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ABSTRACT

The methodology of Empirical Game-Theoretic Analysis (EGTA) offers a compre-

hensive collection of techniques for game reasoning with models based on simulation

data. For multiagent systems not amenable to analytic solution, EGTA provides a

simulation-based alternative, where a game model with a selected set of strategies is

evaluated, addressing the most important strategic considerations. The challenge of

efficiently assembling a suitable collection of strategies for a game model in EGTA is

called the strategy exploration problem. The clearest formulation of strategy explo-

ration in EGTA is within an iterative process, in which a game model is iteratively

refined through the alternation of the creation of new strategies and the assessment

and analysis of the current game model. In particular, the Policy Space Response Or-

acles (PSRO) algorithm provides a flexible framework for strategy exploration, with

new strategies generated each iteration through a best response to a target other-

players profile using reinforcement learning (RL). The component responsible for

determining the target profile is called a meta-strategy solver (MSS), which takes an

empirical game model as input and “solves” it to produce the target. I actively inves-

tigate three main research aspects of strategy exploration under the PSRO framework

(i.e., iterative EGTA with RL): evaluating strategy exploration, controlling strategy

exploration, and extension of strategy exploration to mean field games (MFGs).

First, I investigate some of the methodological considerations in evaluating inter-

mediate game models generated through strategy exploration, proposing and justi-

fying new evaluation methods based on examples and experimental observations. In

xi



particular, I emphasize the fact that empirical games create a space of strategies and

evaluation should reflect how well it covers the strategically relevant space. Based

on this fact, I propose a new evaluation scheme that measures the strategic cover-

age of an empirical game. I show that the evaluation scheme reveals the authentic

learning performance of different strategy exploration methods compared to previous

evaluation methods.

Second, I investigate how to control strategy exploration to build a game model

that involves desired solutions (e.g., a Nash equilibrium) of the full game with mini-

mum computational costs (i.e., with fewest strategies required). Specifically, I inves-

tigate controlling strategy exploration by setting MSSs. I introduce a novel MSS for

PSRO, called regularized replicator dynamics (RRD), which prevents overfitting by

terminating replicator dynamics before it reaches an exact Nash equilibrium (NE). I

demonstrate the effectiveness of RRD on identifying strategically important strategies

and accelerating strategy exploration in games with large strategy spaces. Further-

more, I provide a novel explanation for the effectiveness of regularization in RRD for

strategy exploration through experiments.

I investigate an alternative means for the controlling: setting the response objective

(RO) employed in deriving a strategy for a given target profile. My motivation

is that different ROs may steer strategy exploration toward solutions with various

desired properties. I perform a study in the domain of sequential bargaining games,

comparing the standard RO based on own payoff with others based on social welfare.

I find that an RO encoded with Nash product can lead to identifying equilibrium

outcomes with significantly higher social welfare than the standard objective. For

other proposed ROs, experiments demonstrate that they can differentially affect the

makeup and value of solutions for different players. Overall, I find that the choice of

MSSs and the response objectives can affect the quality of solutions jointly.

Third, I extend the iterative EGTA framework to MFGs. I first prove the existence

xii



of NE in the empirical MFG, which then serves as the MSS in the framework. Due to

the non-linearity of the utility function in the mean field, to represent a game model,

I introduce a game model learning approach, which is essentially a form of regression

of the utility function based on utility data collected from previous EGTA iterations.

A learned utility function can generalize across mean fields and thus completing the

definition of a game model. Moreover, querying a learned utility function can save

a significant amount of simulations compared to running simulations for all utility

queries. I combine the iterative EGTA framework with game model learning and

provide an effective and sample efficient EGTA framework for MFGs.
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CHAPTER I

Introduction

In the past decades, the study of multiagent systems has been a core research

area in Artificial Intelligence (AI). A multiagent system, or a game, involves multiple

decision-making agents which interact in a shared environment and one agent’s op-

timal decision should take other agents’ behavior into consideration. To understand

the strategic behavior among these agents, game theory provides a mathematical tool

and defines behavioral stability in the form of equilibria for agents. Empowered by

modern AI with various learning techniques, game-theoretic study in recent years has

been extended from simple settings in classic game theory to much complex real-world

scenarios, promoting the study of learning in games, known as multiagent learning

(Shoham, Powers, and Grenager 2007).

In multiagent learning, a significant topic is game reasoning, often achieved through

various learning techniques and the guidance of game theory. This methodology

for game reasoning is largely captured by empirical game-theoretic analysis (EGTA)

(Wellman 2006). EGTA describes a broad set of methods that are building and

reasoning about game models based on simulation data. Game models are approx-

imations of the underlying full game, typically induced from simulations run over

combinations of a particular set of strategies, thus feasible and less computationally

expensive to analyze compared to directly analyzing the full game. By interleav-

1



ing game model construction, assessment, analysis, and refinement, EGTA achieves

strategic reasoning in underlying full games.

Since the accuracy of a game model directly impacts game-theoretic analysis, how

to construct a game model is crucial to EGTA. This particularly means selecting a

suitable collection of strategies to analyze for a game model. In prior work of EGTA, a

game model is mainly constructed through two ways. One way is to build and extend

a game model based on heuristics and handcrafted strategies. Despite the simplicity,

strategy design requires significant deliberation, which is arduous especially when

the game of interest becomes large. Another way of model construction is strategy

exploration, which iteratively refines the game model by extending the considered set

of strategies based on the analysis of current game models. One famous representative

of this iterative strategy generation framework is the double oracle (DO) method

McMahan, Gordon, and Blum (2003), which sequentially extends strategy sets by

best-response to a target profile. For DO, the target profile is the Nash equilibrium

(NE) of the current game model.

Following the iterative strategy generation in DO, Lanctot, Zambaldi, et al. (2017)

proposed a more general framework, called Policy Space Response Oracles (PSRO),

for analyzing complex game scenarios. PSRO first specifies deep reinforcement learn-

ing (RL) as a best response strategy generator for scenarios with large state and

action spaces. PSRO then generalizes the best response target in DO by introducing

the concept meta-strategy solver (MSS), which decides the profile to extract from the

current model as target for the next best-response calculation. Since the selection

of an MSS determines the generation of new strategies, it determines strategy ex-

ploration. Besides using NE as an MSS, the research community has put significant

efforts into designing advanced MSSs to find an NE with minimal computational costs

(Balduzzi, Garnelo, et al. 2019; Jordan, Schvartzman, and Wellman 2010; Lanctot,

Zambaldi, et al. 2017; Muller, Omidshafiei, et al. 2020; Schvartzman and Wellman

2



2009a).

Despite the success of these MSSs, scaling up to games with a large number of

players remains challenging.1 Inspired by the large economic literature on games with

a continuum of players (Aumann 1964; Schmeidler 1973), the notion of mean field

games (MFGs) has been introduced by Lasry and Lions (2007) and Huang, Malhamé,

Caines, et al. (2006) to model strategic interactions through the distribution of play-

ers’ states. By considering the limit case of a continuous distribution of identical

agents (i.e., anonymous and with symmetric interests), the MFG framework allows

the learning problem to be reduced to the characterization of the optimal behavior

of a single representative agent in its interactions with the full population, thus mak-

ing strategic reasoning feasible. Moreover, an NE in MFGs can be proved to be an

approximate NE in the corresponding finite games (Bensoussan, Frehse, Yam, et al.

2013; Carmona and Delarue 2018). Therefore, MFGs provide an alternative way of

modeling and reasoning about games with a large number of players.

The goal of this thesis is to systematically investigate strategy exploration under

the PSRO framework in both finite games and MFGs with large strategy spaces.

Leveraging various learning techniques and game theory, my investigation includes

novel algorithms for effective and efficient strategy exploration, evaluation and in-

terpretation of strategy exploration, and extension of strategy exploration to solving

MFGs.

1.1 Game Theory Foundations

A normal-form game G = (N, (Si), (ui)) consists of a finite set of players N indexed

by i; a non-empty set of strategies Si for player i ∈ N ; and a utility function ui :

1All MSSs can be applied to games with high-dimensional payoff matrix conceptually. Various
techniques, such as player reduction (Ficici, Parkes, and Pfeffer 2008; Wellman et al. 2005; Wieden-
beck and Wellman 2012) and game model learning (Li and Wellman 2021, 2020; Vorobeychik,
Wellman, and Singh 2007; Wiedenbeck, Yang, and Wellman 2018), help to reduce the complexity of
evaluating the large number of profiles.
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∏
j∈N Sj → R for player i ∈ N , where

∏
is the Cartesian product.

A mixed strategy σi is a probability distribution over strategies in Si, with σi(si)

denoting the probability player i plays strategy si. I adopt conventional notation for

the other-agent profile: σ−i = (σj)j ̸=i. Let ∆(·) represent the probability simplex

over a set. The mixed strategy space for player i is given by ∆(Si). Similarly,

∆(S) =
∏

i∈N ∆(Si) is the mixed profile space.

The set of best responses of player i to profile σ include any strategy yielding

maximum payoff for i, holding the other players’ strategies constant:

br i(σ−i) = argmax
σ′
i∈∆(Si)

ui(σ
′
i, σ−i).

Let br(σ) =
∏

i∈N br i(σ−i) be the overall best-response correspondence for a profile σ.

A Nash equilibrium is a profile σ∗ such that σ∗ ∈ br(σ∗), that is,

σ∗
i ∈ bri(σ

∗
−i),∀i ∈ N

Player i’s regret in profile σ in game G is given by

ρGi (σ) = max
s′i∈Si

ui(s
′
i, σ−i)− ui(σi, σ−i).

Regret captures the maximum player i can gain in expectation by unilaterally deviat-

ing from its mixed strategy in σ to an alternative strategy in Si. I use the superscript

G in ρG to make clear which game we are measuring regret with respect to.

An NE strategy profile has zero regret for each player. A profile is said to be an

ϵ-Nash equilibrium (ϵ-NE) if no player can gain more than ϵ by unilateral deviation.

The regret of a strategy profile σ is defined as the sum over player regrets:

ρG(σ) =
∑
i∈N

ρGi (σ). (1.1)
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Some treatments employ max instead of sum for this; when necessary to disambiguate

I refer to ρG(σ) defined by Equation (1.1) as sum-regret.

Replicator dynamics (RD) describes an evolving trajectory of mixed profiles, in-

spired by natural selection (Smith and Price 1973; Taylor and Jonker 1978). RD

is commonly employed as a heuristic equilibrium search algorithm. We consider a

discrete form of RD, where player i’s probability of playing each strategy is updated

in proportion to its payoff for deviating to that strategy from the current mixture.

Mathematically, the replicator equation for player i’s strategy si in a current profile

σ is given by

dσi(si)

dt
= σi(si)[ui(si, σ−i)− ui(σi, σ−i)].

At each iteration of RD, player i’s mixed strategy σi is updated by σi ← P (σi+αdσi

dt
),

where α is a step size for RD and P is a projection operator to the strategy simplex,

namely P (σi) = argminσ′
i∈∆
||σ′

i − σi||2.

Quantal response equilibrium (QRE) (McKelvey and Palfrey 1995, 1998) is an

equilibrium notion that captures bounded rationality. One common specification for

QRE is logit equilibrium in which players’ strategies take the form

σi(si) =
exp(τui(si, σ−i))∑

s′i∈Si
exp(τui(s′i, σ−i))

,

where 0 < τ < ∞ is a parameter governing the rationality of players. The response

strategy becomes a best response as τ approaches infinity while it becomes uniform

when τ converges to 0.

A Nash bargaining solution (Nash Jr. 1950b) is a profile that satisfies the following

axioms:

1. Invariant to affine transformations: if the utility function is re-scaled on a linear

basis, the solution to the game will not change;

2. Symmetry: if the players’ utility functions are the same, they should receive

5



the same outcome;

3. Pareto efficiency: no strategy is available that makes one player better off with-

out making another worse off;

4. Independence of irrelevant alternatives: by removing strategies that none of the

players would have chosen, the outcome will not change.

Nash proved that there is a unique solution σ satisfying these axioms maximizes the

expression
∏

i∈N ui(σ). The product of the utilities is generally referred to as the

Nash product.

1.2 Empirical Games

An empirical game Ĝ is a model of true game G where payoffs are estimated

through a simulator, a description of the true game. Typically, a simulator will

be realized as a program that implements the interaction among the participating

agents and the environment, and generates noisy observations of utility from play.

Although the full strategy space allowed by a game simulator can be large, empirical

game models usually restrict the strategy space to a small number of strategies. To

represent such restriction, I use the notation S ↓ X to denote that players can only

choose from restricted strategy sets Xi ⊆ Si. Thus, ĜS↓X = (N, (Xi), (ûi)) denotes

an empirical game model where players are restricted to X and û is an estimated

projection of u onto the strategy space X.2

The profile in the restricted game closest to being a solution of the full game is

the minimum regret constrained profile (MRCP) (Jordan, Schvartzman, and Wellman

2Because payoffs are estimated through simulation, û is also subject to sampling error. This
presents additional statistical issues (Tuyls et al. 2020; Vorobeychik 2010; Wiedenbeck, Cassell, and
Wellman 2014). In this thesis, we ignore those and focus on the issues that arise from strategy set
restriction.
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2010). Formally,

MRCP(GS↓X) = argmin
σ∈∆(X)

∑
i∈N

ρGi (σ). (1.2)

1.3 Mean Field Games

A multi-population mean field game (MP-MFG) in normal form is given by G =

([Np], (Si), (ui)). [Np] = {1, . . . , Np} is a set of Np populations indexed by i. Each

population corresponds to a conceptually infinite and interchangeable set of agents

playing a particular role in the game. The mean field is defined over an underlying

state space Z of the game environment. An agent’s strategy maps states to actions,

with action space A the same for each population. Formally, i’s strategy at time

t, si,t, maps from state space Z to the space of action distributions ∆(A). The

overall strategy si = (si,t)t∈[0,T−1] is a sequence of strategies from time 0 through

horizon T . Si denotes the set of strategies for population i ∈ [Np]. Utility functions

ui : Si × [∆(Z)T ]Np → R define the payoff to a representative player of population i

playing its strategy against the distributions of all populations. All populations are

assumed to share the same state space Z.

A mixed strategy σi is a probability distribution over strategies in Si, with σi(si)

denoting the probability the representative player of population i plays strategy si.

Let σ be the profile of strategies across populations (i.e., σ = (σ1, . . . , σNp)). The

expected utility of playing a mixed strategy σi for the representative player of pop-

ulation i given distributions µ = {µ1, . . . , µNp}, where µi = (µi,t)t∈[0,T ] ∈ ∆(Z)T+1,

is

ui(σi, µ) =
∑
si∈Si

σ(si)ui(si, µ). (1.3)

The set of best responses of the representative player of population i to population

distributions µ involves any strategy yielding maximum payoff for the player, holding

7



the distributions µ constant:

br i(µ) = argmax
σi∈∆(Si)

ui(σi, µ).

Let br(µ) =
∏

i∈Np
br i(µ) be the overall best-response correspondence for populations’

distributions µ. A Nash equilibrium for an MFG is a profile σ∗ such that σ∗ ∈ br(µ∗),

where µ∗ is induced by σ∗.

A distribution µi is said to be induced by si, denoted as µsi
i , following the Forward

Equation, that is, given initial distribution µi,0, for t ∈ [0, T − 1] and all z′i ∈ Z,

µsi
i,t+1(z

′
i) =

∑
zi,ai∈Z,A

µsi
i,t(zi)si,t(ai | zi)p(z′i | zi, ai), (1.4)

where p : Z × A→ ∆(Z) is the transition function.

The representative player of population i’s regret in profile σ given distributions

µ in game G is given by

ρGi (σi, µ) = max
si∈Si

ui(si, µ)− ui(σi, µ).

Regret captures the maximum the representative player of population i can gain in

expectation by unilaterally deviating from its mixed strategy in σ to an alternative

strategy in Si, given distributions µ. An NE strategy profile has zero regret for each

representative player. A profile is said to be an ϵ-Nash equilibrium if no representative

player can gain more than ϵ by unilateral deviation. Similar to the regret definition

in finite games, the regret of a strategy profile σ in MFGs is defined as the sum over

representative players’ regrets:

ρG(σ, µ) =
∑
i∈[Np]

ρGi (σi, µ).
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1.4 Thesis Overview

I focus on the investigation of four research questions on strategy exploration.

Question 1. How should intermediate game models be evaluated in strategy explo-

ration?

Based on my AAMAS-22 paper “Evaluating Strategy Exploration in Empirical

Game-Theoretic Analysis” (Wang, Ma, and Wellman 2022), Chapter II addresses the

evaluation of game models generated by strategy exploration. I first introduce the

strategy exploration problem and then explain what makes the evaluation of strategy

exploration distinct from evaluating other game learning algorithms. I highlight that

in strategy exploration the generated empirical games create a space of strategies

and evaluation should reflect how well the space of strategies covers the strategically

relevant space of the full game. To capture this fact in evaluation, I introduce a

systematic evaluation procedure for strategy exploration and demonstrate it in various

game settings.

Question 2. How should a game model be effectively constructed by setting MSSs in

PSRO?

Based on my paper (under review) “Regularization for Strategy Exploration in

Empirical Game-Theoretic Analysis” (Wang and Wellman 2023a), in Chapter III, I

describe how to effectively assemble a set of strategies for a game model by setting

MSSs. I introduce a novel MSS, called regularized replicator dynamics (RRD), which

incorporates regularization in game model analysis. I demonstrate the effectiveness of

RRD on identifying strategically important strategies in few-player games with large

strategy spaces and provide an explanation on the improved performance of RRD

based on experimental observations. Besides RRD, I also show the effectiveness of

alternative MSSs for strategy exploration including MRCP and QRE.
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Question 3. What is the impact of response objectives in PSRO for strategy explo-

ration?

Chapter IV is based on my manuscript (under review) “Generalized Responses for

Strategy Exploration in Empirical Game-Theoretic Analysis”. In Chapter IV, I inves-

tigate an alternative means to control strategy exploration: setting the RO employed

in deriving a strategy for a given target profile. A natural hypothesis is that the choice

of ROs, which are objectives (approximately) solved through RL at each iteration of

PSRO, can substantially impact strategy exploration and equilibrium outcomes. To

demonstrate this, I introduce PSRO with generalized ROs. Generalized ROs are not

limited to optimizing utility against other players’ strategies, as in standard PSRO

framework, but can incorporate specified preferences. I propose four RO instances for

PSRO with various strategy exploration preferences and evaluate them in sequential

bargaining games and attack-graph games, comparing solutions found according to

various criteria.

Question 4. Can the EGTA framework for finite games be extended to MFGs?

Due to the non-linearity of the utility function in the mean field, the utility func-

tion cannot be represented explicitly as in finite games. Therefore, a game model

for MFGs cannot be defined in terms of usual components. To handle this issue, I

introduce a game model learning approach for MFGs in Chapter V, based on my

paper “Game Model Learning for Mean Field Games” (Wang and Wellman 2023c).

In particular, my approach learns the utility function of MFGs based on neural net-

works. I develop a coarse coding representation for the high-dimensional inputs (i.e.,

time-dependent strategies and distributions) of MFG utility functions. I also develop

a data sampling scheme that effectively samples data in large strategy spaces. I show

that the learned game model exhibits the ability of generalization across mean fields

and can successfully support game-theoretic analysis.
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With well-defined game models for MFGs, I present the PSRO framework for game

model construction as well as a proof for the existence of NE in MFG models in Chap-

ter VI. This chapter is based on my AAMAS-23 paper “Empirical Game-Theoretic

Analysis for Mean Field Games” (Wang and Wellman 2023b). My experimental re-

sults show that the iterative EGTA framework can successfully construct a game

model incorporating the NE of MFGs in various configurations. Moreover, I show

that compared to running simulation for all utility queries, a learned game model

can dramatically reduce the computational effort required to analyze an intermediate

game model due to the relative low cost of querying a learned model.
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CHAPTER II

Strategy Exploration and Evaluation

2.1 Introduction to Strategy Exploration

In EGTA, game-theoretic analysis is performed by reasoning about game models.

Game models are induced from simulations run over combinations of a particular set

of strategies. To construct a feasible and effective game model for game analysis,

the selection of the strategies is pivotally important. In particular, a game model

is expected to contain a much smaller number of strategies than the full game for

representation tractability yet still maintain the key strategic information of the full

game (Balduzzi, Tuyls, et al. 2018). This challenge of game model construction is

described as the strategy exploration problem (Jordan, Schvartzman, and Wellman

2010) in EGTA. Strategy exploration is achieved by iteratively extending the consid-

ered strategy set, based on the analysis of the current empirical game model. The

goal of strategy exploration is to assemble an effective strategy portfolio for a game

model with minimum computational cost (i.e., with fewest strategies required).
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2.2 An Iterative Framework for Studying Strategy Explo-

ration

I investigate strategy exploration based on an iterative EGTA framework where

strategies are sequentially added to the current game model through best responses.

To illustrate this framework, I first introduce DO (McMahan, Gordon, and Blum

2003), an instance of iterative game extension, and then PSRO (Lanctot, Zambaldi,

et al. 2017), an iterative framework based on EGTA with RL. DO with empirical

game estimation can be viewed as an instance of both PSRO and iterative EGTA.

2.2.1 Double Oracle

DO is an iterative algorithm for solving games with a finite number of strategies.

The procedure of DO is shown in Algorithm 1. At the beginning, each player i is

initialized with a set of strategies Xi. The set of players, the set of strategies and

the utilities of the corresponding profiles constitute a restricted game GS↓X . At each

iteration, the NE σ of the current restricted game is first computed, which serves as a

best response target. Then each player computes a best response strategy s′ ∈ br(σ−i),

and adds it to the player’s strategy set Xi if it has not been added before.

When DO terminates, it means no player can deviate unilaterally to gain extra

payoff. In other words, the equilibrium in the current restricted game is an NE of the

full game. In finite games, DO is guaranteed to converge to NE, though DO will add

all strategies of the full game in the worst case, which trivially includes all strategies

in the support of NE.

2.2.2 Policy Space Response Oracles

PSRO extends DO by first introducing deep reinforcement learning as a best

response strategy generator. Moreover, PSRO generalizes the best response target
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Algorithm 1 Double Oracle (McMahan, Gordon, and Blum 2003)

Input: initial strategy sets Xi for each player i
Compute an expected utility for σ ∈ X
Initialize a strategy profile σ ← NE (GS↓X)
while DO iteration τ = 1, 2, . . . do
deviation ← False
for player i ∈ N do
Compute a best response s′i ← br(σ−i)
if s′i /∈ Xi then
deviation ← True
Add the new best response to player i’s strategy set Xi ← Xi

⋃
s′i

end if
end for
if ¬ deviation then
Return a restricted game GS↓X and an equilibrium σ of GS↓X

end if
Fill in missing utilities for profiles in GS↓X
Compute a Nash equilibrium σ ← NE (GS↓X)

end while

by introducing the concept meta-strategy solver, which decides the profile to extract

from the current model as target for the next best-response computation. PSRO

is presented below as Algorithm 2. Specifically, each player is initialized with a set

of strategies Xi and the utilities for profiles in the profile space X are simulated,

resulting in an initial empirical game ĜS↓X . At each iteration of PSRO, an MSS

extracts a profile from the empirical game ĜS↓X as the best response target profile σ.

Then each player (i.e., the learning player) computes a best response s′i against other

players’ strategies σ−i in the profile σ. The best response is computed through RL

with other other players’ strategies σ−i fixed. The best response s′i is then added to

player i’s strategy set Xi. This procedure repeats for a fixed number of iterations.

A response objective for player i in PSRO is a function of strategy profiles, denoted

as RO i(σ). For example, in standard PSRO described above, the RO can be written

as RO i(σ) = ui(s
′
i, σ−i) and maximizing it over s′i gives player i a best response

against σ−i. I investigate two ways to control strategy exploration, by setting MSSs

(Chapter III) and setting ROs (Chapter IV), respectively. I refer to the choice of a
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Algorithm 2 PSRO, parametrized by solver MSS (Lanctot, Zambaldi, et al. 2017)

Require: initial strategy sets X
1: Estimate ĜS↓X by simulating σ ∈ X

2: Initialize target σ ← MSS (ĜS↓X)
3: for PSRO iteration τ = 1, 2, . . . , T do
4: for player i ∈ N do
5: for many RL training episodes do
6: Sample a profile s−i ∈ σ−i

7: Train best response oracle s′i against s−i

8: end for
9: Xi ← Xi ∪ {s′i}
10: end for
11: Update ĜS↓X by simulating missing profiles over X

12: Compute best-response target σ ← MSS (ĜS↓X)
13: end for
14: Return ĜS↓X

pair of an MSS and an RO as an MSS-RO combination.

2.3 Evaluating Strategy Exploration

2.3.1 A Key Fact of Evaluating Strategy Exploration

A key fact I highlight for evaluating the performance of strategy exploration meth-

ods is that each method (i.e., MSS) essentially generates a distinct sequence of strate-

gies, and thus the empirical game model at any point reflects a distinct strategy space.

The relevant comparisons are across different strategy spaces, which may not be faith-

fully represented by a simple summary such as an interim solution. This key fact has

tended to be neglected in prior studies proposing and evaluating new ideas on strat-

egy exploration, and as I demonstrate, this can lead to misleading conclusions on the

performance of different approaches.
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2.3.2 Literature Review

In the strategy exploration literature, a profile’s fitness as solution candidate is

typically measured by its regret in the true game. Jordan, Schvartzman, and Wellman

(2010) defined MRCP (Eq. 1.2), the regret of which provides a measure of accuracy of

an empirical game. Balduzzi, Garnelo, et al. (2019) introduced the term Gamescape

to refer to the scope of joint strategies covered by the exploration process to a given

point. They employed this concept to characterize the effective diversity of an empir-

ical game state, and proposed a new MSS called rectified Nash designed to increase

diversity of the Gamescape. Finally, I take note of a couple of recent works that char-

acterize Gamescapes in terms of topological features. Omidshafiei, Tuyls, et al. (2020)

proposed using spectral analysis of the α-rank best response graph, and Czarnecki

et al. (2020) visualized the strategic topography of real-world games as a spinning top

wherein layers are transitive and strategies within a layer are cyclic. (Perez-Nieves

et al. 2021) introduced a diversity measure defined through a determinantal point

process to measure the diversity of empirical games, viewing the payoff vector of each

strategy as the feature of that strategy.

2.3.3 Evaluating an Empirical Game Model

From the perspective of strategy exploration, the key feature of an empirical game

model is what strategies it incorporates.1 In EGTA, the restricted strategy set X

is typically a small slice of the set of all strategies S, so the question is how well

X covers the strategically relevant space. There may be several ways to interpret

“strategically relevant”, but one natural criterion is whether the empirical game ĜS↓X

covers solutions or approximate solutions to the true and full game G.

The profile in the empirical game closest to being a solution of the full game is

1The accuracy of the estimated payoff functions over these strategies is also relevant, but mainly
orthogonal to exploration and outside the scope considered here.
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the MRCP. As a reminder,

MRCP(GS↓X) = argmin
σ∈∆(X)

∑
i∈N

ρGi (σ)

The regret of MRCP thus provides a natural measure of how well X covers the

strategically relevant space. In the work by Jordan, Schvartzman, and Wellman

(2010), MRCP was studied in games with fixed strategy sets rather than a setting

where strategy sets are iteratively built. I extend the study of its properties to

the strategy exploration setting. I first notice that the regret of MRCP necessarily

decreases as the empirical game model is being extended, since adding strategies can

only increase the scope of minimization. Moreover, MRCP tracks convergence in

that the regret of MRCP reaches zero exactly when an NE of G is contained in the

empirical game, that is, X covers the support of the NE. I claim both properties of

MRCP are important and desirable for evaluation purposes.

Unfortunately, direct use of MRCP as a means for evaluating strategy exploration

can be computationally challenging. Calculating regret of a profile, the quantity we

are minimizing, generally requires a best-response oracle for the full game, which

itself can be quite computationally expensive (which is why we often find RL the best

available method). And even given an effective way to calculate regret, the search for

MRCP is a non-convex optimization problem over the profile space of the empirical

game.

2.3.4 Searching for MRCP

In this section, we assume the full game we target to solve is a matrix game. This

assumption makes it easier for computing regret, a key step in MRCP computation.

For matrix games, MRCP can be approximated by solving the optimization problem

in the definition of MRCP (Eq. 1.2) with black-box optimization tools (e.g., the
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amoeba method (Nelder and Mead 1965)). When applying the amoeba method to the

optimization problem, we have to reconcile the fact that the optimization problem is

constrained while the amoeba method is an unconstrained optimization technique. To

handle this issue, Jordan, Schvartzman, and Wellman (2010) proposed a binary search

(BS) to select the maximum feasible reflection and expansion (i.e., two steps in the

amoeba method) scaling parameters (step sizes), respectively. This approach handles

infeasibility by choosing the most recent feasible reflected and expanded points (each

point is a strategy profile) given by scaling parameters. However, since the optimal

solution points are high-dimensional vectors, they may not be reached exactly by fixed

scaling parameters. I apply an alternative means to handle infeasibilty by projecting

an infeasible point onto the unit strategy simplex.

2.3.4.1 Projected Amoeba Method for MRCP Computation in Matrix

Games

I improve the accuracy of MRCP computation based on Jordan, Schvartzman, and

Wellman (2010) and show a projected amoeba method in Algorithm 3. To compute

MRCP, the primary goal is to find a profile that minimizes the cumulative regret

function f(σ) =
∑

i∈N ρGi (σ) shown in Equation (1.2). Denote a projection operator

as P (σi) = argminσ′
i∈∆(Si)

∥σ′
i − σi∥ for player i ∈ N . Denote by P (σ) the projection

operator for each σi ∈ σ. For amoeba, it follows the default values of α = 1, γ = 2,

ρ = 1/2, σ = 1/2.

I compare the performance of the amoeba method with two approaches—BS and

projection—in two-player Kuhn poker. Empirical games with different sizes are first

sampled from the full game and then MRCP is approximated with different ap-

proaches. Table 2.1 shows the regret of MRCP given by different approaches. To

illustrate the performance of different approaches, I also provide the regret of NE of

the empirical game as a benchmark. I observed that for each size of a empirical game,
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Algorithm 3 Projected Amoeba Method

Input: A full game model with regret function f and an empirical game model.
Parameter: Amoeba method parameters α, γ , ρ, σ corresponding to the reflection,
expansion, contraction and shrink coefficients.
Output: MRCP σ.

1: while t = 1, . . . , T do
2: Select current test profiles σ1, . . . , σn+1.
3: Order according to the regrets at these profiles: f(σ1) ≤ . . . ≤ f(σn+1).
4: Calculate σo, the centroid of profiles except σn+1

5: Reflection: Compute reflected point σr ← σo + α(σo − σn+1)
6: Project σr to probability simplex σr ← P (σr)
7: if f(σ1) ≤ f(σr) < f(σn) then
8: σn+1 ← σr

9: else
10: Continue.
11: end if
12: Expansion:
13: if f(σr) < f(σ1) then
14: σe ← σo + α(σr − σo)
15: σe ← P (σe)
16: if f(σe) < f(σr) then
17: σn+1 ← σe and Continue.
18: else
19: σn+1 ← σr and Continue.
20: end if
21: end if
22: Contraction: σc ← σo + α(σn+1 − σo)
23: σc ← P (σc)
24: if f(σe) < f(σr) then
25: σn+1 ← σc and Continue.
26: end if
27: Shrink: σc ← σo + α(σn+1 − σo)
28: σc ← P (σc) and Continue.
29: end while
30: return σ

approximating MRCP with projection results in a profile with significantly lower re-

gret, merely with a different infeasibility handling approach. I also noticed that when

the size is small, the performance of two approaches is close. As the size increases,

the BS approach does not lead to a good MRCP approximation and we even see that

NE of the empirical game could have lower regret than the MRCP approximation.
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Moreover, to understand the stability of results given by different approaches, I

compute the regret of approximated MRCP of a fixed empirical game for multiple

times and measure the variance. I found that the variance of regrets given by BS

approach from multiple runs is very large while the variance of the projection method

is tiny. This improvement in the accuracy and stability of MRCP approximation

will benefit the study of evaluating strategy exploration, where MRCP serves as an

important evaluation metric.

Size = 5 Size = 7

Index 1 2 3 4 5 1 2 3 4 5

ρ(σ̄) w. BS 0.39 0.36 0.35 0.44 0.19 0.51 0.36 0.44 0.39 0.21
ρ(σ̄) w. Proj 0.39 0.30 0.30 0.40 0.19 0.31 0.30 0.32 0.35 0.14
ρ(σ∗) 0.50 0.39 0.78 0.73 0.49 0.78 0.50 0.33 0.58 0.39

Size = 9 Size = 11

Index 1 2 3 4 5 1 2 3 4 5

ρ(σ̄) w. BS 0.26 0.40 0.44 0.45 0.83 0.46 0.49 0.45 0.59 0.60
ρ(σ̄) w. Proj 0.15 0.33 0.33 0.38 0.61 0.07 0.35 0.17 0.30 0.35
ρ(σ∗) 0.21 0.33 0.42 0.78 0.71 0.29 0.50 0.26 0.33 0.67

Size = 13 Size = 15

Index 1 2 3 4 5 1 2 3 4 5

ρ(σ̄) w. BS 0.37 0.57 0.60 0.28 0.27 0.37 0.52 0.30 0.27 0.17
ρ(σ̄) w. Proj 0.13 0.33 0.28 0.12 0.18 0.08 0.17 0.08 0.16 0.07
ρ(σ∗) 0.22 0.53 0.50 0.20 0.28 0.50 0.57 0.20 0.27 0.19

Table 2.1: MRCP quality with different infeasibility handling methods.

2.3.4.2 MRCP Approximation in Large Games

Computing MRCP in large games can be computational arduous since it demands

a large number of regret queries, each entailing an expensive best-response compu-

tation. I therefore seek an affordable way to approximate MRCP in large games. I

start by deriving an upper bound for the regret of a mixed-strategy profile through the
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Size = 5 Size = 10 Size = 15

Index 1 2 3 4 1 2 3 4 1 2 3 4

ρ(σ̄) 0.67 0.25 0.58 0.20 0.09 0.20 0.15 0.33 0.05 0.08 0.07 0.38
ρ(σ̃) 0.67 0.27 0.63 0.24 0.09 0.20 0.15 0.34 0.07 0.09 0.09 0.40
ρ(σ∗) 0.83 0.50 0.72 0.42 0.17 0.44 0.26 0.54 0.26 0.21 0.16 0.46

Table 2.2: MRCP quality with two definitions.

deviation payoff of a finite set of pure-strategy profiles. I then approximate MRCP

by minimizing the upper regret bound. This approach allows us to focus on pure-

strategy deviations which is a more manageable space compared to the search over

mixed-strategy profiles.

I derive the upper regret bound as follows:

ρGi (σ) = max
s′i∈Si

ui(s
′
i, σ−i)− ui(σi, σ−i) (2.1)

= max
s′i∈Si

∑
s−i∈S−i

σ(s−i)ui(s
′
i, s−i)−

∑
si∈Si

∑
s−i∈S−i

σ(si)σ(s−i)ui(si, s−i)

≤
∑

s−i∈S−i

σ(s−i)max
s′i∈Si

ui(s
′
i, s−i)−

∑
si∈Si

∑
s−i∈S−i

σ(si)σ(s−i)ui(si, s−i).

Note that the utility structure of a game may affect the quality of our regret

bound. For example, in two-player zero-sum games, since the sum of players’ utilities

is zero for every profile, the term
∑

si∈Si

∑
s−i∈S−i

σ(si)σ(s−i)ui(si, s−i) (i.e., expected

utility of playing σ for player i) will be canceled when we sum the regret bound over

players. As a result, minimizing the summation of upper bounds always produces a

pure strategy profile, possibly yielding a large estimation error.

I handle this issue by replacing sum-regret (1.1) with the maximal regret over

players. My approximate MRCP σ̃ employs the max-regret variant:

σ̃X = argmin
σ∈∆(X)

max
i∈N

ρGi (σ) (2.2)
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This modification prevents the expected utility term from being canceled, yielding a

more promising approach for minimizing the regret bound.

To verify that using max-regret does not unduly distort results, we can evaluate the

sum-regret of the profile produced by minimizing either version. Let σ̄X be the profile

minimizing sum-regret with respect to strategy set X, and σ̃X the corresponding

MRCP using max-regret (2.2). Note that for any X, ρ(σ̄X) ≤ ρ(σ̃X). Table 2.2

compares the two MRCP definitions in five instances of Kuhn poker, for each of three

sizes of two-player Kuhn poker. As we can see, the MRCP calculated using max-regret

is quite close to the actual sum-regret MRCP in minimizing sum-regret.

I measure the quality of the approximation using the upper regret bound (2.1)

with the max-regret version of MRCP (2.2). My experiment employs a synthetic two-

player zero-sum matrix game with 200 strategies and utilities uniformly sampled from

[−R,R], R = 1000. Table 2.3 compares the regrets of exact MRCP σ̄, approximated

MRCP σ̃ (I overload the notation for convenience), and NE σ∗ (i.e., a benchmark).

I observed that in some sampled empirical games (e.g., game 2 with size 3, game 2

with size 13 etc.), the approximation results in profiles with very similar regret as

that of the true MRCP.

Size = 3 Size = 5 Size = 7

Index 1 2 3 4 1 2 3 4 1 2 3 4

ρ(σ̄) 359 262 232 428 176 124 487 364 95 228 627 103
ρ(σ̃) 505 275 265 532 253 144 727 365 575 397 794 183
ρ(σ∗) 615 275 242 554 535 144 806 737 491 514 973 172

Size = 9 Size = 11 Size = 13

Index 1 2 3 4 1 2 3 4 1 2 3 4

ρ(σ̄) 160 121 180 181 247 250 243 68 324 60 209 103
ρ(σ̃) 249 156 205 230 263 405 378 165 435 60 318 134
ρ(σ∗) 236 314 759 330 388 596 446 152 705 216 327 479

Table 2.3: MRCP quality with approximation in symmetric zero-sum games.
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2.3.5 Evaluation in Practice: Solver-based Regret

Given the general difficulty of computing MRCP beyond matrix games, studies

often employ some other method to select a profile from the empirical game to evalu-

ate. Any such method can be viewed as a meta-strategy solver, and so I use the term

solver-based regret to denote regret in the true game of a strategy profile selected

by an MSS from the empirical game. In symbols, the solver-based regret using a

particular MSS is given by ρG(MSS (GS↓X)). By definition, MRCP is the MSS that

minimizes solver-based regret.

An MSS that is commonly employed for solver-based regret is NE. NE-based

regret measures the stability in the true game of a profile that is perfectly stable in

the empirical game. Whereas any MSS is eligible to play the role of solver, not all are

well-suited for evaluating strategy exploration. For example, self-play simply selects

the last strategy added, and is completely oblivious to the rest of the strategy set X.

This clearly fails to measure how well X as a whole captures the strategically relevant

part of S, which is the main requirement of an evaluation measure as described above.

2.3.6 Solver Consistency

The PSRO framework as described to this point employs MSSs in two distinct

ways: to direct a strategy exploration process, and to evaluate intermediate results

in strategy exploration. It may seem natural to evaluate exploration that employs

MSS M in terms of solver-based regret with M as solver. Indeed, much prior work

in PSRO exploration has done exactly this (Lanctot, Zambaldi, et al. 2017; Li and

Wellman 2021; Muller, Omidshafiei, et al. 2020).2

2Although the work by Li and Wellman (2021) is not focused on strategy exploration, it does
present some plots (Figs. 2 and 3) with multiple curves using different MSSs for evaluating regret. For
other works, I verified this by examining the published code and through my own efforts to reproduce
the results in these papers. Specifically, I found the code published as part of OpenSpiel (Lanctot,
Lockhart, et al. 2019) evaluates progress in exploration by regret of the MSS employed for explo-
ration. I also reproduced the learning performance of PSRO with different MSSs and inferred that
the MSS used for evaluation is the same as the one for strategy exploration, which is often apparent
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As I demonstrate below, however, evaluating alternative MSSs M and M ′ for ex-

ploration using their respective MSSs as solvers can produce misleading comparisons,

caused by neglecting the principle of evaluating the empirical game as a whole. In-

stead, I argue, one should apply the same solver-based regret measure to evaluate

results under M and M ′. In other words, the MSS employed in solver-based regret

should be fixed and independent of the MSSs employed for exploration. I term this

the consistency criterion.

To illustrate the necessity of solver consistency, here I offer two examples to demon-

strate how a violation of my consistency criterion could lead to a misleading conclu-

sion.

Example 1. Consider the symmetric zero-sum matrix game of Table 2.4. Starting

from the first strategy of each player, we perform PSRO with uniform and NE as

MSSs, respectively. Note that using a uniform distribution over current strategies as

MSS in PSRO essentially reproduces the classic fictitious play (FP) algorithm (Brown

1951). The first few iterations of PSRO are presented in Table 2.5. Due to symmetry,

the two players’ strategy sets and MSS-proposed strategies are identical.

a12 a22 a32
a11 (0, 0) (-0.1, 0.1) (-3, 3)
a21 (0.1, -0.1) (0, 0) (2, -2)
a31 (3, -3) (-2, 2) (0, 0)

Table 2.4: A symmetric zero-sum game (Example 1).

Figure 2.1a presents regret curves for both MSSs using NE-based regret, as well

as the uniform-based regret curve for FP. If we violate the consistency criterion and

compare uniform-based regret of FP with the NE-based regret of DO (i.e., green versus

blue curves in Figure 2.1a), we would conclude FP converges faster than DO in the

by examination of regret curves. For example, the NE-based regret curve of fictitious play oscillates
dramatically while its uniform-based regret curve is much more smooth. So it is easy to identify
which MSS was used for evaluation.

24



Iter# Strategy Sets DO proposed strategy

1 (a11), (a
1
2) (1), (1)

2 (a11, a
3
1), (a

1
2, a

3
2) (0, 1), (0, 1)

3 (a11, a
2
1, a

3
1), (a

1
2, a

2
2, a

3
2) (0, 1, 0), (0, 1, 0)

Iter# Strategy Sets FP proposed strategy

1 (a11),(a
1
2) (1), (1)

2 (a11, a
3
1),(a

1
2, a

3
2) (1

2
, 1
2
), (1

2
, 1
2
)

3 (a11, a
3
1),(a

1
2, a

3
2) (1

3
, 2
3
), (1

3
, 2
3
)

4 (a11, a
2
1, a

3
1),(a

1
2, a

2
2, a

3
2) (1

4
, 1
4
, 1
2
), (1

4
, 1
4
, 1
2
)

5 (a11, a
2
1, a

3
1),(a

1
2, a

2
2, a

3
2) (1

5
, 2
5
, 2
5
), (1

5
, 2
5
, 2
5
)

Table 2.5: PSRO process for DO and Fictitious Play.

first two iterations. However, FP cannot actually be better at strategy exploration,

as the strategies introduced, a1 and a3, are identical under two MSSs. Moreover, at

the third iteration, FP fails to add any new strategy, and so the improvement shown

is not attributable to the exploration process.

(a) 3× 3 game (Example 1). (b) 100× 100 game (Example 2).

Figure 2.1: Regret curves evaluating NE and uniform as MSSs strategy exploration,
under different solvers.

Comparing the two MSSs under NE-based regret (i.e., green versus orange regret

curves), we see that where FP and DO generate identical empirical games their eval-

uations coincide. Thus, following the rule of consistency avoids reaching a misleading
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conclusion about exploration. Note that we would reach the same conclusion if the

two MSSs are evaluated under uniform-based regret (i.e., red versus blue curves).

However, we observe that not all MSSs are equally effective for evaluation. In this

example, although uniform-based regret consistently evaluates equivalent empirical

games, its low weight on newly added strategies fails to adequately reflect exploration

achievements. For example, the uniform-based regret curve remains well above zero

even after the full-game NE has been covered in the empirical game. In Section 2.3.7,

we provide a detailed discussion of this phenomenon and propose a scheme for eval-

uation solver selection.

Of course, if the goal is just to evaluate DO and FP as online algorithms, then the

green versus blue comparison is appropriate. A key virtue of the PSRO framework,

however, is that it highlights exploration as a distinct issue and provides the MSS

abstraction for addressing it. Within an iterative EGTA approach, the choice of solver

to employ for decision making at any stage is completely orthogonal to the method

used to extend the game model, and so focusing attention on algorithms that couple

these in particular ways (e.g., using the same MSS for solving and exploration) is

unnecessarily limiting.

Example 2. I further verified these observations in a synthetic zero-sum game with

100 strategies per player. Resulting regret curves averaged over 10 random starts are

shown in Figure 2.1b.

As for the previous example, comparing uniform-based regret of FP against NE-

based regret of DO—breaking my consistency criterion—would lead us astray. First,

we see that FP performs best initially, but is ultimately overtaken by DO. More

importantly, as demonstrated in Section 2.3.8 below, even the assessment that FP’s

strategy exploration is more effective than DO’s over the first thirty iterations is

invalid. Indeed, the blue-versus-green comparison up to iteration 30 shows that the

uniform strategy profile in the empirical game of FP is more stable (has lower regret)
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than NE in the empirical game of DO. But as in the prior example, this is an

artifact of selecting the uniform rather than the NE profile for evaluation. Moreover,

as illustrated below in Figure 2.3, we should generally expect there to exist non-NE

profiles in the empirical game of DO with significantly lower regret in the true game.

This example demonstrates mixed use of evaluation metrics may result in improper

comparison among the performance of MSSs. Indeed, I found that this phenomenon

is quite common in prior work, leading in particular to misleading evaluations of FP

as a strategy exploration approach. In formulating the general consistency criterion, I

emphasized that improper comparisons could be made with any two MSSs; the issue

is not limited to FP or any specific MSSs employed in these examples.

2.3.7 Consistency in Poker Games and Evaluation Solver Selection

I further examine the consistency criterion in simplified poker games, specifically

two-player Kuhn poker and Leduc poker. These poker games have been commonly

employed in prior work within the PSRO framework, facilitating comparison of ex-

perimental results. Specifically, I evaluate FP, PRD, and NE as MSSs. Moreover,

to select an effective solver to implement the consistency criterion, I propose a new

evaluation solver selection scheme, designed to reveal the authentic performance of

MSSs for strategy exploration.

2.3.7.1 Solver Consistency with FP

For Leduc poker, Figure 2.2a indicates DO performs better than FP under NE-

based regret. However, the uniform-based regret is quite misleading as a measure of

exploration performance of DO. It actually increases over much of the range, which

would seem to suggest that adding strategies makes the game model worse, which

intuitively makes little sense.

In Kuhn poker (Figure 2.2b), DO again outperforms FP under NE-based regret.
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Uniform-based regret of DO is misleading for Kuhn as it is for Leduc poker.3 FP

shows much faster convergence under NE-based rather than uniform-based regret

after twenty iterations or so. Indeed, the uniform-based regret is far from zero even

at a hundred iterations. As we see in the examples above, uniform-based evaluation

may misleadingly show smooth improvement where there is none. Here we see again

that it can also leave the impression of slow progress even when the empirical game

actually contains the key strategies needed for accurate solution.

2.3.7.2 Solver Consistency with PRD

I show experimental results of PSRO with PRD in Leduc poker in Figure 2.2c.

We first note that following the rule of consistency, there is little performance gap

between PRD and DO (i.e., the blue and orange curves). If we violate consistency and

compare PRD-based regret of PRD against NE-based regret of DO (green versus blue

curves), however, we would be prone to conclude that PRD clearly and significantly

outperforms DO. For Kuhn poker (Figure 2.2d), we would conclude there is little

difference, but looking closely and ignoring consistency might lead us to conclude

that PRD is slightly worse in the limit. In both cases, we see that the choice of

evaluation solvers can drive assessments about exploration performance.

The above examples have shown that not all MSSs are equally suited for evalu-

ation, even if used in compliance with the consistency criterion. Consistency is im-

portant for achieving meaningful comparisons, but not sufficient. Conclusions about

exploration performance are also sensitive to the selection among MSSs as evaluation

solvers.

3My conjecture is that the new poker strategies introduced by DO after a point are very good at
exploiting vulnerabilities in the current equilibrium, but quite poor as poker players overall. These
strategies are quite important to include in the empirical game, to prevent exploitable solutions,
even though they should not be part of the solutions themselves. This is a common game-reasoning
phenomenon, providing another explanation for why uniform is a poor choice of solver for evaluation.
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2.3.7.3 An Evaluation Solver Selection Scheme

Recall that MRCP is the MSS minimizing solver-based regret and thus the regret

of the MRCP of an empirical game measures how well the empirical game covers

the strategically relevant space. If we could feasibly compute the MRCP or an ap-

proximation, that would be a natural choice for solver-based regret. Though this is

infeasible in general, we can capture the spirit of MRCP by attempting to minimize

solver-based regret. Toward this end, I propose a heuristic evaluation solver selection

scheme that chooses the solver with lowest-regret curve among running solvers. I

demonstrate the significance of my scheme for evaluating different MSSs by checking

the previous PRD example.

In the example, if we merely adhere to solver consistency with NE-based regret

(i.e., comparing blue versus orange regret curves in Figure 2.2c), we would not dis-

tinguish the performance difference between PRD and DO. In this case, NE in the

empirical game exhibits relatively high regret with respect to the true game. we know

it is far from MRCP, as the green curve in this plot demonstrates the existence of

lower-regret profiles in the same empirical games. Although we cannot tell exactly

where the MRCP lies, the PRD solver in this example clearly provides a better ap-

proximation than does the NE solver. Considering PRD as the solver for evaluation

and following solver consistency, we can likewise evaluate DO using PRD-based re-

gret. The result is shown in the purple curve of Figure 2.2e (other regret curves are

as in Figure 2.2c). PRD-based regret of DO is indeed lower than NE-based regret of

DO (purple versus blue curves), and thus PRD as an evaluation solver successfully

identifies the profiles with lower regret in the empirical games across DO iterations.

This achieves the purpose of identifying profiles closer to MRCP as the basis for

evaluation.

By comparing the PRD-based regret curves of DO and PRD, I observed that they

exhibit similar improvement rates through early iterations, but eventually PRD shows
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a small consistent advantage. This I regard as the best available evidence from these

experiments on the authentic relationship between PRD and DO. Had we ignored

solver consistency and compared the green and blue curves, we would have correctly

concluded PRD’s superiority but grossly overestimated the performance gap.

To state my work more explicitly: I argue for selecting the solver that minimizes

regret in the given context. Specifically, fix a set of MSSs M, typically the same

set of MSSs being evaluated for strategy exploration. Let R be a set of PSRO runs

employed to select the evaluation solver. At each iteration t of each run r ∈ R, we

have an empirical game over strategy set Xr
t . For each Xr

t and solver M ∈ M, we

evaluate regret in the full game of the empirical game solution under M . We then

designate as evaluation solver M∗ the MSS that performs the best over these runs:

M∗ = argmin
M∈M

∑
r∈R

∑
t

ρG(M(GS↓Xr
t
)).

Alternatively, we can accommodate the possibility that which solver minimizes true-

game regret may vary over the course of the strategy exploration process. I propose

a pointwise selection scheme, which designates an evaluation solver M∗
t for each iter-

ation t:

M∗
t = argmin

M∈M

∑
r∈R

ρG(M(GS↓Xr
t
)).

Note that the pointwise scheme, like that for selecting a single solver, accords with

the consistency criterion. Variations that combine regrets across runs and time in

some way other than summation are also admissible.

2.3.8 Evaluation Performance of MRCP

Though computation of MRCP in large games is generally infeasible, for exper-

imental purposes we can evaluate it in a feasible context. Here I present such an

evaluation on matrix games of fixed and modest size. Figure 2.3 displays averaged
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(a) Fictitious Play in 2-player Leduc (b) Fictitious Play in 2-player Kuhn

(c) PRD in 2-player Leduc (d) PRD in 2-player Kuhn

(e) PRD strategies in DO run (f) Regret curves by Combined Games

Figure 2.2: Experimental regret curves for poker games.
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regret curves of PSRO runs on the same synthetic matrix game of Example 2, with

FP and DO evaluated by MRCP-based regret. I observed that the MRCP-based

regret by definition is lower than its NE-based regret counterpart. In this instance,

the comparison using MRCP-based regret validates the qualitative comparison using

NE-based regret. Notice that the gap between NE-based regret and MRCP-based

regret diminishes as DO and FP gradually converge to a true game NE (i.e., all re-

grets approach zero). I also observed that the MRCP-based regret curves are much

smoother than the NE-based regret curves. MRCP is monotone by definition, the

steady performance improvement reflects more accurately the progress in quality of

empirical game model achieved by strategy exploration.

Figure 2.3: MRCP-based Regret vs NE-based regret.

2.3.9 Evaluation without Exact Best Responses

As noted above, calculating profile regret for purposes of evaluating MSSs gener-

ally requires identifying a best-response strategy. However, computing the exact best

response may not be feasible in complex games. A particular approach is to collect

the strategies generated across a set of PSRO runs, and evaluate regret with respect

to that set. We refer to the game with all generated strategies as the combined game.
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In general, regret with respect to the combined game is a lower bound on regret with

respect to the true full game. Since the combined game has been used in practice as

a heuristic approach to evaluate strategy exploration, it is important to examine its

effectiveness.

To test the effectiveness of this approach, I compare results for evaluation with

respect to a combined game with that of exact best response (i.e., the ground truth

in our context), for some games where calculating exact best responses is feasible.

Results are shown in Figure 2.2f. I observed that high-regret profiles in the true

game may exhibit quite low regret in the combined game. Most concerning is that

the slack in the regret bound may vary across MSSs being evaluated, thus producing

misleading comparisons. Specifically in Figure 2.2f, despite the apparent higher regret

of FP profiles in the true game, FP profiles exhibit lower regret in the combined

game. My explanation for the phenomenon is that when one MSS can explore certain

strategy to which strategies generated by other MSSs can deviate largely but not vice

versa, the combined game fails to identify the correct ordering of MSSs.

2.4 Conclusion

The primary contributions of this study are methodological considerations for eval-

uating strategy exploration in EGTA, within the PSRO framework. My observations

address nuances that have not been observed before, and may have led to misleading

conclusions about the effectiveness of proposed methods. In particular, I proposed an

evaluation scheme with a consistency condition, dictating that progress in strategy

exploration under different MSSs be evaluated with respect to the same solver. This

condition, while seemingly obvious, has not always been followed, perhaps because

it is natural in online learning settings to evaluate a method at any point based on

its own solution criterion. In the context of strategy exploration, in contrast, what

is important is not what the latest strategy is, but how it affects the solution of the
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model it is being added to.
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CHAPTER III

Strategy Exploration by Setting MSSs

3.1 Introduction

As discussed in the introduction chapter, PSRO generalizes DO by introducing

the concept of MSSs for controlling strategy exploration. In this chapter, I investigate

how specifying an MSS can affect strategy exploration.

An obvious choice for MSS is the solution concept employed as the objective in

game analysis, typically NE. Incrementally adding strategies that are best-responses

to NE of the current strategy set is DO, and PSRO with NE as MSS is essentially DO

with RL for computing (approximate) best response. Though DO is often effective,

there is ample evidence that best-response to NE is not always the best approach

to strategy exploration. Schvartzman and Wellman (2009a) observed cases where it

would approach a true equilibrium extremely slowly, such that even adding random

strategies could provide substantial speedups. More generally, Lanctot, Zambaldi,

et al. (2017) argued that best-responding to Nash overfits to the current equilibrium

strategies, and thus tends to produce results that do not generalize to the over-

all space. This was indeed their major motivation for defining a generalized MSS

concept for strategy exploration. As an alternative MSS they proposed projected

replicator dynamics (PRD), which employs an RD search for equilibrium, truncating

the replicator updates to ensure a lower bound on probability of playing each pure
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strategy. Placing constraints on probabilities for strategies on board enables best

responses to strategies outside the equilibrium support, and hence can be viewed as a

form of regularization to an exact NE. We credit this regularization for the improved

performance of strategy exploration given by PRD.

I adopt an explicit regularization perspective to the specification and analysis

of MSSs. I propose a novel MSS called Regularized Replicator Dynamics or RRD,

which truncates the NE search process in intermediate game models based on a regret

criterion. Specifically, at each iteration of PSRO, the best-response target profile is

updated by running RD, stopping if the regret of the current profile with respect

to the empirical game meets a specified regret threshold. The regret threshold is a

hyperparameter, which may be adjusted to suit a particular game class, or annealed

to control the degree of regularization across iterations. I assess the performance of

RRD in various games and show that RRD outperforms several existing MSSs in

terms of convergence rate and quality of intermediate empirical game models.

As the size of a payoff matrix is exponential in the number of players, the cost

of maintaining completely specified models over the iterations of PSRO can be pro-

hibitive beyond two players. To mitigate this issue, I employ a PSRO-compatible

profile search method, called backward profile search (BPS), which finds solution con-

cepts without simulating the whole payoff matrix. I combine RRD with BPS, and

demonstrate the effectiveness of this combination in games with more than two play-

ers.

Finally, my experiments shed light on the source of the benefit of regularization

for strategy exploration. Across a variety of settings, I found that the approximate

empirical-game NE produced by RRD tend to have lower regret in the full game,

compared to exact NE of the empirical game. This not only provides an explanation

for the benefits of regulation, it may also suggest a way to evaluate the potential of

novel MSS designs in PSRO-related approaches.
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3.2 Literature Review

In the first instance of automated strategy generation in EGTA, Phelps et al.

(2006) employed genetic search over a parametric strategy space, optimizing the basin

size of attraction under replicator dynamics. Schvartzman and Wellman (2009b) com-

bined RL with EGTA in an analogous manner. Questioning whether best response

to equilibrium is an ideal way to add strategies, these same authors framed and in-

vestigated the general problem of strategy exploration in EGTA (Schvartzman and

Wellman 2009a). They identified situations where adding a best response to equi-

librium would perform poorly, and proposed some alternative approaches. Jordan,

Schvartzman, and Wellman (2010) extended this line of work by proposing explo-

ration of strategies that maximize the gain to deviating from a rational closure of the

empirical game.

Investigation of strategy exploration was furthered significantly by introduction of

the PSRO framework (Lanctot, Zambaldi, et al. 2017). PSRO entails adding strate-

gies that are best responses to some designated other-agent profile, where that profile

is determined by MSSs applied to the current empirical game. The prior EGTA

approaches cited above effectively employed NE as MSS as in the DO algorithm

(McMahan, Gordon, and Blum 2003). Lanctot, Zambaldi, et al. (2017) argued that

with NE as an MSS the new strategy may overfit to the current equilibrium, and

accordingly proposed and evaluated several alternative MSSs, demonstrating their

advantages in particular games. For example, their PRD employs an RD search for

equilibrium (Smith and Price 1973; Taylor and Jonker 1978), but truncates the repli-

cator updates to ensure a lower bound on probability of playing each pure strategy.

Any solution concept for games could in principle be employed as MSS, as for example

the adoption by Muller, Omidshafiei, et al. (2020) of an evolutionary-based concept,

α-rank (Omidshafiei, Papadimitriou, et al. 2019), within the PSRO framework.

The MSS abstraction also connects strategy exploration to iterative game-solving
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methods in general, whether or not based on EGTA. Using a uniform distribution

over current strategies as MSS essentially reproduces the classic FP algorithm, and

as noted above, an MSS that just selects the most recent strategy equates to self-

play. Note that these two MSS instances do not really make substantive use of the

empirical game, as they derive from the strategy sets alone.

Wang, Shi, et al. (2019) illustrated the possibility of combining MSSs, employing

a mixture of NE and uniform which essentially averages DO and FP. Motivated by

the same aversion to overfitting the current equilibrium, Wright, Wang, and Wellman

(2019) proposed an approach that starts with DO, but then fine-tunes the generated

response by further training against a mix of previously encountered strategies. Bal-

duzzi, Garnelo, et al. (2019) introduced a new MSS, called rectified Nash, designed to

increase diversity of empirical strategy space. Dinh et al. (2022) proposed to inter-

leave online learning with best responses for computing NE or correlated equilibria.

Beyond selecting NE as a solution concept, Marris et al. (2021) proposed maximum

welfare coarse correlated equilibrium (MWCCE), and maximum Gini coarse corre-

lated equilibrium (MGCCE) for computing correlated equilibria, within the PSRO

framework. McAleer, Wang, et al. (2022) proposed to use MRCP as an MSS for

PSRO for two-player zero-sum games, referring as anytime PSRO the property of

monotonic decrease in regret as empirical game extends given by MRCP.

The works discussed above focus on improving the efficiency of PSRO through

setting MSSs. There are also some prior works improving PSRO through novel im-

plementations. McAleer, Lanier, Fox, et al. (2020) proposed Pipeline PSRO (P2SRO).

The key idea of P2SRO is that it initializes a bunch of strategies and assigns each

strategy with a level. Then P2SRO warm-starts training each strategy in parallel

against the NE of the empirical game involving strategies with lower levels. This

pre-training scheme accelerates the overall training of PSRO. Zhou et al. (2022) de-

veloped an efficient PSRO (EPSRO) implementation for reducing the computational
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cost of PSRO in two-player zero-sum games. The key insight is that the simulation

for the empirical game is only used for computing best response target profiles. So as

long as best response target profiles can be computed in other ways (e.g., a uniform

MSS does not need the evaluation of a game model), there is no need to maintain the

empirical game model and thus saving simulations. EPSRO achieves this by solving

an unrestricted-restricted game (URR), in which one player is playing according to a

restricted set of strategies, at each iteration of PSRO by online learning method and

reinforcement learning. Zhou et al. (2022) showed that this procedure requires less

simulations compared to the vanilla PSRO. Smith, Anthony, and Wellman (2021)

improved the efficiency of best response computation in PSRO through knowledge

transferring. The knowledge of best responses to each pure opponent’s strategy is

transferred to approximating the best response to any mixed opponent’s strategy by

Q-Mixing (Smith, Anthony, and Wellman 2023), a method for aggregating strategies.

The surveyed works up to this point are based on the normal-form representation

of a game, which is also the representation that this thesis focuses on. However, there

are also a considerable literature on PSRO leveraging the extensive-form representa-

tion to gain benefits in games naturally with tree structures. McAleer, Lanier, Wang,

et al. (2021) proposed Extensive-Form Double Oracle (XDO), a double-oracle (DO)

algorithm designed for two-player zero-sum extensive-form games. DO is based on

the normal-form representation of the empirical games while XDO switches to the

extensive-form representation of the empirical games. The extensive-form empirical

game tree is constructed by the restricted set of strategies of players. Similar to DO,

NE is deployed as an MSS but computed through CFR, which is a reasonable NE

solver for two-player zero-sum extensive-form games. Then each player computes a

best response against other players’ equilibrium strategy profile. The best response

operation will add some new actions at some non-terminal infostates until an NE is

confirmed. Note that when a new action is added to an information state, multiple
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strategies will be added to the corresponding normal-form representation essentially.

So one iteration in XDO implicitly needs more simulation for profile evaluation than

one iteration in DO.

3.3 Regularized Replicator Dynamics

Given the experiments in prior work, I observed that PRD is essentially a form of

regularization and attributed the success of PRD to the regularization. Based on this

observation, I adopt an explicit regularization perspective on strategy exploration.

Specifically, I propose a method to derive approximate NE by truncating an RD-based

search. My new MSS, called regularized RD or RRD, simply runs RD on the empirical

game, stopping when the regret of the current profile (w.r.t the empirical game) meets

a specified regret threshold λ, or a maximum number of iterations is reached. In the

RRD procedure (Algorithm 4), each player’s strategy is initialized with a uniform

distribution over strategies in the empirical game. Then the replicator equation is

iteratively applied until the regret of the current profile (w.r.t the empirical game)

becomes smaller than the regret threshold λ. Since RD does not generally converge

to an exact equilibrium, there is no guarantee a finite regret threshold λ will ever

be reached. I therefore set a maximum number of iterations M , and if the limit is

reached return the profile with the lowest regret found to that point.

Note that RRD supports direct control of the degree of regularization through an

explicit parameter: the regret threshold. This parameter is meaningful across games

with different strategy sets, as long as the utility scales on which regret is measured

are comparable.
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Algorithm 4 RRD

Require: an empirical game ĜS↓X , regret threshold λ, RD step size α, maximal

number of iteration M

Initialize RD with σi ← Uniform(Xi)

m← 0

while ρĜS↓X (σ) > λ and m < M do

for player i ∈ N do

σi ← P (σi + αdσi

dt
)

end for

m← m+ 1

end while

Return σ

3.4 Convergence of RRD

I provide a theoretical bound for the regret of solution given by RRD.

Theorem 1. Given the access to an exact best response oracle, PSRO with RRD as-

sociated with a reachable regret threshold λ converges to an empirical game containing

at least one λ-NE.

Proof. To prove Theorem 1, I first define the concept ϵ-closeness, which can be viewed

as a stopping condition of PSRO.

Definition (ϵ-closeness). An empirical game with strategy space X ⊆ S is ϵ-closed

with respect to certain ϵ-NE σ ∈ ∆(X) and operator o if and only if o(σ) ∈ X.

For example, if o is a best-response operator and ϵ = 0, this definition means there

is no beneficial deviation from the NE σ of the empirical game, and thus σ is an NE

of the full game. When ϵ ̸= 0, ϵ-closeness indicates that the deviation strategy of the

ϵ-NE σ of the empirical game already exists in the empirical game. Note that there
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could exist an infinite number of ϵ-NE in an empirical game given a specific ϵ, so the

definition of ϵ-closeness is associated with a specific ϵ-NE.

Lemma 1. If an empirical game with strategy space X ⊆ S is ϵ-closed with respect

to certain ϵ-NE σ ∈ ∆(X) and best-response operator o, then σ is an ϵ-NE of the full

game G.

Since σ is an ϵ-NE in the empirical game, there is no deviation strategy within the

empirical game that results in regret large than ϵ. Mathematically, we have ∀i ∈ N ,

maxs′i∈Xi
ui(s

′
i, σ−i)− ui(σi, σ−i) ≤ ϵ. Since the best-response operator finds the best

deviation w.r.t the true game and the best deviation falls into the empirical game,

we have ∀i ∈ N , maxs′i∈Si
ui(s

′
i, σ−i) − ui(σi, σ−i) ≤ ϵ. Then σ is an ϵ-NE of the full

game G.

Given a finite strategy space S, by setting ϵ to be a reachable regret threshold λ,

ϵ-closeness with respect to certain σ is always reachable by training against an ϵ-NE

at each iteration, though all strategies in S should be added in the worst case. Once

the ϵ-closeness is reached, the corresponding σ is an ϵ-NE of the full game according

to Lemma 1.

3.5 Selective Profile Evaluation using BPS

One obstacle to scaling PSRO is that the size of the empirical game grows ex-

ponentially in the number of players. Even in games with only a few players (e.g.,

three or four), exhaustive simulation of the payoff matrix may become infeasible as

the strategy space grows. To mitigate this issue, I develop a simple profile search

method for PSRO, which we call backward profile search (BPS, Algorithm 5). BPS

resembles that of Brinkman and Wellman (2016), but takes into account the sequence

in which the strategies were generated. At each iteration, BPS starts search from the

strategies most recently added to the empirical game by PSRO, then searches poten-
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tial deviations backward across previous PSRO iterations. The motivation is that the

newest strategies are most likely to participate in equilibria. Once BPS confirms a

solution of the empirical game, we can apply RRD to the subgame over the support

of this solution. By construction, this subgame is completely evaluated (as required

by RD), whereas the entire empirical game payoff matrix is only partially evaluated.

In my experiments, I show that BPS can successfully find best-response targets in a

three-player game, short of exhaustive evaluation of the empirical game.

Figure 3.1: An illustration of a partial payoff matrix of a three-player empirical game
and the workflow of BPS. Green: evaluated profiles from previous PSRO iterations;
White: deviation profiles from NE of current subgame; Red: the profile with the
most recently added strategies; Blue and purple: profiles with the largest deviation
payoffs.

Figure 3.1 illustrates the mechanism of BPS at the third iteration of PSRO, in

which each player has four strategies. The 4× 4× 4 cube in Figure 3.1 represents the

payoff matrix of the current empirical game. The payoffs of evaluated profiles from

previous iterations are represented by green cells, while potential deviations from the

equilibrium of the current subgame are represented by white cells. The missing cells

indicate profiles that have not been evaluated. It is important to note that the current

payoff matrix is incomplete. To determine the NE of the empirical game, the BPS

algorithm initiates a search by evaluating the subgame formed by the latest strategy

added by each player, which is represented by the red cell. Since the red cell is a

pure-strategy profile, it is also the NE of the current subgame. Next, BPS assesses

the payoffs of all possible deviations (white cells) from the red cell. If the blue cell
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Algorithm 5 Backward Profile Search

Require: an empirical game ĜS↓X with partial payoff matrix.
1: Initialize subgame with strategy sets Z = (Zi), i ∈ N , where Zi = {siτ}, with siτ

the player i strategy added in the most recent PSRO iteration τ .
2: while True do
3: σ ← NE (ĜS↓Z)
4: deviation exists ← False
5: for player i ∈ N do
6: si ← argmaxs′∈Xi

ui(s
′, σ−i)− ui(σi, σ−i)

7: if si /∈ Zi then
8: Zi ← Zi ∪ {si}
9: deviation exists ← True
10: end if
11: end for
12: if ¬ deviation exist then
13: return σ
14: end if
15: Evaluate missing profiles of Z through simulation.
16: end while

contains the profile with the highest deviation payoff for a particular player i, then

player i adds the corresponding deviation strategy to her strategy set of the current

subgame. This action expands the profile space of the current subgame to include

the red and blue profiles. BPS then repeats the process of evaluating all profiles

in the current subgame, computing the NE of the subgame, and assessing potential

deviations from the NE. Again, if the purple cell contains a deviation profile to the

NE of the current subgame, then the corresponding deviating strategy will be added

to the strategy set of the subgame. This iterative process is repeated until the NE of

the subgame is confirmed, which means that no beneficial deviation could be found

in the empirical game.
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3.6 Experiments

3.6.1 Two-Player Leduc Poker

In Figure 3.2, I test PSRO with RRD in two-player Leduc poker and plot the

regret curves (w.r.t the full game) given by FP, DO, PSRO with PRD, and PSRO

with RRD (under two stopping criteria). I first observed that RRD yields a rapid

convergence to a low-regret value compared to other MSSs. It is quite striking that

RRD outperforms PRD (prior best known for this game) by such a large margin.

To show the benefits of using a regret threshold as a stopping criterion compared

to a fixed number of RD updates, I plot the best regret curve of RRD using a fixed

number of RD updates. I observed that RRD performs better using a regret thresh-

old. This is because the number of RD updates that produces the right level of

regularization varies across empirical games.

Figure 3.2: RRD performance in two-player Leduc Poker.

3.6.2 Multi-Player Games

In Table 3.1, I list the average of number of profiles evaluated at different PSRO

iterations with and without BPS in three-player, four-player, and five-player poker

games. Each profile is evaluated by averaging of 1000 payoff samples through simula-

tion. I observed that employing BPS in three-player Leduc poker saved approximately
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11% simulation effort, compared to exhaustive estimation, while the percentage of

savings significantly increases for four-player and five-player games. Moreover, I no-

ticed that evaluation savings grow as the number of players increases for each poker

game. It is worth mentioning that the application of BPS does not incur any addi-

tional expense beyond the negligible cost of executing RD in subgames. Therefore,

the resulting savings are virtually free.

Game(|N |) Iter# |X| w. BPS |X| w/o BPS Saving Pct.

Leduc(3)

5 111 125 11.2%
10 880 1000 12.0%
15 2953 3375 12.6%
20 7100 8000 11.3%

Leduc(4)

5 368 625 41.2%
10 6696 10000 33.0%
15 29572 50625 41.6%
20 87953 160000 45.1%

Leduc(5)

5 1025 3125 67.2%
10 54284 100000 45.7%
15 400950 759375 47.2%
20 1.58× 106 3.2× 106 51.6%

Kuhn(4)

5 430 625 31.2%
10 7002 10000 30.0%
15 35067 50625 31.0%
20 109636 160000 31.5%

Kuhn(5)

5 1580 3125 49.4%
10 50320 100000 49.7%
15 377409 759375 50.3%
20 1.57× 106 3.2× 106 50.9%

Table 3.1: The performance of BPS in poker games.

RRD can be easily combined with BPS for strategy exploration by first employing

BPS to find a subgame of the empirical game that contains an empirical-game NE

and then applying RRD to the subgame. Fig. 3.3 shows the performance of RRD with

BPS in three-player Leduc pokers. I found that although RRD is applied only to the

subgame of the empirical game, strategy exploration still benefits from regularization.
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Figure 3.3: RRD performance in three-player Leduc poker with BPS.

3.6.2.1 Real-World Games

I further evaluate our algorithms in six of the “real-world games” studied by

Czarnecki et al. (2020): Blotto, Connect four, Go, Hex, Quoridor, and Random game

of skill. I observed that RRD exhibits faster convergence than FP, PRD, and DO in

all six games.

3.6.3 Attack-Graph Games

An attack-graph game is a two-player general-sum game defined on graph mod-

eling paths of actions that can compromise a cyber-system (Miehling, Rasouli, and

Teneketzis 2015).

In Figure 3.5, I show the performance of RRD on a large attack-graph game in-

stance with 100 nodes and hence 2100 possible combinatorial actions. From Figure 3.5,

I observed that even though the game of interest is large and beyond two-player zero-

sum games, RRD still promotes faster convergence and less variance than DO, PRD,

and FP.

47



(a) Blotto (b) Connect four. (c) Go (size=4).

(d) Hex. (e) Quoridor. (f) Random game of skill.

Figure 3.4: RRD performance in six real-world games studied by Czarnecki et al.
(2020).

Figure 3.5: RRD outperforms FP, PRD, and DO in the attack-graph game.
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3.6.4 Sequential Bargaining Games

I consider another non-zero-sum game with incomplete information, in the domain

of sequential bargaining (Fudenberg and Tirole 1983; Rubinstein 1982; Rubinstein

and Wolinsky 1985). In this game, two players alternately offer deals over multiple

types of items, within a given time horizon. As bargaining games contain multiple

equilibria, in this experiment, I am particularly interested in the quality of solution,

such as social welfare (SW). I found that RRD tends to generate empirical games

with higher SW solutions, compared to DO and FP (Figure 3.6). My hypothesis is

that in avoiding overfitting a particular NE, regularization enables identification of

parts of the solution space that achieve good results for both players.

Figure 3.6: RRD performance in bargaining games. Each color represents an MSS and
each bundle of colors shows the SW of a given solution concept in the corresponding
empirical games. Max SW is the maximum SW among pure strategy profiles.

3.6.5 Stability with Varying Regret Threshold

To investigate the stability of learning performance w.r.t the regret threshold λ,

I select a wide range of λs for RRD and compare the regrets at the last iteration

of PSRO under these λs with the regret of DO in two-player Leduc poker. I plot

the regrets in Figure 3.7a. From Figure 3.7a, I observed that all λs in the range

yield a better learning performance than DO, which demonstrates the stability of the

performance of RRD w.r.t the regret threshold λ. In addition, I observed that as

the value of regret threshold λ increases, the learning performance first improves and
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then becomes worse. This means that either excessive or inadequate regularization

would damage the overall learning performance.

(a) Range of regret thresholds. (b) Decreased regret after regularization.

Figure 3.7: Properties of learning with RRD in two-player Leduc Poker.

3.7 A Novel Explanation for Regularization

My key observation is that the performance of strategy exploration is strongly

related to the regret of best-response targets w.r.t the full game. To observe this

phenomenon, in Figure 3.7b, I run PSRO in two-player Leduc poker and use the

NE-based and the RRD-based regret for evaluation. The two curves show the NE-

based and the RRD-based regrets, respectively, as computed at each PSRO iteration.

Note that throughout the run, the regret of the RRD solution is much smaller than

that of the empirical NE. In other words, whereas RRD has higher regret than NE

in the empirical game (λ versus zero), it reliably has lower regret in the full game.

The same observation holds for using either NE or RRD as the MSS for strategy

exploration. Since our ultimate objective is a full-game low-regret solution, this helps

to explain why the regularization imposed by RRD apparently provides robustly

improved performance for strategy exploration.

Note that this observation only goes so far; it is not the case that minimizing full-

game regret always provides the optimal best-response target for strategy exploration.

This is because the lowest full-game regret profile may not change much from one
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PSRO iteration to the next, and so selecting targets on that basis may compromise

the diversity of constructed empirical games. I test this explicitly by using MRCP as

an MSS. My results confirm that the extreme choice of target is indeed suboptimal

for strategy exploration.

3.8 Strategy Exploration with MRCP

3.8.1 MRCP as an MSS

We have observed the existence of strategy profiles with lower global regret than

NE in the empirical game and the experimental results of regularization shows that

training against them results in improved learning performance than DO. One natural

question to ask is whether training against the most stable profile can benefit strategy

exploration the most (i.e., using MRCP as MSS).

To answer this question, I compare the performance of MRCP as MSS against DO

and FP in normal-form two-player Kuhn’s poker and a synthetic two-player zero-sum

game. For Kuhn’s poker, I randomly select 4 starting points and implement PSRO.

Figure 3.8a-3.8d show that with 3 out of 4 starting points, MRCP converges slight

faster than DO. For the synthetic matrix game, Figure 3.8e and 3.8f show the benefits

of applying MRCP but the performance varies across different starting points.

In Figure 3.8, I observed that the MRCP has some ability for heuristic strategy

generation. However, the advantage of using MRCP is not satisfactory in terms of

convergence rate and computational complexity. I also found that using MRCP may

converge slower in other games like Blotto, compared to DO and PRD.

The experiments show that training against the lowest-regret profile in the em-

pirical game does not necessarily lead to a better overall learning performance. This

is because the lowest-regret profile in the empirical game may not be changed much

after adding a new strategy to the empirical game, yielding similar strategies contin-
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(a) Kuhn’s Poker (b) Kuhn’s Poker (c) Kuhn’s Poker

(d) Kuhn’s Poker (e) Zero-Sum Game (f) Zero-Sum Game

Figure 3.8: Performance of MRCP being an MSS in Kuhn’s poker and a synthetic
matrix game.

ued to be added over PSRO iterations. Continuing adding similar strategies would

slow down the overall learning in PSRO.

Now I illustrate why pursuing best response targets with extremely low regret

may result in a slow learning using a matrix game shown in table 3.2. The matrix

game contains 1000 strategies for each player. All missing entries of the payoff matrix

are (0, 0). Let’s start PSRO with the first strategy (s1, s1). This matrix game is

designed to have a long equilibrium search path for DO (as in many real-world games).

Specifically, by best-responding to (s1, s1), each player adds s2 to the empirical game,

yielding a new NE (s2, s2). Similarly, if we repeat best responding to NE, we would

first get a new NE (s3, s3) and then a long equilibrium path through the diagonal

until we reach the NE of the full game (s1000, s1000).

Without loss of generality, suppose we are at iteration 2 (i.e., the empirical game

includes (s1, s2) and (s2, s2) is an empirical NE). The MRCP of this empirical (sym-

metric) game is approximately (1s1, 0s2) with regret 0.0112 × 2 ≈ 0.022 (sum over

players) (the regret of accurate MRCP is even lower). The regret of empirical NE
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is 0.1 × 2 = 0.2 by deviating to s3 from (s2, s2). When best responding to MRCP,

we add s500 (only considering deviation strategies outside the empirical) and then

the approximated MRCP remains the same (i.e., (1s1, 0s2)) for the empirical game.

Therefore, further best responding to the approximated MRCP may again add some

strategies similar to s500 and may not improve the learning performance dramatically.

Suppose RRD gives probability (0.5, 0.5) on (s1, s2), then best responding to

(0.5s1, 0.5s2) leads to an equilibrium strategy s1000 directly, jumping out of the long

equilibrium path of DO. The regret of (0.5s1, 0.5s2) is (0.005 × 0.5 + 0.199 × 0.5 −

0.011×0.25−0.1×0.25)×2 = (0.102−0.02775)×2 = 0.074252 = 0.1485. So we can

see that the regret of RRD is relatively low but not as low as the regret of MRCP

since 0.02 (regret of MRCP) < 0.1485 (regret of RRD) < 0.2 (regret of NE). By best

responding to the relatively low full-game regret profile, RRD avoids falling into the

long diagonal path as DO. Meanwhile, its regret is not as low as the regret of MRCP

so that the best response target at each PSRO iteration would keep being updated

significantly rather than staying similarly.

s12 s22 s32 ... s5002 ... s10002

s11 (0, 0) (0, 0.011) (0, 0) ... (0. 0.01) ... (0,0.005)
s21 (0.011, 0) (0.1, 0.1) (0.1, 0.2) ... ... ... (0,0.199)
s31 (0, 0) (0.2, 0.1) (0.2, 0.2) ... ... ... (0, 0)
... ... ... ... ... ... ... ...
s5001 (0.01, 0) ... ... ... ... ... (0, 0)
... ... ... ... ... ... ... ...

s10001 (0.005, 0) (0.199, 0) (0, 0) ... (0, 0) ... (100, 100)

Table 3.2: A matrix game for demonstrating the slow update of MRCP.

3.8.2 Properties of Learning with MRCP

Theoretically, multiple MRCPs could exist in an empirical game. In addition,

purely using MRCP as a MSS does not guarantee convergence to NE since the best-

responding strategy to MRCP could already be included in the empirical game. I
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define this property of MRCP as follows.

Definition. An empirical game with strategy space X ⊆ S is closed with respect to

MRCP σ̄ if

∀i ∈ N, si = argmax
s′i∈Si

ui(s
′
i, σ̄−i) ∈ Xi.

To illustrate this concept, consider the symmetric two-player zero-sum matrix

game in Table 3.3. Starting from the first strategy of each player and implementing

PSRO with MRCP, we have the empirical game including a1 and a2. Since the

profile (10
11
a11,

1
11
a12) is an MRCP and best responding to the profile could give a2 again

(note that a3 is also a best response with the same payoff 10
11
), the empirical game is

closed and never extends to the true game wherein the true NE is (a31, a
3
2). In my

experiments, I deal with this issue by only introducing new strategies with the highest

deviation payoff outside the empirical game, in which case convergence is guaranteed.

a12 a22 a32
a11 (0, 0) [2] (-1, 1) [6] (-0.5, 0.5)
a21 (1, -1) [6] (0, 0) [10] (-5, 5)
a31 (0.5, -0.5) (5, -5) (0, 0)

Table 3.3: Symmetric zero-sum game for explaining the closeness of MRCP
Regret of profiles is shown in the square parenthesis.

3.9 Strategy Exploration with Quantal Response Equilib-

rium

One common assumption in game-theoretic analysis is the perfect rationality of

players (i.e., players act according to NE). Since RRD prevents players from playing

NE to some extent within the empirical game, it can be viewed as a way of restricting

the rationality of players, which naturally relates RRD to Quantal Response Equilib-

rium (QRE) (McKelvey and Palfrey 1995, 1998), an equilibrium notion with bounded

rationality.
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Figure 3.9: Learning performance with QRE.

Figure 3.9 shows the learning performance of QRE in two-player Leduc poker.

I compute the QRE of the empirical game at every PSRO iteration using Gambit

(McKelvey, McLennan, and Turocy 2006). Gambit will output a sequence of QRE

with different rationality parameters and the QRE that reaches a specified regret

w.r.t the empirical game is selected as the best response target (similar as computing

RRD target). For comparison, I plot the learning curve of RRD with the same regret

threshold of QRE as well as DO and FP. From Figure 3.9, I observed that although

QRE shows a slight divergence in the end compared to RRD, it outperforms other

MSSs, which demonstrates the potential of using QRE as a MSS in PSRO.

3.10 Exact Best Responses and Approximate Best Responses

Best response operation plays a significant role in iterative EGTA. Generally,

best response oracles can be classified into two categories: exact best responses and

approximate best responses. A wide range of tools can be used for best response

oracles (e.g., search, black-box optimization and reinforcement learning) and which

tool to choose depends on the particular game setting. My general observation is

that the quality of best response oracles will exert a huge influence on the overall
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learning performance. Higher-performing best response oracle yields faster learning

performance. Therefore, although the main focus of strategy exploration in current

research is to design new MSS, I believe choosing effective best response oracles is

equally crucial.

3.11 Conclusion and Discussion on Computational Efficiency

I proposed RRD as a novel MSS for PSRO, explicitly based on regularization. By

controlling the regret threshold, the degree of regularization can be adjusted to suit

a particular strategy exploration context. In my experiments, I showed that RRD

outperforms several existing MSSs in various games and investigate many properties

of learning with RRD. To help scale beyond two-player games, I proposed BPS,

a PSRO-compatible profile search method that avoids exhaustive simulation of the

game matrix. I showed the benefit of regularization when combining BPS with RRD

in three-player Leduc poker. Finally, I demonstrated that the performance of strategy

exploration is strongly related to the regret of best-response targets and regularization

could significantly decrease the regret of best-response targets, thus contributing to

an improved learning.

Despite the ample evidence that demonstrates the effectiveness of iterative EGTA,

several aspects of strategy exploration in EGTA can be further researched. There

are two components in iterative EGTA that are computationally demanding: best

response computation and empirical game simulation. To improve the efficiency of

EGTA, both aspects should be further studied and improved.

One possible solution is to parallelize best response computation and empirical

game simulations. Note that best response computation for each player is indepen-

dent of that of others. At the meantime, the evaluation of each strategy profile is

independent of that of other profiles in the empirical game. Based on these properties,

parallelism could dramatically accelerate iterative EGTA.
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Another possible solution is to leverage the power of learning. For example, one

can transfer knowledge through one best response strategy to another to accelerate

the best response computation. Or one can learn a high-performing regressor of the

utility function and then evaluation can be achieved through querying the regressor

rather than running a simulator. This can especially speed up the learning especially

in many-player games.
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CHAPTER IV

Strategy Exploration by Setting Response Oracles

4.1 Problem Statement

In prior work, PSRO usually proposes a single solution (typically an NE) based

on the analysis of the final empirical game. Identifying a single solution is sometimes

sufficient for the goals of game analysis, particularly in situations like two-player zero-

sum games, where NE are interchangeable. In other cases, we might be interested

in characterizing multiple equilibria, or identifying solutions with particular features

(e.g., profiles with low regret and high social welfare are preferred in the traveler’s

dilemma (Basu 1994; Conitzer and Oesterheld 2022)).

As a result, I raise the question of how to steer strategy exploration toward NE

with preferred characteristics, or more generally, a preferred game model. I approach

this question by setting response objectives, which are objectives (approximately)

solved through RL at each iteration of PSRO. Setting response objectives can be

viewed as an alternative way to control strategy exploration, as opposed to setting

MSSs discussed in Chapter III. I investigate the impact of ROs for strategy exploration

and find that the choice of ROs can substantially change equilibrium outcomes.
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4.2 Literature Review

4.2.1 Objectives in Classic Learning Dynamics

The best-response operation is a well-established technique used in classic game-

learning dynamics, such as FP, weakened FP (Van der Genugten 2000), GWFP (Leslie

and Collins 2006), and iterated best response. These dynamics often involve certain

modifications in the RO. For example, the smooth FP method (Fudenberg and Levine

1995) perturbs best responses by a smooth and positive definite function (e.g., the

Gibbs Entropy). This perturbation is not intended to steer strategy exploration

toward a particular equilibrium but aims to achieve convergence through a concave

function. Phelps et al. (2006) employed genetic search over a parametric strategy

space, optimizing the basin size of attraction under RD. The basin size of attraction

can be viewed as a different RO.

4.2.2 Variant Objectives in PSRO

In standard PSRO, the learning player optimizes its own payoff against other

players’ strategies (i.e., the standard RO). A few prior works have considered some

variants of the standard RO. One relevant instance is a method called diverse PSRO

(Perez-Nieves et al. 2021), which includes a diversity measure defined through a de-

terminantal point process in the response objective. Liu et al. (2022) proposed the

unified diversity measure (UDM), as a way to capture a variety of diversity met-

rics including effective diversity (Balduzzi, Garnelo, et al. 2019), expected cardinality

(Perez-Nieves et al. 2021), and population diversity (Parker-Holder et al. 2020). As

in diverse PSRO, UDM is combined with FP and PSRO, showing the effectiveness

of promoting diversity of agents. Muller, Omidshafiei, et al. (2020) developed a

preference-based response objective to enable PSRO to align with the properties of

α-rank. Li, Lanctot, et al. (2023) deployed Monte Carlo tree search (MCTS) as the
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best response oracle using different values (e.g., social welfare) to update values of

nodes along the sample path in the back-propagation step of MCTS. The employment

of different back-propagation values can also be viewed as modifications in ROs. They

further proposed the joint Nash bargaining solution (NBS joint) as an MSS and com-

bined NBS joint with search for computing NE in bargaining games. In these works,

varying ROs to include diversity and search were shown to accelerate equilibrium

computation in several settings.

4.3 PSRO with Generalized Response Objectives

Algorithm 6 PSRO, parametrized by solver MSS

Require: initial strategy sets X
1: Estimate ĜS↓X by simulating σ ∈ X

2: Initialize target σ ← MSS(ĜS↓X)
3: for PSRO iteration τ = 1, 2, . . . , T do
4: for player i ∈ N do
5: for many RL training episodes do
6: Sample a profile s−i ∈ σ−i

7: Standard PSRO: Train best response oracle s′i against s−i

8: PSRO with Generalized ROs: Train a RL agent s′i against s−i to
optimize RO i(s

′
i, s−i)

9: end for
10: Xi ← Xi ∪ {s′i}
11: end for
12: Update ĜS↓X by simulating missing profiles over X

13: Compute best-response target σ ← MSS(ĜS↓X)
14: end for
15: Return ĜS↓X

To understand the impact of ROs on strategy exploration, I introduce PSRO

with generalized ROs in Algorithm 2 (with line 8), which generalizes standard PSRO

by allowing ROs to be customized for each player. The customized ROs will be

(approximately) solved through RL at each iteration of PSRO, typically achieved by

setting proper rewards for RL. One natural hypothesis for generalized ROs is that

ROs will substantially steer strategy exploration toward preferred equilibria, or more
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broadly, empirical game models. To demonstrate this, I propose four RO instances for

PSRO representing various strategy exploration preferences and access their impacts

in sequential bargaining games and attack-graph games, comparing solutions found

according to various criteria.

RO Name Formula

Original RO ui(s
′
i, σ−i)

Nash Product RO αui(s
′
i, σ−i) + (1− α)ui(s

′
i, σ−i)u−i(s

′
i, σ−i)

Social Welfare RO αui(s
′
i, σ−i) + (1− α)u−i(s

′
i, σ−i)

Social Equity RO αui(s
′
i, σ−i)− (1− α)|ui(s

′
i, σ−i)− u−i(s

′
i, σ−i)|

Minimizing Opponent RO αui(s
′
i, σ−i)− (1− α)u−i(s

′
i, σ−i)

Table 4.1: Five response objective forms. α ∈ [0, 1] is a weighting parameter.

In Table 4.1, I describe four ROs considered in this work.1 In each, the learning

player i maximizes the RO over s′i ∈ Si, responding to the fixed other-player strategy

σ−i. First is the Original RO—standard in PSRO—which maximizes i’s own util-

ity against σ−i (i.e., the deviation payoff ). My first variant RO is named the Nash

Product Response Objective (NPRO), which trades off the deviation payoff for the

Nash product (i.e., the product of players’ utilities). It has been proved by Nash

that maximizing the Nash product corresponds to the Nash bargaining solution. By

replacing the Nash product with other players’ utilities, I obtain the second variant

RO, called Social Welfare Response Objective (SWRO). When α = 0.5, SWRO re-

produces social welfare (i.e., the sum of players’ utilities). My next RO, the Social

Equity Response Objective (SERO), aims to balance utilities among players. SERO

penalizes the deviation payoff by the difference in utilities among players. The final

RO, Minimizing Opponent Response Objective (MORO), seeks to explicitly minimize

other-player utility, while also maximizing deviation payoff.

1The ROs in Table 4.1 are defined for two-player games, so u−i(s
′
i, σ−i) is a scalar. It would be

straightforward to generalize these definitions for |N | players.
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4.4 Case Study: Sequential Bargaining Games

Sequential bargaining games represent a broad class of situations where two parties

attempt to reach a deal through a series of proposals and counter-proposals (Fuden-

berg and Tirole 1983; Rubinstein and Wolinsky 1985). Variations of this model have

been applied extensively, to scenarios including negotiations between nations in trade

agreements, and private individuals bargaining over salaries. Sequential bargaining

is a salient domain for EGTA due to its strategic complexity, and ubiquity in prac-

tice. These games also commonly exhibit multiple equilibria of varying preference,

thus making them an especially interesting environment for studying how strategy

exploration can affect which equilibria are captured by alternative paths of empirical

game models.

4.4.1 Game Setup

I consider a non-zero-sum incomplete-information bargaining game, in which two

players alternatively make offers to reach a deal over K types of items within time

horizon T . The item of type k has Mk units available. For each bargaining instance,

Mk is drawn from a uniform distribution, and revealed to both players. Each player

has a private per-unit valuation for each item type, drawn independently from a

specified distribution. Also for each instance the players are assigned independently

drawn disagreement values, from player-specific distributions.

During each time step t ≤ T , one player makes an offer and the other player

decides whether to accept or reject it. Offers are made in vector form, representing

the quantities of each item requested by the player (e.g., (3, 1, 1) requests 3 units of

the first item and 1 unit each of the second and third items). If a deal is reached, the

players receive a sum of their private values for the items in the offer, discounted by

a factor of γt. If no deal is reached, they receive their disagreement values.
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4.4.2 Experimental Results

In sequential bargaining games, a key consideration for the bargaining outcome is

social welfare. Under the PSRO framework, it means that an empirical game model

that contains higher welfare solutions will be more desirable than others. In my first

experiment, I show that PSRO with either NPRO or SWRO tends to support higher

welfare solutions compared to other PSRO variants. My experimental results support

that ROs can substantially impact strategy exploration and equilibrium outcomes.

Specifically, I run PSRO with a combination of five MSSs (i.e., RRD, Nash equi-

librium, uniform, MWCCE, and MGCCE) and three ROs (i.e., the original RO, the

NPRO and the SWRO), producing fifteen MSS-RO combinations in total. PSRO

with each MSS-RO combination will generate one empirical game. To evaluate the

quality of solutions in the fifteen resulting empirical games, I adopt the consistency

criterion discussed in Chapter II. The criterion states that whereas empirical games

can be generated by different MSS-RO combinations, they should be evaluated based

on measures of interest (e.g., regret, social welfare) applied to the same solution con-

cept. For our purposes, I choose to compare the social welfare of the same solution

concept across the generated empirical games. I select five solution concepts for eval-

uation (shown in Table 4.2), reflecting the quality of solutions in the empirical games

from different angles. For example, NE, MWCCE, and MGCCE represent the com-

mon solution concepts whilst uniform reflects the average performance of strategies

in the empirical game.

Solution Concept Description

Max SW The maximum SW across pure strategy profiles.
NE SW SW of Nash equilibrium.
Uniform SW SW of a uniform distribution over strategies.
MWCCE SW SW of maximum social welfare coarse correlated equilibrium.
MGCCE SW SW of maximum Gini coarse correlated equilibrium.

Table 4.2: Five solution concepts used for evaluation.
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In Figure 4.1, I first show the impact of NPRO and SWRO on strategy exploration

by replacing the original RO in Nash with NPRO and SWRO, respectively. Specifi-

cally, each color in Figure 4.1 represents an MSS-RO combination (if the RO is the

original RO, it is omitted for simplicity), and seven empirical games were generated in

total, one for each combination. Then the social welfare of the same concept2 across

the seven empirical games were bundled. For example, in the Max SW group (i.e.,

the left-most bundle), I plot the maximal social welfare in pure strategy profiles for

each of the seven empirical games. In the NE SW group, the social welfare of NE of

each empirical game (approximated by RD) is listed for comparison.

Figure 4.1: Social welfare of PSRO with various MSS-RO combinations. Each color
represents an MSS and each bundle of colors shows the SW of a given solution concept
in the corresponding empirical games. Max SW is the maximum SW among pure
strategy profiles.

From Figure 4.1, I observed that the Nash-NPRO combination generates the great-

est social welfare across all five solution concepts and Nash-SWRO earns the second

highest social welfare. By comparing Nash with either Nash-NPRO or Nash-SWRO,

we can see a significant increase in social welfare across solution concepts, associated

with replacing the original RO with NPRO or SWRO. This observation confirms our

concern for DO (i.e., PSRO with Nash) that it can stop at an NE with arbitrary

features, and shows that NPRO and SWRO can steer strategy exploration toward

the specified objective. As discussed below, this observation remains valid, regardless

2The social welfare is averaged over 15 random seeds.
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of the MSSs employed. It is worth mentioning that Nash-SWRO achieve the highest

social welfare with a weighting parameter α = 0.8, as opposed to the setting α = 0.5

that exactly captures social welfare. In other words, there is a benefit to considering

the other-agent value in constructing a response strategy, but not to the same degree

as one’s own value.

Since there might exist multiple equilibria in an empirical game, which equilibrium

to select for evaluation is pivotal. I demonstrate that this issue is relieved given the

results in our particular situation. In particular, I assume the solution concept of

interest is NE and use Nash-SWRO as an example. From Figure 4.1, we can see that

the social welfare of NE found by Nash-SWRO (i.e., 12.68) is higher than that of

any other combinations in Max SW. Since the social welfare of any mixed strategy

profile is upper bounded by the maximal social welfare over pure strategy profiles,

the social welfare of NE found by Nash-SWRO is determined to be higher than the

social welfare of any profiles (including NE) found by other MSS-RO combinations.

Therefore, which NE is picked from the empirical games for evaluation is not a concern

given our results. Another way to reason about this argument is that since the set

of NE is a subset of CCE, the social welfare of NE is upper bounded by the social

welfare of MWCCE in the corresponding empirical game, which is further bounded

by Max SW. As the social welfare of NE found by Nash-SWRO is higher than that

of MWCCE given by other MSS-RO combinations, Nash-SWRO must result in NE

with higher social welfare than others. The same observation holds for Nash-NPRO.

In Figure 4.2, I combine NPRO with each MSS and plot the social welfare of the

same five evaluation concepts. I observed that the social welfare of solutions given by

Nash-NPRO remains highest across all combinations. One interesting observation is

that Nash-NPRO outperforms RRD-NPRO even though Nash performs worse than

RRD (green vs dark blue in Figure 4.1). This observation indicated that MSSs

and ROs have a coupled influence on strategy exploration. My hypothesis for the
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Figure 4.2: Social welfare of PSRO with MSSs and NPRO evaluated under the same
set of solution concepts.

reduced performance of RRD with NPRO is that the regularization imposed by RRD

is superfluous given that it varies from BR. I observed the same phenomenon for

SWRO.

In Figure 4.3, I plot the social welfare before and after integrating NPRO and

SWRO with each individual MSS, respectively. I observed that the social welfare of

all evaluation concepts increases after applying either NPRO or SWRO, regardless

of the MSS employed. This showed that either NPRO or SWRO can direct strategy

(a) Nash as an MSS. (b) RRD as an MSS.

(c) MWCCE as an MSS. (d) MGCCE as an MSS.

Figure 4.3: Social welfare of MSSs with and without SWRO and NPRO.
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exploration and identify strategy spaces that cover solutions with higher social welfare,

though a proper choice of MSSs will further raise the social welfare (i.e., Nash-NPRO

yields the highest SW).

Furthermore, I found that the social welfare given by Nash-NPRO or Nash-SWRO

is strikingly high compared to global maximum of the full game. I measure the social

welfare distance between the Nash bargaining solution and the NE given by Nash-

NPRO and Nash-SWRO through Nash bargaining ratio. NBS describes a bargaining

solution with properties including invariant to affine transformations or invariant

to equivalent utility representations, Pareto optimality, independence of irrelevant

alternatives, and symmetry. A Nash bargaining solution can be found by maximizing

the Nash product u1(σ1)u2(σ2). I defined the Nash bargaining ratio as

NBS Ratio =
SW (NE)

SW (NBS)
,

which is the social welfare of any NE divided by the social welfare of NBS. The NBS

can be computed by assuming a complete information of the bargaining game and

then searching deals that maximizes the Nash product. Therefore, the computation of

NBS includes more information of the game than my experiments with PSRO and it is

not surprising that NBS will result in a higher social welfare. In my bargaining game

instance, the maximum social welfare achievable with complete information is 15.08

whereas the social welfare of NBS is 15.01, which is almost the maximum. Therefore,

the NBS ratios given the NE of Nash-NPRO and Nash-SWRO are 13.93/15.01 = 0.928

and 12.68/15.01 = 0.845, respectively. The ratio is strikingly high especially when

the setting for Nash-NPRO and Nash-SWRO is incomplete information.

Figure 4.4 plots individual player utilities in the final NEs produced across 11

PSRO runs with different MSS-RO combinations. The convex hull of these points

represent the empirical Pareto frontier of equilibria of the bargaining game. Points
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with the same color are obtained by running PSRO with different random seeds. From

the plot, I observed that the equilibria given by both Nash-NPRO and Nash-SWRO

are on the frontier and appear dense while the equilibria found by other combinations

spread out in the utility space. This means that both Nash-NPRO and Nash-SWRO

can steer strategy exploration toward preferred game models, in a relatively stable

manner. Moreover, I found that player 1 earns a higher utility than player 2 in all

equilibria found by Nash-NPRO and Nash-SWRO, which reveals the advantage of

moving first in these equilibria with higher social welfare.

Figure 4.4: NE scatters in the utility space. Each color represents an MSS-RO
combination. Points with the same color are obtained by running PSRO with different
random seeds.

To further demonstrate the impact of ROs on strategy exploration, I combine Nash

with SERO and list the averaged utilities in equilibria given by some selected MSS-RO

combinations in Table 4.3. I observed that Nash-SERO can efficaciously reduce the

utility difference between two players, compared to other combinations. Moreover, I

noticed that Nash-SERO causes an increase in social welfare from Nash. This rise

can be attributed to the transformation of SERO into a formula that accounts for the

utility of both players when ui(s
′
i, σ−i)− u−i(s

′
i, σ−i) ≥ 0 and α > 0.5.
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MSS-RO u1(σ
∗) u2(σ

∗) |u1(σ
∗)− u2(σ

∗)| Social Welfare

Nash-NPRO 7.82 6.11 1.71 13.93
Nash-SWRO 9.24 3.44 5.80 12.68
Nash-SERO 5.56 5.83 0.27 11.39
Nash 4.26 4.95 0.69 9.21

Table 4.3: A shrinkage in the utility gap caused by the SERO.

4.4.3 Disagreement Offers and Discount Factor

In sequential bargaining games, disagreement offers and discount factor play an

important role in making a complex and meaningful bargaining situation. Without

disagreement offers and a discount factor, the bargaining process will reduce to an

ultimatum game. In an ultimatum game, a sum of money is given to a single player,

known as the proposer, who must divide it with another player, known as the respon-

der. The responder is aware of the total sum. After the proposer makes its decision,

the responder has the option to either accept or decline the proposal. If the respon-

der accepts, the money is distributed as per the proposal. However, if the responder

declines, both players receive nothing. Both players are aware of the outcomes of the

responder’s decision to accept or reject the offer beforehand.

To understand the importance of disagreement offers and discount factor visually,

I analyze the equilibria of sequential bargaining games with and without disagreement

offers and discount factor. In Figure 4.5, I plot the bargaining procedures given by

equilibrium strategies. In these two bargaining instance, two bargaining players,

denoted as P1 and P2, exchange offers over a basket of 3 types of fruits. The private

values of players for items are listed as P1 values and P2 values. At each round, I list

which player is making an offer and what the offer is. The table on the left shows the

bargaining procedure without disagreement offers and discount factor, in comparison

to the case on the right where a disagreement offer [1.2, 1.5] and a discount factor

γ = 0.9 are applied.
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Figure 4.5: Playthroughs of sequential bargaining. Left: No disagreement offers and
discount factor. Right: Having both disagreement offers and discount factor.

In the left instance, since there is no disagreement offer and discount factor, player

1 keeps requesting all items until the second to the last round, in which it can give

another player a small portion of items to avoid gaining nothing at the end. Note

that the optimal action of the player 1 should be giving one unit of items that is

worth the least for itself and has positive value for another player. However, since

player 2’s value is not observable, player 1 chooses to give one unit of pear with value

2 to player 2. Note that the player’s behavior in this instance needs not to be exactly

optimal due to the application of approximate best responses and the fact that the

player is optimizing its expected utility over the instance distribution. In the right

instance, since we have both a disagreement offer and a discount factor, the players

would like to receive the disagreement offer when the value of the offer is less than the

disagreement offer after discounting. So player 2 prefers to receive the disagreement

offer rather than accepting the offer made by player 1 at the final round. This example

shows that disagreement offers and discount factor play a crucial role in making a

complex and meaningful bargaining situation, and reveals the rationality of players

in equilibria learned through PSRO.
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4.5 Case Study: Attack-Graph Games

The attack-graph games often have several equilibria exhibiting differing offen-

sive and defensive interactions, thus providing a particularly intriguing setting for

investigating the impact of ROs for strategy exploration.

Figure 4.6: PSRO with different MSS-RO combinations in attack-graph games.

In Figure 4.6, I plot the regret curves of different MSS-RO combinations in the

attack graph game. I observed that strategy exploration with generalized ROs can

affect the convergence speed to an NE. In particular, Nash-SWRO converges to an

NE faster than others in this instance. Then I compute the averaged utilities in

equilibrium strategies for both players, where the defender (D) and the attacker (A)

earn utilities (D: -56.67, A: 27.50) for Nash, (D: -13.43, A: 53.43) for Nash-SWRO, and

(D: -84.91, A: 84.98) for Nash-MORO. An interesting observation is that Nash-SWRO

can improve both players’ utilities in the equilibrium, though the attack-graph games

appear to be purely adversarial. This observation exhibits the strategic complexity in

the attack-graph games and reveals a possibility for both players to cooperate in these

games. Additionally, I observed that Nash-MORO can enlarge the utility difference

between two players and the attacker can cause more damage to the defender.
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4.6 Case Study: Computing Berge Equilibrium

In previous sections, we have seen that generalized ROs can substantially affect

some features (e.g., social welfare) of common solutions. Now I demonstrate that

PSRO with generalized ROs can also be employed for computing specific solution

concepts. In particular, I focus on computing Berge equilibrium (Berge 1957), an

equilibrium concept commonly used and studied in social games. In a BE, each

player ensures that all other players will receive the highest payoff. I demonstrate

how a BE in two-player games can be found by PSRO by employing a simple utility

swapping trick.

4.6.1 Berge Equilibrium

I follow the definition of BE from an individual perspective given by Zhukovskii

(1985), though BE was first defined in terms of coalitions by Berge (1957).

A strategy profile σB ∈ ∆(S) is a Berge equilibrium if for i ∈ {1, 2} and s−i ∈ S−i,

ui(σ
B) ≥ ui(σ

B
i , s−i). (4.1)

This definition means that for any particular player i, its utility would not increase

if it sticks to its own BE strategy while other players can change their strategies. This

can be viewed as the altruism in the game playing since in a BE each player ensures

the highest payoff for all other players who are also employing their BE strategy. Note

that this is different from the spirit of NE, where players are assumed to be selfish

and only maximize their own payoff.

4.6.2 Computing Berge Equilibria with PSRO

To adapt PSRO for computing BE, the following two questions should be an-

swered:
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1. How can we compute a BE in the current empirical game if BE is employed as

an MSS?

2. How can we design a corresponding response objective such that a full-game

BE is reached when PSRO stops?

To answer the first question, I first prove that a BE of the empirical game can be

obtained by computing NE of the corresponding utility-swapping game, assuming a

BE of the empirical game exists.

Proposition 1. Given a two-player finite game G = ({1, 2}, (Si), (ui)), σB is a

BE of G if and only if it is an NE of the utility function swapping game G ′ =

({1, 2}, (Si), (zi)), where zi = u−i for i ∈ {1, 2}.

Proof. According to the definition of BE, a BE σ for the game G satisfies

u1(σ
B) ≥ u1(σ

B
1 , s2),∀s2 ∈ S2

and

u2(σ
B) ≥ u2(s1, σ

B
2 ),∀s1 ∈ S1.

By setting z1 = u2 and z2 = u1, we have

z2(σ
B) ≥ z2(σ

B
1 , s2),∀s2 ∈ S2

and

z1(σ
B) ≥ z1(s1, σ

B
2 ),∀s1 ∈ S1.

We can see that each player changes to maximizing their own payoff after swapping

the utility functions. Therefore, by the definition of NE, σB is an NE of the utility-

swapping game G ′. By the same reasoning procedure, we can prove that an NE of

the utility-swapping game is a BE of the original game.
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Now I examine our assumption in Proposition 1 that a BE exists in an empirical

game.

Corollary 1. For two-player finite games, a BE exists in both the full game and the

empirical game.

Proof. Since both the full game and the empirical game are finite two-player games,

the corresponding utility-swapping games are well-defined and are also finite two-

player games. By the classic theorem of the existence of NE (Nash Jr. 1950a), at

least one NE exists in the utility-swapping games. By the same argument as in the

proof of Proposition 1, the NE in the utility-swapping game is a BE of the original

game, so a BE in the original game exists.

To answer the second question, I propose the Berge Equilibrium Response Objec-

tive (BERO) based on the definition of BE, which simply takes the form of u−i(si, σ−i).

With BE as an MSS and BERO, I show that the Berge PSRO algorithm for computing

BE in Algorithm 7 and Algorithm 8.

Algorithm 7 Berge PSRO

Require: initial strategy sets X
1: Initialize target σ ← BE(ĜS↓X)
2: deviation ← True
3: while deviation do
4: deviation ← False
5: for player i ∈ {1, 2} do
6: for many RL training episodes do
7: Sample a profile s−i ∈ σ−i

8: BERO: Train a RL agent s′i against s−i to maximize u−i(s
′
i, s−i)

9: end for
10: if s′i /∈ Xi then
11: Xi ← Xi ∪ {s′i}
12: deviation ← True
13: end if
14: end for
15: Compute response target σ ← BE(ĜS↓X)
16: end while
17: Return σ
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Algorithm 8 BE as an MSS

Require: an empirical game ĜS↓X
if ∃ An utility-swapping game Ĝ ′S↓X′ from previous iterations then
X ′ ← X

else
Construct a new utility-swapping game Ĝ ′S↓X′ with X ′ = X

end if
Update Ĝ ′S↓X′ by simulating missing profiles over X ′

σ ← NE (Ĝ ′S↓X)
Return σ

Proposition 2. With exact best response oracles, PSRO with BE as an MSS and

BERO stops when the full-game BE exists in the empirical game.

Proof. Suppose σB is a BE of the current empirical game. According to Algorithm 7,

when the algorithm stops, for every player i, there is no other player’s strategy s−i ∈

Si/Xi such that

ui(σ
B) < ui(σ

B
i , s−i).

Therefore, according to the definition of BE, the BE of the empirical game is a BE

of the full game.

4.7 Conclusion

I studied the effectiveness of setting customized ROs for guiding strategy explo-

ration toward desired empirical games under the PSRO framework. Through exper-

iments in sequential bargaining games and attack-graph games, I showed that ROs

can steer strategy exploration toward games with solutions aligned with specified

objectives.

One future research direction could be designing ROs to find certain equilibrium

refinements. This may require an extensive-form representation of PSRO if the re-

finement (e.g., subgame perfect equilibrium) is defined only for extensive-form games.
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CHAPTER V

Game Model Learning for Mean Field Games

5.1 Introduction

In previous chapters, we investigate strategy exploration and its evaluation in

finite games. I extend the prior results of strategy exploration to MFGs (Huang,

Malhamé, Caines, et al. 2006; Lasry and Lions 2007), a model for analyzing games

with a large number of players. Specifically, MFGs model strategic interactions among

a conceptually infinite number of agents and consider their aggregate behavior. Ag-

gregate agent behavior is summarized by a distribution over states of the population.

Then the analysis can be reduced to the characterization of the optimal behavior of a

single representative agent in its interactions with the full population, as represented

by the mean field. MFG model can support game-theoretic analysis that would be

intractable for a standard corresponding model of a game among a large but finite

number of players. I first formally define a game model for MFGs and then present

the EGTA framework for MFGs in the next chapter.

In EGTA, a game model serves as a fundamental element for various types of

analysis and hence crucial for a complete EGTA framework for MFGs. Due to the

non-linearity of the utility function of MFGs in the mean field and mean fields are

continuous, it is infeasible to represent the utility function with a finite number of

values as in finite games. Therefore, a game model cannot be defined in terms of
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usual components. I fill in this gap and propose a game model learning approach,

which is essentially a form of regression that learns a utility function over a restricted

set of strategies and distributions derived by these strategies. I study a general

setup of MFGs where strategies and distributions are both time-dependent (i.e., non-

stationary), and hence encoding them explicitly as inputs to a learner entails im-

practically high dimensionality. To handle the time-dependency, I propose a coding

scheme method and learn a game model (i.e., the utility function) that takes as inputs

sufficiently-statistical representations of strategies and distributions, and outputs a

utility value. With the method, time-dependent strategies and distributions are no

longer explicitly encoded as inputs as for the true utility function and hence our

method circumvents the representation complexity induced by the time-dependency.

To learn an effective game model for MFGs, it is important to endow the model

with the ability of generalization across the space of strategies that induce mean

fields. To reach this goal, the training data set is required to include uniformly-

sampled mixed strategies in the restricted strategy space. For a large MFG, a game

model typically involves dozens of strategically significant strategies, which creates a

high-dimensional strategy space. To obtain samples in such high-dimensional spaces,

I propose a combination of two sampling schemes: grid sampling and sampling from

Dirichlet distributions with varying concentration parameters. By combining coarse

coding with the data sampling methods, I demonstrate that my approach can suc-

cessfully achieve effective generalization and accurate predictions on utilities. I also

show that the learned game model can support game-theoretic analysis, that is, both

FP and RD empirically converge to NE with the model.
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5.2 Literature Review on Game Model Learning in Finite

Games

Vorobeychik, Wellman, and Singh (2007) first introduced the concept of learn-

ing normal-form game models as utility function regression from simulation data

sampled over continuous strategy spaces. They demonstrated the approach using

single-parameter strategy representation. Ficici, Parkes, and Pfeffer (2008) clustered

a large number of players into two roles based on data consisting of strategy profiles

and utilities. Then regression of the utility function was applied for each role.

Wiedenbeck, Yang, and Wellman (2018) deployed Gaussian process regression to

learn the utility function of large symmetric games. The regressor takes as input

a pure strategy profile and outputs a utility vector. In symmetric games, since the

utility function depends on how many players choose each strategy (and not which

players), the input vector to the regressor can be represented by a non-negative tally

vector with one dimension per strategy. Once the utility function for pure strategy

profiles is learned, the extension to mixed strategy profiles can be achieved by taking

the expectation. The authors further investigated the use of neural networks for the

regression.

Sokota, Ho, andWiedenbeck (2019) extended game model learning to role-symmetric

games by regressing the deviation payoff function rather than the payoff function. De-

viation payoffs can be directly used by algorithms such as replicator dynamics, saving

the effort to derive deviation payoffs first from the payoff function. This approach

has also been deployed by Li and Wellman (2021) to learn NE in Bayesian games.

There has also been some work on learning game models on some succinct descrip-

tions of games. For example, Duong et al. (2009) and Fearnley et al. (2015) learned

graphical game models (Kearns 2007) from utility data. Li and Wellman (2020) com-

bined structure learning and payoff regression to induce tractable game models with
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many players.

For MFGs, there has been a considerable literature on learning equilibra (Cardaliaguet

and Hadikhanloo 2017; Guo et al. 2019; Laurière et al. 2022; Mishra, Vasal, and Vish-

wanath 2020; Muller, Rowland, et al. 2021; Perrin, Pérolat, et al. 2020; Wang and

Wellman 2023b). Despite we show that the learned game model can facilitate equi-

librium search in our experiments, our approach differs from these works in nature

since our object is to learn the game model of MFGs rather than presenting an equi-

librium learning algorithm. Therefore, they are not fair baselines for our approach.

More broadly, a related research field that studies learning utility function or

reward function is Multiagent Inverse Reinforcement Learning (MIRL) (Chen, Liu,

and Khoussainov 2021; Lin, Adams, and Beling 2019; Natarajan et al. 2010; Yu,

Song, and Ermon 2019). However, my setting is distinct from that of MIRL in

the following ways. First, the goal of inverse RL is to observe agents’ actions and

determine the reward function they are optimizing. In my setting, players are not

necessarily optimizing any reward function but playing according to their strategies.

The returns of their plays (i.e., utilities) are observable by the learning algorithm.

With these utilities, my objective is to learn a mapping from the set of strategies to

the utilities. Second, my goal is to induce a normal-form representation of the game,

based on utility observations obtained through a black-box simulator. Although the

underlying MFG may contain temporal structure, we have no access to the transitions

(i.e., current states of players, actions that are taken, immediate rewards, next states)

of the game, which are essential for MIRL. Third, I specifically study MFGs featuring

time-dependent strategies and distributions. Time dependency dramatically increases

the complexity of learning and that is why I propose the coarse encoding. Existing

works in MIRL for MFGs such as Chen, Liu, and Khoussainov (2021) bypass this

complexity induced by time-dependency by focusing on stationary strategies.
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5.3 Methods

5.3.1 Time-dependent Strategies and Distributions

In this chapter, I focus on game model learning in single-population MFGs, so

the index for population i is omitted. The primary goal of game model learning is

to learn the utility function u(σ, µ) over a restricted set of strategies. Since u(σ, µ)

is an expectation of u(s, µ) over s ∈ Λ (this follows Equation 1.3), it is sufficient

to learn the utility function u(s, µ) on pure strategies. In MFGs, a strategy s and

distributions µ are generally both time-dependent (i.e., s = (st)t∈[0,T−1] and µ =

(µt)t∈[0,T ]). Explicitly encoding them as inputs to a learner would result in a high-

dimensional feature vector and entail an impractically complex regression setup. To

handle this issue, I propose a coarse coding scheme.

5.3.2 Coarse Coding

In finite games, a utility function can be treated as a black box (illustrated in

Figure 5.1) that abstracts away the details of strategies as well as the mechanism of

utility computation. A black-box utility function takes a simple representation of a

strategy profile I(s) (i.e., a vector of strategy indices one per player) as input and

outputs utility samples.

Figure 5.1: An illustration of a black-box utility function.

I was inspired by this abstraction and handle the time-dependency by learning a

black-box version of the true utility function u. Mathematically, consider a restricted
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strategy set Λ ⊆ S. Let I : Λ → Z+ be a function that index each strategy s ∈ Λ

with a positive integer. Let σ be the mixed strategy that induces the distributions µσ.

Since the forward equation (Eq. 1.4) is deterministic, it is sufficient for σ to determine

µσ given a fixed initial distribution µ0 ∈ ∆(Z). Instead of learning u(s, µσ) with time-

dependent inputs, we learn a black-box utility function û : I(Λ) × ∆(Λ) → R as a

game model using sufficient representations I(s) and σ of s and µσ. I refer to this

representation as coarse coding.

The object is to predict the true utility u(s, µσ) by û(I(s), σ) and thus minimizing

the mean square loss E[(u(s, µσ) − û(I(s), σ))2]. The regression is based on neural

networks and the structure of the neural networks is depicted in Figure 5.2. In

practice, I(s) can be any representation of categorical inputs (e.g., one-hot encoding)

and σ is a vector of strategy probabilities.

Figure 5.2: A neural network structure for coarse coding.

There are two main benefits of coarse coding. First, the coarse coding scheme

only requires a simple network structure with a one-hot encoded strategy and a vec-

tor representation of a mixed strategy. So the implementation of coarse coding is

straightforward.

Second, the coarse coding scheme can dramatically simplify the execution of equi-

librium search algorithms for MFGs. Consider FP as an example. FP for MFGs

can be summarized as iterating three steps: (1) computing a best response strategy

against given distributions µ, (2) updating the averaged strategy after adding a new
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best response strategy, and (3) computing the distributions µ induced by the aver-

aged strategy through the forward equation (Eq. 1.4). Averaging strategies into one

merged strategy and distribution induction (i.e., the second step and the third step)

are usually considered to be computationally expensive (Laurière et al. 2022). With

coarse coding, the computation in step (2) and step (3) can be largely reduced. In

step (2), the averaged strategy is now represented by a probability vector on Λ rather

than a strategy entity and the averaged strategy update becomes a update of the

probability vector. Hence, there is no need to merge strategies across states, actions,

and time horizon. Meanwhile, for step (3), distribution induction is no longer needed

since the probability vector (i.e., a mixed strategy σ) can sufficiently represent the

distributions µσ (because the initial distribution µ0 is fixed and the forward equation

is deterministic). In essence, learning with coarse coding can be viewed as an end-

to-end learning approach, in which distribution induction is implicitly learned from

data. Based on these benefits, FP can be significantly accelerated given a coarse-

coded utility model.

5.3.3 Data Sampling

For regression of the utility function, a data point constitutes an index of a pure

strategy I(s), a mixed strategy σ, and a true utility u(s, µσ). To collect these data

points, the basic requirement is that the sampled mixed strategies σ’s should uni-

formly distribute in the restricted strategy space so as to endow the learner with the

ability of generalization across the space of induced distributions. For a large MFG,

a game model typically contains dozens of strategies, which makes the sample space

high-dimensional. It is well-known that uniformly sampling in a high-dimension space

suffers the curse of dimension and a finite number of samples will mainly concentrate

at the center of the space while less samples appear at its corners.1 To handle this

1Uniformly sampling can be implemented using Dirichlet distributions.
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issue, I combine two sampling schemes.

My first sampling scheme is grid sampling. In grid sampling, a grid of points on

the surface of a strategy simplex are sampled. The grid sampling can be achieved

by combinatorial algorithms (Nijenhuis 1975). Specifically, denote the parameter

K as the sum of each unnormalized sample and |S| as the number of strategies in

a restricted set. The total number of the samples is (K+|S|−1)!
K!(|S|−1)!

(i.e., K + |S| − 1

choose |S| − 1). For example, for K = 4 and |S| = 2, samples have the vector form

[(0, 4), (1, 3), (2, 2), (3, 1), (4, 0)]. After being normalized by K for each sample, the

samples generate a grid on the |S|-simplex (i.e., [(0, 1), (1
4
, 3
4
), (2

4
, 2
4
), (3

4
, 1
4
), (1, 0)]).

For my experiments, I select K = 4 and |S| varies based on specific MFGs.

The next sampling scheme relies on symmetric Dirichlet distributions with differ-

ent concentration parameters α. Mathematically, the density function of a symmetric

Dirichlet distribution is represented in terms of Gamma function, as follows

f(x1, . . . , x|S|;α) =
Γ(α|S|)
Γ(α)|S|

|S|∏
i=1

xα−1
i .

A concentration parameter α controls the density of samples. With α > 1, samples are

dense near the centroid while samples are sparsely distributed with α < 1 and close

to corners of the simplex. I set a range of values for α and sample the corresponding

Dirichlet distribution, aiming at generating a sufficient number of samples covering

the strategy simplex.

Combining samples from these two sampling schemes, we can obtain a set of mixed

strategy samples in the strategy space. Then we can induce µσ for each sampled σ by

the forward equation (i.e., µt will be induced by σt given µt−1 throughout the time

horizion T ) and evaluate u(s, µσ) for each pure strategy s ∈ Λ and µσ. Therefore, we

can obtain data points that contain indices of the pure strategy I(s), mixed strategies

σ’s, and the corresponding utilities u(s, µσ).
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In the discussion above, I assume a restricted set of strategies in a game model

and our object is to learn a utility function over this set of strategies. To obtain such

a set of strategies, I apply a query-based iterative EGTA approach (Muller, Rowland,

et al. (2021) and Chapter VI), where the term ”query-based” means the utility data

is simulated whenever it is needed. This is a common approach for assembling a

strategy portfolio for a game model. The generated strategies are both diverse and

exhibit interesting strategic interactions (e.g., containing an NE of the true MFG).

5.3.4 Approximating Nash Equilibrium

Whether a learned game model û is sufficiently accurate to support NE compu-

tation is crucial for analyzing MFGs. To conduct this evaluation, I consider two

learning dynamics FP and RD, and implement them using the learned game model.

For each learning dynamic, I measure the regret of intermediate strategies generated

by the dynamic with the true utility function and the model, respectively. If the

regrets given by the true utility function and the model are close to each other and

both converge to 0 (i.e., approach an NE), we can claim that the learned game model

provides good prediction and can support NE computation.

In Algorithm 9 and Algorithm 10, I show the implementations of FP and RD with

a game model. Compared to implementing FP and RD with the true utility function

(Algorithm 12 and 13 introduced in the next chapter), the implementation with a

game model becomes much simpler due to coarse coding, which we have discussed in

Section 5.3.2.

In Algorithm 9, for each iteration of FP, we predict the utility value û(I(s), σ̄)

for all strategies s in the restricted strategy set Λ using the model û. Then a best

response against the current averaged strategy σ̄ is selected and its count of being

a best response is increased by 1. Finally, we update the averaged strategy σ̄ by

normalizing the the count of being a best response across strategies. The output of
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FP is the averaged strategy σ̄ after J iterations.

Algorithm 9 Fictitious Play with a Game Model

Require: a game model û. Define the initial strategy σ̄ as the average of strategies
in the restricted set Λ = (s1, . . . , sτ ).

1: for Iteration j ∈ {1, . . . , J} do
2: Evaluate û(I(s), σ̄) for all s ∈ Λ
3: Select a best response s← argmaxs′∈Λ û(I(s

′), σ̄)
4: Update σ̄: σ̄(s)← 1

j
ns for all s ∈ Λ, where ns is the count of strategy s being

a best response
5: end for
6: Return σ̄

In Algorithm 10, for each iteration of RD, we again predict the utility value

û(I(s), σ̄) for all strategies s ∈ Λ using the model û. Then we compute the fitness,

which is the expected utility given the current averaged strategy σ̄. Finally, the

probability of each strategy s ∈ Λ in the averaged strategy σ̄ is updated proportional

to the deviation payoff from the averaged strategy σ̄. The output of RD is the

averaged strategy σ̄ after J iterations, which serves as an approximate NE of the

restricted game.

Algorithm 10 Replicator Dynamics with a Game Model

Require: a game model û. Define the initial strategy σ̄ as the average of strategies
in the restricted set Λ = (s1, . . . , sτ ). A learning rate dt.

1: for Iteration j ∈ {1, . . . , J} do
2: Evaluate û(I(s), σ̄) for all s ∈ Λ and compute the average fitness F ←∑

s∈Λ σ̄(s)û(I(s), σ̄)
3: for s ∈ Λ do
4: Update σ̄(s)′ ← σ̄(s) + dt ∗ σ̄(s)[û(I(s), σ̄)− F ]
5: end for
6: σ̄ ← σ̄′

7: end for
8: Return σ̄
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5.4 Experimental Results

5.4.1 Experimental Environments

5.4.1.1 Linear Quadratic MFGs

A linear quadratic MFG is defined on a discretized state space Z = {−L, . . . , L}.

With an action space {−M, . . . ,M}, a representative player can move up to M states

to the left or to the right or stay still. The transition function is given by

zt+1 = zt + (K(mt − zt) + at)δt + cϵtδt

and a reward function

r(zt, at, µt) = [−1

2
|at|2 + qat(mt − zt)−

κ

2
(mt − zt)

2]δt

with terminal reward

r(zT , aT , µT ) = −
C

2
(mT − zT )

2

where K, q, κ, C are given non-negative constant and ϵt represents the randomness

of the environment regularized by a constant c. δt measures the time lapse between

two time steps and mt =
∑

z∈Z zµ(z) is the expectation of states. Agents with this

reward function are encouraged to follow the average state of the population.

5.4.1.2 Beach Bar Problems

I consider a simplified version of Santa Fe bar problem (Arthur 1994; Farago,

Greenwald, and Hall 2002) and adopt the model by Perrin, Pérolat, et al. (2020).

Specifically, a 1-D beach bar problem for a single-population MFG is a Markov Deci-

sion Process with |Z| states on a one-dimensional torus (Z = 0, . . . , |Z| − 1). Without

loss of generality, we designate a bar to the state 0. Positions of players are initial-
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ized according to a uniform distribution. Players can keep still (at = 0) or move left

(at = −1) or right (at = 1) at time step t on the torus to get as close as possible to

the bar, while avoiding the crowded areas. The transition function is given by:

zt+1 = zt + at + ϵt

where at is an action of the representative player at time t and ϵt represents the

randomness of the environment. The immediate reward function is given by:

r(zt, at, µt) = r̃(zt)−
|at|
|Z|
− log(µt(zt))

where r̃(zt) measures the closeness to the bar from state zt, − |at|
|Z| is the running cost

and − log(µt(zt)) represents the aversion of players to the crowded areas. Compared

to the 1-D beach bar problem, the 2-D beach bar problem includes extra actions (i.e.,

up, down, left, right, stay) yielding a more complex environment.

5.4.2 Generalization of a Learned Model

For coarse coding, the training data are a combination of grid samples with a

precision K = 4 and Dirichlet samples with α ∈ (0, 1] and a step of α = 0.05. For

each α, I sampled 150 data points from the corresponding Dirichlet distribution. The

testing data are sampled from Dirichlet distributions with α ∈ (0.01, 2.01] and a step

of α = 0.1. For each α, I again sampled 150 test data points.

Table 5.1 reports the R2 score of the model on testing data in the aforemen-

tioned three MFGs. R2 score measures the total variation explained by the model.

Mathematically,

R2 = 1−
∑

k(ŷk − yk)
2∑

k(yk − ȳ)2
,

where k is the index of samples, ŷ is the estimate given by the model, and ȳ is the
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mean of targets y. R2 score is between 0 and 1. if R2 score is close to 1, the variation

of the data is well-explained by the model. From Table 5.1, I observed a high R2

score of the model in all of the three MFGs.

MFGs R2 Score

Linear Quadratic 0.99998± 0.00001
1-d Crowd Modeling 0.9724± 0.0024
2-d Crowd Modeling 0.9465± 0.0034

Table 5.1: Test results.

5.4.3 Approximating NE with a Game Model

5.4.3.1 FP with a Game Model

In Figure 5.3, I plot the regret curves of FP with the true utility function and the

game model respectively in three MFGs. Since these MFGs support exact strategy

evaluation (e.g., through dynamic programming), the regret curves can be exactly

computed and hence no error bar is reported in the plots. In all cases, I observed

that the regret curve generated with our game model can quickly coincide with the

one using the true utility function, and both successfully converge to 0 (i.e., reaching

an NE). This means the learned game model has good prediction accuracy on the

equilibrium search path of FP and is able to support game-theoretic analysis of MFGs.

Figure 5.3: Regret curves with FP.
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5.4.3.2 RD with a Game Model

In Figure 5.4, I plot the regret curves of RD in three MFGs. In the linear-quadratic

game, I again observed that two regret curves quickly coincide and RD successfully

converge to 0. However, in 1-D and 2-D crowd modeling games, I observed that the

regret curves with the learned game model first quickly decrease as usual and then

slightly diverge later.2 This divergence is caused by the prediction error of the game

model near the equilibrium. To improve the accuracy of the game model around

the equilibrium, I re-sampled utilities u(s, µσ) in the neighborhood of the σ at the

divergence point and fine-tune the game model. Then I continued RD with the fine-

tuned game model. In the plots, I re-sampled at iteration 19 (indicated by the red

vertical line) and observed that the divergence quickly disappears and RD converges

to NE. This again shows that the learned model can support game-theoretic analysis

of MFGs.

Figure 5.4: Regret curves with RD.

5.4.4 Mean Field Estimation

To verify that the learned game model can estimate the mean field (i.e., distribu-

tions) accurately, I plot the time-dependent distributions induced by the equilibrium

strategies computed with the true utility function and the game model, respectively.

Figure 5.5 and Figure 5.6 show the equilibrium distributions at t ∈ [11, 16, 21, 26, 30]

2Slightly divergence means that the error caused by the divergence is still much smaller than the
scale of the utility, which may not affect further game-theoretical analysis dramatically.
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in 1-D and 2-D crowd modeling games with the utility function and the game model.

For visualization, states in the 1-D game are reshaped into 2 dimensions. By com-

paring plots on the top and at the bottom in Figure 5.5 and Figure 5.6 respectively,

I observed that the distributions generated with the game model are almost indis-

tinguishable by inspection from those generated with the true utility function. This

accuracy can be quantified by Wasserstein distance, which as I report in Table 5.2

are all quite tiny (< 0.0005) though with a tendency to increase over time.

MFGs t = 11 t = 16 t = 21 t = 26 t = 30

1-D Crowd 1.8 2.1 2.3 3.8 4.1
2-D Crowd 3.9 3.9 4.9 4.0 4.6

Table 5.2: Wasserstein distances (×10−4) in the 1-D and 2-D crowd modeling games.

Figure 5.5: Distribution estimation in 1-D crowd modeling: (top) true utility function;
(bottom) game model.

5.5 Conclusion and Discussion

I developed a game model learning approach for MFGs. I introduced a coarse

coding scheme to handle the high-dimensional inputs in the utility function of MFGs

and a data sample scheme for MFGs with dozens of strategies. I showed that the

learning curves of FP and RD almost coincide with the true utility function and the

learned utility simulation, respectively. This demonstrates that the learned game
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Figure 5.6: Distribution estimation in 2-D crowd modeling: (top) true utility function;
(bottom) game model.

model can support game-theoretic analysis in MFGs. With an accurate game model,

we can apply the EGTA framework for solving MFGs.

One limitation of the game model learning approach is that the learned model

cannot be generalized to strategies outside the restricted strategy set. This is because

each strategy is represented by an index. Although an index coding is beneficial to

handle the time-dependent strategies, it does not provide any information about

the similarity and difference between two strategies. Therefore, introducing a new

strategy means that both extra sampling and model fine-tuning are needed.
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CHAPTER VI

MFGs: An EGTA Framework

6.1 Introduction

Given a well-defined game model through game model learning (GML), the pri-

mary purpose of this chapter is to introduce an iterative framework for numerically

solving MFGs with EGTA. I first introduce a primary method to demonstrate the

basic implementation of the framework, and then I apply GML and RRD to the

primary method, aiming at improving the sample efficiency of the primary method

without sacrificing the overall learning performance. The primary method extends

DO to MFGs, iteratively adding strategies based on best response to the equilibrium

of the empirical MFG among strategies considered so far. I propose FP and RD as

two subroutines for approximating an NE of the empirical MFG and demonstrate

that both subroutines are effective for the empirical game analysis. Each subroutine

is implemented with a query-based method, in which we query the utilities of different

strategies through simulations as needed rather than maintaining an explicit payoff

matrix as in typical EGTA methods. This tweak is caused by the non-linearity of

the MFG utility function in the population distribution, which I highlight for MFGs.

I test the primary iterative EGTA framework in MFGs with various configurations

and demonstrate the improved learning performance of EGTA over directly applying

FP (Perrin, Pérolat, et al. 2020) to MFGs.
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Despite its effectiveness for solving MFGs, the primary method requires a large

number of utility simulations due to the query-based method. I refer to this as low

sample efficiency in EGTA. To improve the sample efficiency, I introduce a GML

approach and apply RRD to our iterative EGTA framework. The GML approach is a

form of regression that learns the utility function progressively over EGTA iterations.

With a learned utility function, utility information can be predicted, thus reducing the

number of queries to the simulator. RRD improves sample efficiency through reducing

the number of iterations of subroutines in each EGTA iteration. In Chapter III,

we have shown that properly regularizing the best response target (i.e., not best-

responding to an exact equilibrium) will lead to an improved learning performance

for EGTA and the regularization can be achieved by early stopping a subroutine

within each EGTA iteration. For our purposes, early stopping a subroutine means

less utility queries for each iteration of EGTA and improved sample efficiency if the

overall learning performance would not decline. By introducing GML and RRD, I

demonstrate a significant improvement on the sample efficiency (i.e., EGTA with

GML and RRD only requires 1/6 of simulations needed by the primary method) over

a variety of MFG configurations.

The theoretical results of this work are twofold. First, I prove the existence of

NE in an empirical MFG with a restricted strategy space under a mild assumption,

assuming the MFG is fully symmetric. Second, I prove that the iterative EGTA

converges to NE of the full game if the best response target is NE across iterations

and an exact best-response oracle is available.

6.2 Literature Review

There is a large prior literature on learning solutions of MFGs. Here I list few that

are closely related to my approach. Elie et al. (2020) first studied the convergence

of approximate discrete-time FP in MFGs. Perrin, Pérolat, et al. (2020) further
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proved the convergence rate of continuous-time FP in MFGs and extended the study

to MFGs with common noise. In their work, a FP algorithm for MFGs with finite

time horizons is demonstrated effective in various environments. Perolat et al. (2022)

criticized that FP is not scalable to MFGs with large state spaces due to the best

response calculation and thus proposing Online Mirror Descent (OMD) as a solution.

They empirically showed that OMD converges significantly faster than FP in MFGs

with a large number of states. In the aforementioned algorithms, a fixed initial

distribution of the population is required. Perrin, Laurière, Pérolat, Élie, et al. (2022)

argued that a fixed initial distribution restricts the practical applications of MFGs

since a real initial distribution could be different from the one used for training. They

proposed a learning algorithm to learn a Master Policy, which takes the distribution

of population as input and thus taking the initial distribution into consideration.

They demonstrated the ability of generalization of the learned master policy.

In a recent work that is simultaneous with and independent of the primary method,

Muller, Rowland, et al. (2021) adapted PSRO to MFGs and analyzed convergence

properties with various solution concepts. Both theirs and the primary method are

based on an iterative EGTA/PSRO framework for MFGs, highlighting the issue that

the utility function for MFGs is not generally linear in the distribution. Theoretically,

both works prove the existence of NE in the empirical game with restricted strategy

set and the convergence of iterative EGTA/PSRO to NE. What is unique to their work

is that they investigate the modifications for PSRO to converge to (coarse) correlated

equilibria in MFGs as well as the theoretical counterparts. The contribution of the

primary method focuses on practical techniques for the empirical game analysis and

goes beyond their work in including full details of how online learning algorithms (i.e.,

FP and RD as subroutines) realize the framework of EGTA for MFGs. I also include

more experimental results on performance of these methods for deriving approximate

equilibria for MFGs. Since both theirs and the primary method rely on either black-
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box optimization or online approaches for computing NE of intermediate empirical

games, the issue of low sample efficiency exists. As a major contribution of this work,

the GML and regularization successfully addresses this issue.

6.3 Iterative EGTA for MFGs

6.3.1 Framework

In iterative EGTA, the restricted strategy space is expanded incrementally based

on analysis of intermediate game models. In finite games, a common approach of

iterative strategy generation is presented by the well-known DO algorithm, which

adds strategies that best respond to a current equilibrium. I extend DO to MFGs

and provide a learning framework for MP-MFGs in Algorithm 11.

In Algorithm 11, for each population i, we initialize the representative player with

policy si,0 and an initial distribution µi,0. At each iteration τ , a best response target

σe and its induced distribution µe are computed through the analysis of the empirical

game. Here the tools for the empirical game analysis are determined by the solution

concepts and convergence properties one pursues. Then the representative player

of each population i finds an exact/approximate best response strategy si,τ to the

distribution µe and adds it to the empirical game. This process repeats for a fixed

number iterations, typically set to be large enough so that no beneficial deviation

strategy could be found.

6.3.2 Analyzing an Empirical MFG

In EGTA, analyzing an intermediate empirical game is crucial for generating ef-

fective strategies.1 Although an MFG can be viewed as an interaction between two

parties (i.e., a representative player and the population), the empirical game analysis

1For discussion simplicity, I assume that players are fully symmetric (i.e., Np = 1). So the
population index i is dropped when the context is clear.
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Algorithm 11 Iterative EGTA for MP-MPG

Input: for each population i, an initial policy si,0 and an initial distribution
µi,0

1: for τ ∈ {1, . . . , T } do
2: Compute (σe, µe) by empirical game analysis
3: for i ∈ {1, . . . , Np} do
4: Find a best response policy si,τ to empirical equilibrium distribution µe

5: Add si,τ to the strategy set of population i
6: end for
7: end for
8: Return (σe, µe)

for MFGs is more than constructing an explicit matrix and then applying a game-

solver for two parties. Proposition 3 shows that MFGs can only be solved with an

explicit payoff matrix under certain restrictive conditions.

Assume an empirical MFG with an explicit payoff matrix representation, shown

in Table 6.1. In the empirical game, there are 4 strategies Λ = {s0, s1, s2, s3} in the

restricted strategy set. Since the game is fully symmetric, the population would act

following distributions µ = {µ0, µ1, µ2, µ3} induced by corresponding strategies in Λ.

In the payoff matrix, the value in entry (j, k), j, k ∈ {0, 1, 2, 3} is u(sj, µk), where µk

is the distribution induced by sk.

s0 s1 s2 s3
s0 u(s0, µ0) u(s0, µ1) u(s0, µ2) u(s0, µ3)
s1 u(s1, µ0) u(s1, µ1) u(s1, µ2) u(s1, µ3)
s2 u(s2, µ0) u(s2, µ1) u(s2, µ2) u(s2, µ3)
s3 u(s3, µ0) u(s3, µ1) u(s3, µ2) u(s3, µ3)

Table 6.1: Single-population MFG payoff matrix.

Proposition 3. The NE of the aforementioned payoff matrix will not generally be an

NE of the mean field empirical game unless the utility function is linear in µ.

Proof. Assume σ is an NE computed from the payoff matrix. According to the
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definition of NE, we have

∑
j∈[|Λ|]

∑
k∈[|Λ|]

σ(sj)σ(sk)u(sj, µk) ≥
∑

k∈[|Λ|]

σ(sk)u(s
′, µk),∀s′ ∈ Λ. (6.1)

According to the definition of NE σ∗ in MFGs, we have

∑
j∈[|Λ|]

σ∗(sj)u(sj, µ
σ∗
) ≥ u(s′, µσ∗

), ∀s′ ∈ Λ (6.2)

where µσ∗
is induced by σ∗.

By comparing inequalities 6.1 and 6.2, to make the NE σ an MFG NE σ∗, the

following condition should hold

∑
k∈[|Λ|]

σ(sk)u(sj, µk) = u(sj, µ
σ),∀sj ∈ Λ

indicating the requirement of linearity in µ at least at the equilibrium point.

Since the utility function in MFGs will not generally be linear in µ, analysis of

an empirical game based on an explicit payoff matrix is impractical. Instead, we can

rely on query-based methods. I propose FP and RD as two subroutines for solving

empirical games and query utility information through simulation as needed.

6.3.2.1 FP as a Subroutine

FP for MFGs has been studied by Elie et al. (2020) and Perrin, Pérolat, et al.

(2020). I adapt it to analyzing an empirical game with a restricted set of strategies.

In Algorithm 12, I demonstrate how to apply FP to empirical games. Specifically,

starting from the uniform strategy σ̄ over the strategies in the restricted strategy set

and its induced distribution µ̄, at each iteration j ∈ [1, J ], the representative player
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of a population i finds a best response strategy si,j ∈ Λi against the populations µ̄.

The probability in the mixed strategy of playing si,j is updated by the frequency of

si,j appearing as a best response, that is, the number of being a best response nsi,j

divided by the total count up to the jth iteration. Mathematically, for all i ∈ [Np]

and k ∈ [|Λi|], the number of si,k being a best response nsi,k is incremented by 1 if

it is the best response at the current iteration (i.e., si,k = si,j) and remains the same

otherwise.

nsi,k =


nsi,k + 1 si,k = si,j

nsi,k si,k ̸= si,j

Then we update the corresponding probability in the mixed strategy by

σ̄i(si,k) =
nsi,k

|Λi|+
∑

k∈[|Λi|] nsi,k

Algorithm 12 Fictitious Play for Empirical MFGs

Input: An empirical game. Define initial policy σ̄i as the average of strate-
gies in the restricted set Λi = (si,1, . . . , si,τ ) of population i and µ̄ is induced by
σ̄

1: for j ∈ {1, . . . , J} do
2: for i ∈ {1, . . . , Np} do
3: Find a best response strategy si,j ∈ Λi to µ̄
4: end for
5: Update σ̄i and induce µ̄i, for all i ∈ [Np]
6: end for
7: Return (σ̄, µ̄)

To induce a corresponding distribution µ̄i, I first build a weighted average strategy

that is equivalent to the mixed strategy σ̄i. Specifically, consider a mixed strategy σ ∈

∆(Λ) defined on the empirical game with a restricted strategy set Λ. An equivalent
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strategy s̄ is defined as, for each population i,

s̄i,t(a | x) =

|Λi|∑
k=1

σi(si,k,t)µ
si,k,t
t (x)si,k,t(a | x)

|Λi|∑
k=1

σi(si,k,t)µ
si,k,t
t (x)

,∀t ∈ [0, T − 1]

where si,k,t is the kth strategy of population i at time step t. Then the induced dis-

tribution is computed through Equation 1.4 or estimated through various approaches

(e.g., empirical density estimation (Perrin, Pérolat, et al. 2020) or generative models

(Perrin, Laurière, Pérolat, Geist, et al. 2021)).

The empirical game analysis terminates until certain stopping criterion is satisfied

(e.g., reaching a fixed number of iterations). Note that FP will not generally con-

verge to an NE (or even CE) in MFGs with multiple populations and here I use FP

practically for illustration purpose.

6.3.2.2 RD as a Subroutine

RD describes an evolving trajectory of mixed profiles and is commonly employed

as a heuristic equilibrium search algorithm in finite games. In Algorithm 13, I adapt

RD to our MFG model and propose it as a practical subroutine for empirical game

analysis. Similar to RD in finite games, at each iteration the update of a strategy’s

probability in population i is in proportion to the deviation payoff of that strategy

from the average fitness, weighted by its probability from the previous iteration and a

learning rate. Theoretically, RD has not been proved for convergence as FP. However,

I show that RD exhibits empirical convergence with an even more stable learning

manner than FP in mys experiments.

99



Algorithm 13 Replicator Dynamics for Empirical MFGs

Input: an empirical game. Define initial policy σ̄i as the average of strategies in the
restricted set Λi = (si,1, . . . , si,τ ) of population i and µ̄ is induced by σ̄ A learning
rate dt.

1: for Iteration j ∈ {1, . . . , J} do
2: for i ∈ {1, . . . , Np} do
3: Compute the average fitness Fi = ui(σ̄i, µ̄

σ̄)
4: for si ∈ Λi do
5: Evaluate ui(si, µ̄

σ̄)
6: Update σ̄i(s)

′ = σ̄i(s) + dt ∗ σ̄i(s)[ui(si, µ̄
σ̄)− Fi]

7: end for
8: end for
9: σ̄ = σ̄′

10: Induce new distribution µ̄ based on updated σ̄.
11: end for
12: Return (σ̄, µ̄)

6.3.3 Best Response Oracles

In Algorithm 11, one key step is to find a best-response strategy to a distribution.

For games with a moderate size of the state and action spaces, best response can

be computed through tabular RL or backward dynamic programming. For example,

a strategy can be represented by a Q-value table (i.e., a tabular strategy) and then

Q-learning for MFGs can be applied.2

However, the scalability of tabular approach is problematic for two reasons. One

is that the optimal strategy is not necessarily time-homogeneous in MFGs, meaning

that for each time step an optimal Q-value table should be stored. This causes a

memory burden especially when the time horizon T is large. Another issue is that

tabular approaches are not scalable with the size of the state and action spaces.

For games with large state and action spaces, deep RL has been employed in prior

work to find an approximate best-response strategy. To handle the time-heterogeneity

of optimal strategies in MFGs, one possible approach is to encode the time information

as part of the input to the function approximator in deep RL, aiming to learn the

2For detailed algorithms such as Q-learning and backward induction, please refer to the Appendix
by Perrin, Pérolat, et al. (2020).
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temporal structure of the optimal strategy, without keeping an optimal strategy for

each time step.

6.4 Convergence to NE

I analyze the theoretical properties of iterative EGTA for MFGs from two aspects:

the existence of NE in mean field empirical games and the convergence of iterative

ETGA to NE of the full game. Theoretical results for the existence of NE in general

MFGs have been widely studies in prior work. For discrete-time MFGs with finite

state and action spaces, Gomes, Mohr, and Souza (2010) proved the existence of NE

in general case and Doncel, Gast, and Gaujal (2019) further extended the existence

results to scenarios where transition functions also depend on the population. For an

empirical game model, since it restricts the set of strategies available to players, it is

necessary to re-examine the existence result for NE. Here I assume that players are

fully symmetric and prove that the NE exists in an empirical game under one mild

assumption.

Assumption 1. The utility function u(s, µ) is continuous in the distribution µ.

Theorem 2. Under Assumption 1, for games with finite state and action spaces,

there exists a Nash equilibrium in the empirical game.

Proof. To prove the existence of an NE in the empirical game with strategy sets Λ

using Kakutani’s fixed point theorem (Kakutani 1941), we need to show

1. The empirical strategy space ∆(Λ) is non-empty, closed and bounded (com-

pactness by Heine-Borel Theorem (Borel 1895)) and a convex subset of certain

Euclidean space.

2. The best response correspondence br is a set-valued function such that br has

a closed graph and br(·) is non-empty and convex.
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Then according to Kakutani’s fixed point theorem, an NE exists in an empirical game.

For the first condition, since Λ is non-empty, then ∆(Λ) is just the simplex of

Λ so it is non-empty. For the compactness, we need to prove ∆(Λ) is closed and

bounded. First note that |Λ| is finite since there are finite number of strategies

in the empirical game. Since ∆(Λ) is the intersection of the closed sets R|Λ|
+ and

{λ ∈ R|Λ| :
∑

j∈[|Λ|] λj = 1}, ∆(Λ) is closed. Since ∆(Λ) is a subset of [0, 1]|Λ|, it is

bounded. Then ∆(Λ) is compact. For the convexity, consider any strategies s and s′,

and coefficient λ ∈ (0, 1), according to the definition of a simplex, λs+(1−λ) ∈ ∆(Λ).

So ∆(Λ) is a convex set. We now complete the verification of the first condition.

For the second condition, given a strategy σ ∈ ∆(Λ), define a best-response cor-

respondence to σ as

br(σ) = argmax
s′∈Λ

u(s′, µσ)

= argmax
σ′∈∆(Λ)

u(σ′, µσ)

= argmax
σ′∈∆(Λ)

∑
s∈Λ

σ′(s)u(s, µσ)

Due to the compactness of ∆(Λ) and the continuity assumption of u, the best-

response correspondence br(σ) is non-empty. To show it is convex, consider two

strategies s1, s2 ∈ br(σ)) associated with coefficients c1 and c2 such that c1, c2 ≥ 0

and c1 + c2 = 1. Since all optima share the same utility

u(s1, µ
σ) = u(s2, µ

σ)

and the definition of the expected utility

u(c1s1 + c2s2, µ
σ) = c1u(s1, µ

σ) + c2u(s2, µ
σ)

102



We have c1s1+ c2s2 ∈ br(σ) and then br(σ) is convex. Note that br(σ) is a set-valued

function since there could be multiple strategies maximizing the value function, which

constitutes a power set of Λ.

Next, I claim that Gr(br) := {(σ, br(σ)) : σ ∈ ∆(Λ), br(σ) ∈ ∆(Λ)} is a closed

graph. By the Berge’s maximum theorem (Berge 1997) and the continuity assump-

tion, the set-valued function br is upper-hemicontinous. Since br(σ) is closed for all

σ ∈ ∆(Λ) and ∆(Λ) is a metrizable space, Gr(br) is a closed graph. This completes

the proof of the second condition. With condition 1 and 2, according to Kakutani’s

fixed point theorem, an NE exists in an empirical game.

According to Theorem 2, an empirical NE exists and hence it can be obtained

through some theoretically proven equilibrium search subroutines (e.g., FP). The

remaining problem is whether iterative EGTA converges to the NE of the full game.

Theorem 3. For games with finite state and action spaces, suppose the empirical

NE is the best response target at each iteration of iterative EGTA and an exact best

response oracle is available, then the empirical NE converges to the NE of the full

game.

Proof. Suppose σ∗ is an empirical NE associated with a population distribution µ∗

such that

max
s∈Λ

u(s, µ∗)− u(σ∗, µ∗) = 0

Suppose there is no beneficial deviation can be found at certain iteration, indicating

max
s∈S

u(s, µ∗)− u(σ∗, µ∗) = 0

Then σ∗ is an NE of the full game. Since the strategy space is finite, σ∗ is always

reachable with the worst case where all strategies are included in the empirical game.
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6.5 Game Model Learning and Regularization for Improved

Sample Efficiency

One crucial factor that affects the practicality of the primary iterative EGTA

method is sample efficiency. Sample efficiency here refers to the number of simula-

tions needed for estimating the utilities in the equilibrium search at each iteration of

EGTA. In finite games, the utilities of any mixed strategy profile can be computed

by taking an expectation of utilities across pure strategy profiles in the support, so

utility information of pure strategy profiles can be re-used.

Unlike finite games, Proposition 3 shows that the utility u(s, µσ) of playing strat-

egy s against population distributions µσ needs to be evaluated for different µσ and

generally cannot be computed by first computing u(s, µs′) for each pure strategy s′ in

the support of σ and then taking an expectation as in finite games. Moreover, since

it is very unlikely to encounter a same distribution µσ across EGTA iterations, it is

also not useful to store the corresponding utility information. Due to these charac-

teristics, instead of storing utility information and re-using them, the iterative EGTA

approaches up to this point (including the primary method and the version by Muller,

Rowland, et al. (2021)) need to compute or simulate u(s, µσ) whenever µσ changes in

the equilibrium computation (i.e., the query-based implementation), which results in

a low sample efficiency. To improve the sample efficiency, I introduce GML and apply

RRD to the primary method. For discussion purposes in this section, I assume that

MFGs are single-population (i.e., N = 1) and my approach can be readily extended

to MFGs with multiple populations.
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6.5.1 Game Model Learning

My GML approach is a form of regression that learns the utility function based on

utility information collected over previous EGTA iterations. This approach is based

on GML discussed in Chapter V and extended to the iterative setting. With a game

model (i.e., a learned utility function), sample efficiency can be improved by querying

the game model rather than running simulations as long as the game model is able

to provide high-fidelity predictions on these queries. In the following discussion, I

first discuss how a game model fits in the EGTA framework and then elaborate the

method for learning a game model given utility samples.

6.5.1.1 Applying GML to EGTA

To implement GML in iterative EGTA, one key step is to periodically update

the game model based on collected utilities and apply the game model to running a

subroutine for equilibrium computation of the current empirical game. I select RD

as a subroutine for illustration purposes.

Figure 6.1: RD with a game model.

Denote the current EGTA iteration as iteration τ . Our object is to approximate

the NE of the current empirical game with the strategy set Λτ , using RD and the

game model ûτ−1 learned based on Λτ−1 (i.e., the game model learned from previous
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iterations). Since the model ûτ−1(s, µ
σ) only contains utility information of s ∈ Λτ−1

and σ ∈ ∆Λτ−1 from previous iterations, while RD requires utilities u(s, µσ), ∀s ∈

Λτ , ∀σ ∈ ∆Λτ for the current iteration, we cannot directly apply the model ûτ−1 due

to the lack of information of sτ . To handle this issue, I interleave utility approximation

with simulations for different strategies.

In particular, for s ∈ Λτ−1 and σ ∈ ∆Λτ−1, I directly apply the model to predict

u(s, µσ). For s ∈ Λτ−1 and σ ∈ ∆Λτ , we first project σ onto ∆Λτ−1 by a pro-

jection operator Pτ−1(σ) = argminσ′∈∆Λτ−1
||σ′ − σ||2 and approximate u(s, µσ) by

ûτ−1(s, µ
P (σ)). The assumption here is that if P (σ) is close to σ, then uτ−1(s, µ

σ) is

close to uτ−1(s, µ
P (σ)) and the model is valid for estimating u(s, µσ). The scenario in

the assumption often holds at the start of running RD when RD is initialized with

the equilibrium strategy from last iteration. Since the update of strategy in RD is

controlled by a small step size, P (σ) will be close to σ within first few RD iterations.

For s = sτ , I query the simulator (e.g., a noiseless simulator) to obtain the exact

utility u(s, µσ) because the game model does not contain its utility information. I

refer to this procedure as the first phase.

The number of RD iterations for the first phase is determined by the quality of

utility estimations given by the projection. To measure this quality, I set a threshold

for the L-2 distance between σ and its projection P (σ). If the distance goes beyond

the threshold, it means that the game model with projection becomes less accurate on

the utility predictions. So we should stop using the model and switch to the simulator

(i.e., the second phase).

In the second phase, I directly run RD with the simulator for all s ∈ Λτ and

σ ∈ ∆Λτ for a fixed number of iterations. At the end the second phase, utilities

collected from the simulator at both phases are used to fine-tune the current game

model. Note that the sampling of these utilities is guided by RD to avoid sampling the

whole strategy space, where the latter will hurt our motivation of improving sample
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efficiency. The overall framework is depicted in Figure 6.1.

6.5.1.2 Learning Utility Functions

To learn a game model, I apply the coarse coding scheme described in Chapter V.

Based on coarse coding, a utility data point is constructed to include an index of a

pure strategy I(s), a mixed strategy σ, and a utility target u(s, µσ). Since the object

is to predict the true utility u(s, µσ) by û(I(s), σ), I fine-tune ûτ−1 by minimizing the

mean square error E[u(s, µσ)− û(I(s), σ))2].

6.5.2 Regularization by RRD

The regularization method improves sample efficiency through reducing the num-

ber of iterations of RD in each EGTA iteration. In the iterative EGTA approach up

to this point, the number of iterations for the subroutines (e.g., RD and FP) is set to

be large enough so that they can approximately converge to the current equilibrium

of the empirical game. This mimics DO, in which a best response to the current

equilibrium is computed at each iteration.

In Chapter III, we have shown that properly regularizing the best response target

(i.e., not best-responding to an exact equilibrium) will lead to improved learning

performance for EGTA. Regularization can be achieved by early stopping RD when

the regret of the current profile with respect to the empirical game exceeds a regret

threshold. For our purposes, early stopping of RD means less utility queries from the

simulator and improved sample efficiency if the overall learning performance would

not decline. I apply this approach to the EGTA framework by replacing the regret

threshold with a fixed number of RD iterations since the prediction error given by

the game model could affect the regret estimation for reaching a threshold.
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(a) 1-D(10, 10) (b) 1-D(10, 20) (c) 1-D(10, 30)

(d) 1-D(50, 10) (e) 1-D(50, 20) (f) 1-D(50, 30)

(g) 1-D(100, 10) (h) 1-D(100, 20) (i) 1-D(100, 30)

(j) 2-D(100, 10) (k) 2-D(100, 20) (l) 2-D(100, 30)

Figure 6.2: Experimental results of 1-D and 2-D beach bar problems.
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6.5.3 Algorithms

I show the full EGTA framework with GML and regularization for single-population

MFGs in Algorithm 14 and Algorithm 15. Compared to the primary method (Algo-

rithm 11), the main differences are the introduction of a game model û in Algorithm 14

and how the model û is updated and then applied to RD in Algorithm 15 (discussed

in Section 6.5.1). Note that, in Algorithm 15, RD is initialized with the equilibrium

σe from last EGTA iteration, perturbed by a function δ to guarantee a full support.

This makes sure that every strategy can be played with non-zero probability and

hence can be updated by RD. Regularization is achieved by controlling the maximal

number of RD iteration J .

Algorithm 14 Iterative EGTA with GML and RRD

Require: an initial strategy Λ0 = {s0} and an initial distribution µ0. A neural
network û.

1: σe ← s0
2: Initialize µe by Eq. 1.4 using s0
3: for EGTA iteration τ ∈ {1, . . . , T } do
4: Compute a best response strategy sτ to the empirical equilibrium distribution

µe

5: Add sτ to the strategy set of population i: Λτ ← Λτ−1

⋃
sτ

6: Compute σe, µe, û← a subroutine Ψ(GS↓Λτ , û, σ
e, µe)

7: end for
8: Return (σe, µe)

6.6 Experimental Results

6.6.1 The 1-D Beach Bar

I test the performance of iterative EGTA in the 1-D beach bar problem (see

description in Chapter V) with various configurations, which are determined by the

Cartesian product of |Z| ∈ {10, 50, 100} and T ∈ {10, 20, 30}, denoted by 1-D(|Z|, T ).

In Figure 6.2a-6.2i, I plot the regret curves of iterative EGTA (with FP and RD as

subroutines respectively) against directly applying FP to MFGs (Perrin, Pérolat, et
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Algorithm 15 RRD as a Subroutine Ψ

Require: an empirical game GS↓Λτ . A learned utility simulator û. Equilibrium strat-
egy σe, and distribution µe.
Parameters: A distance threshold γ. A maximal number of iterations for ap-
plying the model M . A learning rate dt.

1: Initialize a strategy σ̄ ← δ(σe)
2: for RD iteration j ∈ {1, . . . , J} do
3: σ̄p ← Pτ−1(σ̄)
4: if ||σ̄, σ̄p||2 < γ and j < M then
5: Approximate u(s, µσ̄) by û(I(s), σ̄p),∀s ∈ Λτ−1

6: Simulate u(sτ , µ
σ̄)

7: else
8: Simulate u(s, µσ̄), ∀s ∈ Λτ

9: end if
10: Save new data points I(s), σ̄, and u(s, µσ̄)
11: Compute fitness F =

∑
s∈Λ σ̄(s)u(s, µ

σ̄)
12: for s ∈ Λτ do
13: σ̄(s)← σ̄(s) + dt ∗ σ̄(s)[u(s, µσ̄)− F ]
14: end for
15: end for
16: Fine-tune û with all new data points
17: Compute the induced distributions µσ̄ by Eq. 1.4 using σ̄
18: Return σ̄, µσ̄, and û

al. 2020), where x-axis being the EGTA iterations. Since the game size supports exact

best response calculation and exact strategy evaluation given a fixed initialization and

parameters of the randomness of the environment (i.e., the simulator is noiseless), the

regret curves can be exactly computed and hence no error bar is reported in the plots.

From Figure 6.2a-6.2i, I observed that the performance of our primary EGTA

method (orange and green curves) dominates FP in all instances. Moreover, as the

instance becomes complex (i.e., with more states and longer horizon), the perfor-

mance gap between our primary method and FP becomes more apparent. For the

subroutine selection, I observed that RD in some cases exhibits a more stable learning

manner (e.g., Fig 6.2f) than FP while in most cases their performances are almost

indistinguishable. For EGTA with GML and regularization (abbr. REG in the plots)

(red curve), I observed that its performance also almost coincides with our primary
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method, but becomes even most stable as time horizon increases due to regulariza-

tion. Thanks to GML and regularization, we obtain this performance with only 1/6

of the total utility queries compared to our primary method, which demonstrates a

significant improvement on the sample efficiency. I show the number of simulations

needed across EGTA iterations in Figure 6.3.

Figure 6.3: The number of utility samples across EGTA iterations.

6.6.2 The 2-D Beach Bar

I test the performance of our primary EGTA method in the 2-D beach bar problem

with fixed |Z| = 100 and different time horizon T ∈ {10, 20, 30}, denoted by 2-D(|Z|,

T ). Compared to the 1-D beach bar problem, the 2-D beach bar problem includes

extra actions (i.e., up, down, left, right, stay) yielding a more complex environment.

From Figure 6.2j-6.2l, I observed the same phenomenon as in the 1-D problem, that is,

iterative EGTA dominates FP and as the game instance becomes larger, the advantage

of iterative EGTA becomes apparent. EGTA with GML and regularization again

exhibits similar performance compared to the primary method but only requires 1/6

of the utility queries.
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6.6.3 Multi-Population Chasing

For MP-MFGs, I test the performance of iterative EGTA in a three-population

chasing problem (Perolat et al. 2022), which closely relates to the game Hens-Foxes-

Snakes, where hens, snakes and foxes are chasing cyclically. The reward structure of

this game is shown in table 6.6.3, denoted as R.

Hens Snakes Foxes

Hens (0, 0) (-1, 1) (1, -1)

Snakes (1, -1) (0, 0) (-1, 1)

Foxes (-1, 1) (1, -1) (0, 0)

The immediate reward function of population i ∈ [Np] is defined as

ri(z, a, µ) = − log(µi(z)) +
∑
j ̸=i

µj(z)R(i, j)

Figure 6.4: Regret curves of FP in multi-population chasing.

In Figure 6.4, I observed that at the early stage of learning, both FP and iterative

EGTA can learn the game quickly and improve the stability of strategies. Iterative

EGTA keeps its momentum as learning proceeds while the learning curve of FP
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becomes flatten over time. I conjecture that the reason for the two learning curves of

EGTA and FP close to each other is the best response target given by FP is not as

effective as the one in single-population setting since FP will not generally converge

to NE in MP-MFGs.

6.7 Conclusion and Discussion

I proposed an iterative EGTA framework for computing NE in MFGs and a

sample-efficient version by combining GML and regularization. I demonstrated the

efficacy of our approaches in various MFGs. Theoretically, I proved the existence of

NE in empirical MFGs and the convergence of the iterative EGTA framework.

6.7.1 Complexity of the Empirical Game Analysis

In my experiments, I measured the regret with respect to EGTA iterations and

show superior performance of iterative EGTA against FP. However, in terms of

running time, I noticed that directly applying FP or OMD to the MFGs in OpenSpiel

results in faster convergence since in EGTA the analysis of the empirical game (i.e.,

estimate the payoffs of mixed strategies, update the mixed strategies and compute

the corresponding distributions) turns out to be computationally expensive. This is

because without an explicit payoff matrix, the same strategy or similar ones could

be evaluated repeatedly. Besides, computing the induced distribution for every FP

update also could be costly. In a word, I believe that the acceleration of the empirical

game analysis is a crucial step for the application of iterative EGTA for MFGs, which

is a potential research direction in the future.

In the plots, the reason for measuring the regret with respect to EGTA iterations is

based on one assumption in EGTA, that is, it is common that the cost on best response

calculation becomes dominant than the empirical game analysis in complex games

especially when deep reinforcement learning is deployed. Based on this assumption,
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we prefer to build an effective game model with a minimal number of iterations and

thus evaluating the performance with respect to the EGTA iterations. For the same

reason, I did not plot the regret curves of OMD (Perolat et al. 2022) with respect to

PSRO iterations since I found that the definition of one iteration in OMD is different

from that in PSRO, which could lead to improper comparison.

For MP-MFGs, as I observed in the multi-population chasing experiments, since

FP will not generally converge to an NE in the multi-population setting, using FP for

the empirical game analysis in EGTA may affect the learning performance. Therefore,

selecting an effective best response target is also one future research direction.

6.7.2 Re-Evaluating Strategies in Finite Games

A key motivation for using MFGs is that the MFG model dramatically simplifies

game learning compared to directly solving the corresponding finite game. Meanwhile,

the solution of an MFG approximates the NE of the finite game. One future research

direction is how to reduce the approximation error while applying the MFG solution

to the corresponding finite game. It is apparent that the error depends on many

factors (e.g., the number of players and the game size of a finite game).

A key distinction between EGTA and other learning dynamics is that the con-

structed empirical game model incorporates a set of strategies, which are considered

strategically important to understand the game. The construction of the set of strate-

gies is called the strategy exploration problem in EGTA, which aims to construct

effective models with minimal iteration. The iterative EGTA can be viewed as an

approach for strategy exploration in MFGs.

Based on this feature of EGTA, to reduce the approximation error of the MFG

solution in the corresponding finite game, one potential approach is to conduct strat-

egy exploration in the MFG while re-evaluating the generated strategies in the finite

game. This takes the virtue of the MFG model for fast strategy exploration (i.e.,
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quickly obtain strategically important strategies of a game) as well as improving the

accuracy of the empirical game model for the finite game. This approach is also

compatible with the factors that affect the approximation errors. For example, an

MFG solution could behave much worse in a ten-player symmetric game than in a

one-hundred-player symmetric game. In this case, re-evaluating the empirical game

model in the ten-player game could improve the accuracy of the empirical game model

and provide stable solutions.
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CHAPTER VII

Conclusion

The goal of this thesis is to provide algorithms for game solving and evaluation. I

specifically focused on games with large state and action spaces, which makes a direct

exhaustive game analysis infeasible. To approach these games, I leveraged the EGTA

framework, which describes a broad set of methods that are building and reasoning

about game models based on simulation data. I concentrated on understanding and

solving the strategy exploration problem in EGTA. Strategy exploration is a key

component of iterative EGTA since it directly relates to the quality of game models,

on which the game analysis is based. I designed novel algorithms for controlling and

evaluating strategy exploration and demonstrated the effectiveness of my algorithms

in various games.

For strategy exploration evaluation, I explained what makes evaluating for strat-

egy exploration distinct from evaluating other game learning algorithms. I highlighted

that in strategy exploration the generated empirical games create a space of strategies

and evaluation should reflect how well the space of strategies covers the strategically

relevant space of the full game. To characterize this fact in evaluation, I introduced

a systematic evaluation procedure for strategy exploration. Specifically, I proposed

to use the regret of MRCP as a measure for a game model since MRCP represents

the profile in a game model that is the most close to NE in terms of regret. Then I
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presented a consistency criterion that states whereas empirical games can be gener-

ated by different MSS-RO combinations, they should be evaluated based on measures

of interest (e.g., regret, social welfare) applied to the same solution concept. With

informative examples as well as examples in large games, I demonstrated the impor-

tance of the consistency criterion and the evaluation issues if the criterion is violated.

The intriguing part of this research for me is to discover an evaluation issue in the

method that people took for granted in prior works, and provide a refined evaluation

procedure for strategy exploration.

For controlling strategy exploration, I first studied how to efficiently build a game

model by setting MSSs. After observing a simple regularization deployed in PRD can

accelerate the overall equilibrium computation, I applied an explicit regularization

approach to strategy exploration and introduced a novel MSS RRD. I showed the

effectiveness of RRD on identifying strategically important strategies in few-player

games with large strategy spaces and offered an explanation on the enhanced perfor-

mance of RRD, supported by empirical observations. Apart from RRD, I underscored

the effectiveness of alternative approaches such as MRCP and QRE for exploring

strategies.

While studying the impact of MSSs in strategy exploration, I realized that some

MSSs could lead to an arbitrary NE, which might not possess desired properties such

as high social welfare. In other words, we might be interested in not only the solu-

tion but its characteristics. To steer strategy exploration toward NE with specified

characteristics, I introduced the concept of generalized ROs within the PSRO frame-

work. Unlike the standard PSRO approach, generalized ROs go beyond optimizing

utility against opponents’ strategies and can incorporate specified preferences. I pre-

sented three instances of ROs for PSRO, each reflecting different strategy exploration

preferences. To evaluate the effectiveness of these generalized ROs, I conducted ex-

periments using sequential bargaining games and attack-graph games. By comparing
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the solutions obtained using different criteria, I found that the choice of ROs can sub-

stantially affect equilibria outcomes and steer strategy exploration toward equilibria

with preferred features.

For games with a large number of players, I extended the iterative EGTA (PSRO)

results from finite games to MFGs. This extension suffered from several issues such as

the non-linearity of the utility function in MFGs (in which case a game model cannot

be define in terms of the usual components) and the existence issue of NE in an

MFG model. To handle these issues, I first provided a game model learning approach

to learn the utility function of MFGs. I developed a coarse coding representation

for the high-dimensional inputs (i.e., time-dependent strategies and distributions)

of MFG utility functions based on the features of EGTA. I also developed a data

sampling scheme that effectively samples data in large strategy spaces. I showed that

the learned game model exhibits the ability of generalization and can successfully

support game-theoretic analysis. After defining game models through learning, we

can employ the EGTA framework. I first proved the existence of NE in MFG models

and then adapted EGTA to MFGs. My experimental results showed that the EGTA

framework can successfully construct a game model incorporating the NE of MFGs

in various configurations. Additionally, I illustrated that employing a learned game

model significantly reduces the computational cost of analyzing intermediate game

models, compared to simulating utility queries for all scenarios. This reduction in

cost is attributed to the low expense associated with querying a learned model.
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