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ABSTRACT

The annual average extent of Arctic sea ice has declined steadily in recent decades

and the diminishing is expected to continue. Expansion of the duration and spatial

extent of seasonal ice-free water will increase the accessibility of maritime activities

in this polar region. Much of previous research for ship activities in the Arctic region

has focused on ice-breaking operations that are limited to low speeds, where wave-

making resistance is less important. Ships will seek to travel at higher speeds in the

Arctic. Yet there is little research on high-speed ship transits in icy conditions. The

problem of high-speed ship transit in the open water between large ice sheets (lead)

is becoming an increasingly common scenario but has not been studied previously.

This dissertation presents a combined theoretical and numerical analysis of a ship

traveling in a lead with the objective to understand how the ice sheets influence the

ship hydrodynamics, and how the ice responds to the ship-generated waves. The first

part of the analysis uses a mathematical model to evaluate the wave resistance in

deep-water canals (or ice sheets of infinite thickness). The model is able to separate

the contributions of the transverse and divergent waves to the total wave resistance.

Significant influence of both the ship speed and canal width is observed to increase

the wave resistance by as much as 129% or decrease by up to 82% relative to the

open-water conditions.

The second part of the analysis uses high-resolution computational fluid dynamics

(CFD) on a contemporary ship that is traveling between two rigid ice sheets of finite

thickness. The CFD simulations identify the critical ice thickness that corresponds to

the condition in which the ice sheets function nearly as canal walls. It is found that
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the effect on the wave resistance is noticeable when the ice is 5% of the fundamental

wavelength λ, and when the ice sheets are thicker than 20% of λ, the resistance change

due to the sheet ice is nearly that of canal walls. CFD simulations are also performed

for the same idealized canal from the first part, which demonstrate strong agreement

in wave resistance with the theoretical analysis. The more accurate CFD confirms a

74% increase and 31% decrease of wave resistance in leads.

The last part of the analysis investigates the problem of a ship traveling in a

lead between flexible ice sheets by using an adapted fluid-structure-interaction (FSI)

solver. The FSI solver couples a moving CFD domain and a static ice sheet that is

modeled as a thin elastic plate. The thin ice sheets are generally compliant with the

water waves, where the ice deflections are found to correspond to the ship-generated

waves. The maximum ice deflections always occur at the ice edge, which increases with

ship speed and decreases with ice thickness. Overwash on top of the ice is found to

be a significant phenomenon and greatly affects ice behavior. Higher overwash flux

rates unexpectedly occur on thicker ice, which is explained by the smaller relative

wave elevations for the thinner ice due to its compliance. Potential ice fractures are

identified by using the Mohr-Coulomb yield criterion for sea ice, where both tensile

and compressive failures are found for the higher ship speeds and most of them occur

on the ice edge.
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CHAPTER I

Introduction

1.1 Background and Motivation

The sea ice coverage in the Arctic region is rapidly evolving. Annual average Arctic

ice extent has declined steadily in recent decades and the diminishing is expected to

continue or accelerate through the century (Overland et al., 2019). Satellite mea-

surements show that the Arctic has lost more than 50% of multi-year ice (MYI)

during the period of 1999-2017 and MYI now covers less than one-third of the Arctic

Ocean (Kwok, 2018). The heavy losses of thick MYI shifted the Arctic ice cover

towards largely seasonal ice that does not grow thick enough to survive the summer.

Predictions by climate models suggest a nearly ice-free Arctic in the summer is possi-

ble within a few decades (Overland and Wang, 2013; Overland et al., 2019; Landrum

and Holland, 2020).

Expansion of the duration and spatial extent of seasonal ice-free water will bring

changes in accessibility of maritime activities in the Arctic region (Council, 2009).

This part of the planet sees increased traffic each year (Smith and Stephenson, 2013).

Commercial ships see advantages to Arctic transit because compared to traditional

routes via the Suez and Panama canals, the Arctic routes significantly reduce the

travel distance between Asia, Europe, and eastern North America, yielding substantial

time, fuel, and emission benefits (Hansen et al., 2016). For example, the Northern
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Sea Route (NSR) and Northwest Passage (NWP) are two major alternative shipping

routes. NSR shortens the transit distance from northern Europe to northeast Asia

and northwest North America by up to 50% relative to the southern routes through

the Suez or Panama Canal (Mulherin et al., 1996). NWP shortens the transit distance

from western Europe to the Far East by 9,000 km compared to the conventional route

through the Panama Canal (Howell and Yackel, 2004).

Figure 1.1: The Northern Sea Route and Northwest Passage.

The increasing global and Arctic temperatures will continue to open access to

the Arctic, and both the number of ships and the Arctic shipping season length will

continue to increase. However, there is still ice cover throughout the summer and

transit using the established routes requires either an ice-strengthened hull or an ice-

breaker escort (Melia et al., 2017). Ice breakers create channels in the ice leaving

crushed ice between two large ice sheets. As the temperatures change the crushed

ice can melt leaving an open-water ice channel (lead), which is demonstrated by the

pictures in Figure 1.2. An idealized illustration of ship transit in a lead is depicted
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(a) ice channel filled with crushed ice (b) open-water ice channel

Figure 1.2: Ships in ice channels.

in Figure 1.3 along with the open-water and canal conditions. For the lead scenario,

the calm water surface is covered with a level ice sheet of uniform thickness that is

separated by open water of constant width in the middle of the domain forming a

channel. The typical Arctic ice thickness varies from 1 to 3 m (Kwok, 2018), and can

be even thicker, especially when considering ridges.

In general, the conditions for Arctic transit are highly variable, and during transit

a ship can see segments that are in open water, or partially confined water with solid

ice nearby, or crushed ice in the channel between solid ice on either side. Ships will

adjust their speed based on the local conditions. Ideally it travels at the target open-

water transit speed, but lower speeds are required when the nearby ice is thick and

the channel is narrow or full of crushed ice and larger floe ice (Luo et al., 2018).

The existence of ice affects the ship performance, including the ship resistance that

is directly related to the required ship propulsive power, ship motions, and unsteady

effects that concern safety and passenger comfort (Faltinsen, 2005). Experiments

by Leiviskä et al. (2001) show that the ship resistance can more than double in

narrow leads compared to that in open water. Newman (1962) shows by theoretical

analysis that the wave resistance can increase or decrease > 50% in canals, where the

canal walls can be regarded as ice sheets of infinite thickness. The unsteady effects are
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(a) open water

w

h

(b) open-water ice channel (lead)

w

(c) canal

Figure 1.3: Idealized illustration of three different scenarios for ship transit. Ship
front is shown, w is the canal or channel width, h is the ice thickness.

the fluctuations in the ship resistance for a ship traveling in confined water, which

occur even the ship has reached a constant speed for a long period of time. The

unsteady effects not only impact the propulsive power requirement, but also may cause

seasickness to passengers. Fluctuations up to around 50% of the steady resistance are

found in the asymptotic analysis of deep-water canals by Doctors et al. (2008). On

the other hand, the ship-generated waves can affect the sea-ice hydroelasticity and

the integrity of the ice cover (Dumas-Lefebvre and Dumont, 2021), especially for the

thin ice. For the problem of ship transit in open-water ice channels, the questions

of what happens to the ship hydrodynamics and how the ice responds to the ship

wakes as the ship speed and channel conditions change throughout transit need to

be addressed. Understanding the involved ship-wave-ice interactions is essential for

guiding future ship operations in icy conditions.

1.2 Literature Review

This section reviews the literature related to the topic of ship transit in a lead. First,

previous research on ice-breaking activities are reviewed, where the operations are

limited to low speed and the ice-breaking resistance is usually the main component
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of the total resistance. The second part introduces the interactions between ocean

waves and sea ice in a natural environment to discuss the hydroelasticity of ice sheets

and the existing continuum models for governing responses of continuous ice covers,

from which the thin-elastic-plate model is selected for modeling the flexible sheet

ice. Then theoretical works on ship traveling in a canal are reviewed, which can be

utilized to elucidate ship operations in a lead. The last part introduces the research

on ship transit in a lead, where the investigation approaches include observations,

experiments, theoretical analysis, and numerical simulations.

1.2.1 Ice Breaking at Low Speed

The majority of previous research for ship activity in the Arctic has focused on ice-

breaking operations and how to strengthen the hull and transit at low speed (Valanto,

2001; Su et al., 2010; Myland and Ehlers, 2016; Li et al., 2021). Resistance in level ice

is one of the main performance criteria for evaluating vessels operating in ice-covered

waters. The total ship resistance for ice breaking can be divided into four distinct

components (Spencer, 1992; Kim et al., 2013)

RT = Rbr +Rc +Rb +R0, (1.1)

where

RT = total ship resistance in ice,

Rbr = resistance due to breaking the level ice,

Rc = resistance due to clearing of the broken ice,

Rb = resistance due to buoyancy of the broken ice,

R0 = open-water resistance.
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A level-ice resistance test can be conducted to determine the total resistance RT . The

test is repeated, in which the ice sheet is cut to remove the ice strength but the ice

pieces are in place, to determine the combination of three components (Rc+Rb+R0).

The latter is called the pre-sawn test. The resistance due to breaking the level ice

Rbr is the difference between the two. Open-water resistance R0 is known from open-

water tests. At low ship speed, R0 and Rc are small, Rbr is thought to be the main

component of the total resistance for breaking high-strength level ice.

Figure 1.4: Breaking patterns of model ice under water with two different ship models.
From Fig. A6. in Myland and Ehlers (2016).

The important parameter to characterize ship speed is the ship-length Froude

number Fr = U/
√
gL, where U is the ship speed, g the acceleration of gravity, and

L the ship length. Herein the speed is considered low in the sense that the wave

resistance is small, and this corresponds to conditions when Fr < 0.15 (Myland and

Ehlers, 2016; Li et al., 2021; Riska et al., 2001). There is very little previous work done

on the influence of ice sheets on the wave resistance of ships when traveling at higher

speeds when the wave resistance is not small, (i.e. Fr > 0.15). The design speed of

commercial vessels for open-water operation is often in the range 0.15 < Fr < 0.25,

in which there is significant wave resistance. Naval vessels can travel even faster, and

reach Froude numbers up to Fr ≈ 0.4 and even higher. With the new transit routes
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of the Arctic with more open water segments and proximal sheet ice, it is important

to understand the influence of the ice on the ship resistance for speeds in which

the wave resistance is important. The presence of ice near the ship alters the wave

resistance, both beneficially and detrimentally, and this has important ramifications

for fuel efficiency, emissions, safety, and for time of transit and logistical planning.

1.2.2 Wave-Ice Interactions and Ice Modeling

A closely related topic to the ship-wave-ice interactions is that of environmental ocean

waves and sea ice. Sea ice is found in various forms including loosely compacted ice

floes, pancake ice, grease ice, frazil, and continuous ice plates. Many theoretical

models have been constructed to describe how sea ice affects ocean waves, and vice

versa. In these models, the sea ice is presumed to be elastic, viscous, or visco-

elastic. Each assumption is reasonable under various circumstances, but there is no

comprehensive model that can describe the interaction between surface gravity waves

and all types of ice covers (Squire, 2020).

In the marginal ice zone (MIZ), which is the boundary between the open ocean

and ice-covered seas (see Figure 1.5), such interactions usually occur on small to

medium scales in terms of the relative size of sea ice to ocean waves as the floe sizes

in the MIZ are generally smaller due to wave-induced ice breakage and the ice cover

is therefore normally less compact. Internal stresses are less important than other

forces (e.g. floe-floe collision forces) for the compact ice packs because ice floes tend

to move laterally. In this region, understanding how the surface waves affect the floe

size distribution (FSD) is required to define the MIZ (Williams et al., 2013; Montiel

and Squire, 2017; Montiel and Mokus, 2022; Mokus and Montiel, 2022).

For large floes or consolidated ice sheets, the ice is highly compact and deforms

in response to stresses imposed by currents and waves, known as the hydroelasticity

of sea ice. The length scales associated with the ice cover are large enough and its
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Figure 1.5: Marginal ice zone (MIZ) of Prydz Bay. Photo from Lu et al. (2008).

integrity is sufficiently high that the ice may be regarded as quasi-continuous. Several

continuum models have been developed, including the mass-loading model, the thin-

elastic-plate model, the viscous-layer model, and the visco-elastic model. This disser-

tation concerns continuous sheet ice and all these continuum models are appropriate

candidates for modeling the flexible sheet ice in this work. The mass-loading model

considers the ice cover as a collection of noninteracting point masses (Peters, 1950;

Wadhams and Holt, 1991). The thin-elastic-plate model assumes that sea ice behaves

as a homogeneous semi-infinite thin elastic plate. Many features of the ice response

can be described by the thin-elastic-plate model, but since the initial model cannot

predict energy attenuation, additional mechanisms have been adopted to model the

energy loss (Wadhams, 1973; Squire, 1984). The viscous-layer model, first introduced

by Weber (1987) and improved by Keller (1998), considers the ice layer as a sus-

pension of solid particles. Wang and Shen (2010) proposed a visco-elastic model to

describe the ice-ocean system as a homogeneous visco-elastic fluid layer overlaying

an inviscid layer of water by generalizing earlier models of ice-coupled wave propaga-

tion in continuous ice (Fox and Squire, 1994; Keller, 1998). Viscosity is suggested to

come from the interactions of particles like ice floes that are much smaller than the
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wavelength, and the elasticity property comes from the rigidity of ice floes in which

floe sizes are relatively large compared to the wavelength. A summary of the appli-

cability of different models for governing sea ice covers is provided, which depends

on the elasticity and viscosity of the ice field. In general, the thin-elastic-plate model

is more suitable for large rigidity and viscous-layer model is better for small rigidity,

and visco-elastic model is in between. For this work, the thin-elastic-plate model is

selected for governing the flexible ice sheet considering the large modulus of rigidity

of the sheet ice (O(109)Pa) as well as the simplicity of the model.

1.2.3 Ship Traveling in a Canal

Whereas high-speed transit of a ship near ice sheets has not been been studied in

detail in the past, the problem of a ship traveling in a canal, where two side walls

extend to the bottom (see Figure 1.3c), is a related problem that has been extensively

studied. By constructing the relationship between operation in a canal and transit

in water bounded by adjacent sheet ice, the knowledge from operation in a canal can

be utilized to develop understanding of Arctic transit.

An early example of the study of operation in a canal is Newman (1962). In that

work the problem of a uniform pressure distribution, which represents an idealized

ship of shallow draft, is studied for the case of constant-speed travel in a canal of finite

width and depth. The method of images was used to create canal walls by using a

number of identical pressure distributions that are spaced laterally with the distance

corresponding to the canal width. Figure 1.6 plots the wave resistance in a canal

relative to that in open water as functions of Froude number and canal width, which

are calculated using the method of images from Newman (1962) with a rectangular

pressure patch. In their analysis, both significant increase and decrease in wave

resistance are found, which are > 50% of the open-water resistance, and the effects

are most pronounced for Froude number less than 0.5, and in the case of narrow
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Figure 1.6: Reproduction of the plots for relative wave resistance of a rectangular
pressure patch in canal, calculated using the method of images from Newman (1962).
The pressure patch has a length of L = 0.86 m and a width of B = 0.33 m, which
resembles the waterline of the model scale planing hull used in this work. w is the
canal width, R0 is the wave resistance in open water, g = 9.81 m/s2.

canals. A limitation in the analysis is that a pressure patch is suitable for ships that

have very shallow draft (their vertical extent being much less than their lateral or

longitudinal length), which is not always the case for many ships.

Instead of using an array of images of a pressure patch, an array of images of an

individual hull can be used to represent a multihull vessel. Most multihulls have either

two or three hulls (catamaran or trimaran), but if the number of hulls is sufficiently

large, then a canal-like boundary condition is implicitly present on the midplane

between the inner most hulls. The solution on the midplane between individual hulls

is like a symmetry plane, and thus a canal. This concept is used in the theoretical

model in this thesis and is based on the wave resistance of multi-hull vessels studied

in detail in Tuck and Lazauskas (1998); Faltinsen (2005).

The previously cited studies for either a pressure patch or multihull show a dra-

matic increase or decrease in wave resistance of a ship traveling in a canal, but much

less attention is paid to the resulting wave field. The wave pattern around the hull
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can be used to elucidate wave interaction that leads to the favorable results of reduced

wave resistance. For example, Chen and Sharma (1997) demonstrates theoretically

that a slender ship moving in a shallow water canal at supercritical speed can make

wave resistance vanish, which was explained through the favourable interference of

the reflected bow waves and the stern waves. The analysis of the wave field is used

in this work to show how the ship in ice may alter speed to achieve fuel savings.

1.2.4 Ship Traveling in an Open-Water Ice Channel

Open water between large ice sheets, or leads, are common features of polar ice

fields and can be formed when a crack opens either by ice-going vessels or divergent

forces due to ocean currents and wind. As shown in Figure 1.7, modern ice-breakers

are able to create open-water ice channels through level ice by flushing the broken

ice fragments out of the channel. When a lead is narrower than the beam of the

navigating ship, the ship has to break some ice by itself (Li et al., 2021). If the lead

is wider than the ship, the ship will be able to travel in the open water with two ice

sheets on either side. Although if the lead is wider than the ship beam there could

be no direct ship-ice interactions, the ship performance will still be influenced by the

existence of the ice sheets through the wave pattern changes.

Figure 1.7: Ice-breakers creating open-water ice channels either in straight-ahead or
oblique mode. Pictures courtesy of Aker Arctic.
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1.2.4.1 Observations and Experiments

There is specific work for ships that operate in a lead. In situ observations of wave-

induced sea ice breakup in natural environment were reported in Dumas-Lefebvre

and Dumont (2021), where a coast guard ship sailed at constant speed near large

ice floes (0.3 to 0.5-meter thick) to create waves and footage was recorded to obtain

the temporal evolution of the ice breakup and resulting floe size distribution (FSD).

Figure 1.8 shows an image of sea ice breakup from the edges caused by ship-generated

waves. The incident wavelength, which is suggested to belong to waves of maximum

amplitude and propagate at the angle, θ = arcsin(1/
√

3) ≈ 35◦16′ with respect to

the ship track, was found to be a determinant of the maximum ice floe size besides

the ice rigidity. The comparison of the observed breakup extents showed that the

thicker ice broke up much further from the ice edge than the thinner ice, while the

incident waves were similar in terms of period, wavelength and amplitude for both

experiments. Dumas-Lefebvre and Dumont (2021) suggested that thicker ice can at-

tenuate waves less than thinner ice, which may contradict some proposed theories.

Floe-area-weighted FSDs exhibit a modal shape, indicating that a preferential size is

generated by wave-induced breakup. Furthermore, the increase of the mode of the

distribution with greater thickness indicates that ice thickness plays a defined role in

determining the preferential size.

Model tests were conducted by Leiviskä et al. (2001) in an ice tank to investigate

the effects of ship speed and channel width on the ship resistance. The layout of

the ice tank in the experiments is shown in Figure 1.9, in which B is the ship beam

and W is the channel width between the two ice sheets made of model ice. Various

ice sheets of different ice thickness, stiffness (Young’s modulus) and strength were

tested. Figure 1.10 shows the resistance of the ship model in the ice channel relative

to that in open water as a function of ship speed and relative channel width (W/B).

Note the ship model has a length of 5.215 m, the ship speed of 1 m/s corresponds
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Figure 1.8: Breakup of sea ice sheet caused by ship-generated waves. Picture
from Dumas-Lefebvre and Dumont (2021).

to Fr = 0.14. Significant increase in the ship resistance is found in narrow channels

with a relative resistance of R/R0 > 2, which indicates an increase over 100% relative

to that in open water.

1.2.4.2 Theoretical Models

Recently a theoretical model was used to investigate the problem of a ship traveling

in open-water ice channels, where a pressure load is employed to mimic the ship hull

and ice covers are treated as a thin elastic plate or visco-elastic plate. Ren et al. (2016)

investigated the wave-excited motion of a body floating on water confined between

two semi-infinite ice sheets, where the fluid was treated as ideal and the ice sheet

was modeled as an elastic thin plate. Added mass and damping coefficients of the

body due to the ice sheets and excitation force were analyzed in the work, which

were found to be different from that in open sea. Resonant behaviour with extremely

large motion was found to be possible under certain conditions. Similarly, Shishmarev

et al. (2016) studied the fluid beneath the ice sheet using potential-flow theory and the

hydrodynamic pressure on the ice-fluid interface was given by the linearised Bernoulli
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Figure 1.9: The layout of the ice tank in
the experiments by Leiviskä et al. (2001). Figure 1.10: The relative resistance as

a function of ship speed and channel
width (Leiviskä et al., 2001).

equation. The ice sheet was modeled as thin visco-elastic Kelvin-Voigt plate and the

deflection of the ice sheet w is described by

Mwtt +D

(
1 + τ

∂

∂t

)
∇4w = −P (x, y, t) + p(x, y, 0, t), (1.2)

where M is the mass of ice per unit area, D is the ice rigidity, τ is the retardation time

accounting for the viscosity, p is the hydrodynamic pressure and P is the external

pressure. The equation can be solved mathematically with Laplace’s equation for

velocity potential and the boundary conditions for the ice deflection and fluid velocity.

The results show that the dynamic component of the fluid pressure is important for the

accurate prediction of ice-fluid interaction and multiple critical speeds of hydroelastic

waves, at which amplified ice deflection and stress occur, were also observed. Xue et al.

(2021) investigated the hydroelastic response of floating ice sheets with open water

between them and a moving load either in the open water or on the ice sheet. The flow

under the ice was modeled as potential and linear by a boundary-integral method,
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and the ice was modeled as a visco-elastic plate. The effects of the ice thickness, lead

width and load properties on the critical speeds were investigated, and the moving

speeds that provide the maximum ice deflection, maximum stress in the ice, and

maximum wave-making resistance, were determined separately. Figure 1.11, which is

from that paper, shows the maximum deflection and stress along the ice edge as a

function of ship speed. It is shown that the ice deformation is very small for speeds

that are smaller than the critical speed. As the speed is increased towards the critical

speed (peak of the curve) the deformation grows rapidly and reaches a maximum,

and then as the speed continues to increase the ice deformation slowly decreases.

The hydroelastic responses of thin ice sheets were also mathematically studied by

other researchers (Li and Wu, 2021; Khabakhpasheva and Korobkin, 2021; Li et al.,

2017), where the effects of the ice dimensions and load properties on the hydrodynamic

forces and ice responses were investigated. Li and Wu (2021) finds that the existence

of the ice sheet leads to an oscillatory behavior of the hydrodynamic force compared

to open-water condition. The oscillatory force implies that ships can have motion

when operating in otherwise calm conditions.

Figure 1.11: (a) Maximum deflection that peaks at U = 14.8 m/s and (b) maximum
stress along the ice edge that peaks at U = 11.85 m/s. The ice thickness is 0.4 m and
the Young’s modulus is E = 5 GPa. From Figure 19 in Xue et al. (2021)

Theoretical models have provided great insight into sea-ice hydroelasticity, but
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they are built upon certain assumptions and can exclude some non-trivial phenomena,

such as wave nonlinearity, realistic ship geometry, and effects such as turbulence,

viscous separation, viscous wave damping, and the overwash on floating bodies of

small freeboard (Skene et al., 2018). Recent experiments assessed the accuracy of

existing theoretical models in certain scenarios of wave-ice interactions, which showed

these assumptions can cause considerable deviations. Bennetts and Williams (2015)

conducted experiments to investigate the transmission of regular water waves by

arrays of floating discs in a wave basin and compared it with theoretical predictions

that are based on potential-flow theory and the thin elastic plate model. Agreement

was found except for tests with large-amplitude waves and dense arrays of discs,

where they attributed the loss of model accuracy to the wave-energy attenuation due

to overwash. Nelli et al. (2017a) measured the wave fields reflected and transmitted by

thin floating plastic plates with or without edge barriers that are equipped to restrict

overwash waves. The proportion of energy transmitted by the plates without barriers

was shown to decrease as the incident waves become steeper, which the authors

hypothesized to be related to the wave energy dissipation due to wave breaking in

the overwash region. Other two experimental studies (Toffoli et al., 2015; Yiew et al.,

2016) also suggests increasing wave energy dissipation happens due to overwash with

large-amplitude waves.

1.2.4.3 Numerical Simulations

Computational Fluid Dynamics (CFD) is an approach for modeling hydrodynamic

problems in which the Navier-Stokes equations can be numerically solved with the

inclusion of turbulence models and complex and realistic structural geometry.

CFD approaches have been successfully applied to study wave-ice and ship-wave-

ice interactions. Bai et al. (2017) used both the potential-flow model HydroSTAR

and a viscous-flow OpenFOAM solver to simulate the kinematic response of small
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sea-ice floes in regular waves. The results were compared against experimental data

and suggested the potential-flow solver overestimated the heave and surge Response

Amplitude Operators (RAOs), while OpenFOAM provided a much better agreement

with the experimental data. Nelli et al. (2017b) also employed the OpenFOAM solver

IHFOAM, which was developed by Higuera et al. (2013) and solves for Reynolds

Averaged Navier-Stokes (RANS) equations, to simulate wave reflection and transmis-

sion by a floating thin plastic plate. The comparison with the experiments conducted

in Nelli et al. (2017a) also validated the ability of the numerical model to accurately

predict the energy dissipation in the overwash process.

Huang et al. from University College London authored a series of works focussed

on wave-ice or ship-wave-ice interactions with CFD. Based upon the work of Tuković

et al. (2018), Huang et al. (2019) presented a Fluid-Structure-Interaction (FSI) solver

within the framework of OpenFOAM to simulate the hydroelastic response of a large

ice sheet in regular waves. In the solver, both the fluid domain and solid domain

were solved with the Finite Volume Method (FVM), where the ice deformation was

governed by the St. Venant Kirchhoff solid model and the interactions were achieved

through a two-way coupling between the fluid and solid solutions. The validation

against experiments of Sree et al. (2017), Nelli et al. (2017a) and Skene et al. (2015)

showed good agreement in predicting wave reflection and transmission. Compared

with theoretical methods, the numerical model demonstrated the capability in pre-

dicting overwash and the associated wave energy dissipation with the incorporation

of interface capturing technique through the Volume of Fluid (VOF) approach (Hirt

and Nichols, 1981). In Huang et al. (2020), CFD was used to simulate a ship traveling

in water with small floating ice floes, where the Discrete Element Method (DEM) was

coupled to govern the ice motions and the ship-ice/ice-ice collisions. Froude numbers

from 0.06 to 0.18 were considered for the simulations. The accuracy of this model in

predicting the ice-floe resistance was confirmed by the towing tank tests (Guo et al.,
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2018). An empirical equation that can quickly predict the effects of ice floes on ship

resistance was derived based on the same model (Huang et al., 2021b). Huang et al.

(2021a) simulated a KRISO Container Ship (KCS) model advancing in an open-water

channel between two rigid ice sheets at speeds between Fr = 0.03 and 0.12. Channel

width from 1.1 to 3 times the ship beam and ice thickness from 10% to 30% of ship

draught were tested and their influences on the ship resistance and wave pattern were

analyzed. An increase in the pressure component of the ship resistance was found in

the case of narrow channels at the lower speed Fr = 0.03. Ice thickness was varied

for Fr = 0.03, in which tests the ship resistance plateaued after ice thickness reached

15% of ship draught, suggesting that the ship-generated waves were largely reflected

by the thick ice edges which function nearly as canal walls.

1.3 Research Gap and Open Questions

Following the research overview on ships traveling in canals or ice channels, clear

research gaps can be identified.

Much previous research for ship activity in the Arctic has focused on ice-breaking

operations at low speeds. Research on ship transit in open-water ice channels is rare.

Among the handful works, Huang et al. (2021a) is the only numerical work but is

limited to a low-speed regime (Fr < 0.12) and rigid-ice assumption. Higher-speed

transit (Fr > 0.2) of a ship near sheet ice has been not been studied in the past.

The Arctic is already been used for tourism, military and rescue ships that will seek

to travel at higher speeds. More dramatic changes in ship hydrodynamics and wave

fields occur at higher speeds, understanding the involved ship-wave-ice interactions in

higher-speed regime is essential for guiding future ship operations in icy conditions.

The ship-generated-waves can also affect the integrity of the ice covers, which has

a potential impact on the Arctic environment and can cause destructions to the
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open-water ice channels that are maintained by ice breakers. Therefore, it is also

indispensable to assess the ice reponses to the ship-generated waves by modeling the

fluid-structure interactions between the ship wake and sea ice.

In the past three decades, sea ice hydroelasticity subject to ocean wave loads

has been extensively studied with theoretical models. However, theoretical models

can exclude some non-trivial phenomena, including wave nonlinearity, realistic ship

geometry, and overwash. Recent experiments indicate that the ideal assumptions

used for these theoretical models can cause considerable inaccuracies. Theoretical

models tend to underestimate wave energy dissipation as the wave breaking occurring

in the overwash process is not taken into account. Numerical models capable of

simulating ship-wave-ice interactions under high ship speeds with adequate fidelities

and reasonable cost have yet to be proposed or demonstrated.

Ship transit in open-water ice channels is a complex hydrodynamic problem with

multiple sub-problems involved. Figure 1.12 depicts the sub-processes in the ship-

wave-ice system for the problem of ship-transit in open-water ice channels. No direct

contact happens between the ship and ice in this problem, while the wave acts as the

means to transfer the momentum and energy. This complex problem also involves

many variables, which include but are not limited to the water depth, hull geometry,

ship speed, channel width, ice dimensions (ice thickness, draft and freeboard, and ice

extent), and other ice properties that determine the ice flexure and internal stresses.

The large number of dimensions of variables presents a difficult challenge in the

full-spectrum analysis of the problem, so development of an efficient and affordable

investigation method is necessary.

There are some open questions regarding this engineering problem that are worth

answering.

1. As the theory of free water waves suggests the momentum and energy transfer

concentrates in the vicinity of the free surface with an exponential decay with
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Ship Ice

Wave

no direct contact

Figure 1.12: Illustration of ship-wave-ice interactions for the problem of ship-transit
in open-water ice channels. Adapted from Huang et al. (2021a).

depth in the water, it is reasonable to assume sheet ice functions as canal walls

if the ice is thick enough. What is the critical ice thickness above which the ice

sheets can be treated as canal walls?

2. A ship traveling in a canal is a related problem to that of ship transit near an ice

sheet, and has been extensively studied with theoretical methods. Theoretical

methods are more efficient and affordable compared with experiments and CFD

simulations. Can we utilize the wave pattern analysis to deepen and generalize

the analysis of ship hydrodynamics in a canal and further extend the analysis

to elucidate the problem of ship transit in a lead?

3. How do the ship speed, channel width and ice thickness affect the ship resistance,

ship motions, wave fields, and ice responses?

4. The ice flexure greatly depends on the ice thickness. How does the ice flexure

affect the ship hydrodynamics?

5. What determines the amount of overwash on top of the ice? How does the
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overwash affect the ship hydrodynamics, wave fields, and ice behaviors?

1.4 Overview of Thesis

Numerous studies have focused on ship-ice interactions in ice-breaking through level

ice, and ocean wave and sea ice interactions, where investigation approaches have

been well established. Yet there lacks of work into high-speed ship transit in open-

water ice channels, which is becoming an increasingly common scenario in the polar

region as leads are created by modern ice breakers or due to ocean currents or wind.

This work proposes to investigate the ship-wave-ice interactions for ship transit

in open-water ice channels with high-resolution CFD models, where a high-speed

regime of 0.2 < Fr < 1.4 is studied. Ship resistance, ship motions, wave fields, and

ice responses are analyzed.

An idealized scenario is constructed for the problem of ship transit in a lead to

simplify the analysis. Figure. 1.13 shows a schematic of the computational domain, in

which the initially calm water surface is covered with a level ice sheet that is separated

by open water of constant width w in the middle of the domain forming a channel.

The ship travels straight ahead at a constant speed U in the middle of the open

water between the floating ice sheets. The rectangular ice sheet of uniform thickness

h is either treated as rigid or flexible and the fracture is neglected. Only half of the

domain is discretized with the use of symmetry plane through the centerline. Details

of the setup are presented in Chapter II.

The thesis is orginized as: following the introduction to the problem and literature

review in this chapter, Chapter II describes the numerical solvers and simulation

setup that are applied in this work, including the CFD solver for modeling the fluid

domain, the equation of a thin elastic plate for governing the ice behavior, and the

FSI solver for coupling the fluid and structural domain solutions.
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Figure 1.13: Computational domain of the open-water ice channel.

Chapter III uses theories from wave pattern analysis and the multi-hull model

from Tuck and Lazauskas (1998) and Faltinsen (2005) to analyze a single ship travel

in a deep-water canal. The changes of the wave resistance relative to that in open

water are analyzed with respect to the ship speed and canal width. The analysis

is used to distinguish between the transverse and diverging waves that contribute

most significantly to the alteration of the wave resistance. The contributions due to

transverse and divergent waves are validated by towing-tank tests conducted by a

student team.

Chapter IV investigates the problem of ship transit in a lead between rigid ice

sheets. It first discusses the typical ice thicknesses in the Arctic region and utilizes

the knowledge of the relationship between ice flexure and critical speed to justify the

rigid-ice assumption for the investigated ice thicknesses. The CFD solver is validated

by comparing open-water simulations with existing experiments and is then used to

study the same idealized canal from Chapter III of constant width. The relation

between the theoretical analysis and the CFD of a full-scale combatant ship in a

canal is made such that the wave pattern analysis from the theoretical model can be

used to elucidate operation in lead with finite-thickness ice sheets. The analysis is

extended to rigid ice sheets of finite thicknesses, where the effects of the ship speed

and ice thickness on the ship resistance and wave fields are discussed in the speed
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range of 0.2 < Fr < 0.4. The vertical distribution of momentum flux in the lateral

direction is analyzed to strengthen the hypothesis on the effects of ice thickness. Wave

resistance and ship motions of a planing hull model traveling in the speed range of

0.4 < Fr < 1.4 are also discussed in this chapter. Chapter III and IV are expanded

upon the author’s pulished research (Zhang and Maki, 2023; Maki et al., 2022) with

the inclusion of complete case studies and analysis.

Chapter V extends the study to ship transit in open water between thin and

flexible ice sheets, where the full-scale combatant ship travels in the speed range of

0.2 < Fr < 0.4 between ice sheets that are 0.5, 1 or 2-meter thick. The sheet is

modeled as a thin elastic plate and the wave-ice interactions are solved with an FSI

solver. The chapter begins with a group of convergence studies to determine the

appropriate ice dimensions, finite element resolution and number of mode shapes for

the modal decomposition. Then the wave patterns are discussed along with the ice

deflections, where special attention is paid to the maximum deflection to identify the

critical speed. Overwash on top of the ice sheet is a significant phenomenon and is

supposed to influence the ice behaviors. The mass flux of overwash is compared for

different ship speeds and ice thicknesses.

Finally, Chapter VI concludes the dissertation, discusses its implications and lim-

itations, and provides suggestions for future work.
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CHAPTER II

Numerical Methods

This chapter introduces the numerical methods applied in this work. The first section

presents the CFD solver for modeling the fluid domain, where both the water and

air are solved and their mutual interface is captured by the volume-of-fluid (VOF)

method. Ship motions are handled by a six degree-of-freedom (6DOF) library that can

solve both prescribed and predicted motions and the corresponding mesh deformation.

The second section introduces the fluid-structure interaction (FSI) solver that models

the interactions between the flexible ice sheets and ship-generated waves. The ice

sheet is modeled as a thin-elastic plate and the deformation is solved by a linear

dynamic modal decomposition method.

2.1 CFD Simulations

The unsteady Reynolds-averaged NavierStokes (URANS) equations are solved with

the volume-of-fluid method for the air-water flow around the ship hull moving through

water that is formed by two ice sheets on either side. This section introduces the com-

putational domain, boundary conditions, governing equations, numerical schemes,

hull geometries of the two ship models used in this work, and the corresponding

spatial discretization.
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2.1.1 Computational Domain and Boundary Conditions

Two coordinate systems used in this work are demonstrated in Figure 2.1. At t =

0, the earth-fixed coordinate system ~X = (X, Y, Z) coincides with the translating

coordinate system ~x = (x, y, z). The translating coordinate system is fixed to the

translation of the ship in the X-direction, i.e. ~x = ~X −
∫ t

0
udt, where u is the ship

velocity vector. The translating coordinate system ~x = (x, y, z) is distinguished from

the frequently-used ship-fixed coordinate system, which both translates and rotates

with the ship motions.

X, x

Y, y

x

y

t = 0 t > 0

Figure 2.1: The earth-fixed coordinate system ~X = (X, Y, Z) and the translating
coordinate system ~x = (x, y, z) that translates with the ship. The origins are at
the center of gravity (COG) of the ship. The vertical components Z and z are not
displayed, which are positive upward.

Figure 2.2 shows the schematic of the computational domain for a ship transiting

in an open-water ice channel in the translating coordinate system. The initially calm

water surface is covered with a level ice sheet that is separated by open water (lead) of

constant width w in the middle of the domain forming a channel. The ship moves at

a constant speed U along the center of the channel and is allowed to heave and pitch.

B is the ship beam and is always smaller than w, which means no direct ship-ice

interaction occurs in this work.

The computational domain has a length of 7L with the ship centered at a distance

of 3L from the upstream boundary. The half domain width, which is the combination

of w/2 and the width of the ice sheet, has a large value of 16B to minimize the wave
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Figure 2.2: Schematic of the computational domain and boundary conditions (not to
scale). S.W.L. is the still water level.
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reflection from the side wall and to make the domain effectively infinite. The domain

dimensions are determined by a group of convergence studies on domain extensions.

H is the water depth and has a value that is several times the ship length, which

corresponds to a deep water condition Fd = U/
√
gH < 0.4 (Faltinsen, 2005; Sorensen,

2017). The draft of the ice is determined by the densities of water and ice, ρw = 1025

kg/m3 and ρice = 917 kg/m3, which means about 10% of the ice is above the calm

water plane.

Fluid flows, ship motions (only surge, heave and pitch are allowed), and ice behav-

iors are all assumed to be symmetric about the centerline of the channel. Therefore,

only half of the domain is discretized with the use of symmetry plane as the boundary

condition (BC) along the centerline. An inletOutlet BC is set for the upper boundary

to mimic the atmosphere and a no-slip BC is used for the bottom. The surfaces of

the hull and ice sheet are treated as solid walls. No-slip boundary conditions are as-

sumed, i.e. the fluid velocity is u = Uship at the hull surface and u = 0 at all surfaces

of the ice sheet. A zero-gradient BC is applied for the side wall and the downstream

boundaries to let ship-generated waves go through, which includes a zero-gradient

condition for the velocity and volume fraction, and a fixed pressure of zero. The inlet

boundary is assigned with waveAlpha and waveVelocity BCs that are defined in the

waves2Foam solver (version v1812) for wave generations, but no waves or inflow are

prescribed in this work as the ship is set to move in stationary water. A wave damping

zone is implemented in the upstream to absorb the waves that travel upstream, which

are generated during the speed ramp-up process, such that these waves will not be

reflected by the inlet boundary and contaminate the internal ship-wave-ice system.

The numerical damping zone has a length of L and has a relaxation function as a

wave outlet in Jacobsen et al. (2012)

αr(χr) = 1− eχr
n − 1

e− 1
for χr ∈ [0, 1] (2.1)
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αr is the factor controls the variation of physical quantaties and inside the damping

zone

φ = αrφcomputed + (1− αr)φtarget, (2.2)

where φ represents the transported quantities and is either the velocity or volume

fraction of water in this study, φcomputed is the computed value which usually contains

pressure disturbance and φtarget is set as calm water condition. χr is the translating

coordinate inside the damping zone and is 0 at the start (left of damping zone) and

1 at the end (right of damping zone, which is also the inlet position). The exponent

n controls the shape of the transition and a default value of 3.5 is used.

The ship and the entire fluid domain move with the ship velocity relative to sta-

tionary water. The ship is first accelerated through a smooth curve to a desired speed

U with an average acceleration of 0.1g, and then travels at the constant speed, and

the entire computational domain moves on the ship course at the same speed. The

acceleration process is important for the wave fields to reach a steady state. A smooth

speed ramp-up can help reach the steady state more quickly. A cosine function is used

for the speed ramp-up in this work

Uship =
1

2

[
U − cos(

t

tr
π)

]
, (2.3)

where tr = U/0.1g is the ramp-up time. This cosine function and its derivative, which

is the acceleration, are both continuous and differentiable for t > 0.

2.1.2 Numerical Solver and Governing Equations

The wave field and resistance are found by numerical solution of the unsteady RANS

(URANS) equations of an incompressible two-phase fluid

∇ · u = 0, (2.4)
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∂ρu

∂t
+∇ · (ρuu) = −∇prgh − g · x∇ρ+∇ ·

[
µeff(∇u +∇uT )

]
, (2.5)

where u is the flow velocity, ρ is the fluid density, µeff = µ+µt is the effective dynamic

viscosity, g is the gravity vector, and prgh is the hydrodynamic pressure that deviates

from the hydrostatic part. The turbulent viscosity µt is solved as a function of the

turbulence model and is evaluated by the one-equation Spalart-Allmaras turbulence

model (Spalart and Allmaras, 1992). Both full-scale and model-scale ship models

are analyzed in this work and high Reynolds numbers are expected. Having fully re-

solved turbulent boundary layers is not practical considering the computational cost.

Spalding’s wall function (Spalding, 1961) is applied to predict the friction velocity.

The moving air-water interface is captured using the volume-of-fluid (VOF) ap-

proach, in which an artificial compression term is added to maintain a sharp fluid

interface,

∂α

∂t
+∇ · (uα) +∇ · [urα(1− α)] = 0. (2.6)

Water and air are distinguished by the indicator function α(x, t),

α(x, t) =


1 water

0 air

0 < α < 1 interface.

(2.7)

In the one-fluid model, it is assumed that the intrinsic fluid properties, such as density

and viscosity, are updated based on the VOF function as,

ρ = ρ1α + ρ2(1− α) and µ = µ1α + µ2(1− α) (2.8)

where ρ1 = 998.8 kg/m3 and ρ2 = 1 kg/m3 are the densities, µ1 and µ2 are the

dynamic viscosity coefficients of water and air respectively. The URANS and VOF

equations are solved on a finite-volume discretization of the flow domain with a cus-
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tomized flow solver based on the OpenFOAM open-source CFD library.

A finite-volume cell-centered discretization is applied for arbitrary grid topologies

as described in Jasak (1996). The base OpenFOAM toolbox provides a variety of

numerical schemes for solving the discretized equations. Second-order spatial dis-

cretization schemes are used together with the first-order implicit Euler scheme for

time advancing and the varying time step size is determined by limiting the Courant

number

C =
u∆t

∆x
≤ Cmax, (2.9)

and Cmax is set as 3, where the real time step sizes after the simulations reach a steady

state fall in the approximate range of 0.002 s < ∆t < 0.005 s, depending on the ship

speed. The convection term is treated with a second-order linear upwind scheme to

preserve numerical stability while retaining the nominal second-order accuracy. A

non-orthogonal correction coefficient of 0.5 is specified to add non-orthogonal cor-

rection to the orthogonal component to maintain solution accuracy on a non-regular

mesh with skewed cells. The cell-limited scheme is applied on the velocity gradi-

ent to enforce boundedness in face interpolations. A second-order central difference

method is applied to discretize the diffusion term. The volume-fraction divergence

term is discretized using the vanLeer scheme to maintain its boundedness. The VOF

equation is solved with the multidimensional universal limiter for explicit solution

(MULES) method. The Pressure-Implicit Split-Operator (PISO) algorithm is used

for the velocity and pressure coupling.

2.1.3 Ship Models and Spatial Discretization

Two frequently-used ship models are adopted in this work, which are the full-scale

Office of Naval Research Tumblehome (ONRT) and a model-scale Generic Prismatic

Planing Hull (GPPH). The hull geometry, general characteristics and spatial dis-
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cretization are introduced in the following.

The ONRT ship model is a preliminary design of a modern surface combatant,

which is publically accessible for fundamental research. A schematic of the ship

model is shown in Figure 2.3. Only the bare hull with the front bulb is included in

this work, appendages including skeg, bilge keels, shafts, struts, rudders and most

of the superstructure are removed to reduce complexity of the hull geometry and

corresponding mesh size. The general characteristics for the full-scale model are

collected in Table 2.1.

Figure 2.3: Left is a schematic of the ONRT model. Right is a photo of a the USS
Zumwalt (DDG-1000).

Table 2.1: Characteristics for full scale ONRT ship model.

Length overall, m (ft) 154 (505)
Max. beam, m (ft) 18.78 (61.6)
Draft, m (ft) 5.494 (18.02)
Displacement, ton 8,507
Block coefficient 0.535
Pitch gyradius (kyy), m (ft) 38.5 (126.3)
Zero speed trim 0◦

Wetted surface, m2 3,237

The GPPH model was designed as a publicly releasable hull and was chosen to

be representative of typical planing hulls while minimizing geometric variables. This

design allows for geometry of reduced complexity as an initial test case for CFD
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predictions (Lee et al., 2017). A model scale of the GPPH with a scale factor of 10.7

and a length of 1.22 m (4.0 ft) is chosen for this study. Figure 2.4 shows a schematic

of the hull model and Table 2.2 shows the general characteristics of the model scale

GPPH.

Figure 2.4: Left is a schematic of the GPPH model. Right is a photo of a planing
boat.

The fluid domain is discretized with an unstructured grid composed of finite vol-

umes that are dominantly hexahedral, which is generated by the mesh generator

snappyHexMesh. An example of a coarse grid is demonstrated in Figure 2.5. The

grid is uniform around the ship and is stretched towards the boundaries to reduce

the total number of elements. Local refinement is applied near important features

including the hull and free surface (though is not displayed in the figure). Boundary

layers are also used for the hull surface to further reduce the y+, where an average

value of y+ ≈ 10 is achieved in this work.

Table 2.2: Characteristics for the model scale GPPH (10.7:1).

Length overall, m (ft) 1.22 (4.0)
Max. beam, m (ft) 0.37 (1.2)
Draft, m (ft) 0.072 (0.236)
Displacement, kg (lbs) 12.66 (27.85)
LCG (forward of transom), m (ft) 0.43 (1.41)
VCG (from keel), m (ft) 0.137 (0.449)
Pitch gyradius (kyy), m (ft) 0.2713 (0.89)
Zero speed trim 0◦
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Figure 2.5: Slices through the mesh, the left is through the symmetry plane and the
right is cut transversely through the midship.

2.1.4 Ship Motions and Mesh Deformation

Besides the forward motion, both ship models are allowed to heave and pitch, where

the associated ship motions are handled by a six degrees-of-freedom (6DOF) library

that is tightly coupled with the fluid solver. A deformable mesh technique is applied

to enable mesh deformation around the hull surface due to the heave and pitch, while

maintaining the mesh structure away from the hull.

The ship motions as well as the motions of the body-fitted meshes can be divided

into two parts. The first part is the prescribed translations, which in this case is

the ahead movement in the surge direction. The computation domain and mesh are

frozen to this movement, i.e. they translate synchronously with the ship at the same

forward speed. The second part is the heave and pitch movement, which are within

the X-Z plane. These motions are separated from the domain movement, i.e. the

computational domain does not heave or pitch with the ship. This is because the ice

is also defined as a domain boundary, such domain movements will cause deviation of

the ice from its equilibrium position. The heave and pitch movements can only cause

local mesh deformation within a distance from the hull surface. Figure 2.6 depicts an
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example of such ship motions and resulting mesh deformation.

U
Time: 0 s

(a) undeformed mesh

(b) mesh deformation with heave and pitch movement

Figure 2.6: Illustration of ship motions and associated mesh deformation. The dashed
oval represents the outer boundary for mesh deformation (shape and position are not
exact).

For a body-fitted mesh, mesh morphing is required to retain the grid connectivity

(no topological changes to mesh) when solid-body motions are involved. The spherical

linear interpolation (Slerp) algorithm is implemented in the rigidBodyMotion library

in OpenFOAM to calculate the mesh displacement based on the distance of a cell to

the moving body, where mesh deformation is only allowed between the user-specified

inner and outer distance. Such a mesh morphing technique can preserve the mesh

topology and smoothness and retain the overall mesh quality in dealing with moderate

solid-body motions. Figure 2.6b gives an example of mesh morphing with the Slerp

algorithm used in one of the simulations with the planing hull. More detailed examples
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can be found in Windt et al. (2020).

An appropriate outer distance needs to be specified for the mesh morphing. Large

ship motions can destroy the mesh if the distance is too small. The outer sphere

should not reach too far as parts of domain boundaries or other geometries will be

deformed if they are within the distance. As the ice surface is defined as a domain

boundary and the space between the hull surface and ice edge can be limited in

narrow-channel scenarios, e.g. the gap can be as little as 10% of ship beam in the

case of w/B = 1.1. On the other hand, since only heave and pitch are allowed,

the ship motions and associated mesh deformation happen mostly within the X-Z

plane but are limited in the Y -direction. An outer distance of 0.5B is specified in

this study, and both the inner and outer distances are scaled in the Y -direction by a

factor depending on how narrow the channel is, such that it does not interfere with

the ice edge and leaves sufficient space for ship motions.

The customized changes for separating the mesh motions and enabling directional

scaling have been made to the rigidBodyMotion function in the rigidbodycshl library.

2.2 Fluid-Structure Interaction Solver

For the problem of ship transit between flexible ice sheets, the fluid-structure inter-

action (FSI) solver, which is first developed by Piro and Maki (2013) and Piro (2013)

and further expanded in Mesa (2018); Mesa et al. (2022), is used to model the in-

teractions between the ship-generated waves and ice sheets. Modifications are made

to accommodate the mapping between the moving fluid domain and static structural

domain, and the inclusion of the fluid stress due to overwash water. This section intro-

duces the computational domain, simulation setups, the fluid and structural domain

solutions, and the coupling between them.
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2.2.1 Computational Domain

A schematic of the computational domain, which consists of a static structural domain

and a moving fluid domain, is shown in Figure 2.7. The structural domain, which

is a continuous and rectangular ice sheet of constant thickness, is fixed in a lateral

position and has a much larger extension than the fluid domain. The same fluid

domain described in Section 2.1.1 moves with the ship at the ship speed U relative to

stationary water. The structure and fluid domains overlap at the ice surfaces within

the perimeter of the fluid domain. The mutual interfaces include the upper and lower

surfaces of the ice sheet, which are initially horizontal and parallel to each other, as

well as the vertical ice edge. The upper surface of the ice sheet is included mainly for

resolving the overwash effects.

The ice sheet is subject to external forces from the fluid domain and deforms

vertically under such forces, where the deformations satisfy the equations of a thin-

elastic-plate model and are solved with a modal decomposition method (Piro and

Maki, 2013; Mesa, 2018). The external forces include the hydrodynamic and hy-

drostatic forces exerting on the lower surface of the ice, and the force on the upper

surface of the ice due to overwash. The force due to overwash consists mainly of the

fluid weight of the green water. The hydrostatic pressure ρgz is acting on the entire

lower surface of the ice sheet that extends beyond the fluid domain, and is deter-

mined by the elevation z of the deflected lower surface (which varies across the ice

surface). The hydrodynamic pressure prgh is only evaluated within the fluid domain

with the assumption that the hydrodynamic pressure is only important within the

fluid domain. With such assumption, a sufficiently large fluid domain is needed to

ensure the hydrodynamic pressure outside the fluid domain is small enough to be

neglected. In this work, the downstream length of the domain is determined such

that the hydrodynamic pressure outside the fluid domain is smaller than 10% of the

initial hydrostatic pressure, i.e. prgh < 0.1ρghsub and hsub = 0.9 h. Although 10% of
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(b) Transverse slice of the computational domain. The ice sheet
is subject to the hydrodynamic pressure prgh and hydrostatic
pressure ρgz on the lower surface of the ice, and the pressure on
the top of the ice due to overwash.

Figure 2.7: Schematic of the computational domain for the FSI problem (not to scale).

the hydrostatic pressure can be non-negligible, the truncated hydrodynamic pressure

field in the downstream outside of the fluid domain is far enough from the hull (> 5 L)

so its impact on the near-field ice reponses is limited. The width of the fluid domain

is 10 B, beyond which the hydrodynamic pressure is mostly smaller than 1% of the

initial hydrostatic pressure, i.e. prgh < 0.01ρghsub, as the hydrodynamic pressure de-

clines quickly in the transverse direction. The hydroforces exerting on the vertical ice

edge are not included as external forces for the structural domain as the ice sheet is
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fixed in the lateral position and the normal stress on the ice edge will not contribute

to rigid-body motions of the ice. Although the shear stresses on the vertical ice edge

can possibly affect the vertical deflections but are neglected as they are sufficiently

small. Different than that in the rigid ice simulations, the flexible ice sheet is allowed

to move freely in the vertical direction and the movement is driven by the vertical net

force on the ice. The weight of the ice is included as an internal force and is accounted

for in the form of surface pressure (pice = −ρicegh) over the ice sheet. The weight

is initially balanced by the buoyancy due to the hydrostatic pressure ρghsub, which

results in the aforementioned equilibrium position in undisturbed water, z = −0.9 h.

2.2.2 Fluid Domain Solution

The two-phase flower solver introduced in Section 2.1.2 is used to model the incom-

pressible fluid that is governed by the unsteady Navier-Stokes equations

∇ · u = 0, (2.10)

∂ρu

∂t
+∇ · (ρuu) = −∇prgh − g · x∇ρ+∇ ·

[
µ(∇u +∇uT )

]
, (2.11)

but laminar flow is assumed for the flexible-ice problem.

2.2.3 Structural Domain Solution

The flexible ice sheet is a continuous rectangle of uniform thickness h and is modeled

as a thin elastic plate. The key property of flexure is included, but rigid-body motions

are not allowed for the ice sheet except for the vertical translation. Amplitudes of the

gravity waves traveling in the ice are assumed to be small relative to the wavelength,

such that linearity can be assumed.
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2.2.3.1 The Thin-Elastic-Plate Model

The ice is assumed to be homogeneous and the ice sheet is modeled as a thin elastic

plate. The Kirchhoff hypothesis is adopted such that a two-dimensional shell through

the mid-surface plane can be used to represent the three-dimensional plate (Section

3.2 in Reddy (2006)). The following kinematic assumptions are made for the ice sheet:

� The transverse normals (i.e. straight lines perpendicular to the mid-surface)

remain straight after deformation.

� The transverse normals remain normal to the mid-surface after deformation.

� The transverse normals cannot be elongated, i.e. the thickness of the plate does

not change during deformation.

The deflection of the ice plate w(x, y, t) satisfies the equation of a thin elastic plate

ρihwtt +D∇4w = p(x, y, z, t), (2.12)

where ρi = 917 kg/m3 is the ice density, h is the ice thickness, D = Eh3/12/(1 + ν2)

is the ice rigidity, E = 4.2 GPa (Shishmarev et al., 2019; Ren et al., 2020; Zeng

et al., 2021) is Young’s modulus of ice and ν = 0.303 is the Poisson’s ratio, ∇4 =

∂4/∂x4+2∂4/(∂x2∂y2)+∂4/∂y4 is a biharmonic operator, and p(x, y, z, t) is the sum of

the external fluid pressure that includes the hydrodynamic and hydrostatic pressure

and the pressure due to overwash, and its own weight.

2.2.3.2 Modal Decomposition

The ice sheet is modeled using a finite number of mode shapes with associated natural

frequencies. The modal theory is based upon linear superposition and the orthog-

onality of the mode shapes allows for the decoupling of the structural equations of
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motion

[I]{q̈}+ [2ζωn]{q̇}+ [ω2
n]{q} = {f}, (2.13)

where [I] is the identity matrix, [ω2
n] is a diagonal matrix of the natural frequencies,

[2ζωn] is the modal viscous damping matrix which assumes proportional damping, {q}

is the vector of modal amplitudes, and {f} is the vector of modal forces. The main

advantage of using a modal model to describe the structure is that only a limited

number of degrees-of-freedom are necessary to solve and accurately represent the

response of the structure. A convergence study is provided in Sec. V to demonstrate

the dependence of the ice responses on number of modes, which shows that 800 modes

are sufficient to represent the ice sheet so the deflections and stresses can be accurately

resolved.

A finite-element method is used to generate the mode shapes and frequencies based

on the dimensions of the ice sheet and other mechanical properties of the ice. The

commercial software for finite element analysis, Abaqus (version 2022), is used. The

ice plate is discretized into elements that connect nodes. Each node contains six

degrees of freedom including three translations and three rotations. The displace-

ments at each node are interpolated with cubic shape functions, and the rotations

with quadratic shape functions. The high-order interpolations bring solutions of high

accuracy for displacement and rotations within the elements. Therefore, fewer finite

elements are needed to accurately represent the structural domain. No constraining

conditions are applied to the nodes of the ice plate, which is instead balanced by the

buoyancy and its own weight.
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2.2.4 Coupling of Fluid and Structural Domains

2.2.4.1 Grid Matching and Data Exchange

The fluid domain moves at the ship speed and overlaps with the static structural

domain at the mutual interface, where the interactions between the ship-generated

waves and ice sheet occur. The mutual interface includes the upper and lower surfaces

of the ice sheet as well as the vertical ice edge. Since the structural domain features

a two-dimensional shell and the hydroforces exerted on the vertical ice edge are not

input as external forces for the structural domain, data exchange between the two

domains only occurs on the upper and lower surfaces of the ice sheet.

At each time step, the fluid domain moves forward to a new position. Grid match-

ing between the fluid faces and structure elements on the mutual interface is required

at each time step to facilitate data exchange. The adopted ‘projection method’ (Ma-

man and Farhat, 1995; Farhat et al., 1998) for grid matching does not require identical

discretization of the fluid and structural domains on the mutual interface. Owing to

the high-order interpolations within the FE domain and nature of the FE solution,

the structure can be accurately resolved with larger elements than which are neces-

sary for the fluid domain, therefore finer grids are used for the CFD than the FEM

on the mutual interface.

A schematic that illustrates the grid matching between the two domains is shown

in Figure 2.8. Quadrilateral grids, mostly squares and rectangles, are used for the

discretization of both the finite elements and fluid domain on the mutual interface.

Finite elements that overlap at least one face center of fluid mesh are marked as wet

elements, which are colored green in Figure 2.8a. Each wet element has an array of

3× 3 Gauss integration points (plotted in a dry element in the figure for illustration)

that are used to evaluate the fluid stress acting on the structure element, where

the coordinates of the Gauss points and integration weights are determined by the
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Gauss
integration points

fluid face 
centers

(a) Top view of the computational domain.

(b) Transverse slice through the fluid and structural grids. The mid-surface of
the finite elements is indicated by the dashed line. The two mutual interfaces are
marked by the solid blue lines.

Figure 2.8: Illustration of matching between fluid and structure grids (not to scale).
Black grids are the static structure elements, red grids represent the moving fluid
mesh, and green rectangles mark the wet finite elements that match the fluid domain.

Gaussian quadrature rule. The fluid stress at each Gauss integration point is found by

taking a distance-weighted average of the fluid pressure at the four fluid faces that are

the closest to the Gauss point. Different from that in Piro and Maki (2013), for the

current problem, each wet element matches fluid faces from two independent surfaces,
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which are the upper and lower ice surfaces. Therefore, the two layers of fluid face

centers are first collapsed onto one single layer by leaving out the vertical coordinates,

then the two closest fluid faces on each layer are found for each Gauss point by sorting

the distances. Because the two parallel surfaces have almost identical discretization,

the matched fluid faces are supposed to be nearly symmetric about the mid-surface.

The fluid stresses on the two surface layers are added in the form of force vectors to

take into account the normals of the two interfaces. Only the pressure component

of the fluid stress is considered, whereas the viscous component is neglected. An

illustration of the matching between a Gauss point and four fluid faces is plotted in

Figure 2.8b.

The fluid domain also requires information about structural velocity and displace-

ment. The velocity and displacement of the fluid boundary at the fluid face centers

along the mutual interface are found using the structural-element shape function.

The deformable structure surfaces are treated as outer boundaries in the fluid do-

main, where the mesh deformation is handled by the OpenFOAM library. Two forms

of boundary conditions for the fluid-structure interaction analysis are provided in Piro

and Maki (2013). With the no-slip BC, both forms have a fluid velocity equal to the

structural velocity on the mutual interface

u(xb, t) = ub(xb, t), (2.14)

where ub is the body velocity and xb is the position of the structure. In the first

method, the fluid mesh deforms to exactly follow the structural mesh and the exact

no-penetration body-boundary condition is satisfied. The second method applies

the structural velocity to the fluid boundary on its undeformed position based on

the assumption of small structural deformation. The first method with exact mesh

deformation is adopted in this work.
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2.2.4.2 Under-Relaxation and Iterative Algorithm

The fluid domain solutions and structural responses are tightly coupled and are solved

in an iterative manner at each time step. During each iteration, the structural de-

formation is updated using the fluid stress from the previous iteration. Then, the

fluid domain is solved using the updated structural deflections. The selection of

under-relaxation strategies and parameters is important so that convergence can be

achieved with a minimal number of iterations. The explicit under-relaxation method

from Piro and Maki (2013) is employed, which uses the parameter βr to control the

change in the state vector χ at an intermediate iteration as

χn+1
i+1 = (1− βr)χn+1

i + βrχ̃
n+1
i+1 , (2.15)

where χ̃ is the unrelaxed update, n is the time step, and i is the iteration counter.

The selection of the under-relaxation parameter βr is crucial for the convergence and

accuracy of the solutions. Smaller βr provides more stablility but requires a greater

number of iterations to reach convergence, larger βr converges faster but can lose

stability in the iterations. A value of βr = 0.2 is applied in this work. More detail on

the under-relaxation method and iteration algorithm for the FSI solver can be found

in Piro and Maki (2013) and Piro (2013).

2.3 Summary

Numerical methods applied for the problem of ship transit in a lead between either

rigid or flexible ice sheets are introduced in this chapter.

The first section presents the CFD solver for modeling the two-phase flows.

URANS equations are solved for both the water and air, where the VOF approach

is used to capture the moving interface. The computational domain and boundary
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conditions, governing equations for the two-phase fluid, and numerical schemes are

described in this section. The ONRT and GPPH are selected as the two ship models,

the hull geometries and general characteristics of which are given. Ships are allowed

to heave and pitch, where the associated ship motions are handled by a 6DOF library.

A deformable mesh technique is applied to enable mesh deformation around the hull

surface due to the heave and pitch while maintaining the mesh structure away from

the hull. Customized changes for separating the mesh motions and enabling direc-

tional scaling, which are applied to facilitate the simulations with a moving hull and

static ice sheets, are introduced along with the deformable mesh technique.

The second section presents the FSI solver that is adapted from Piro and Maki

(2013) and Piro (2013) to model the interactions between the ship-generated waves

and flexible ice sheets. The computational domain that consists of a static structural

domain and a moving fluid domain is described. The fluid domain is modeled by

the same two-phase flow solver in the first section except laminar flow is assumed

for the flexible-ice problem. For the structural domain, the ice sheet is modeled as a

thin elastic plate with the use of the Kirchhoff hypothesis so that the 3D ice sheet

can be modeled by a 2D shell through the mid-surface of the ice sheet. The ice

sheet is represented by a finite number of uncoupled mode shapes with associated

natural frequencies. Modal decomposition is applied based on linear superposition

and orthogonality of the mode shapes such that the structural equations of motion

can be decoupled. The commercial software finite element analysis, Abaqus, is used to

generate the mode shapes and natural frequencies. Grid matching between the fluid

faces and structure elements on the mutual interface is required at each time step

to facilitate data exchange. The pressure component of the fluid stress is evaluated

at Gauss integration points to compute the fluid pressure over the matched finite

element, which is used to update the equations of motion. The structural displacement

and velocity are used by the fluid domain as the boundary conditions. The fluid
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domain solutions and structural responses are tightly coupled and are solved in an

iterative manner at each time step with an under-relaxation strategy to help reach

convergence.
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CHAPTER III

Ship Moving in a Canal

A ship traveling in a canal, where two side walls extend to the bottom as depicted in

Figure 1.3c, has been extensively studied with theoretical methods and is a related

problem to that of ship transit near sheet ice. Theoretical methods are more efficient

and affordable compared with experiments and CFD simulations. By constructing

the relationship between operation in a canal and transit in water bounded by ad-

jacent sheet ice, the knowledge from operation in a canal can be utilized to develop

understanding of Arctic transit and provide an efficient tool for rapid estimations of

wave resistance. This chapter uses theoretical analysis of the far-field wave patterns

to study the wave resistance in deep-water canals.

3.1 Wave Pattern Analysis

3.1.1 Ship Waves in Deep Water

The wave resistance and wave field generated by a ship traveling with constant speed

in a canal are studied using linearized potential flow theory. The original work

by Michell (1898) represents a ship as a source or sink distribution on the center-

plane of a thin hull. Figure 3.1 from Faltinsen (2005) illustrates the source and sink

in this theory, where the ship moves the water and it pushes the water out at the

bow, which is like a source, whereas the ship attracts water at the stern, which acts
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like a sink.

Figure 3.1: Illustration of the source and sink in the theory (Faltinsen, 2005).

The free-surface Green function satisfies linearized free-surface boundary condi-

tions (Faltinsen, 2005)

U2∂
2G

∂x2
+ g

∂G

∂z
= 0 on z = 0, (3.1)

where U is the ship speed, G is the velocity potential due to the source or sink and the

strength of the source or sink is proportional to the ship speed and the longitudinal

slope of the ship hull. The linearized body boundary condition is accurate in the limit

of the beam of the ship being small relative to the length, and is commonly referred

to as thin-ship theory (Tuck and Lazauskas, 1998; Faltinsen, 2005).

The singular integro-differential equations in the Michell thin-ship theory can be

solved numerically for arbitrary ship geometry, or analytically for simplified geome-

try. The hull geometry of the ONRT is shown in Figure 3.2. For theoretical analy-

sis herein, the geometry of the ONRT is simplified and represented as a wedge-like

shape (Faltinsen, 2005) as shown in Figure 3.3 so that the integrals can be solved

analytically.

The idealized ship is defined by the parallel midbody of length Lp and beam B.

The wedge-like shape is prismatic in the vertical direction and has draft T . The hull
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Figure 3.2: Top and side views of the ONRT bare-hull geometry with local longitu-
dinal coordinate x with respect to the ship length L.
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Figure 3.3: Waterplane of the Wigley’s wedge-shaped body with draft D.

surface function η has a derivative with respect to x as

ηx =



B
L−Lp

≡ C for x = [−L
2
,−Lp

2
)

0 for x = (−Lp

2
, Lp

2
)

−C for x = (Lp

2
, L

2
].

(3.2)

The following values, which are non-dimensionalized with respect to the ship length,

are selected for the wedge-shaped body to approximate the ONRT model: L = 1,

Lp = 0.5, and B = 0.12. The ship draft is T = 0.05.

The ship-generated wave system is defined by the function z = ξ(x, y). For waves

that are sufficiently far from the hull the wave field can be calculated by summing up

plane waves traveling at various angles relative to the ship track according to Newman
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(2018),

ξ(x, y) = Re

∫ π/2

−π/2
A(θ)e−ik(θ)[x cos θ+y sin(θ)] dθ, (3.3)

where A(θ) is the amplitude of the wave traveling at angle θ and is a function of the

submerged ship shape and speed (see Figure 3.4). For this wedge-shaped body, A(θ)

takes the form (Faltinsen, 2005)

A(θ) =
4C

πik0

(
1− e−k0sec2 θD

)
[cos(0.5k0sec θ · Lp)− cos(0.5k0sec θ · L)]. (3.4)

The wave number k(θ) = k0 sec2 θ is determined from the dispersion relation for plane

waves moving at oblique angle θ with respect to the ship track, and k0 = g/U2 is

the wave number of pure transverse waves that correspond to θ = 0. The waves

that travel steadily with the ship occur in the range 0 ≤ θ < π/2. A diagram of a

steady wave system is shown in Figure 3.4. The ship-generated waves appear within a

triangular region extending behind the ship and the half-angle of this region is called

the Kelvin angle. In deep water, the value of the half-angle is approximately 19 deg.

The spectrum of far-field waves in deep water can be decomposed into two sets

of waves. The set of transverse waves possess heading angle 0 ≤ θ < θ1, where

θ1 = arcsin(1/
√

3) ≈ 35◦16′, and the remaining waves in the spectrum are called

diverging waves that occur in the range θ1 ≤ θ < π/2.

19°28′

𝜃

Divergent wave crests

Transverse
wave crests

Figure 3.4: The Kelvin ship-wave pattern in deep water.
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Havelock (1965) (also in Newman (2018)) show by energy arguments how to relate

the complex wave amplitude function A(θ) to the wave resistance Rw

Rw =
π

2
ρU2

∫ π/2

−π/2
|A(θ)|2 cos3 θ dθ. (3.5)

3.1.2 Multihull Model

For the study of ships in a canal, Newman (1962) applied the method of images to

mimic the effects of walls in a canal by placing image pressure distributions in a trans-

verse array. The same idea is used to impose canal walls by applying equations for

multihull vessels (Tuck and Lazauskas, 1998; Faltinsen, 2005), where waves generated

by each separate hull are linearly superposed to calculate the wave resistance. The

wave amplitude function A(θ) due to N hulls can be expressed as

A(θ) =
N∑
j=1

Aj(θ)e
−ik(θ)[xj0 cos θ+yj0 sin θ]. (3.6)

Here Aj(θ) is the wave amplitude function of hull number j, the center of which has

coordinates (xj0, yj0, zj0) in the translating coordinate system (see Figure 2.1). While

typical multihull studies are restricted to catamarans (N = 2), or trimarans (N = 3),

in this study, more identical hulls are placed in a non-staggered fashion (xj0 = 0)

with the same distance w between centerlines of adjacent hulls to achieve the effect

of the central hull to be in a canal. Figure 3.5 shows a diagram of the multihull

arrangement with three hulls. The three identical hulls are placed in a non-staggered

way (xj0 = 0) with the same distance between adjacent hulls, symmetry plans are

generated at the centerlines between adjacent hulls (dash lines in Figure 3.5) due to

the symmetric wave patterns generated by individual hulls. The central hull is in

between two symmetry planes, which mimics the scenario of a ship moving in a canal

of width w.
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Figure 3.5: Schematic of a nonstaggered triple-hull system travelling at speed U in
the translating coordinate system.

An infinite number of hulls is needed to create an ideal canal condition. This work

uses a finite number of hulls to approximate the effects of canal walls at a reasonable

cost. First, a convergence study on the number of hulls is performed to determine

how many hulls are needed. The wave resistance is computed for the number of hulls

in the range of 1 < Nhulls < 21, and the results are shown in Figure 3.6. The results

for all three speeds show that for Nhulls = 15 and above the canal condition is nearly

achieved. Therefore, 15 hulls are used in the multihull model throughout this work

for the evaluation of ship resistance in a canal.

By inserting Eqn. 3.6 into Eqn. 3.5, the equation for the total wave resistance of

the multihull becomes

Rw =
π

2
ρU2

∫ π/2

−π/2
|A(θ)|2ws

(
n∑

m=1

2 cos(mF) + 1

)
cos3 θ dθ, (3.7)

where n = 7 for a fifteen-hull system and Aws is the wave function for a single hull.

The term in parentheses is a hull interference function F (θ) =
∑m=7

m=1 2 cos(mF) + 1

that captures the interaction among the fifteen hulls. The function F depends on the
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Figure 3.6: Relative resistance in canals against number of hulls used in the multihull
model.

Froude number Fr, the ratio of hull spacing w and the ship length L, and θ,

F =
w/L

Fr2 cos2 θ
sin θ. (3.8)

The contribution to the integral for θ → ±π/2 corresponds to contributions for

divergent waves with very small wavelengths that travel perpendicular to the ship’s

track and have negligible influence on the wave resistance. Therefore, in the numerical

evaluation of the integral in Eqn. 3.7, the limits are narrowed to ±(π/2 − ε) to ease

the difficulty in integrating around singularities at θ = ±π/2, here ε is a small number

and a value of 0.02 is used.

3.2 Wave Resistance in a Canal

Eqn. 3.7 is evaluated for a range of hull separation w/B and Froude number, where

w is the canal width or the distance between adjacent hull centers and B is the ship
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Figure 3.7: Wave resistance of ship in a canal as a function of Froude number and
canal width.

beam. The results are shown in Figure 3.7a as the relative wave resistance Rw/R0,

where R0 is the wave resistance in open water (w � B). Note that the wave resistance

has either an increase up to +129% or a decrease up to −82% relative to the open

water condition, and for lower speeds of 0.2 < Fr < 0.4 the resistance oscillates

rapidly with Froude number. For example for w/B = 2, a local maximum of wave

resistance occurs near Fr ≈ 0.28, and local minima occur for speeds of Fr ≈ 0.24

and 0.35. Another major increase in resistance occurs between Fr = 0.4 and 0.5 in

narrow canals. Higher ship speeds or wide canals generally have Rw/R0 close to 1,

which means the canal condition has no significant impact on the wave resistance

compared to that in open water.

To further analyze how the wave resistance can vary in such a dramatic man-

ner with relatively small changes in speed, the contributions of the transverse and
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diverging waves to the drag are calculated separately. Eqn. 3.7 is expressed as

Rw = 2

∫ π/2−ε

0

K(θ) dθ (3.9)

= 2

∫ θ1

0

K(θ) dθ︸ ︷︷ ︸
Rw,t

+ 2

∫ π/2−ε

θ1

K(θ) dθ︸ ︷︷ ︸
Rw,d

(3.10)

where the kernel function is K(θ) = |A(θ)|2wsF (θ) cos3 θ. The first term in Eqn. 3.10

is the contribution to the resistance of the transverse waves Rw,t, and the second term

is that of the diverging waves Rw,d. The fraction of the total wave resistance due to

the diverging waves is calculated as Rw,d/Rw. This quantity is shown in Figure 3.7b.

A striking feature appears in which the total resistance is dominated by the diverging

waves for a speed Fr ≈ 0.35, over the entire range of the canal width.

Note the strong correlation between the importance of divergent waves and re-

duced wave resistance by comparing Figure 3.7a and 3.7b for speed near Fr ≈ 0.35.

The large contribution of diverging waves also means the transverse waves are less

significant. This is confirmed visually in Sec. IV using CFD simulations. It is also

interesting to observe that the importance of the diverging waves is relatively inde-

pendent of the canal width for Fr ≈ 0.35, although the change in wave resistance

decreases for larger values of canal width for other speeds.

The dominance of diverging waves for Fr ≈ 0.35 or transverse waves for Fr ≈ 0.28

can be explained by the fundamental wavelength. The fundamental wavelength is the

length scale of the longest wave in the ship-generated wave system and is a function

of ship speed and gravity: λ = 2πU2/g or λ = 2πFr2L. For thin-ship theory, the

source from the bow and sink from the stern can cancel or enhance each other at

certain ship speeds, which also depends on the hull geometry. If the length of either

the bow or stern part is small, that is, the ship has a long parallel midbody, then

for Fr = 0.4, λ = 2πFr2L ≈ L, the bow source and stern sink are one wavelength
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apart. The source and sink is 180◦ out of phase, we get minimum transverse waves

as a cancellation effect is achieved. Correspondingly, for Fr = 0.56, the wavelength

is λ = 2πFr2L ≈ 2L, the bow source and stern sink amplify each other and cause a

relatively large transverse wave amplitude. There are also other Froude numbers for

which either strong cancellation or amplification of transverse waves occurs, especially

at lower speeds.

For the present wedge-shaped body with nonnegligible bow and stern parts as

shown in Figure 3.3, the corresponding Froude numbers for strong cancellation or en-

hancement are shifted. The integrand |A|2cos3 θ in the resistance integral in Eqn. 3.5

is ploted for two Froude numbers in Figure 3.8. This figure shows how at Fr = 0.35

the wave resistance is dominated by diverging waves, whereas for Fr = 0.28 is it

mostly transverse waves.
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Figure 3.8: The integrand |A|2cos3 θ as a function of θ in the integral for wave resis-
tance.

The relative contribution of transverse or diverging waves at different ship speeds

can also be observed in experiments. Towing tank experiments were performed by a

student team at the Aaron Friedman Marine Hydrodynamics Laboratory (Arciniega
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et al., 2023), in which a model scale ONRT hull (L = 3.14 m) was towed at different

speeds. The elevation time histories of the ship-generated waves were recorded by the

wave probe on one side of the tank. More details of the experiments can be found in

Appendix. A.

The ship-generated waves are analyzed in the frequency domain by applying Fast

Fourier Transform (FFT) on the wave elevation sequences. Figure 3.9 demonstrates

the frequency components of the waves at two Froude numbers, Fr = 0.22 and

Fr = 0.29. The experiment with perforated spherical shells that mimic floating

pancake ice is included in the plot but will not be analyzed in this work. The starting

angular frequencies of the transverse and divergent waves, ωT and ωD, are plotted

for reference. The angular frequencies are evaluated by the dispersion relation for

deep-water free waves, i.e. ω2 = gk(θ), θ = 0 and θ = 35◦16′ for the transverse and

divergent waves, respectively, and k(θ) = k0 sec2 θ is the wave number and k0 = g/U2.

Transverse waves are those between ωT and ωD, beyond ωD are the divergent waves.

The plots clearly show that divergent waves are more evident for Fr = 0.22 and

transverse waves are dominant for Fr = 0.29, which are consistent with the plot of

contribution fractions in Figure 3.7b.

3.3 Summary

This chapter uses a theoretical analysis based on the work in Tuck and Lazauskas

(1998) and Faltinsen (2005) for multi-hull vessels that is adapted to analyze a sin-

gle ship in a deep-water canal, where the geometry of the ONRT is simplified and

represented as a wedge-like shape such that the wave resistance can be evaluated

analytically.

The changes of the wave resistance relative to that in open water are analyzed

with respect to the ship speed and canal width. It is found that in deep-water but
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Figure 3.9: Spectral analysis of the wave profiles recorded at the wave probes with or
without the perforated spherical shells. ωT and ωD are the starting angular frequencies
of the corresponding transverse waves and divergent waves, respectively.

laterally constrained canals, a significant increase or decrease in wave resistance can

happen with increases up to +129% and decreases up to −82% relative to the open

water condition, depending on both the ship speed and canal width. The relative

wave resistance oscillates rapidly for Fr < 0.4 in narrow channels. For higher ship

speed or wide canals, the changes are moderate and canal effects are less pronounced.

The wave resistance is decomposed into the portions due to transverse and di-

vergent waves. A striking feature is found for the ship speed Fr ≈ 0.35, where

strong dominance of divergent waves exists over the entire range of canal width.

Strong correlation between the importance of divergent waves and reduced wave re-

sistance is found for the ship speed Fr ≈ 0.35 and other speeds like Fr ≈ 0.25 and

Fr ≈ 0.2. Significant resistance increases are found for the conditions with transverse-

wave dominance, but not vice versa. The dominance of divergent waves for Fr ≈ 0.35

or transverse waves for Fr ≈ 0.28 is explained by the fundamental wavelength and
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cancellation of transverse waves that are generated by the ship bow and stern.

Time series of wave elevations, which were recorded in towing-tank experiments

conducted by a student team, are analyzed on the frequency domain. The spectral

distribution confirms the dominances of transverse and divergent waves at two dif-

ferent ship speeds from the theoretical analysis. The experiments also validate the

linear theory of the simplified hull geometry.
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CHAPTER IV

Ship Moving in a Lead between Rigid Ice

Sheets

In this chapter, CFD simulations are used to study the problem of ship transit in

open-water ice channels as depicted in Figure 1.3b, where the ice sheets of finite

thickness are treated as rigid and the full-scale bare-hull ONRT is adopted as the

ship model. The first section discusses the typical ice thicknesses in the Arctic region

and utilizes the knowledge of the relationship between ice flexure and critical speed

to justify the rigid-ice assumption. Section 4.2 presents the validation of CFD against

experiments and a grid dependence study. Comparisons with the theoretical analysis

for canal conditions are given in Section 4.3. CFD results are shown in Section 4.5 to

demonstrate the effects of ice thickness on wave resistance. Simulations for a planing

hull model are also included in the last section to discuss the higher ship speeds up

to Fr = 1.4.

4.1 Ice Thickness and Flexure

First-year ice can grow to a thickness of up to 1 m, and multi-year ice can be much

thicker. Submarine and satellite measurements (Kwok, 2018) show that the mean

winter and fall ice thickness in the Arctic region varies from 1 to 3 m, and can be

even thicker, especially when considering ridges. For example, Figure 4.1 shows a
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map of sea ice thickness in the Arctic region in the later spring of 2023, when the

ice is the thickest in a year. The ice thickness is mostly under 3 m, except for the

regions off the coast of Greenland and the Canadian Archipelago, where ice thicker

than 4.5 m can be found.

Figure 4.1: Real-time map of sea ice thickness in the Arctic region in May 2023,
when the Arctic sea ice extent peaks in a year. Source: model calculations by Danish
Meteorological Institute (DMI).

Thin ice covers can be considered to be flexible due to their large extent in the water

plane, and small thickness, although due to the brittle nature of ice, its deflection

is limited. Also, the deflection depends on the hydrodynamic forcing. When the

speed of the ship is small relative to the critical speed in which flexural-gravity waves

are generated and travel upstream of the ship, the deflections are very small. For

example, the work of Xue et al. (2021) presents a method to analyze a pressure patch

that either moves on an ice sheet, or over water between two ice sheets. Their results

show how the ice deformation is related to the critical speed where flexural-gravity
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waves appear in front of the disturbance. The critical speed in deep water for ice of

infinite extent is defined as in Squire et al. (1996)

Ucrit = 2

(
Dg3

27ρ

) 1
8

, (4.1)

where the ice rigidity is D = Eh3/12(1− υ2). Here E is Young’s modulus of ice, and

υ is the Poisson ratio. Xue et al. (2021) show that the ice deformation is very small

for speeds that are smaller than the critical speed. As the speed is increased towards

the critical speed the deformation grows rapidly and reaches a maximum, and then

as the speed continues to increase the ice deformation slowly decreases.

The relationship between the critical speed and ice thickness, Eqn. 4.1, is indicated

by the red curves in Figure 4.2. The conditions of the present CFD simulations that

include the ice thickness and ship speed are plotted as symbols in Figure 4.2 for

comparison. It is clear that the simulated ship speeds are well below the critical

speeds that are evaluated by theory, which indicates small ice flexure. Note only the

thinnest ice sheets of the simulations are displayed for each ship speed in the figure,

thicker ice sheets are further from approaching the critical speed hence are not shown.

Given the above analysis, this chapter considers a simplified model using rigid ice

sheets as small ice flexure is expected for the selected ice thickness and ship speed.

It is assumed the ice flexure is sufficiently small (Xue et al., 2021) such that it does

not alter the velocity or wave fields near the ship. It is also assumed that the transfer

of energy away from the ship in the form of flexural-gravity waves is negligible with

respect to the near-field waves and the force on the hull (Squire et al., 1996). Using a

rigid-ice assumption also simplifies the CFD as the rigid ice can be simply treated as

walls in the simulations. If the ice deflection is large relative to the wave field, or if

the speed more closely approaches the critical speed such that flexural-gravity waves

become significant, then ice flexure should be accounted for in the analysis. Flexible
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Figure 4.2: The curves present the critical speed Ucrit in deep water as a function of
ice thickness h, derived for ice of infinite extent (Squire et al., 1996). The symbols
indicate the conditions of the present CFD simulations with the two ship models
(both evaluated in full scale). Only the thinnest ice is shown for each ship speed.

ice is studied in Chapter V.

4.2 Verification and Validation of CFD

Dependence of the CFD results on the mesh resolution is examined in terms of the

total ship resistance in open water. The grid refinement ratio is used to represent the

relative mesh resolution and is defined as

ri = 3

√
N1

Ni

, (4.2)

where Ni is the total cell number of the i-th set of grid and N1 is that of the finest

grid. Five sets of systematically refined grids with grid refinement ratio values from

ri = 1 to 2 are adopted. The cell sizes and total number of cells are collected in

Table 4.1. The simulations are run on the Great Lakes computing cluster and the

finest grid requires approximately 40 hours to run for 120 seconds in physical time
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with 180 Intel Xeon processors (3.0 GHz).

Table 4.1: Cell size and total number of cells for different mesh resolution. Fr = 0.2,
open water.

ri ∆xmin (m) # cells (million)

2 0.15 1.745
1.6 0.12 3.246
1.4 0.105 4.672
1.2 0.09 7.466
1 0.075 13.55

The convergence of the total ship resistance RT with the grid refinement ratio ri is

shown in Figure 4.3, where a fitted convergence curve with an estimated convergence

order is also plotted. The fitting curve and estimated order-of-accuracy are deter-

mined following the procedure in Eça and Hoekstra (2014). In the procedure, the

discretization errors are estimated with power series expansions as a function of the

typical cell size (cell sizes in the bulk of the flow domain are used in this work), where

the expansions are fitted to the data in the least-squares sense. The basic equation

to estimate the discretization error εφ is

εφ ' φi − φ0 = αhpi . (4.3)

where φi stands for any integral or other functional of a local flow quantity, φ0 is the

estimate of the exact solution, α is a constant to be determined, hi is the typical cell

size and p is the observed order of grid convergence. For the results in Figure 4.3,

the exact solution is estimated to be φ0 = 3.658 N, a favorable order of p = 2.4 is

observed for the convergence of the total ship resistance, which indicates the resistance

converges faster than second order with grid refinement. The grid with ri = 1.2 is

selected for the rest of the simulations for the balance of numerical accuracy and

computational cost.

Figure 4.4 compares the ship resistance coefficient CT with experimental data
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from INSEAN and CFD results from IIHR (results for bare hull w/o BK in Table 4-1

in Cook (2011)) for validation purpose, in which CT is defined as

CT =
RT

0.5ρwSU2
, (4.4)

where RT is the total ship resistance and S = 3, 237 m2 is the wetted area. A

good agreement can be observed between the present CFD results and the referenced

experimental or CFD data.

4.3 Comparison with Theoretical Analysis

The CFD is run with the ONRT ship model for deep-water canals to compare the

wave resistance with that of the theoretical analysis. The relative resistance Rw/R0

of CFD simulations in a deep-water canal is plotted in Figure 4.5, along with the

corresponding results from the theoretical analysis, where R0 is the open-water wave

resistance that is obtained by simulations of a wide canal (w/B = 16). In the CFD,
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the wave resistance Rw is defined as the pressure part of the total resistance

Rw =

∫
S

−pnx dS, (4.5)

where S is the wetted surface of the ship and nx is the x component of the outward-

oriented normal to the ship surface. The other part of the total ship resistance in the

CFD is the frictional resistance Rf , i.e. RT = Rw + Rf . As Rf hardly changes for

various channel conditions, only Rw will be analyzed in this work.

Two ship speeds are shown, and the CFD results generally follow the curve of

the theoretical model. Discrepancy exists between the results though, especially in

narrower canals, which is assumed to be mostly due to the difference in the detailed

feature of the hull geometries and wave nonlinearity. Note that the resistance can

increase by as much as 100 % at Fr = 0.3, or decrease by more than 20% at Fr = 0.37.

Figure 4.6 shows the relative resistance of both theoretical and CFD models in a

canal of width w = 3B. Similarly, the CFD results exhibit both the increase and

decrease in the resistance for different ship speeds in accordance with the linearized

theory. The Froude numbers Fr = 0.33 and 0.4 are selected for the rest of the study

of investigation into ice channels since significant decreases and increases in resistance

occur at these two ship speeds. Fr = 0.22 with a narrower channel of w = 2B is also

studied based on the theoretical analysis in Figure 3.7a that suggests an increased

wave resistance occurs at this condition.

The contribution to the resistance by transverse and divergent waves from the

linear theory is also shown in Figure 4.6. For Fr = 0.33, divergent waves contribute

69.9% of the total resistance, while for Fr = 0.4, transverse waves contribute slightly

more at 56.4%. The alteration of the resistance due to the ice sheet is due in part

because of waves from the bow that reflect from the ice sheet and return to the hull.

The transverse waves are oriented along the ship track θ < θ1 ≈ 35 deg, and do

66



not reflect and return to the ship (they interact much farther downstream). On the

other hand, the diverging waves are oriented with a significant lateral component, and

reflect from the nearby ice sheets within a short distance of leaving the ship hull and

return to alter the near-field waves. Thus the conditions with significant diverging

waves see stronger effects of reflection of the ship wave by the ice sheet on the wave

resistance.
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Figure 4.5: Relative wave resistance of theoretical and numerical modeling as a func-
tion of canal width.

4.4 Momentum Flux Analysis

A momentum flux analysis is performed on open-water simulations to motivate the

connection between the ice thickness and the fundamental wavelength as the primary

parameter that characterizes the interaction of ice sheets and the ship-wave field.

Conservation of linear momentum for a control volume around the hull links the

momentum flux through the extent of the volume to the force of the hull on the

fluid. The potential flow solution of free water waves indicates that the momentum is

concentrated in the vicinity of the free surface which is where the ice interacts with

the ship-generated waves. The fundamental solution for the velocity potential of a
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Figure 4.6: Relative wave resistance versus Froude number for a canal width of w =
3B. Dotted and dashed lines are the transverse and divergent wave resistance of the
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monochromatic small-steepness wave in deep water has a dependence on the vertical

coordinate as e−kz. The wave field generated by a ship can be decomposed into a

spectrum of waves with different lengths, amplitudes, and heading angles, Eqn. 3.3.

The ship wave field is sufficiently complex and it is not immediately evident how the

edge of an ice sheet of finite thickness can act as a wall does in a canal. In order

to investigate the analogy of a canal for operation in a lead, the axial momentum

flux density is assessed using the CFD solution to see how it is concentrated near the

water surface.

Consider a control volume of V that surrounds the ship hull, as shown in Figure 4.7.

The volume has Cartesian boundary planes upstream A, downstream B, port P ,

starboard S, and bottom H. The volume is closed with the hull surface η and air-

water interface ξ. Since the momentum of the fluid in this control volume is constant

for steady operation, the momentum balance is the sum of the boundary terms. For

the x component of momentum the conservation law can be expressed as
∑
Ṁ =

∑
F
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Figure 4.7: Control volume and control surfaces around the hull in the translating
coordinate system. The control volume is bounded by boundary plane upstream
A, downstream B, port P , starboard S, and bottom H and is closed with the hull
surface η and air-water interface ξ. Shadow in (b) indicates the integration area of
the momentum flux Ṁ(zc) in Eq. 4.8.

or

ṀA + ṀB + ṀS + ṀP = −R + FA + FB, (4.6)

where Ṁc is the rate of x-direction momentum flowing through control plane c, and

FA and FB are the pressure forces acting on planes A and B. R is the total force of

the ship acting on the fluid.

The momentum flux through the port-side plane at y = 3B/2 is

ṀP =

∫ ξ(x,3B/2)

−H

∫ xB

xA

ρuv dxdz. (4.7)

Here u and v are the horizontal and transverse components of the velocity due to

the ship operation. They are dominated by the wave flow and each component is a

function of space, i.e. u(x, y, z) and v(x, y, z), with an expected exponential decay

in the vertical direction. The momentum flux through the lateral plane that is a

function of the bottom coordinate zc is evaluated as

Ṁ(zc) =

∫ ξ(x,3B/2)

zc

∫ xB

xA

ρuv dxdz, for zc ≥ −H (4.8)
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where zc is the lower coordinate of integration and the integration area is demon-

strated by the shadow in Figure 4.7b. When zc = −H, i.e. when the integration

is performed to the bottom of the domain, Ṁ(−H) = ṀP . Ṁ(zc) is calculated

from the CFD solution for the open-water case for three Froude numbers at a lateral

coordinate of y = 3B/2, and is shown in Figure 4.8. The momentum flux Ṁ(zc)

is normalized by ṀP . Also, the horizontal axis is normalized by the fundamental

wavelength λ = 2πFr2L.

Figure 4.8 shows that all three curves generally overlap with each other and the

transport of axial momentum is concentrated in the layer near the water surface with

a thickness of approximately 20% of the fundamental wavelength. This suggests that

if the ice is thicker than 20% of λ, then it should act largely as a canal with complete

refections of the wave field. This assertion is tested in the next section by computing

the flow for different values of the thickness at different Froude numbers.
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Figure 4.8: Vertical distribution of x-direction momentum flux through control plane
P , at y = 3B/2.
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4.5 Effect of Ice Thickness on Wave Resistance

A relationship between the ice thickness and the ship wave system is needed to gener-

alize the findings across a range of ship sizes and ice thicknesses. The length scale of

the longest ship-generated wave is the fundamental wavelength, which in deep water

can be expressed as a function of ship speed and gravity λ = 2πU2/g or λ = 2πFr2L.

Therefore, in this section, the wave resistance of the ship operating in a lead between

ice sheets of λ-dependent thickness is simulated with CFD. A range of ice thickness

is investigated for different ship speeds and channel widths. Based on the momen-

tum analysis in Sec 4.4, ice channels with four values of ice thickness in the range

0.05 < h∗ < 0.2 are investigated, where h∗ = hsub/λ and hsub is the thickness of the

submerged part of the ice sheet. Overwash is prohibited by imposing a high free-

board. Three conditions, Fr = 0.22 with w = 2B, Fr = 0.33 and 0.4 with w = 3B,

are analyzed. For each ship speed, the results for ice channels are compared with

both the open-water and canal conditions.

Figure 4.9 shows the steady-state wave fields for Fr = 0.22 and w = 2B. In the

top (a) of this figure a segment of the wave field for the ship in open water is shown.

In the bottom (d) the canal condition is depicted. Frames (b) and (c) show the wave

field for the case of ice of finite thickness. According to the theoretical analysis of a

canal, both the transverse and divergent waves contribute to the wave resistance, and

the resistance is significantly increased over the open-water value. The fundamental

wavelength at this speed is λ = 2πFr2L ≈ 0.3L. In Figs. 4.9 b-d, the divergent waves

can be seen reflected multiple times between the vertical ice edges or canal walls and

the hull, creating complicated wave patterns around the hull.

The steady-state wave field for Fr = 0.33 is shown in Figure 4.10. This is a speed

at which the diverging waves are dominant according to the theoretical analysis. The

fundamental wavelength at this speed is λ = 2πFr2L ≈ 0.7L, which can be seen

in the wave field behind the ship. For the canal case d, strong reflection is seen by
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a)

b)

c)

d)

Figure 4.9: Wave fields for Fr = 0.22, colored by surface elevation. From top to
bottom are in a) open water, b) ice channels with h∗ = 0.05 and c) h∗ = 0.2, and
d) a canal. For a) open water, the wave field is cut at the dashed lines although the
domain has a width of 16B. For b-d the channels and canal have a width of w = 2B.

a large trough (depression) near the middle of the ship, and a large crest system

immediately downstream of the transom. For both cases with ice shown in b and c,

the reflection is also present, but to a lesser extent. Inspection of Figure 4.8 suggests

that 65% of the axial momentum flux is concentrated in the layer that is blocked by

the ice for the thin ice case with h∗ = 0.05. For the thicker ice, nearly all of the

axial momentum is concentrated in the layer of the ice. At this Froude number, the

wave resistance decreases as the ice is thickened towards the canal condition. This

is evident in the wave field because there is a reflected diverging wave that impinges

the hull at −0.4 < x/L < −0.2 (mid-ship is at x = 0), and it increases the pressure

on the stern region of the ship which applies a force in the direction of travel. This

wave feature is shown in the figure with an oval and dashed line along the diverging

wave crest. To more clearly see what is happening with changing ice thickness the
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wave profile along the line y = 0.55B is shown in Figure 4.11. The larger crest near

the stern is evident for the channel and thicker ice together with the larger trough

near midships. Note that the trough leads to reduced pressure on the hull, which

could increase drag, but the axial component of the hull normal is close to zero for

the middle of the ship, and thus its contribution to the hydrodynamic force integral

is negligible.

a)

b)

c)

d)

Figure 4.10: Same as Figure 4.9, but for Fr = 0.33, w = 3B.

Figure 4.12 shows the steady-state wave fields for Fr = 0.4. According to the

theoretical analysis of a canal, both the transverse and diverging waves contribute

to the wave resistance. As ice thickness increases, so does the wave amplitude. At

this speed, the fundamental wavelength is nearly one ship length, and a large trough

appears near the middle and rear portion of the hull −0.5 < x/L < 0.1. The deeper

trough means a decrease in pressure and an increase in drag.

The sectional drag coefficient at location x is defined as the integration of hydro-
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Figure 4.11: Wave elevations along y = 0.55B for Fr = 0.33 and w = 3B.

pressure on the hull surface for a longitudinal length of ∆x

Cd(x) =
1

1
2
ρU2S

∫
Ax

−pnxdA, (4.9)

where Ax is the sectional hull surface area of between x and x+ ∆x. The integration

of Cd(x) over x within the range of the hull length should give the value of the total

drag coefficient of the hull. Note negative values contribute to the increase of ship

drag while positive values indicate pushing forces that offset ship drag. By showing

the distribution of the drag force, we can more directly see where along the hull

the resistance changes occur and confirm the analysis of the wave reflections and

resistance changes.

The distribution of the drag force along the length of the hull is plotted in Fig-

ure 4.13 for Fr = 0.33 and 0.4. The profiles for open water and the thinnest ice of

h∗ = 0.05 are close to each other, which is consistent with the wave field observations.

For Fr = 0.33, the section drag force for h∗ = 0.2 is larger than that for either open

water or h∗ = 0.05 at −0.4 < x/L < −0.2, which indicates more pushing force offsets
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Figure 4.12: Same as Figure 4.9, but for Fr = 0.4, w = 3B

the total ship drag. This results in smaller Rw and confirms the analysis that the

reflections of divergent waves impinge the hull at the stern and increase the pressure

that applies a force in the direction of travel. For Fr = 0.4, the discrepancies exist

for longer extension along the hull at −0.4 < x/L < 0.4, whereas they increase the

total ship drag.

Table 4.2: Relative resistance (R/R0) in open water, canal or ice channel. w = 2B
for Fr = 0.22, w = 3B for Fr = 0.33 and 0.4.

Fr open water h∗ = 0.05 h∗ = 0.1 h∗ = 0.15 h∗ = 0.2 canal

0.22 1 1 1.13 1.24 1.32 1.42
0.33 1 0.93 0.76 0.7 0.69 0.66
0.4 1 1.03 1.35 1.62 1.74 1.81

The relative resistance for various conditions of speed and ice thickness are shown

in Figure 4.14, and collected in Table 4.2. At Fr = 0.33, the relative resistance de-

creases as the ice thickens and approaches the canal condition. When the submerged
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Figure 4.13: Distribution of sectional drag coefficient along the hull.

ice thickness reaches 20% of the wavelength, the relative resistance only has a 4.5%

difference from that in a canal. Similarly, for Fr = 0.4, the relative resistance in-

creases towards the value of the canal as ice becomes thicker. When the ice thickness

is h∗ = 0.2 the difference with a canal is less than 5% for both speeds. Note that

the change in wave resistance is a 31% reduction at Fr = 0.33 and a 74% increase at

Fr = 0.4, compared to the open-water case.

4.6 Planing Hull Model

High-speed planing boats are another type of craft that is of interest in this study.

When at high speeds, the boat weight is predominantly supported by hydrodynamic

lift, rather than hydrostatic lift (buoyancy). The ship-length Froude number, Fr =

U/
√
gL, is usually > 1 in planing conditions. This study uses a model scale of the

GPPH as the ship model. The computational domain and boundary conditions are

the same as described in Section 2.1. The planing hull is allowed to heave and pitch.

Only half of the computational domain is simulated with the use of a symmetry

plane along the centerline and assuming the flow solutions and ship motions are
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Figure 4.14: Relative resistance as a function of the relative submerged ice thickness
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symmetric. The geometry of the ship model and spatial discretization can be found

in Section 2.1.3.

4.6.1 Grid Refinement Study

A grid refinement study is first performed to assess the sensitivity of the results on

the numerical discretization. Four systematically refined grids with resolutions of

40 mm, 30 mm, 24 mm and 20 mm in the bulk of the flow domain are adopted as

the very coarse, coarse, medium and fine grids. The grid resolution is represented

by a grid refinement ratio ri, which is collected in Table 4.3 along with the cell size

and total number of cells. Figure 4.15 shows some example partial meshes from the

systematically refined meshes with different grid refinement ratios ri. The steady-

state wave profiles at different locations with various grid resolutions are displayed in

Figure 4.16, which show that except the very coarse grid of ri = 2 overestimate some

wave crests, the other three finer grids give close solutions in terms of the wave fields.

77



Figure 4.17 shows the convergence of the resistance, which consists of the pressure

and friction components. The convergence of the ship motions in terms of sinkage

and trim angle related to calm water position is shown in Figure 4.18. Based on the

above convergence studies, a grid refinement ratio ri = 1.2 was selected for the rest

of the parametric studies as a balance of accuracy and computational cost.

(a) ri = 2 (b) ri = 1.5 (c) ri = 1

Figure 4.15: Systematically refined meshes with different grid refinement ratios ri.
The meshes are around the bow area, and are on the hull surface or the symmetry
plane of the computational domain.

4.6.2 Convergence on the Domain Extent

The convergence on domain extent is also studied. Table 4.4 shows the steady-

state quantities of forces and ship motions, from which we can see good convergence

behaviors even though the domain has relatively small sizes. A combination of h =

5L, Ldn = 4L and Lup = 4L is selected for the parametric studies.

Table 4.3: Cell size and total number of cells for various mesh resolution.

Mesh ri ∆xmin (mm) # cells (million)

Very coarse 2 5 0.96
Coarse 1.5 3.75 2.25
Medium 1.2 3 4.55
Fine 1 2.5 7.26
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Figure 4.16: Steady-state wave profiles with various grid resolutions. The top two
are transverse cuts at 0.5L (left) and 1L (right) behind the stern, the bottom is along
the symmetry plane. Ice edges are indicated by blue dash lines.

4.6.3 Effects of Ship Speed, Channel Width and Ice Thick-

ness

For the parametric study, different ship speeds (Fr = 0.4, 0.6, 0.8, 1, 1.2 and 1.4),

channel width (w/B = 1.6, 3.2 and 6.5), and ice thickness (h/B > 0.1) are tested.

The steady-state ship wake of different test conditions is compared in Figure 4.19 and

Figure 4.20, where the air-water interface is colored by elevation. In Figure 4.19, the

Froude number is 0.6, and three different channel widths are compared. It clearly

shows that the narrowest channel has a significant effect on the wave profile. Most

notably the first crest is much more pronounced, and the wavelength is reduced. Also,

the amount of overwash onto the ice is increased for the narrowest channel width.

Figure 4.20 shows the effect of ship speed on the wave profile for the intermediate

channel width of w/B = 3.2. The increase in speed results in an increase in the

wavelength and it appears that for the greatest speed, the wave-ice interaction is far
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Figure 4.17: Normalized resistance components as a function of grid refinement ratio
ri. W is the weight of the hull.

(a) sinkage (b) trim angle

Figure 4.18: Convergence of steady-state sinkage and trim angles.

behind the ship.

The effect of the channel width on the wave field is examined more closely by

plotting the wave elevation on the centerline behind the vessel in Figure 4.21. The

first wave crest is located at x/L ≈ −1 for all three channel widths, but the first

trough is much closer to the ship hull for the narrowest width of w/B = 1.6. Thus

the narrow channel has the effect of shortening the wave behind the vessel. When

comparing the other two channel widths the wave length of the widest channel has

the smallest amplitude wave and the longest wavelength.

It is known that waves moving over a current have their length attenuated (Dal-
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Table 4.4: Steady-state ship resistance, trim and sinkage with different domain sizes:
upstream length (Lup), downstream length (Ldn) and water depth (H). The base case
has domain sizes of H = 2.5L, Ldn = 4L and Lup = 2L, which are used if not stated
otherwise.

Domain size Resistance (N) Trim (◦) Sinkage (mm)

base case 7.03 2.58 6.1
H = 5L 7.03 2.59 6.1
Ldn = 7L 7.04 2.6 6.2
Lup = 4L 7.05 2.61 6.2
Lup = 6L 7.06 2.61 6.2

w/B = 6.5

w/B = 3.2

w/B = 1.6

Figure 4.19: Top view of the wave fields with the hull and ice for different channel
widths with Fr = 0.6 and h/B = 0.1. Air-water interface is colored by elevation.

rymple, 1974), and to investigate the role of the channel width on the fluid velocity

behind the ship different profiles are shown in Figure 4.22. It can be seen that the

narrower channel produces a larger perturbation to the velocity field, but no dis-

cernible current is evident. It appears the shortening of the wave is a local effect of

the ship-ice interaction.

The pressure part of ship resistance Rp is presented as a function of ice thickness
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Fr = 0.6

Fr = 1

Fr = 1.4

Figure 4.20: Top view of the wave fields with the hull and ice for different ship speeds
with w/B = 3.2 and h/B = 0.1. Air-water interface is colored by elevation.

in Figure 4.23, which is nondimensionalized by the ship weight W . The curves for

w/B = 3.2 and 6.5 are almost flat and are in line with the open-water and canal

cases, meaning ship resistance is insensitive to ice thickness for wide channels. For

the narrowest channel, ship resistance varies with the ice thickness. It is interesting

to see that for the speed Fr = 0.6 the resistance in w/B = 1.6 is always greater than

that for the wider channel, and the increase is greatest for very thin ice or the thickest

ice. On the other hand for the speeds Fr = 1.0 and 1.4 the resistance decreases with

increasing ice thickness for the narrowest channel, and it is less than the value for

open water for the thickest ice. Variance in resistance with different channel widths

or ice thicknesses exists but is much less significant than that for the ONRT cases,

where the high Froude number is believed to be the main reason. The fundamental

wavelength is larger for higher Froude numbers, i.e. λ = 2πFr2L ≈ 2.3L, 6.3L and

12.3L for Fr = 0.6, Fr = 1 and Fr = 1.4, respectively. Wave and ice interactions
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Figure 4.21: Wave elevation along the centerline at steady state, Fr = 0.6, h/B = 0.1.
The COG of the ship is located at x/L = 0.

mainly happen further downstream, which provides less influence on the near-field

hydrodynamics. Additionally, the relative ice thickness is smaller compared with the

larger fundamental wavelength. Even for h/B = 1, the ice thickness is 0.37 m and

is only 6% of the fundamental wavelength for Fr = 0.6. The wave resistance values

for Fr = 0.6 and 1, and w/B = 1.6 and 6.5 are normalized by the corresponding

open-water resistance and are plotted in Figure 4.24 as a function of the relative

ice thickness h∗ = hsub/λ. Note for Fr = 1, the wavelength of the divergent waves

λD = 4πFr2L/3 is used instead of the fundamental wavelength of the pure transverse

wave as the divergent waves are prominent at this critical speed. For the wide channel

of w/B = 6.5, the resistance is similar to that in open water for both ship speeds,

indicating the existence of ice has little impact on the ship resistance when the lead

is wide. For the narrow channel of w/B = 1.6, the relative wave resistance in the

lead approaches that in a canal as the ice thickness is increased toward 20% of λ or

λD, which is similar to that for the ONRT ship model in Figure 4.14.

Figure 4.25 shows the ship resistance, sinkage, and trim angle as a function of

Froude number. In each figure data are shown for each channel width and the ice

thickness is h/B = 0.1 for all cases. Pressure component of ship resistance Rp is

non-dimensionalized by the ship weight W . δ represents the sinkage of the center of

gravity (CoG) of the ship, which is normalized by the ship length L and is positive
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Figure 4.22: Streamwise velocity profiles for different channel widths. Fr = 0.6,
h/B = 0.1, H = 3 m.

upward. τ is the trim angle with respect to the CoG and is positive for bow up.

Overall, all three quantities vary by the Froude number while only minor discrepancy

exists for different channel widths, which indicates the ship speed is a more prominent

factor for this high Froude number regime (Fr > 0.4), i.e. the ship forces and motions

are not very different than in open water with this thin sheet ice (h/B = 0.1). The

resistance first increases with the Froude number up to Fr = 0.8 and then decreases,

which indicates the peak exits between Fr = 0.6 and Fr = 1. The sinkage increases

monotonously with the Froude number and switched from negative value to positive

between Fr = 0.6 and 0.8. The trim angle increases rapidly with the Froude number

and the hull switches from bow down to bow up between Fr = 0.4 and Fr = 0.6,

then gradually plateaues at around 5◦ for Fr > 1.
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Figure 4.23: Pressure component of ship resistance versus ice thickness nondimen-
sionalized by the ship weight W . Infinite ice thickness in (a) refers to test cases in a
canal.

4.6.4 Overwash Mass Flux

Significant amounts of overwash can be observed from the wave contours in Figure 4.19

and Figure 4.20. Overwash causes energy dissipation of ship-generated waves through

wave breaking, which affects the wave pattern and can alter the ship hydrodynamics.

Overwash also has an impact on the hydroelasticity of the flexible ice, where the

green water on top of the ice can either increase or decrease the local ice deflection

and strain, which either assists or impedes ice fracture. The impact of overwash on

85



0 0.05 0.1 0.15 0.2
h ∗

0.8

0.9

1.0

1.1

1.2

1.3

R
w
/
R

0

canal

Fr= 0.6, w/B= 1.6

Fr= 1, w/B= 1.6

Fr= 0.6, w/B= 6.5

Fr= 1, w/B= 6.5

Figure 4.24: Relative resistance as a function of the relative submerged ice thickness
h∗ = hsub/λ.

ice hydroelasticity is not considered in this chapter but is discussed in Chapter V for

flexible ice. This section quantifies the overwash intensity by evaluating the overwash

mass flux ṁ over the ice sheet through the vertical plane above the ice edge

ṁ =

∫ ξ(x,w/2)

0.1h

∫ xA

xB

ρv dxdz, for ξ(x,w/2) > 0.1h (4.10)

where v is the y-component of the water velocity, the integration area is a finite

vertical plane above the ice edge at y = w/2, which is horizontally throughout the

computational domain from x = xB to x = xA, and is vertically bounded by the top

of the ice edge z = 0.1h and the wave elevation above the ice edge, i.e. z = ξ(x,w/2)

for ξ(x,w/2) > 0.1h.

The overwash mass flux at steady state for two ship speeds and three channel

widths are plotted in Figure 4.26 against the relative ice thickness h/B. The amount

of overwash is significant as nearly 20 kg/s of mass fluxes are generated on each side of

the ship, whereas the displacement of the model scale ship is only 12.66 kg. The mass
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Figure 4.25: Steady-state values of resistance, sinkage, and trim angle as a function
of Froude number. h/B = 0.1.

flux is higher in narrower channels with thinner ice, and higher ship speed generally

leads to higher mass flux.

The overwash mass flux is further normalized by the displacement of the ship m,

ship length L, and ship speed U

ṁ′ =
ṁL

mU
. (4.11)

The normalized overwash mass flux ṁ′ for the same conditions is shown in Figure 4.27,

which shows similar trends as a function of the ice thickness and channel width as

in Figure 4.26, but more directly demonstrates the fraction of mass onto the ice on

each side of the ship for each ship length it traveled. For example, for Fr = 0.6,
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Figure 4.26: Overwash mass flux as a function of relative ice thickness.

w/B = 1.6 and h/B = 0.1, ṁ′ = 1.24 indicates the overwash mass that is generated

on each side of the ship for each ship length it traveled is equivalent to 124% of the

ship displacement.
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Figure 4.27: Normalized overwash mass flux as a function of relative ice thickness.

4.7 Summary

This chapter first discusses the typical ice thicknesses in the Arctic region and uses

the knowledge of the relationship between ice flexure and critical speed to justify the
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rigid-ice assumption. Since the investigated ship speeds are well below the critical

speeds for the thick ice sheets studied in this chapter, the ice flexure is assumed to be

sufficiently small (Xue et al., 2021) and it does not alter the velocity or wave fields

near the ship. Therefore the ice sheet can be treated as rigid.

A grid refinement study is performed to determine the mesh resolution and open

water tests are compared with experimental and CFD results from references for

validation. Then CFD is used to study the wave resistance and wave pattern for the

same idealized canal in Chapter III of constant width. Comparisons in wave resistance

between the CFD simulations and theoretical analysis from Chapter III demonstrate a

good agreement, which indicates the theory can provide fast and accurate estimations

of wave resistance in canals with the knowledge of open-water wave resistance.

The analysis is extended to rigid ice sheets of constant thickness. By measuring

the vertical distribution of the lateral momentum flux, it is demonstrated that the

momentum flux is concentrated in a small region below the water surface, and nearly

all the momentum flux occurs in the first 20% of the fundamental wavelength of the

ship-generated waves. CFD simulations are performed to study ship transit in open

water between rigid ice sheets and the results show that the wave fields in leads with

ice thickness greater than 20% of λ are similar to those in corresponding canals, and

so is the wave resistance, with an increase up to 74% and a decrease as much as 31%

relative to the open-water conditions. Simulations with intermediate ice thickness

show that the corresponding wave field and resistance are somewhere between that

in open water and in a canal. This means that ship operations in a lead can realize

substantial benefits, or penalties, to resistance and fuel consumption with a strong

dependence on the ship speed, even in relatively thin ice conditions.

The last section of this chapter investigates the higher speed regime of 0.4 < Fr <

1.4 with a planing hull model. The CFD results show that the ice thickness affects

the ship resistance when the ship is sufficiently close to the ice. It is also shown that
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narrower channels shorten the wave and produce a larger perturbation to the fluid

velocity behind the ship. Overwash on top of the ice is observed for most cases and

the overwash mass flux over the ice edge is mathematically defined and quantified.

The amount of overwash is significant for thin ice and narrow channels as overwash

mass equivalent to > 120% of the ship displacement is generated on each side of the

ship for each ship length it traveled.
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CHAPTER V

Ship Moving in a Lead between Flexible

Ice Sheets

This chapter studies the problem of the full-scale ONRT traveling in a lead between

thin ice sheets of 0.5 m < h < 2 m. The ice sheets are treated as flexible as the

investigated ship speeds of 0.2 < Fr < 0.4 approach or exceed the theoretical critical

speed, which is shown later in this chapter, and the ice deformation is non-negligible

according to Xue et al. (2021). The interactions between the ship-generated waves and

sheet ice are modeled by the FSI solver introduced in Sec 2.2. The FSI solver couples

the moving fluid domain and the static ice sheet, where the fluid domain is modeled

by the two-phase flow solver from Sec 2.1, and the flexible ice sheet is treated as a thin

elastic plate. The ice sheet is subject to fluid stress and its deformation is solved by a

linear dynamic modal decomposition method. This chapter first conducts convergence

studies to determine the ice extent, finite element discretizations, and number of

mode shapes, then analyzes ice deflections by performing a group of simulations with

different ship speeds and ice thicknesses. Particularly, overwash is quantified and its

influence on the ice responses is discussed.
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5.1 Convergence Studies

Compared to the simulations with rigid ice, more numerical parameters associated

with the structural domain are introduced in the simulations with flexible ice. These

parameters need to be determined first. This section conducts convergence studies to

examine the dependences of the solutions on the ice sheet dimensions, finite element

discretization, and number of mode shapes. The test case has Fr = 0.4, w/B = 2

and h = 1 m.

5.1.1 Dependence on FE Domain Sizes

This work intends to investigate sheet ice that is of an infinite extent, whereas it is

impractical to use a large number of finite elements to mimic an infinite ice sheet in

numerical simulations. A sufficiently large FE domain with a finite number of FE is

adopted instead and the dependence of the solutions on the FE domain sizes needs

to be examined first. The length of the ice sheet is much larger (2,000 m in this case)

and preliminary simulations show fluid and FE solutions are insensitive to the length.

Therefore, only the width of the ice sheet is examined.

Table 5.1 collects the results of the maximum deflection of the ice, wmax, average

time period of the ice response, Ti, and the time of occurrence of the maximum

deflection, tmax, for different width values of ice plate, W . The results are recorded

at a fixed probe on the ice edge at x = 0, which is initially next to the mid-ship.

The table shows that for an ice sheet that is at least 200 m wide, the ice responses

are invariant in terms of ice deflections. Even for a width of 140 m, the difference is

smaller than 1%. Ice responses recorded at other probe locations demonstrate similar

comparisons. Therefore an ice sheet of 2,000 m × 200 m is selected for the rest of the

study.
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Table 5.1: Convergence of maximum ice deflection for different widths of the ice
sheets. The test case has Fr = 0.4, w/B = 2 and h = 1 m.

Width of ice sheet (m) wmax (m) tmax (s)
140 0.488 12.68
200 0.491 12.69
280 0.491 12.69

5.1.2 Dependence on FE Discretization

In the applied finite element method for discretizing the structure, the displacements

at each node are interpolated with cubic shape functions and the rotations with

quadratic shape functions. The higher-order interpolations bring solutions of higher

accuracy for displacement within the elements. Hence fewer FE elements are required

compared with the discretization for the fluid domain.

The resolution of the finite element discretization of the ice is examined by evaluat-

ing the ice deflections and axial stress. Three uniform Cartesian grids with different

resolutions are used to discretize the ice sheet, which have 8, 16 and 32 thousand

elements, corresponding to element sizes of 5
√

2 m, 5 m and 5/
√

2 m, respectively,

with refinement ratios of ri = 2,
√

2 and 1. Table 5.2 shows that a total number of 16

thousand elements is sufficient to give converged results, which has an element size

of 5 m by 5 m.

Table 5.2: Convergence of maximum ice deflection and axial stress for different finite
element discretization. The test case has Fr = 0.4, w/B = 2 and h = 1 m.

NFE (×103) wmax (cm) tmax (s) σmax (MPa) tmax (s)
8 0.464 12.66 1.85 15.44
16 0.491 12.69 1.93 15.36
32 0.493 12.71 1.95 15.36
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5.1.3 Modal Convergence

The sheet ice is represented by a finite number of mode shapes with associated natural

frequencies that are generated with FEM. A few example mode shapes of an ice

sheet of h = 0.5 m are given in Figure 5.1, where the mode shapes are presented in

the form of ice deflections. These presented mode shapes are selected based on the

corresponding modal participation in the simulation with Fr = 0.4 and h = 0.5 m,

which is plotted in Figure 5.2. Modal participation measures the significance of a

vibration mode and is quantified in this work as the amplitude of the excited mode

shapes. Larger values indicate a stronger contribution to the dynamic response of

the ice deflections. As will be demonstrated in Figure 5.8, different ship speeds, or

different ice mechanical properties, which are determined by ice thickness in this case,

lead to different combinations of modal participation. The case with Fr = 0.4, h = 0.5

m is selected only for illustration purposes. From the mode shapes in Figure 5.1,

we can see that the first several modes have simple deformation shapes with large

wavelengths, and later modes have more complex deformation patterns with smaller

wavelengths.

The number of mode shapes that are required to accurately represent the ice sheet

is determined by examing the convergence on ice deflections. The time series of the

ice deflections recorded at the fixed probe on the ice edge at x = 0 are shown in

Figure 5.3 for different numbers of modes. Figure 5.3a shows the time histories of

entire simulations and Figure 5.3b zooms in the time window near the occurrence

of the maximum deflection. The maximum deflections are plotted in Figure 5.4 as a

function of number of modes, where the maximum deflections are non-dimensionalized

by that with 800 modes. This plot demonstrates that the deflections converge after

around 200 modes.
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(a) mode #1

(b) mode #9

(c) mode #46

(d) mode #82

(e) mode #105

(f) mode #238

(g) mode #422

(h) mode #751

Figure 5.1: Individual mode shapes for an example ice sheet with dimensions of 2,000
m by 200 m, finite element resolution of 5 m, and h = 0.5 m. A total of 800 modes
are used to describe the ice (788 effective). The ice sheet is colored by deflections,
where the red and blue indicate positive and negative deflections, respectively.
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Table 5.3: Convergence for different numbers of mode shapes.

N wmax (m) tmax (s)

10 0.009 13.64
20 0.030 13.79
50 0.161 13.86
100 0.372 13.30
200 0.455 12.79
400 0.494 12.75
565 0.492 12.69
800 0.491 12.69

Since stresses in the ice are proportional to the second derivatives of the ice de-

flections, it is supposed that more modes are required to reach a convergence than

that for deflections. The relative maximum axial stress in the ice at steady state is

plotted in Figure 5.5 as a function of the number of modes. Although the convergence

behavior is not as ideal as for the deflections, using 400 modes is essentially adequate

as it gives a stress of < 1% difference to that with 800 modes. 800 modes are used

for the rest of the study.
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Figure 5.2: Modal participation presented in the form of amplitudes of excited mode
shapes. Fr = 0.4, h = 0.5 m.
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Figure 5.3: Time series of deflections at a fixed location on ice with different numbers
of mode shapes.
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Figure 5.4: Convergence of modal description of ice plate for maximum deflection.
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Figure 5.5: Convergence of modal description of ice plate for maximum stress.

5.2 Computational Results

5.2.1 Wave Fields and Ice Deflections

After determining the required ice dimensions, FE resolutions and number of modes,

a group of simulations are performed with different ship speeds and ice thicknesses.

Froude numbers Fr = 0.2, 0.33 and 0.4 are selected based on the theoretical and
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(a)

(b)

Figure 5.6: Steady-state wave fields and ice deflections for (a) Fr = 0.33 and (b)
Fr = 0.4, h = 1 m.

numerical analysis in the previous two chapters. Three values of ice thicknesses are

considered, which are h = 0.5 m that represents first-year ice, and h = 1 m and 2

m that represent medium thick multi-year ice. The channel width is set constantly

as w = 2B to limit the parameter space. All simulations are run for sufficiently long

until they reach a steady state for both the wave fields and ice deflections in the

ship-fixed coordinate system.

Steady-state wave fields and ice deflections within the CFD domain are displayed

in Figure 5.6 for h = 1 m and Figure 5.7 for h = 0.5 m. Note that the ice sheets

on two sides are symmetric about the centerline of the channel and only one side is

displayed. One salient feature is that the ice deflections in the ship track direction

have similar wavelengths to the ship-generated waves in the downstream, and the in-

ice and in-water waves are generally in phase with each other, which is more clearly

demonstrated by the wavecuts at the ice edge in Figure 5.14. Because the lower ship

speed has a smaller fundamental wavelength, the waves in the ice for Fr = 0.33 are

also shorter than those for Fr = 0.4. As these patterns are in steady-state, we also

know that the waves travel with the ship at the same speed. The ice deflections

are larger near ice edges and decay further away, which have similar patterns with
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(a)

(b)

Figure 5.7: Steady-state wave field and ice deflections for (a) Fr = 0.33 and (b)
Fr = 0.4, h = 0.5 m.

the hydrodynamic pressure acting on the lower surface of the ice sheet. Another

important feature is the overwash on top of the ice. The green water flows on top of

the ice at the water wave crests, which forms the overwash. The green water spreads

on the ice surface and is trapped in the hollow (downward deflected ice) between two

humps (upward elevated ice). The fluid stress due to the overwash is supposed to

depress the ice sheet and is accounted for in the present solver.

The modal participation levels for different test conditions are presented in Fig-

ure 5.8 in the form of amplitudes of excited mode shapes. The amplitudes are plotted

on a logarithmic scale to more clearly display the small-value range at the higher-

frequency end (larger mode #). For all conditions, mode shapes with lower frequencies

(smaller mode #) generally have larger amplitudes than those of higher frequencies,

which means the former is excited to higher participation levels. The comparisons

of different ship speeds and ice thicknesses show that the higher-frequency modes

participate more for higher ship speeds and thinner ice.

The ice deflections can be affected by several factors including the ice rigidity, fluid

stress on the lower surface of the ice sheet, and fluid stress due to overwash water. The

latter two quantities can vary as the ice sheets of different thicknesses have different
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Figure 5.8: Modal participation presented in the form of amplitudes of excited mode
shapes, w = 2B.

drafts (90% h) and freeboards (10% h). Ice deflection itself can affect the overwash

amount, which will be discussed in Section 5.2.2. But the most important factor is

the rigidity of the ice sheet, D = Eh3/12(1 + ν2), which is proportional to the cube

of the ice thickness.

Since the ice edge has the largest deflections, the deflections along the ice edges are

plotted together for comparison for different ship speeds in Figure 5.9a and different

ice thicknesses in Figure 5.9b. Note the midship is located at x/L = 0, and the bow
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and stern are respectively located at x/L ≈ 0.5 and ≈ −0.5. The undisturbed profile

of ice edge deflections (ω = 0) is also indicated. Figure 5.9a demonstrates that the ice

deflections increase with the ship speed. Ice deflections are much smaller for the lower

ship speed of Fr = 0.2 than the two higher ship speeds. For all ship speeds, the larger

ice deflections mostly occur in the near field and diminish into the far field as the

water waves are attenuated or canceled in the downstream. Figure 5.9b shows the ice

deflections along ice edges for the same Froude number Fr = 0.4 but with different

ice thicknesses. The wavelength and phase of the ice deflections are similar for the

three different ice thicknesses. With increasing ice thickness, the deflections decrease

and the downward shift of the entire ice edge due to the weight of the overwash water

becomes more significant.

The ice deflections away from the ice edge (y = 4B) are also examined in Fig-

ure 5.10 to see how the ice deflections are attenuated in the lateral direction. The

deflections for the thinnest ice of h = 0.5 m become the smallest among all three ice

sheets, whereas it has the largest deflections at the ice edge. This means the attenua-

tion in ice deflections in the lateral direction is most significant with the thinnest ice.

The slower attenuation is assumed to attribute to the higher rigidity of the thicker

ice.

The maximum values of deflection of the entire ice sheet at steady state (ωmax) are

plotted in Figure 5.11 as a function of Froude number. The maximum deflections for

both ice thicknesses increase with ship speed. At the lowest speed of Fr = 0.2, the

two ice sheets have similar maximum deflections of 84 and 71 mm. The discrepancy

in ωmax widens as the ship speed increases, but the ratio of the two values remains

at around 0.8. At Fr = 0.4, the thicker ice has ωmax = 0.61 m and the thinner one

has ωmax = 0.78 m. Note all the maximum deflections recorded have a negative sign

(downward deflection), which is due to the overall downward shift of the ice sheet

caused by the fluid weight of overwash.
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Figure 5.9: Steady-state ice deflections along edges.

By using the expression in Equation 4.1 that determines the critical speed in deep

water for ice of infinite extent, the critical speeds for the two ice sheets of h = 0.5 m

and h = 1 m are 15.4 m/s and 11.9 m/s, or Fr = 0.4 and Fr = 0.31 for the full-scale

ONRT, respectively. The theoretical critical speeds for the two ice thicknesses are

indicated by the vertical dashed lines in the figure. According to Xue et al. (2021), the

deformation grows rapidly and reaches a maximum as the speed is increased towards

the critical speed. For h = 0.5 m, it can be determined that the real critical speed is

over the theoretical critical speed of Fr = 0.31, but it is not clear if it reached critical
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speed between Fr = 0.35 and 0.4 from Figure 5.11. Another indicator for reaching the

critical speed is the generation of flexural-gravity waves that propagate upstream. No

perceivable waves are captured in the upstream, which indicates the critical speed has

not been reached. Higher speeds or thinner ice sheets that have larger deflections are

not investigated as body-fitted meshes are used for the ice surfaces in this work and

the mesh distortion caused by the ice deformation (> 0.8 m) is too large compared

to the small cell height around the ice edge (< 0.5 m), which is beyond the capability

of the present solver.
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Figure 5.10: Steady-state deflections at y = 4B m with different ice thickness. Fr =
0.4, w = 2B.

Figure 5.12 shows the frequency analysis of the ice deflections at two fixed probes,

i.e. one at the ice edge (y = B) and another away from the ice edge at y = 4B, and

both at x = 0. In Figure 5.12a, all three thicknesses have two significant peaks with

the first one near the zero frequency that has a very long period, which is due to forces

of long wavelengths (could be the overwash). The second peaks are a little over 0.63

rad/s, which indicates the ice deflections are mostly compliant with the ship waves

that have a theoretical frequency of 0.631 rad/s by deep water dispersion relation.

Larger frequencies indicate the in-ice waves are shortened compared to the water

waves in open water, which phenomenon was also reported in the in-situ observations
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Figure 5.11: Absolute maximum deflection of the ice sheet as a function of Froude
number. The theoretical critical speeds for the two ice thicknesses are indicated by
the vertical dashed lines of corresponding color.

by Dumas-Lefebvre and Dumont (2021). The curves for the thinner ice sheets are

slightly shifted to the right (though the comparisons are compromised by the coarse

resolutions of the spectra), which means waves in thinner ice are shorter compared

with thicker ice. Further away from the ice edge, as shown in Figure 5.12, the wave

energy drops for all three cases. But attenuation is much more significant for thinner

ice, which is consistent with that demonstrated in Figure 5.10.

5.2.2 Overwash Mass Flux

Overwash over the top surface of the ice sheet is a significant phenomenon in these

simulations. The overwash mass flux over the ice edge is evaluated in a similar form

as in Eq. 4.10 with only changing the lower vertical integration limit to the deflected

top surface of the ice edge z = ω(x,w/2)

ṁ =

∫ ξ(x,w/2)

ω(x,w/2)

∫ xA

xB

ρv dxdz, for ξ(x,w/2) > ω(x,w/2) (5.1)
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Figure 5.12: Angular frequencies of the ice deflections at two fixed probes for various
ice thicknesses. For the cases of Fr = 0.4 and w = 2B. The vertical dashed lines
indicate the theoretical frequency (ωT = 0.631 rad/s) of pure transverse waves for
Fr = 0.4 in open water.

and is normalized in the same way as in Eq. 4.11, ṁ′ = ṁL/mU , where m = 8507

ton is the displacement of the full-scale ONRT.

The overwash mass flux is plotted in Figure 5.13 against Froude number along

with the normalized values. For Fr = 0.2, the ṁ values for the two ice thicknesses

are similar with the thinner ice allowed slightly more overwash. But for higher speeds

of Fr = 0.33 and Fr = 0.4, the thicker ice of h = 1 m has more overwash than the

thinner ice with considerable differences. The two-meter thick ice has even higher ṁ

for Fr = 0.4.

Thicker ice allowing more overwash may be unexpected as thicker ice has a higher

freeboard (10% of ice thickness) that is supposed to block more lateral flow flux above

the calm water surface. This may be explained by the compliance of thin ice to water

waves. Figure 5.14 plots the elevation profiles of both the water waves and both

the top and bottom surfaces of the deformed ice sheet along the ice edge. Note the

undeformed upper surfaces sit respectively at z = 0.05 m and 0.2 m for the two ice

sheets of h = 0.5 m and 2 m. The wave elevations at the ice edge are generally similar

for the two conditions. The thinner ice is more compliant and has larger ice flexure
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at the ice edge, and the humps (upward deflections of ice) are generally in phase with

the crests of the water waves, which results in smaller wave elevation relative to the

top of the ice edge. Overwash occurs where the wave elevation is higher than the

top of the ice edge, i.e. ξ(x,w/2) > ω(x,w/2). These occurrences are indicated by

the red shades in the figure, from which it is evident that the elevated edge of the

thinner ice blocks more overwash. On the other hand, the flexure is much smaller for

the thicker ice and is not totally in phase with the wave elevations, especially in the

near field. This allows more overwash, despite its higher freeboard. Note possible air

ventilation can happen under the ice near the mid-ship for h = 0.5 m as the wave

profile falls below the bottom of the ice edge.

To more clearly demonstrate that ice rigidity plays a significant role in determining

the overwash amount, a set of comparison simulations were performed with completely

rigid ice, i.e. ice with infinite rigidity. The overwash mass flux ṁ is plotted in

Figure 5.15 for different ship speeds with both flexible ice (E = 4.2 GPa) and rigid

ice of h = 0.5 m. For each ship speed, the rigid ice overwhelmingly overtops the

flexible ice with more than twice of overwash as for the flexible ice.
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Figure 5.13: Overwash mass flux as a function of ship speed.
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Figure 5.14: Elevation profiles of water wave and both the top and bottom surfaces
of the ice sheet along the ice edge. The red shades indicate where overwash occurs.
Midship is at x/L = 0.

5.2.3 Effect of Ice Flexure

This section compares the simulations with either flexible or rigid ice sheet to see how

ice flexure influences the ship hydrodynamics and wave fields.

Section 5.2.2 already demonstrated that assuming ice being rigid can lead to more

overwash in certain conditions. Figure 5.16 plots the steady-state wave fields with

the rigid ice of h = 0.5 m, which can be compared with those with flexible ice in

Figure 5.7. The patterns of green water on top of the ice are different from those
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Figure 5.15: Overwash mass flux as a function of ship speed with either flexible or
rigid ice, h = 0.5 m.

with flexible ice. Since the upper surface of rigid ice is flat, the green water spreads

out more freely compared with that on deformed ice.

(a)

(b)

Figure 5.16: Steady-state wave fields with rigid ice for (a) Fr = 0.33 and (b) Fr = 0.4,
both have h = 0.5 m.

The wave fields between the ice sheets are similar for the flexible and rigid ice.

To more clearly demonstrate the comparison, wavecuts through the centerline of the

channel are plotted in Figure 5.17. For the lower ship speed of Fr = 0.2, the wave

profiles are almost identical in the near field up to 1.5 ship-length after the stern,
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only minor differences occur after x/L = −1.5. Similarly, for Fr = 0.33, only minor

differences exist in wave amplitude after x/L = −1 while the wavelengths and phases

are similar. Notable differences happen in the case of Fr = 0.4, especially for wave

elevations after x/L ≈ −3. In the downstream after x/L = −3, amplitudes of the

water waves with the flexible ice decreased dramatically, compared to the gradual

attenuation with the rigid ice.

The wave resistance relative to that in open water for different ship speeds is

collected in Table 5.4, where the relative resistance is compared between either a

rigid or flexible ice sheet is present, both have a thickness of 0.5 m. No significant

differences are found in the comparison of the resistance between rigid and flexible

ice assumptions, where assuming the ice is flexible only leads to 0.9%, 0.4% and 1.8%

increase in resistance for Fr = 0.2, 0.33 and 0.4, respectively.

Table 5.4: Relative resistance (Rp/R0) with rigid and flexible ice sheet of h = 0.5 m.
The last column is the ratio of wave resistance with flexible ice to that with rigid ice.

Fr Flexible ice Rigid ice Ratio
0.2 1.002 0.993 1.009
0.33 1.141 1.137 1.004
0.4 0.694 0.682 1.018

5.2.4 Discussion on Stress and Potential Fracture

In this work, ice is assumed to be homogenous and the ice sheet is treated as a

continuous and thin elastic plate. The structural model is able to evaluate the stress

in the ice based on the deformation of the ice sheet and other properties of the ice.

However, this work does not model ice fracture since even with treating the ice as

plastic material, the failure criteria for sea ice are still inconclusive (Untersteiner,

2013; Weiss et al., 2007). Without modeling the ice fracture, the current solver is

able to continue the simulation beyond the failure point of the ice sheet. This section
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Figure 5.17: Comparison between flexible and rigid ice for wave profiles along the
centerline of the channel with midship placed at x/L = 0. Ice thickness is h = 0.5 m.
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discusses the stress in the ice and identifies potential ice fracture by using the Mohr-

Coulomb (MC) criterion (Gross and Seelig, 2017).

The von Mises stress describes the distortion energy per unit volume and is eval-

uated as

σe =
√
σ2

1 − σ1σ2 + σ2
2, (5.2)

where σ1 and σ2 are the principal stresses and can be calculated using axial stresses.

Figure 5.18 shows the distribution of von Mises stress on the ice surface for different

ship speeds with h = 1 m. Similar to the deflection patterns, the largest stresses

concentrate along the ice edge. The stresses dissipate quickly away from the ice edge

with only a fraction (< 5%) of maximum σe at y ≈ 5 B. Compared to the higher

speeds, the stresses in the ice with Fr = 0.2 are much smaller and concentrate near

the moving hull. Note the range of the color map for Fr = 0.2 is a magnitude smaller

than that for the two higher ship speeds.

The Mohr-Coulomb criterion is used to examine potential fractures in the ice. The

fracture criterion depends on both the compressive strength σc and tensile strength

σt of sea ice. This work uses the values of σc = 3MPa and σt = 0.5 MPa for the ice,

which are from the empirical formulae reported by Timco and Weeks (2010) and have

been used in Montiel and Squire (2017) and Montiel and Mokus (2022) for modeling

sea-ice breaking. The steady-state stresses on the top and bottom surfaces of the ice

sheets with different test conditions in Figure 5.18 are sampled at points along the

ice edge (y = B), y = 2B, 3B, and 4B with a longitudinal distance of 1 m apart. The

stresses are plotted in the space of the principal stresses, σ1 and σ2, in Figure 5.19.

The red curve, F(σ1, σ2) = 0, is the Mohr-Coulomb yield criterion, where the symbols

outside of the curve indicate failure. The points on the ice edge are highlighted with

blue color.

For the lowest tested speed Fr = 0.2, all the sampled points are under low stresses

and are well within the yield curve, which indicates the ice sheet is not likely to
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Figure 5.18: Steady-state von Mises stress across the ice surface for Fr = 0.2, 0.33
and 0.4 from top to bottom. Other conditions are h = 1 m, w = 2B.

fracture. For the speed Fr = 0.33, the symbols significantly spread out and a small

amount of them fall outside of the yield curve, though most are still inside the curve

and are around the origin. Most of the outside symbols fall in the first quadrant of

the principal stresses, which indicates potential tensile failure. The symbols in blue

are further away from the origin compared to those in black, which means the ice

edge is under higher stresses and is more likely to break. Similarly, for Fr = 0.4,

most outside points are in the first quadrant and are likely to have tensile failure,

while a few in the third quadrant indicate potential pure compressible failure and all

of them are located on the ice edge.
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(a) Fr = 0.2 (b) Fr = 0.33

(c) Fr = 0.4

Figure 5.19: Sampled stresses on the ice surfaces with different ship speeds. Ice
thickness is h = 1 m. The Mohr-Coulomb yield criterion, F(σ1, σ2) = 0, is indicated
by the red curve with empirical values of compressive strength σc = 3 MPa and tensile
strength σt = 0.5 MPa for the sea ice.

5.3 Summary

This chapter investigates the problem of a ship moving in a lead between thin and

flexible ice sheets. Convergence studies are conducted to determine the lateral exten-

sions of the ice sheet, finite element discretizations, and number of mode shapes to

represent the ice. Then a group of simulations are performed with Froude numbers of
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Fr = 0.2, 0.33 and 0.4, ice thicknesses of h = 0.5 m, 1 m and 2 m, and a fixed channel

width of w/B = 2. The ice deflections are found to have similar wavelengths and are

in phase with the ship-generated waves downstream. Maximum ice deflections of the

entire ice sheet ωmax always occur at the ice edge and are usually near the hull, which

increase with ship speed and decrease with ice thickness. Within the investigated

range of ship speed 0.2 < Fr < 0.4, the moving ship has not reached the critical

speed based on the observed maximum ice deflections and absence of flexural-gravity

waves traveling upstream. Shortening of in-ice waves is found by comparing the an-

gular frequencies of waves in water and ice, where the thinnest ice is found to have

the smallest wavelength.

Overwash on top of the ice is another significant phenomenon and greatly affects

ice behaviors. The ice sheets have an overall downward shift that is caused by the

weight of green water on top of the ice, which results in all maximum ice deflections

observed being downward deflections. Overwash mass flux is calculated to quantify

the overwash intensity. The flux is found to increase with ship speed but also increase

with ice thickness, whereas the latter finding is unexpected as one would think a higher

freeboard allows less lateral mass flux. The rigidity is found to be the primary factor

by comparing the relative elevation of the water waves to the top ice edge. The thinner

ice is more compliant with the water waves so the elevated ice edge blocks more lateral

flux at the wave crests, while the less compliant thicker ice has smaller deflections

that are not totally in phase with the water waves so it allows more lateral flux where

the relative wave elevation is large, even with higher freeboard. Simulations with

rigid ice but otherwise the same setups generate more than twice overwash compared

with the flexible ice, which confirms the above analysis.

The wave fields with either rigid or flexible ice are compared for different ice

thicknesses. Perceptible differences can be only found in the far field downstream for

thinner ice sheets, while the near fields are similar for rigid and flexible ice. Less than
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2% of differences are found in wave resistance between either a rigid or flexible ice

sheet is present.

This chapter also discusses the stress in the ice and identifies potential ice fractures

by using the Mohr-Coulomb criterion with empirical values of compressive and tensile

strength for sea ice. It is found most distortion energy concentrates on the ice edge

and quickly dissipates away from the ice edge. When the ship moves at Fr = 0.2

in the open-water ice channel with w = 2B and h = 1 m, the stresses in the ice are

much lower than those when the ship moves at Fr = 0.33. For Fr = 0.2, all the

sampled points are well within the Mohr-Coulomb yield curve, indicating fractures

are unlikely. Potential tensile failure is identified for Fr = 0.33 and 0.4. A few points

on the ice edge are found to have potential compressive failure for Fr = 0.4.
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CHAPTER VI

Conclusions and Future Work

6.1 Summary

The sea-ice coverage in the Arctic region is rapidly evolving and this polar region sees

increased maritime activities each year. Much of previous research for ship activities

in this polar region has focused on ice-breaking operations that are limited to low

speeds. While the Arctic has already been used for tourism, military and rescue that

will seek to travel at higher speeds. Yet there lacks of research on high-speed ship

transit in icy conditions. This dissertation investigates the ship-wave-ice interactions

for the problem of ship transit in open-water ice channels with high-resolution CFD

models, where a high speed range of 0.2 < Fr < 1.4 is studied. The questions of

what happens to the ship hydrodynamics and how the ice responds to the ship wake

as the ship speed and channel conditions change throughout transit are addressed.

To investigate the problem of ship transit in a lead, two numerical solvers are

employed for modeling the two-phase flows and wave-ice interactions. A customized

CFD solver based on OpenFOAM is applied to model the two-phase flows. URANS

equations are solved for both the water and air, where the VOF approach is used

to capture the moving interface. A deformable mesh technique is applied to enable

mesh deformation around the hull surface due to the heave and pitch. Customized

changes are made to separate mesh motions and enable directional scaling to facilitate
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simulations with a moving hull and static ice sheets. An FSI solver adapted from Piro

and Maki (2013) and Piro (2013) is employed to model the interactions between the

ship-generated waves and flexible ice sheets. The problem consists of a moving fluid

domain and a static structure domain, i.e. the ice sheet. The fluid domain is modeled

by the two-phase flow solver but assumes laminar flow for the flexible-ice problem.

The ice sheet is represented by a finite number of uncoupled mode shapes that are

generated by FEM and the ice deflections are governed by the equation of a thin

elastic plate. Grid matching between the two domains is executed at each time step

to facilitate data exchange on the mutual interface. The fluid domain solutions and

structural responses are tightly coupled and are solved in an iterative manner with

an under-relaxation strategy to help reach convergence.

Before the numerical investigations into the lead condition, Chapter III first uses

theoretical analysis of the far-field wave patterns to study the wave resistance of a

ship traveling in a deep-water canal, which can be regarded as open water between

ice sheets of infinite thickness. The purpose is to make the relationship between

operation in a canal and transit in water bounded by adjacent sheet ice and then use

the knowledge from operation in a canal to develop understanding of Arctic transit.

Theoretical analysis based on Tuck and Lazauskas (1998) and Faltinsen (2005) for

multi-hull vessels is adapted to analyze a single ship in a canal. The changes of

the wave resistance relative to that in open water are analyzed with respect to the

ship speed and canal width. It is found that significant increase or decrease in wave

resistance can happen with increases up to +129% and decreases up to −82% relative

to the open water condition, depending on both the ship speed and canal width. The

wave resistance is decomposed into portions due to transverse and divergent waves,

where strong correlation between the importance of divergent waves and reduced wave

resistance is found for the ship speed Fr ≈ 0.35. The dominance of the transverse

or divergent waves is explained by the fundamental wavelength and cancellation of
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bow-generated and stern-generated waves. Spectral analysis of the wave elevations

recorded in towing-tank experiments that were conducted by a student team also

confirms the dominance of transverse and divergent waves at two different ship speeds.

The problem of a ship moving in a lead between thick ice sheets is studied in

Chapter IV with CFD. Since the investigated ship speeds are well below the critical

speeds for the thick ice, the ice flexure is assumed to be sufficiently small according

to Xue et al. (2021), therefore the ice sheet is treated as rigid in this chapter. The

wave resistance and wave pattern of the full-scale ONRT model for the same idealized

canal in Chapter III of constant width are studied with CFD simulations. Compar-

isons of wave resistance between the CFD simulations and theoretical analysis from

Chapter III demonstrate good agreement, which indicates the linear theory can pro-

vide fast and accurate estimations of wave resistance in canals with the knowledge of

open-water wave resistance. Analysis on the momentum flux and CFD simulations

in the speed range of 0.2 < Fr < 0.4 suggest that ice sheets that are thicker than

20% of the fundamental wavelength function nearly as canal walls. Simulations with

intermediate ice thickness show that the corresponding wave field and resistance are

somewhere in between that in open water and in a canal. This means that operation

of ships in a lead can realize substantial benefits, or penalties, to resistance and fuel

consumption with a strong dependence on the ship speed, even in relatively thin ice

conditions. The higher speed range of 0.4 < Fr < 1.4 is investigated with a plan-

ing hull model, where the CFD results show that the ice thickness affects the ship

resistance when the ship is sufficiently close to the ice. The amount of overwash is

found to be significant for thin ice and narrow channels as overwash mass equivalent

to > 120% of the ship displacement is generated on each side of the ship for each ship

length it traveled.

The problem of a ship traveling in a lead between thin and flexible ice sheets

is studied in Chapter V with the FSI solver. Convergence studies are conducted
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to determine the ice extensions, finite element discretizations, and number of mode

shapes. Then a group of simulations are performed for Froude numbers of Fr = 0.2,

0.33 and 0.4, and ice thicknesses of h = 0.5 m, 1 m and 2 m. The ice deflection is

found to have similar wavelengths and is generally in phase with the ship-generated

waves. Maximum ice deflections of the entire ice sheet ωmax always occur at the ice

edge and are usually near the hull, which increase with ship speed and decrease with

ice thickness. Overwash on top of the ice is a significant phenomenon and greatly

affects the ice behaviors. The ice sheets have an overall downward shift that is caused

by the fluid stress due to the green water on top of the ice. Overwash mass flux is

found to increase with ship speed but also increase with ice thickness, whereas the

latter is unexpected as the higher freeboard of thicker ice is thought to allow less

lateral mass flux. The smaller relative wave elevation due to the compliance of the

thin ice is found to be the primary reason: the thinner ice is more compliant with

the water waves so the elevated ice edge blocks more lateral flux at the wave crests.

The wave field and wave resistance with either rigid or flexible ice are compared for

different ice thicknesses, where the near fields appear to be similar and differences in

wave resistance are found to be < 2%. This chapter also discusses the stress in the

ice and identifies potential ice fractures by using the Mohr-Coulomb criterion with

empirical values of compressive and tensile strength for sea ice. Tensile failure is more

likely to happen as the sea ice is assumed to have a much lower tensile strength than

its compressive strength due to its brittle nature. Potential tensile failure is identified

for both Fr = 0.33 and 0.4. Potential compressive failure is found at a few locations

along the ice edge for Fr = 0.4.
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6.2 Key Contributions

The contributions of this dissertation are highlighted here, along with descriptions of

their importance in the field of hydrodynamic analysis of high-speed Arctic transit.

� The major contribution of this work is its investigations into high-speed ship

transit (0.2 < Fr < 1.4) in open-water ice channels, which is becoming an

increasingly common scenario as leads are created by ocean currents or ice-going

vessels, but has not been studied before. Through momentum flux analysis and

CFD simulations, this work obtains that ice sheets thicker than 20% of the

fundamental wavelength function nearly as canal walls. The CFD results also

suggest that operation of ships in a lead can realize substantial benefits or

penalties to resistance depending on both the ship speed and channel width.

These conclusions can be useful for estimations of fuel consumption, emissions,

time of transit, and logistical planning for Arctic transit.

� This work also applies theories of wave pattern analysis for multi-hull vessels to

analyze a single ship in a canal. The theoretical analysis finds the relative wave

resistance with different ship speeds and canal conditions. The contributions of

transverse and divergent waves to the wave resistance are also decomposed to use

the wave patterns to further explain the changes in wave resistance. With the

established connection between thick ice and canal walls, the relation between

the theoretical results and CFD of ship transit in a canal is made such that the

analysis from the theoretical model can be used to elucidate ship operations in

a lead with ice sheets of finite thickness. Therefore, the expensive CFD can be

complemented by the faster and more affordable theoretical analysis.

� To the author’s knowledge, this is the first numerical work on ship transit in

a lead between flexible ice sheets. Hydroelastic responses of thin flexible ice

sheets to ship-generated waves, the corresponding wave patterns and ship hy-
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drodynamics, are investigated with the use of an adapted FSI solver. Maximum

ice deflections are identified for different ship speeds and ice thicknesses. Over-

wash is a significant phenomenon and greatly affects the ice behaviors. The

overwash effects are included in this study and its mass flux rate is investigated

in detail. This work also examines the effects of assuming the ice is rigid or

flexible on the wave fields and wave resistance.

� Another important contribution is the development of numerical models for

studying high-speed ship transit in leads. An OpenFOAM-based CFD solver

is adopted to model the two-phase flows with customized changes being made

to separate mesh motions and enable directional scaling for mesh morphing to

facilitate simulations with a moving hull and static ice sheets. The CFD solver

is validated against experiments and is shown to have a good order of accuracy.

The present model is proven to be a valuable tool for numerical investigations

of high-speed ship transit in open-water ice channels. An adapted FSI solver

is used to model the interactions between ship wakes and flexible ice sheets.

The model matches a moving fluid domain with a large static ice sheet at each

time step to tightly couple the CFD and structure domain such that using a

large CFD domain can be avoided and the problem can be simulated at an

affordable cost. The Kirchhoff hypothesis is used such that the 3D ice sheet can

be modeled by a 2D shell through the mid-surface and then customized changes

to the grid matching algorithm are made to include the effects of overwash on

the ice hydroelasticity. These numerical models with the setup details could be

used for reference for future numerical work on this problem.
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6.3 Future Work

This dissertation investigated the problem of high-speed ship transit in open-water

ice channels with theoretical and numerical approaches. The author hopes future

work can be inspired and use this dissertation as a starting point. Recommendations

for future research are summarized as follows, which mostly concern the simulations

with flexible ice sheets

� This work assumes laminar flows for simulations with flexible ice sheets, where

the assumption has its limitations. Development of turbulent models that can

be integrated with the modal decomposition method in the FSI solver is neces-

sary for accurate predictions of ship-wave-ice interactions, especially when wave

breaking is involved.

� Grid matching between the moving fluid domain and static ice sheet is time-

consuming, which takes up nearly half of the overall CPU time, even after

optimizations in running speed have been made. The current algorithm for

grid searching and matching loops all finite elements or wet elements at each

time step with a time complexity of O(n ∗m), where n is the number of finite

elements and m is the number of fluid faces on ice within the CFD domain.

Using a more efficient matching algorithm is necessary. Also, the current solver

runs in parallel for the CFD part but only the master processor is utilized for

grid matching and FE domain solutions. Enabling parallel computing for grid

matching can substantially reduce the computation time and cost, which is

worth trying.

� More realistic sea ice can be considered in future work with appropriate contin-

uum models for governing ice behaviors. For instance, this work models the ice

sheet as a thin elastic plate, which describes many features of sea ice behaviors

and is suitable for large rigidity, but ice viscosity should be considered for thin-
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ner ice with smaller rigidity. The visco-elastic model, taking the KelvinVoigt

model for example, considers the ice viscosity by adding a dissipation term

in the governing equation for ice deflections, has been successfully applied for

studying continuous ice covers (Shishmarev et al., 2016, 2019; Khabakhpasheva

and Korobkin, 2021) and should be considered in future research.
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APPENDIX A

Experiments with Perforated Spherical

Shells

The experiments and all the measurements were conducted at the Aaron Friedman

Marine Hydrodynamics Laboratory by a student team, the team members are L.

Victoria Arciniega, Logan Galindo and Jackson Brown, and supervised by the labo-

ratory director Professor Kevin J. Maki. The author would like to thank all of them

for providing the data and pictures for this analysis and presentation.

Experiments were performed in a towing tank to study the wave attenuation by a

field of floating pancake ice (Arciniega et al., 2023). Figure A.1 depicts the schematic

of the experiment setups including the location of the wave probe. As demonstrated in

the left picture of Figure A.2, a model scale ONRT hull with a ship length of L = 3.14

Figure A.1: Schematic of the experiment facility (not to scale). WP1 indicates the
location of the wave probe.

125



Figure A.2: From left to right are (left) Snapshot of the ship model traveling at a
constant speed of Fr = 0.29, (middle) image of the raft consisting of Whiffle balls,
(right) drawing of the perforated spherical shell.

m was towed at constant speeds passing near the ice, where the ship-generated waves

propagate and interact with the floating ice. Perforated spherical shells, which are

commonly known as Whiffle balls, were used as surrogates for pancake ice. Around

7,000 Whiffle balls were placed together to form a raft that resembles the marginal

ice zone (MIZ) featured by a field of broken ice floes (see the middle picture in

Figure A.2). A schematic of the Whiffle ball is shown on the right of Figure A.2, the

ball has a diameter of D = 70.51 mm and a shell thickness of 1.85 mm. The ball

has 26 holes of diameter 10.81 mm. The material is made of polyethylene and has a

density of 930 kg/m3, which is close to that of sea ice.

The ship model was also towed without the Whiffle balls, which can be regarded

as an open-water condition. Wave elevations were recorded by the wave probe for dif-

ferent ship speeds and are analyzed on the frequency domain by applying FFT on the

time sequences. The spectral analysis is presented in III to confirm the contributions

of transverse and divergent waves to the wave resistance at different ship speeds.
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