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Abstract 

My dissertation explores how firms can use individual longitudinal choice data to 

increase usage and spending in experiential goods categories, specifically in two different 

live events domains: art performances and sports events. In the first essay, I study how 

consumers choose customizable bundles of art performances while balancing preferences 

for the constituent items and within-bundle variety. Known as the diversification effect, 

consumers prefer higher levels of variety when making choices for multiple consumption 

occasions. This suggests that picking the right level of variety is a crucial part of art 

performance bundle choices. While customizability adds flexibility to consumers’ 

choices, due to the large number of possible bundles, it could increase consumers’ 

cognitive costs. Based on the proposed model, I make individualized recommendations 

that reflect heterogeneous preferences for not only the performances but also for the level 

of variety.  

To model consumers’ choices of art performance bundles, it is necessary to 1) 

characterize the performances, 2) define and measure the variety of prospective bundles, 

and 3) devise an efficient way of estimating bundle choices in the prohibitively large 

combinatorial space of possible bundles. Using natural language processing, I extract 

latent dimensions of the art performances that can be used to characterize the 

performances. I use these latent attributes to construct variety metrics that capture 

consumers’ perception of bundle-level variety. Additionally, I devise a novel Monte 

Carlo approach to integrate over the space of unobserved order in which the bundle was 

assembled to tame the curse-of-dimensionality in the estimation process. I find that 

including variety metrics substantially improves predictive performance of the model, 

allowing the performing arts organization to make better individualized 

recommendations.  



 xii 

In the second essay, I study the cross-channel structure of the National Football League 

(NFL) ticket markets and consumers’ purchase channel choices with the goal of devising 

optimal dynamic pricing and inventory policies across different channels. Professional 

sports teams have widely adopted dynamic pricing policy, which resulted in significant 

revenue improvements. At the same time, the growth of legal secondary markets has 

contributed to the development of a complex market structure with multiple channels. 

Understanding the cross-channel structure and consumers’ channel choice process allows 

teams to make more informed pricing and inventory decisions.  

Partnering with an anonymous NFL team, I collected time-series data on the availability 

and pricing of tickets on primary and three major secondary channels and combine it with 

transaction data. I propose a three-part model to understand the supply and demand 

dynamics: sellers’ supply decision, buyers’ purchase decision, and channel choice to 

capture the evolution of the choice environment where ticket availability and prices vary 

over time and channels. I find that there exist significant price differences across channels 

even after controlling for seat quality, and that channel choices reveal differential price 

sensitivities, effects of time-until-game across channels, and strong past dependence. 

Importantly, the investigation into row-level supply decisions reveal potential cross-

channel effect of sudden increase in ticket availability on the primary channel due to an 

unexpected buyback from the brokers, opening a window to investigate the causal effect 

of supply changes across the channels.  
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Chapter 1 Leveraging Variety Preferences to Customize Bundles for Experiential Goods: 

An Application to Performing Arts Subscriptions 

1.1 Abstract 

Firms offering experiential goods like performing arts and meal kit services often allow 

consumers to customize the “bundle” they purchase, allowing enhanced flexibility and variety. 

This, however, comes at the cost of greater cognitive demand, which firms can mitigate through 

suitable recommendations. To this end, we propose a model that captures the unobserved 

sequential process by which consumers assemble their bundles, balancing utility for individual 

component items with “holistic” bundle-level variety. The model is applied to create-your-own 

performing arts bundles; to enable ready extension to future seasons, we use natural language 

processing to extract latent performance attributes, using them to construct and test a multitude 

of variety metrics to capture bundle-level variety. The model accommodates heterogeneous 

preferences for variety and performance attributes via a hierarchical Bayes approach. To tame 

curse-of-dimensionality, we devise a permutation-based Monte Carlo approach to integrate over 

the unobserved order of item addition to bundles. Results suggest that including variety metrics 

substantially improves the model’s predictions for out-of-sample bundle choice, relative to 

accounting only for component item characteristics, by 34.5%. The model has wide applicability 
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for firms offering experiential goods by allowing them to leverage user histories to make 

superior customized bundle recommendations. 

1.2 Introduction 

Firms offering “experiential” products – concerts, sporting events, speaker series, opera – 

thrive when consumers engage on an ongoing basis. Rather than simply attending single events 

that appeal to them, some consumers opt to purchase a subscription package or “bundle”. 

Various marketing tactics encourage this behavior, from price promotion, exclusive events “for 

subscribers only,” or early access to shows through ticket bundles before they are sold 

separately. Traditionally, bundles of experiential goods, such as city passes and movie packs, 

were designed by projecting overall demand for curated assortments based on their individual 

component demands. Recently, firms are increasingly offering consumers the option to 

customize their own bundles, and the range of experiential goods offered for bundling are 

widening. For example, meal kit services such as Blue Apron allow subscribers to pick which 2 

to 4 meals to include in their delivery each week. Many other retailers offer similar customizable 

bundle options for a wide range of experiential products, including wines (e.g., Winc), online 

games (e.g., Fanatical), digital design tools (e.g., tools for Photoshop at True Grit), and cosmetics 

(e.g., Ipsy). 

Customizable bundles allow users to freely choose their component items and users can 

receive price discounts and other benefits. Despite some firm-determined restrictions (e.g., buy 

five or more items), this gives users flexibility. However, this flexibility does not come without 

cost, as cognitive demand grows with the space of options. Choosing just five tickets from a 

modest set of 50 performances entails “considering” over 2 million possible bundles; doing so 
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for bundles of five out of the 81 home games in a major league baseball season offers over 25 

million possibilities. Populating customizable bundles can be especially cognitively demanding 

when the sets of offered items can change from one “season” to another, as they typically do 

with experiential goods. Both consumers and the analysts modeling their choices must contend 

with a staggeringly large space of bundling possibilities. 

A consumer faced with hundreds of potential concerts, but only able to attend a handful, 

may find the search-and-optimization task so daunting as to put it off, buy fewer tickets, or avoid 

it entirely (Iyengar & Lepper, 2000; Kuksov & Villas-Boas, 2010). As such, firms that offer 

customizable bundles of experiential products need to understand how users customize their own 

bundles to mimic that process through dedicated models and, by leading individual users to 

superior option bundles, lower their time and cognitive costs. Further, improved 

recommendations can enhance user satisfaction for their selected bundles, lowering attrition, and 

reducing costs (e.g., for returns or replacements of items not liked by consumers). 

To that end, we propose a model that captures consumers’ bundle choice processes for 

experiential products. We focus on an important feature of bundle choice that differentiates it 

from individual item choices: “holistic” (i.e., bundle-level) characteristics, particularly the 

variety of the overall set (Bradlow & Rao, 2000; Evers et al., 2014; Read & Loewenstein, 1995; 

Shaddy & Fishbach, 2017; Simonson, 1990). This is especially pronounced for experiential 

goods, where benefits are intangible, and many consumers intentionally seek out novel or varied 

experiences. Further, the fact that many experiential product categories may not even have well-

defined, readily available attributes adds another layer of complexity, which we address by 

leveraging textual descriptions of experiential goods, distinguishing this research from the extant 
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literature on variety and bundle design. Specifically, we explore the question of how consumers 

balance their preference(s) for a certain type of experience against desire for the new and 

different. 

We apply our model in a large-scale performing arts industry setting. Performing arts 

organizations, including both large organizations such as New York Philharmonic and Carnegie 

Hall as well as smaller local ones, commonly offer customizable subscription packages for which 

each patron can choose performances to attend over the season. The subscription package should 

include a minimum number of performances to qualify for bundle benefits such as price 

discounts, early seat access, easy exchange policies, and preferential parking. Compared to the 

organization-designed bundles that are mostly based on pre-established “genres” (e.g., five jazz 

performances), these create-your-own bundles offer far greater flexibility, making them a 

popular alternative. Consumers assembling custom bundles face a trade-off intrinsic to many 

purchase situations: balancing their preferences for certain types of performances with their 

preference for variety across the set of performances. For instance, one may love solo violin 

concerts, but would one choose a sequence of five of them and nothing else? Instead of the fifth 

solo violin concert, perhaps one may choose a symphony orchestra performance for something 

different, but not too different. Our aim is to explicitly model such trade-offs to guide 

organizations in designing bundles to recommend to their customer base, selecting from a 

constrained set of candidate experiential goods that may lack pre-established objective attributes. 

To this end, we need to model users’ utility for within-bundle variety, over and above 

their utilities for the bundles’ component items. Yet, despite the importance of variety in 

consumer choices and a vast literature on the topic, it is not obvious how this trade-off can be 
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formally modeled. For example, consider a stylized example of choosing bundles of different 

cuisines for an ordered series of future consumption occasions: user A chooses {French, Polish, 

Italian, Spanish, German} dishes, and user B {French, Italian, Austrian, Thai, Chinese}. The 

first, and in some sense primary, challenge here is to “measure” how much variety there is in 

these two bundles before even considering variety’s impact. One obvious metric that can be used 

to characterize variety is the number of different cuisines. Yet both users A and B chose five 

dishes from five separate cuisines, making their choices appear equally “varied” in that sense 

alone. However, user A chose only Western cuisines, while user B’s set included both Eastern 

and Western ones, so in some sense A’s bundle is less varied than B’s, although this presumes 

there is more intrinsic variation across continents than within them. Further, it is possible that, 

depending on the specific dishes, some sets across cuisines – for example, five chicken dishes – 

may be “closer” to one another than a set of ingredient-varied dishes within the same cuisine 

type. We stress the challenge of creating attributes to describe items to aid in measuring variety, 

and note it is particularly important in harder-to-describe experiential goods. 

A related, yet distinct, challenge is how any chosen measure of variety should be 

incorporated in making future bundle recommendations. While the details of the chosen dishes 

would be helpful, it is unclear both which dimensions of the dishes should be considered and 

how to make recommendations for future bundles based on a limited number of observed bundle 

choices in the past. A further challenge is to consider, for example, dishes or cuisines that have 

not appeared before in anyone’s choice set. In the context of meal prep services, concert series, 

and other bundle-based services, such issues are exacerbated when the set from which one must 

choose is changing from season to season or even occasion to occasion. 
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These and other challenges arise in applying the model in our empirical context of 

performing arts bundles. Specifically, an initial challenge is characterizing the items 

(performances) using detailed attributes that can capture their complex nature and yet are readily 

extendable to previously unobserved items, e.g., artists and troupes who have never appeared 

before at that venue. Arts performances being complex experiential products renders off-the-

shelf, structured attributes insufficient to fully characterize them. A key implementation issue is 

that it is not at all obvious what sorts of attributes best characterize performing arts 

performances, let alone bundles of them. While one may like solo violin performances, the 

identity (nationality, ethnicity, or gender) of the violinist, musical era, and specific repertoire 

may also play pivotal roles. Furthermore, lineups change season-to-season, with new works or 

performers making their debuts. Compared to the complexity of the items themselves, the 

paucity and generality of genre labels like “dance” or “orchestra” renders them useful only in the 

broadest sense: it is possible to love some choreographers or performers far more than others. 

Even were one to have strong general enthusiasm for a particular genre, there still exists 

substantial within-genre heterogeneity that can mask important differences among component 

items. For example, the “theatre” genre spans anything from Shakespeare’s Julius Caesar to 

contemporary experimental pieces like Young Jean Lee’s Untitled Feminist Show. Because 

different “theatre” performances can offer radically different experiences (and thereby attract 

distinct audiences), we leverage the rich descriptions afforded by widely distributed brochures – 

which are consumer-facing and available online at the time of choice – to extract latent, 

presumably less-standard and more holistic, performance attributes, while critically allowing 

direct extension to a new set or season of performances. These detailed descriptions transcend 
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genres in a patron-relevant manner: Shakespeare and Beethoven might appeal to those interested 

in “classics” or “the canon,” while Untitled Feminist Show and the pianist Yuja Wang may 

attract those who support women or Asian artists. 

A second challenge, and one that to our knowledge is novel in this setting, is in 

measuring within-bundle “variety”. Users, unlike when they evaluate attributes of items already 

curated in a bundle, may evaluate prospective bundles in an evolving or sequential manner, as 

they consider various potential combinations. It is unclear which dimension, if any, of the 

attributes or items users (at least those who value or dislike varied experiences) consider when 

evaluating variety implications of adding items to such bundles, let alone how “variety” itself 

should be measured across multiple (latent) product attribute dimensions. Various measures of 

variety based on genres have been suggested in the literature (e.g., Datta et al., 2018; Orhun et 

al., 2016), but again, genres often fail to capture the key details of arts performances. Hence, we 

turn to the extracted attributes from the performance descriptions that capture textured details 

that could be relevant to construct variety metrics aimed at capturing the evolving within-bundle 

variety. 

Critically, we construct a broad spectrum of variety metrics, empirically testing which 

aspects of a set’s items best capture how consumers (heterogeneously) incorporate bundle variety 

into their preferences and downstream purchases. We find that topic representations and variety 

metrics based on the extracted topics substantially improve model fit compared with genre 

information alone, and that including “holistic” bundle metrics (e.g., average distance across all 

pairs of performances) substantially improves predictive performance in a hold-out season. 
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Prohibitively large sets of possible bundles pose another challenge – this one purely 

computational – in modeling choices of customizable bundles. The unit of choice for both bundle 

choice models and multi-item choice models are often sets of items (Bradlow & Rao, 2000; 

Chung & Rao, 2003; Farquhar & Rao, 1976; Rao et al., 2018 for a review). However, due to the 

small number of observations and large number of alternatives (bundles), it is infeasible to 

estimate either bundle or multi-item choice as-is, i.e., a pick-1-of-1000000+ multinomial model. 

Rather, we approach the bundle choice problem as a latent sequential process, circumventing the 

infeasible multinomial problem in a manner practicable across seasons and extendable to future 

ones. 

One final, and related, challenge concerns estimation and prediction for extremely large 

choice sets, particularly those whose order is latent, given the latent sequential process modeling 

framework. Modeling the choice process as sequential has two critical empirical implications: 

that the choice set from which one chooses from will change (i.e., shrink) across choice 

occasions as chosen items are removed from the choice set; and that items that remain in the 

choice set will be evaluated both in terms of their characteristics and the variety implications 

with regards to the items already in the chosen bundle. Despite these implications, we do not 

observe which performance was added “first” in consumers’ minds, and it is possible that this is 

opaque even to consumers themselves. For example, one might purchase a bundle including the 

pianists Yuja Wang and Benjamin Grosvenor, but the analyst does not know that the former was 

considered indispensable, conditionally lowering the utility of adding the second for consumers 

who prize variety. We suggest a practical method for navigating and stochastically integrating 
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over these extremely high-dimensional choice and prediction scenarios in a fully Bayesian 

setting. 

The rest of the paper is organized as follows. In section 1.3, we briefly review relevant 

literature and discuss our contribution, and describe our empirical setting in section 1.4. Then, in 

section 1.5, the modeling framework is introduced, and the results are discussed in section 1.6. 

Lastly, in section 1.7, we discuss future directions. 

1.3 Prior research and present contribution 

1.3.1 Literature on Variety 

Variety, proverbially called “the spice of life,” has been studied extensively in the 

academic marketing literature. It is a critical contextual factor that has been shown to affect 

consumption decisions in multiple contexts, including in consumers’ “variety-seeking” choice 

behaviors and assortment choices both for retailers and consumers. 

1.3.1.1 Consumers’ variety-seeking behavior 

Consumers seek variety to increase the overall “utility” of their consumption across a 

series of choice occasions (Kahn, 1995, 1998). Specifically, in hedonic consumption, consumers 

find the experience more enjoyable if they perceive the experience to be more varied (Galak et 

al., 2009; Kahn & Ratner, 2005; Ratner et al., 1999), which specifically highlights the 

importance of accounting for variety in the context of experiential goods, the purview of this 

study. Researchers have also proposed that one’s need for stimulation and desire to overcome 

satiation (e.g., McAlister, 1982) as intrinsic motivations that drive consumers’ variety-seeking 
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behavior. More recently, variety has been proposed as a goal in and of itself (see Kahn & 

Rafieian (2022) for a review).  

The literature also addresses the various factors that affect variety-seeking behavior, 

including – and especially pertinently for the present study – the nature and format of the choice 

scenario. When consumers make choices from an assortment (i.e., choosing multiple items now 

for later consumption), they tend to opt for greater variety than when making those same choices 

at the time of consumption. This “diversification effect” (Simonson, 1990) has been verified in 

multiple settings (Galak et al., 2011; Read et al., 2001; Read & Loewenstein, 1995), including 

the latent process of consideration set formation (Salisbury & Feinberg, 2012).  

Researchers have proposed various models to estimate the effects of variety using 

observed choices. In one stream, variety-seeking is modeled as a state-dependent behavior, 

wherein previous brand choices affect subsequent ones (Chintagunta, 1998; Feinberg et al., 

1992; Givon, 1984; Lattin & McAlister, 1985; McAlister, 1982). For example, McAlister (1982) 

proposed dynamic satiation – an attribute’s marginal utility waning over choice occasions where 

it is consumed – as a source of observed switching behavior. On the other hand, Lattin & 

McAlister (1985) and Feinberg et al., (1992) suggested that previous choices can affect and alter 

preferences for subsequent ones, whereas Givon (1984) postulated that consumers derive utility 

both from the chosen item and from the act of switching itself. 

A key feature of these models is that they rely on a panel data structure, i.e., brand 

switching patterns are fully observed. But we cannot readily adapt such models to settings where 

“switching” is not clearly defined. For many experiential products, particularly for “live” events 

like performances or sports games, the idea of “switching” is not quite relevant. One can only 
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rarely re-experience anything similar – even the same band might perform different songs – or, 

more to the point of our eventual application, a subsequent season may have little or no overlap 

in performers or works with prior ones. In addition, the temporal sequence of choosing each item 

is required for most variety-seeking models, since they operate by comparing each item to those 

chosen or consumed before or after. But the order in which items are added to consumers’ 

customizable bundles is often unobserved by the researcher (and may not even be clear to the 

decision-maker), as is the case with many bundles of experiential goods. The lack of an observed 

temporal choice sequence presents conceptual and computational challenges to applying extant 

model formulations to capture variety-seeking for customizable bundle choice and downstream 

optimization. 

1.3.1.2 Assortment variety: perceptions and choices 

“Assortment variety” plays an important role in consumers’ choices (for a review, see 

Chernev, 2011), ranging from store selection to “whether, what, and how many” they will buy 

(Chiang, 1991; Gupta, 1988). Given its critical role, researchers have extensively studied how 

consumers form perceptions of variety, as well as how it affects consumers’ choices. 

Research has verified that perceptions of variety in an assortment is driven by more than 

simple summaries like the number of SKUs offered by retailers. Broniarczyk et al., (1998) find 

that, in addition to the number of SKUs, the availability of a consumer’s favorite item and the 

amount of shelf space dedicated to the category affect how consumers perceive the variety of 

assortments. For example, if shelf space is held constant and favorite items are still available, 

reducing the number of items does not negatively affect perceptions of the assortment. Hoch et 

al., (1999) and Van Herpen & Pieters (2002) focus on the role of the multi-attribute structure and 
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spatial organization in consumers’ perception of assortment variety and find that information 

structure (i.e., how much the alternatives differ on multiple attributes) plays a significant role in 

variety perception. Kahn & Wansink (2004) show the downstream effects of assortment 

structure: organization and symmetry in the assortment affect perceptions of variety, which in 

turn affect consumption quantities. Additional assortment characteristics, such as the number of 

categories (Mogilner et al., 2008), graphical elements of an assortment (Townsend & Kahn, 

2012) and physical alignment of the assortment (Deng et al., 2016) are documented to affect 

consumers’ perceptions of assortment variety.  

Another stream of literature explores the role of assortment variety on consumer choices. 

While consumers value assortment variety to be among their three most important factors in 

choosing a physical store (Arnold et al., 1983; Louviere & Gaeth, 1987), offering larger 

assortments with more alternatives is not always better. In their celebrated “jam study,” Iyengar 

& Lepper (2000) find that consumers faced with too much choice may either delay or opt out 

entirely, a general phenomenon known as choice overload  (see Chernev et al., 2015 for a 

review; Kuksov & Villas-Boas, 2010). In a recent work, Natan (2022) finds that, while 

expanding assortment increases acquisition of new customers, it lowers the frequency of usage 

among existing customers (specifically, for a food delivery app), suggesting that the relationship 

between assortment variety and sales can be nuanced and multidimensional. 

Despite providing insights into the role of variety in “choice” and the nature of 

perceptions of variety, these studies focus on product categories with clearly defined sets of 

attributes, such as colors, sizes, and flavors, mostly from CPG retail categories. This paper 

departs from that tradition by focusing on experiential products. And while experiential products 
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can and do have some such structured attributes – venue, seating, event timing, etc. – the truly 

defining aspects that can capture an experience’s “qualia” and complexity are difficult to capture, 

yet they are arguably more important to understanding choice (Cooper-Martin, 1991). The 

literature leaves unclear how the information structure of sets of such complex items can and 

should be incorporated into a model of bundle choice. Moreover, because research on assortment 

variety centers around static assortments, relatively little is known about how introducing 

additional novel items will affect perceived variety for subsets that include them. 

More subtly, and perhaps importantly for practical modeling purposes, perceptions of 

variety are typically elicited from consumers (Hoch et al., 1999; Kahn & Wansink, 2004; Van 

Herpen & Pieters, 2002), an impracticable methodology for customizable bundles with hundreds 

of thousands of new possibilities every season. Further, the proxies of variety perception are 

often summary metrics of assortment characteristics, such as number of categories, and actual 

SKUs. However, customizable bundles have relatively similar sizes, and summaries of 

performing arts bundles, such as number of “genres,” are not generally sufficient to capture the 

complex nature of experiences, singly or as bundles. The present challenge includes not only 

identifying relevant item (performance) attributes important for choice, but also quantifying 

perceived variety along and across those attribute dimensions.  

1.3.2 Literature on Bundling 

Another stream of related research concerns “bundling”. Bundling has received a good 

deal of attention given the widespread availability of various types of grouped products; both 

bundling strategies and welfare consequences have been studied, and prescriptive guidance for 
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how marketers should go about designing and pricing potential bundles are also addressed (a full 

review is provided by Venkatesh & Mahajan, 2009). 

Our study is closely related to the literature addressing the question of which products 

should be included in the bundle. An early example of modeling approach to this issue is the 

“balance modeling” proposed by Farquhar & Rao (1976). This approach explains variety-seeking 

as a process through which consumers try to obtain a balanced set of attributes, which could 

involve either homogeneity or heterogeneity within the attributes, depending on their nature. 

Bradlow & Rao (2000) proposed an extension of this balance model, estimated at the individual 

level using a hierarchical Bayesian approach. Later, Chung & Rao (2003) further developed it to 

accommodate bundles for products with different sets of attributes, such as a computer’s monitor 

size and storage capacity. 

While these models can be useful in understanding user choices for bundles, they require 

that the researcher observes many choices of bundles to estimate heterogeneous preferences for 

attribute levels and dispersion, conditions that rarely hold for custom bundle choices of 

experiential products. Further, the model measures users’ attribute-specific variety-seeking (or 

variety-avoiding) behavior through preferences for the dispersion within each relevant attribute; 

although this can be readily applied when consumers evaluate and choose among curated 

bundles, this is not the case with customizable bundles, whose enormous combinatorial 

possibilities preclude a single consumer evaluating even a small fraction of them. 

More recently, Kumar et al., (2020) propose use of co-purchasing and co-viewing 

histories to create product feature embeddings in order to suggest product bundles for large-scale 

retailers with copious assortments. These are then tested in a field experiment, demonstrating the 
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feasibility and validity of the approach. However, their goal is to propose bundles at the market- 

rather than individual-level bundle, and therefore they sidestep measuring and accounting for 

individual preferences for variety. 

1.4 Empirical Setting and Data 

Our empirical application concerns customizable bundles for performing arts 

organizations, often termed along the lines of “create-your-own” subscriptions. Most performing 

arts organizations, including Carnegie Hall, New York Philharmonic, Detroit Opera House, offer 

customizable bundles alongside organization-curated ones. In exchange for pre-commitment to 

attend a minimum number of performances, consumers who subscribe to these programs can 

freely pick among eligible performances, often receiving benefits like fixed-percentage price 

discounts, early access seat choice, or simplified exchange policies. The organizations 

themselves benefit by lowering the risk of having many empty seats to sell at a last-minute 

discount, incurring future marketing costs, and a predictable cashflow early in the season, which 

helps plan expenditures. 

We estimate our model on a rich dataset from a performing arts organization in the 

midwestern U.S. that offers create-your-own subscription programs. The program requires that 

consumers pick five or more performances in return for a 10% discount, as well as preferential 

seating selection and easy ticket exchange policies. The data span seven seasons, from 2011 to 

2017, during which time the organization hosts an average of 54 performances a year, out of 

which roughly 3/4 are eligible for create-your-own subscriptions each season. The excluded 

performances are usually highly popular ones, some so much so that tickets are available only 

via lottery. The performances are classified into seven “genres” (chamber, choral, dance, 
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orchestra, theatre, and others)1, and are performed in several major venues within a five-mile 

radius. The data comprise two parts: transaction records and performance brochures with 

concisely informative textual descriptions of each performance. 

1.4.1 Transaction data 

The transaction data include 75,947 time-stamped records of bundle transactions over 

seven seasons, for both the curated and create-your-own bundle purchases, as well as add-ons 

and exchanges related to the subscription packages. Each transaction entry includes user ID, 

performance name and date, order date, purchase type, number of tickets, and price paid. The 

composition of create-your-own bundle purchases is reconstructed from order date and purchase 

type. Importantly, being a latent (and arguably mental) construct, the order in which the 

performances were “added” to create-your-own bundles is not observable, since the entire bundle 

order is entered into the system at once. We focus on create-your-own bundles with five or more 

unique performances (per the restriction by the organization) that were bought on a single day. 

The dataset thereby consists of 1204 users who purchased create-your-own bundles at 

least once over the seven seasons.  Each bundle is indexed by user-season pair, as some of these 

users bought the subscription package in multiple seasons, including some who purchased 

create-your-own bundles in all seven seasons. A total of 2142 create-your-own bundles were 

purchased, which included 288 unique performances. These varied in size from 5 to 10 

performances, with an average of 5.9 performances per bundle. Among all users ever buying 

bundles, 61.3% of users (738 out of 1204) bought the bundle only once over the observation 

 
1 Genre is based on the performer, performance type, and content, are hand-labeled by staff at the organization, and 
each performance belongs to only one genre. 
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period of seven seasons.2 We retain all users with at least two bundle purchases. The final sample 

consists of 466 users who bought 1404 create-your-own bundles with 8392 performances. We 

use data from seasons 2011 to 2016 as an estimation sample (466 users with 1175 bundles and a 

total of 6938 performances) and purchases in 2017 as a hold-out sample (229 users with 229 

bundles and 1409 performances). Table 1.1 lists the summary statistics for the season 

characteristics. 

Table 1.1 Summary of season characteristics 

Season Number of performances Number of users Average bundle size 
2011 41 165 5.93 
2012 36 174 5.61 
2013 36 207 5.98 
2014 38 185 5.85 
2015 49 218 6.22 
2016 43 226 5.98 
2017 45 229 6.15 

 

1.4.2 Performance data 

Across 7 seasons, there are 536 unique performance showings. However, some have 

multiple (as many as 15) showings of the same performance, and these (the same performances 

by the same performer, with the same program, on several consecutive days) are collapsed, 

resulting in a total of 377 “unique” performances. Among those, 288 performances were eligible 

for create-your-own bundles. 

 
2 We removed users whose bundles ever included more than 10 performances (86 users) as these were likely firm 
coding errors in categorizing of bundle purchases, since bundles were largely exactly five performances (51.1% of 
all bundles, with over 90% including nine or fewer performances in their bundle.) 
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Data on performances included both structured and unstructured information: structured 

information included the date of the performance, genre, venue, average price of the tickets, as 

well as a binary weekend variable3; unstructured information included short descriptions 

(average = 163.2 words) of the performances from the brochures. These brochures were mailed 

to patrons from past seasons, and the same descriptions were available on the website, suggesting 

that the vast majority of users were likely exposed to these descriptions when considering their 

potential bundle purchases. 

We use these descriptions to extract latent performance dimensions using Latent Dirichlet 

Allocation, “LDA” (Blei et al., 2003; Griffiths & Steyvers, 2004), to characterize the 

performances more richly than simple genre assignments alone.4 We then construct variety 

metrics, which are summary measures of the topic distributions of the prospective subset under 

consideration, aimed at proxying its perceived variety. It is critical to note that the values of 

variety metrics are updated as additional items are considered and added to the set, which means 

that the variety of an existing set of performances can be affected more by some additions than 

others. We describe how we construct these measures in Model Development section. These 

variety metrics are later tested on how well they capture consumers’ variety perceptions when 

evaluating potential bundles. Below, we briefly describe how we processed the text and discuss 

the LDA results. 

 
3 As we collapsed multiple showings of the same performances to a single “unique” one, the weekend variable was 
also collapsed by creating an “include weekend” dummy indicating whether the performance had at least one 
weekend showing. 
4 We chose LDA for its transparency, scalability, and extensive use in validated applications. There are 
many newer methods that build on and extend it, but exploration of alternatives did not show sizable 
substantive differences or unambiguous superiority in our application context. 
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1.4.3 Topic extraction 

Among the unique features of performance descriptions as in our corpus of brochures is 

that names (of organizations, performers, venues, and authors) appear frequently in the text. For 

example, this is an excerpt from the description of American Ballet Theatre (ABT)’s Romeo and 

Juliet: 

Kevin McKenzie, artistic director, Choreography by Kenneth MacMillan Music 

by Sergei Prokofiev ... Kenneth MacMillan’s masterful interpretation of 

Shakespeare’s enduring romantic tragedy has become one of ABT’s signature 

productions. The story of Verona’s tragic star-crossed lovers is woven throughout 

a dance tapestry rich in character nuance and sensuality, with Renaissance Italy 

providing a sumptuous and period-perfect background. Sergei Prokofiev’s 

instantly recognizable music, performed live by the ...Opera Theatre Orchestra, 

underscores the lyric beauty and passion of this beloved ballet. ... 

As this short excerpt forcefully illustrates, names like “Kevin McKenzie,” “Kenneth 

MacMillan,” and “Sergei Prokofiev” appear frequently in the text. Moreover, newspapers and 

magazine names also appear frequently when previous reviews are quoted. We explored n-grams 

(a sequence n-words; for example, Sergei Prokofiev is a 2-gram and New York Times is a 3-

gram) to prevent treating unique names such as Sergei Prokofiev separately as Sergei and 

Prokofiev. More than 1000 n-grams specific to the setting were identified. We concatenated n-

grams that appeared in two or more documents, keeping 24.6% of n-grams under consideration. 

For example, Los Angeles Times appeared in 12 different documents, likely when their reviews 

were cited for the performances. Given that this 3-gram appeared more than twice, whenever Los 
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Angeles Times appeared in the document, it was treated as a unit rather than three separate 

terms, Los, Angeles, and Times. 

We followed standard pre-processing steps, tokenizing and removing stop words from the 

document (see Berger et al., (2020) for detailed information on preprocessing text). We had 6501 

unique lemmatized terms, from which we removed the bottom 5% in terms of tf-idf score (a 

metric reflecting a term’s importance in the corpus). This leaves 6176 unique terms from 350 

documents. We used standard LDA with priors suggested by Griffiths & Steyvers (2004) on the 

text data processed as described above. We chose to use 7-topic result, which is suggested as 

“optimal” number of topics following Cao et al., (2009). Further, the 7-topic model has the 

added benefit of having the same number of topics as the genres, making any comparisons – 

either overall or incrementally – from genres to textual information more defensibly apples-to-

apples. We explored different number of topics; however, gains from using a larger number of 

topics was not substantial enough to justify the extra individual-level parameters, especially 

given the limited number of choices per person. 

Figure 1.1 lists the top 10 words associated with each of the seven topics, which capture 

various dimensions of the performances, but are also highly correlated with genres. Going back 

to the example of ABT’s Romeo and Juliet (“dance” genre), its topic loadings are shown in 

Table 1.2. 

 

Table 1.2 Topic loadings for American Ballet Theatre's Romeo and Juliet 

Title Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 
Romeo & Juliet 0.281 0.018 0.088 0.018 0.246 0.281 0.070 
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The performance loads highly on three topics – 1, 5 and 6 – which relate to “choral and 

symphony orchestra,” “theatrical elements,” and “dance and choreographic elements” of 

performances, respectively. Romeo and Juliet, being a Shakespearean work performed by a 

major ballet company, that the performance loads high on dance- and theatre-related topics 

makes intuitive sense. Intriguingly, having a live music component by an opera theatre orchestra 

appears to lead to a high loading on topic 1, which has both symphonic and choral elements. 

Importantly, the topic representations capture performance dimensions not easily captured by the 

broad genre alone, in large part because the loadings are not binary, but reflect degree of 

confluence, and are in fact a measured simplex variable, as opposed to binary judgment calls 

based on pre-established categories.  

1.5 Model Development 

We propose a model of consumers’ (customized) bundle construction, based on a latent 

process of sequentially adding individual performances to an expanding subset. Unlike choices 

among available bundles pre-curated by the firm, customizing a bundle involves mentally adding 

in eligible individual items, that is, a (latent) sequential process rather than a one-shot decision. 

Moreover, this circumvents the “curse of dimensionality” of modeling bundle choice as a 

multinomial choice out of a prohibitively large number of potential bundles. For instance, in our 

current dataset, the average number (across seasons) of possible bundles of five performances 

exceeds 870,000. Further, because consumers often choose bundles that include more than the 

modal bundle size of five performances, the full set of possible bundles is potentially on the 

order of 2 (number of performances). 
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Figure 1.1 Top 10 words in each topic5 

 

In addition to alleviating the dimensionality concern, modeling bundle construction as a 

unobserved sequential process allows us to uncover the “timing” (i.e., nth inclusion choice) at 

which consumers start considering the subset-level variety implications of additional 

performances. This approach contrasts with previous models of grouped choice (e.g., balance 

model; Bradlow & Rao, 2000; Chung & Rao, 2003; Farquhar & Rao, 1976), which treat variety 

as a static concept, such that consumers consider attribute dispersion of all the items in the 

bundle. In sequential customizable bundle choices, however, variety is dynamic, evolving as new 

items are (covertly, to the researcher) added to the provisional subset. Consumers may not take 

 
5 The name of the organization is masked as ### (in topic 1). 
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variety into account for all item inclusion decisions, especially for earlier ones, e.g., because 

“variety” is a fuzzy concept when there are only one or two items in the subset; it is also possible 

that variety becomes more (or less) important as more items are added to the set. We treat this as 

an empirical question. Our modeling approach allows us to empirically test when variety “kicks 

in” during the bundle assembly process, with a null model of “all items equally impact 

perceptions of variety” (one we will be able to reject for these data). 

The model captures a process wherein consumers add performances to an evolving 

subset, balancing preferences for the component performances (based on their many attributes) 

and variety implications of adding a specific one to the extant subset (i.e., how its inclusion 

affects the variety of the intermediate bundle). We estimate consumers’ heterogeneous 

preferences over performance attributes (genres and latent topic representations) and over variety 

metrics, which are constructed based on the latent topic representation of the performances to 

capture the perceptions of variety. For variety metrics, we construct various measures of variety 

and empirically test which one best appears to capture the marginal value of the underlying 

variety construct. We first describe the model itself and then explain how the different variety 

metrics are constructed. 

1.5.1 Model 

Consumer 𝑖 in season 𝑠 chooses an unordered bundle 𝑏!", which includes 𝐾!"(≥ 5) 

performances from 𝐿", the set of all performances in season 𝑠. We use (	) to denote an unordered 

bundle, and {} an ordered bundle (of a specific permutation). Consumer 𝑖’s (unordered) bundle in 

season 𝑠 is defined as 

𝑏!" = /𝑙!"#, 𝑙!"$, ⋯ , 𝑙!"%!"3, 
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where 𝑙!"& 	(𝑘 = 1,⋯ ,𝐾!") denotes specific performances included in the bundle. We suppress 

season subscript 𝑠 for simpler notation where possible. 

Since we model bundle choice as a sequential process of adding performances to an 

evolving subset, we need to consider the order in which the performances are added, which we 

do not observe in our empirical setting (nor is it typically observed in such settings). Hence, we 

need to account for all possible permutations of the 𝐾! elements in 𝑏!. A priori, all permutations 

are assumed to be equally likely, and the unconditional probability of choosing (the unordered 

set) 𝑏! is therefore the sum of the conditional probabilities of all permutations of its component 

performances. 

Let 𝑅'! denote the set of all permutations of all performances included in the bundle 𝑏!, 

such that 

 𝑅'! = {{𝑙#, 𝑙$, ⋯ , 𝑙%!}, {𝑙#, ⋯ , 𝑙%! , 𝑙%!(#},⋯ , 7𝑙%! , 𝑙%!(#, ⋯ , 𝑙$, 𝑙#8} 

and refer to 𝑚)* permutation of 𝐾! performances as 𝑟(,) = {𝑟#, 𝑟$, ⋯ , 𝑟%!}, where 𝑟# is chosen 

first, 𝑟$ second, and so on. 

We specify the probability that user 𝑖 chooses bundle 𝑏! in a specific permutation order 

𝑟(,) ∈ 𝑅'! as an exploded random coefficients logit model (Allison & Christakis, 1994). Then 

the probability that user 𝑖 chooses 𝑏! given a particular permutation 𝑟(,) ∈ 𝑅'! can be written as 

 𝑃(𝑏! = /𝑙!#, 𝑙!$, ⋯ , 𝑙!%!3|	𝑟
(,)) = 𝑃!(𝑟#)𝑃!(𝑟$	|	𝑟#)⋯𝑃!(𝑟%!|𝑟#, 𝑟$, 𝑟., , 𝑟%!(#)  

Summing over all possible permutation orders, the unconditional probability that a user 𝑖 

chooses unordered bundle 𝑏! 	is 

 𝑃 >𝑏! = /𝑙!#, 𝑙!$, ⋯ , 𝑙!%!3? = ∑/($)∈1&!
𝑃!(𝑟#)∏

%!
&2$ 𝑃!(𝑟& 	|	𝑟#, ⋯ , 𝑟&(#)  
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where the choice probabilities of selecting the first performance is 

𝑃!(𝑟&) =
exp(𝑈!/')

∑3∈4",' exp(𝑈!3)
	for𝑘 = 1 

and 

𝑃!(𝑟& 	|	𝑟#⋯ , 𝑟&(#) =
567(8!)')

∑*∈,",' 567(8!*)
	for𝑘 = 2,⋯ ,𝐾!  

where 𝐿",& is the set of all eligible performances at 𝑘)* (𝑘 = 2,⋯ ,𝐾!) choice occasion, 

excluding performances chosen in previous choice occasions from 𝐿". 

 

Utility specification 

The conditional choice probabilities are driven by the user’s utility for adding a given 

performance to the partially constructed, intermediate subset. The utility for adding a 

performance is driven by two different factors: preferences for the performance itself and 

preferences for variety of the resulting set with a new performance. First, the preferences for the 

performance enter the utility function in the form of the attributes of each performance 

considered in bundle construction. Performance-level attributes for a performance 𝑟& 	populate 

vector 𝑋/', which includes performance characteristics, e.g., genres, latent topic representations, 

average price of a ticket, weekend offering, and others. We further control for the venue of each 

performance (Z/'), which is a proxy for its relative expected popularity. 

Second, and the focus of this research, the variety metrics 𝑉!/' – associated with the 

addition of performance 𝑟& to the existing subset {𝑟#, ⋯ , 𝑟&(#} – capture the interaction between 

performances that are already in the set and the performances that are currently considered as a 

𝑘)*	addition (∀𝑙 ∈ 𝐿",&). We differentiate the implications of variety between earlier and later 
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choices. Specifically, we allow for these variety metrics to only factor into later choices (𝑘 ≥ 𝑘∗) 

for the bundle, once there are already “enough” chosen performances, while we allow them to 

not be relevant for earlier choices (𝑘 < 𝑘∗). We consider different values of 𝑘∗ empirically (𝑘∗ =

3,4). Additionally, we allow for heterogeneous preferences for performance-level attributes 𝑋/' 

and variety metrics 𝑉!/', but not for Z/'.Therefore, the utility for all performance choices is: 

𝑈!/' = 𝑋/'𝛽!	 + 𝑍/'𝛾	for	𝑘 = 1,⋯ , (𝑘∗ − 1) 

𝑈!/' = 𝑋/'𝛽!	 + 𝑍/'𝛾 + 𝑤&𝑉!/'𝜉! 	for	𝑘 = 𝑘∗, ⋯ , 𝐾! 

where	𝛽!=~𝑁 >�̅�=, 𝜎>-? and	𝜉!?~𝑁(𝜉?̅ , 𝜎@.) 

where 𝑤& represents different weights on variety metrics for different choice occasions. This 

allows the model to capture whether users put more (or less) weight on variety at different choice 

occasions; for example, it is possible that consumers consider variety more important later in the 

(latent construction) sequence. 

 

Estimation 

Since we do not observe the order in which the performances are added to the bundle, we 

must compute the probabilities of all possible permutations and sum them. For instance, the 

probability of choosing a particular bundle of size 𝐾 = 5 needs to be evaluated 5! = 120 times, 

which is computationally costly (and even more so for some users who purchase more than five 

performances). The number of bundles to be evaluated increases factorially (i.e., 𝑂((𝐾/𝑒)%) in 

the bundle size, 𝐾 performances. To avoid this heavy computational burden, we turn to Monte 

Carlo methods and select a random order of addition for each bundle (at user-season level) and 

fix the sequence of addition for estimation, essentially integrating out the unobserved order by 
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stochastically sampling over possible orders. We show that this method allows us to faithfully 

recover the effects of attributes and variety of the bundle via simulation. Simulation results using 

both simulated and holdout season data and estimated coefficients appear in the appendix. We 

estimate the model with No U-Turn Sampling (NUTS) of HMC algorithm implemented in the 

Stan probabilistic programming language (Carpenter et al., 2017; Hoffman & Gelman, 2014) 

using 2000 draws, with the first 1000 draws used for burn-in. 

1.5.2 Variety metric construction 

Denoted 𝑉!/' above are variety metrics, which are constructed using the latent topic 

representations of the performances. With limited guidance from the extant literature on which 

dimensions of the attributes govern the perception of variety and its evolution, we consider a 

broad spectrum of variety metrics and empirically test which metric best captures the marginal 

value of variety to the set. We consider four sets of metrics summarizing pairwise Euclidean 

distances6 of the topic representations. We refer to them as total, incremental, and delta metrics, 

along with one intermediate metric type, which we refer to as conditional. Further, four 

quantities “mean, minimum, maximum, and standard deviation” within each of those four 

approaches are computed. These sets are meant to capture different aspects of variation in the set 

variety as new performances are added to the set. Table 1.3 shows the list of variety metrics that 

we consider, and we explain the construction of each variety metric in detail below. 

For ease of exposition, consider an example of a bundle of five performances shown in Table 1.4, which we assume 
are added to the set in the shown order. We explain the metrics assuming that the first three performances are 
currently already “in” the set: {Ballet Preljocaj (BP); Denis Matsuev, piano (DM); Yuja Wang (YW)} and the user is 
considering which fourth performance to add out of the remaining 38 eligible performances in the season (although 

 
6 We also constructed the same variety metrics using taxicab distance in earlier stages and found that the results 
were similar to those using Euclidean distances.  
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we only show 2 of the 38 here: Hamburg Symphony (HS) and Jazz at Lincoln Center Orchestra (JLCO)). Pairwise 
distances of these performances are listed in  

 

Table 1.5 and  

Table 1.6 summarizes the values of different variety metrics, continuing the illustration. 

Table 1.3 Overview of variety metrics 

Variety Type  Variety Metrics 
Total 
Delta 

Incremental 
(Conditional) 

× 

Minimum 
Mean 

Maximum 
Standard deviation 

 

 

Table 1.4 Example bundle of five performances 

 

 

Table 1.5 Distance matrix of the example bundle 

BP DM YW HS JLCO 
BP 0.0 0.713 0.727 0.227 0.942 
DM 0.0 0.282 0.663 0.920 
YW  0.0 0.612 0.914 
HS   0.0 0.854 

JLCO    0.0 

Performance name Topic1 Topic2 Topic3 Topic4 Topic5 Topic6 Topic7 
Ballet Preljocaj (BP) 0.070 0.018 0.018 0.018 0.368 0.456 0.053 
Denis Matsuev, piano (DM) 0.027 0.055 0.014 0.123 0.178 0.027 0.575 
Yuja Wang, piano (YW) 0.121 0.010 0.202 0.121 0.020 0.040 0.485 
Hamburg Symphony (HS) 0.189 0.057 0.057 0.019 0.189 0.415 0.075 
Jazz at Lincoln Center 
Orchestra (JLCO) 

0.009 0.780 0.037 0.083 0.009 0.046 0.037 
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Table 1.6 Values of variety metrics from the example bundle 

Performance Variety Type Min Max Mean SD 

HS  
conditional on  
(BP, DM, YW) 

Conditional 0.282 0.727 0.574 0.253 
Total 0.227 0.727 0.537 0.223 
Delta -0.055 0 -0.037 -0.029 

Incremental 0.227 0.663 0.501 0.238 
      

JLCO  
conditional on  

(BP, DM, YW, HS) 

Conditional 0.227 0.727 0.537 0.223 
Total 0.227 0.942 0.685 0.254 
Delta 0 0.215 0.148 0.031 

Incremental 0.854 0.942 0.908 0.037 
 

1.5.2.1 Conditional metrics 

Conditional metrics are a set of summary statistics of pairwise distances of only the 

performances that are already in the set (i.e., not including performances that the user is 

considering adding to the bundle). Summary statistics {min, mean, max, SD} of all pairwise 

distances are computed. In the example, given that there are three performances in the set (BP, 

DM and YW), the distances between pairs of performances are 0.713, 0.727 and 0.282, the 

summary values of these metrics are conditional min distance = 0.282, conditional max distance 

= 0.727, conditional mean distance = 0.574 and conditional SD = 0.253 for all performances in 

the consideration set. 

As conditional metrics describe the variety level of the subset that is already chosen, the 

values of conditional metrics do not capture the variety implications of adding a new 

performance to the set. Conditional metrics are therefore not “attributes” of the candidate 

performances, and they do not directly enter utility function as variety metrics. Rather, these 

metrics are used to construct delta metrics, as explained below. 
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Whereas conditional metrics are aimed at capturing static variety of the already-

constructed intermediate bundle, total, incremental, and delta metrics can capture the changes in 

variety of the set brought by the addition of candidate performance. 

1.5.2.2 Total metrics 

Total metrics capture the overall bundle-level variety of the candidate bundle that is 

being evaluated. They are constructed as summary measures of pairwise distances of both what 

is already in the set and what is currently being considered for addition. In the example, suppose 

the user is considering adding Hamburg Symphony as the fourth item to be included in the set. 

That makes {BP, DM, YW, HS} the temporary bundle that is being evaluated. With these four 

performances in the set, we get total min distance = 0.227, total max distance = 0.727, total 

mean distance = 0.537 and total SD = 0.223. 

It is important to note that the value of total minimum and maximum may not necessarily 

change with the addition of the new performance, since the additional performance may not be in 

the minimum or maximum distance pair. In the case of adding Hamburg Symphony to the set, 

the maximum distance stays the same as distance between Ballet Preljocaj and Yuja Wang 

(0.727), whereas the minimum distance changes from 0.282 to 0.227. This suggests that if total 

metrics best capture the value of variety, the level of variety in the resulting set is likely the most 

salient aspect of variety in the bundle choice rather than the changes brought by the addition of 

new performance to it. 

1.5.2.3 Delta metrics 

Delta metrics are designed to capture the changes in the set-level variety rather than the 

level. They are defined as the difference between total and conditional metrics for all summary 
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measures. In the example, delta metrics will capture the differences between the bundle of three 

performances {BP, DM, YW} and a bundle of four {BP, DM, YW, HS}. When Hamburg 

Symphony was added to the set, the minimum distance of the set changed from 0.282 to 0.227, 

so we define delta min distance = -0.055, whereas delta max distance = 0 since the maximum 

distance did not change. Further, delta mean distance = -0.037 (= 0.537 – 0.574) and delta SD = 

-0.029 (≈ 0.223 – 0.253). Overall, these measures would suggest that the addition of Hamburg 

Symphony to the set reduces the variety of the set, bringing the sets of performances closer to 

each other. 

These delta metrics are more focused on the changes brought by adding a new 

performance, but they should still capture the resulting overall set-level variety. If consumers 

paid attention to changes in the sets’ variety rather than their levels, delta metrics should best 

capture consumers’ valuation of how much the newly added performance may contribute to the 

variety of the set. 

1.5.2.4 Incremental metrics 

Incremental metrics focus on the distances between the currently considered performance 

and each of the existing ones (i.e., distances among the performances already in the set are not 

considered). While these metrics do not fully capture the overall set variety implications, they do 

capture the relationship between the newly added performance and existing ones. In the example, 

incremental distances are 0.227, 0.663 and 0.612, giving incremental min distance = 0.227, 

incremental max distance = 0.663, incremental mean distance = 0.501, and incremental SD = 

0.238. 
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If incremental metrics turn out to provide the best model performance (by representing 

the marginal value of variety of adding the performance to the set), it is consistent with 

consumers’ focusing more on imminent changes brought by the addition of the new item rather 

than resulting variety of the overall new set. 

It is noteworthy that delta and incremental metrics are similar in that they focus on 

changes. Hence, the dimensions of variety captured by incremental and delta metrics will overlap 

to a certain degree. In case of adding Hamburg Symphony to the set, for example, it brings the 

closest pair of performances even closer, which are captured by both delta and incremental 

metrics. The difference in the two measures is illustrated in the case of maximum distance: 

Hamburg Symphony does not broaden the spectrum of performances in the bundle because 

adding the performance to the set doesn’t change the maximum distance of the set, which is 

better captured by delta metrics. 

1.5.3 Model performance evaluation 

We evaluate the performance of the model on holdout data, which include season 2017 

bundle choices of users who had purchased at least one bundle in previous seasons (season 2011-

16). For evaluation, we compute the choice probabilities of all possible bundles of five following 

(2) and compare the predictive performance across different specifications for the chosen 

bundles. Despite there being some consumers choosing to include more than five performances 

in their custom bundles, we restrict our purview to bundles of five performances for several 

reasons. First, roughly half of the bundles bought in the holdout period contain five 

performances. Second, as we are abstracting away from the number of performances, there is no 

formal way of addressing how many performances we should recommend to any one user, and 
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not nearly enough variation in this regard to systematize the model to capture that aspect of our 

particular data. Third, because the prediction step requires evaluation of all possible permutations 

of a given sized bundle, allowing for a greater number of performances would substantially and 

prohibitively expand the space of combinations that need to be evaluated. 

That said, our evaluation procedure is as follows: 

Step 1. Variety metrics for all possible 5! permutations of 	AB𝐶B = 	1,221,759 combinations of 

five performances are computed. 

Step 2. Using 𝑁 draws from the joint posterior 𝑃(𝛽! , 𝛾, 𝜉!|𝑋, 𝑍,𝑊), the posterior probabilities of 

user 𝑖 choosing a bundle 𝑏 out of the set of all possible bundles 𝐵 is computed as following: 

 𝑃!>𝑏|𝛽!
(C), 𝛾(C), 𝜉!

(C)? = ∑/∈1& 𝑃!(𝑟#)∏
B
&2$ 𝑃!(𝑟&|𝑟#, ⋯ , 𝑟&(#)	∀𝑏 ∈ 𝐵 

Step 3. The probability of the chosen bundle 𝑏! is compared across models.7 

1.6  Model Results 

With the extracted attributes (topics) from the performance descriptions and proposed 

variety metrics, we explore various specifications to narrow the search for variety metrics to be 

further tested with out-of-sample predictive performance. We first test whether extracted 

attributes allow us to better capture individuals’ preferences over performances and then 

compare various combinations of variety metrics. 

 
7 There are users who have more than five performances in their sets, which means that there could be multiple 
bundles that are nested in the chosen bundle	𝑏/. For example, if a user included seven performances in her bundle, 
there are 21 bundles of five performances that are nested within it. In that case, we use the maximum of the 21 
possible probabilities and compare it across models.  
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Table 1.7 Model fit comparison 

Type Model 3rd on 4th on Weighted 
(3rd on) 

(1) Genre  -22853.2  
Baseline (2) Topic  -22477.3  

(3) Genre + Topic  -21800.5  

(4) Min + Max -21719.4 -21755.7 -21712.5 
Total (5) Mean -21765.6 -21766.6 -21762.8 

(6) SD -21793.6 -21789.0 -21788.7 
(7) Max + SD -21792.6 -21783.7 -21785.1 
(8) Min + Max -21713.6 -21755.1 -21717.1 

Delta (9) Mean -21759.6 -21757.4 -21760.9 
(10) SD -21792.4 -21791.5 -21783.7 
(11) Max + SD -21791.2 -21784.5 -21793.3 
(12) Min + Max -21733.1 -21733.9 -21728.5 

Incremental (13) Mean -21731.9 -21743.8 -21749.0 
(14) SD -21792.4 -21791.5 -21790.0 
(15) Max + SD -21744.2 -21751.7 -21745.4 

* All variety models are over genre + topic baseline 
  

Table 1.7 contains model likelihoods evaluated at the median of the parameter estimates. 

We find that performances’ topic information improves model fit – over genres alone 

(comparing (2) “baseline with topics” with (1) “baseline with genres”) and in addition to genres 

(comparing (3) “baseline with genres and topics” with (1) “baseline with genres”) – suggesting 

topics provide additional insight into consumer preferences rather than simply subsuming genre 

information. Rather, the additional attributes extracted from the text can represent contextually 

nuanced details of the performances that may transcend those captured by the genres. For 

example, going back to the example of ABT’s Romeo and Juliet, its genre is dance, but the 

extracted attributes reveal that it has choreographic elements, a dramatic component (it is set to 

Shakespeare’s play), and classical musical element. These additional elements need not be (and, 
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in fact, are not) representative of all performances in dance genre, nor must this performance be 

emblematic of dance in its entirety, and this greater subtlety and flexibility may explain the 

additional improvement in model fit when both the genre and extracted attributes are appear as 

covariates. 

Importantly, we explore various combinations of variety metrics. Specifically, we 

propose three categories of metrics for variety (total, delta and incremental) and four summary 

measures within each category (shown in 3). Based on preliminary exploration of the 

configuration space, we limit our search to combinations that include up to two variety metrics 

from the same category, testing the following four combinations within each (Table 1.8). 

Table 1.8 Tested variety metric combinations 

Variety Type  Variety Metrics 

Total 
Delta 

Incremental 
× 

Mean 
SD 

Min + Max 
Max + SD 

 

Because “variety” involves the span or extent of a set of items, these variety metrics 

meaningfully summarize the set only from the third choice on. For first choices, none of the 

metrics are defined, as there is no ‘pair’ to compute pairwise distances for. We do observe one 

pair of performances for which we can compute the distance for second choices – however, 

precisely because there is only one pair, these variety metrics are either not defined or provide 

redundant information. As there is no conditional distance defined for second choice, none of the 

delta metrics can be computed. Nor are total and incremental SD defined as there is only one pair 

in the set at the second-choice occasion. Even for total and incremental metrics that are 
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technically defined, mean, minimum and maximum distances are identical to that unique 

pairwise distance. We therefore allow the variety metrics to enter either from the third or fourth 

choices, and we test which is superior. 

Similarly, it is possible that individuals select items to provide variety earlier (vs. later) in 

assembling their choice sets; consequently, we also estimate a “weighted” version, for which 

different choices have differential relative impact, with “all weights equal” nested as a special 

case. [Note that, because we do not observe the order of items’ entering the bundle – which may 

be latent even to the decision-maker – the model’s likelihood integrates out this order and 

estimation can proceed by stochastically sampling over possible orders, as discussed in the 

previous section.] 

1.6.1 Gains in out-of-sample prediction 

Upon testing the models, although the differences are not stark, we find that across the 

different variety metric types, min + max and mean consistently show the largest improvement 

over the baseline model, which includes genres, topics, and control variables (venue and number 

of shows; weekend performance/not). That said, none of the variety metrics uniformly dominates 

the others across all specifications. While the incremental gains in terms of likelihood is not 

large, this should be understood with some context in mind; first, given that the variety metrics 

start kicking in at either the 3	/D or 4	)* choices, only 66.5% (49.8%) of choices benefit from the 

addition of any variety metric. Further, given that we are including one or two extra variables 

(from which not everybody benefits, as we discuss again in the predictive performance of the 

model), the gains in model fit are moderate. 
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Given the extreme computational requirements of the hold-out posterior predictive 

performance checks, we focus on these two variety metrics (min + max and mean), allowing 

them to “kick in” at different timings from 3	/D-choice-into-set onward. We evaluated the 

probabilities of all possible bundles of five performances at the user level using 15 posterior 

draws. To evaluate predictive performance, we compare the predicted probability distribution of 

the chosen bundle across different models. At the individual level, we summarize the predicted 

probability distribution (of 15 probabilities per user, per bundle) using the median across draws 

and assess the gains from using variety metrics using the percentage gains of median probability 

under the variety model over the median probability under the baseline model. If a user had more 

than five performances in the chosen bundle, we focus on the bundle with the highest probability 

among the nested bundles of five. With 229 users, this leaves us with 229 observations on gains 

from using variety metrics. 

Across users, to mitigate the impact of outliers and provide robust comparisons, we 

summarize the posterior predictive model performance with trimmed means of the percentage 

gains across users (1% and 5% from the top and bottom). Table 1.9 lists average predictive gains 

(across users) over the baseline model (Table 1.15 in the Appendix shows the same comparison 

using means of draws to summarize the predictive probability distribution at the individual 

level). Note that trimming decreases the magnitude of mean gains, as seen by comparing 1% vs. 

5% values. 

While the predictive gains vary somewhat across variety metric specifications, we find 

that allowing weights on variety preference to differ across choice occasions improves predictive 

performance for all but the incremental min + max model in the 1% trimmed result. Among 
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those, the gains are especially noticeable in three specifications: for those with total mean, delta 

mean and delta min + max as variety metrics, allowing weights to vary across choice occasions 

leads to almost double the gains from specifications that assume the same weight for all choice 

occasion from the 3	/D / 4	)* choices. These three specifications maintain their superior 

performance under both 1% and 5% trimmed results, showing robust, substantial improvement. 

Table 1.9 Average predictive gains (in percentage) over baseline models across users (median across draws at the 
individual level) 

 Users with  
improvement 

Average gains  
1% trimmed 

Average gains  
5% trimmed 

 3rd 4th W 3rd 4th W 3rd 4th W 
Total mean 98 109 122 17.78 14.85 34.53 7.73 7.99 22.10 
Total Min + Max 116 119 112 19.75 20.42 21.86 13.99 14.58 10.09 
Delta mean 102 105 125 15.93 14.33 28.20 8.03 6.68 22.11 
Delta Min + Max 118 118 123 15.79 18.82 31.95 10.42 13.52 21.54 
Incremental Mean 116 111 112 19.43 14.79 20.21 14.02 7.62 14.18 
Incremental Min + Max 131 109 122 23.59 14.56 21.29 18.24 9.24 15.60 
*W = Weighted, N = 229 

 

We do not find a single specification that strictly dominates all others, in terms of 

magnitude of predictive gain or number of users for whom variety improves the predictive 

performance. It is not too surprising given that these variety metrics are formulated to capture the 

same underlying construct – how consumers might “conceptualize” variety across experiential 

items – and so some degree of correlation in their values is inevitable. Lack of uniform 

dominance, however, is not a shortcoming; instead, it robustly supports the importance of variety 

as a substantive component of modeling bundle choices. 

Regardless of which variety metric is adopted, as the totality of 9’s metrics clearly shows, 

accounting for within-bundle variety improves out-of-sample performance. While it might be 

tempting to believe that all users benefit from this additional information, this is not so: among 
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users for whom the variety metric matters – in fact, only about half – it matters a lot. While we 

must stop short of any claims that “total mean” is the best metric in all situations, we adopt it in 

the subsequent sections, with differential weights for variety preferences depending on the 

timing of the choice within the sequence. 

1.6.2 Model Estimates 

Table 1.11 lists parameter estimates of average consumer preferences over performance 

and bundle characteristics in our focal specification. The baseline model (estimates shown in 

Table 1.10) includes six genres and six topics, with theatre and topic 7 (orchestra, symphony-

related) as the baseline. Controlling for genres, consumers reveal significantly lower preferences 

for performances scoring high on topics 2, 4, and 6 (relative to reference level topic, topic 7), 

which capture jazz & band, chamber-music, and dance-related components, respectively. 

Comparing the parameter estimates between baseline and variety model, we find that the 

coefficients for the variables are remarkably similar across specifications (posterior distribution 

plot of the mean effects across these two specifications are shown in Figure 1.3 in the appendix), 

suggesting that preference for variety is likely coming from an independent variation in the 

dataset.  

At the individual level (Table 1.12), roughly one quarter of the users (105/ 466 ≈ 22.5%) 

reveal a significant preference (95% posterior interval excludes zero) for or against any 

performance content attribute (i.e., topics and genres). Among those, 23 users (4.9%) reveal a 

strong preference for specific genres, while 88 users (18.9%) reveal both strong positive and 

negative preferences for topics. Within genres, the greatest number of users prefer dance, 

followed by orchestra, then choral performances. On the other hand, we observe polarized 
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preferences for topics. For example, 51 users (10.9%) strongly dislike and 7 users (1.5%) 

strongly like topic 2, which is related to the jazz-musical element of the performances. We 

observe a similar pattern for topic 5, related to theatrical components; 16 users with strong liking 

of, and 3 with strong disliking of the topic. 

 

Table 1.10 Parameter Estimates - baseline with genres and topics 

Name Median [95% CI] Name Median [95% CI] 
chamber -0.104 -0.28 0.08 weekend 0.016 -0.049 0.083 
choral -0.089 -0.292 0.111 average price 0.284 0.256 0.313 
dance -0.051 -0.242 0.134 n showings -0.069 -0.108 -0.031 
jazz 0.13 -0.08 0.335     

orchestra -0.089 -0.286 0.107 topic1 -0.046 -0.096 0.004 
other -0.058 -0.232 0.118 topic2 -0.199 -0.266 -0.133 

    topic3 -0.014 -0.055 0.03 
venue A 0.422 0.328 0.516 topic4 -0.182 -0.245 -0.123 
venue B 0.346 0.23 0.466 topic5 -0.019 -0.072 0.037 
venue C 0.145 0.019 0.273 topic6 -0.077 -0.141 -0.018 
venue D 0.407 0.278 0.537     

 

Table 1.11 Parameter Estimates - weighted total mean distance 

Name Median [95% CI] Name Median [95% CI] 
chamber -0.066 -0.248 0.118 weekend 0.016 -0.051 0.086 
choral -0.039 -0.242 0.157 average price 0.277 0.249 0.307 
dance -0.015 -0.206 0.167 n showings -0.055 -0.094 -0.016 
jazz 0.179 -0.024 0.379     

orchestra -0.052 -0.249 0.14 topic1 -0.04 -0.089 0.007 
other -0.025 -0.195 0.149 topic2 -0.19 -0.253 -0.129 

    topic3 -0.015 -0.057 0.027 
venue A 0.427 0.327 0.526 topic4 -0.168 -0.226 -0.111 
venue B 0.331 0.208 0.447 topic5 -0.013 -0.066 0.04 
venue C 0.142 0.014 0.272 topic6 -0.082 -0.141 -0.026 
venue D 0.424 0.287 0.558 total mean dist -0.212 -0.290 -0.133 
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Table 1.12 Number of users with significant preferences (genres and topics) 

Name + - Name + - 
chamber 1 0 topic1 0 0 

choral 3 0 topic2 7 51 
dance 14 0 topic3 7 0 
jazz 1 0 topic4 0 6 

orchestra 5 0 topic5 16 3 
other 0 0 topic6 1 2 

 

1.6.3 Variety and Covariate Effects 

As shown in 11, consumers’ average preference for variety (total mean distance) is 

negative and significant (𝛽l)E)F3	,GFC	D!") = −0.212; 95%	𝐶𝐼	[−0.290,−0.133]). This may 

appear counterintuitive at a first glance, as consumers are expected to prefer more variety when 

they make purchases in bundles compared to when making separate choices for immediate 

consumption (Read & Loewenstein, 1995; Simonson, 1990). However, this expectation must be 

interpreted as a comparison made in reference to one’s own level of variety, i.e., if the user 

would have been making separate choices for immediate consumption. Since we are not making 

such within-individual counterfactual comparisons, our result does not suggest consumers seek 

less variety compared to some hypothetical alternative separate choice scheme. 

Rather, the “negative variety preference” result can be understood in relation to the set of 

performances offered by the organization, in combination with how clearly consumers’ 

preferences are defined around specific types of performances. The focal performing arts 

organization offers a wide range of performances across seven genres, varying from classical 

pieces by composers like Mozart and Beethoven to more novel and contemporary pieces, such as 

a modern dance performance accompanied by Azerbaijani opera music. Consumers choosing 
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performances with similar themes are likely to result in a relatively concentrated set (e.g., 

romantic music from 19	)* century) compared to the much larger variety of the available 

performances, a tendency that is likely further enhanced with experience as one’s preference 

becomes more refined and clearly defined (Clarkson et al., 2013; Read & Loewenstein, 1995; 

Sela et al., 2019). As users tend to choose relatively similar performances (i.e., relatively smaller 

distances among the pairs of performances), their estimated preferences for variety are on 

average negative. The narrow range of the chosen values of the variety metric negatively affects 

the estimate of the coefficient on that variety metric, all else equal. 

Additionally, across users, we find that the average price coefficient is positive and 

significant (𝛽l=/!HG = 0.277; 95%	𝐶𝐼	[0.249, 0.307]).While it’s important to note that this only 

serves as a “control” for preference (rather than a suggestion for ticket price optimization), one 

should bear in mind that bundle-purchasers elected to do so via early access, foregoing additional 

savings opportunities in the future, including night-of-show and student or senior discounts. 

The coefficient for the number of showings per performance is significantly negative 

(𝛽lC"*EI!CJ" = −0.055; 95%	𝐶𝐼	[−0.094,−0.016]). This may be due to the skewed distribution 

of showings across genres and performances, with 77.4% of all performances having a single 

showing only, and theatre performances accounting for most of the performances with three or 

more showings. 

1.6.4 Individual-Level Comparisons 

At the individual level, even fewer users – five, and all of them negative – have 

significant preferences for variety, but this is likely due to limited number of individual-level 
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observations, which is further exacerbated by the fact that preferences for variety is informed by 

even fewer choices, excluding first two (three) choices. While none of the users have a strong, 

positive preference for variety, for illustrative purposes, we compare two users: one with strong 

preference against variety and another with largest median preference for variety. Table 1.13 

compares the purchase histories of these two users: one with negative and one with positive 

variety preferences. User 147 (with negative variety preference) purchased larger bundles (7.1 

performances per bundle) from fewer genres compared to User 212 (with relative positive 

variety preference) who has 5.4 performances per bundle. Moreover, despite having smaller 

bundle sizes, User 212’s bundles have greater variety, expressed as sum of standard deviations 

across topics, compared to User 147, suggesting that the User 147’s bundle contains a much 

more “concentrated” set of performances in the space of topics. Lastly, comparing the average of 

total mean distance values across choices, we see that the average total mean distance, another 

measure of variety, is also larger for User 212. This suggests that the model faithfully captures 

individual users’ variety preferences using proposed metrics.  

Lastly, Table 1.14 lists estimates of weights for variety for 𝑝)*	choices within different 

bundle sizes (𝑛) (i.e., 𝑤C,= is the weight for the 𝑝th performance in a bundle of size 𝑛). We do 

not estimate separate weights for 6 to 10	)* choices, given the limited number of observations. 

For example, for bundle size of seven performances (third row), the table shows separate weights 

for 3	/D, 4	)*, 5	)* choices (𝑤K,. = 0.430, 𝑤K,A = 0.562, 𝑤K,B = 0.710) and the shared weight for 

6	)* and 7	)* choices (𝑤K,L = 𝑤K,K = 1.639). The estimated weights suggest a stronger role for 

variety (whether positive or negative) later in the bundle creation process. This pattern could be 

driven due to the salience of variety as more items are added to the subset; specifically, as more 
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items are added to the subset, the mean distances among performance pairs likely will increase, 

which could in turn trigger consumers to place more emphasis on variety implications. 

Table 1.13 Comparison of user histories with positive and negative variety preferences 

 ID Season 
Bundle 

Size 
(A) 

Number 
of genres 

(B) 

Mean 
performances 

per genre (A/B) 

SD across 
topics 

Average of 
total mean dist 

+* 

212 2012 5 3 1.67 1.12 0.71 
212 2013 5 5 1 1.21 0.70 
212 2014 5 5 1 1.56 0.96 
212 2015 5 3 1.67 1.12 0.71 
212 2017 7 6 1.17 1.19 0.64 

- 

147 2011 5 3 1.67 0.86 0.58 
147 2013 7 5 1.40 0.96 0.56 
147 2014 5 2 2.50 0.86 0.61 
147 2015 10 3 3.33 0.67 0.37 
147 2016 8 2 4 0.70 0.32 
147 2017 8 3 2.67 0.73 0.44 

* Note that the user’s variety coefficient is statistically not significant 

 

Table 1.14 Median parameter estimates of weights in total mean distance model 

Bundle size 3rd 4th 5th 6th+ 
5 0.753 0.991 1.250  

6 0.510 0.669 0.843 1.950 
7 0.430 0.562 0.710 1.639 
8 0.388 0.511 0.643 1.481 
9 0.363 0.477 0.602 1.386 
10 0.346 0.455 0.575 1.322 

 

1.6.5 Posterior Predictive Performance 

We made hold-out season predictions for 229 users (49.1% of 466 users for estimation) 

who made a bundle purchase in season 2017. On average, they had 2.44 bundle purchases prior 
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to the hold-out season, with 36.7% of users purchasing only once in the past. There were 45 

performances in season 2017, slightly higher than the 40.5 average in prior seasons. 45 

performances implies that there are 	AB𝐶B = 	1,221,759 possible bundles of five, each with 120 

(=5!) possible latent orders. 

Across all users, including the variety metric in the model increased the mean predictive 

probability by 42.7% over baseline model prediction and 205 times better than purely random 

chance (1/1,221,759). Given that the purpose of the model is to capture individual-level 

preferences over performances and variety, we focus on within-individual comparisons between 

the baseline model with topics and genres, and the model that includes total mean distance as the 

variety metric. For robustness, we report results of trimmed mean in 9 (1% and 5% from top and 

bottom) and use 1% trimmed as main result while showing 5% trimmed results in parentheses. 

 

Figure 1.2 Distribution of percentage gains in predictive probability using variety metric (total mean distance) over 
baseline 

Figure 1.2 shows the distribution of within-user percentage gains over baseline 

performance (1% trimmed on the left, 5% on the right). These offer a “scale-free” summary of 
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the model’s performance: 122 (53.3% of 229) users show increase in their predictive probability. 

Further, across all users, the (1% trimmed) average gain is 34.5% (22.1% for 5% trimmed). 

Zeroing in on users whose performance improved by use of variety metric, users gain on average 

a hefty 99.5% (73.0%), confirming that, among users who benefit from the variety metric, the 

improvement in predictive performance is substantial, reflecting a doubling in performance. This 

gain is notably higher for those with significant variety preferences; of the five users who have 

significant variety preferences, three users made a bundle purchase in 2017. The average gains 

for these three users is 219.1% (with one of the users in top 5%; removing that user, the average 

gain for the two users is 152.97%), compared to 32.0% for all other users whose variety 

preference is not significantly different from zero (again, trimming the top and bottom 1%; 

20.8% with 5% trimmed). The contrast is stark, although the number of users with strong 

(dis)taste for variety is limited. 

Lastly, we further investigate the composition of specific bundles the two models – 

baseline and variety – recommend, out of all possible bundles of five nested in the actual chosen 

bundle. 117 out of 229 users who made a bundle purchase in 2017 had more than five 

performances in the bundle. The variety and baseline models assign the highest probability to 

different bundles of five (i.e., the composition of the recommended bundle is different) in 64 out 

of the 117 bundles with more than five performances. The average probability gains are higher 

among users for whom the recommended bundle differs under variety versus baseline model 

prediction (43.3% vs. 34.2% for baseline after 1% trimming; 28.9% vs. 22.5% under 5% 

trimming). The gains for bundles of size five are the smallest, with 29.8% (17.8% under 5% 

trimming) gains over baseline, as there is no room for change in composition. This suggests two 



 
 

 

47 

findings: first, using variety metrics can result in compositional changes in predicted bundles, 

allowing substantial gains in prediction. Secondly, the gains in predictive probability, even for 

the same recommended bundle, suggest that variety provides additional insight into preferences 

for variety itself, over and beyond the preferences for performances. 

1.7 Conclusion 

Firms offering their customers various rosters of potential experiences face a perpetual 

challenge in making recommendations of novel combinations for the future. To help consumers 

navigate these possibilities on their own, firms typically curate “bundles” of options that seem to 

go well together. Yet such bundles, by their market-level nature, cannot take into account 

individuals’ preferences or their idiosyncratic desire for variety. Even when firms try to 

circumvent this problem by allowing consumers to customize their own bundles, many demur, 

owing to the sheer scope of possibilities. 

In this paper, we meet this challenge by proposing a comprehensive model for 

customizable bundles of experiential products, one for which users balance utility for the 

individual component characteristics and the “holistic” variety of the bundle. Applying it to 

create-your-own performing arts subscription program from a midwestern performing arts 

organization, we find that accounting for variety via such holistic bundle-level metrics can 

improve hold-out predictive performance by up to 34.5%. Importantly, while the variety metric 

does not improve prediction for everybody, users who benefit do so substantially. 

Our model addresses four challenges in both practice and the extant literature that arise in 

modeling choices of customizable bundles in the experiential products domain. First, by 

characterizing performances using attributes extracted from brochure descriptions, we can 
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capture textured performance details that alleviate the coarse granularity of “genre” typologies; 

while genres often leverage expert opinion to encapsulate the complexity of performances, their 

intrinsic conceptual broadness is such that heterogeneity within a performance genre can 

sometimes be even larger than that across them. The additional detail and flexibility of extracted 

attribute information improves model fit significantly and offer the additional benefit of being 

extendable to future seasons containing previously unobserved performances and new artists, 

defining features of performing arts over seasons. 

Second, we construct and test variety metrics, which are attribute dimensions of the 

bundles that can capture consumers’ perceptions of bundle-level variety. Relatively little is 

known about which attribute dimensions consumers appear to attend to or how perceptions of 

variety evolve with the addition of items to a bundle. While we do not find a single metric that 

outperforms all others, we observe substantial improvement in predictive performance across 

various variety metric specifications, supporting the importance of accounting for variety 

preferences; empirically, we find that total mean distance of the bundle – computed as the mean 

of all pairwise distances between performances in the bundle – to offer the strongest performance 

for our dataset. More importantly from the perspective of application and generalizability, using 

these variety metrics substantially improved the model’s predictive performance. 

Third, we circumvent exploring the prohibitively large space of possible bundles by 

modeling bundle choice as a latent sequential addition process, as opposed to a multinomial one 

across potentially millions of bundle options. Doing so reduces the problem to a sequence of 

pick-one-of-(𝑛 − 𝑘) problems, conditional on a specific order of addition, which unfortunately is 

not observable by the analyst. To overcome this, our fourth challenge, we rely on a novel Monte 



 
 

 

49 

Carlo approach by randomly drawing an order of addition for each customer, in effect 

stochastically integrating out the latent order while providing estimation stability within each 

individual bundle and demonstrate the validity of the approach via a series of parametric 

recovery exercises. 

While our work proposes a novel methodology to leverage observed bundle choices to 

estimate individual users’ preferences over performances and variety, as well as to make 

recommendations, there are inevitable limitations that open up avenues for further research. 

Notably, while relatively brief customer history is a common phenomenon in bundle choices, the 

annual cycle of seasonal subscriptions renders these individual histories even shorter, making it 

challenging to extract individual estimates with high precision, even via hierarchical Bayesian 

techniques. This problem is even more severe for variety preference parameters, the focal 

operative element of the entire approach, as we do not use all choice occasions to infer users’ 

preferences over variety. Other settings in which the model can be applied often have shorter 

cycles, e.g., meal kit choices, which takes place either monthly or weekly, substantially 

alleviating such data limitations. Relatedly, our proposed approach, while accommodating 

heterogeneous preferences for variety, nonetheless does so in a stationary manner: evolution in 

one’s preference for variety could potentially be modeled explicitly with longer user purchase 

histories. 

Further, as the current work focuses on making recommendations to retain users who 

have previously made bundle purchases, our ability to extend recommendations for new users or 

those who only have purchased individual tickets is limited, either at population or segment 

levels. A data fusion approach (Feit & Bradlow, 2021), aligning users who have bought bundles 
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before with those who have only made individual ticket purchases, would allow researchers to 

have a better understanding of variety preferences of the latter group. Combined with a field 

experiment aimed at understanding how the broad population responds to recommendation 

policies would directly aid the organization in refining their bundling strategies. 

Lastly, the ultimate test of any theory or modeling framework is its empirical evaluation 

in the field. Despite the model’s excellent “out-of-sample” performance in predicting results for 

a hold-out season, the true proof-of-concept would be a field experiment where the model’s 

predictions are used to generate bundle suggestions for individual consumers. This would not 

only allow an evaluation of uptake (i.e., how likely suggested bundles are chosen), but other 

spillover effects like willingness to purchase tickets in future seasons and perhaps even 

patronage in the form of donations. While we hope to be able to report on such an experiment in 

the future, the model at present can be used “out of the box” by organizations that offer 

customizable bundles to improve their implementation of and eventual success with that critical 

customer-facing feature. 

The model can also be applied in settings where consumers make multiple bundled 

purchases of similar products or experiences for future consumption, ranging from “intangibles” 

like performances and sporting events, to consumables like snacks, meal kits, and wines, through 

durables like books. Because customization increases the cognitive and attentional resources 

required of consumers, it can discourage them from committing to a full-sized bundle, or even 

purchasing anything at all. However, with more relevant, customized recommendations that 

incorporate individuals’ component item preferences along with preferences for variety, firms 
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can lower the entry barrier to purchasing customized bundles for consumers and reduce costs 

involved with return and replacement. 

1.8 Appendix 

1.8.1 Model results 

 

Figure 1.3 Posterior distribution of the mean effects: baseline and weighted total mean 
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Table 1.15 Average predictive gains (in percentage) over baseline models across users (mean across draws at the 
individual level) 

 
Users with 

improvement 
Average gains 1% 

trimmed 
Average gains 5% 

trimmed 
 3rd 4th W 3rd 4th W 3rd 4th W 

Total mean 101 114 130 16.3 10.41 27.63 6.43 6.51 21.99 
Total Min + Max 121 117 117 22.31 19.93 24.2 14.64 13.66 17.53 
Delta mean 106 104 120 15.12 7.59 21.03 9.42 3.83 16 
Delta Min + Max 114 117 115 19.38 19.85 24.58 11.73 14.82 17.06 
Incremental mean 114 120 112 17.01 17.08 13.69 13.48 11.7 9.94 
Incremental Min + Max 119 116 116 19.73 12.59 25.05 13.73 9.23 18.26 
 * “W” = Weighted, N=229 

 

1.8.2 Simulation studies 

Here we discuss simulation results verifying parameter recovery using the Monte Carlo 

approach used for scalable estimation of the proposed model of custom bundle choice. 

Specifically, the approach entails randomly selecting and fixing one order of bundle addition, 

separately for each user, and thereby estimate the probability of choosing the bundle. That is, 

rather than summing over all probabilities arising from all possible unobserved orders (120 for 

bundles of five, but in general potentially far more), we “stochastically select” a separate order 

for each user, and thereby marginalize over them. 

For the first simulation, we generated a relatively simple and small dataset, with 10 

performances from which 400 users each chose five. The attributes included three generated 

topics and total mean distance computed for all possible bundles of five (	#M𝐶B = 	252). The 

specific steps involved are as follows. 
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Step 1. Attribute generation: for ten performances, three topics were generated using a Dirichlet 

distribution: (𝑥#, 𝑥$, 𝑥.)~𝐷𝑖𝑟𝑖𝑐ℎ𝑙𝑒𝑡(1, 1, 1), where {𝑥#, 𝑥$, 𝑥.} are topic loadings for each 

performance. 

Step 2. The values of total mean distance (variety metric) for all possible (unordered) bundles of 

five performances were computed. Both topics and variety metrics are standardized. 

Step 3. Parameters were set to have moderately differing means and variances: 

𝛽#!~𝑁(−0.041,0.23) 

𝛽$!~𝑁(−0.14, 0.42) 

𝛽.!~𝑁(0.18, 0.34) 

where 𝛽#! is user 𝑖’s coefficient for topic 1, 𝛽$! for topic 2, and 𝛽.! for total mean distance, and 

𝑖 = 1,⋯ , 400. 

Step 4. Individual users’ probabilities of choosing all possible (unordered) bundles were 

computed using 

 𝑃!(𝑏|𝛽!) = ∑/∈1& 𝑃!(𝑟#)∏
B
&2$ 𝑃!(𝑟&|𝑟#, ⋯ , 𝑟&(#)	∀𝑏 ∈ 𝐵 

where 𝑏 is any possible unordered bundle of five performances in 𝐵, which includes 252 

bundles. 𝑟 refers to specific order of addition to the bundle, such that 𝑟# is added first to the set, 

𝑟$ second, and so on. 𝑅' is the set of all permutations of performances in bundle 𝑏, hence |𝑅'| =

5! = 120. 

Step 5. Each user chose one of the (unordered) bundles in a multinomial fashion, with computed 

probabilities as in Step 4. 

Step 6. For each user, a random permutation order (𝑟! ∈ 𝑅'!	) was drawn and estimated. 

Step 7. Step 6 was repeated 10 times. 
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Estimates from the simulation appear in 5 (means) and 6 (heterogeneity), where the solid 

black lines are true values of the parameters. All six parameters are recovered well. 

 

 

Figure 1.4 Recovery of mean effects: posterior distribution of the mean effects of topics 1, 2 and total mean distance 

 

 

Figure 1.5 15 Recovery of heterogeneity parameters: posterior distribution of standard deviation coefficients for topics 
1, 2, and total mean distance 

 

For the second, data-based simulation, we used holdout season (season 2017) data with 

45 performances and 229 users who made a bundle choice in the season. For the values of the 

true parameters, we picked one random draw from the posterior distribution of the coefficients in 
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the model that used total mean distance as the variety metric, with variety kicking in from the 

third choice on. 

Step 1. Using one draw 𝑠 from the posterior distribution (𝛽!
("), 𝛾("), 𝜉!

("))	~𝑃(𝛽! , 𝛾, 𝜉!|𝑋, 𝑍,𝑊) as 

the true parameter, we computed the probabilities of all possible bundles of five (1,221,759 

bundles) by summing over all possible 5! = 120 orders of addition following the equation below: 

 𝑃!>𝑏|𝛽!
("), 𝛾("), 𝜉!

(")? = ∑/∈1& 𝑃!(𝑟#) ∏
B
&2$ 𝑃!(𝑟&|𝑟#, ⋯ , 𝑟&(#)	∀𝑏 ∈ 𝐵 

where 𝑅' is the set of all permutations of unordered bundle 𝑏, and 𝐵 is the set of all possible 

bundles of five among the 45 performances in season 2017 (|𝐵| = 1,221,759). 

Step 2. Based on the computed probabilities from Step 1, each of 229 users picked 1 out of 

1,221,759 possible (unordered) bundles. 

Step 3. For each user, a random order of addition for the five performances included in the 

bundle chosen in Step 2 were assigned. 

Step 4. Parameters were estimated using the one random order of addition for each user. 

Step 5. Steps 3 and 4 were repeated 50 times. 

 

Given the large number of parameters (20 mean effects), we illustrate parameter recovery 

using plots of the posterior distribution of each coefficient ( 6, 7, 8; again, the solid black line 

indicates the true parameter value). While we find that all the parameters are well recovered, the 

variation of the posterior distribution around the true value is the largest for total mean distance. 

However, this is expected for several reasons: first, in the simulation, we allow users to have five 

choices per person, and using three of those choices to inform individual users’ preferences for 

the parameters serves to limit the amount of information available. Secondly, variety metric is 
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the only variable that changes values as the orders in which the items are added to the set, adding 

to the variation of distribution around the true parameter. 

 

Figure 1.6 Posterior distribution of the mean effects 
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Figure 1.7 Posterior distribution of heterogeneity across users 
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Figure 1.8 Posterior distribution of heterogeneity across users (for total mean distance) 
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Chapter 2 Cross-channel Price and Inventory Optimization for Live Events: An 

Application to NFL Ticket Purchases 

2.1 Introduction 

Dynamic pricing is a widely adopted practice across many industries, most prominently 

in hotels and airlines, and more recently in professional sports. In 2009, the San Francisco Giants 

first adopted dynamic pricing among professional sports franchises, and the team reported a 7% 

increase in revenue in that season (“Forty under 40: Barry Kahn,” 2011). Since then, other 

professional teams followed suit, and dynamic pricing has become mainstream for professional 

sports franchises, moving beyond Major League Baseball (MLB), to include the National 

Football League (NFL) and National Hockey League (NHL). Another recent development in the 

sports ticket industry is the growth of legal digital secondary markets such as StubHub and 

SeatGeek. While teams initially resisted such changes, they eventually endorsed resale, 

sometimes partnering up with major secondary markets (e.g., NFL partnered up with StubHub as 

authorized ticket resale marketplace in 2017) (Courty & Davey, 2020).   

Under these developments, primary and many secondary channels compete in the sports 

tickets market. The teams sell tickets through their primary channel, often in partnership with 

large online transaction platforms, the most prominent of which is TicketMaster. On secondary 

channels, resellers – including both ticket brokers and individuals – trade their tickets. While the 

two types of channels differ mainly in terms of seller identity, sellers in both types of channels 

engage in some form of dynamic pricing (Drayer et al., 2012; Sweeting, 2012). Given their 

sizable potential revenue implications, optimal dynamic pricing has received a great deal of 
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attention. For example, Xu et al. (2019) propose optimal pricing policies for an MLB franchise 

based on a demand model for single game tickets and suggest that daily price re-optimization can 

increase revenue by 17.2%. Individual resellers and brokers can also easily engage in dynamic 

pricing through online platforms.  

Despite the attention paid to dynamic pricing policies and channel effects, relatively less 

attention has been given to understanding how consumers choose among many possible 

channels. Given that searching across different channels has become easier, franchises could 

benefit from having not only an accurate estimate of future demand but also an understanding of 

supply across multiple channels. That is, as Zhu (2014) points out, franchises could improve on 

their revenue by incorporating competition from secondary channels. Further, given the 

numerous channels that compete in the sports tickets market, teams would benefit from 

understanding consumers’ channel choice processes. Armed with this additional information, 

teams can refine their inventory and pricing policies through their primary channel, and as the 

team further considers entry into secondary markets, the potential to employ optimal inventory 

and pricing strategies there as well.  

In this project, our research objective is to understand 1) the market dynamics – both 

pricing and inventory-wise – of sports event tickets across multiple channels, 2) ticket buyers’ 

dynamic purchase decisions given market conditions (price and availability), and 3) consumers’ 

channel choices. Based on this understanding, we aim to devise optimal distribution and pricing 

policies for the team – mainly for the primary channel, but also for secondary ones. Specifically, 

we study this issue from an (non-disclosed) NFL franchise’s perspective.  

NFL teams have a league-wide primary ticket exchange partner, along with multiple 

secondary channels, including major platforms such as StubHub, Vivid, and SeatGeek. The team 
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collects rich data on transactions, events (e.g., team and opponent performance), and summaries 

of price histories across channels. Further, the team utilizes stadium characteristics to capture 

seat attractiveness for their dynamic pricing. However, the team does not have information on 

the details of inventory and prices on secondary markets (except for which tickets were bought, 

which are recorded through transaction logs), despite having a partnership with larger brokers 

who operate on multiple secondary channels.  

To fill this gap, we collected a detailed supplemental dataset on NFL ticket market 

dynamics. This comprises listing information from three major platforms including the primary 

channel and three secondary channels8. Listing information includes ticket location (section / 

row), how many seats are offered, and at what prices. We fuse this data with the detailed 

transaction data, allowing us to roughly track which listings were sold, and which others remain 

unsold. Further, listings data across multiple channels allow us to model temporal evolution of 

prices and availabilities, all while taking the spatial relationship of the listed seats into account.  

In the next section, we present a review of the relevant literature, followed by an 

overview of the datasets. Then we discuss the research problem in detail. We then present 

preliminary results on ticket listing prices, consumers’ channel choices considering the market 

conditions, and dynamic ticket availability. We discuss extensions of the current models.  

2.2 Literature Review 

Our research focuses on the dynamic pricing of sports event tickets and related channel 

and seat choices. In this literature review, we discuss extant research on event pricing for both 

primary and secondary markets, as well as seat valuation and choices. Four major pricing 

 
8 The term “platforms” refers to particular ticket marketplace websites. One of the three ticket marketplace platforms 
operates both as a primary and secondary channel, resulting in a total of four channels across three platforms. 
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strategies are discussed in the literature: uniform pricing, tiered pricing, variable ticket pricing 

(VTP), and dynamic ticket pricing (DTP). Tiered pricing refers to pricing tickets based on 

location, compared to uniform pricing where all seats are priced the same. Variable ticket pricing 

takes a step further from tiered pricing by reflecting predicted demand for the event. While 

variable ticket pricing and dynamic ticket pricing share the idea that tickets should be priced 

based on demand, variable ticket pricing sets the price in advance, whereas dynamic pricing 

reflects fluctuating demand over time as the event approaches. 

Leslie (2004) introduces a structural model of demand for a Broadway play and showed 

that tiered pricing can improve the firm's revenue by 5% relative to the uniform pricing policy, 

without a substantial impact on aggregate consumer welfare. Courty & Pagliero (2012) find a 

similar effect size of tiered pricing in concert settings. In the domain of sports event tickets, 

Rascher et al. (2007) show that using variable ticket pricing would have resulted in up to a 2.8% 

increase compared to fixed pricing, and as much as an extra $1.4M in revenue. Xu et al. (2019) 

model primary demand for single-game tickets for an MLB franchise and design dynamic 

pricing policies for an anonymous MLB franchise. They find that higher home team performance 

leads to lower price sensitivity, but section choices are not significantly affected by team 

performance. Further, they find that demand generally increases as the game day approaches, 

especially in the last two weeks prior to the game. Their results imply that the franchise can gain 

up to a 17.2% revenue improvement with flexible daily price re-optimization. Arslan et al. 

(2022) model college football ticket purchases across distinct segments with heterogeneous 

customers with multiple sales channels (subscription vs. single-game tickets), finding significant 

within-segment heterogeneity in price sensitivity and distance to the field. They suggest that 

price optimization based on their findings could provide a revenue increase of as much as 7.6%. 
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On the other hand, Tereyağoğlu et al. (2017) model the ticket sales of a non-profit performance 

organization and evaluates the impact of a decreasing monotone discounting (DMD) pricing 

policy under two types of customers – subscribers and occasional customers – using a competing 

hazards framework. They find that purchase patterns differ by different types of customers, 

including the timing of ticket purchase and the degree to which they value the discounts, as well 

as by the price tier of the tickets. Further, they find that commitment to the DMD policy can 

increase revenue per concert by as much as 6.7%. 

Expanding the perspectives to secondary markets, Sweeting (2012) studies dynamic 

pricing behavior of secondary sellers for MLB tickets using MLB transaction data from two 

large secondary channels. He shows that, consistent with theoretical models of dynamic pricing, 

sellers decrease their ticket prices as the game nears because the opportunity cost of holding 

tickets decreases over time. Further, he finds that buyers are not strategic in the secondary 

market, and estimates that dynamic pricing can increase secondary market seller’s payoff by 

16% over fixed pricing. Zhu (2014) uses both primary and secondary ticket data from an MLB 

franchise and proposes optimal dynamic pricing. He studies the revenue implications of optimal 

pricing for the franchise when competition from secondary market exists under two conditions: 

when all consumers are strategic vs. not strategic. He finds that the franchise revenue could 

increase by up to 6.9% under nonstrategic consumers (up to 3.7% under strategic consumers) by 

dynamically pricing tickets as the game approaches.  

Whereas previously mentioned research studies pricing strategies and suggest 

prescriptive optimal pricing policies, Shapiro & Drayer (2014) study factors that affect the 

dynamic ticket prices on the primary market and secondary ticket prices on StubHub for the San 

Francisco Giants, which was the first team to adopt dynamic ticket pricing in 2009. They find 
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that team and individual performance variables, time-related factors (e.g., weekend game, days 

until game) and ticket-related factors, especially the seat locations, play significant roles in 

explaining the dynamic prices on primary channel, as well as the secondary ticket prices. Paul & 

Weinbach (2013) echo the findings of Shapiro & Drayer (2014), and identify variables such as 

weekday, performance, opponent, and promotions as factors that influence dynamic ticket prices 

across four MLB franchises. Further, Courty & Davey (2020) use panel data over 20 years and 

evaluate the impact of different pricing policies adopted by MLB franchises on their revenue and 

team value. They find that variable pricing increases revenue and team value by 4.2% and 9.5%, 

whereas introducing dynamic pricing and sponsored secondary markets (franchises partnering 

with secondary markets) had no significant effect on revenue or team value.  

Another stream of research focuses on the impact of secondary markets for primary 

market sellers. Geng et al. (2007) study the impact of resale on primary seller’s profit and 

proposes that resale does not necessarily hurt their profits. They propose a two-period model of 

ticket resale, and find that partial resale, where one can only resell his/her tickets in advance but 

not on the spot, can be profitable under limited capacity, small enough high-valuation buyers, 

and not too large number of early arrivers. Cui et al. (2014) study the impact of ticket resale on 

event organizers’ revenues, using a model that varies resale transaction costs for consumers and 

speculators. They investigate scenarios under which resale market may be beneficial for the 

event organizers; for example, under fixed pricing policy, lower resale transaction costs benefit 

the firm. Lewis et al. (2019) empirically evaluate the value of secondary market options for the 

franchise and for the season ticket buyers using a structural model of supply and demand on the 

secondary market. They find that secondary markets are beneficial for both the team and the 

individual ticket holders. The option increases the season ticket revenues by $1 million per 
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season for the team, and average monetary value of secondary market option for individual ticket 

holders is $138 per season ticket.  

Lastly, our research incorporates users’ seat choice decisions, and thus relates to stream 

of research on seat valuation and seat preferences. Veeraraghavan & Vaidyanathan (2012) study 

the value of seats in the stadium based on the location of the seat as well as consumer 

characteristics. Using survey data on the post-consumption experience, they propose the Seat 

Value Index (SVI) as a measure of seat value. They find that seat location attributes account for a 

major portion of the SVI, showing the importance of the seat location in consumers’ seat 

valuation. Blanchard et al. (2020) study locational choices in event venues and captures 

heterogeneity across users’ preferences to different aspects of seat choices, including proximity 

to other people and to focal elements of the event (e.g., screen or stage) using experimental data 

on seat location choices. They then show that the model estimates can help improve expected 

occupancy of the event by altering seat availability.   

2.3 Data Description 

We use two datasets on main market dynamics and three datasets that cover institutional 

details and additional user behavior. These datasets allow us to paint a highly detailed picture of 

the NFL ticket market. The first dataset provides detailed information on individual-level ticket 

transactions across different platforms. The second dataset includes snapshots of ticket 

availability and pricing on primary channel and three secondary channels. Additional datasets 

provide details of the events and the seats, along with partial observation of user browsing 

behavior. 

2.3.1 Transaction data 
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The transaction dataset provides information on individual-level transactions over three 

seasons (seasons 2018/2019/2021). The team sells season tickets in advance (~30,000 season 

tickets are sold each season), followed by single-game ticket sales, where seats for individual 

games can be bought separately. This dataset only includes single-game ticket sales. 

Single-game tickets can be bought either through the official partner (i.e., through the 

primary channel) or from resellers on secondary channels. Resellers include individuals who 

have tickets (e.g., season ticket buyers who want to sell part of their season ticket bundle) and 

professional brokers who advance purchase large number of tickets and sell them on multiple 

secondary markets. While the identity of resellers is not observed, we observe single-game ticket 

transactions across 15 channels.  

The unit of observation is seat-level transactions; for each transaction, we observe the 

seat location (section, row, and seat number), paid ticket price, order date, and the channel on 

which the transaction took place. Over three seasons, we observe a total of 540,036 ticket 

transactions by 157,279 individual ticket buyers, after dropping users with $0 transactions and 

post-game transactions, and 28 users who had more than 100 tickets during the observation 

period. These 28 users made 13,432 ticket purchases in total, which suggests that these users 

could potentially be brokers rather than individuals purchasing tickets for their own 

consumption.    

Of the 15 channels that are tracked, one is the primary channel, where buyers can 

purchase tickets through the team’s official partner, and the remaining 14 channels are secondary 

channels that vary in their sizes. Note that we use the term platform and channels 

interchangeably in most cases except for Platform A, which serves both as a primary and 

secondary channel. We treat Platform A – primary and Platform A – resale as separate channels 
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on the same platform. All other channels correspond to respective platforms and need not be 

distinguished between channels and platforms. 

Primary channel accounts for 23.7% of the transactions across the three seasons that we 

observe, and its market share is growing over time. For secondary channels, there are only four 

channels with market share over 5%. Table 2.1 shows summary statistics of transactions on 

different platforms by season. Noticeably, Platform D, 4th largest in overall market share, had a 

big dip in its market share in 2019 due to contractual issues with the team.  

While we observe transaction data over three seasons, only the latter part of the last 

season overlaps with the snapshot data (described in detail below) that provides information on 

the supply-side market conditions (i.e., availability and pricing). Restricting to the overlapping 

period (plus the last day of the season), a total of 26,253 ticket transactions were made over 54 

days by 9,088 users, out of which 7,598 users (83.6%) had previous ticket transactions in the 

past. During this period, 60.66% of the transactions took place on Platform A, followed by 

Platform B (18.5%), Platform D (7.16%), and Platform C (5.8%). 

2.3.1.1 Channel usage 

We compute channel usage patterns using transaction data. Since observations are made 

at the seat level, we define a transaction as a set of ticket purchases that takes place on the same 

date, in the same section and row, on the same channel, for the same game. Of 15.12% (𝑁 =

23,773) of all users with at least two transactions, 49.54% of users (𝑁	 = 	11,776) use two 

channels (among two-channel users, 𝑚𝑒𝑎𝑛C=N/H*F"G" = 2.49), followed by 46.73% of users 

(𝑁	 = 11,109) using only one channel (among single channel users, 𝑚𝑒𝑎𝑛C=N/H*F"G" = 2.26). 

That users tend to use a limited number of channels suggests that it is likely that previous 
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channel usages significantly affect subsequent channel choices and that users may not browse all 

available channels. 

2.3.2 Market snapshots 

The dataset was collected from three major ticket transaction platforms. These platforms 

represent 86.87% of the market for the focal team across three seasons. The dataset covers a 

period of 54 days in the latter part of 2021 season (from November 2021 – January 2022). 

During this period, four home games took place and up to 16 snapshots were collected on each 

channel. The number of snapshots available for each game varies across channels based on the 

game date and the interval at which the market snapshots were taken. The intervals between 

snapshots range from 1 to 14 days. Of the four games that happened during the observation 

period, we focus on the last two games that have five or more snapshots on each platform.  

Among the three platforms, Platform A serves both as a primary channel as well as a 

secondary channel, and the other two (Platforms B and C) are secondary channels. Each snapshot 

captures ticket availability and prices for the remaining games on a certain day on a specific 

platform. Across all four channels, for the remaining games, we observe how many consecutive 

seats are offered at which location, and the listed price for each. From this information, we 

construct listings information, defined as a set of consecutive seats offered by a seller in a 

specific row within a section for a specific game. All tickets within a listing are priced the same, 

such that if a seller decides to change the price of her listing, the price of all the seats within the 

listings will change. While a listing can include one or more tickets, not all tickets in a listing 

need to be sold together; they could be sold in smaller batches. In most cases, however, sellers do 

not allow selling (𝑁 − 1) tickets out of the 𝑁 tickets that they offer, as a single remaining ticket 

could be harder to sell.   
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2.3.2.1 Platform A 

Platform A is the most popular of the three platforms (61.85% of all transactions take 

place on Platform A), and the only one that offers both primary and resale tickets. On the 

website, the two types of tickets are offered side-by-side, so that buyers can easily browse across 

ticket types, and buyers can easily distinguish the two types of tickets. Platform A provides seat-

level ticket information. Snapshots also include which seats are available for a specific game on 

a specific day. This allows the most direct comparison of the availabilities and prices across time 

to me made, both for users and for researchers.  

While primary and secondary tickets are on the same page, we treat the primary and 

secondary as separate channels, as the sellers, as well as inventory (availability) and price trends 

differ across the two types of channels. However, it is natural to assume that the buyer will 

consider buying from either channel when they are browsing or purchasing tickets on this 

platform. 

For both channels on the platform, we observe 6 and 13 snapshots for the two focal 

games, respectively, after excluding one snapshot from each game. The exclusion was due to an 

anomalous fluctuation where a significant drop in the number of observations was followed by a 

significant increase in the following period, reaching a level that is close to the snapshot taken 

two periods before. The decision was based on consultation with the focal NFL team, which 

suggested that this is likely due to an error during the data collection process. 

The two games are 21 days apart and observed during roughly the same calendar period. 

Figure 2.1 shows snapshot availability across games and channels. Game X, which took place 

earlier in the season, was observed as far out as 33 days before the game, and as close as 2 days 



 70 

before the game on Platform A, and Game Y was observed 13 times, from 40 days to 1 day 

before the game. 

Table 2.1 Summary statistics of market share and price distribution across channels 

Channel Season Share N users Mean price SD price 
Platform A - primary 2018 19.858 14805 116.948 52.655 
Platform A - primary 2019 24.051 18025 120.358 55.632 
Platform A - primary 2021 28.504 15080 118.045 51.655 
Platform A - resale 2018 42.973 28927 124.257 81.474 
Platform A - resale 2019 35.662 22937 116.227 75.551 
Platform A - resale 2021 35.024 16614 106.686 73.643 

Platform B 2018 16.904 9848 94.08 58.305 
Platform B 2019 25.285 16236 117.167 76.64 
Platform B 2021 16.514 7585 107.861 72.836 
Platform C 2018 3.807 2483 89.531 50.04 
Platform C 2019 5.489 3758 115.707 67.497 
Platform C 2021 6.319 3077 97.174 59.005 
Platform D 2018 11.371 6185 99.76 54.612 
Platform D 2019 0.577 330 151.283 77.157 
Platform D 2021 6.838 2741 103.516 66.009 
Platform E 2018 1.651 883 95.607 51.296 
Platform E 2019 1.218 670 93 50.421 
Platform E 2021 1.803 687 90.196 52.489 
Platform F 2018 2.071 1181 107.848 65.14 
Platform F 2019 2.043 1159 110.931 63.758 
Platform F 2021 1.267 568 104.062 62.557 
Platform G 2018 0.59 262 99.362 51.317 
Platform G 2019 1.097 530 110.94 61.53 
Platform G 2021 0.483 191 103.125 57.849 
Platform H 2018 0.307 89 111.576 55.03 
Platform H 2019 0.77 366 109.233 46.962 
Platform H 2021 0.277 74 96.978 45.906 
Platform I 2018 0.373 213 73.204 49.178 
Platform I 2019 0.456 294 77.328 47.242 
Platform J 2018 0.021 14 191.548 79.95 
Platform K 2018 0.015 7 95.828 44.551 
Platform K 2019 0.613 374 84.211 46.985 
Platform L 2018 0.059 4 88.871 56.43 
Platform L 2019 0.016 2 64.954 51.193 
Platform M 2019 2.715 1739 81.268 43.941 
Platform M 2021 2.973 1281 77.595 41.015 
Platform N 2019 0.007 4 107.212 26.942 
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Across the two games, the two channels differ substantially in how the price and 

inventory trajectory evolves over time. Figure 2.2 shows price trend across platforms. Across the 

two games, per-ticket price is consistently higher for Game Y on both channels (𝑚𝑒𝑎𝑛O = $108 

vs. 	𝑚𝑒𝑎𝑛P = $156, 𝑝 < 0.001) and tickets are generally priced higher on resale channel 

(𝑚𝑒𝑎𝑛=/!,F/Q = $128 vs. 𝑚𝑒𝑎𝑛	"GHECDF/Q = $145, 𝑝 < 0.001). Also, whereas the price trend 

is relatively flat for both games on the primary channel, there is more fluctuation on resale 

channel, with a sharp drop in price before the game. In terms of inventory (Figure 2.3), there are 

slightly more available primary tickets than secondary tickets across time (𝑚𝑒𝑎𝑛=/!,F/Q = 5025 

vs. 𝑚𝑒𝑎𝑛"GHECDF/Q = 2809, 𝑝 < 0.001). The primary channel shows a sharp increase in 

inventory, whereas the resale channel generally has a downward trend. 

 

 

Figure 2.1 Market snapshot schedule 
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Figure 2.2 Listing price trend across channels 

 

 

Figure 2.3 Inventory trend across channels 

 

2.3.2.2 Platform B  

Platform B is a resale-only platform that accounted for 19.9% of all single ticket 

transactions over the past three seasons. Resellers, including both brokers and individual 

resellers, post their tickets at their desired prices, and they can choose to remove their listings. 
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The platform provides information on the listing location (section, row, number of consecutive 

seats, and seat ranges) to buyers. However, buyers do not have full information on where their 

seats will be until they check out, unless they purchase the entire listing. Unfortunately, seat 

ranges (specific seat numbers) are not included in the snapshot, and we only observe listing-level 

details such as the aggregate location (section and row), price, minimum, and maximum number 

of tickets available for each listing.   

On Platform B, we observe instances of tickets priced at $9999. While we cannot fully 

rule out the possibility that these are pricing strategies of individual sellers trying to prevent the 

seat from being sold, NFL team experts suggested that these are systematic posting errors that 

arise from the posting process. Therefore, we dropped all $9999 observations, which ranged 

from 0 to 120 offerings per snapshot (in the case of 120 offerings, they translated to 37 listings, 

which comprised under 5% of listings available for that snapshot).  

For the focal games X and Y, we observe 7 and 16 snapshots, respectively. Game X is 

observed as early as 33 days before the game, and as close as 2 days before the game, whereas 

Game Y is observed over 53 days, from 54 days before down to 1 day before the game. Price and 

inventory patterns on Platform B are similar to those of Platform A – resale. Ticket prices are 

stable until they get closer to the game, and then they decrease, with sharper decreases right 

before the game. Further, per-ticket prices are generally higher for Game Y than for Game X 

(𝑚𝑒𝑎𝑛O = $96.1 vs. 	𝑚𝑒𝑎𝑛P = $140, 𝑝 < 0.001). Inventory, as is also true for Platform A – 

resale, generally decreases over time with no significant differences in the number of tickets 

available across the two games. 
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2.3.2.3 Platform C 

Platform C is another major resale platform that allows brokers and individual sellers to 

post their tickets, and 5.09% of all single-game transactions across three seasons were made on 

this channel. The platform only offers aggregate location of the tickets (section/row) and how 

many consecutive seats are available, rather than specific seat locations within section/row.  

Again, for the focal games X and Y, we observe 7 and 16 snapshots, respectively, on the 

same days on which snapshots on Platform B were collected. The general price patterns follow 

other resale channels; prices are higher for Game Y than X (𝑚𝑒𝑎𝑛O = $80.2 vs. 	𝑚𝑒𝑎𝑛P =

$116, 𝑝 < 0.001). There is no significant difference in the number of available tickets for the 

two games. Summary statistics of price and inventory are shown in Table 2.2. 

 

Table 2.2 Summary statistics of price and inventory across channels 

Channel Game Mean (price) SD(price) Mean(inventory) SD(inventory) 
Platform A - primary Game X 98.375 43.62 5464.833 634.243 
Platform A - primary Game Y 144.825 65.308 4821.769 963.819 
Platform A - resale Game X 116.418 64.755 4609.667 543.987 
Platform A - resale Game Y 178.276 101.202 3656.385 990.232 

Platform B Game X 96.131 55.592 2713.286 727.971 
Platform B Game Y 139.702 84.462 2430.938 925.328 
Platform C Game X 80.24 48.513 2587.857 599.72 
Platform C Game Y 115.628 72.319 2328.625 966.97 

 

2.3.3 Other datasets 

2.3.3.1 Event data 

The demand for the event depends on various factors – including who the opponent team 

is, how the teams are performing in the season, what day the game is, etc. The event dataset 

provides such relevant event information: event date and time, weekday of the event, the focal 
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team’s, and opponent’s cumulative win percentage over the past three seasons, how much the 

team spent on promotions, etc. One important variable is the event score, which is used by the 

team to understand and dynamically set the prices. It is a score based on the demand estimate for 

the game, taking various factors (e.g., seasonality, weather, opponent, etc.) into account, with an 

average score of 100, for an ‘average’ game in season 2019. This variable could serve as a 

benchmark against which we can compare our models.  

2.3.3.2 Seat location data 

The home field has a capacity of 65,000 and is divided into sections, rows, and seats. The 

seat location dataset provides information on the structure and quality of the seats, including the 

capacity of section-row, what amenities are available around the seat location, and the 

corresponding price-location ID. A total of 123 sections are available in the stadium (excluding 

the suites), with one side of the stadium being the home team side, and the other side the 

opponent team side. The stadium is also divided into price-locations, which reflect the price tiers 

of the seat locations for season ticket members. Price-locations and sections are not nested; 

price-locations can include one or multiple sections, and each section can include one or more 

price-locations. Figure 2.4 shows the layout of the stadium with sections and price-locations. 

Each line indicates a section, and the color of the line reflects the price-location. For example, in 

a fifty-yard line section close to the field, rows closer to the field are priced differently from 

those in the back (shown in blue in the front and green in the back). Thus, there are two price-

locations within the fifty-yard line section. At the same time, there are two 50-yard line sections 

on both sides of the field – and the prices of these symmetric sections are the same, putting them 

in the same price-locations. Both sections are assigned the same two price-location IDs. 
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Additionally, we constructed row-level coordinates of seats based on the map of the stadium, 

allowing us to use the spatial structure of the seats to understand the ticket price distributions.  

 

 

Figure 2.4 Section and price-location layout 

Each dot represents the center of each row within a section, consecutive dots indicate a section, and the different 
colors represent different price tiers as indicated by the price-location ID. For example, there are three 50-yard line 
sections on each side, colored with green and blue; the rows colored in blue are higher tier seats compared to green-
colored rows. Some sections show overlap with other sections; this is because some of the club-level seats overlap 
with rows in the back in the lower level on a 2D map. 
 

2.3.3.3 Browsing data 

We do not observe ticket buyers’ full browsing history. Browsing dataset provides partial 

observation on browsing behavior for a subset of users. For a small subset of users who received 

an email from the team and clicked through, their browsing behaviors on Platform A are tracked 

and recorded, for seasons 2019 and 2022. The dataset includes 6,122 users’ 11,918 search 

records; each observation includes when the search was created for which event. While this 

dataset provides only partial information about consumers’ search behavior – that the user 
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considered Platform A as part of their search process – it allows us to identify users who would 

have considered the two channels on Platform A during their channel choices, providing an extra 

piece of information to infer the latent channel consideration decisions. 

2.4 Model Development 

We break down the problem into three parts that are closely related to each other. The 

first part of the problem is modeling the market conditions – i.e., availability and pricing. Sellers 

decide whether to sell their tickets considering the expected demand and supply around the focal 

location of the tickets. For example, if there is limited supply with larger demand for tickets 

where the seller holds tickets, sellers could charge higher prices, which in turn could lead ticket 

holders to list their tickets for sale. On the other hand, when faced with larger competition for 

limited demand from surrounding listings, sellers could either decide to lower the prices or not to 

offer their tickets. Further, the temporal dimension should play an important role in deciding the 

availability and pricing decisions, as the opportunity cost of holding the tickets decreases over 

time (Sweeting, 2012). This part of the model captures the supply side market dynamics and 

governs what is available at a certain time.  

The second and third parts of the model focus on dynamic demand and channel choices. 

Conditional on which game to attend and how many tickets they want to purchase, buyers choose 

where in the stadium they would like to sit. Based on where they choose to sit, buyers then make 

a channel choice. Since we do not observe their search process, we model their consideration sets 

(of channels) probabilistically, from which their final channel choice is made. The channel 

decisions are likely to be driven by channel-specific factors including ticket availability and 

prices as well as previous experience with different channels. We provide a detailed overview of 

model parts and how different parts relate to each other in the following. 
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2.4.1 Dynamic availability and pricing 

There are 65,000 seats in the home stadium, out of which about half (~30,000) are sold as 

season tickets. Prior to season, part of the single-game tickets is sold to partnered resale brokers, 

who later post them on various resale platforms. The franchise releases the remaining single-

game tickets on primary channel. Any ticket that has been sold through primary channel can be 

resold on secondary channels at any time, and the prices can be adjusted over time, allowing the 

resellers to easily engage in dynamic pricing. There are broadly three types of sellers: the team 

(through their primary channel partner), brokers (either partners of the team or smaller brokers), 

and individuals who have extra tickets, either from previous single ticket purchases or season 

tickets.  

Resellers’ decision to post their resale ticket at any time 𝑡 depends on various temporal 

and spatial factors, as well as game-specific factors. For example, team performances could 

increase the demand for the ticket, which could induce resellers to make their tickets available on 

the market. Additionally, availability and pricing of tickets surrounding the focal seat location 

could affect resellers’ decision to make their tickets available on the market. It is possible that 

certain sections have a large number of tickets available, which could induce competition among 

the listings and possibly drive the price down. In such cases, resellers may choose to wait until 

the excess supply is reduced, although such decisions would depend on the location of listings. 

For example, if the focal listing is in sections that usually don’t sell out, they may not choose to 

wait. Lastly, these decisions to hold back or to release available tickets also depends on how 

much time is remaining until the game day. Since the resale tickets are perishable goods, 

resellers, especially if they do not intend to use the tickets themselves, will likely decide to post 

their inventory as the day of event gets closer.  
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Let 𝑌"/J) indicate the decision of a seller with a ticket in section s, row r for game g will 

make the ticket available for resale at time t. At every period t, the seller decides whether to 

make the ticket available based on the demand for the ticket and the supply conditions of what 

listings are available near the seller’s seat at what price. Let utility for posting the tickets be 

denoted 𝑈"/J). It can be written as:  

𝑈"/J) = 𝑠F(𝑡) + 𝑠F(𝑟) + 𝜓" + 𝛽F𝑋J) + 𝛿F𝑊J + 𝛾F𝑍"/J) + 𝜉F𝐴"/J)(# + 𝜀F,"/J)	 

where 𝑌"/J) = 1	if	𝑈"/J) > 0. The utility depends on 𝑠F(𝑡), a flexible function over time, which 

allows us to flexibly capture the time trend that reflects the decreasing opportunity cost of 

holding on to the tickets (Sweeting, 2012), 𝑠F(𝑟) and 𝜓", a smooth function over the effects of 

row and section fixed effects to capture the effect of seat location, 𝑋J), time-varying effects that 

affects demand, such as the focal team and opponent’s recent performance or popularity, 𝑊J, 

game-specific effects that can affect the demand, such as weekend or holiday games, 𝑍"/J), the 

availability and prices around the focal tickets that are being considered for resale and 𝐴"/J()(#) 

whether seat was available at time period (𝑡 − 1). An important empirical consideration is what 

consists as ‘nearby’ seats, and how we could use detailed locational information to regularize the 

effects of seats across the space.  

Conditional on a seat being made available based on a variety of market factors, resellers 

set their prices for tickets in section s and row r (𝑝"/). Seat price would presumably be affected 

by the quality of the seat, as determined by the location. Over and above the location effects, the 

prices would be determined as a function of what is available around the tickets that are being 

offered and how much the prices are, as well as how much time is left until the game. Further, 

game-related factors, such as the recent performances of the focal team, or the opponent would 

influence the pricing decisions. The pricing model then can be written as:  
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log/𝑝"/J)3 = 𝑠=(𝑡) + 𝑠=(𝑟) + 𝜓= + 𝛽=𝑋J) + 𝛿=𝑊J + 𝛾=𝑍"/J) + 𝜀=,"/J) 

where >
𝜀F
𝜀=?~𝑁 ��

0
0� , �

1 𝜌 ⋅ 𝜎=
𝜌 ⋅ 𝜎= 𝜎=$

��, following Heckman (1979). 

2.4.2 Purchase decisions and channel choices 

In modeling the purchase decisions and channel choices, we build on Xu et al. (2019) 

model that decomposes the demand into 1) game demand, 2) ticket quantity, and 3) seat section 

choice. On top of these three components, we add the layer of 4) channel choice at the last stage. 

We assume the following order in consumers purchase decisions and channel choices: 

Step 1. Buyer 𝑖 arrive at time 𝑡, knowing which game (𝑔) to attend and how many tickets (𝑞!J)) 

to purchase – these users have decided to go through with the purchase, based on their evaluation 

on the current ticket prices, team performance, and overall availability.  

Step 2. They choose seat tier 𝑠 based on overall market availability and prices at time 𝑡. 

Step 3. Based on their location choice 𝑠, they choose channel 𝑐 based on the current prices, 

availabilities, and their previous experience with channels (𝑋!H). 

In step 1, let 𝑁J) be the total number of buyers who purchase tickets on day 𝑡 for game 𝑔. 

The demand will be driven by game-specific factors and game-time-specific factors. Game-

specific factors (𝑊J) would include the popularity of the opponent and day and time of the game. 

Game-time-specific factors (𝑋J)) include the performance of the home team and opponent during 

the season, time until game, and current availabilities and prices. Previous research found that 

the demand generally increases as the game date gets closer (e.g., Shapiro & Drayer, 2014; Xu et 

al., 2019), and we find that this is in line with the empirical pattern that we see in the data. We 

expect higher price and availability will have a negative effect on (realized) demand, as more 

availability could imply that the game is not as attractive or that buyers could delay their 
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purchases. The effect of availability might also depend on time until game as buyers may be less 

likely to delay their purchases as the game approaches.  

𝑁J)~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙/𝜇J)R , 𝜅R3, where 

log/𝜇J)R 3 = 𝑠R(𝑡) +	𝛽R𝑋J) + 𝛾R𝑊J 

A second component of the demand is the number of tickets for user 𝑖, game 𝑔 at time 𝑡, 

𝑞!J). Again, we can use negative binomial regression to model the quantity needed using game-

specific factors (𝑋J) and game-time-specific factors (𝑊J)): 

(𝑞!) − 1)~𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝐵𝑖𝑛𝑜𝑚𝑖𝑎𝑙	/𝜇)
S , 𝜅S3, where 

log/𝜇)
S3 = 𝑠S(𝑡) + 	𝛽S𝑋J) + 𝛾S𝑊J 

Upon arrival (conditional on game choice and quantity choice), buyers choose where they 

would like to sit in the stadium. This decision is based on the current market availability and 

prices across channels; specifically, factors such as availability, price, and number of listings 

could affect their choice of seat location. We could use a multinomial logit model to capture the 

seat tier choices. Let the utility of chosen seat tier 𝑠	be 𝑈"J): 

𝑈"J) = 𝛽"𝑋"J) + 𝜉"𝑍" 

𝑋"J) includes variables such as occupancy, number of listings available at that time in the 

section, and the average price of tickets, whereas 𝑍" includes section-specific variables including 

the level of the section (lower, club, or upper) and whether it is close to various types of 

amenities. The probability of choosing seat tier 𝑠 is: 

𝑃(𝑠|𝑔, 𝑡) =
exp(𝑈"J))
∑ exp(𝑈3J))3

 

In the last stage, buyers make a channel choice based on the current availabilities and 

prices. However, note that they might not consider all available channels at this stage. Some of 
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them may have a strong preference for the channel that they’ve used before, whereas others may 

be highly price sensitive, in which case they might decide to explore all available channels. We 

take the probabilistic consideration set approach where the probability of choosing channel 𝑗 is 

the sum of probability of choosing channel 𝑗 out of set of considered channels 𝐶: 

𝑃(𝑗) = 𝑃(𝑗|𝐶)𝑃(𝐶) 

Conditional on the consideration set 𝐶, the probability of choosing channel 𝑗 is modeled as a 

multinomial logit: 

𝑃(𝑗|𝐶) = 567T8!1"23U
∑ 567T8!4"23U4∈5

	,	where	

𝑈!H"J) = 𝛿H + 𝛽H𝑋H"J) + 𝛾H𝑍!H  

𝛿H captures channel-specific intercept, 𝑋H"J) includes channel-section-time specific variables that 

include prices and availabilities in the seat location 𝑠, and 𝑍!H include user- and channel-specific 

prior experiences. 

We make three assumptions about channel consideration sets: 1) users always consider 

channels that they have used or browsed before and 2) users who use either channel on platform 

A always consider both channels (given the structure of the platform that displays primary and 

secondary options side by side, this assumption is not very restrictive). Second assumption 

allows us to reduce the number of possible consideration sets from |𝐶| = 15 = 2A − 1 to |𝐶| =

7 = 2. − 1, alleviating concerns for computational burden to estimate 𝑃V . 

2.5 Preliminary results 

In this section, we present preliminary results on models of listing prices, channel choices 

and dynamic ticket availability. The results on listing prices shed light on how listing prices 

differ across channels, over time, and space. We find evidence that listing prices differ 
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significantly across channels, even after controlling for the seat quality (based on their location) 

and for the temporal effects. Furthermore, we find that primary channels and secondary channels 

differ substantially in how the prices evolve over time. Whereas the ticket prices increase slightly 

over time on the primary channel, resellers sharply decrease their resale prices as the game 

approaches on secondary channels. Our findings also indicate that seat quality, proxied by seat 

location, is the most important predictor of listing prices, over and above channel and temporal 

effects. However, recent home team performance (as measured by recent win/loss) does not 

significantly predict listing prices (Xu et al., 2019). These factors - channel, temporal, and spatial 

- are likely key drivers of buyer’s decisions on whether, when, and from where they buy tickets. 

The channel choice model reveals important differences across channels and drivers of 

channel choices. For example, price sensitivities and planning horizons (i.e., how far in advance 

users choose to purchase tickets) differ across channels. Regarding the drivers of channel choice, 

we find that previous experience with a channel has a strong effect on subsequent channel 

choices, and that customers tend to prefer channels with more listings (i.e., higher availability) in 

the area where they are looking to purchase tickets.  

Lastly, the dynamic availability model captures how supply conditions in the vicinity of 

focal seats impact sellers’ decisions to make their tickets available. We find that past supply 

conditions (prior availability and prices) significantly affect subsequent availability; for example, 

more tickets were available when neighborhood prices were high in the past period. Furthermore, 

we find that the effect of time until game has opposing effects on primary and secondary 

channels. Closer to the game date, availability increased on primary channel while it decreased 

on secondary channels. Ticket buyback on primary channel, which took place about two weeks 

prior to Game Y, led to a sudden influx of tickets on primary channel, increasing availability on 
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the channel as it got closer to the game. The ticket buyback seems to not only have affected 

supply on the primary channel, but also on other secondary channels. 

2.5.1 Listing prices 

We model listing prices across the four channels using covariates known to affect ticket 

prices. We use generalized additive model (GAM, Hastie & Tibshirani, 1987) to flexibly capture 

the effect of time and space on listing prices. The results reveal interesting differences across 

channels and spatial locations, as well as the effect of recent team performance on the listing 

prices. We focus on the last game, with as many as 16 market snapshots for some channels 

(Game Y). We estimate the model using all availability snapshots except the last, and then make 

price predictions on the withheld snapshot. The unit of observation is listings for which we 

observe the channel, seat location, and the number of tickets. We also have information on how 

many days before the game the listing was available, and recent team performance. We also 

construct variables to capture availability and prices in the neighborhood, which we define by 

section × price-location ID. We measure availability using the number of listings on the same 

day in the same neighborhood, and prices using their average prices. We remove the focal listing 

price when computing the average prices in the neighborhood, such that if there are 𝑁	listings, 

we use (𝑁 − 1) listing prices to construct the average prices after removing the focal 

observation. However, for about 5.5% of all listings that are the only listing available in the 

location, we broaden the range of location and use the average price of listings in the same price-

location, as it reflects the ticket price tiers. 
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2.5.1.1 Model results 

Table 2.3 shows incremental value of different types of covariates in predicting the listing 

prices. Comparing Models 2 with Models 3 and 4, we see that seat location plays an extremely 

important role in explaining the listing prices (adjusted 𝑅$ jumps from less than 10% to close to 

80%.) In Model 3, we use fixed effects for sections, along with a smooth GAM function for the 

row to capture possible nonlinearities in prices across different rows. For example, while we 

expect that rows closer to the field will be more expensive, people may think that the differences 

in seat quality are larger in the front rows than in the middle of the section. It may be that the 

difference in perceived seat quality may be much larger between rows 1 and 2 than between rows 

21 and 22. On the other hand, in Model 4, we use smooth functions over section-row-specific 

coordinates of the stadium to capture the effects of location on seat prices. While the two types 

of location variables (section and row vs. coordinates of each row) convey similar information, 

we find that the former have slightly higher explanatory power. This is somewhat unexpected 

given that the coordinates allow spatial regularization across sections that are close to each other, 

whereas section fixed effects do not capture such spatial relationships. We use both types of 

location variables in our chosen specification. 

To proxy for the recent team performance, we use home team’s most recent win/lose 

record prior to the snapshot date. We find little difference in the predictive results when recent 

team performance is included. We also tested the outcome scores of recent games to represent 

recent performances, but the results did not change. It may be the case that the game outcome 

was as expected in this relatively short time frame, which could explain why it did not affect 

listing prices. Or, it could be explained along the lines of the findings of Xu et al., (2019) which 
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suggests that better team performances do not directly affect buyers’ inherent valuation of the 

product.  

Another set of variables provides information on other available listings nearby, 

including average prices and the number of listings. These variables help identify how tickets 

may be priced in reference to what else is available and at what price. While the impact of these 

variables is relatively small, incorporating them into the analysis provides some incremental 

value. 

Table 2.4 displays estimates for Model 12, which shows the best holdout predictive 

performance (the results are similar to Models 8-11). In terms of channel effects, we observe that 

there are significant price differences across channels, even after controlling for various location 

effects to capture the quality of the seat and channel-specific temporal effects to account for 

price changes over time. Specifically, we find that Platform A – resale is more expensive and 

both Platform B and C are less expensive compared to the primary channel. Given the relative 

ease with which buyers can browse for similar seats across different channels, such significant 

price differences are surprising. Such persistent price differences (which we observe across 

specifications) suggests that substantial differences exist across channels, possibly including the 

users thereof. Furthermore, in terms of availability-related variables, we observe that, as 

expected, the average price in a similar location positively predicts the focal seat price.  
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Table 2.3 Model comparison for listing prices 

Covariates Model 1 Model2 Model3 Model4 Model5 Model6 
Time s(.) s(.) by channel s(.) by channel s(.) by channel s(.) by channel s(.) by channel 

Channel FE FE FE FE FE FE 
Location - Section   FE  FE FE 

Location - Row   s(.)  s(.) s(.) 
Location - Coordinates    s(.) on x, y s(.) on x, y  

Recent win      yes 
Nearby listings       

adj. R2 0.080 0.082 0.844 0.783 0.851 0.844 
CCV 0.248 0.247 0.042 0.058 0.040 0.042 

RMSE on holdout 0.431 0.432 0.217 0.249 0.216 0.217 

Covariates Model7 Models Model9 Model 10 Model 11 Model 12 
Time s(.) by channel s(.) by channel s(.) by channel s(.) by channel s(.) by channel s(.) by channel 

Channel FE FE FE FE FE FE 
Location - Section FE FE FE FE FE FE 

Location - Row s(.) s(.) s(.) s(.) s(.) s(.) 
Location - Coordinates s(.) on x, y s(.) on x, y s(.) on x, y s(.) on x, y s(.) on x, y s(.) on x, y 

Recent win yes yes yes yes yes no 
  mean ticket 

price 
N listings 

1(unique listing) 

mean ticket 
price 

N listings 
1(unique listing) 

mean ticket 
price 

N listings 
1(unique listing) 

  

Nearby listings  mean ticket 
price 

mean ticket 
price     

adj. R2 0.851 0.855 0.855 0.855 0.855 0.855 
GCV 0,040 0.040 0.040 0.040 0.040 0.040 

RMSE on holdout 0.216 0.201 0.200 0.200 0.200 0.200 

* s(.) refers to a smooth function 
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Table 2.4 Estimated model parameters for listing prices  

A. parametric coefficients Estimate Std. Error t-value p-value 
(Intercept) 7.3826 0.2474 29.8418 <0.0001 
PlatformA-resale 0.0165 0.0038 4.4118 <0.0001 
PlatformB -0.0280 0.0034 -8.1671 <0.0001 
PlatformC -0.1414 0.0035 -39.9718 <0.0001 
Average ticket price in the neighborhood 0.0827 0.003 27.5778 <0.0001 
Ssection FE YES 
B. smooth terms edf Ref.df F-value p-value 
s(days until game) - primary 1.0001 1.0001 4.4626 0.0346 
s(days until game) - platform A - resale 3.3324 4.1025 4.4539 0.0013 
s(days until game) - Platform B 6.4131 7.4347 20.8613 <0.0001 
s(days until game) - Platform C 8.0464 8.7187 23.7523 <0.0001 
s(row) 8.9432 8.9987 178.4422 <0.0001 
s(x) 8.9120 8.9970 118.7741 <0.0001 
s(y) 8.9005 8.9965 52.8862 <0.0001 

 

Figure 2.5 shows estimated smooth functions for channel-specific temporal trends. First, 

we see that the primary and secondary channels show radically different temporal trends (top-left 

panel vs. others); on primary channel, prices linearly increase, although the magnitude is not 

large. However, on secondary channels, we see that after earlier fluctuations, prices decrease 

sharply as the game approaches – starting around 10 days before the game. The contrast is in line 

with the conflicting patterns suggested by Courty (2003) and Drayer & Shapiro (2009); Courty 

(2003) suggests that “diehard fans” are price sensitive and therefore purchases tickets earlier, 

whereas “business professionals” who choose to make decisions at the last minute are less price 

sensitive, which is in line with the primary channel price trends. Drayer & Shapiro (2009) found 

that secondary market prices decreased as it got closer to the game. Secondly, as we separately 

control for the temporal trend across channels, we are accounting for the last-minute deep 

discounts of tickets on the secondary markets. This in turn suggests that the channel-specific 
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price differences that we observe in the results are unlikely to be driven by price differences in a 

specific time window.  

 

 

Figure 2.5 Partial effect of days until game on listing prices from listing price GAM 

 

Figure 2.6 shows estimated smooth functions for the spatial effects of seats on listing 

prices. Left most plot shows the effect of rows, the middle plot depicts the effect of x-coordinates 

(length of the stadium), and the right one shows the effect of y-coordinates (different sides of the 

field). In terms of row effects, as expected, we see a generally decreasing trend as the seat moves 

toward the back of the section. Specifically, ticket prices decrease sharply in the first few rows 

and last few rows, whereas the middle part of the sections is relatively flat. This is well in line 

with the principle of diminishing sensitivity, where people are more sensitive to changes around 

the boundaries and less so away from the boundaries (Tversky & Kahneman, 1992).  
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Figure 2.6 Partial effect of spatial location on listing prices from listing price GAM 

 

In terms of the effect of the Cartesian coordinates, we see that prices are higher toward 

the middle of the stadium along the x-axis, which is consistent with our expectation that seats 

closer to 50-yard line will be more popular and more expensive. On the other hand, the y-axis 

captures the vertical dimension of the stadium; the lower values of y represent sections on the 

opponent side of the stadium and higher values represent the home team side. Mid-values of y 

represent endzone sections, which are not the best seats in the stadium due to the one-sided view 

of the entire stadium. That the home team side is priced relatively lower compared to the 

opponent side is somewhat surprising. One possible explanation could be that this pattern is 

unique to this game, as the opponent is a highly popular team whose geographic base is not too 

far from the home team’s city.  

2.5.1.2 Prediction 

We made predictions on a holdout period using the last snapshot, which was taken the 

day before the game. The range of listing prices was $9 to $750 (Figure 2.7), with an average 

ticket price of $131 (𝑆𝐷=/!HG = 66.2). The average absolute difference between predicted and 

actual listing prices was $16.5 (𝑆𝐷D!WW = 30.88). Over 80% of listing prices were predicted 
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within 20% of their actual value, and over 60% were predicted within 10%, indicating a 

generally good predictive performance.  

 

 

Figure 2.7 Listing prices in the stadium (5% trimmed; 2.5% from top and bottom) 

 

From Figure 2.7, we observe that the highest-priced tickets are in the lower-level and 

club-level seats around 50-yard line, while the sides of the stadium and the endzones have 

relatively lower ticket prices. When we compare this information with Figure 2.8, which shows 

prediction errors by channel, we see that the more expensive regions in the stadium have higher 

levels of prediction error. We see that Platform A – resale shows the most frequent case of 

overprediction in the lower- and club-level sections around 50-yard line. This could be because 

the prediction was made for the day before the game, when there could be large price changes.  
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Figure 2.8 Prediction error across channels (5% trimmed on listing prices; 2.5% from top and bottom) 

 

We compare the price fluctuations of holdout listings that had a matching snapshot9 from 

the day before. Figure 2.9 shows how price changes vary across channels: we see that prices on 

Platform A – resale channel dropped the most, especially in the expensive areas of the stadium 

(higher values mean larger price drops). This could be because the ticket prices were highest on 

this channel, and there was not much time remaining to sell the tickets. This last-minute price 

drop on this channel could have led to higher prediction errors. We estimated the same prediction 

 
9 The listings are matched at the section and row level, and it is not guaranteed that the matched observations are the 
same listings as we do not observe the seat number. However, given the large overlap of the listings (82%) on the 
two consecutive days, it is likely that the matched ones are indeed the same listings. Even if this is not the case, 
assuming that seat values are going to be similar at the section/row level, the other matched listing could represent 
what the listing price would have been had it been available on the previous day.  
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model leaving two last snapshots as holdout, and we find that the prediction errors are larger on 

the last day (Figure 2.10). 

 

 

Figure 2.9 Observed price changes from the previous day 

 

The results of price model reveal substantial differences across channels as well as the 

importance of accounting for temporal and spatial structure in this dynamic market. At this stage, 

we have not yet incorporated the “listing” decision in our model, discussed in the Model 

Development section. Currently, the proposed model assumes that the listing decisions are 

shared across channels (i.e., sellers post across channels). However, given that there are quite 

some differences in the available listings (e.g., see Figure 2.9 that shows the availabilities across 
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channels on the same day) and the significant price differences that persist, it may be more 

appropriate to incorporate channel decision in the dynamic availability and pricing models.  

 

 

Figure 2.10 Prediction error across channels with a two-day holdout period 

 

The results of price model reveal substantial differences across channels as well as the 

importance of accounting for temporal and spatial structure in this dynamic market. At this stage, 

we have not yet incorporated the “listing” decision in our model, discussed in the Model 

Development section. Currently, the proposed model assumes that the listing decisions are 

shared across channels (i.e., sellers post across channels). However, given that there are quite 

some differences in the available listings (e.g., see Figure 2.9 that shows the availabilities across 

channels on the same day) and the significant price differences that persist, it may be more 

appropriate to incorporate channel decision in the dynamic availability and pricing models.  

Moreover, we are currently modeling the prices as a function of other tickets that are 

available at the same time in the same area. Although this approach allows us to capture how 
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nearby availabilities affect pricing decisions, sellers cannot observe the exact availability of 

tickets. Therefore, for a more accurate predictive model, it would be more appropriate to model 

this as a function of recent availabilities and demand, as sellers can monitor changes in the 

listings, such as when a new listing becomes available or previously available listing is taken off 

the market (likely due to being sold).  

Lastly, we could incorporate additional spatial structure into the model to capture the 

subtleties involved in location choices. For example, it is possible that the effect of row varies 

across section level (lower, club, upper); being closer to the field could be much more salient if 

one sits in the lower level compared to the club or upper level. Accounting for such structural 

aspects of seat choices will allow us to accurately capture the listing price patterns, but also how 

users make substitutions across different seat locations.  

2.5.2 Channel choices 

We model how consumers choose channels from which to purchase their tickets given 

the market conditions. Given the varying coverage and granularity of the datasets, we limit our 

attention to purchases for the two games that were 1) made on or after the date of the first 

snapshot, and 2) made on one of the four channels for which we observe the availability and 

prices. 70.8% of all transactions that took place during this window were for the two focal games 

of interest, and 63% of all single-game transactions for the two games were retained (𝑁	 =

	5,938). Further, we assume that users consider all four channels.  

Whereas transaction data is available at the daily level, market snapshots are available on 

average every 3.5 days with irregular intervals (see Figure 2.1). We use the most recently 

available market availability and prices from the snapshot data (at the section / row level) to 

predict channel choices. More than 75% of the orders had a matching section-row level 
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availability and pricing data are available within 3 days of the order date, and 94.8% of the 

orders had the data within 10 days of the order date. However, it is important to note that not all 

channels have listings available in the particular section and row of the stadium where the tickets 

were bought, in which case we create an indicator variable for “no matching listing”. There are 

occasions where there are no matching snapshots at all; if a listing is made available on a channel 

and is sold in between snapshots, we cannot track the details of the listing. We drop additional 

179 ticket-level transactions without any matched listings, leaving 5,759 transactions to estimate 

the model.  

We use order-related information, availability and pricing information and previous 

usage information to explain channel choices. In terms of order-related variables, we use the size 

of the transaction (number of tickets), how many days before the game the order was placed, and 

which game the transaction was for. Availability and pricing information include number of 

listings, indicator for whether there was no seat available within the row, and average prices. It is 

important that we reflect that there might not have been any listing available in that location on 

some of the channels, so we include no listings variable to capture the impact of recent 

“stockout” (i.e., no listing available). Lastly, we use previous usage variables to capture loyalty, 

or stickiness of channel usage on following channel choices. Using transaction data prior to the 

snapshot observation period, the variables indicate whether a user has any previous history of 

using the channels.  

2.5.2.1 Model results 

Table 2.5 shows the results for multinomial logit model for channel choices for the two 

games, with Platform A – primary channel as the baseline. The results reveal interesting patterns 

in channel choices. Notably, Platform A – resale is more likely to be chosen than the primary 
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channel, despite sharing the same platform. On the other hand, Platform B, and C are 

significantly less likely to be chosen. As expected, the effect of recent “stockouts” is significant 

and large, and having more listings in a row (compared to other channels) increases the 

probability of choosing a channel.  

In terms of order size, when consumers purchase more tickets in one transaction, they are 

more likely to use Platform A – resale or Platform B compared to the primary channel. This may 

have to do with the fact that the proportion of 1-ticket transactions is more than double those of 

the other three channels (21.3% in the primary channel vs. 7.5% on average across the other 

three channels). This difference in transaction size could be due to the policies on how the 

listings can be broken into smaller offerings. While most resellers prefer not to sell (𝑁 − 1) 

tickets from their 𝑁-ticket listings, primary channels do not have such restrictions, allowing users 

to pick the tickets freely among any available seats in the listing. Given that the most common 

listing size is two in all four channels, single ticket buyers may be more prone to choose primary 

channels that provide more flexibility in seat choices.  

Also, primary channel users exhibit different timing preferences and price sensitivity 

compared to the three secondary channels that we observed. Buyers tend to purchase 

significantly earlier on primary channels (𝑚𝑒𝑎𝑛=/!,F/Q = 16.47,𝑚𝑒𝑎𝑛"GHECDF/Q = 12.6, 𝑝 <

0.001), a pattern consistently observed across seasons and games. A noticeable pattern that we 

see regarding price sensitivities is that the price coefficient is positive on the primary channel. 

This pattern remains robust across specifications, even when we control for the “quality” of the 

seats using row_score, a proxy of seat quality that is used by the team for dynamic pricing. 

This suggests that this may not simply be because buyers using primary channel purchase better 

quality seats. Further, this is in contrast with pricing patterns across the channels; Figure 2.2 
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shows that listing prices on Platform A – resale are generally more expensive than the primary 

channel. This could be due to complex interaction between how users choose the channels given 

the availability and prices (market conditions). For example, because it is easy to compare 

primary and resale prices on Platform A, it is possible that the primary tickets appear relatively 

cheaper than the higher price of the resale tickets, especially in the more expensive areas of the 

stadium.  

Lastly, we find that previous usage of the channels positively affects following channel 

choices, as expected. Interestingly, Platform C, which is the least popular channel of the four 

channels that we observe, has the highest stickiness, followed by Platform B. Compared to these, 

both channels on Platform A show a smaller effect of previous usage on future channel choices. 

This may have to do with the fact that the two channels, despite being separate channels, share 

the same platform, and users may alternate between the two types of channels.  

To summarize, the channel choice model highlights how channels differ in important 

ways. First, users of each channel differ in their price sensitivity, their planning horizon (i.e., 

how much in advance they decide to purchase the tickets), and their channel loyalty. Secondly, 

the ‘contents’ of the order, such as for which game the user is looking to buy tickets and number 

of tickets, also seem to guide channel choices. These factors need to be reflected in models of 

ticket demand and channel choices. Lastly, as illustrated in the case of positive price coefficient 

for the primary channel, there could be interactions between the market conditions of different 

channels.  
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Table 2.5 Multinomial channel choice for ticket purchases 

 Dependent variable 
 y 
(Intercept):Platform A-resale 0.552*** (0.074) 
(Intercept):Platform B -0.147* (0.086) 
(Intercept):Platform C -0.925***(0.110) 
number of listings 0.138***(0.039) 
1(no listings) -1.934***(0.105) 
number of tickets sold:Platform A - resale 0.188*(0.046) 
number of tickets sold:Platform B 0.133∗∗ (0.052) 
number of tickets sold:Platform C 0.030 (0.066) 
order-number of days before game:Platform A -resale −0.453∗∗∗ (0.049) 
order-number of days before game:Platform B −0.691∗∗∗ (0.060) 
order-number of days before game:Platform C −0.632∗∗∗ (0.076) 
event - Game Y: Platform A - resale 0.624∗∗∗ (0.102) 
event - Game Y: Platform B −0.078 (0.122) 
event - Game Y: Platform C −0.096 (0.158) 
average price per ticket: Platform A - primary 0.308∗∗∗ (0.058) 
average price per ticket: Platform A - resale −0.387∗∗∗ (0.045) 
average price per ticket: Platform B −0.044 (0.047) 
average price per ticket: Platform C 0.038 (0.069) 
1(previous usage:Platform A - primary) 0.387∗∗∗ (0.133) 
1(previous usage:Platform A - resale) 0.729∗∗∗ (0.101) 
1(previous usage:Platform B) 1.944∗∗∗ (0.132) 
1(previous usage:Platform C) 2.520∗∗∗ (0.254) 
Observations 5,340 
R2 0.285 
Log Likelihood −4,686.197 
LR Test 3,730.883∗∗∗ (df = 22) 
Note ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01 

 

Another major assumption is that users will always consider all possible channels and 

their respective market conditions. Realistically, a large fraction of users will not visit all 

available channels – possibly not even the four channels due to the search costs involved in the 

process. Further, due to search cost heterogeneity (De Los Santos et al., 2012; Nishida & Remer, 

2018), users will likely to differ not only in what channels they consider, but how many they are 
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willing to consider. Given that such assumption is strong and likely violated in channel choice 

process, we propose using probabilistic consideration set approach (e.g., Andrews & Srinivasan, 

1995) to address this limitation.  

Additional assumption that we make in this estimation is that users consider only the 

price distribution of what’s within the section – row, which is a relatively narrow area that 

includes up to 36 seats. Users are likely to consider surrounding areas, either within the same 

section or the same price-location as well as seats in surrounding sections, making such 

granularity an unrealistic assumption. Previous works on pricing and valuing MLB tickets used a 

much coarser level of seat aggregation (e.g., Xu et al., (2019) uses 14 sections for the whole 

stadium, Lewis et al., (2019) uses 6 tiers, Zhu (2014) uses 7 areas) in contrast to the current 

model of channel choice for a specific row. Using detailed information at the row level to model 

channel choices may amplify the effect of stockouts. We observe more occasions of stockouts 

across different channels when using row-level information than when using larger levels of 

aggregation. There are 25 unique price-locations within the stadium (determined based on the 

price tiers of the tickets) and 186 areas (defined by sections × price-locations), either of which 

may be a more realistic granularity. Exploring and choosing an appropriate level of aggregation 

would be important going forward.  

2.5.3 Dynamic ticket availability 

Using the snapshot data, we study dynamic seat availabilities across channels and games 

while accounting for the temporal and spatial dependence. Specifically, we focus on how recent 

availability and prices in the vicinity of focal seats affect the likelihood of these seats being made 

available for sale in the following periods, capturing the dynamic evolution of seat availability 
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across space and time. The unit of observation for the dynamic ticket availability model is the 

number of tickets available at the row level at each snapshot period.  

The fraction of rows without any available tickets ranges from 61.9 to 87.2% across 

channels and games. On primary channel, teams make supply decisions for the remaining tickets 

after season ticket and broker sales, which limits the number of tickets that can be made 

available for sale. Further, only a subset of ticket holders will choose to list their tickets for sale 

on secondary channels, contributing to the large fraction of rows with no availability. 

Additionally, the fact we are observing only the latter part of the season contributes to the large 

fraction of rows with no availability. Fraction of rows with zero availability, as can be expected, 

is higher on smaller platforms, platforms B and C. Figure X shows the histogram of number of 

seats available at the row level. In this section, we model the availabilities separately for 

Platform A – primary, Platform A – resale, and collapse Platforms B and C. 

 

Figure 2.11 Histogram of number of available tickets (top 1% trimmed) 

 
Given the large share of zeros, we use zero-inflated count models combined with 

generalized additive models (GAM) to capture the number of tickets available in a row. A key to 

capturing the dynamics of ticket supply, where sellers (including the team on primary channel) 

Game Y

Platform A - primary

Game Y

Platform A - resale

Game Y

Platform B

Game Y

Platform C

Game X

Platform A - primary

Game X

Platform A - resale

Game X

Platform B

Game X

Platform C

0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213 0 1 2 3 4 5 6 7 8 910111213

0

5000

10000

15000

0

10000

20000

30000

0

5000

10000

15000

0

10000

20000

30000

0

2500

5000

7500

0

5000

10000

15000

20000

25000

0

2500

5000

7500

0

5000

10000

15000

20000

25000

Number of available tickets

co
un

t



 102 

decide to put the tickets up on and off the market as they see fit, is leveraging the temporal and 

spatial information for the focal rows to understand how the supply in the neighborhood affects 

the ticket supply.  

To do so, we construct variables to capture recent time- and location-specific supply 

conditions of the market, specifically the past-period availability and prices in the neighborhood 

of the focal row. We define sections × price-locations as the scope of neighborhood that affects 

supply decisions. We measure past availability (𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)(#) and price (𝑝𝑟𝑖𝑐𝑒)(#) in the 

neighborhood as the number of available seats and average price of available tickets at time (𝑡 −

1). In constructing these variables, we remove past-period availability information from the focal 

rows to avoid the possibility of using the availability of the same seats (which might remain 

unsold from the past period) to predict the current availability. Due to the large fraction of rows 

with no available tickets on the platforms, there are occasions where nothing was available in the 

neighborhood in the previous period. For such rows, we use average transaction prices in the 

area in the past seasons (seasons 2018 and 2019) as past-period prices in the neighborhood and 

control for the effect of there being nothing available in the neighborhood area 

(1[𝑛𝑜	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)(#]). The proportion of observations without any previous availability in the 

neighborhood ranges from 2.1% to 29.7% across games and channels. Again, channels on 

Platform A tend to have lower shares of rows without any available tickets in the neighborhood 

in the past period whereas Platforms B and C have a higher share of such observations, 

consistent with the inventory patterns shown in Table 2.2.  

For model estimation, we mean-centered availability, prices, and capacity for each game 

and combined the datasets for the two games within channels. For Platforms B and C, we 

combined the two datasets after mean-centering and combining across games. We used the first 
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snapshot period as initialization period to construct the past availability and pricing information 

and left the last period out for predictive performance check.  

2.5.3.1 Model results 

We first discuss the results of zero-inflated negative binomial models. Table 2.6 shows 

the results of zero-inflated negative binomial models for Platform A – primary, Platform A – 

resale, and Platform B/C. We find several common dynamics across platforms. First, past period 

availability in the neighborhood has a positive effect on the number of available tickets in the 

following period and a negative effect on zero-inflation across all platforms (i.e., lower 

probability of excess zeros). That is, more seats are likely to be available in the areas where there 

were many seats available in the past period. This effect could be driven by area-specific levels 

of supplies that are not fully captured by section fixed effects. While section fixed effects can 

absorb some area-specific supply conditions, neighborhoods as defined by sections × price-

locations are often much narrower than the sections, which could explain why there is residual 

area-specific effects. For example, the ticket supply around 50-yard line towards the front is 

scarcer than in other, less desirable locations, including seats in the rows in the back of the 

section on the 50-yard line. As such, the past availability in the past period could predict lower 

availability in the following periods.  

Secondly, we find that past average price in the neighborhood positively affects the 

number of seats available in the following period across platforms (note that the effect is not 

significant for Platform B/C, but the effect is directionally consistent). This likely reflects a 

natural dynamic where sellers would choose to make their tickets available when the ticket prices 

are higher.  
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On the other hand, we also find diverging patterns for primary versus secondary 

channels. Specifically, we find that the temporal trend (𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑔𝑎𝑚𝑒) shows opposite 

patterns between primary and all other secondary channels. For the primary channel, there are 

fewer tickets available longer before the game,10 whereas there are more tickets longer before the 

game and fewer as it gets closer to the game on secondary channels. This pattern is consistent 

with the inventory pattern shown in Figure 2.3. There is a noticeable increase in inventory for 

Game Y on Platform A - primary about 15 days before the game, contributing the overall 

increasing availability over time. Another variable that has an opposing effect on primary and 

secondary channels is the non-availability in the past period. On secondary platforms, we see 

larger number of available tickets in the following period when there was nothing in the 

neighborhood in the past, but fewer on primary channel. This could be because there could be 

additional influx of resellers depending on the supply conditions unlike on primary channel. 

While zero-inflated negative binomial model results provide insights into how ticket 

availability evolves based on past availability and prices in the neighborhood, the effects of past 

supply conditions and time may not be linear. We capture such nonlinearity using GAM with a 

zero-inflated Poisson model, estimated with GAM function in mgcv package in R. For Platform 

A - primary channel, we find that the linear effects in the zero-inflated Poisson GAM is 

consistent with that of negative binomial model (no availability_(t-1), Game Y, Capacity). On 

the other hand, terms for which smooth functions are estimated (availability_(t-1),log(price_(t-

1) ),  and days until game) show interesting nonlinearities.  For example, the effect of availability 

in the past period on excess zeros is overall negative, such that larger number of past 

availabilities would predict a lower level of excess zeros in the following period. The estimated 

 
10 The event takes place when 𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑔𝑎𝑚𝑒 = 0, and the variable takes positive value before the game. E.g., 
𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑔𝑎𝑚𝑒 = 10 means 10 days before the game. 
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smooth partial effects of past availability, shown in the upper left panel of Figure 2.12 shows that 

the effect is more nuanced than a simple linear negative effect, such that past availability has 

overall negative effect up to around 82 seats, after which point the effect reverses, and has a 

positive effect on excess zeros. Moreover, the partial effects of days until game shows a 

nonlinear pattern with a spike at about 2 weeks before the game for the number of tickets (upper 

right) and for the fraction of zeros (bottom right), suggesting a higher number of tickets and 

lower fraction of rows with no availability. This effect likely reflects an unforeseen change in the 

inventory level shown in Figure 2.3 (upper left pane) where there is a significant jump in the 

available inventory for Game Y, 16 days before the game. To our knowledge, the jump in the 

inventory level was driven by team’s “buyback” from their brokers. We believe this supply-side 

shock was unforeseen, and such a shock could prove to be an exogenous shock that could allow 

us to quantify the impact of supply-side changes on cross-channel supply and demand, shedding 

light onto the cross-channel structure of the primary and secondary ticket markets.   

Table 2.7, Table 2.8, and Table 2.9 and Figure 2.12, Figure 2.13, and Figure 2.14 show 

the results for Platform A – primary channel, Platform A – resale channel, and Platform B/C, 

respectively. In interpreting these results, it’s important to note that the zero-inflation in the 

GAM results are coded inversely; that is, in the following results, the outcome for the zero-

inflation models the probability of presence (i.e., nonzero), not excess zeros as was the case in 

zero-inflated negative binomial results. 
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Table 2.6 Zero-inflated negative binomial model of seat availability 
 

DV: Number of seats availablet 
  Platform A - primary Platform A - resale Platform B/C 
Count model:       
(Intercept) -4.9260*** -1.8730*** -2.7095*** 

 (0.2018) (0.0512) (0.1066) 
Platform B   0.0227 

   (0.0123) 
Game Y 0.0094 -0.2467*** -0.1909*** 

 (0.0133) (0.0159) (0.0185) 
Availabilityt-1 0.0034*** 0.0016*** 0.0010** 

 (0.0003) (0.0004) (0.0004) 
log(pricet-1+1) 1.3579*** 0.1682*** 0.0726 

 (0.0710) (0.0409) (0.0370) 
1[No availabilityt-1] -0.2424*** 0.3059*** 0.2102*** 

 (0.0532) (0.0549) (0.0322) 
Days until game -0.0032*** 0.0126*** 0.0107*** 

 (0.0007) (0.0009) (0.0008) 
Log(theta) 1.6615*** 1.3323*** 1.2735*** 

 (0.0314) (0.0285) (0.0240) 
Section FE YES YES YES11 
Zero model: 

   

(Intercept) 0.3282*** 0.6058*** 1.6991*** 
 (0.0267) (0.0261) (0.0266) 

Platform B   -0.0823*** 
   (0.0196) 
Game Y 0.2357*** 0.3536*** 0.4368*** 

 (0.0268) (0.0266) (0.0274) 
Availabilityt-1 -0.0189*** -0.0176*** -0.0154*** 

 (0.0005) (0.0006) (0.0005) 
log(pricet-1+1) -0.4480*** -0.3898*** 0.2462*** 

 (0.0322) (0.0248) (0.0229) 
1[No availabilityt-1] 0.8155*** -0.2095** 0.4371*** 

 (0.0745) (0.0743) (0.0365) 
Capacity -0.0220*** 0.0175*** 0.0119*** 

 (0.0023) (0.0025) (0.0020) 
Days until game 0.0028 -0.0072*** -0.0209*** 
  (0.0014) (0.0014) (0.0013) 
AIC 116538.2405 108642.9021 138964.4453 
Log Likelihood -58134.1202 -54186.4511 -69351.2227 
Num. obs. 43620 43620 86830 
***p < 0.001; **p < 0.01; *p < 0.05 

 

 
11 Due to the large number of zeros on these platforms, it was impossible to estimate a full set of section fixed 
effects. We collapsed five sections into larger zones – either with adjacent sections of the same price tier or with 
sections at the same level (e.g., Club seats) of the same price tier. All the collapsed sections were located on the 
Club level.  
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For Platform A - primary channel, we find that the linear effects in the zero-inflated 

Poisson GAM is consistent with that of negative binomial model (𝑛𝑜	𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)(#, Game Y, 

Capacity). On the other hand, terms for which smooth functions are estimated 

(𝑎𝑣𝑎𝑖𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)(#, log(𝑝𝑟𝑖𝑐𝑒)(#),	 and 𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑔𝑎𝑚𝑒) show interesting nonlinearities.  For 

example, the effect of availability in the past period on excess zeros is overall negative, such that 

larger number of past availabilities would predict a lower level of excess zeros in the following 

period. The estimated smooth partial effects of past availability, shown in the upper left panel of 

Figure 2.12 shows that the effect is more nuanced than a simple linear negative effect, such that 

past availability has overall negative effect up to around 82 seats12, after which point the effect 

reverses, and has a positive effect on excess zeros. Moreover, the partial effects of 

𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑔𝑎𝑚𝑒 shows a nonlinear pattern with a spike at about 2 weeks before the game for 

the number of tickets (upper right) and for the fraction of zeros (bottom right), suggesting a 

higher number of tickets and lower fraction of rows with no availability. This effect likely 

reflects an unforeseen change in the inventory level shown in Figure 2.3 (upper left pane) where 

there is a significant jump in the available inventory for Game Y, 16 days before the game. To 

our knowledge, the jump in the inventory level was driven by team’s “buyback” from their 

brokers. We believe this supply-side shock was unforeseen, and such a shock could prove to be 

an exogenous shock that could allow us to quantify the impact of supply-side changes on cross-

channel supply and demand, shedding light onto the cross-channel structure of the primary and 

secondary ticket markets.   

 

 
12 The mean of past availability on Platform A - primary for Game X is 28.1 and 29.3 seats for Game Y. The 
inflection point is around 57 on the mean-centered scale and hence around 90 seats on the original scale.  
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Table 2.7 Model estimates for zero-inflated Poisson GAM for Platform A - primary 

A. parametric coefficients Estimate Std. Error t-value p-value 
Count model         
(Intercept) -2.5934 0.2104 -12.3282 < 0.0001 
Game Y 0.0378 0.0105 3.6051 0.0003 
1[No availabilityt-1] -0.3007 0.0467 -6.4432 < 0.0001 
Section FE YES 
Zero model 

    

(Intercept) -1.5564 0.0459 -33.9128 < 0.0001 
Game Y -0.1381 0.0231 -5.9709 < 0.0001 
1[No availabilityt-1] -0.6559 0.0704 -9.3164 < 0.0001 
Capacity 0.0293 0.0019 15.4384 < 0.0001 
B. smooth terms edf Ref.df F-value p-value 
Count model         
s(availabilityt-1) 7.5929 8.3705 141.2233 < 0.0001 
s(log(pricet-1+1)) 8.7776 8.9851 1233.5925 < 0.0001 
s(days until game) 6.9074 7.9141 130.1352 < 0.0001 
Zero model     
s.1(availabilityt-1) 7.5870 8.3828 2378.3005 < 0.0001 
s.1(log(pricet-1+1)) 8.9271 8.9980 674.9892 < 0.0001 
s.1(days until game) 7.3797 8.3157 78.4180 < 0.0001 

 

 

Figure 2.12 Partial effect of past supply conditions and time on availability on Platform A – primary 
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For Platform A – resale, we find consistent results with the zero-inflated negative 

binomial model. Zero-inflated Poisson GAM for Platform A – resale reveals nonlinear effects of 

past availability and pricing in the neighborhood as well as the effect of days until game. While 

we find that the overall linear effect of past availability is positive such that rows in areas with 

more tickets in the past will have more tickets in the following period (𝛽FXF!3F'!3!)Q
/G"F3G,HENC) =

0.0016, 𝑝 < 0.001), the effect is nonlinear, especially when there are over approximately 100 

tickets13 in the neighborhood. This may reflect how individual sellers might choose not to enter 

the market if it’s highly crowded to avoid competition, which could lead to lower prices. We 

further see that the effect for the past-period prices is also nonlinear, showing that the number of 

available tickets start decreasing as the past price increases when the price exceeds 

approximately $113 for Game X, and $168 for Game Y. Lastly, we find that the effect of days 

until game on the number of available tickets is generally increasing, such that there are more 

tickets longer before the game than close to the game, consistent with previous findings. 

However, there is a plateau between 16 to 11 days before, with a slightly decreasing availability 

between 15 to 16 days before the game. While the pattern is subtle, this period coincides with the 

period when there was a sharp increase in inventory on Platform A – primary, driven by the 

sudden influx of tickets from ticket buyback.  

 

 

 

 

 
13 The mean of past availability on Platform A - resale for Game X is 26.4 and 20.7 seats for Game Y. The inflection 
point is around 80 on the mean-centered scale and hence around 100 to 105 seats on the original scale.  
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Table 2.8 Model estimates for zero-inflated Poisson GAM for Platform A - resale 

A. parametric coefficients Estimate Std. Error t-value p-value 
Count model         
(Intercept) -1.6854 0.0380 -44.3085 < 0.0001 
Game Y -0.1988 0.0113 -17.6550 < 0.0001 
1[No availabilityt-1] 0.0899 0.0390 2.3026 0.0213 
Section FE YES 
Zero model 

    

(Intercept) -0.9288 0.0454 -20.4434 < 0.0001 
Game Y -0.3147 0.0215 -14.6530 < 0.0001 
1[No availabilityt-1] 0.0905 0.0687 1.3162 0.1881 
capacity 0.0022 0.0019 1.1480 0.2510 
B. smooth terms edf Ref.df F-value p-value 
Count model         
s(availabilityt-1) 8.7481 8.9718 119.7128 < 0.0001 
s(log(pricet-1+1)) 8.2657 8.8615 221.0476 < 0.0001 
s(days until game)) 5.9094 6.9154 476.0896 < 0.0001 
Zero model     
s.1(availabilityt-1) 7.1025 7.9433 1302.1920 < 0.0001 
s.1(log(pricet-1+1)) 6.3328 7.5172 293.0086 < 0.0001 
s.1(days until game) 3.6983 4.4871 49.7415 < 0.0001 

 
 

 
Figure 2.13 Partial effect of past supply conditions and time on availability on Platform A – resale 
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For Platforms B/C, the nonlinear effects of past availability and prices are very similar to 

those of Platform A – resale. Meanwhile, we find an interesting pattern in the temporal trend 

(𝑑𝑎𝑦𝑠	𝑢𝑛𝑡𝑖𝑙	𝑔𝑎𝑚𝑒) where there is a significant drop in the number of available tickets 16 days 

before the game. Figure 2.15 shows aligned plots for the partial effect of days until game, where 

the dashed black line represents 16 days prior to the game at which point there was an infusion of 

tickets on primary channel with ticket buyback.  

 
Table 2.9 Model estimates for zero-inflated Poisson GAM for Platform B/C 

A. parametric coefficients Estimate Std. Error t-value p-value 
Count model         
(Intercept) -2.3233 0.0905 -25.6671 < 0.0001 
Game Y -0.1071 0.0127 -8.4374 < 0.0001 
Platform B 0.0159 0.0073 2.1685 0.0301 
1[no availabilityt-1] 0.0532 0.0246 2.1647 0.0304 
Section FE YES14 
Zero model     
(Intercept) -1.6041 0.0456 -35.1863 < 0.0001 
Game Y -0.4076 0.0290 -14.0388 < 0.0001 
Platform B 0.0787 0.0172 4.5682 < 0.0001 
1[no availabilityt-1] -0.1729 0.0443 -3.9044 0.0001 
Capacity -0.0004 0.0018 -0.2067 0.8363 
B. smooth terms edf Ref.df F-value p-value 
Count model         
s(availabilityt-1) 8.7336 8.9711 130.7645 < 0.0001 
s(log(pricet-1+1)) 8.5239 8.9299 265.8416 < 0.0001 
s(days until game) 8.5673 8.9447 365.9796 < 0.0001 
Zero model     
s.1(availabilityt-1) 7.7782 8.5281 1478.2490 < 0.0001 
s.1(log(pricet-1+1)) 7.5196 8.4588 310.9299 < 0.0001 
s.1(days until game) 8.1991 8.8211 239.6523 < 0.0001 

 
14 Sections were collapsed into larger zones as described in zero-inflated NBD model section. 
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Figure 2.14 Partial effect of past supply conditions and time on availability on Platform B/C 
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Figure 2.15 Partial effect of days until game on zero-inflated Poisson GAM across channels 
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have different strengths; zero-inflated negative binomial model allows us to capture the 

overdispersion in the data, whereas zero-inflated Poisson GAM captures the subtle nonlinearities 

in the dataset.  

Table 2.10 Predictive performance of dynamic availability models 
 

  In-sample 
Model Channel MAPE MAPE 

[top 1% trimmed] wMAPE RMSE 

Zero-
inflated 
NBD 

Platform A - primary 402.7554 43.98258 0.7469799 598.8967 
Platform A - resale 65.87133 94.06631 0.6007711 655.2412 

Platform B/C 79.55876 78.01434 0.218581 423.8491 
Zero-

inflated 
Poisson 
GAM 

Platform A - primary 86.48459 39.73077 0.9818919 861.154 
Platform A - resale 79.03812 70.64524 0.7294229 771.6541 

Platform B/C 73.75404 64.63651 0.3071723 530.9638  
Out-of-sample  

Channel MAPE MAPE 
[top 1% trimmed] wMAPE RMSE 

Zero-
inflated 
NBD 

Platform A - primary 182.3928 44.63838 1.1720385 117.62177 
Platform A - resale 85.65074 108.82321 1.0910786 120.73038 

Platform B/C 80.33109 71.82259 0.2417923 57.04302 
Zero-

inflated 
Poisson 
GAM 

Platform A - primary 42.39753 36.3981 1.4525614 179.568 
Platform A - resale 88.82492 86.74912 1.1677935 135.56008 

Platform B/C 69.08164 71.72857 0.2710193 59.74921 
*wMAPE is weighted MAPE with proportion of counts   

 

Visually inspecting the predictive performances (Figure 2.16), both zero-inflated models 

accurately predict the share of zero availabilities. Comparing the two models, zero-inflated 

negative binomial model tracks the zero counts better than zero-inflated Poisson GAMs, which 

tends to overpredict zero counts, both in- and out-of-sample. The most noticeable discrepancy 

between the predicted and the actual counts is for one or two ticket availabilities. While such 

two-inflation is observed across all channels, the difference between one and three ticket 

availability is even more pronounced on secondary channels. Both models significantly 
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overpredict the availability of one ticket and underpredict the availability of two tickets per row. 

This likely stems from resellers’ decisions not to sell single tickets, as sport event tickets are 

often sold as a pair or more. Further, secondary channels show similar underprediction for four 

tickets. This may be driven by a similar logic where four tickets can be sold in several possible 

combinations, including selling two tickets to two different customers. Another region where the 

model fails to make an adequate count prediction is availability of ten tickets per row, which 

stands out only on primary channel. Although is not evident why there is a spike at ten tickets 

per row, it is possible that it is driven by internal distribution policies.  

The dynamic availability model and its predictions reveal interesting substantive patterns 

on how seat availability changes as a function of past availability and prices and provide avenues 

for further development. First, we could add hierarchical structure to the dynamic count model. 

Currently, we model Platform A – primary, Platform A – resale, and Platform B/C as separate 

channels. Given that the channels are not independent of each other, pooling across channels 

could provide further insights into the temporal and spatial dynamic patterns for ticket 

availability. We could build in further structures to account for the temporal dependence of the 

effect of past availability and pricing (e.g., the effect of past availability may be a function of the 

time between snapshots) and to incorporate additional spatial structures to further explain the 

effect of seat location, which we currently explain using section fixed effects.  
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Figure 2.16 Predicted count of the number of available tickets (top 1% trimmed) 
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Figure 2.17 Predicted count of the number of available tickets (top 1% trimmed, positive counts only) 
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cross-channel supply information would help us understand the multi-channel structure of the 

market.  
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