cone of X. Moreover, we show that this function has a continuous

extension to the non-zero part of the Nef cone of X. In the second part of this thesis, we

define and study the Frobenius-alpha invariant in analogy with Tian’s alpha-invariant from

complex algebraic geometry. In particular, we show that the Frobenius-alpha invariant of

Fano varieties is at most 1/2 and prove upper and lower bounds for the F -signature in terms

of the Frobenius-Alpha invariant. Finally, we study the behaviour of the Frobenius-alpha

invariant in geometric families, and prove that this invariant is lower semicontinuous in a

family of globally F -regular Q-Fano varieties.
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CHAPTER I

Introduction

I.1: Motivation

The topic of this thesis is the study of singularities of algebraic varieties. A singularity is a

point on an algebraic variety V near which V cannot be well-approximated by a vector space

(the tangent space). A point that is not a singularity is called a smooth point. This difference

between smooth points and singular points leads to deep differences in the behaviour of

smooth varieties (ones with no singularities) and singular varieties (ones with one or more

singular points).

Our focus will be on singularities in positive characteristics. It turns out that many tra-

ditional techniques used in the study of complex singularities are not suitable while working

in the positive characteristic setting. Indeed, key results like resolution of singularities and

vanishing theorems are either unknown or are known to fail. However, many different tech-

niques, mostly involving the Frobenius map, have been developed that act as a substitute.

We now briefly introduce some of these ideas.

The Frobenius Map: Let k be a field of prime characteristic p. Consider an affine

algebraic variety V over k, i.e., V = Spec(R) where R is a finitely generated algebra over k.

The Frobenius map of R is the natural self-map

F : R → R

defined by sending

r 7→ rp.

This is a ring homomorphism thanks to the identity (r + s)p = rp + sp which holds true

in every ring of characteristic p, but of course, has no analogue over the real or complex

numbers. Note that since F is a ring homomorphism, we get a new R-module structure on

the target copy of R defined by restriction of scalars along F . More explicitly, denote the
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target copy of R by F∗R and for any r ∈ R, let F∗r be the corresponding element in F∗R.

Then F∗R is a new R-module where an element r ∈ R acts on an element F∗s by the rule

rF∗s = F∗(r
ps).

Similarly, we can define the module F e
∗R for any e ≥ 1 by restricting scalars along the eth-

iterate of F . Then, the key idea in this thesis is that the sequence of R-modules (F e
∗R)e≥1

encodes the singularity properties of R in various ways. For example, the following theorem

of Kunz provides a characterization of regular (the algebraic version of smooth) points:

Theorem I.1.1. [Kun69] Assume that R is reduced. Then, R is regular if and only if F e
∗R

is a flat R-module for some (equivalently, any) e ≥ 1.

Therefore, the singularities of R are quantified by the non-flatness of F e
∗R. This idea is

made precise via the notion of strong F -regularity, a central topic of this thesis:

Definition I.1.2. Let R be a Noetherian local domain of positive characteristic p > 0.

Then, R is said to be strongly F -regular if for every non-zero element c of R, there exists an

e≫ 0 such that the map

R → F e
∗R

mapping

1 7→ F e
∗ c

splits as a map of R-modules.

Strongly F -regular singularities were introduced in the work of Hochster and Huneke in

the celebrated tight closure theory [HH89]. Such singularities satisfy many desirable proper-

ties; for instance, they are normal, Cohen-Macaulay and have pseudo-rational singularities in

the sense of Lipman and Tessier (see [Smi97a]). Though Kunz’s theorem implies that regular

rings are strongly F -regular, there are many strongly F -regular rings that fail to be regular.

Thus, strongly F -regular singularities form a large class of well-behaved, yet non-regular class

of singularities and have occupied a very important role in positive characteristic singularity

theory.

Singularities are also closely linked to the global geometry of projective varieties. For

instance, one way to produce singularities is to take a closed subvariety V of Pn and consider

the cone over V . The singularity of the vertex of the cone encodes the global geometry of

V . For example, the cone over V is smooth if and only if V is a linear subspace of Pn.

Thus, studying the singularities of cones over projective varieties leads to insights into their

geometry.

2



Overview: In this thesis, we will be interested in a singularity invariant called the F -

signature in the context of cones over projective varieties. The F -signature, that we will

introduce in Section I.2, captures asymptotic properties of the Frobenius map in strongly

F -regular local rings. In Section I.3, we will describe joint work with Seungsu Lee, that

establishes results about how the F -signature of the cone over a projective variety V varies

as we change the embedding of V into various projective spaces. The proofs of these results

are contained in Chapter III of the thesis. In Section I.4, we introduce a new invariant of

the singularity of a cone called the Frobenius-alpha invariant. This invariant turns out to

be closely related to the F -signature and helps us estimate the F -signature of a projective

variety. The detailed results and proofs regarding the Frobenius-alpha invariant are contained

in Chapter IV and Chapter V of the thesis.

I.2: F -regularity and the F -signature

In this section, we introduce the two central topics of this thesis: global F -regularity, and

the F -signature. Throughout, we fix a perfect field k of characteristic p > 0.

I.2.1: Global F -regularity

Globally F -regular varieties were introduced in [Smi00] as the positive characteristic analogs

of log-Fano type varieties and the global versions of strongly F -regular singularities.

Definition I.2.1. [SS10, Definition 3.2] Let X be a normal variety over k and ∆ ≥ 0 be an

effective Q-divisor. The pair (X,∆) is said to be globally F -regular (resp. locally F -regular)

if for any effective Weil divisor D on X, there exists an integer e≫ 0, such that, the natural

map

OX → F e
∗OX(⌈(pe − 1)∆⌉+D)

splits (resp. splits at every stalk) as a map of OX-modules. A normal variety X is said to

globally (resp. locally) F -regular if the pair (X, 0) is globally (resp. locally) F -regular.

It was proved in [SS10] that globally F -regular varieties are of log Fano type, i.e., if X

is globally F -regular, then there is a Q-divisor ∆ ≥ 0 such that (X,∆) has klt singularities

and −KX − ∆ is ample. However, not all log Fano type varieites (or even Fano varieties)

are globally F -regular; indeed, globally F -regular varieties enjoy additional properties such

as satisfying a Kawamata-Viehweg vanishing theorem [SS10] that is known to fail in general

even for smooth Fano varities in positive characteristics [Tot19]:
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Theorem I.2.2 ([SS10], Theorem 6.8). Let (X,∆) be a projective, globally F -regular pair

over k. Suppose L is a Cartier divisor such that L−KX −∆ is big and nef. Then,

H i(X,OX(−L)) = 0 for all i < dim(X).

Thus, globally F -regular varieties are log Fano varieties with additional favorable prop-

erties. They have found various applications, for instance, to the three dimensional mini-

mal model program in positive characteristic [HX15] and in the study of Fano type com-

plex varieties [GOST15]. For other investigations regarding globally F -regular varieties, see

[GLP+15], [GT19] and [Kaw21].

I.2.2: The F -signature:

Building on the idea from Theorem I.1.1 that we may measure the non-flatness of the modules

F e
∗R to quantify singularities of R, we now turn to an asymptotic invariant of these modules.

Let R be a local domain essentially of finite type over k.

Definition I.2.3 (F -signature). For any e ≥ 1, let ae(R) denote the free rank of F e
∗R. In

other words, ae(R) is the maximum integer a such that we have an R-module decomposition

F e
∗R

∼= R⊕a ⊕N

for some R-module N . Then the F -signature of R is defined to be the limit:

s(R) := lim
e→∞

ae(R)

ped

where d is an integer such that F∗R has generic rank pd over R (in other words, pd is the

degree of the field extension Frac(R) ⊂ Frac(R)1/p).

This invariant was first considered implicitly by Smith and Van den Bergh in [SVdB97],

and defined formally by Huneke and Leuschke [HL02]. The fact that the limit in the definition

exists was proved only later by Tucker [Tuc12]. Note that since R is local, a finitely generated

module over R is flat if and only if it is free. Thus, the F -signature is an asymptotic

measurement of the flatness of F e
∗R. Indeed, Huneke and Leuschke proved the following

asymptotic version of Kunz’s theorem (Theorem I.1.1): R is regular if and only s(R) = 1.

The F -signature is most interesting in the case of strongly F -regular singularities (Defini-

tion I.1.2); the positivity of the F -signature of a local F -finite domain R corresponds exactly

to R being strongly F -regular [AL03]. Furthermore, the F -signature has been fruitfully

applied to gain insights into the structure of strongly F -regular local rings as seen in the
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following theorem due to Carvajal-Rojas, Schwede and Tucker that bounds the size of the

local étale fundamental group:

Theorem I.2.4. [CRST18] Let (R,m, k) be an F -finite strongly F -regular local ring of char-

acteristic p > 0 and dimension ≥ 2. Assume that R is strictly henselian. Then, we have

|πét
1 (Spec

◦(R))| ≤ 1

s(R)

where Spec◦(R) denotes Spec(R) \m, and s(R) denotes the F -signature of R. In particular,

the size of the above fundamental group is finite.

Similar theorems for complex klt singularities have been established by completely dif-

ferent techniques; see [Xu14], [GKP16], [Bra21] and [XZ21]. Other applications of the F -

signature include bounding the torsion subgroup of the divisor class group; see [Mar22],

[CR17] and [Pol22].

I.3: Variation on the ample cone

In this section, we summarize the results contained in Chapter III of the thesis. These results

are part of joint work with Seungsu Lee. Chapter III is dedicated to studying how the F -

signature of a projective variety X varies with the embedding of X into various projective

spaces. This is made precise in terms of section rings and the F -signature function on the

ample cone. Throughout this section, we fix an algebraically closed field k of characteristic

p > 0.

Let X be a projective variety over k and L be an ample line bundle over X. Then, we

can construct a graded ring, the section ring S(X,L) of X with respect to L, defined by

S(X,L) :=
⊕
j≥0

H0(X,Lj)

with multiplication given by the tensor product of global sections. We call Y = Spec(S(X,L))

the cone over X with respect to L.

It was shown in [Smi00] that a projective variety X is globally F -regular (Definition I.2.1)

if and only if the section ring S(X,L) is strongly F -regular for some (equivalently, every)

ample line bundle L. Since the F -signature is positive for all strongly F -regular rings, it is

natural to ask:

Question I.3.1. Let X be a globally F -regular projective variety. How does the F -signature

of the section ring S(X,L) vary with L?

5



In Chapter III, we consider the following function:

Definition I.3.2. The F -signature function sX is the assignment:

L 7→ s(S(X,L)) = F -signature of S(X,L)

where L is any ample line bundle over X.

Note that this function is non-zero for every ample line bundle L since S(X,L) is strongly

F -regular. Building on the work in [VK12] and [CR17], our first theorem allows us to extend

the F -signature function to the rational ample cone of X as follows:

Theorem I.3.3. (Theorem III.1.3) Fix a positive dimensional globally F -regular projective

variety X over k. Then, the F -signature function sX (Definition I.3.2) naturally extends to

a unique, well-defined, real-valued function

sX : AmpQ(X) → R

on the set of rational classes in the ample cone of X satisfying the identity:

sX(λL) =
1

λ
sX(L) for all ample Q-divisors L and all λ ∈ Q>0.

Recall that the rational ample cone of a projective variety is the set of numerical classes

of ample Q-divisors on X. Now that we have a well-defined function on the rational ample

cone, the next theorem describes the continuity properties of the F -signature function.

Theorem I.3.4. Fix any globally F -regular projective variety X over k of positive dimension.

Then, the F -signature function of X satisfies the following properties:

1. (Theorem III.2.1) The function sX is continuous on the rational ample cone of X, with

respect to the usual topology on the Néron-Severi space.

2. (Corollary III.2.3) The function sX extends continuously to all real classes in the ample

cone of X.

Theorem I.3.3 and Theorem I.3.4 parallel the theory of the F -signature function on the

ample cone of a globally F -regular variety with the volume function on the big cone. This

perspective was first considered in [VK12], where Theorem I.3.4 was proved in the special

case when X is a toric variety. Recall that on a projective variety X, to any Cartier divisor

D on X, we can associate a non-negative real number called the volume of D, measuring

the growth of the global sections of multiples of D. A foundational result in the theory of

6



volumes is that the volume of a big divisor D depends only on its numerical equivalence

class. Moreover, it extends suitably to all R-divisors and varies continuously as D varies on

the Néron-Severi space of X. See [Laz04, Section 2.2] and [LM09] for the details. The study

of volumes of divisors has been important in birational geometry; for example, see [Laz04,

Section 2.2], [LM09], [Bou02], [ELM+05], [HM06], [Tak06b], and [K0̈6].

The ample cone is an open cone in the Néron-Severi space of a projective variety X, and

its closure is represented by the set of nef divisors on X. Hence, it is natural to ask if the

F -signature function sX from Theorem I.3.4 has a natural extension to the nef cone. We

show that this is indeed true:

Theorem I.3.5 (Theorem III.3.1). Suppose X is a globally F -regular projective variety.

Then the F -signature function sX extends continuously to all non-zero classes of the Nef

cone of X. Moreover, if L is a nef Cartier divisor which is not big, then sX(L) = 0.

The proofs of Theorem I.3.3 and Theorem I.3.4 consist of several steps: First, we need

to verify that the F -signature function is well-defined on the rational ample cone of X. The

main result here is that on globally F -regular projective varieties, numerical equivalence,

and Q-linear equivalence coincide (Theorem III.1.4). This is reminiscent of the same fact for

log-Fano type varieties over the complex numbers. Next, we analyze the Frobenius splittings

of linear systems |mL| for multiples of an ample divisor L. We also develop some techniques

to compare the Frobenius splittings of the linear systems |mL| and |m(L + H)|, where H
is some effective divisor. Along the way, we prove some uniform (with respect to the ample

divisors) upper bounds on the F -signature function for a fixed globally F -regular variety

X. For more details, we refer to Section III.2. We further utilize these ideas to extend the

F -signature function to all non-zero nef divisors in Section III.3. Lastly, in Section III.4 we

also prove a local effective upper bound for the F -signature function.

I.4: The Frobenius-Alpha Invariant

The second part of this thesis is dedicated to the study of another invariant of cones over

projective varieties, called the αF -invariant (the “Frobenius-alpha” invariant), and its con-

nections to the F -signature (Definition I.2.3). The αF -invariant is motivated by a connection

between singularities in characteristic zero with the F -singularities in positive characterstic

that we first recall .

7



I.4.1: Connections to singularities in characteristic zero

Strongly F -regular singularities (introduced in Definition I.1.2) are the positive characteristic

analogs of Kawamata log terminal (klt) singularities, an important class of singularities that

arise in the minimal model program. Klt singularities are defined using a resolution of

singularities over the complex numbers (which is known to exist by the celebrated theorem

of Hironaka [Hir64]), and thanks to the Kodaira and Kawamata-Viehweg vanishing theorems,

they are normal, Cohen-Macaulay, and rational singularities. Though defined by completely

different methods, klt singularities are related to strongly F -regular singularities in a precise

way by the following remarkable theorem established in the works of Smith, Hara, Mehta

and Srinivas:

Theorem I.4.1 ([Smi97a], [Har98], [MS97]). Let R be a finitely generated Z-algebra and

assume that R is a Gorenstein (i.e., the canonical module ωR is free) domain. Then, the

ring R⊗ZC has klt singularities if and only if R⊗ZZ/pZ has strongly F -regular singularities

for all p≫ 0.

Note that for a Gorenstein domain R, having klt (and similarly, strongly F -regular when

R has characteristic p > 0) singularities is equivalent to having rational (and respectively, F -

rational) singularities. The correspondence between rational and F -rational singularities was

established in [Smi97a], [Har98], [MS97]. For the correspondence between more general klt

and F -regular singularities, see [HW02] and [Tak06a]. Theorem I.4.1 has a global version that

relates Fano varieties (varieties with ample anti-canonical bundle) and globally F -regular

varieties.

Theorem I.4.2. [Smi00] Let X be a Fano variety defined over Z. Then, XC = X×ZSpec(C)
is a klt Fano variety (i.e., XC has klt singularities) if and only if Xp = X ×Z Spec(Z/pZ) is
globally F -regular for all p≫ 0.

I.4.2: The αF -invariant:

The α-invariant of a complex Fano variety X was introduced by Tian in [Tia87] to provide a

sufficient criterion for K-stability of X, a condition that guarantees the existence of a Kähler-

Einstein metric on X. Though initially defined analytically, Demailly later reinterpreted the

α-invariant in terms of klt singularities [CtS08] as follows:

Definition I.4.3. Let X be a smooth Fano variety over C. Then,

α(X) := sup { t ≥ 0 | (X, t∆) is klt ∀ effective Q-divisor ∆ ∼Q −KX}.
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Understanding the α-invariant, and K-stability more generally, has led to many funda-

mental advances in our understanding of complex Fano varieties; see [OS12], [Bir21], [Xu21].

Our focus will be to study a positive characteristic analog of the α-invariant. Fix k to be

a perfect field of positive characteristic p > 0. Following Theorem I.4.1 and Theorem I.4.2,

we may replace the klt singularities with global F -regularity (Definition I.2.1) in Defini-

tion I.4.3 to obtain a positive characteristic analogue of Tian’s α-invariant, which we call the

αF -invariant as follows:

Definition I.4.4. Let X be a smooth, globally F -regular Fano variety over a perfect field

of positive characteristic. Then, we define the αF -invariant of X as

αF (X) := sup{t ≥ 0 | (X, t∆) is globally F -regular ∀ effective Q-divisors ∆ ∼Q −KX}.

Since we intend for the αF -invariant to capture global properties of divisors on X, we

use global F -regularity instead of just local strong F -regularity (Definition II.3.2). This is

justified by noting that simply replacing globally F -regular by klt in characterisitic zero, we

obtain the minimum value between the usual α-invariant of X and 1 (see Remark IV.3.11).

Thus, at least for Fano varieties with α(X) ≤ 1, the αF -invariant is a “Frobenius-analog” of

Tian’s α-invariant.

Our first theorem proves some surprising properties of the αF -invariant in contrast to

the complex version, and establishes connections to the F -signature of (X,−KX) (see Defi-

nition I.2.3 and Definition I.3.2):

Theorem I.4.5. Let X be a globally F -regular Fano variety over a perfect field of positive

characteristic. Then,

1. The αF -invariant of X (denoted by αF (X)) is at most 1/2 (Theorem IV.3.5).

2. Assume Xis geometrically connected over the (perfect) base field. We have αF (X) =

1/2 if and only if the F -signature of X (with respect to −KX) equals vol(−KX)
2d(d+1)!

, where

d is the dimension of X (Corollary IV.3.8).

3. More generally (and still assuming that X is geometrically connected), the F -signature

of X is at most vol(−KX)
2d(d+1)!

(Corollary IV.3.8).

4. In case X is a toric Fano variety corresponding to a fan F, then αF (X) is the same

as the complex α-invariant of XC(F), the complex toric Fano variety corresponding to

F (Theorem IV.3.12).
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Part (1) of Theorem I.4.5 is surprising since many complex Fano varieties have α-

invariants greater than 1/2 (and less than 1). Combined with Part (4), this recovers, and

provides a positive characteristic proof of the well-known fact that the α-invariant of toric

Fano varieties is at most 1/2 (see [LZ22, Corollary 3.6]).

Note that the F -signature has attracted attention as a candidate for the positive charac-

teristic analog of the normalized volume of a Kawamata log-terminal (klt) singularity, extend-

ing the established analogy between strongly F -regular and klt singularities; see [LLX20],

[Tay19], [MPST19]. The normalized volume has been successfully used in the stability theory

of complex klt singularities and the moduli theory of Fano varieties; see the recent survey

[Zhu23] for the details.

As in the case of the complex α-invariant, we may consider the αF -invariant much more

generally for arbitrary polarizations of projective varieties. In Section IV.2, we develop

the theory of the αF -invariant in this more general setting. From this perspective, the αF -

invariant is an invariant of a section ring of a projective varieties that shares many properties

and relations with the F -signature. In this direction, we prove:

Theorem I.4.6. Let S denote a section ring of a globally F -regular projective variety (with

respect to some ample line bundle) over a perfect field k. Then,

1. (Theorem IV.2.8): The number αF (S) can be calculated as the following limit:

αF (S) = lim
e→∞

me(S)

pe

where me(S) denotes that maximum integer m such that for each non-zero homogeneous

element f of degree m, the map S → F e
∗S sending 1 to F e

∗ f splits.

2. Since S is strongly F -regular, we have αF (S) is positive (Theorem IV.2.10).

3. Base-change (Corollary IV.2.16): Assume that S0 = k and K is any perfect field

extension of k. Then,

αF (S) = αF (S ⊗k K).

Our third set of results concern the semicontinuity properties of the αF -invariant, analo-

gus to the results of [BL22] about the complex version. In this direction, we prove:

Theorem I.4.7 (Theorem V.2.1). Let f : X → Y be family of globally F -regular Fano

varieties such that −KX|Y is Q-Cartier and f -ample. Assume that Y is regular. Then, the

map from Y → R≥0 given by

y 7→ αF (Xy∞)
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is lower semicontinuous, where Xy∞ is the perfectified-fiber over y ∈ Y (see Notation V.1.1).

We also prove a weaker version of Theorem I.4.7 for any polarized family of globally

F -regular varieties. This is analogus to the corresponding result for the F -signature proved

in [CRST21] and relies on uniform convergence for the αF -invariant (Theorem V.1.4) in a

family, which may be of independent interest.

Theorem I.4.5 and Theorem I.4.6 are proved in Chapter IV of this thesis. Chapter V is

dedicated to the proof of Theorem I.4.7 and related results.
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CHAPTER II

Frobenius splittings, F -regularity, and the F -signature

of Projective Varieties

In this chapter, we present some background and prove preliminary results about Frobenius

splittings, F -regularity and the F -signature in the case of section rings of projective varieties.

First, we review the construction of section rings of projective varieties in Section II.1. Next,

we discuss the F -signature of section rings in Section II.2. Finally, we review the notion of

F -regularity and global F -regularity of projective varieties in Section II.3.

Notation II.0.1. Throughout this thesis, all rings are assumed to be Noetherian and com-

mutative with a unit. Unless specified otherwise, k will denote a perfect field of characteristic

p. A variety over k is an integral (in particular, connected), separated scheme of finite type

over k. For a point x on a scheme X, the residue field OX,x/mx will be denoted by κ(x)

(where OX,x is the local ring at x and mx is the maximal ideal of the local ring).

Notation II.0.2 (Divisors and Pairs). A prime Weil-divisor on a scheme X is a reduced

and irreducible subscheme of X of codimension one. An integral Weil-divisor is a formal

Z-linear combination of prime Weil-divisors. A Q-divisor is a formal Q-linear combination

of prime Weil-divisors. By a pair (X,∆), we mean that X is a Noetherian, normal scheme

and ∆ is an effective Q-divisor over X.

II.1: Section Rings and Modules

Definition II.1.1. Let A be a Noetherian ring and X be a projective scheme over A. Given

an ample invertible sheaf L on X and F a coherent sheaf on X, the N-graded ring S defined

by

S = S(X,L) :=
⊕
n≥0

H0(X,Ln)

is called the section ring of X with respect to L. The affine scheme Spec(S) is called the

(affine) cone over X with respect to L. The section module of F with respect to L is a
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Z-graded S-module M defined by

M =M(X,L) :=
⊕
n∈Z

H0(X,F ⊗ Ln).

Similarly, the sheaf corresponding to M on Spec(S) is called the cone over F with respect

to L.

Let S be a Noetherian, N-graded domain, and T denote the set of positive degree homo-

geneous elements of S. For a finitely generated, torsion-free, Z-graded module M over S,

let M ′ denote the localization M ′ = T−1M . Note that M ′ is naturally a Z-graded module

over T−1S. Since M is torsion-free, we can think of M naturally as a subset of M ′. In this

setting, we define the saturation of M to be the Z-graded module

M sat = {m ∈M ′ | pnm ∈M for some n > 0}

where p is the irrelevant ideal p =
⊕

j>0 Sj. We say M is saturated if M =M sat.

Lemma II.1.2. Let A be a Noetherian domain, X be an integral, projective scheme over A

and L an ample invertible sheaf over X.

1. The section ring S of X with respect to L is a finitely generated algebra over A and

hence, is Noetherian. If X is normal, and A = k, then the section ring is also char-

acterized as the unique normal N-graded ring S such that Proj(S) is isomorphic to X

and the corresponding OX(1) is isomorphic to L.

2. The section module of any torsion-free coherent sheaf over X with respect to L is

finitely generated over S. It is also characterized as the unique saturated, torsion-free,

Z-graded S-module M (with respect to the irrelevant ideal I =
⊕

j>0 Sj) such that the

associated coherent sheaf M̃ on X is isomorphic to F.

3. For two torsion-free coherent sheaves F and G, we have a natural isomorphism:

HomOX
(F,G) ∼= Homgr

S (M(F,L),M(G,L))

where Homgr
S ( , ) denotes the set of grading preserving S-module maps between two

graded S-modules.

Proof. See [Sta, Tag 0BXF].

In the next lemma, we record some useful principles concerning direct summands of

sheaves on a proper variety.
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Lemma II.1.3. On a proper variety X over k, let L, M be invertible sheaves, and F, G be

coherent sheaves over X. Then,

1. If L is not a direct summand of F and G, then L is also not a summand of F ⊕ G.

2. If F ∼= L⊕n ⊕ G and L is not a summand of G, then, n is the maximum number of L

summands of F (in any decomposition).

3. Assume L ̸∼= M, and both L and M are summands of F, then L⊕M is a summand of

F.

Proof. Note that giving an OX-summand (i.e., a summand isomorphic to OX) of a coherent

sheaf F is equivalent to giving a non-zero global section s ∈ H0(X,F) and a map φ ∈
HomOX

(F,OX) such that φ(s) ̸= 0. This is because since Γ(X,OX) is a field, for any non-

zero element u ∈ Γ(X,OX)
×, multiplication by u−1 is an OX-module automorphism of OX .

Thus, given s and φ as above with φ(s) ̸= 0, we may assume that φ(s) = 1 by post-

multiplying by φ(s)−1. Then, φ defines a splitting of the map OX → F defined by 1 7→ s.

Moreover, we may then write F = OX ⊕ ker(φ), with the copy of OX corresponding to the

OX-submodule of F generated by s.

1. By twisting by L−1, we may assume that L = OX . An OX-summand of F⊕ G is given

by a global section

s = (s1, s2) ∈ H0(X,F ⊕ G) = H0(X,F)⊕H0(X,G)

and a map

φ = (φ1, φ2) ∈ HomOX
(F ⊕ G,OX) = HomOX

(F,OX)⊕ HomOX
(G,OX)

such that φ(s) ̸= 0. However, φ(s) = φ1(s1) + φ2(s2). So, if φ(s) ̸= 0, then φi(si) ̸= 0

for some i = 1, 2, giving an OX-summand of either F or G, which is a contradiction.

2. Again, twisting by L−1, we may reduce to the case when L = OX . Suppose that there

is another decomposition F ∼= O
⊕(n+m)
X ⊕ G′ for some m > 0. Let φ : O

⊕(n+m)
X

⊕
G′ →

O⊕n
X

⊕
G be an isomorphism. Now, consider the map ψ : H0(X,O

⊕(n+m)
X ) → H0(X,O⊕n

X )

induced by the inclusion of O
⊕(n+m)
X into F, the isomorphism φ and the projection

onto O⊕n
X . Since m is positive, there exists a non-zero section s ∈ O

⊕(n+m)
X such that

ψ(s) = 0.

Now write φ(s, 0) = (0, g) for some g ∈ H0(X,G). Note that (s, 0) gives an OX-

summand of F. Hence, g must be an OX-summand of G, which is a contradiction,
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since G was assumed to have no OX-summands.

3. Since L is a direct summand of F, there is some G such that F ∼= L⊕G. Now, by part

(a), if M is a direct summand of L ⊕ G, then M is direct summand of either L or G.

However, since M ̸∼= L, M must be a direct summand of G. Hence, L⊕M is a direct

summand of F.

II.2: The F -signature

Let R be any ring of prime characteristic p. Then for any e ≥ 1, let F e : R → R sending

r 7→ rp
e
be the eth-iterate of the Frobenius morphism. Since R has characteristic p, F e defines

a ring homomorphism, allowing us to define a new R-modules for each e ≥ 1 obtained via

restriction of scalars along F e. We denote this new R-module by F e
∗R and its elements by

F e
∗ r (where r is an element of R). Concretely, F e

∗R is the same as R as an abelian group,

but the R-module action is given by:

r · F e
∗ s := F e

∗ (r
pes) for r ∈ R and F e

∗ s ∈ F e
∗R.

Now let (R,m) denote a normal local domain and X denote the normal scheme Spec(R).

Throughout, we will also assume that R is the localization of a finitely generated k-algebra

at a maximal ideal, which also makes it F -finite (i.e., F e
∗R is a finitely generated R-module

for any e ≥ 1). Let ∆ be an effective Q-divisor on X = Spec(R). Then, note that since

∆ is effective, for any e ≥ 1, we have a natural inclusion R ⊂ R(⌈(pe − 1)∆⌉) of reflexive

R-modules. Here, R(⌈(pe−1)∆⌉) denotes the R-module corresponding to the reflexive sheaf

OX(⌈(pe − 1)∆⌉). Thus, applying HomR( , R) to the natural inclusion F e
∗R ⊂ F e

∗ (R(⌈(pe −
1)∆⌉)), we get

HomR

(
F e
∗R(⌈(pe − 1)∆⌉), R

)
⊂ HomR(F

e
∗R,R).

Thus, given any element φ ∈ HomR

(
F e
∗R(⌈(pe − 1)∆⌉), R

)
, it can be naturally viewed as a

map from φ : F e
∗R → R.

Definition II.2.1 (Splitting Ideals). For any e ≥ 1, we define the subset I∆e ⊆ R as

I∆e =
{
x ∈ R | φ(F e

∗x) ∈ m for every map φ ∈ HomR

(
F e
∗R(⌈(pe − 1)∆⌉), R

) }
.

We observe that I∆e is an ideal of finite colength in R and we call

a∆e = ℓR(R/I
∆
e )
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the ∆-free rank of F e
∗R, where ℓR denotes the length as an R-module.

Definition II.2.2. [BST11, Theorem 3.11, Proposition 3.5] Let (R,∆) be a pair as above,

and a∆e (R) denote the ∆-free rank of F e
∗R (Definition II.2.1). Then the F -signature of (R,∆)

is defined to be the limit:

s(R,∆) := lim
e→∞

a∆e
ped

where d is the Krull dimension of R. This limit exists by [BST11].

Remark II.2.3. For a local domain R obtained as the localization of a finitely generated

k-algebra, the degree of the field extension Frac(R) ⊂ Frac(R)1/p is equal to pd, where d

is the transcendence degree of Frac(R) over k. Thus, if R was the localization of a finitely

generated k-algebra at a maximal ideal, we d is also the Krull dimension of R.

Remark II.2.4. The F -signature of a local ring (R,m) as above is the F -signature s(R, 0).

By [Tuc12, Proposition 4.5], the definition of the free-rank and the F -signature of R in

Definition II.2.2 match the one given in Definition I.2.3.

II.2.1: The F -signature of N-graded rings.

Though the definition of the F -signature is given for a local ring (R,m), we may also work

with N-graded rings (S,m, k) i.e. S is N-graded with S0 = k and m = S>0. We next relate

the local and graded situations.

Definition II.2.5 (Graded free rank). Let (S,m, k) be an N-graded ring, finitely generated

over k, with S0 = k and M a finitely generated Z-graded module over S. Then we can

decompose M as a graded S-module as:

M ∼= P ⊕N

where P is a graded free S-module (i.e. a direct sum of S(j), the shifted rank 1 free modules,

for various j ∈ Z) and N is a graded module with no graded free summands. Then the rank

of P is independent of the chosen decomposition and we define it to be the graded free rank

of M over S (denoted by agr(M)).

Lemma II.2.6. Let (S,m, k) and M be as above. Then the free rank of Mm over the local

ring Sm is the same as the graded free rank of M .

Proof. See [DSPY22, Proposition 5.7].
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Now, we describe the F -signature of N-graded rings, relating it to the (local) F -signature

at the vertex. For similar discussions relating the local and global situations, see [Smi00,

Section 3], [Smi97b, Section 4], and [VK12, Section 2.2].

Let S be an N-graded ring. Then F e
∗S is also naturally an 1

pe
N-graded S-module by

taking

(F e
∗S) i

pe
= F e

∗Si.

This gives rise to the N-grading on F e
∗S given by

(F e
∗S)n =

⊕
0≤i≤pe−1

(F e
∗S) i+npe

pe
.

Thus, F e
∗S decomposes as

F e
∗S =

⊕
0≤i≤pe−1

⊕
j≥0

F e
∗Si+jpe

as an N-graded S-module.

Definition II.2.7 (F -signature of N-graded rings). Let (S,m, k) be an N-graded, finitely
generated k-algebra, with S0 = k. Then, we define the F -signature of S to be the limit:

lim
e→∞

ae,gr(S)

ped

where ae,gr(S) is the graded free rank of F e
∗S and d denotes the Krull dimension of S. We note

that by II.2.6, the F -signature of S coincides with the F -signature of Sm, the localization

of S at the maximal ideal m.

II.3: F -regularity:

Definition II.3.1 (Sharp F -splitting). [SS10, Definition 3.1] Let X be a normal variety

over k and ∆ ≥ 0 be an effective Q-divisor. The pair (X,∆) is said to be globally sharply

F -split (resp. locally sharply F -split) if there exists an integer e≫ 0, such that, the natural

map

OX → F e
∗OX(⌈(pe − 1)∆⌉)

splits (resp. splits locally) as a map of OX-modules. A normal variety X is said to globally

F -split if the pair (X, 0) is globally sharply F -split.

Definition II.3.2 (F -regularity). [SS10, Definition 3.1] Let X be a normal variety over k

and ∆ ≥ 0 be an effective Q-divisor. The pair (X,∆) is said to be globally F -regular (resp.
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locally strongly F -regular) if for any effective Weil divisor D on X, there exists an integer

e≫ 0, such that, the natural map

OX → F e
∗OX(⌈(pe − 1)∆⌉+D)

splits (resp. splits locally) as a map of OX-modules. A normal variety X is said to globally

F -regular if the pair (X, 0) is globally F -regular.

Remark II.3.3. When X = Spec(R) is an affine variety and ∆ is an effective Q-divisor,

the pair (X,∆) being globally F -regular (resp. globally sharply F -split) is equivalent to the

pair (R,∆) being locally strongly F -regular (resp. locally sharply F -split) [SS10].

Remark II.3.4. A local ring R is strongly F -regular if and only if its F -signature s(R)

is positive [AL03]. More generally, a pair (R,∆) (where R is normal, local) is strongly F -

regular if and only if the F -signature s(R,∆) (Definition II.2.2) is positive [BST11, Theorem

3.18].

Theorem II.3.5. [Smi00, Theorem 3.10] Let X be a projective variety over k. Then, X

is globally F -regular if and only if the section ring S(X,L) ( II.1.1) with respect to some

(equivalently, every) ample invertible sheaf L is strongly F -regular.

Remark II.3.6. (Locally) Strongly F -regular varieties are normal and Cohen-Macaulay.

Similarly, globally F -regular varieties enjoy many of nice properties such as:

• As proved in [SS10, Theorem 4.3], they are log-Fano type. More precisely, there exists

an effective divisor ∆ ≥ 0 such that the pair (X,∆) is globally F -regular and −KX−∆

is ample.

• A version of the Kawamata-Viehweg vanishing theorem holds on all globally F -regular

varieties [SS10, Theorem 6.8].

Theorem II.3.7 ([Smi00], Corollary 4.3). Let X be a projective, globally F -regular variety

over k. Suppose L is a nef invertible sheaf over X. Then,

H i(X,L) = 0 for all i > 0.

We need a slight variation of Theorem II.3.7 for Q-ample divisors that we prove here for

completeness.

Proposition II.3.8. Let X be a globally F -split normal variety and L be a Q-ample Weil

divisor i.e., L is an integral Weil divisor such that rL is an ample Cartier divisor for some

integer r > 0. Then,

H i(X,OX(L)) = 0 for i > 0.

18



Proof. Let r be an integer such that rL is Cartier. Write r = pe0s such that s is coprime to

p. Pick an e > 0 such that s divides pe − 1. Then, since pe0(pne − 1) is a multiple of r for all

n > 0, using Serre vanishing theorem, we have

(II.3.1)

H i(X,OX(p
ne+e0L)) = H i(X,OX(p

e0L+ (pne − 1)pe0L) = 0 for all i > 0 and n≫ 0.

Since the map

OX → F ne+e0
∗ OX

is split, twisting by OX(L) and reflexifying, we get that

OX(L) → F ne+e0
∗ OX(p

ne+e0L)

is split as well. Now the Proposition follows from the vanishing in (II.3.1).

The next Proposition is a technical result that helps us to restrict Q-Cartier divisors to

normal, locally complete intersection subvarieties. This is very close to [PS12, Corollary 3.3],

but we will need it in the form stated below.

Proposition II.3.9. Let X = Spec(R), where (R,m) is an F -finite, strongly F -regular, local

ring and D be an integral Weil-divisor on X such that rD is Cartier for some integer r.

Then, for each m ≥ 0,

1. There exists an e≫ 0 such that the module R(mD) = H0(X,OX(mD)) is isomorphic

to an R-module summand of F e
∗R. In particular, R(mD) is a Cohen-Macaulay module

over R.

2. Suppose that x1, . . . , xt is a regular sequence on R such that the ring R/(x1, . . . , xt)R

is normal. Then, the sheaf OX(mD)⊗ROY is reflexive on Y = Spec(R/(x1, . . . , xt)R).

Furthermore, if we assume that the support of D does not contain the subscheme Y ,

then natural map

(II.3.2) OX(mD)⊗R OY → OY (mDY )

is an isomorphism, where DY denotes the restriction of D to Y (see the description in

the proof below).

Proof. By adding a principal divisor if necessary (which leaves the module R(mD) isomor-

phic), we assume that D is effective.
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1. Since R is strongly F -regular, there exists an e ≫ 0 such that the map OX →
F e
∗ (OX(sD)) splits for each 0 ≤ s ≤ r. Once we have such an e, choose s ≤ r

such that pe + s is divisible by r. Thus, we may assume that the map (got by twisting

by D and reflexifying):

OX(D) → F e
∗
(
OX((p

e + s)D)
)

is split. Since r divides pe + s, OX((p
e + s)D) is isomorphic to OX since R is local and

rD is Cartier. Therefore, taking global sections, we have that the map

(II.3.3) R(mD) → F e
∗R

is split. Note that the e obtained is independent of m. The Cohen-Macaulayness of

R(mD) follows because F e
∗R is a Cohen-Macaulay module over R, since R itself is

Cohen-Macaulay.

2. Firstly, we may assume m = 1 since the discussion holds for an arbitrary Weil divisor

and is compatible with addition of Weil-divisors. Now, since Y is a normal, complete

intersection subscheme ofX, we may “restrict” the rank one reflexive sheaf F := OX(D)

on X to a reflexive sheaf FY on Y as follows: Let U be the regular locus of Y . Then

there is an open subset V ⊂ Xreg (where Xreg denotes the regular locus of X) such that

V ∩ Y = U . This is possible because Y is a complete intersection in X. Therefore,

we may restrict F to V and then to an invertible sheaf on U , since F|V is invertible.

Define FY to be

FY := i∗(F|U)

where i : U → Y is the inclusion. Then, FY is a rank one reflexive sheaf on Y because

Y is normal and U contains all the codimension one points of Y . Thus, we can write

FY as OY (DY ) for some Weil-divisor DY on Y . Furthermore, if Supp(D) does not

contain Y , then since Y is normal, hence integral, D naturally restricts to a Cartier

divisor DU on U (given by restricting the equation for D) and we may take DY to be

the closure of DU . It is also clear from the description of restriction that it commutes

with addition of Weil-divisors (since the restriction of Cartier divisors on the regular

locus commutes with addition).

Now, since F|U is the restriction of the sheaf F (i.e., isomorphic to F ⊗OX
OU), there

is a natual map

F ⊗OX
OY → FY

which is an isomorphism if and only if F ⊗OX
OY is reflexive. Therefore, it is suf-
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ficient to show that the module R(D) ⊗R R/(x1, . . . , xt)R satisfies the S2 condition

on R/(x1, . . . , xt)R (since R/(x1, . . . , xt)R is normal). But since R(mD) is Cohen-

Macaulay by Part (1) (and clearly full dimensional), and x1, . . . , xt is a regular se-

quence on R, we get that R(mD)⊗ R/(x1, . . . , xt)R is Cohen-Macaulay as well. This

completes the proof of the Proposition.
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CHAPTER III

The F -signature Function on the Ample Cone

In this Chapter, we will study the variation of the F -signature of a fixed projective variety

X as we vary the embeddings of X. This is formalized by defining the F -signature function

on the (rational) ample cone of X in Section III.1. In Section III.2, we prove that the F -

signature function is continuous and extends to the real ample cone. We further prove that

it extends continuously to the Nef cone of X in Section III.3. Finally, in Section III.4, we

prove some effective local upper bounds for the F -signature function. The contents of this

Chapter are part of the joint work with Seungsu Lee [LP23].

Notation III.0.1. Throughout this chapter, k will denote an algebraically closed field of

positive characteristic p.

III.1: Definition of the F -signature Function

In this section, we will define an F -signature function on the rational ample cone of a globally

F -regular projective variety. The rational ample cone, consisting of numerical equivalence

classes of ample Q-divisors on X will be denoted by Amp(X). Recall that in the Néron-

Severi space N1
R(X), AmpQ(X) is the set of rational points of the open cone AmpR(X) (which

consists of classes of ample R-divisors on X). Hence, AmpQ(X) has a natural topology,

inherited from any norm on N1
R(X). We refer to [Laz04, Chapter 1] for the details.

Definition III.1.1. LetX be a globally F -regular projective variety over k (Definition II.3.2).

Suppose that dim(X) > 0. The F -signature function

sX : AmpQ(X) → R

on the rational ample cone of X, is defined as follows:

1. If the class [L] ∈ AmpQ(X) is defined by an integral Cartier divisor L, then we define

sX([L]) to be the F -signature (Definition II.2.2) of the section ring S(X,L) (Defini-
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tion II.1.1) of L:

sX([L]) := s(S(X,L)).

2. If the class [L] is defined by a rational multiple of an integral Cartier divisor i.e. L = a
b
D

where D is an integral Cartier divisor on X, then we define:

sX([L]) :=
b

a
sX([D]) =

b

a
s(S(X,D)).

The rest of this section is devoted to checking that the function s is indeed well-defined.

Remark III.1.2. If dim(X) = 0, we define the F -signature function as sX(L) = 1 for any

ample divisor on X. Indeed, X is just a point and the only divisor on X is 0.

Theorem III.1.3. Let X be a globally F -regular projective variety over k with dim(X)

positive. Then, Definition III.1.1 gives a well-defined F -signature function sX on the rational

ample cone of X, satisfying the identity:

sX

(a
b
L
)
=
b

a
sX(L)

for any two non-zero natural numbers a and b and any ample Q-divisor L.

Proof. To prove the theorem, we need to check that the function sX as defined in Defini-

tion III.1.1 is well-defined. There are two issues:

1. The first arising from the choice of a Q-divisor representing a numerical equivalence

class (Theorem III.1.4).

2. Having chosen a Q-divisor L representing a numerical class, there is still ambiguity

in choosing a representation of L as a rational multiple of an integral Cartier divisor

(Theorem III.1.6).

We address the first ambiguity by proving that on a globally F -regular variety, numer-

ical equivalence and linear equivalence are the same conditions. This is an analog of the

same result for log-Fano varieties over the complex numbers, a well-known consequence of

the Kawamata-Viehweg vanishing theorem. The following theorem may be well-known to

experts, but we do not know a reference.

Theorem III.1.4. Let X be a projective, globally F -regular variety over k. Suppose L is a

numerically trivial invertible sheaf on X, i.e. deg(L|C) = 0 for all curves C on X. Then, L

is isomorphic to the trivial invertible sheaf OX .
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Proof. First, we note that by [Kle66, Ch. 2, Section 2, Corollary 1], some power Lm of L

is algebraically equivalent to OX i.e. Lm deforms to OX . Since the Euler-characteristic (for

sheaf-cohomology) is invariant in flat families [Har77, Ch. III, Theorem 9.9], we get that

(III.1.1) χ(OX) = χ(Lm)

for some natural numberm. Now, by Theorem II.3.7, since OX and Lm are both nef invertible

sheaves, we get that

(III.1.2) H i(X,OX) = H i(X,Lm) = 0 for all i > 0.

Hence, we get

(III.1.3) 1 = h0(X,OX) = χ(OX) = χ(Lm) = h0(X,Lm).

Hence, we have shown that Lm has a non-zero global section. But, since it is also numerically

trivial, it must indeed be trivial (since an effective divisor cannot be numerically trivial unless

it is the zero divisor). Therefore, Lm ∼= OX .

Now, by [Kle66, Ch. 1, Section 1], we have that the function χ(Ln) is a polynomial

function of n (as n varies over all integers). Since Lm ∼= OX , we must have that χ(Ln) = 1

for all n ∈ Z. But, again, since Ln is nef for all n ≥ 0, by Theorem II.3.7 we have

(III.1.4) h0(X,L) = χ(L) = 1.

Hence, L ∼= OX as well because L is numerically trivial and has a non-zero global section.

Remark III.1.5. It was proved in [CR17] that torsion divisors (i.e., L such that nL ∼ 0

for some n) are themselves linearly equivalent to 0. Hence, the last part of the proof above

follows from this fact, but we include a proof for the convenience of readers.

Next, we address the second kind of ambiguity in Definition III.1.1. For this, we note the

following scaling property for F -signature of section rings under taking Veronese subrings,

first observed in [VK12].

Theorem III.1.6. [VK12, Theorem 2.6.2] Let X be a projective variety over k with dim(X)

positive and L an ample invertible sheaf on X. Let S(L) and S(Ln) denote the section rings

with respect to L and Ln respectively, where n is any positive natural number. Then, we
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have the following relation between their F -signatures:

(III.1.5) s(S(L)) = n s(S(Ln)).

This concludes the proof of Theorem III.1.3.

III.2: Continuity of the F -signature Function

In this section, we prove that the F -signature function (Definition III.1.1) varies continuously

on the ample cone. Throughout, we fix a globally F -regular projective variety X over k.

Theorem III.2.1. The F -signature function is continuous at each rational class in the

ample cone of X.

In fact, much more is true: the F -signature function is locally Lipschitz around any real

class in the ample cone AmpR(X), with respect to any norm chosen on the Néron-Severi

space. More precisely, we prove:

Theorem III.2.2. Fix any norm ∥ ∥ on the Néron-Severi space N1
R(X) of a projective globally

F -regular variety X. Then for each real class D ∈ AmpR(X), there exist positive real

numbers C(D) and r(D) (depending only on D and the norm ∥ ∥), such that for any two

ample Q-divisors L, L′ contained in the ball Br(D)(D) := {D′ ∈ AmpR(X) | ∥D − D′∥ <

r(D)}, we have

(III.2.1) |sX(L)− sX(L
′)| ≤ C(D)∥L− L′∥.

We will say that the F -signature function sX is locally Lipschitz at a real class D with

Lipschitz constant C(D) if the inequality (III.2.1) is satisfied for all ample Q-divisors L, L′

that are sufficiently close to D.

As an immediate corollary of Theorem III.2.2, we obtain:

Corollary III.2.3. Let X be a projective variety over k with dim(X) positive. Then, the

F -signature function sX extends to a well-defined, continuous, locally Lipschitz function on

the real ample cone AmpR(X) of X satisfying the identity:

sX(λL) =
1

λ
sX(L) for all λ ∈ R>0 and all L ∈ AmpR(X).

Proof. Let D ∈ AmpR(X) be a real ample class on X. The Lipschitz inequality (III.2.1)

implies that for any sequence of ample Q-divisors Ln converging to D, the sequence sX(Ln)
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is Cauchy, hence converges to a unique real number. This gives a well-defined extension of

sX to the real ample cone AmpR(X), that remains locally Lipschitz. Hence, s is continuous

on AmpR(X). Finally, the identity sX(λL) =
1
λ
sX(L) follows by continuity, since it already

holds for all rational L and λ.

III.2.1: Informal sketch of the proof of Theorem III.2.2:

The proof of Theorem III.2.2 consists of several steps. We summarize the ideas in this

subsection.

Step 1: First, in Lemma III.2.6, we prove a formula for calculating the F -signature of an ample

Cartier divisor L, in terms of Frobenius splittings of the linear systems |mL| for m≫ 0.

This gives us a tool to compare sX(L) and sX(L
′) whenever we have a non-zero map

OX(mL) → OX(mL
′) for m≫ 0 (Lemma III.2.11).

Step 2: Given two ample Q-divisors L and L′, we first consider the case when L′ − L is big.

Since L′ − L is big, for m ≫ 0, we have |mL′ − mL| ̸= ∅ allowing us to compare

sX(L) and sX(L
′) (Lemma III.2.11). Further, we may find a constant α such that

αL − L′ is big as well. This allows us a reverse comparison between sX(αL) and

sX(L
′). (Lemma III.2.12).

Step 3: In this step, we estimate the difference in the F -signatures by comparing it to the

difference in volumes. Here, we encounter the key difficulty, which is that we don’t

know the sign of the difference between sX(L
′) and sX(L), even if L′ − L is effective,

which we have already assumed. This is overcome by introducing the difference between

sX(L) and sX(αL) (where α is as in Step 2), along with comparisons to the volume

function to estimate the difference between sX(L) and sX(L
′). These estimates are the

contents of Lemma III.2.13 and Lemma III.2.14.

Step 4: To control the difference in the volumes (from Step 4), we need an additional ingredient:

For any e ≥ 1, we need effective bounds for the degrees m that contribute Frobenius

splittings to the eth free-rank for S(X,L) and S(X,L′) (Theorem III.2.8).

Step 5: The steps so far give us an inequality of the form

(III.2.2) |sX(L)− sX(L
′)| ≤ C(L)∥L− L′∥

for a fixed L and all L′ sufficiently close to L and for some constant C(L) depending

on L (Lemma III.2.10). One result required here is the (Lipschitz) continuity of the

volume function on the ample cone (Lemma III.2.16).
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Step 6: Though (III.2.2) proves continuity of sX at a fixedQ-divisor L, it does not prove that sX

is locally Lipschitz, since the constant C(L) depends on L. So, in Proposition III.2.17

and Lemma III.2.18, we track the constant C(L) and examine the variation with L.

This involves carefully choosing the scalar α from Step 2.

Step 7: As a result, we see that we may pick the constants C(L) such that C(L) = o( 1
∥L∥2 )

as ∥L∥ → ∞. Now, since sX(rL) = 1
r
sX(L) by Theorem III.1.3, we see that for a

Q-divisor L, we may pick C(L) = r2C(rL) for any r ≫ 0. This shows that we may

pick uniform Lipschitz constants on compact subsets of the ample cone.

Step 8: Given two ample Q-divisors L and L′, we may consider a small (and controlled) per-

turbation λL′ of L′ (i.e. λ ≈ 1) so that λL′ − L is big (or even ample). Using the

transformation rule as in Theorem III.1.3, we may replace L′ by λL′ and reduce to the

case when L′ − L is big, concluding the proof.

III.2.2: Proof of Theorem III.2.2

The rest of this section is dedicated to a detailed proof of Theorem III.2.2. Note that if X

is 0-dimensional, then the only ample divisor on X is OX and the Theorem is trivially true.

Hence, we assume for the rest of this section that dimX is positive.

Notation III.2.4. For any Cartier divisor D, we use the notation H0(D) to denote the

space of global sections H0(X,OX(D)).

Definition III.2.5. For any Cartier divisor D on X, define the k-vector subspace Ie(D) of

H0(D) as follows:

Ie(D) := {f ∈ H0(D) | φ(F e
∗ f) = 0 for all φ ∈ HomOX

(F e
∗OX(D),OX)}.

That is, Ie(D) is the set of global sections f of OX(D) such the map OX → F e
∗OX(D)

sending 1 7→ F e
∗ f does not split. A section f ∈ H0(D) that is not contained in Ie(D) along

with a map φ : F e
∗OX(D) → OX sending F e

∗ f to 1 is called an eth-Frobenius splitting of the

linear system |D|.

Lemma III.2.6. Let L be an ample Cartier divisor and S denote the section ring of X with

respect to L. Then, for any e ≥ 1, if ae(L) denotes the free-rank of F e
∗S as an S-module,

then ae(L) is computed by the following formula:

(III.2.3) ae(L) =
∞∑

m=0

dimk
H0(mL)

Ie(mL)
.
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Hence, the F -signature of L can be computed as

sX(L) = lim
e→∞

∞∑
m=0

dimk
H0(mL)
Ie(mL)

pe(dim(X)+1)

Proof. Let L denote the invertible sheaf OX(L). We note that the S-module F e
∗S naturally

decomposes as an N-graded module as (see the discussion preceding Definition II.2.7):

F e
∗S =

pe−1⊕
n=0

Me,n,

where Me,n :=
⊕

i≥0H
0(X,Li ⊗ F e

∗L
n) is naturally an N-graded S-module. Note also that

since H0(X,Ln+ipe) = 0 for i < 0 and 0 ≤ n ≤ pe − 1, the module Me,n is the section

module of the sheaf F e
∗L

n with respect to L. We recall that by Lemma II.2.6, ae(L) can be

calculated as the graded free-rank of F e
∗S i.e.

ae(L) = max{r |F e
∗S

∼=
r⊕

t=1

S(−jt)
⊕

N as graded S-modules

for some jt ∈ Z and some graded S-module N}.

Since F e
∗S is N-graded, we note that each integer jt occurring in any decomposition of

F e
∗S as above is non-negative. Sheaf theoretically, we have an equivalent description (see

[Smi00, Theorem 3.10] and the proof):

ae(L) = max{r | F̃ e
∗S

∼=
⊕

0≤n≤pe−1

F e
∗L

n ∼=
r⊕

t=1

L−jt
⊕

N

as OX-modules for some jt ∈ N and some sheaf N}

(III.2.4)

Now, for any 0 ≤ n ≤ pe− 1, and j ≥ 0, the maximum number of L−j summands of F e
∗L

n is

the same as the maximum number of OX-summands of F e
∗L

n+jpe . Writing F e
∗L

n ∼= O⊕n
X ⊕ G

such that G does not have any OX-summands, we see that the set Ie(L
n) can be identified with

the set H0(X,G). Hence, the maximum number of OX-summands of any F e
∗L

m is exactly

given by the dimension ofH0(mL)/Ie(mL) (see Lemma II.1.3, part (b)). Using Lemma II.1.3

again, running over all 0 ≤ n ≤ pe − 1 and j ≥ 0, we get the desired formula (IV.3.7) for

ae(L).

Remark III.2.7. Since the free-rank of F e
∗S is bounded by its generic rank (which is exactly

pe(dim(X)+1)), the sum in equation (IV.3.7) is indeed finite. Next, we will find uniform bounds
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for the number of terms in this sum.

Theorem III.2.8. Let X be a globally F -regular projective variety over k. Fix a norm ∥ ∥
on the Néron-Severi space N1

R(X). There exists a constant C1 := C1(X) (depending only on

X, and the norm ∥ ∥) such that, whenever L and H are any two effective Cartier divisors

on X, we have:

1.

Ie(mL) = H0(mL) for m >
C1

∥L∥
pe, and,

2. For all n > 2∥H∥
∥L∥ ,

Ie(m(nL+H)) = H0(m(nL+H)) for all m >
C1p

e

n∥L∥
.

Proof. Since X is normal, we can consider the canonical (Weil) divisor on X (denoted by

KX), by extending the canonical divisor on the non-singular locus of X. Choosing an ample

divisor A such that A + KX is effective, we may write A ∼ −KX + E for some effective

(Weil) divisor E. Let [A] denote the class of A in the ample cone of X.

Let L be any effective Cartier divisor on X. By applying duality for the Frobenius map,

we have,

HomOX
(F e

∗OX(mL),OX) ∼= F e
∗OX(−(pe − 1)KX −mL).

See [SS10, Section 4.1] for a detailed discussion regarding duality for the Frobenius map.

Hence, we have,

(III.2.5) HomOX
(F e

∗OX(mL),OX) ∼= F e
∗H

0(X,OX(−(pe − 1)KX −mL)).

This shows that to prove that H0(mL) = Ie(mL) for any given m, it suffices to show the

right hand side in Equation (III.2.5) is zero.

Claim: There exists a positive constant C ′
1 (depending only on X, the choice of A and

the norm ∥ ∥), such that for any effective divisor D with ∥D∥ > C ′
1, we have −KX − D is

not an effective divisor, i.e., −KX −D is not R-linearly equivalent to any effective divisor.

Proof of the claim. Recall that the pseudoeffective cone (denoted by Eff(X)) is a closed

strongly convex cone (i.e. there is no non-zero class ν ∈ Eff(X) such that −ν ∈ Eff(X)), and

contains the class of every effective divisor on X [Laz04, Definition 2.2.25]. Thus, the set

κ := Eff(X)
⋂

([A]− Eff(X))
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is a compact subset of Eff(X). Since the norm function achieves a maximum on κ, we may

choose C ′
1 to be bigger than the norm of any class in κ:

C ′
1 > max{∥ξ∥ | ξ ∈ κ}.

Note that C ′
1 depends only on the choice of A and the norm ∥ ∥.

Since the class of every effective Cartier divisor on X is contained in the pseudoeffective

cone of X, if D is an effective divisor with ∥D∥ > C ′
1, then D can not belong to κ by the

definition of C ′
1. Hence, we see that A − D is not effective. Since A = −KX + E for an

effective divisor E, this means that −KX −D is not effective. This proves the claim.

Continuation of the proof of Theorem III.2.8: For any effective Cartier divisor L, if

m >
C′

1p
e

∥L∥ , we have ∥ m
pe−1

L∥ > C ′
1, hence, applying the claim above, we conclude that

−KX − m
pe−1

L is not effective. Therefore, the divisor

−(pe − 1)KX −mL

is not effective. By (III.2.5), this gives us H0(mL) = Ie(mL) as required. This proves part

(a).

For part (b), we use part (a) of the Theorem by replacing L by nL+H, which gives us

that H0(m(nL+H)) = Ie(m(nL+H)) for m >
C′

1p
e

∥nL+H∥ . Since by assumption ∥H∥ ≤ 1
2
∥nL∥,

we have, ∥nL+H∥ ≥ ∥nL∥ − ∥H∥ ≥ 1
2
∥nL∥. Therefore,

2C ′
1p

e

n∥L∥
≥ C ′

1p
e

∥nL+H∥
,

using which we see that C1 = 2C ′
1 works for both parts (a) and (b). This completes the

proof of Theorem III.2.8.

Remark III.2.9. For a more effective, but less uniform version of Theorem III.2.8, see

Lemma III.4.2.

Next, we prove Theorem III.2.2 in the special case when the divisor L is fixed and the

difference L′ − L is big.

Lemma III.2.10 (Key Lemma). Let L be an integral ample divisor on X. Then, there

exists a constant C(L) (depending only on L and the norm ∥ ∥) such that for any other

ample Q-divisor L′ sufficiently close to L, and for which L′ − L is big, we have:

|sX(L)− sX(L
′)| ≤ C(L)∥L− L′∥.
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Proof of Lemma III.2.10. Throughout the proof, we fix the following set-up: Fixing the

ample, integral divisor L on X, we pick an arbitrary ample Q-divisor L′ such that L′ − L

is big. Then, we may write L′ = L + 1
n
H, for some n ≫ 0 and an effective and big Cartier

divisor H.

Lemma III.2.11. For effective divisors D1 and D2, consider the natural inclusion:

ϕ : F e
∗OX(D1) ⊂ F e

∗OX(D1 +D2).

Then,

(III.2.6) ϕ(Ie(D1)) ⊂ Ie(D1 +D2).

Equivalently, viewing H0(X,OX(D1)) as a subset of H0(X,OX(D1 +D2)) through the map

ϕ, we have:

(III.2.7) ϕ(Ie(D1)) ⊂ Ie(D1 +D2) ∩H0(D1) = {x ∈ H0(D1)|ϕ(x) ∈ Ie(D1 +D2)}.

Proof. This follows from the definitions once we observe that for every map φ in HomOX
(F e

∗OX(D1+

D2),OX), we get a map φ̃ in HomOX
(F e

∗OX(D1),OX) by pre-composing with the map ϕ.

F e
∗OX(D1) F e

∗OX(D1 +D2)

OX

φ̃

ϕ

φ

Lemma III.2.12. With L an ample Cartier divisor and H an effective big divisor on X,

and any natural number n, suppose that we have a natural number b := b(n), such that

nL− bH is big. Consequently, by [Laz04, Corollary 2.2.10], there is a C2 ≫ 0 such that for

all m ≥ C2, we have

H0(m(nL− bH)) ̸= 0.

Then, for m ≥ C2 and all e ≥ 1, there is a factorization of inclusions:

F e
∗OX(mnbL) F e

∗OX(mb(nL+H))

F e
∗OX(mn(b+ 1)L)

·F e
∗ c

·F e
∗mbH

·F e
∗ d

31



given by a choice of a section d ∈ H0(X,OX(mnL−mbH)).

Proof. Given a section d ∈ H0(X,OX(mnL−mbH)), let D1 be the corresponding effective

divisor. Then, we have D2 = mbH + D1 ∼ mbH + mnL − mbH = mnL. Then, we get

inclusions
OX(mnbL) OX(mb(nL+H))

OX(mnbL+D2)

sinceD1 was effective. We get the required factorization by applying F e
∗ to the above diagram

and taking c to be the section corresponding to the divisor D2.

Lemma III.2.13. Let d = dimX and let C1 = C1(X) be the constant as obtained in

Theorem III.2.8. Fix an ample Cartier divisor L and an effective Cartier divisor H on X.

Let n and b := b(n) be positive integers such that n > 2∥H∥
∥L∥ and that nL− bH is big. Then,

we have the following inequality:

|sX(L)− sX(L+
1

n
H)| ≤ Cd+1

1

∥L∥d+1(d+ 1)!

(
2 vol(L)

(
(b+ 1)d − bd

)
bd

+
(
vol(L+

1

n
H)− vol(L)

))
+ 2

sX(L)

b+ 1

(III.2.8)

Proof. First, fixing n and b, there is a C2 ≫ 0 such that H0(m(nL − bH)) ̸= 0 for all

m ≥ C2. Using Lemma III.2.6 and Theorem III.2.8, we have the following formulas for the

F -signatures:

(III.2.9) sX(nbL) = lim
e→∞

1

pe(d+1)

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Ie(mnbL)

and similarly,

(III.2.10) sX(b(nL+H)) = lim
e→∞

1

pe(d+1)

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

Ie(mb(nL+H))
.

Note that even though the formula from Lemma III.2.6 requires us to begin the sums

(III.2.9) and (III.2.10) at m = 0, we may begin the sums at C2 since changing finitely many

terms does not alter the limit.
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According to formulas (III.2.9) and (III.2.10), to compare sX(nbL) with sX(b(nL+H)),

we need to understand the difference

dimk
H0(mbnL)

Ie(mbnL)
− dimk

H0(mb(nL+H))

Ie(mb(nL+H))
.

We have an inclusion

(III.2.11)
H0(mbnL)

H0(mbnL) ∩ Ie(mb(nL+H))
↪→ H0(mb(nL+H))

Ie(mb(nL+H))

coming from the inclusion of H0(mbnL) ↪→ H0(mb(nL+H)).

Let Je(mbnL) = H0(mbnL) ∩ Ie(mb(nL+H)). Then using (III.2.11), we have:

(III.2.12)

dimk
H0(mb(nL+H))

Ie(mb(nL+H))
= dimk

H0(mbnL)

Je(mbnL)
+ dimk

H0(mb(nL+H))

H0(mnbL) + Ie(mb(nL+H))
.

Then, using (III.2.12) and the triangle inequality, we get

(III.2.13)∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Ie(mbnL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

Ie(mb(nL+H))

∣∣∣∣∣∣∣∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Ie(mbnL)
−

C1p
e

∥L∥nb∑
m=C2

(
dimk

H0(mbnL)

Je(mbnL)
+ dimk

H0(mb(nL+H))

H0(mnbL) + Ie(mb(nL+H))

)∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Ie(mbnL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Je(mbnL)

∣∣∣∣∣∣∣+
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

H0(mnbL)

≤

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Ie(mbnL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(m(b+ 1)nL)

Ie(m(b+ 1)nL)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(m(b+ 1)nL)

Ie(m(b+ 1)nL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Je(mbnL)

∣∣∣∣∣∣∣+
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

H0(mnbL)

where in the last inequality, we use the triangle inequality again after adding and subtracting

the term

C1p
e

∥L∥nb∑
m=C2

dimk
H0(m(b+1)nL)
Ie(m(b+1)nL)

.
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To proceed, we need to understand the difference between the spaces H0(m(b+1)nL)
Ie(m(b+1)nL)

and
H0(mbnL)
Je(mbnL)

. To this end, we prove the following:

Lemma III.2.14. Suppose, as in Lemma III.2.12, b is such that nL− bH is big and C2 is

such that for all m ≥ C2, we have H0(m(nL− bH)) ̸= 0. Then, for m ≥ C2 and all e ≥ 1,

choosing a non-zero global section d ∈ H0(mnL−mbH) and setting c = d⊗ hmb, where h is

the section of OX(H) that corresponds to the rational function 1, we have the inclusions

(III.2.14) Ie(mnbL) ⊂ Je(mnbL) ⊂ {x ∈ H0(mnbL) | cx ∈ Ie(mn(b+ 1)L)}.

Moreover, we have the following inequality (with C1 being the constant from Theorem III.2.8):

(III.2.15)∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1)L)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Je(mnbL)

∣∣∣∣∣∣∣
≤

C1p
e

∥L∥nb∑
m=C2

2 dimk
H0(mn(b+ 1)L)

cH0(mnbL)
+

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Ie(mnbL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1)L)

∣∣∣∣∣∣∣
Before proving Lemma III.2.14, we note that putting (III.2.15) together with (III.2.13),

we obtain: ∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Ie(mbnL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

Ie(mb(nL+H))

∣∣∣∣∣∣∣
≤

C1p
e

∥L∥nb∑
m=C2

2 dimk
H0(mn(b+ 1)L)

H0(mnbL)
+

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

H0(mnbL)

+2

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Ie(mnbL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1)L)

∣∣∣∣∣∣∣ .
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Thus, we get

|sX(nbL)− sX(b(nL+H))| =

lim
e→∞

1

pe(d+1)

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mbnL)

Ie(mbnL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

Ie(mb(nL+H))

∣∣∣∣∣∣∣
≤ lim

e→∞

1

pe(d+1)

( C1p
e

∥L∥nb∑
m=C2

2 dimk
H0(mn(b+ 1)L)

H0(mnbL)
+

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mb(nL+H))

H0(mnbL)

+ 2

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Ie(mnbL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1)L)

∣∣∣∣∣∣∣
)

≤ lim
e→∞

Cd+1
1 pe(d+1)

∥L∥d+1nd+1bd+1pe(d+1)(d+ 1)!

(
2nd vol(L)

(
(b+ 1)d − bd

)
+ bdnd

(
vol(L+

1

n
H)− vol(L)

))
+ 2 |sX(nbL)− sX(n(b+ 1)L)|

=
Cd+1

1 ndbd

∥L∥d+1nd+1bd+1(d+ 1)!

(
2vol(L)

((b+ 1)d − bd

bd
)
+
(
vol(L+

1

n
H)− vol(L)

))
+ |sX(nbL)− sX(n(b+ 1)L)|

Finally, using the scaling property for sX (Theorem III.1.3), we get:∣∣∣∣sX(L)− sX(L+
1

n
H)

∣∣∣∣
= nb |sX(nbL)− sX(b(nL+H))|

≤ Cd+1
1

∥L∥d+1(d+ 1)!

(
2 vol(L)

(
(b+ 1)d − bd

)
bd

+
(
vol(L+

1

n
H)− vol(L)

))

+ 2nb

∣∣∣∣sX(L)nb
− sX(L)

n(b+ 1)

∣∣∣∣
=

Cd+1
1

∥L∥d+1(d+ 1)!

(
2 vol(L)

(
(b+ 1)d − bd

)
bd

+
(
vol(L+

1

n
H)− vol(L)

))
+ 2

sX(L)

b+ 1

This completes the proof of Lemma III.2.13, pending the proof of Lemma III.2.14, which we

prove next.

Notation III.2.15. Recall that L and H are fixed integral Cartier divisors, with L ample

35



and H effective and n ≥ 1 is any natural number. For any natural number k ∈ N, we define:

Ie(k) := Ie(kL),

Je(kn) := H0(knL) ∩ Ie(k(nL+H)),

where we view H0(knL) as a subspace of H0(k(nL+H)) via the inclusion map OX(nkL) ⊂
OX(knL+ kH).

Proof of Lemma III.2.14. The first inclusion in (III.2.14) follows from Lemma III.2.11 by

taking D1 = mnbL and D2 = mnbH. The second inclusion follows from Lemma III.2.12 and

the second part of Lemma III.2.11, by taking D1 = mb(nL+H) and D2 to be the effective

divisor corresponding to d ∈ H0(mnL−mbH). Hence, we get∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1))
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Je(mnb)

∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

cH0(mnbL)
−

C1p
e

∥L∥nb∑
m=C2

dimk
Ie(mn(b+ 1))

cJe(mnb)

∣∣∣∣∣∣∣ (rearranging terms)

≤

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

cH0(mnbL)
+

C1p
e

∥L∥nb∑
m=C2

dimk
Ie(mn(b+ 1))

cJe(mnb)
(triangle inequality)

≤

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

cH0(mnbL)

+

C1p
e

∥L∥nb∑
m=C2

dimk
Ie(mn(b+ 1))

cIe(mnb)
(since cIe(mnb) ⊂ cJe(mnb) by (III.2.14))

=

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

cH0(mnbL)
+

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

cIe(mnb)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1))

∣∣∣∣∣∣∣
=

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

cH0(mnbL)

+

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

(
dimk

H0(mn(b+ 1)L)

cH0(mnbL)
+ dimk

H0(mnbL)

Ie(mnb)
− dimk

H0(mn(b+ 1)L)

Ie(mn(b+ 1))

)∣∣∣∣∣∣∣
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≤

C1p
e

∥L∥nb∑
m=C2

2 dimk
H0(mn(b+ 1)L)

cH0(mnbL)
+

∣∣∣∣∣∣∣
C1p

e

∥L∥nb∑
m=C2

dimk
H0(mnbL)

Ie(mnb)
−

C1p
e

∥L∥nb∑
m=C2

dimk
H0(mn(b+ 1)L)

Ie(mn(b+ 1))

∣∣∣∣∣∣∣
where in the second-last step, we rearrange the terms of the sum, and in the last step use

the triangle inequality again. This completes the proof of the lemma.

To complete the proof of Lemma III.2.10, we need the following lemma about the Lip-

schitz continuity of the volume function. We record a quick proof for ample classes that

works for any algebraically closed field, and in any characteristic:

Lemma III.2.16. [Laz04, Theorem 2.2.44] Let X be a projective variety of dimension d

over k. Fix a norm ∥ ∥ on the real Néron-Severi space. Then, there exists a positive constant

C > 0 such that for any two real ample classes ξ and ξ′, we have:

|vol(ξ)− vol(ξ′)| ≤ Cmax(∥ξ∥, ∥ξ′∥)d−1∥ξ − ξ′∥.

Proof. Since the volume function coincides with the intersection form on the real Nef cone,

it is given by a polynomial P of degree d once we choose a basis for N1
R(X). Hence, there

exists a constant C (depending only on X), such that

∥P ′(x1, . . . , xρ)∥ ≤ C∥(x1, . . . , xρ)∥d−1

for any vector (x1, . . . , xρ) ∈ NefR(X). With this observation, the Lemma follows from an

application of the mean-value theorem.

Completion of the proof of Lemma III.2.10: Recall that L is a fixed ample divisor

on X (in particular, L is big). Suppose L′ is an ample Q-divisor such that L′ − L is big.

Further assume that ∥L′−L∥ < ∥L∥
2
. Then, we may write L′ = L+ 1

n
H for a suitable effective

Cartier divisor H and some natural number n ≥ 1.

We would like to apply Lemma III.2.13 to this choice of L, H and n. For this, we need

to choose a natural number b such that nL − bH is big. We note that we may choose b in

the following way: Since L is big, by openness of the big cone of X, there exists a constant

C4 > 0 (depending only on L) such that any Q-divisor D satisfying ∥L − D∥ ≤ C4 is also

big. Since we need L − b
n
H to be big, it is sufficient that ∥ b

n
H∥ ≤ C4. So we may choose

b(n) = ⌊ nC4

∥H∥⌋ so that b(n) → ∞ as n→ ∞.
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Now, applying Lemma III.2.13 to this choice of n and b, we get:

|sX(L)− sX(L+
1

n
H)| ≤ Cd+1

1

∥L∥d+1(d+ 1)!

(
2 vol(L)

(
(b+ 1)d − bd

)
bd

+
(
vol(L+

1

n
H)− vol(L)

))
+ 2

sX(L)

b+ 1

(III.2.16)

Further, we have
(b+ 1)d − bd

bd
≤ 2d

b

and by Lemma III.2.16, there is a positive constant C3, depending only on X and the norm

∥ ∥, such that for any two ample classes ξ1, ξ2 ∈ N1
Q(X),

|vol(ξ1)− vol(ξ2)| ≤ C3

(
max(∥ξ1∥, ∥ξ2∥)

)d−1∥ξ1 − ξ2∥.

Putting these together, along with (III.2.16), and using that ∥ 1
n
H∥ = ∥L− L′∥, we get

|sX(L)− sX(L
′)| ≤ Cd+1

1

(d+ 1)!

(
2 vol(L)

2d

b

+ C3 ∥L′∥d−1∥L′ − L∥

)
+

2

b
sX(L)

(III.2.17)

Next, using the fact b was chosen to be b(n) = ⌊ nC4

∥H∥⌋, we have b ≥ nC4

2∥H∥ , using which we

get

|sX(L)− sX(L
′)| ≤ Cd+1

1

∥Ld+1∥(d+ 1)!

(
2 vol(L)

2d+1

C4

∥L− L′∥

+ C3 ∥L′∥d−1∥L− L′∥

)
+

4

C4

sX(L)∥L− L′∥
(III.2.18)

Lastly, since ∥L− L′∥ < ∥L∥
2

we have ∥L′∥ < 2∥L∥. Hence, we have

|sX(L)− sX(L
′)| ≤ Cd+1

1

∥L∥d+1(d+ 1)!

(
2 vol(L)

2d+1

C4

∥L− L′∥

+ 2d−1C3 ∥L∥d−1∥L− L′∥

)
+

4

C4

sX(L)∥L− L′∥
(III.2.19)
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Hence, we see that for any ample, integral divisor L, we have

|sX(L)− sX(L
′)| ≤ C(L)∥L− L′∥

for all ample Q-divisors L′ such that L′ − L is big and ∥L− L′∥ < ∥L∥
2

where C(L) is given

by

C(L) =
Cd+1

1

∥L∥d+1(d+ 1)!

(
vol(L)

2d+1

C4

+ 2d−1C3∥L∥d−1
)
+

4

C4

sX(L).

This completes the proof of the Key Lemma III.2.10.

The proof of the Key Lemma III.2.10 actually shows a stronger and more explicit state-

ment that will be useful to us. We record it in the following Proposition.

Proposition III.2.17. For any ample, integral divisor L, we have

|sX(L)− sX(L
′)| ≤ C(L)∥L− L′∥

for all ample Q-divisors L′ such that L′ − L is big and ∥L− L′∥ < ∥L∥
2
, where C(L) may be

chosen to be of the form

C(L) =
Cd+1

1

∥L∥d+1(d+ 1)!

(
vol(L)

2d+1

C4

+ 2d−1C3∥L∥d−1
)
+

4

C4

sX(L).

Here, C1 := C1(X) is the constant (depending only on X) obtained in Theorem III.2.8, C3

depends only on X, and C4 := C4(L) is any constant (depending on L) with the property

that the closed ball B = {D ∈ N1
Q(X) | ∥D − L∥ ≤ C4} is contained in the big cone of X.

Next, we examine how the constant C(L) in Proposition III.2.17 varies with L.

Lemma III.2.18. Let X be projective variety and C be a closed cone contained in the big

cone of X. Then, there exists a constant C̃4 (depending only on C) such that for any non-zero

class D ∈ C, the closed ball

B(D) = {ξ ∈ N1
R(X) | ∥ξ −D∥ < C4 ∥D∥}

is contained in Big(X).

Proof. Consider the set

κ := {D′ ∈ C | ∥D′∥ = 1}.

Since C is a closed cone, κ is a compact subset of C. Moreover, since C is contained in the

big cone of X and because Big(X) is an open subset of N1
R(X), there exists a positive real
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number C̃4 > 0 such that the ball BC̃4
(D) = {ξ | ∥D− ξ∥ ≤ C̃4} is contained in the big cone

for all D ∈ κ. Now the lemma follows by considering 1
∥D∥D ∈ κ whenever D is a non-zero

class in C.

Lemma III.2.19. Given any two norms ∥ ∥1 and ∥ ∥2 on the vector space RN , we have

positive constants µ1 and µ2 such that for any vector ν ∈ RN ,

µ1∥ν∥1 ≤ ∥ν∥2 ≤ µ2∥ν∥1.

Proof. See [Fol99, Section 5.1, Ex. 6].

Lemma III.2.20. Let e1, . . . , eρ be a basis for the Néron-Severi space of X, where each

ei corresponds to a big divisor. Let C denote the closed cone generated by the ei’s and ∥ ∥
denote the sup-norm with respect to the basis {ei}. For any L in C, let λi(L) denote the

ith-coordinate of L with respect to the basis {ei}. Suppose we have two positive numbers

0 < A1 < A2 and a compact subset κ of C defined by

κ = {ξ ∈ C |A1 ≤ ∥ξ∥ ≤ A2}.

In this situation, for every D in the interior of κ, there exists a positive real number r(D)

such that the following three conditions are satisfied:

1. r(D) < A1

2
.

2. The closed ball

Br(D) := {D′ | ∥D′ −D∥ ≤ r(D)}

is contained in the interior of κ.

3. For any two Q-divisors L and L′ in Br(D), setting λ = maxi{ λi(L)
λi(L′)

}, we have

A1 < λ∥L′∥ < A2

and

∥λL′ − L∥ < A1

2
.

Proof. First, pick any positive number r < A1

4
such that Br, the closed ball of radius r

around D is contained in κ (this is possible since D is contained in the interior of κ). Now,

there exists a positive number ε such that for any L in Br/2, both (1− ε)L and (1 + ε)L are

40



contained in Br. Finally pick 0 < r(D) < r/2 so small that for each i, we have∣∣∣∣1− λi(L)

λi(L′)

∣∣∣∣ < ε

for all L,L′ in Br(D). This is possible due to the local uniform continuity of the function

λi(L) as L varies. By construction, for any L,L′ ∈ Br(D), we have

1− ε < λ = max
i

{
λi(L)

λi(L′)

}
< 1 + ε.

This ensures that λL′ is in Br and since r < A1

4
, also that

∥λL′ − L∥ ≤ ∥λL′ −D∥+ ∥D − L∥ < 3r

2
<
A1

2
.

Finally, we can now prove Theorem III.2.2.

Completion of the proof of Theorem III.2.2: Fix a real class D in the ample cone

AmpR(X). Then, to prove that sX is locally Lipschitz around D, by Lemma III.2.19, we may

a pick a suitable norm depending on D. Since the ample cone AmpR(X) is an open subset of

N1
R(X), given D in AmpR(X), we may pick a basis e1, . . . , eρ for N1

R(X) such that each ei is

the class of an ample invertible sheaf and such that D in contained in the interior of the cone

generated by the ei’s (equivalently, D =
∑
aiei with each ai > 0). Let C = {aiei | ai ≥ 0}

denote the closed cone generated by the ei’s and ∥ ∥ denote the sup-norm with respect to

the basis {ei}.
Pick two positive real numbers A1 and A2 such that 0 < A1 < ∥D∥ < A2. Let κ = {D′ ∈

C |A1 ≤ ∥D′∥ ≤ A2}. We will first consider the case of any two Q-divisors L and L′ in κ

such that L′−L is big and ∥L′−L∥ < ∥L∥
2
. Choose an integer r ≫ 0 such that rL is integral.

Then, we may apply Proposition III.2.17 to rL and rL′, to get

(III.2.20) |sX(rL)− sX(rL
′)| ≤ C(rL)∥rL− rL′∥

where

(III.2.21) C(rL) =
Cd+1

1

∥rL∥d+1(d+ 1)!

(
vol(rL)

2d+1

C4(rL)
+ 2d−1C3∥rL∥d−1

)
+

4

C4(rL)
sX(rL).
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Now, applying Lemma III.2.18 to the cone C, we may pick C4(rL) with the property that

C4(rL) ≥ C̃4 ∥rL∥

for some constant C̃4 (depending only on the basis {ei}) and for all r and all L ∈ C. Using

this in (III.2.21), we get

C(rL) ≤ Cd+1
1

∥rL∥d+1(d+ 1)!

(
vol(rL)

2d+1

C̃4∥rL∥
+ 2d−1C3∥rL∥d−1

)
+

4

C̃4∥rL∥
sX(rL)

=
Cd+1

1

(d+ 1)!∥L∥d+1rd+1

(
rdvol(L)

2d+1

rC̃4∥L∥
+ 2d−1C3r

d−1∥L∥d−1
)
+

4

r2C̃4∥L∥
sX(L)

=
1

r2

(
Cd+1

1

(d+ 1)!∥L∥d+1

(
vol(L)

2d+1

C̃4∥L∥
+ 2d−1C3∥L∥d−1

)
+

4

C̃4∥L∥
sX(L)

)

(III.2.22)

Now, using the fact that vol(L) is a continuous function of L [LM09], we may find a

constant A3 (depending only on the compact set κ) such that vol(L) ≤ A3 for all L in κ.

Using this together with the bounds A1 ≤ ∥L∥ ≤ A2 in (III.2.22), we get

C(rL) ≤ 1

r2

(
Cd+1

1

(d+ 1)!∥A1∥d+1

(
A3

2d+1

C̃4A1

+ 2d−1C3A
d−1
2

)
+

4

C̃4A1

)
.

So setting

C ′(D) =

(
Cd+1

1

(d+ 1)!∥A1∥d+1

(
A3

2d+1

C̃4A1

+ 2d−1C3A
d−1
2

)
+

4

C̃4A1

)
,

and using it in (III.2.20), we have

|sX(rL)− sX(rL
′)| ≤ 1

r2
C ′(D)∥rL− rL′∥.

Using the scaling property of sX for Q-divisors (Theorem III.1.3), this in turn implies,

(III.2.23) |sX(L)− sX(L
′)| ≤ C ′(D)∥L− L′∥

for any two Q-divisors L, L′ in κ such that L′ − L is big and ∥L − L′∥ ≤ ∥L∥
2
. Note that

C ′(D) only depends on the set κ and hence only on D.

To complete the proof of Theorem III.2.2, we need to remove the assumption that L′−L
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is big from inequality (III.2.23). For any L in C, let λi(L) denote the ith-coordinate of L

with respect to the basis {ei} (for 1 ≤ i ≤ ρ). Now, since D is contained in the interior of

κ, by Lemma III.2.20 there exists a positive r(D) satisfying the following three conditions:

1. r(D) < A1

2
.

2. The closed ball

Br(D) := {D′ | ∥D′ −D∥ ≤ r(D)}

is contained in the interior of κ.

3. For any two Q-divisors L and L′ in Br(D), setting λ = maxi{ λi(L)
λi(L′)

}, we have

A1 < λ∥L′∥ < A2

and

∥λL′ − L∥ < A1

2
.

Fix such an r(D). For any two Q-divisors L and L′ in Br(D) such that L′ is not a multiple

of L, setting λ = maxi{ λi(L)
λi(L′)

}, then λL′ − L is ample (hence, big). Indeed, recall that ei’s

are an ample basis for N1
(X) and the j-th coordinate of λL′ − L is

λλj(L
′)− λj(L) = λj(L

′)

(
λ− λj(L)

λj(L′)

)
≥ 0

The right hand side is non-negative since λ is the maximum of λi(L)/λi(L
′). Now, if λ =

λj(L)/λj(L
′) for all j, then L′ is a multiple of L. Therefore, if L′ is not a multiple of L, one

of the coefficients of λL′ − L is strictly positive, which implies λL′ − L is ample.

Furthermore, λL′ ∈ κ and ∥λL′−L∥ < ∥L∥
2

(these are ensured by condition (c) on r(D)).

Hence, using (III.2.23) we have

|sX(λL′)− sX(L)| ≤ C ′(D)∥λL′ − L∥

for any two ample Q-divisors L and L′ contained in Br(D).

Pick a positive constant A4 (depending only on D and r(D)) such that we λi(L) ≥ A4 for

any L in Br(D) and all i. This is possible because κ, hence the closed ball Br(D) is contained

in the interior of the cone C. Since for some i, we have λ = λi(L)
λi(L′)

, we have

|λ− 1| ≤ |λi − λ′i|
λ′i

≤ ∥L− L′∥
A4

.
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Similarly, we have ∣∣∣∣1λ − 1

∣∣∣∣ ≤ ∥L− L′∥
A4

.

To conclude the argument, we note that

|sX(L)− sX(L
′)| ≤|sX(L)− sX(λL

′)|+ |sX(λL′)− sX(L
′)|

≤ C ′(D)∥L− λL′∥+ |1
λ
− 1|sX(L′)

≤ C ′(D)∥L− L′∥+ C ′(D)|1− λ|∥L′∥+ |1
λ
− 1|sX(L′)

≤ C ′(D)∥L− L′∥+ C ′(D)
A2

A4

∥L− L′∥+ 1

A4

∥L− L′∥.

Lastly, if L′ were a multiple of L, then only the last term in the above inequality suffices.

Thus, we see that for our choice of r(D), choosing C(D) = C ′(D) +C ′(D)A2

A4
+ 1

A4
works for

the inequlaity (III.2.1), hence proving Theorem III.2.2.

III.3: Extending the F -signature Function to the Nef Cone.

In this section, we will prove that the F -signature function, originally defined in Section 3

only on the ample cone (Definition II.2.2) extends continuously to the non-zero classes in

the nef cone.

Theorem III.3.1. Suppose that X is a globally F -regular projective variety of dimension

d. Then the F -signature function sX extends continuously to all non-zero classes of the Nef

cone NefR(X). Moreover, if D is a nef Cartier divisor which is not big, then sX(D) = 0.

We prove Theorem III.3.1 in two parts, depending on whether or not L is big. First, we

have the following comparison of the F -signature function with the volume function:

Lemma III.3.2. Let X be a globally F -regular projective variety of dimension d. Fix a

norm ∥ ∥ on the Néron-Severi space of X. Let C1 be a constant such that for any non-zero

effective divisor L, we have (see Definition III.2.5 for the notation),

Ie(mL) = H0(mL) for all m >
C1

∥L∥
pe.

The existence of such a constant is guaranteed by Theorem III.2.8. Then, for any ample

Cartier divisor D on X, we have

(III.3.1) sX(D) ≤ Cd+1
1 vol(D)

∥D∥d+1(d+ 1)!
.
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Note that the right-hand side has the same order of decay as the F -signature function,

decaying in the order of 1/∥D∥ as the norm of divisor ∥D∥ → ∞.

Proof. Using Lemma III.2.6 to calculate the F -signature sX(D), we have

sX(D) = lim
e→∞

1

pe(d+1)

∞∑
m=0

dimk
H0(mD)

Ie(mD)

= lim
e→∞

1

pe(d+1)

C1p
e

∥D∥∑
m=0

dimk
H0(mD)

Ie(mD)

≤ lim
e→∞

1

pe(d+1)

C1p
e

∥D∥∑
m=0

dimkH
0(mD)

≤ lim
e→∞

1

pe(d+1)

vol(D)

(d+ 1)!

(
C1p

e

∥D∥

)d+1

(using the Hilbert-polynomial of D)

=
Cd+1

1 vol(D)

∥D∥d+1(d+ 1)!

Proof of Theorem III.3.1. First suppose that D is a non-zero nef divisor that is not big.

Then, for any sequence {Lt}t of ample Q-divisors approaching D, choose a positive integer

rt for each t ≥ 1 such that rtLt is integral Cartier. Then, we see that using Lemma III.3.2,

sX(Lt) = rt sX(rtLt) ≤
Cd+1

1 vol(rtLt)

∥rtLt∥d+1(d+ 1)!
=

Cd+1
1 vol(Lt)

∥Lt∥d+1(d+ 1)!
.

Since ∥D∥ ≠ 0, we have that ∥Lt∥ approaches a non-zero number (namely, ∥D∥) and vol(Lt)

approaches 0 as t → ∞ (since D is not big), this shows that sX(Lt) → 0 as t → ∞. As the

sequence {Lt} chosen was arbitrary, this shows that the F -signature function sX extends

continuously by zero to all non-zero nef divisors L that are not big.

Now suppose that D is a big and nef divisor. Following the proof of Theorem III.2.2,

to prove that sX is locally Lipschitz for ample divisors around D, by Lemma III.2.19, we

may a pick a suitable norm depending on D. Since the big cone Big(X) is an open subset

of N1
R(X), given D in Big(X), we may pick a basis e1, . . . , eρ for N1

R(X) such that each ei is

the class of a big invertible sheaf and such that D in contained in the interior of the cone

generated by the ei’s (equivalently, D =
∑
aiei with each ai > 0). Let C = {aiei | ai ≥ 0}

denote the closed cone generated by the ei’s and ∥ ∥ denote the sup-norm with respect to the

basis {ei}. Then, arguing verbatim as in the final step of the proof of Theorem III.2.2 and
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applying the argument to all ample Q-divisors L,L′ contained in C, we get positive numbers

r(D) and C(D) such that

|sX(L)− sX(L
′)| ≤ C(D)∥L− L′∥

for any two ample Q-divisors L and L′ contained in a ball of radius r(D) around D. This

proves that sX is uniformly continuous in a neighbourhood of D, which gives us a unique

continuous extension of sX to D.

The F -signature function of the blow-up of P2 at a point provides an instructive example

of the behavior of the function on the boundary. For a formula for general Hirzebruch

surfaces, see [HS17].

Example III.3.3. Let X = Blx(P2) be the blow-up of P2 at x = [0 : 0 : 1]. Let H denote

the pull-back of a line in P2 passing through x and E be the exceptional divisor for the

blow-up. Then H and E form a basis for the Néron-Severi space and the nef cone of X is

given by the divisors aH − bE such that 0 ≤ b ≤ a. For L = aH − bE, we can compute the

F -signature of L using the formula described in [VK12], and it is given by

sX(L) =



a−b
ab
, if b ≤ a ≤ 3

2
b

2b−a
2a(a−b)

+ (3b−a)(2a−3b)
6b(a−b)2

+ (2a−3b)2

2a(a−b)2
, if 3

2
b ≤ a ≤ 2b

1
a
− b3+(a−2b)3

6ab(a−b)2
if 2b ≤ a ≤ 3b

1
a
− b2+(a−2b)2+(a−3b)(a−2b)+(a−3b)2

6a(a−b)2
if 3b ≤ a

Figure III.1: The F -signature function of the blow up of P2 at a point.

Note that along the line a = b, which corresponds to a nef but not big boundary face,

the F -signature extends to the zero function (as proved in Theorem III.3.1). On the other
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hand, along b = 0, which is the big and nef boundary face, letting b → 0 yields sX(L) =
1
a
− a2+a2+a2

6a2
= 1

2a
. It turns out that this corresponds to the F -signature of the cone over

the pair (P2,mx) with respect to the divisor aL on P2 (see [BST11, Theorem 4.20] for the

definition of the F -signature of pairs).

Remark III.3.4. Theorem III.3.1 gives us a unique extension of the F -signature function

to the non-zero classes in the nef cone of X. Further, we also know that for nef divisors that

are not big, the extension is 0. Thus, it is natural to ask what the extension to a big and

nef divisor is. In forthcoming work, we explore this question and provide some answers in

terms of F -signature of pairs, as indicated by Example III.3.3.

In particular, we can ask if the extension of the F -signature function to all big and nef

divisors is positive. Motivated by this (and Lemma III.3.2), we raise the following question

on lower bounds for the F -signature function:

Question III.3.5. Let X be a globally F -regular projective variety and ∥ ∥ be a fixed norm

on N1(X). Then, does there exist a constant C > 0 (depending only on X) such that, we

have

sX(L) ≥
Cvol(L)

∥L∥d+1

for all ample Q-divisors L?

III.4: Local Upper Bounds for the F -signature Function

In this section, we prove effective local upper bounds for the F -signature function (Defini-

tion II.2.2).

Theorem III.4.1. Let X be a globally F -regular projective variety. Let d = dimX be posi-

tive. Fix a basis e1, . . . , eρ for the Néron-Severi space N1
R(X) such that each ei corresponds

to the class of an ample and globally generated invertible sheaf. Let C denote the simplicial

cone generated by the ei’s, that is, C = {
∑
aiei | ai ∈ R≥0}. Let ∥ ∥ denote the sup-norm on

N1
R(X) with respect to the ei’s. Then, for any non-zero class L in C, we have

(III.4.1) sX(L) ≤
(d2 + 2d)d+1vol(L)

⌊∥L∥⌋d+1(d+ 1)!
.

Lemma III.4.2. Suppose L is a globally generated ample divisor and H any nef divisor on

X. Then, for all e ≥ 1, we have:

1.

Ie(mL) = H0(mL) for m > (d2 + d)pe,

47



2.

Ie(m(nL+H)) = H0(m(nL+H)) for all m >
(d2 + 2d)pe

n
.

Proof. Let S be the section ring of X with respect to L. And for any j ≥ 0, let M j be the

S-module
⊕

t≥0OX(jH + tL).

1. First, we claim that S is generated as a graded ring by homogeneous elements of degree

at most d. This follows from Mumford’s Theorem [Laz04, Theorem 1.8.5], if we show

that the trivial bundle OX is d-regular with respect to L. Since X is globally F -regular

and L is ample, by Theorem II.3.7, we have that

H i(X,OX((d− i)L)) = 0 for all i > 0.

This implies that OX is d-regular with respect to L and hence that S is generated by

elements of degree at most d.

Since the section ring S is generated by elements of degree ≤ d, the homogeneous

maximal ideal m = S>0 is generated in degrees ≤ d. By [HS06, Proposition 8.3.8], there

exist elements x0, . . . , xd (not necessarily homogeneous), such that all terms of each xi

have degree at most d, and the integral closure (x0, . . . , xd) is equal to the maximal

ideal m. Now, by using the Briançon-Skoda theorem in the strongly F -regular ring S

[HH90, Theorem 5.4], we have

m(d+1)pe = (xp
e

0 , . . . , x
pe

d )d+1 ⊆ (xp
e

0 , . . . , x
pe

d ).

Therefore, if m ≥ d(d + 1)pe, for any element x ∈ Sm = H0(mL), by the pigeon-hole

principle, we have x ∈ m(d+1)pe , and consequently, x ∈ (xp
e

0 , . . . , x
pe

d ). Hence, the map

OX → F e
∗OX(mL) sending 1 7→ F e

∗x cannot split.

2. Similarly as in part (a), we claim that for any j ≥ 0, M j is generated over S by

elements of degree at most d. For this, again by Mumford’s theorem, it is enough to

show that OX(jH) is d-regular with respect to L. Since H is nef, by Theorem II.3.7

we again have:

H i(X,OX(jH + (d− i)L)) = 0 for all i > 0.

Suppose f ∈ H0(m(nL +H) \ Ie(m(nL +H)) and m > (d2+2d)pe

n
, then we may write

f =
∑
rifi for ri ∈ S and fi ∈Mm with degree of fi at most d. Then the degree of each

ri is at least (d
2+ d)pe. Now, since by assumption, the map OX → F e

∗OX(m(nL+H))

sending 1 to F e
∗ f splits, we must have that for some i, ri ∈ H0(kL) \ Ie(kL) for a
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suitable k > (d2 + d)pe, contradicting part (a) of the lemma. Hence, we must have

Ie(m(nL +H)) = H0(m(nL +H)) for all m > (d2+2d)pe

n
. This completes the proof of

the lemma.

Lemma III.4.3. Fix a basis e1, . . . , eρ of N
1
R(X) such that each ei corresponds to the class of

an ample and globally generated invertible sheaf. Let C denote the simplicial cone generated

by the ei’s, that is, C = {
∑
aiei | ai ∈ R≥0}. Let ∥ ∥ denote the sup-norm on N1

R(X) with

respect to the ei’s. Then, for any invertible sheaf L such that its class L in the Néron-Severi

space satisfies L ∈ C and ∥L∥ ≥ d (where d is the dimension of X), we have

(a) L is ample and globally generated.

(b) Further,

Ie(mL) = H0(mL) for all m >
(d2 + 2d)pe

⌊∥L∥⌋
.

Proof. 1. Ampleness of L follows from the assumption that L lies in C and L is non-zero

since ∥L∥ ≠ 0. It remains to show global generation of L. For this, we note that since

∥L∥ ≥ d, there is some i such that we may decompose the divisor L as L = dLi +H

where H is some nef Cartier divisor and Li is a Cartier divisor corresponding to the

class ei. This follows from the assumption that ei’s are integral, ample and globally

generated and the fact that the sup-norm is achieved by some coordinate of L. Hence,

applying Theorem II.3.7, we have

Hp(X,OX(L− pLi)) = 0 for all p > 0.

Therefore, L is 0-regular with respect to the globally generated ample divisor Li.

Hence, L is globally generated itself.

2. Since ∥L∥ ≥ d, for some 0 ≤ i ≤ ρ, we may write L = ⌊∥L∥⌋ei +H for some integral

and nef class H. Now, applying Part (b) of Lemma III.4.2, we get

Ie(mL) = H0(mL) for all m >
(d2 + 2d)pe

⌊∥L∥⌋
.

Proof of Theorem III.4.1: By Theorem III.2.2, the F -signature function is continuous, hence

we may prove Theorem III.4.1 only when L is an ample Q-divisor. Further, since both sides

of (III.4.1) scale inverse-linearly, we may assume that L is a Cartier divisor and ∥L∥ ≥ d.
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Then, applying Part (b) of Lemma III.4.3, the Theorem follows from Lemma III.3.2 by using
d2+2d
⌊∥L∥⌋ instead of C1

∥L∥ .

50



CHAPTER IV

The Frobenius-Alpha Invariant

In analogy with Tian’s α-invariant in complex geometry, we define the “Frobenius-alpha”

invariant (denoted by αF ) for any pair (X,L) where X is a globally F -regular projective

variety (Definition II.3.2) and L is an ample Cartier divisor on X (Section IV.2). In Sec-

tion IV.3, we will specialize to the case of Fano varieties polarized by their anti-canonical

divisors. Finally, in Section IV.4, we discuss some examples of the αF -invariant and highlight

interesting behaviour in the process of reduction modulo p of a complex Fano variety. We

begin with some preliminaries on the geometric aspects of cones over projective varieties and

Frobenius splittings on the cones. These results allow us to apply global geometric tech-

niques to the study of the αF -invariant and the F -signature of section rings. Throughout

this chapter, unless specified otherwise, k will denote a perfect field of characteristic p > 0.

IV.1: Frobenius Splittings on Cones

IV.1.1: Affine and Projective cones

Given an integral, projective scheme X over a noetherian domain A, and an ample invertible

sheaf L over X, let S be the corresponding section ring. Assume that S0 = A. Let X be the

projective A-scheme defined as

X = Proj(S[z])

where S[z] is the N-graded ring obtained by adjoining a new variable z to S in degree 1. Then,

X is called the projective cone over X with respect to L. Denoting by m the homogeneous

irrelevant ideal
⊕

j>0 Sj of S, we have a map of graded A-algebras

S[z] → (S/m)[z] ∼= A[z]

that induces the “zero-section” map

σ : Spec(A) → X
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over A. We call this map the “zero-section of the cone X”. We also have natural maps of

graded rings

S ⊂ S[z] → S[z]/(z) ∼= S

which, via the construction in [Har77, II, Exercise 2.14 (b)] induce maps

i∞ : X ↪→ X

called the “section at infinity” and

π : X \ σ(Spec(A)) → X

where σ is the zero-section described above. It follows from the Proj construction that π is

an A1-bundle over X. The affine cone Y = Spec(S) is isomorphic to X \ i∞(X), and the

zero section σ actually maps into Y . Thus, π restricts to a map Y \σ(Spec(A)) → X that is

a Spec(A[t, t−1])-bundle over X. See [HS04, Section 2] and [Kol13, Section 3.1] for details.

IV.1.2: Cones over Q-divisors

We follow the description of the cone over a Q-divisor as in [SS10, Section 5], where it is

explained for a projective variety over a field. Essentially the same description holds in the

following more general relative setting: Let A be a normal domain of finite type over k,

and X be an integral, normal, projective scheme over A. Assume that X is flat over A

and of positive relative dimension. Fix an ample invertible sheaf L over X and S be the

corresponding section ring. Assume further that S0 = A. Note that this guarantees that the

codimension of the zero section σ is at least two in Y = Spec(S). Thus, it follows that S is

normal as well. In this situation, given any integral Weil-divisor D =
∑
aiDi (for distinct

prime Weil divisors Di) on X, we can construct the corresponding Weil divisor D̃ on Y , the

“cone over D”, in three equivalent ways:

1. Let D̃i be the prime Weil divisor on Y corresponding to the height one prime pi ⊂ S

corresponding to Di. Then D̃ =
∑
aiD̃i.

2. Let OX(D) be the reflexive sheaf on X corresponding to D. Then, D̃ is the divisor

corresponding to the reflexive S-module defined by

M :=M(D,L) =
⊕
j∈Z

H0(X,OX(D)⊗ Lj).

Note that the fact thatM is reflexive can be seen by applying Part (3) of Lemma II.1.2
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to each twist of the graded module M .

3. Let π : Y \ σ(Spec(A)) → X be the A[t, t−1]-bundle map defined in the previous

paragraph. Then, we may define D̃ to be the pull back of D to Y . More precisely,

near the generic point of a component of D, if D is given by an equation f , then is D̃

is defined by π∗f . We then take closures to obtain a Weil-divisor on Y . This defines a

unique divisor on Y since π is flat and codimY (σ(Spec(A))) is at least 2.

Given a principal divisor D on X defined by the rational function f , the cone over D can

be seen to be the principal divisor defined by f again. The construction of the cone clearly

preserves addition of divisors. This implies that cone construction extends to Q-divisors

and preserves the linear equivalence of Weil-divisors. Furthermore, by taking closures, this

construction also extends to the projective cone X described in the previous paragraph.

Finally, using the third description of the cone, we see that the cone over the canonical

(Weil-)divisor KX is the canonical divisor of KY (recall that Y is also normal).

IV.1.3: F -signature of cones over projective varieties.

In this subsection, we collect some results about the F -signature of cones over projective

varieties (and pairs) using global splittings on X, extending the discussion from the previous

subsection. Note that some of the results stated here are proved in later chapters, but they

are collected here since they are used repeatedly.

We begin with a useful lemma that relates global Frobenius splitting of a divisor to

splitting “on the cone”. This is a slight generalization to the relative setting of [Smi00,

Theorem 3.10], where it is proved over a field.

Lemma IV.1.1. Let A be a regular ring of finite type over k and X be an integral, normal

projective scheme over A (with H0(X,OX) = A). Assume that X is flat over A and of

positive relative dimension. Fix an ample invertible sheaf L and S be the corresponding

section ring. Fix an effective Weil divisor D over X and D̃ be the cone over D with respect

to L. Then, for any e ≥ 1, the natural map

OX → F e
∗ (OX(D))

splits as a map of OX-modules if and only if the map on the cones

S → F e
∗ (S(D̃))

splits as a map of S-modules.
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Proof. Using the second description of the cone over a Q-divisor in Section IV.1.2, and Part

(3) of Lemma II.1.2, the proof is exactly the same as that in [SS10, Proposition 5.3].

Returning to working over a perfect field k, we next recall a formula to compute the

F -signature of the section ring of a projective variety proved in Chapter III. Fix a normal

projective variety X over k and ∆ be an effective Q-divisor over X.

Definition IV.1.2. For any Weil-divisor D on X and e ≥ 1, define the k-vector subspace

I∆e (D) of H0(X,D) as follows:

I∆e (D) := {f ∈ H0(X,D) | φ(F e
∗ f) = 0 for all φ ∈ HomOX

(F e
∗OX(⌈(pe − 1)∆⌉+D),OX) }.

Remark IV.1.3. Note that the subspace I∆e (D) only depends on the sheaf OX(D) and not

on the specific divisor D in its linear equivalence class.

Remark IV.1.4. Let L be an ample divisor on X. Then, it follows from Lemma IV.1.1

that I∆e (mL) is the degree m component of the ∆-splitting ideal of the section ring of S with

respect to L (Definition II.2.1).

Lemma IV.1.5. (Lemma III.2.6) Let L be an ample Cartier divisor on X and S denote

the section ring of X with respect to L. Let ∆S denote the cone over ∆ with respect to L

(Section IV.1.2). Then, for any e ≥ 1, if a∆e (L) denotes the ∆S-free-rank of F e
∗S (Defini-

tion II.2.1), then a∆e (L) is computed by the following formula:

(IV.1.1) a∆e (L) =
1

[k′ : k]

∞∑
m=0

dimk
H0(X,mL)

I∆e (mL)

where k′ denotes the field H0(X,OX). Hence, the F -signature of (X,∆) with respect to L

can be computed as

s(X,∆)(L) := s(S(X,L),∆S) =
1

[k′ : k]
lim
e→∞

∞∑
m=0

dimk
H0(X,mL)
I∆e (mL)

pe(dim(X)+1)

Proof. Using Lemma IV.1.1, we have that

I∆S
e =

⊕
m≥0

I∆e (mL).
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See Definition II.2.1 for the definition of I∆S
e . Therefore, we have

ℓS(S/I
∆S
e ) =

∑
m≥0

dimk′
H0(mL)

I∆e (mL)
=

1

[k′ : k]

∞∑
m=0

dimk
H0(X,mL)

I∆e (mL)

where ℓS denotes the length as an S-module. This completes the proof of the lemma.

IV.1.4: Duality and the trace map

It will be convenient to think of the subspaces I∆e (Definition IV.1.2) using a pairing arising

out of duality for the Frobenius map. Let (X,∆) be a projective pair and D be any Weil

divisor on X. We continue to work over any perfect field k of characteristic p > 0. But in

this subsection, we assume that H0(X,OX) = k.

Recall that by applying duality to the Frobenius map, we get an isomorphism of reflexive

sheaves:

(IV.1.2) HomOX
(F e

∗OX(⌈(pe − 1)∆⌉+D),OX) ∼= F e
∗OX(−(pe − 1)KX −⌈(pe − 1)∆⌉ −D).

See [SS10, Section 4.1] for a detailed discussion regarding duality for the Frobenius map.

Furthermore, when D = 0, this gives an isomorphism

(IV.1.3) HomOX
(F e

∗OX(⌈(pe − 1)∆⌉,OX) ∼= F e
∗OX(−(pe − 1)KX − ⌈(pe − 1)∆⌉).

Composing this isomorphism (over the global sections) with the evaluation at F e
∗ 1 map, we

obtain the trace map:

(IV.1.4) Tre∆ : H0
(
X,F e

∗
(
OX((1− pe)KX − ⌈(pe − 1)∆⌉)

))
→ k = H0(X,OX).

Lemma IV.1.6. The kernel of the trace map Tre∆ in Equation (IV.1.4) is exactly the subspace

F e
∗ I

∆
e ((1− pe)KX − ⌈(pe − 1)∆⌉) (Definition IV.1.2).

Proof. A section f ∈ H0(X,OX((1−pe)KX−⌈(pe−1)∆⌉)) is contained in the corresponding

I∆e -subspace if and only if for every

φ ∈ HomOX
(F e

∗ (OX((1− pe)KX)),OX) ∼= H0(X,F e
∗OX) ∼= F e

∗k,

we have φ(F e
∗ f) = 0. But, HomOX

(F e
∗ (OX((1− pe)KX)),OX) is a one dimensional k-vector

space, and is generated by the trace map Tre (where ∆ = 0). Now, the map Tre∆ is just the

restriction of the trace map Tre to the subspace H0
(
X,F e

∗
(
OX((1−pe)KX −⌈(pe−1)∆⌉)

))
.
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Thus, the lemma follows.

Lemma IV.1.7. Let (X,∆) be a normal projective pair, and D be any Weil divisor on X.

Then, denoting D1 = (1− pe)KX −⌈(pe − 1)∆⌉−D and D2 = (1− pe)KX −⌈(pe − 1)∆⌉ for

any e ≥ 1, we have a non-degenerate pairing

H0(D)

I∆e (D)
× H0(D1)

I∆e (D1)
→ H0(D2)

I∆e (D2)

obtained from multiplication (and reflexifying) global sections. In particular,

dimk
H0(D)

I∆e (D)
= dimk

H0(D1)

I∆e (D1)
.

Proof. Using Equation (IV.1.2), the natural multiplication map

H0(D)×H0(D1) → H0(D2)

can be identified with the evaluation map

H0
(
F e
∗
(
OX(D)

))
×HomOX

(
F e
∗
(
OX(⌈(pe−1)∆⌉+D)

)
,OX

)
→ HomOX

(F e
∗OX(⌈(pe−1)∆⌉),OX)

where we identify HomOX
(F e

∗OX(⌈(pe−1)∆⌉+D),OX) and HomOX
(F e

∗OX(⌈(pe−1)∆⌉),OX)

as subspaces of HomOX
(F e

∗OX(D),OX) and HomOX
(F e

∗OX ,OX) respectively, both via the

natural inclusion OX → OX(⌈(pe − 1)∆⌉). Therefore, a section f ∈ H0(D) is contained

in I∆e (D) if and only if for all sections g ∈ H0(D1), the multiplication f g is contained in

I∆e (D2). By symmetry, a section g ∈ H0(D1) is contained in I∆e (D1) if and only if for all

sections f ∈ H0(D), g f ∈ I∆e (D2). This proves there is a well defined, and non-degenerate

pairing as needed.

Finally, we note that since by Lemma IV.1.6, I∆e (D2) is the kernel of the trace map

(Equation (IV.1.4)), the vector space H0(D2)/I
∆
e (D2) is either one-dimensional over k, or

equal to 0. In either case, the equality of dimensions follows.

The next Proposition allows us to perturb by any divisor while computing the F -signature

of a section ring.

Proposition IV.1.8. Let X be a normal projective varitey over k and L an ample divisor

on X. Assume H0(X,OX) = k. Fix a Weil divisor D on X. Then, there exists a constant
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C > 0 (depending only on D and L) such that∣∣∣∣dimk
H0(mL)

Ie(mL)
− dimk

H0(mL+D)

Ie(mL+D)

∣∣∣∣ ≤ Cpe(dim(X)−1)

for all m > 0 and e > 0.

Proof. First we prove the case when D is effective: For any m ≥ 1, by using the natural map

OX(mL) → OX(mL+D), we will view H0(mL) as a subspace of H0(mL+D). Let Je(mL)

denote the subspace H0(mL) ∩ Ie(mL + D). By Lemma III.2.11, we see that Ie(mL) ⊂
Je(mL). Moreover, by Equation (III.2.12) in the proof of Lemma III.2.13, we have

dimk
H0(mL+D)

Ie(mL+D)
= dimk

H0(mL)

Je(mL)
+ dimk

H0(mL+D)

H0(mL) + Ie(mL+D)
.

Using this and the triangle inequality, we obtain that

(IV.1.5)

∣∣∣∣dimk
H0(mL)

Ie(mL)
− dimk

H0(mL+D)

Ie(mL+D)

∣∣∣∣ ≤ dimk
H0(mL+D)

H0(mL)
+ dimk

Je(mL)

Ie(mL)

for all m, e > 0. Next, to compute the second term in the above inequality, fix an e > 0

and set ∆e = 1
pe−1

D. Then, we observe that the subspace Je(mL) is exactly the same as

I∆e
e (mL) (Definition IV.1.2). Moreover, we also similarly have

(IV.1.6) I∆e
e ((1− pe)KX −mL−D) = H0((1− pe)KX −mL−D)∩ Ie((1− pe)KX −mL).

Thus, by Lemma IV.1.7, we have

dimk
H0(mL)

Ie(mL)
= dimk

H0((1− pe)KX −mL)

Ie((1− pe)KX −mL)

and similarly,

dimk
H0(mL)

Je(mL)
= dimk

H0((1− pe)KX −mL−D)

I∆e
e ((1− pe)KX −mL−D)

.

By Equation (IV.1.6), we see the natural map from H0((1− pe)KX −mL−D) to H0((1−
pe)KX −mL) restricts to an injective map

H0((1− pe)KX −mL−D)

I∆e
e ((1− pe)KX −mL−D)

↪→ H0((1− pe)KX −mL)

Ie((1− pe)KX −mL)
.
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By considering the cokernel of this map, we get that

(IV.1.7)

dimk
Je(mL)

Ie(mL)
= dimk

H0(mL)

Ie(mL)
− dimk

H0(mL)

Je(mL)
≤ dimk

H0((1− pe)KX −mL)

H0((1− pe)KX −mL−D)
.

Pick an M ≫ 0 such that mL admits a global section that doesn’t vanish along D for all

m ≥M (this is possible since L is ample). Using the standard exact sequences to restrict to

D, we see that

(IV.1.8) dimk
H0((1− pe)KX −mL)

H0((1− pe)KX −mL−D)
≤ vol(−KX |D)

(d− 1)!
pe(d−1) + o(pe(d−2))

and

(IV.1.9) dimk
H0(mL+D)

H0(mL)
≤ vol(L|D)

(d− 1)!
md−1 + o(md−2).

Finally, by Theorem III.2.8, we may pick a constant C2 > 0 such that H0(mL) = Ie(mL)

and H0(mL + D) = Ie(mL + D) for m > C2p
e. Therefore, to prove the Proposition, it is

enough to consider the case when m ≤ C2p
e. In this case, the Proposition now follows by

putting together inequalities in IV.1.5, IV.1.7, IV.1.8 and IV.1.9. This completes the proof

of the Proposition when D is effective.

More generally, we first pick an r ≫ 0 such that rL and D+ rL are both effective. Then,

for any e ≥ 1 and m > r, we have∣∣∣∣dimk
H0(mL)

Ie(mL)
− dimk

H0(mL+D)

Ie(mL+D)

∣∣∣∣ ≤ ∣∣∣∣dimk
H0(mL)

Ie(mL)
− dimk

H0((m− r)L)

Ie((m− r)L)

∣∣∣∣
+

∣∣∣∣dimk
H0((m− r)L)

Ie((m− r)L)
− dimk

H0(mL+D)

Ie(mL+D)

∣∣∣∣ .
Now, we may apply the previous case of the Proposition (since both D + rL and rL are

effective) to each of the two terms in the above inequality. Since r was independent of e,

this completes the proof of the Proposition .

IV.2: The αF -invariant of Section Rings.

Throughout this section, by a section ring S, we mean that S is the section ring S(X,L) of

some projective variety X (∼= Proj(S)) with respect to some ample line bundle L (∼= OX(1))

on X (see Definition II.1.1 for the definitions).
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IV.2.1: Definitions

Definition IV.2.1. Let (R,m) be an F -finite normal local ring. Assume that R is strongly

F -regular. Then, we define the F -pure threshold of an effective Q-divisor D ≥ 0 to be:

fptm(R,D) := sup{λ | (R, λD) is sharply F -split }.

Moreover, by [SS10, Lemma 4.9], it follows that the F -pure threshold of (R,D) is equivalently

characterized as the supremum of the set {λ | (R, λD) is strongly F -regular}.

If D is the principal divisor corresponding to a function f ∈ R, we write f instead of D

in the notation for the F -pure threshold.

Definition IV.2.2. Let (S,m) be a strongly F -regular section ring of a projective variety

X. Then, we define

αF (S) = inf{ fptm(S, f) deg(f) | 0 ̸= f ∈ S homogeneous element }.

If S is the section ring of a projective variety X with respect to an ample divisor L, we may

also use αF (X,L) to denote αF (S).

We have the following equivalent ways of characterizing the αF -invariant of a section

ring.

Lemma IV.2.3. Let X be a globally F -regular projective variety and L be an ample Cartier

divisor on X. Let S = S(X,L) be the section ring of X with respect to L. Then, αF (S)

from Definition IV.2.2 is equal to the supremum of any of the following sets:

1. The set of λ ≥ 0 such that the pair (S, λ
n
D) is sharply F -split for every n ∈ N and

every effective divisor D ∼ nL.

2. The set of λ ≥ 0 such that the pair (S, λ
n
D) is strongly F -regular for every n ∈ N and

every effective divisor D ∼ nL.

3. The set of λ ≥ 0 such that the pair (X, λ
n
D) is globally sharply F -split for every n ∈ N

and every effective divisor D ∼ nL.

4. The set of λ ≥ 0 such that the pair (X, λ
n
D) is globally F -regular for every n ∈ N and

every effective divisor D ∼ nL.

5. The set of λ ≥ 0 such that the pair (X,λD) is globally F -regular for every effective

Q-divisor D ∼Q L.
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Proof. Statements (1) and (2) follow immediately from the definition of the αF -invariant and

the definition of the F -pure threshold (Definition IV.2.1). Statements (3) and (4) follow from

(1) and (2) by using Lemma IV.1.1. Part (5) is just a reformulation of (4) since every effective

Q-divisor D ∼Q L is of the form 1
n
nD for some effective Cartier divisor nD ∼ nL.

Next, we explain a more precise connection between the αF -invariant and Frobenius

splittings in S.

Proposition IV.2.4. Let S be a strongly F -regular section ring and α′(S) denote the supre-

mum of the following set:

A(S) := {λ ∈ R≥0 | for any integers e ≥ 1 and m ≤ λ(pe − 1), we have Ie(m) = 0}.

Then, α′(S) = αF (S). Moreover, αF (S) belongs to the set A(S).

Remark IV.2.5. Note that in the above Proposition, it is unclear if the set A(S) contains

any non-zero element. This is equivalent to the positivity of αF (S) and will be addressed in

Theorem IV.2.10.

The proof of the Proposition IV.2.4 is based on the following lemma which is a slight

generalization of a result of Hernández:

Lemma IV.2.6. Let (S,m) be an F -finite, F -regular local ring. Fix an effective Weil-divisor

D on X = Spec(S). Then, for any fixed e0 > 0, let ψe0 denote the natural map

ψe0 : OX → F e0
∗ (OX(D)).

Then, the following are equivalent:

1. The map ψe0 splits as a map of OX modules.

2. The pair (X, 1
pe0−1

D) is sharply F -split (Definition II.3.1).

3. The F -pure threshold of (X,D) is at least 1
pe0−1

(Definition IV.2.1).

Proof. It follows immediately from the definitions that (1) implies (2), and (2) implies (3).

Hence, it remains to show that (3) implies (1).

Following [Her12, Thoerem 4.9], if fptm(X,D) ≥ 1
pe0−1

, we must must have that the pair

(X, 1
pe0
D) is sharply F -split. Thus, there is an e > 0 such that the natural map

(IV.2.1) ψe(D) : OX → F e
∗ (OX(⌈

pe − 1

pe0
⌉D)
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splits. Since the same holds for ψne(D) for any natural number n ≥ 1 (see [Sch08, Proposition

3.3] for the proof), we get the map:

ψee0(D) : OX → F ee0
∗ (OX(⌈

pee0 − 1

pe0
⌉D)) = F ee0

∗ (OX(p
(e−1)e0D))

splits. Note that ψe0 as defined in Equation (IV.2.1) matches with the map considered in

the statement of the Lemma.

Let U ⊂ X denote the regular locus of X. Since ϕe0 is a map between reflexive sheaves,

to show that it splits, it sufficient to show that its restriction of U splits. Over U , we may

construct the map ψee0 as follows: First consider the map

ϕ(e−1)e0 : OU(D) → F (e−1)e0
∗ OU(p

(e−1)e0D)

obtained by twisting the (e − 1)eth0 -iterate of the Frobenius map by the invertible sheaf

OU(D). If f denotes the local equation of D, then ϕ(e−1)e0 is defined by sending

f 7→ F (e−1)e0
∗ fp(e−1)e0 .

Then, after restricting to U , we have that

ψee0 = F e0
∗ ϕ(e−1)e0 ◦ (ψe0|U)

where the right hand side is the composition

F e0
∗ ϕ(e−1)e0 ◦ (ψe0|U) : OU → F e0

∗ OU(D) → F ee0
∗ (OX(p

(e−1)e0D)).

Therefore, if ψee0 splits then so does ψe0 . This proves that part (3) implies part (1), com-

pleting the proof of the lemma.

Proof of Proposition IV.2.4. Set α = αF (S), and α
′ = α′(S) (which is defined in the sate-

ment of the Proposition). First we will prove that α ≤ α′. This is clear if α = 0, so we

assume that α is positive. For any non-zero element f ∈ Sm, by definition of α, we must

have fptm(S, f) ≥ α
m
. So, if m ≤ α(pe − 1), we have

fptm(S, f) ≥
α

m
≥ α

α(pe − 1)
=

1

pe − 1
.

Thus, by Lemma IV.2.6, the map R → F e
∗R sending 1 to F e

∗ f splits. Since f was an arbitrary

non-zero element of degree m, this shows that Ie(m) = 0 whenever m ≤ pe − 1. Therefore,
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α belongs to the set A(S), which proves that α ≥ α′.

Next we prove that α ≥ α′. Fix any λ < α′. Then, whenever m ≤ λ(pe − 1) and f ∈ Sm

is any non-zero element, we know that f is not contained in Ie(m). By Lemma IV.2.6, we

have fptm(S, f) ≥ 1
pe−1

. In other words, if e is the smallest integer such that m ≤ λ(pe − 1),

(equivalently, e = ⌈logp(mλ )⌉), then fptm(S, f) ≥ 1
pe−1

. Now combining this with the fact that

fptm(S, f
a) = fptm(S,f)

a
for any integer a to get:

(IV.2.2) fptm(S, f) ≥ sup
a≥1

a

p⌈logp(
am
λ

)⌉ − 1
≥ λ

m
.

To see the right inequality, we make the following observations: Fixing m and λ and for any

a, write

⌈logp(a) + logp(
m

λ
)⌉ = logp(a) + logp(

m

λ
) + ε(a)

for some non-negative real number ε(a). Then, we have

inf
a≥1

plogp(a)+logp(
m
λ
)+ε(a) − 1

a
= inf

a≥1

m

λ
pε(a) − 1

a
≤ inf

a≥1

m

λ
pε(a)

for each a ≥ 1. So it is sufficient to show that

inf
a≥1

pε(a) = 1.

This is true because given any real number γ, the infimum of the set {⌈γ + logp(a)⌉ − γ −
logp(a) | a ∈ N} is zero. This proves the inequality in (IV.2.2) .

Since f was an arbitrary non-zero homogeneous element of degree m, it follows from

Equation (IV.2.2) that α ≥ λ. Since λ was an arbitrary number smaller than α′, we must

have α ≥ α′ as well. This completes the proof that α = α′.

IV.2.2: Finite-degree approximations

Now we will define finite-degree approximations to the αF -invariant. This establishes a limit

formula for the αF -invariant that is analogus to the F -signature (see Definition II.2.2 and

the classical definition in [Tuc12]).

Definition IV.2.7. Let S be an N-graded section ring over k. For each integer e ≥ 1, we

define

me(S) := max{m ≥ 0 | Ie(m) = 0}
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and define

αe(S) :=
me(S)

pe
.

Theorem IV.2.8. Let S be a strongly F -regular N-graded section ring over k. Then, we

have

lim
e→∞

αe(S) = αF (S).

In particular, the limit exists. See Definition IV.2.2 for the definition of αF (S).

Lemma IV.2.9. Let S be a strongly F -regular N-graded section ring over k. For any e ≥ 1,

we have

αe(S) +
1

pe
≥ αe+1(S) +

1

pe+1
.

Proof. First note that since S is strongly F -regular, S is a normal domain. For any e ≥ 1,

let 0 ̸= f be an element of Ie(me + 1). Then, we have that fp is a non-zero element of

Ie+1(p(me + 1)) (see [Tuc12, Lemma 4.4]). This proves that

p(me + 1) ≥ me+1 + 1.

Dividing both sides by pe+1, we obtain the required inequality.

Proof of Theorem IV.2.8. The sequence {αe+
1
pe
}e≥1 is decreasing, by Lemma IV.2.9. Since it

is a decreasing sequence of non-negative real numbers, the sequence converges to its infimum.

Moreover, since the sequence 1
pe

converges to zero, the sequence {αe}e≥1 also converges and

lim
e→∞

αe = inf
e≥1

{αe +
1

pe
}.

It remains to show that the limit is equal to αF (S). Using the definition of αe, we have that

αF (S) ≤
pe

pe − 1
(αe +

1

pe
) =

me + 1

pe − 1

for each e ≥ 1. This is because we know that αF (S) belongs to the set A(S) from Proposi-

tion IV.2.4. Taking a limit over e, we obtain

αF (S) ≤ lim
e→∞

αe.

For the reverse inequality, setting α := limαe, we note that

α(pe − 1) ≤ (αe +
1

pe
)(pe − 1) < peαe + 1.
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By the definition of me = peαe, the subspace Ie(m) is equal to zero for each m ≤ α(pe−1) ≤
me. Thus, α belongs to the set A(S) defined in Proposition IV.2.4. Since αF (S) is the

supremum ofA(S), we get that αF (S) ≥ α. This completes the proof of Theorem IV.2.8.

IV.2.3: Positivity and comparison to the F -signature.

Next we will show that the αF -invariant is positive by comparing it to the F -signature

(Definition II.2.2). Recall that for a section ring S of any globally F -regular projective

variety, there exists a positive constant C such that for any e > 0 and any m ≤ C pe, we

have Ie(m) = Sm. This follows from Theorem III.2.8.

Theorem IV.2.10. The αF -invariant of a strongly F -regular section ring is positive. More-

over, setting α = αF (S) and fixing a constant C as discussed above (so that for any e > 0

and any m ≤ C pe, we have Ie(m) = Sm), we have the following comparisons:

(IV.2.3)
e(S)αdim(S)

dim(S)!
≤ s(S) ≤ e(S)

dim(S)!

(
Cdim(S) − (C − α)dim(S)

)
,

where e(S) denotes the Hilbert-Samuel multiplicity of S.

Lemma IV.2.11. Given a non-zero homogeneous element f in S of degree n, let λ >

n fptm(S, f) be a real number. Then,

(IV.2.4) s(S) ≤ e(S)

dim(S)!

(
Cdim(S) − (C − λ)dim(S)

)
.

Proof. Since we have assumed that λ > n fptm(S, f), there exist integers a, e0 > 0 such that

fptm(S, f) <
a

pe0 − 1
<
λ

d
.

Replacing f by fa, by Lemma IV.2.6 we may assume that the map S → F e0
∗ S defined by

1 → F e0
∗ f does not split (since fptm(S, f

a) < 1
pe0−1

). We may also assume that n ≤ λ (pe0−1).

Now, since f belongs to the ideal Ie0 , we have Sm−n · f ⊂ Ie0(m) for any m ≥ d yielding the

inequality

(IV.2.5) dimk
Sm

Ie0(m)
≤ dimk Sm − dimk Sm−n.

for all m ≥ n. Further, setting vr = pre0−1
pe0−1

for any integer r, we have that fptm(S, f
vr) <

1
pre0−1

, and so f vr belongs to Ire0(nvr). Therefore, we similarly have
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(IV.2.6) dimk
Sm

Ine0(m)
≤ dimk Sm − dimk Sm−nvr

for all m ≥ nvr. Then, using the Lemma IV.1.5 we may compute the F -signature s(S) as

follows:

s(S) =
1

[k′ : k]
lim
r→∞

m=Cpre0∑
m=0

dimk
Sm

Ire0 (m)

pre0 dim(S)

≤ 1

[k′ : k]

(
lim
r→∞

m=Cpre0∑
m=0

dimk Sm

pre0 dim(S)
−

m=Cpre0∑
m=dvr

dimk Sm−nvr

pre0 dim(S)

)
,

where k′ is the field S0. Here we have used Equation (IV.2.6) and the defining property of

the constant C. Finally, calculating the dimensions in the above inequality using the formula

dimk Sm = [k′ : k]
e(S)

(dimS − 1)!
mdimS−1 + o(mdimS−2),

we obtain

s(S) ≤ e(S)

dim(S)!

(
Cdim(S) − (C − n

pe0 − 1
)dim(S)

)
.

The proof of the lemma is now complete by using the fact that λ ≥ n
pe0−1

.

Proof of Theorem IV.2.10. We note that if αF (S) = 0, then the rightmost inequality of

Equation (IV.2.3) implies that the F -signature s(S) is zero. But this is a contradiction since

S was assumed to be strongly F -regular (see [AL03, Theorem 0.2]). So the positivity of

αF (S) follows from Equation (IV.2.3), which we will now prove.

The rightmost inequality follows from Lemma IV.2.11 by taking a limit as λ → αF (S),

since the Lemma applies to each λ such that λ > fptm(S, f) deg(f) for some non-zero f .

To prove the leftmost inequality, we use Lemma IV.1.5 again to compute the F -signature

of S and we observe that for any e ≥ 1,

(IV.2.7) s(S) = lim
e→∞

m=Cpe∑
m=0

dimk
Sm

Ie(m)

pe dim(S)
≥ lim

e→∞

m=me∑
m=0

dimk Sm

pe dim(S)
.

Recall that for any e ≥ 1, me is the largest m such that Ie(m) = 0, which justifies Equa-
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tion (IV.2.7). But the right hand side is equal to

lim
e→∞

e(S)

dim(S)!

(me

pe
)dim(S)

.

We conclude the proof by using Theorem IV.2.8, which says that lime→∞
me

pe
= αF (S). This

concludes the proof of Equation (IV.2.3) and thus of Theorem IV.2.10.

Remark IV.2.12. The positivity of the αF -invariant proved in Theorem IV.2.10 can also

be deduced from the main theorem of [Sat18].

IV.2.4: Behaviour under certain ring extensions.

In this subsection, we record some useful results on the behaviour of the αF -invariant under

suitably nice extensions of section rings.

Proposition IV.2.13. Let S and S ′ be two N-graded section rings (of possibly different

varieties) and S ⊂ S ′ be an inclusion such that for a fixed integer n ≥ 1 and any other m,

all degree m elements of S are mapped to degree nm elements of S ′. Further, assume that

the inclusion S ⊂ S ′ splits as a map of S-modules. Then, we have

(IV.2.8) αF (S) ≥
αF (S

′)

n
.

Moreover, equality holds in (IV.2.8) if S is the nth-Veronese subring of S ′.

Proof. The first part follows immediately from Theorem IV.2.8 and the fact that a homoge-

neous element f of S splits from F e
∗S if it splits from F e

∗S
′. In other words, we have

Ie(Sm) ⊂ Ie(S
′
mn)

for any e and m. For the statement about Veronese subrings, the key observation is that

since S ′ is a section ring (of (X,L), say), then

Ie(S
′
mn) = Ie(Sm) = Ie(X,L

mn).

Thus, the equality again follows from Theorem IV.2.8.

Remark IV.2.14. The F -signature of section rings also transforms in a similar manner

to the αF -invariant above. Indeed, see Theorem III.1.6 and its generalization in [CR17,

Theorem 4.8]. A simple proof of this transformation rule for section rings can also be

obtained using Proposition IV.1.8.
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Proposition IV.2.15. Let (S,m) ⊂ (S ′, n) be a degree preserving map of N-graded, strongly
F -regular section rings (of possibly different varieties and over possibly different perfect

fields). Assume that both S and S ′ are generated in degree one , S ′ is flat over S, and

that the ring S ′/mS ′ is regular. Then, we have

αF (S
′) = αF (S).

Proof. First note that since S and S ′ are generated in degree 1, the αF -invariant must be at

most 1 for both of them. Next, for any e ≥ 1 and m ≤ pe − 1, we may apply Claim 3.4 in

[CRST21, Proof of Theorem 3.1] to get that

Ie(S,m)S ′ = Ie(S
′,m).

This implies that me(S) = me(S
′) for any e ≥ 1. Now, the Proposition follows immediately

by using Theorem IV.2.8.

Recall that k was assumed to be a perfect field of characteristic p > 0.

Corollary IV.2.16. Let S be a strongly F -regular section ring over k and K be an arbitrary

perfect field extension of k. Then, the base-change S ⊗k K is isomorphic to a product of

strongly F -regular section rings Si over finite extensions of K and for each i, we have

αF (S) = αF (S
i).

Proof. Firstly, we may assume that S is generated in degree one by using Proposition IV.2.13.

Set S ′ = S ⊗kK. Since k is perfect and S/m is a finite separable extension of k, we see that

S ′/mS ′ ∼= S/m⊗k K ∼=
∏
i

Li

is a finite product of perfect fields Li. Thus, if S was the section ring of X, then S ′ ∼=
∏

i S
i

where Si is the section ring of X×S/mLi. Note that S
i is isomorphic to S⊗S/mLi, and hence

each Si is strongly F -regular by [CRST21, Theorem 3.6]. The corollary now follows from

Proposition IV.2.15 by applying it to each inclusion S ⊂ Si.

Remark IV.2.17. In the setting of Corollary IV.2.16, the same results also holds for the

F -signature of S instead of the αF -invariant by using [Yao06, Theorem 5.6] in place of

Proposition IV.2.15. This allows to reduce computing both the F -signature and the αF -

invariant of a section ring to the geometrically connected case, i.e., when S0 = k.
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IV.3: The αF -invariant of Globally F -regular Fano Varieties.

In this section, we specialize the study of the αF -invariant to the case of globally F -regular

Fano varieties (and when the ample divisor is a multiple of −KX). We begin by defining

what we mean by a Q-Fano variety in positive characteristic. Recall that k denotes a perfect

field of characteristic p > 0.

IV.3.1: Q-Fano varieties and the main theorems.

Definition IV.3.1. A Q-Fano variety X is a projective variety over k such that

1. X is locally strongly F -regular (Definition II.3.2).

2. KX is a Q-Cartier divisor.

3. −KX is ample.

Note that since X has only strongly F -regular singularities, X is automatically normal

and Cohen-Macaulay. In particular, we may define the canonical Weil-divisor KX by ex-

tending a canonical divisor from the smooth locus. In fact, ωX = OX(KX) is a dualizing

sheaf over X. In particular, in case H0(X,OX) = k, we have

(IV.3.1) Hd(X,ωX) ∼= k

where d is the dimension ofX. Moreover, the second and third conditions in Definition IV.3.1

guarantee that there is a positive integer r such that rKX is Cartier and −rKX is ample.

The smallest such r is called the index of KX .

Definition IV.3.2. Let X be a globally F -regular Q-Fano variety over k and r be a positive

integer divisible by the index of KX . Let

S := S(X,−rKX) =
⊕
m≥0

H0(X,OX(−mrKX))

denote the section ring of X with respect to −rKX . Then, the αF -invariant of X is defined

to be

αF (X) := r αF (S)

where αF (S) denotes the αF -invariant of the strongly F -regular ring S, as defined in Defin-

tion IV.2.2.
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By taking the affine cone over a Q-Fano variety, we also define the global F -signature of

the a Q-Fano variety.

Definition IV.3.3 (F -signature of a Fano variety). Let X be a Q-Fano variety over k and

r denote a positive integer divisible by the index of KX . Let

S := S(X,−rKX) =
⊕
m≥0

H0(X,OX(−mrKX))

denote the section ring of X with respect to −rKX . Then, the F -signature of X is defined

to be

s(X) := r s(S)

where s(S) denotes the F -signature of S, as defined in Defintion II.2.2.

Remark IV.3.4. Though the definitions of the αF -invariant and the F -signature involve

making a choice of a multiple of the index of KX , both invariants are well-defined thanks to

Proposition IV.2.13 (for the αF -invariant) and [VK12, Theorem 2.6.2] (for the F -signature).

Theorem IV.3.5. Let X be a globally F -regular Q-Fano variety of positive dimension.

Then, αF (X) is at most 1/2.

Proof of Theorem IV.3.5: Let d denote the dimension ofX, and r ≫ 0 be an integer divisible

by the index of KX and such that H0(X,OX(−mKX)) ̸= 0 for all m ≥ r. First, we claim

that there is an integer n > 0 such that

dimkH
0(X,OX(−mKX)) < dimkH

0(X,OX(−(m+ n)KX))

for all m≫ 0. This is clear if −KX is a Cartier divisor (and we may take n = 1 in this case),

since dimkH
0(X,OX(−mKX)) is a polynomial in m of degree d > 0 and a positive leading

term (because −KX is ample). More generally, by the asymptotic Riemann-Roch formula

([Laz04, Example 1.2.19]), for each 0 ≤ i ≤ r − 1, there exists polynomials Pi of degree d

such that for all m≫ 0

dimkH
0(X,OX(−(i+mr)KX)) = Pi(m).

Moreover, setting V = (−rKX)
d, each Pi has the form

Pi(m) =
V

d!
md +Qi(m)
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for polynomials Qi of degree at most d − 1. In this situation, the existence of an integer n

as required is guaranteed by Lemma IV.3.6 stated and proved below.

Assume, for the sake of contradiction, that αF (X) > 1
2
+ ε for some small ε > 0. Then,

note that by Proposition IV.2.4, for all e ≫ 0, we have Ie(−mrKX) = 0 for all m ≤
pe−1
2r

+ ε
r
(pe − 1).

Now, for e≫ 0, we can find an integer m satisfying the following properties:

• mr < pe−1
2

,

• pe − 1−mr + 2r < pe−1
2

+ ε(pe − 1), and,

• n ≤ pe − 1− 2mr.

This is equivalent to finding an integer m such that

pe − 1

2r
+ 2− ε

r
(pe − 1) ≤ m ≤ pe − 1

2r
− n

2r
,

which is possible since n is fixed and ε
2
(pe − 1) → ∞ as e → ∞. The third condition on m

guarantees that

(IV.3.2) dimkH
0(X,−mrKX) < dimkH

0(X,−(pe − 1−mr)KX).

The second condition guarantees that there exists a non-zero effective Weil divisor E ≥ 0

that induces an injective map

OX(−(pe − 1−mr)KX) ↪→ OX(−m′rKX)

for somem < m′ ≤ pe−1
2r

+ ε
r
(pe−1). Therefore, we know that Ie(−mrKX) = Ie(−m′rKX) = 0

as noted above. By Lemma III.2.11, this implies that Ie(−(pe − 1 −mr)KX) = 0 as well.

Finally, note that Lemma IV.1.7 applied to D = −mrKX tells us that

dimk
H0(X,OX(−mrKX))

Ie(−mrKX)
= dimk

H0(X,OX(−(pe − 1−mr)KX))

Ie(−(pe − 1−mr)KX)

But since both the Ie-subspaces in the above equation are zero, this is in contradiction to

Equation (IV.3.2). This proves that αF (X) is at most 1/2.

The following lemma was used in the proof of Theorem IV.3.5.

Lemma IV.3.6. For each 0 ≤ i < r, let Pi be a polynomial with real coefficients. Moreover,

assume that all the Pi’s have the same positive degree and the same positive leading term.
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In other words, for each 0 ≤ i ≤ r − 1, there exists a real polynomial Qi of degree at most

d− 1 such that

Pi(m) = adm
d +Qi(m)

for some real number ad > 0 (independent of i). Then, there is an integer n ≫ 0 such that

for all integers m≫ 0, and all pairs 0 ≤ i, j ≤ r − 1, we have

Pi(m) ≤ Pj(m+ n).

Proof. Since each Qi is a real polynomial of degree at most d − 1, we may find positive

constants C1, C2 such that

−C2m
d−1 ≤ Qi(m) ≤ C1m

d−1

for each m ≥ 0 and each 0 ≤ i ≤ r − 1. Now, it is sufficient to find a constant n such that

(IV.3.3) adm
d + C1m

d−1 ≤ ad(m+ n)d − C2(m+ n)d−1

for all m≫ 0. For this, expanding (m+ n)d using the binomial theorem, Equation (IV.3.3)

is equivalent to

C1m
d−1 ≤ ad(dnm

d−1 + · · ·+ dmnd−1 + nd)− C2(m+ n)d−1.

First, we note that we may choose n≫ 0 such that addn
2

is larger than both C1 and C2. This

implies that addn
2
md−1 > C1m

d−1 for all m ≥ 0. Furthermore, having chosen the n ≫ 0 as

before, we have addn
2
md−1 ≥ C2(m+ n)d−1 for all m≫ 0. This proves the lemma.

For the rest of this section, we assume that H0(X,OX) = k, i.e., that X is geometrically

connected. However, see Remark IV.2.17 for ways to extend the results to more general cases.

In the case of Fano varieties, we have a stronger version of comparison of the αF -invariant

to the F -signature than the formula in Theorem IV.2.10:

Theorem IV.3.7. Let X be a d-dimensional globally F -regular Q-Fano variety over k.

Assume that H0(X,OX) = k and that d is positive. Set α = αF (X). Then, we have the

following inequalities relating the F -signature and the αF -invariant:

(IV.3.4)
2αd+1 vol(X)

(d+ 1)!
≤ s(X) ≤

2
(
(1
2
)d+1 − (1

2
− α)d+1

)
vol(X)

(d+ 1)!
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Here, vol(X) denotes the volume of the Q-Cartier divisor −KX .

Corollary IV.3.8. Let X be a globally F -regular Q-Fano variety of dimension d > 0. Then,

1. We have

s(X) ≤ vol(X)

2d(d+ 1)!
.

2. Moreover, αF (X) is equal to 1/2 if and only if the value of the F -signature s(X) is

equal to
vol(X)

2d(d+ 1)!
.

For Q-Fano varieties, the F -signature has a more refined formula than Lemma IV.1.5,

which we prove next.

Proposition IV.3.9. Let X be a globally F -regular Q-Fano variety over k. Assume H0(X,OX) =

k and that X is positive dimensional. Let r be an integer such that rKX is Cartier. Then,

the F -signature of X can be computed as

s(X) = lim
e→∞

2r
⌊ pe−1

2r
⌋∑

m=0

dimk
H0(−mrKX)
Ie(−mrKX)

pe(dim(X)+1)
.

Lemma IV.3.10. Let X be a globally F -regular Q-Fano variety. Then, for any r > 0, we

have H0(−mrKX) = Ie(−mrKX) whenever m > pe−1
r

.

Proof. We will prove this lemma in two different ways, since both ideas may be useful in

other situations.

Proof 1: Let m > pe−1
r

. By definition of the subspace Ie (Definition IV.1.2), it is sufficient

to show that there are no non-zero maps ϕ : F e
∗OX(−mrKX) → OX . We have

HomOX
(F e

∗OX(−mrKX ,OX) ∼= H0(X, (1− pe +mr)KX).

By assumption, we have 1−pe+mr > 0. Since −rKX is ample, this means that H0(X, (1−
pe + mr)KX) = 0. Hence, there are no non-zero maps ϕ : F e

∗OX(−mrKX) → OX , which

proves the lemma.

Proof 2: Letm > pe−1
r

and suppose that there is a non-zero global section f ∈ H0(−mrKX)

that is not in Ie(−mrKX). Then, by definition of Ie, we have a map

ϕ ∈ HomOX
(F e

∗OX(−mrKX),OX)
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such that ϕ(F e
∗ f) = 1. Thus, we have the splitting

(IV.3.5) OX ↪→ F e
∗OX(−mrKX) ↠ OX

where the first map is got by sending 1 → F e
∗ f and the second map is ϕ. Twisting equa-

tion IV.3.5 by OX(KX) and reflexifying, we obtain a splitting:

(IV.3.6) OX(KX) ↪→ F e
∗OX(−(mr − pe)KX) ↠ OX(KX).

By assumption, mr − pe is non-negative. Hence, Hd(X,F e
∗OX(−(mr − pe)KX)) = 0 by

Proposition II.3.8, in turn implying that Hd(X,OX(KX)) = 0 (using the splitting in equa-

tion IV.3.6). This is a contradiction, since OX(KX) is the canonical sheaf of X. This

completes the proof of Lemma IV.3.10.

Proof of Proposition IV.3.9. Let S denote the section ring of X with respect to −rKX . Fix

an e > 0 and let ae denote the free rank of F e
∗S as an S-module (Definition II.2.1). Recall

that by Lemma IV.1.5, we have

(IV.3.7) ae =
∞∑

m=0

dimk
H0(−mrKX)

Ie(−mrKX)

so that

s(X) = r lim
e→∞

ae
pe(dim(X)+1)

.

Then, Lemma IV.3.10 shows that the terms of the sum in Equation (IV.3.7) are zero for

m > pe−1
r

. Furthermore, using Lemma IV.1.7, we have

⌊ pe−1
r

⌋∑
m=⌈ pe−1

2r
⌉

dimk
H0(−mrKX)

Ie(−mrKX)
=

⌊ pe−1
r

⌋∑
m=⌈ pe−1

2r
⌉

dimk
H0(−(pe − 1−mr)KX)

Ie(−(pe − 1−mr)KX)
.

Let a be an integer between 0 and r such that pe − 1 ≡ a mod r. Hence, we have

⌊ pe−1
r

⌋∑
m=⌈ pe−1

2r
⌉

dimk
H0(−(pe − 1−mr)KX)

Ie(−(pe − 1−mr)KX)
=

⌊ pe−1
2r

⌋∑
m=0

dimk
H0(−(a+mr)KX)

Ie(−(a+mr)KX)
.
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Thus, we have

ae =

⌊ pe−1
2r

⌋∑
m=0

dimk
H0(−mrKX)

Ie(−mrKX)
+

⌊ pe−1
2r

⌋∑
m=0

dimk
H0(−(a+mr)KX)

Ie(−(a+mr)KX)
.

Moreover, using Proposition IV.1.8, we see that there is a constant C > 0 such that∣∣∣∣H0(−(a+mr)KX)

Ie(−(a+mr)KX)
− H0(−mrKX)

Ie(−mrKX)

∣∣∣∣ < Cpe(dim(X)−1).

Thus, we have that ∣∣∣∣∣∣∣ae − 2

⌊ pe−1
2r

⌋∑
m=0

dimk
H0(−mrKX)

Ie(−mrKX)

∣∣∣∣∣∣∣ < Cpe dim(X).

The proof is now complete since the right hand side limits to zero when divided by pe(dim(X)+1)

and as e→ ∞.

Proof of Theorem IV.3.7. The proof of this Theorem is exactly the same proof as the proof

of Equation (IV.2.3) in Theorem IV.2.10 (see the proof of Lemma IV.2.11), once we replace

the formula from Lemma IV.1.5 with the formula from Proposition IV.3.9 to compute the

F -signature of S = S(X,−rKX).

Proof of Corollary IV.3.8. Part (1) follows immediately from the right-hand inequality in

Theorem IV.3.7, since we know that αF (X) ≤ 1
2
by Theorem IV.3.5. We also see that if

αF (X) < 1
2
, we must have

s(X) <
vol(X)

2d(d+ 1)!
.

Thus, Part (2) also follows from Equation (IV.3.4) once we note that when αF (X) = 1
2
, both

sides of the inequality in Equation (IV.3.4) are equal to vol(X)
2d(d+1)!

.

Remark IV.3.11. Let X be a Q-Fano variety over C. This means that X is a normal

variety, −KX is Q-Cartier and ample and X has only klt singularities. Let r be such that

−rKX is Cartier, and S = S(X,−rKX). Then, for any effective Q-divisor ∆ on X with

∆ ∼Q −rKX , we have

lctm(S,∆S) = min { lct(X,∆),
1

r
}

where lct denotes the log canonical threshold and ∆S denotes the cone over ∆. This follows
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from [Kol13, Lemma 3.1]. Thus, if we let

α̃(X) = r inf {lctm(S,∆S) |∆ ≥ 0 is a Q-divisor on X such that ∆ ∼Q −KX },

then, we have that

α̃(X) = min {α(X), 1}.

Therefore, for any Q-Fano variety with α(X) ≤ 1, the αF -invariant from Definition IV.3.2

is a “Frobenius analog” of the complex α-invariant.

IV.3.2: The αF -invariant of toric Fano varieties.

Let k denote an algebraically closed field of prime characteristic p > 0. Fix a lattice N ∼= Zd

and let M be the dual lattice (where d is some positive integer).

Theorem IV.3.12. Let Xp be a Q-Fano toric variety over k defined by a fan F in N . Let

XC be the corresponding complex toric variety (which is also automatically Q-Fano). Then,

we have

αF (Xp) = α(XC).

Proof. Let v1, . . . , vn denote the primitive generators for the one dimensional cones in F and

write −KX =
∑

i bivi for rational numbers bi.

First we choose an r > 0 such that rbi ∈ Z for each i and the section ring S(X,−rKX) is

generated in degree one. Let P ⊂M denote the polytope associated to −rKX , and defined

by:

P = {u ∈MR =M ⊗Z R | ⟨u, vi⟩ ≥ −bi for all 1 ≤ i ≤ n}.

Since we are assuming that S(X,−rKX) is generated in degree 1, the vertices of P are lattice

points of M . For any u ∈ P ∩M , let Du be the corresponding effective divisor in the linear

system | − rKX |. By [BJ20, Corollary 7.16], we have that

(IV.3.8) α(XC) = min
u∈P∩M

r lct(XC, Du)

where lct(XC,−) denotes the log canonical threshold of a divisor on XC. Note that since the

vertices of P are lattice points, just the vertices are sufficient to compute α(XC).

Let P̃ denote the polytope P ×{1} ⊂M ×Z. Then, the section ring S(X,−rKX) is the

semigroup ring associated to the cone over P̃ in (M ×Z)⊗ZR. Note that S is Q-Gorenstein.

Therefore, by [Bli04, Theorem 3], we see that for any ũ ∈ P̃ ∩ (M × Z), we have

(IV.3.9) fptm(S(Xp,−KXp), Dũ) = lctm(S(XC,−KXC), Dũ).
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Next, note that since X is a normal toric variety, it is automatically globally F -regular.

Now we prove that the αF -invariant of Xp can also be computed by only considering the

torus invariant divisors. To see this, let S = S(Xp,−rKXp) and let f ∈ S be a non-zero

homogeneous element. Then, following the discussion in [BJ20, Section 7.4] and [Eis95,

Theorem 15.17], there exists an integral weight vector µ = (µ1, . . . , µd+1) with µi ∈ Z>0 such

that in>µ(f) = in>(f). Here >µ denotes the weight monomial order with respect to µ and >

denotes the graded lexicographic monomial order on S. Then, we have a flat degeneration

of f to its initial term. In other words, if f =
∑

u βuχ
u for monomials χu ∈ S, then setting

w = max{⟨µ, u⟩ | βu ̸= 0}, the element

f̃ = tw
∑
u

βut
−⟨µ,u⟩χu ∈ S[t]

satisfies the following properties:

• Viewing S[t] as a k[t]-algebra, the ring S[t]/(f̃) is a flat k[t]-module.

• The image of f̃ modulo t is equal to in>(f), the initial term of f with respect to the

graded lex monomial order on S.

• For any point 0 ̸= λ ∈ k, the image fλ of f̃ in S[t]/(t− λ) satisfies

fptm(S, fλ) = fptm(S, f).

With this construction in place, we conclude the proof of the theorem with the following

lemma:

Lemma IV.3.13. For any non-zero homogeneous element f of S, we have

fptm(S, f) ≥ fptm(S, in>(f)).

Assuming this lemma for a moment, we see that

αF (Xp) = inf
ũ∈P̃∩(M×Z)

fptm(S,Dũ).

Furthermore, by Equation (IV.3.9), we have

(IV.3.10) αF (Xp) = inf
ũ∈P̃∩(M×Z)

lctm(S(XC,−rKXC), Dũ).

Since by Theorem IV.3.5 we have αF (Xp) ≤ 1/2, we must have lct(S(XC,−rKXC), Dũ) <
1
nr
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for some ũ = (u, n) ∈ P̃ ∩ (M × Z). Note that Du corresponds to a torus-invariant divisor

on XC linearly equivalent to −nrKXC . Therefore, by Remark IV.3.11, we have

lct(XC, Du) = lctm(S(XC,−rKXC), Dũ)

for any ũ = (u, n) such that lct(S(XC,−rKXC), Dũ) < 1
nr
. Putting this together with

Equation (IV.3.10) and Equation (IV.3.8), we get that

αF (Xp) = α(XC)

as required.

Finally, it remains to prove Lemma IV.3.13.

Proof of Lemma IV.3.13. By Lemma IV.2.6, it is sufficient to show that for all rational

numbers of the form a
pe−1

such that

a

pe − 1
< fptm(S, in>(f)),

the map S → F e
∗S sending 1 to F e

∗ f
a splits. Equivalently, for all such a

pe−1
, it suffices to

show that fa /∈ Ie(S). Since the pair (S, in>(f)
a

pe−1 ) is strongly F -regular, in particular it is

sharply F -split. By Lemma IV.2.6 again, we know that in>(f
a) = (in>(f))

a /∈ Ie(S). Now,

since S is a toric ring, Ie(S) is a monomial ideal of S. Therefore, if in>(f
a) /∈ Ie(S), we also

have fa /∈ Ie(S) as required.

Remark IV.3.14. Combining Theorem IV.3.12 with Theorem IV.3.5, we recover the well-

known fact that the α-invariant of a toric Fano variety is at most 1/2 (see [LZ22, Corol-

lary 3.6]).

IV.4: Examples

In this section, we compute some examples of the αF -invariant for non-toric varieties and

highlight some interesting features.

IV.4.1: Quadric hypersurfaces

Fix any algebraically closed field k of characteristic p ̸= 2 and let Qd ⊂ Pd+1 be the d-

dimensional smooth quadric hypersurface over k. Note that by the adjunction formula,

−KQd
= dH where H denotes a hyperplane section.
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Example IV.4.1. Then, αF (Qd) =
1
d
. Equivalently, if S denotes the section ring

S := S(Qd,OX(1) ∼= k[x0, . . . , xd+1]/(x
2
0 + . . . x2d+1),

then αF (S) = 1. This follows from a description of the structure of the sheaves F e
∗ (OQd

(m))

proved in [Lan08] and [Ach12]. More precisely, for any e ≥ 1 and 0 ≤ m ≤ pe − 1, [Ach12,

Theorem 2] tells us that F e
∗ (OQd

(m)) is a direct sum of OQd
(−t) and S(−t) for t ≥ 0, where

S is an ACM bundle that sits in an exact sequence of the form

0 → OPd+1(−2)⊕a → OPd+1(−1)⊕b → i∗S → 0

for suitable positive integers a and b. Here i : Qd ↪→ Pd+1 is the inclusion. See [Ach12,

Section 1.3] for the details. Since H1(Pd+1,OPd+1(−2)) = 0, we deduce from the exact

sequence above that S(−t) has no global sections for any t ≥ 0. Therefore, all global sections

of F e
∗ (OQd

(m)) appear in the trivial summands. In other words, Ie(S(m)) = 0 for any e ≥ 1

and any m ≤ pe − 1. Moreover, since S1 ̸= 0, we know that me = pe − 1. Therefore, by

Theorem IV.2.8, we have

αF (S) = lim
e→∞

pe − 1

pe
= 1.

Remark IV.4.2. This example shows that the αF -invariant does not characterize regularity

of section rings, since the αF -invariant of a polynomial ring is also equal to 1.

Remark IV.4.3. Another interesting feature of this example is that the αF -invariant of

smooth quadrics is independent of the characteristic p (for p ̸= 2). This is far from true in

general (as seen in the next example). Furthermore, for any d > 2, the F -signature of Qd is

known to depend on p in a rather complicated way (see [Tri23]).

IV.4.2: Comparison to the complex α-invariant

Let k = Fp for some prime number p ≥ 5 and Xp ⊂ P3 be the diagonal cubic surface defined

by x3 + y3 + z3 + w3 = 0 over k.

Example IV.4.4. For each p ≥ 5, we have αF (Xp) <
1
2
. However,

lim
p→∞

αF (Xp) =
1

2
.

To see this, we recall the following result proved by Shideler (see [Shi, Example 4.2.2 and

Section 5.1]), building on the techniques of Han and Monsky: Let sp denote the F -signature
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of Xp, equivalently, of the ring Fp[x, y, z, w]/(x
3 + y3 + z3 + w3). Then for any p ≥ 5, we

have sp <
1
8
. Moreover,

lim
p→∞

sp =
1

8
.

Using this, our claims about the αF -invariant of Xp follow from Theorem IV.3.7 and Corol-

lary IV.3.8, once we observe that

vol(−KXp)

22 3!
=

1

8
.

Remark IV.4.5. The complex α-invariant of the cubic surface defined by x3+ y3+ z3+w3

is equal to 2/3 (see [Che08, Theorem 1.7]). Note that by [HY03], we know that for a fixed

divisor D on a variety X

lim
p→∞

fpt(Xp, Dp) = lct(X,D)

where Xp and Dp denote the reduction to characteristic p of X and D respectively. Ex-

ample IV.4.4 points to limitations of approximating the log canonical threshold by F -pure

threshold for an unbounded family of divisors on X.
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CHAPTER V

Semicontinuity Properties of the Frobenius-Alpha

Invariant

In this chapter, we will examine the behaviour of the αF -invariant in geometric families. First

we prove a weak semicontinuity result for a family of globally F -regular varieties polarized

by an arbitrary family of ample divisors (Section V.1). This is analogous to the case of the

F -signature which was proved in [CRST21]. Next, we prove that the αF -invariant is lower

semicontinuous in a family of globally F -regular Fano varieties (Section V.2). The analogus

statement for the complex α-invariant is proved in [BL22]. Throughout this chapter, k will

denote an algebraically closed field of characteristic p > 0.

V.1: Weak Semicontinuity of the αF -invariant.

First, we will prove a result for a family of arbitrary globally F -regular varieties.

Notation V.1.1. Recall that the perfection of a field K (of positive characteristic) is the

union

K∞ :=
∞⋃
e=1

K1/pe

of all the pe-th roots of elements of K. For a map f : X → Y of varieties over k, and a point

y ∈ Y (not necessarily closed), we denote the perfectified fiber over y as

Xy∞ := X×Y Spec(κ(y)∞).

Similarly, if Y = Spec(A) and S is a finitely generated A-algebra, then for any y ∈ Y , we

denote the perfectified fiber S ⊗A κ(y)
∞ by Sy∞ .

Notation V.1.2. By a family of globally F -regular varieties, we mean that

1. We have a flat and projective morphism f : X → Y where X is normal and Y is smooth

over k.
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2. We assume additionally that f has connected fibers (i.e., f∗OX = OY ).

3. For each point y ∈ Y (not necessarily closed), the fiberXy∞ (Notation V.1.1) is globally

F -regular (Definition II.3.2).

Recall that as in Definition IV.2.2, we can consider the αF -invariant of a pair (X,L)

where X is a globally F -regular projective variety (over a perfect field) and L is an ample

line bundle over X.

Theorem V.1.3. Let f : (X,L) → Y be a flat family of globally F -regular varieties, where

L is an ample line bundle over X. Let K denote the fraction field of Y and αgen denote

the αF -invariant of (XK∞ ,L|XK∞ ), the perfectified generic fiber. Then, for each real number

0 < α < αgen, there exists a dense open subset Uα ⊂ Y such that

αF (Xy∞ ,L|Xy∞ ) > α for every point y in Uα.

Recall that in Theorem IV.2.8, we defined the sequence (αe)e≥1 that converges to the

αF -invariant. To prove Theorem V.1.3, we need to understand the rate of convergence in

Theorem IV.2.8. For this we will use “degree-lowering operators” as below.

Theorem V.1.4. Let X be a projective globally F -regular variety over k and L be an ample

invertible sheaf over X. Suppose we have positive integers N and e such that the sheaf

HomOX

(
(F e

∗ (L
m), LN

)
is generically globally generated for each 0 ≤ m ≤ pe−1. Then, if S denotes the section ring

S(X,L), we have

|αF (S)− αe(S)| ≤
N

pe − 1
.

Proof. Set d = dim(X). First, we claim that for each 0 ≤ m ≤ pe − 1, we can find an

injective map of OX-modules

(V.1.1) ιe,m : F e
∗ (L

m) ↪→ (LN)⊕ped .

To see this, let η denote the generic point of X and consider the following restriction map

to the generic stalk:

(V.1.2) HomOX
(F e

∗ (L
m), LN) → HomOX

(F e
∗ (L

m), LN)η ∼= HomOX,η
(F e

∗ (L
m
η ), L

N
η ).
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The assumption thatHomOX

(
(F e

∗ (L
m), LN

)
is generically globally generated means that the

image of the map in Equation (V.1.2) generates HomOX,η
(F e

∗ (L
m
η ), L

N
η ) as an OX,η-module.

Recall that OX,η is just the fraction field of X. Since F e
∗ (L

m
η ) is a free OX,η-vector space of

rank ped, we can choose ped maps ϕ1, . . . , ϕped in HomOX
(F e

∗ (L
m), LN) such that their images

under the map in Equation (V.1.2) forms a basis of HomOX,η
(F e

∗ (L
m
η ), L

N
η ) over OX,η. Thus,

defining ιe,m to be the product map

ιe,m := ϕ1 × · · · × ϕped : F
e
∗ (L

m) → (LN)⊕ped ,

we see that ιe,m is generically an isomorphism by construction. Furthermore, since F e
∗ (L

m) is

a torsion-free sheaf of rank ped over OX , ιe,m is injective since it is generically an isomorphism.

This completes the proof of the claim that maps as in Equation (V.1.1) exist.

Now, fix a map ιe,m for each 0 ≤ m ≤ pe − 1 as in Equation (V.1.1). Then, by taking

section modules with respect to L (Definition II.1.1), we get a corresponding map of graded

S-modules

ιe,m : (F e
∗S)m mod pe ↪→ S(N)⊕ped

and let

ιe : F
e
∗S ↪→ S(N)⊕pe(d+1)

denote the direct sum of the ιe,m’s. Here, for any m ∈ Z, (F e
∗S)m mod pe denotes the S-module

(F e
∗S)m mod pe :=

⊕
j∈Z

F e
∗ (Sm+jpe),

and we naturally have an N-graded S-module decomposition

F e
∗S

∼=
⊕

0≤m≤pe−1

(F e
∗S)m mod pe .

Note that ιe is injective because the ιe,m’s were injective. Furthermore, the key property of

ιe that we will use is the following: for each non-zero homogeneous element f of degree m

in S, ιe(F
e
∗ (f)) is a non-zero homogeneous element of degree

(V.1.3) ⌊m
pe
⌋+N.

Thus, we may use this map as a “degree-lowering operator”.

From Theorem IV.2.8, recall that αe := αe(S) =
me

pe
whereme is defined to be the number

max{m | Ie(m) = 0}. The condition that Ie(m) = 0 means that for all non-zero elements
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f ∈ Sm, there exists a splitting F e
∗S → S that sends F e

∗ f to 1.

Claim: For any ℓ ≥ 1, let e′ = ℓe, and m be an integer such that m ≤ (αe−
∑ℓ−1

t=1
N
pte

)pℓe.

Then Ie′(m) = 0.

We will prove the claim by induction on ℓ. If ℓ = 1, note that the sum in the claim is

empty, and hence we have m ≤ me = αep
e. In this case, Ie(m) = 0 by the definition of me.

Now let ℓ > 1 and f be any non-zero element of Sm. We need to show that F e
∗ f splits

from F e
∗S. To see this, note that by Equation (V.1.3), ιe(F

e
∗ (f)) is a non-zero element of

degree at most

⌊ 1
pe

(αe −
ℓ−1∑
t=1

N

pte
) pℓe⌋+N = me p

(ℓ−2)e −N p(ℓ−2)e − · · · −N +N = (αe −
ℓ−2∑
t=1

N

pte
) p(ℓ−1)e.

Thus, the inductive hypothesis applies to ιe(F
e
∗ (f)), implying that ιe(F

e
∗ (f)) is not contained

in Ie′−e. Let φ : F e′−e
∗ S → S denote a splitting of ιe(F

e
∗ (f)). Then, we see that (forgetting

the degrees) φ ◦F e′−e
∗ ιe : F

e′
∗ S → S defines a splitting of F e′

∗ (f), as required. This completes

the proof of the claim.

To complete the proof of the Theorem, we note that the claim above implies that for any

ℓ ≥ 1,

αℓe =
mℓe

pℓe
≥ αe −

ℓ−1∑
t=1

N

pte
.

Letting ℓ→ ∞ and using Theorem IV.2.8, we get

(V.1.4) αe(S)− αF (S) ≤
N

pe − 1
.

Lastly, note that by Lemma IV.2.9, we already have

αF (S)− αe(S) ≤
1

pe
,

which, together with Equation (V.1.4) completes the proof of the theorem.

Lemma V.1.5. Let X be a globally F -regular variety of dimension d and L be an ample

and globally generated invertible sheaf. Suppose e0 > 0 is such that (1 − pe)KX is linearly

equivalent to an effective Weil divisor for all e ≥ e0. Then, for all e ≥ e0, and each

0 ≤ m ≤ pe − 1, the sheaf

HomOX
(F e

∗ (L
m), Ld+1)

is generically globally generated.

Proof. First, by an application of Castelnuovo-Mumford regularity, we prove the following
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statement:

Claim: For all e ≥ 1 and all 0 ≤ n ≤ pe − 1, the sheaf F e
∗ (L

n+dpe) is 0-regular with

respect to L, and hence globally generated.

To see this, we check that

H i(X,F e
∗ (L

n+dpe)⊗ L−i) = H i(X,Ln+(d−i)pe) = 0 for all i > 0.

Here, we have used the projection formula to see that F e
∗ (L

n+dpe) ⊗ L−i ∼= F e
∗ (L

n+(d−i)pe)

and the cohomology vanishing follows from (Theorem II.3.7), since Ln+(d−i)pe is nef for all

i ≤ d. Thus, F e
∗ (L

n+dpe) is 0-regular with respect to L, and hence is globally generated (see

[Laz04, Theorem 1.8.5] for the details regarding Castelnuovo-Mumford regularity).

Next, for any e ≥ e0 and n ≥ 0, write (1 − pe)KX ∼ De where De is an effective Weil-

divisor. Note that it is always possible to find such an e0 thanks to [SS10, Theorem 4.3].

Let ϕe(L
n) denote the map obtained by twisting the defining map for De by L

n and pushing

forward under F e:

ϕe(L
n) : F e

∗ (L
n) ↪→ F e

∗ (OX(De)⊗ Ln).

Note that for any point x /∈ Supp(De), ϕe restricts to an isomorphism in an open neighbour-

hood around x. For any sheaf F, let Fx denote the stalk of F at x.

Applying duality for the Frobenius map (Equation (IV.1.2)), we have (for any m ∈ Z):

HomOX
(F e

∗ (L
m), Ld+1) ∼= F e

∗ (OX(De)⊗ Ldpe+pe−m).

Therefore, for any e ≥ e0 and 0 ≤ m ≤ pe−1, set n = dpe+pe−m and consider the diagram

H0(X,F e
∗ (L

n)) H0(X,F e
∗ (OX(De)⊗ Ln))

F e
∗ (L

n)x F e
∗ (OX(De)⊗ Ln)x

H0(ϕe(Ln))

ϕe(Ln)x
∼

where x is any point not contained in Supp(De). Since the horizontal arrows are injective and

the bottom horizontal arrow is an isomorphism, any set of global sections generating F e
∗ (L

n)x,

viewed as global sections of F e
∗ (OX(De)⊗ Ln), will also generate F e

∗ (OX(De)⊗ Ln)x. Since

by the claim above F e
∗ (L

n) is globally generated, we have that HomOX
(F e

∗ (L
m), Ld+1) ∼=

F e
∗ (OX(De)⊗Ln) is globally generated at any x /∈ Supp(De) (and hence generically globally

generated). This completes the proof of the lemma.

Lemma V.1.6. Let f : X → Y be a flat family of globally F -regular varieties where Y is

regular. Let D be an integral Weil-divisor such that L = OX(rD) is Cartier. We also assume
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that L is ample.

1. Then, for any integer m ≥ 0, the sheaf f∗(L
m) is locally free on Y and for any point

y ∈ Y (not necessarily closed), the natural map

f∗(L
m)⊗OY

κ(y) → H0(Xy,L
m|Xy)

is an isomorphism. Moreover, for any y ∈ Y , there exists an affine open neighbourood

Spec(B) = U ⊂ Y of y such that for y is defined by a regular sequence b1, . . . bt and for

any m ≥ 0, the natural map

H0(f−1(U),Lm)⊗B B/pB → H0(XB/pB,L
m|XB/pB

)

is an isomorphism where p is the ideal (b1, . . . , bt).

2. Suppose, in addition that X is a locally strongly F -regular variety. Then, for any

m ≥ 0, setting F := OX(mD), we have

(a) F is flat over Y .

(b) For any y ∈ Y , the restriction Fy := F ⊗OX
OXy is reflexive.

(c) f∗F is locally free on Y and for any y ∈ Y , the natural map

f∗(F)⊗OY
κ(y) → H0(Xy,Fy)

is an isomorphism.

(d) Assume that Supp(D) does not contain any fiber of f . Then,

f∗(OX(mD))⊗OY
κ(y) → H0(Xy,OXy(mD|Xy))

is an isomorphism as well. Here, we restrict the Weil-divisor mD to Y as ex-

plained in Proposition II.3.9.

Proof. Note that since Lm is an invertible sheaf on X, it is flat over Y for any m.

1. Since OX(mL) is flat over Y , the claim follows from Grauert’s Theorem [Har77, Chapter

III, Corollary 12.9] once we note that the function

y 7→ dimκ(y)H
0(Xy,Ly)
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is constant on Y . But we have

dimκ(y)H
0(Xy,L

m
y ) = χ(Lm

y ) = χ(Lm
η ) = H0(Xη,L

m
η )

where η denotes the generic point of Y . Here, we are using the higher cohomology

vanishing (Theorem II.3.7) for nef invertible sheaves on the fibers (which are globally F -

regular varieties by assumption), and the fact that the Euler-characteristic is constant

for all fibers of a flat map [Har77, Chapter III, Theorem 9.9]. Since the restriction of

Lm to each fiber of f has vanishing higher cohomology, Grauert’s Theorem also implies

that Rif∗(L
m) is zero for any m ≥ 0. Fix a y ∈ Y and choose an open neighbourhood

Spec(B) = U ⊂ Y of y such that p is generated by a regular sequence (b1, . . . , bt) and

B/pB is regular (where p is the prime ideal of B corresponding to y). Then, note that

the following exact sequence of sheaves on f−1(U):

0 Lm Lm Lm ⊗OX
OXB/x1B

0
·b1

remains exact after applying H0(f−1(U), − ) since H1(f−1(U),Lm) = 0. This tells us

that

H0(f−1(U),Lm)⊗B B/b1B ∼= H0(XB/x1B,L
m|XB/x1B

).

Now, since B/x1B is also regular, we may proceed inductively to complete the proof

of Part (1).

2. Fix any y ∈ Y and let A be the local ring at y ∈ Y and R be the local ring of any

point x ∈ X mapping to y.

(a) Since R is strongly F -regular by assumption, we may apply Part (1) of Proposi-

tion II.3.9 to conclude that R(mD) is isomorphic to a summand of F e
∗R. Since A

is regular, we have F e
∗A is flat over A and by assumption F e

∗R is flat over F e
∗A.

Thus, we see that F e
∗R is flat over A and consequently, R(mD) is flat over A.

(b) Fix a regular sequence b1, . . . , bt on A generating the maximal ideal (this is possible

because A is regular). Because R is flat over A, b1, . . . , bt is also a regular sequence

on R. Now, it is sufficient to show that R(mD) ⊗R R′ is reflexive over R′ =

R/(b1, . . . , bt)R. But this is guaranteed by Part (2) of Proposition II.3.9 once we

note that by [Mat89, Theorem 23.9], since all fibers of f are normal, R′ is itself

normal.

(c) Using the vanishing theorem for Q-Cartier ample divisors proved in Proposi-
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tion II.3.8 instead, we can repeat the argument from the first part using Grauert’s

Theorem, since F is flat over Y by part (a).

(d) This is immediate by combining Part (c) with the last part of Proposition II.3.9.

Proof of Theorem V.1.3. We divide the proof into several steps, since some of the steps will

be used again in the next subsection.

Step 1: By Proposition IV.2.13, we may replace L by a multiple of L if necessary and

assume that L is globally generated on X. In that case, the restriction of L to each fiber of

f is also automatically globally generated.

Step 2: Putting together Lemma V.1.5 and Theorem V.1.4, we get that for each y ∈ Y ,

and each e ≥ 1,

(V.1.5) |αe(Sy∞)− αF (Sy∞)| ≤ d+ 1

pe
.

Here, Sy∞ denotes the section ring of the perfect fiber of f over y with respect to the

restriction of L, and d denotes the dimension of every fiber of f (which is well-defined

because f is flat).

Now, given any α < αgen, let ε = αgen −α. Choose an e≫ 0 such that d+1
pe

< ε/2. Then,

we have

(V.1.6) αgen − ε/2 < αe(SK∞).

We claim that there exists a dense open set Uα ⊂ Y such that

αe(Sy∞) ≥ αe(SK∞)

for each y ∈ Uα. Assuming the claim, Equation (V.1.5), and Equation (V.1.6) together

imply that

αF (Sy∞) > αe(Sy∞)− ε/2 ≥ αe(SK∞)− ε/2 > αgen − ε = α

for every y ∈ Uα as required.

Step 3: We now proceed to prove the claim used above, i.e., that there exists a dense

open set Uα ⊂ Y such that αe(Sy∞) ≥ αe(SK∞) for every y ∈ Uα. Working locally, we may
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assume that Y = Spec(A) and let SA denote the section ring S(X,L). Set me = me(SK∞).

By Lemma V.1.6, H0(X,Lm) if a locally free A-module for any m ≥ 0. So by shrinking Y

around any point if necessary, we may assume that H0(X,Lm) is a free A-module with a basis

Bm for each 0 ≤ m ≤ me. By Lemma V.1.6 again, Bm restricts to a basis of H0(Xy,Ly)

for any y ∈ Y . Let B = ⊔me
m=0Bm. Note that me ≤ pe − 1 since for any non-zero section

f ∈ H0(XK∞ ,LK∞), which exists because L is assumed to be globally generated, we have

0 ̸= fpe ∈ Ie(p
e).

Step 4: By definition of me, for any m ≤ me and any non-zero f ∈ H0(XK∞ ,Lm
K∞), the

map SK∞ → F e
∗SK∞ sending 1 to F e

∗ f splits. Thus, using Lemma II.1.3 repeatedly on the

set Bm, we can construct a surjective map ψm : F e
∗ (L

m
K∞) → O⊕Bm

XK∞ such that if f ∈ Bm is

a basis element, then ψm(F
e
∗ f) = 1f , where 1f is the standard basis element corresponding

to f of O⊕Bm
XK∞ . Taking induced map on the section modules and putting together the maps

ψm for all 0 ≤ m ≤ me, along with the zero map for me < m ≤ pe − 1, we get a surjective

SK∞-module map

(V.1.7) ψK∞ : F e
∗SK∞ → S⊕B

K∞

which satisfies the following property: if 0 ̸= f ∈ H0(XK∞ ,Lm
K∞) and m ≤ me, then ψ(F

e
∗ f)

is a basis element of S⊕B
K∞ . In other words, ψK∞ simultaneously splits all the non-zero

sections of degree at most me on XK∞ . By [CRST21, Lemma 4.8], there is an integer de > 0,

a non-zero element g ∈ A such that if B = A[g−1], we have a map

ψ
B1/pe+de : S

1/pe

B1/pe+de → S⊕B

B1/pe+de

which satisfies ψ
B1/pe+de ⊗B1/pe+de K∞ = ψK∞ . Here, S

1/pe

B1/pe+de denotes the eth-relative Frobe-

nius over the base change S
B1/pe+de := SA ⊗A B

1/pe+de
. Note also that after base-changing

to K∞, we are identifying the relative and absolute Frobenius over K∞. Since every f ∈ B

is mapped to a basis element of S⊕B

B1/pe+de after tensoring to K∞, we may assume that the

same is true for ψ
B1/pe+de after inverting another element of A if necessary. Finally, for any

y ∈ Spec(B), base changing to κ(y)∞, we see that

ψκ(y)∞ =
(
ψ
B1/pe+de ⊗B1/pe+de κ(y)1/p

e+de)⊗
κ(y)1/p

e+de κ(y)∞.

simultaneously splits each non-zero element 0 ̸= f ∈ H0(Xy∞ ,L
m
y∞). Note that we are again

identifying the absolute and relative Frobenius over the perfect field κ(y)∞. This shows that

αe(Sy∞) ≥ αe(SK∞). This completes the proof of Theorem V.1.3.
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V.2: Semicontinuity for a Family of Q-Fano Varieties

In this subsection, we will prove that the αF -invariant is lower semicontinuous in a family

of globally F -regular Q-Fano varieties:

Theorem V.2.1. Let f : X → Y be flat family of globally F -regular Q-Fano varieties such

that −KX|Y is Q-Cartier and f -ample. Assume that Y is regular. Then, the map from

Y → R≥0 given by

y 7→ αF (Xy∞)

is lower semicontinuous, where Xy∞ is the perfectified-fiber over y ∈ Y .

See Definition IV.2.2 for the definition of the αF -invariant of a Q-Fano variety, and

Notation V.1.2 for the meaning of a family of globally F -regular varieties.

Remark V.2.2. For related semicontinuity results for the F -signature and the Hilbert-Kunz

multiplicity, see [Pol18], [PT18], [Smi16] and [Smi20]. Similarly, for the corresponding lower

semicontinuity result for the complex α-invariant, see [BL22].

Idea of the proof: Roughly, the proof of Theorem V.2.1 involves combining Theo-

rem V.1.3 with the inversion of adjunction for strong F -regularity as proved in [PSZ18].

The main technical difficulty arises when p divides the index of KX|Y . In this situation, we

use a standard perturbation trick similar to [Pat14, Lemma 3.15] and [HX15, Lemma 2.13].

But to do this, we need to be able to restrict Q-Cartier, ample Weil-divisors in a family

to the fibers of the family. So we begin by observing that this can indeed be done in our

situation.

Setup and Notation: Let A be a regular k-algebra of finite type. Given a flat family

f : X → Y = Spec(A) of globally F -regular Fano varieties such that L = OX(−rKX|Y ) is

Cartier and ample for some integer r > 0, we can form the section ring

SA := S(X,L).

Then, since X is normal and L is ample, SA is a normal, finitely generated , N-graded algebra

over A. For any A-algebra B, let SB denote the section ring S(XB,L|XB
), where XB denotes

the base change X×A Spec(B).

Lemma V.2.3. With notation as above, the construction of SA satisfies the following prop-

erties:
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1. SA is flat over A and for any prime ideal p ⊂ A we have that

SA ⊗A κ(p) ∼= Sκ(p).

2. For each prime p ∈ Spec(A), there is an affine open neighbourhood Spec(B) = U ⊂ Y

containing p such that the restriction KX to Spec(B/pB) (as explained in Proposi-

tion II.3.9) is linearly equivalent to KXB/pB
. In particular, for any p ∈ Spec(A), −rKXp

is Cartier. Moreover, X and SA are both Q-Gorenstein.

3. For each p ∈ Spec(A), there is an affine open neighbourhood Spec(B) = U ⊂ Y contain-

ing p and a regular sequence b1, . . . , bt on B generating p such that SB, and SB/(b1,...,bi)B

is strongly F -regular for each 1 ≤ i ≤ t. In particular, X and SA are both globally F -

regular.

4. For any Weil-divisor D on X such that rD is Cartier and ample for some r > 0, the

section module

MA(D) =
⊕
m≥0

H0(X,OX(D)⊗ Lm)

is flat over A, and compatible with base change to fibers. In other words, for any

p ∈ Spec(A), the natural map

MA(D)⊗ κ(p) →Mκ(p)(OX(D)|Xp)

is an isomorphism. Moreover, if Supp(D) does not contain any fiber of f then the

natural map

MA(D)⊗ κ(p) →Mκ(p)(D|p)

is an isomorphism as well.

Proof. Since all parts of the lemma can be proved locally on Y , we may shrink Y if necessary

to assume that ωY is a free A-module.

1. This is immediate from Part (1) of Lemma V.1.6.

2. By inverting an element g ∈ A \ p, and setting B = A[g−1], we may assume that p is

generated by a regular sequence b1, . . . , bt on B (this is possible since Ap is regular).

Fix any 1 ≤ i ≤ t and let Bi = B/(b1, . . . , bi)B. By [Mat89, Theorem 23.9], since

all fibers of f are normal, we in particular know that each XBi
(and hence, SBi

) is

normal. By shrinking U further if necessary, using Part (1) of Lemma V.1.6, we may

also assume SBi
∼= SB ⊗B Bi.
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Now we will show that KX restricted to XBi
is linearly equivalent to the divisor KXBi

.

Let V ′ ⊂ XBi
denote the smooth locus of XBi

, and V ⊂ Xsm be an open set such

that V ∩ XBi
= V ′. This is possible because XBi

is a complete intersection in XB.

Then, applying the adjunction formula for the complete intersection V ′ ⊂ V , we have

KV ′ ∼ KV |V ′ . Since V ′ ⊂ XBi
is the smooth locus and XBi

is normal, it contains all

the codimension one points of XBi
. Thus, taking closures we get that

−rKX|XBi
= −rKX|V ′ = −rKV |V ′ ∼ −rKXBi

.

This proves that L restricted to XBi
is linearly equivalent to −rKXBi

. In particular

−rKXBi
is Cartier. Furthermore, it follows from the discussion in [SS10, Section 5.2])

that the canonical divisor KSBi
is the cone over the canonical divisor KXBi

(as Weil-

divisor). Thus, we get that OSBi
(−rKSBi

) ∼= OSBi
(1) as a graded module over SBi

.

Also note that for any maximal ideal m ⊂ A, the fiber Sκ(m) is strongly F -regular. In

particular, all fibers over closed points of Spec(A) are Cohen-Macaulay, we see that SA

is Cohen-Macaulay as well. Therefore, SA (and similarly SBi
) is Q-Gorenstein.

3. From part (2), we may assume that p is generated by a regular sequence a1, . . . at on

A and −rKXAi
is Cartier for each 1 ≤ i ≤ t, where Ai = A/(a1, . . . , ai)A. Next,

note that by assumption (and Part (1)), we have Sκ(p) is strongly F -regular. So,

there exists a non-zero element g ∈ A \ p such that SBt is strongly F -regular where

Bt = At[g
−1]. Here, we are using the fact that the non-strongly F -regular locus of SBt

is closed, compatible with localization and homogeneous with respect to the N-grading
on SBt . Let Bt−1 = At−1 [g

−1]. Then, since −KSBt−1
is Q-Cartier and at is a non-zero

divisor on Bt−1, by [Das15, Theorem A], we conclude that SBt−1 is strongly F -regular

in a neighbourhood of V(bt). Since the locus of points where SBt−1 is not strongly

F -regular is defined by a homogeneous ideal (and is disjoint from V(at)), we may pick

a non-zero element h ∈ A[g−1] \ (a1, . . . , at) such that if we set B′
t−1 = Bt−1[h

−1], SB′
t−1

is strongly F -regular. Replacing p with (a1, . . . , at−1), we may proceed inductively to

get a localization B of A (at finitely many elements), and an open neighbourhood

U = Spec(B) ⊂ Spec(A) of p such that SB and SB/(a1,...,ai)B is strongly F -regular for

each 1 ≤ i ≤ t, as required.

Applying this to maximal ideals in A, we see that SA is strongly F -regular. Hence, X

is globally F -regular.

4. Using Part (3) above, X is in particular, locally strongly F -regular. Now the claim is

an immediate consequence of Part (2) of Lemma V.1.6.
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Lemma V.2.4. Let f : X → Y = Spec(A) be as above and assume A is regular. Suppose D

is a Q-divisor on X satisfying the following two properties:

1. there is some e > 0 for which (pe − 1)D is an integral Weil divisor linearly equivalent

to (1− pe)KX|Y as Weil divisors, and

2. Supp(D) does not contain any fiber of f .

Then, if y0 ∈ Y is a point such that the pair (Xy∞0
, λDy∞0

) is globally F -regular for some

λ ∈ Q≥0, then there is an open neighbourhood U ⊂ Y of y0 such that (Xy∞ , λDy∞) is also

globally F -regular for all y ∈ U .

Proof. The proof is divided into several steps, but the strategy is to apply [PSZ18, Corollary

4.19] carefully. See Section IV.1.2 for a detailed discussion of the process of taking cones

over divisors in family.

Step 1: By shrinking Y to a neighbourhood of y0 if necessary, we may also assume that

ωY is isomorphic to A. Fix an r > 0 such that −rKX is an ample Cartier divisor, and set

L := −rKX and SA = S(X,L) be the corresponding section ring and Spec(SA) is the cone

over X. By Lemma V.1.6, taking the cone over X commutes with base change to fibers

of f . For any integral Weil divisor E, let MA(E) =
⊕

m≥0H
0(X,OX(E) ⊗ Lm) denote the

corresponding section module over SA.

Step 2: For any e sufficiently divisible, letDe = (pe−1)D, which we may assume is an inte-

gral Weil-divisor. Since −KX is Q-Cartier, so is De. Therefore, by Part (4) of Lemma V.2.3,

the section moduleMA(De) is compatible with base change to fibers. Thus, we may consider

the cone over De as a Weil-divisor on Spec(SA) defined by the reflexive sheaf MA(De). The

compatibility with base changing to fibers guarantees that taking the cone overDe commutes

with restricting De to the fibers of f .

Step 3: Since the pair (Xκ(y0)∞ , µDκ(y0)∞) is globally F -regular for µ = λ, it remains so

for all µ < λ + ε for some small ε > 0. Now we set µ := ℓ1
ℓ2

to be a rational number such

that λ ≤ µ < λ+ ε for positive integers ℓ1 and ℓ2 with the following properties:

1. ℓ2 − ℓ1 is divisible by r (the Cartier index of KX).
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2. ℓ2 is not divisible by p.

Furthermore, choose e0 > 0 such that ℓ2 divides p
e0 −1 and (pe0 −1)D and −(pe0 −1)KX are

both integral Weil-divisors. Such an e0 exists by our assumptions on D. Lastly, set ∆ = µD.

With this notation, we note that the following properties are satisfied:

• ∆ = ℓ1
(pe0−1)ℓ2

(pe0 − 1)D, where (pe0 − 1)D is a Weil-divisor and p does not divide

(pe0 − 1)ℓ2.

• (pe0 − 1)2 (KX +∆) is linearly equivalent to

(V.2.1) (pe0 − 1)2 (KX +∆) ∼ (pe0 − 1)2(1− ℓ1
ℓ2
)KX =

(pe0 − 1)2(ℓ2 − ℓ1)

ℓ2
KX.

And since r divides ℓ2−ℓ1, we get that (pe0−1)2(KX+∆) is an integral Cartier divisor.

Also note that (pe0 − 1)2 clearly divides (pe0 − 1)ℓ2 and is not divisible by p.

• The fibers of f are geometrically normal since the perfect fibers are globally F -regular.

They are also geometrically connected by assumption. Thus, our assumption that

Supp(D) does not contain any fibers of f guarantees that Supp(D) does not contain

any generic point of any geometric fiber of f .

Step 4: In this context, we may use [PSZ18, Corollary 4.19] applied to the projective

cone of f with respect to L to conclude the proof (see Section IV.1.1 for details about the

projective cone construction). More precisely, consider the map

f : X := Proj(SA[z]) → Spec(A)

where z is just another variable adjoined to SA in degree 1. Note that −rKX is Cartier on

X (since this is true at the zero-section by construction, and away from the zero section we

know that X is an A1-bundle over X.

The construction of the projective cone with respect to L is compatible with base change

to fibers. In other words, for any y ∈ Y , the fiber f y : Xy → Spec(κ(y)) is the map

f y : Xy = Proj(Sκ(y)[z]) → Spec(κ(y)).

Let ∆ denote the Q-divisor obtained as the closure in X of the cone over ∆. For any

r > 0 such that r∆ is integral, the section module corresponding to r∆ is MA(r∆)[z] by

construction. Thus, by Step 2,the construction of the projective cone over ∆ is compatible
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with restricting to fibers. Thus, by Equation (V.2.1) and the fact that away from the zero-

section, X is an A1-bundle over X, we have that KX+∆ is Q-Cartier with index not divisible

by p.

Step 5: Finally, we observe that for any y ∈ Y , the local strong F -regularity of the cone

(Xκ(y)∞ ,∆κ(y)∞)

is equivalent to the global F -regularity of (Xy∞ ,∆y∞), since both correspond to the strong

F -regularity of the pair (SA,∆) . With these observations in place, [PSZ18, Corollary 4.19]

gives us an open neighbourhood U ⊂ Y of y0 such that (Xy∞ ,∆y∞) is globally F -regular for

all y ∈ U . Since, ∆ = µD and λ ≤ µ, the same is true for (Xy∞ , λDy∞) as required.

Proof of Theorem V.2.1. Recall that to prove that the given map is lower semicontinuous,

we need to show that given any point y0 ∈ Y and α > 0 such that αF (Xy∞0
) > α, there exists

an open neighbourhood U(y0, α) ⊂ Y such that αF (Xy∞) > α for all y ∈ U(y0, α). The idea

of the proof is similar to the proof of Theorem V.1.3, but we need a slight variation since we

need an open neighbourhood of y0 instead of just any open subset of Y .

Firstly, by shrinking Y to a neighbourhood of y0, we assume Y = Spec(A) is affine and

ωY is a free A-module. Next, using Proposition IV.2.13, it is sufficient to prove the lower

semicontinuity of the function

y 7→ αF (S(Xy∞ ,−rKXy∞ ))

for any r ≫ 0. So we pick an r ≫ 0 such that −rKX is a globally generated ample divisor

on X. In particular, −rKX is Cartier. Therefore, Part (2) of Lemma V.2.3, we have that

−rKXy∞ is a globally generated ample Cartier divisor on Xy∞ for any y ∈ Y . Additionally,

fix an integer t > 0 such that H0(X,OX(−mKX)) ̸= 0 for all m ≥ t.

Let d be the relative dimension of f , let α0 denote αF (Sy∞0
), and ε := α0 − α. Recall

that for any A-algebra B, SB denotes the section ring S(XB,L|XB
), where XB denotes the

base change X×A Spec(B) and L = OX(−rKX). By the argument in Step 2 of the proof of

Theorem V.1.3 (replacing the generic point with y0), it is sufficient to show that there exists

an e≫ 0 such that d+1
pe

< ε/2 and an open neighbourhood U(y0, α) of y0 such that

αe(Sy∞) ≥ α0 −
ε

2
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for all y ∈ U(y0, α). To prove this, choose an e≫ 0 such that d+1
pe

< ε/2, and

(V.2.2) α0 (p
e − 1) > pe (α0 − ε/2) + t.

Let n be an integer such that r(pe(α0− ε/2)+ t) < n < r α0 (p
e−1) be an integer that is not

divisible by p. By Part 2c of Lemma V.1.6, we may assume (by shrinking Y if necessary)

that H0(X,OX(−mKX)) is a free A-module for each 0 ≤ m ≤ n with a basis Bm. Let D be

any element of Bn and n
pe−1

< λ < r α0 be any rational number. Since D is a basis element

using Part 2c of Lemma V.1.6 again, we see that D does not contain any fibers of f , since

D restricts to a non-zero global section on each fiber. Then, we apply Lemma V.2.4, to the

Q-divisor 1
n
D to get an open neighbourhood U = U(y0, α) such that for each y ∈ U , the pair

(Xy∞ ,
λ
n
D|Xy∞ ) is globally F -regular. This is because since λ < rα0, the pair (Xy∞0

, λ
n
D|y∞0 )

is globally F -regular by the definition of α0. Since
λ
n
> 1

pe−1
by construction, Lemma IV.2.6

tells us that for each y ∈ Y , and each D in Bn, the map

(V.2.3) Sy∞ → F e
∗ (Sy∞(Dy∞))

splits. Furthermore, we may pick an integer m ≤ n satisfying: r divides m, n−m ≥ t, and

m > rpe (α0 − ε/2). This is possible by our choice of n. Since n − m ≥ t, we can pick a

non-zero E ∈ Bn−m that restricts to a non-zero Weil-divisor on each fiber (by base-change).

Thus, for any element D in Bm, since the corresponding map for (D + E)y∞ splits for each

y ∈ U by Equation (V.2.3), the corresponding map for Dy∞ also splits for each y ∈ U .

Finally, we apply Lemma II.1.3 repeatedly to the basis Bm to conclude that Ie(m) = 0 for

Sy∞ for each y ∈ U and thus

αe(Sy∞) ≥ m

rpe
> α0 − ε/2

for all y ∈ U as required. This completes the proof of Theorem V.2.1.
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