
Overcoming Barriers to Information Exchange on the
Web

by

Ayush Goel

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in the University of Michigan
2023

Doctoral Committee:

Adjunct Associate Professor Harsha V. Madhyastha, Co-Chair
Professor Atul Prakash, Co-Chair
Assistant Professor Xun Huan
Associate Professor Ryan Huang
Assistant Professor Ravi Netravali



Ayush Goel

goelayu@umich.edu

ORCID iD: 0000-0002-2343-670X

© Ayush Goel 2023



To my family and friends.

ii



ACKNOWLEDGEMENTS

This thesis would not have been possible without the guidance of my amazing mentors. First

and foremost, I would like to thank my advisor Harsha V. Madhyastha, who is an excellent

researcher and an even better mentor. I would not have been able to persevere through the

hardships that come with a PhD if it were not for his guidance. He relentlessly supported

me and taught me how to conduct principled research. I could not have asked for a better

PhD advisor.

Ravi Netravali, my secondary advisor, significantly helped to shape my thesis by providing

critical feedback during our meetings. He would always push the boundaries of what I

perceived was feasible, which drastically improved the quality of my research.

My brilliant lab mates from office 4929 were always available to answer my techni-

cal and non-technical queries, which were, admittedly, numerous. Muhammed, Chris,

Vaspol, Jingyuan, Yuan, Andrew, David and Joseph were a constant source of inspiration.

Muhammed has been particularly helpful, be it debugging my R plotting scripts or navi-

gating the various requirements of the CSE PhD degree. Jingyuan has rescued me multiple

times right before paper deadlines by helping me run critical experiments. Also, the CSE

graduate staff, specifically Steve, Jamie, Ashley and Jasmin made sure that my finances,

travel logistics and any I.T. requirements were immediately met, allowing me to focus on my

research. I would also like to thank my dissertation committee Atul Prakash, Ryan Huang

and Xun Huan for their valuable feedback on this thesis.

I would not have made it this far in a foreign country without the love and support of my

friends. Abhinav and Andrea were a big support system throughout school. Some of my most

cherished memories in grad school were made during our countless trips, weekend hangouts,

movie nights, and facetime calls. Also, my close friend Shubham from my undergraduate in

Delhi, was always available to provide support from Chicago. His residing a mere 4 hour

drive away from Ann Arbor meant that I have visited Chicago more than any other city in

the country. Madhav, Richa, and Shardul made sure that I never missed home too much,

by celebrating Indian festivals, hosting Bollywood movie nights, and getting Indian food

together. Austin, ZZ, and Elizabeth made weekends so much more exciting with 4+ hour

game nights, downtown excursions that ended at 4am or getting spicy chicken wings at

Bdubs that left us bed ridden the following day.

iii



An even longer list of friends have made my time at grad school so much more enjoyable:

Stanley, Nihal, Megan, Micaela, Hanna, Petra, Adarsh, David, Dinku, Suha, Wilka, Rishi

and many others. Thanks to the various communities I was a part that connected me to

a wide variety of people: friends from Baker, the coop I lived in for 5 years with 20+

grad students, fellow dancers from my latin dance studio, board members of GRIN, the

international student organization I was a part of for 4 years, and my beloved book club.

I would like to thank Kaitlin. She has seen it all – the stressful days leading up to dead-

lines, the lows that follow paper rejections, the doubts I’ve had in my abilities to do research

and most importantly the sheer joy of having your paper accepted at a top conference. She

has supported me during the difficult times even though she might be having a difficult time

herself, and has been the first person to celebrate with for whenever the occasion called for

it.

Lastly, I would like to thank my family. My parents, Sham and Prachi, are the reason

behind every single accomplishment of my life. Their constant love and support has given

me the unwavering strength to pursue every goal I’ve had and tackle any challenges that

I’ve faced along the way. My baby sister, Tanya, took care of my parents and all the other

responsibilities back at home, while navigating a very intense and competitive career, just

so that I could focus on my studies and not worry about home. I am so very proud of all

that she has achieved, and as a result inspiring me while I was on this grad school journey.

My cousin Aru have been a constant source of joy. Our weekly video calls ensured that I

was up to date on every family gossip from back home.

Finally, I would like to thank God for believing in me, and allowing me to embark on

this journey. It was an extremely exciting, albeit challenging adventure and I can’t wait to

explore what’s next in store for me.

iv



PREFACE

Previously Published Material

Chapter 4 revises previous publications [111, 149]:

Ayush Goel, Vaspol Ruamviboonsuk, Ravi Netravali, Harsha V. Madhyastha. Rethinking

Client-Side Caching for the Mobile Web. In HotMobile, Virtual, February 2021.

Shaghaya Mardani, Ayush Goel, Harsha V. Madhyastha, Ravi Netravali. Horcrux:

Automatic JavaScript Parallelism for Resource-Efficient Web Computation. In OSDI,

Virtual, July 2021.

Chapter 5 revises previous publication [113]

Ayush Goel, Jingyuan Zhu, Ravi Netravali, Harsha V. Madhyastha. Sprinter: Speed-

ing up High-Fidelity Crawling of the Modern Web. In NSDI, Santa Clara, April 2024.

Chapter 6 revises previous publication [112]

Ayush Goel, Jingyuan Zhu, Ravi Netravali, Harsha V. Madhyastha. Jawa: Web Archival

in the Era of JavaScript. In OSDI, Carlsbad, July 2022.

v



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

PREFACE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTER

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Problems with the Modern Web . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Thesis Statement and Contributions . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Dissertation Plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.1 User-facing page loads . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.1.2 Web crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.3 Web archival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.1 Faster web page loads . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2.2 Web crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.3 Web archiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

3 JavaScript Analysis Engine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 Objective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
3.2.2 Analysis framework . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.2.2.1 Static analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2.2.2 Dynamic analysis . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Making Page Loads Faster By Reducing Compute Delays . . . . . . . . . . 22

vi



4.1 Rethinking Client-side Caching for the Mobile Web . . . . . . . . . . . . . 22
4.1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.1.2 Client-side computation reuse . . . . . . . . . . . . . . . . . . . . . 27

4.1.2.1 Need for fine-grained computation reuse . . . . . . . . . . . 28
4.1.2.2 Our proposal: function-level caching . . . . . . . . . . . . . 29

4.1.3 Benefits of client-side compute cache . . . . . . . . . . . . . . . . . 30
4.1.3.1 Overview of JavaScript function state . . . . . . . . . . . . . 30
4.1.3.2 Quantifying potential for computation reuse . . . . . . . . . 31
4.1.3.3 Characterizing computation cache misses . . . . . . . . . . . 33

4.1.4 Envisioned system . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.1.4.1 System workflow . . . . . . . . . . . . . . . . . . . . . . . . 35
4.1.4.2 Practical challenges . . . . . . . . . . . . . . . . . . . . . . . 35

4.1.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.2 Automatic JavaScript Parallelism for Resource-Efficient Web Computation 37

4.2.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.2 Estimating benefits of parallelizing JavaScript execution . . . . . . 40
4.2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Sprinter: Speeding Up High-Fidelity Crawling of the Modern Web . . . . 43

5.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.2.1 Target workloads . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.2.2 Shortcomings of static crawling . . . . . . . . . . . . . . . . . . . . 46
5.2.3 Compute overheads of browser-based crawling . . . . . . . . . . . . 48
5.2.4 Minimizing browser’s computation delays . . . . . . . . . . . . . . . 50

5.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.1 Observations and approach . . . . . . . . . . . . . . . . . . . . . . . 51
5.3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

5.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.4.1 Memoizing JavaScript execution . . . . . . . . . . . . . . . . . . . . 54
5.4.2 Statically crawling pages . . . . . . . . . . . . . . . . . . . . . . . . 56
5.4.3 Scheduling page crawls . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.6.1 Evaluation setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
5.6.2 Throughput and Fidelity . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6.2.1 Comparison with baselines . . . . . . . . . . . . . . . . . . . 63
5.6.2.2 Throughput in each phase . . . . . . . . . . . . . . . . . . . 64
5.6.2.3 Contribution of techniques . . . . . . . . . . . . . . . . . . . 66

5.6.3 Sensitivity to crawling parameters . . . . . . . . . . . . . . . . . . . 66
5.6.3.1 Number of pages per site . . . . . . . . . . . . . . . . . . . . 67
5.6.3.2 Repeated crawling . . . . . . . . . . . . . . . . . . . . . . . 68
5.6.3.3 Preserving static fetches . . . . . . . . . . . . . . . . . . . . 69

5.6.4 Maintainability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

vii



6 Jawa: Web Archival in the Era of JavaScript . . . . . . . . . . . . . . . . . . 71

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.2 Background and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2.1 Poor fidelity due to JS non-determinism . . . . . . . . . . . . . . . 75
6.2.2 High storage overhead . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2.3 Downsides of alternate archival formats . . . . . . . . . . . . . . . . 77

6.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
6.3.1 Distinguishing properties of archived pages . . . . . . . . . . . . . . 80
6.3.2 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.3.3 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.4 Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
6.4.1 Improve fidelity by eliminating failed fetches . . . . . . . . . . . . . 83
6.4.2 Pruning non-functional code . . . . . . . . . . . . . . . . . . . . . . 86
6.4.3 Prune unreachable code . . . . . . . . . . . . . . . . . . . . . . . . 88
6.4.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

6.5 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.1 Crawling pages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
6.5.2 Storing page snapshots . . . . . . . . . . . . . . . . . . . . . . . . . 92
6.5.3 Serving page snapshots . . . . . . . . . . . . . . . . . . . . . . . . . 92

6.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
6.6.1 Storage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

6.6.1.1 Storage for resources . . . . . . . . . . . . . . . . . . . . . . 94
6.6.1.2 Storage for indices . . . . . . . . . . . . . . . . . . . . . . . 95

6.6.2 Fidelity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
6.6.3 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

6.7 Verifying Page Properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
6.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.9 Artifact Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
6.10 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

7.1 Lessons Learned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.1 JavaScript’s negative impacts on web pages are not limited to poor

web performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.1.2 Differences in page loads in different contexts can be leveraged to

overcome various issues with the web . . . . . . . . . . . . . . . . . 107
7.1.3 Fine-grained analysis is feasible with the legacy web . . . . . . . . . 108

7.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
7.2.1 Clean slate design for the web . . . . . . . . . . . . . . . . . . . . . 109
7.2.2 Web performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
7.2.3 Crawling the web at scale . . . . . . . . . . . . . . . . . . . . . . . 112
7.2.4 Efficient web archiving . . . . . . . . . . . . . . . . . . . . . . . . . 113

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

viii



LIST OF FIGURES

FIGURE

3.1 Input and output of the JavaScript analysis engine . . . . . . . . . . . . . . . . 18

4.1 Page load times, with or without network delays (shaped vs. unshaped) and when
using all 8 CPU cores or only 4 of them. . . . . . . . . . . . . . . . . . . . . . . 25

4.2 Fraction of browser computation accounted for by JavaScript execution . . . . . 26
4.3 Difference between server-side and client-side techniques . . . . . . . . . . . . . 27
4.4 Fraction of JavaScript that matches across two loads of the same page one hour

apart. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
4.5 Reusable JavaScript execution across different time intervals and across different

sets of sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.6 Reusable JavaScript execution across pairs of pages. . . . . . . . . . . . . . . . 32
4.7 JavaScript execution time breakdown for landing pages of 150 out of Alexa top

500 sites loaded at a time gap of 1 day. . . . . . . . . . . . . . . . . . . . . . . . 33
4.8 High level proposed design for enabling client-side reuse of page load computations. 35
4.9 Additional CPU cores have minimal impact on load times . . . . . . . . . . . . 39
4.10 Computation model for Chromium browsers. . . . . . . . . . . . . . . . . . . . 39

5.1 Tradeoff between fidelity and performance with different crawlers. . . . . . . . . 44
5.2 Compared to a dynamic (i.e., Chrome-based) crawler, a static crawler both fails

to fetch some resources and fetches many additional resources . . . . . . . . . . 47
5.3 Snippet of JS code from www.usnews.com. . . . . . . . . . . . . . . . . . . . . . 48
5.4 Code snippet from www.chicagotribune.com showing the two causes for a static

crawler’s extra resource fetches. . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.5 A comparison of average CPU, network, and disk utilization by static and dy-

namic crawlers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.6 For the sites in Corpus10k, most JavaScript files appear on multiple pages and

a script typically fetches the same resources on all the pages which include that
script. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

5.7 Sprinter crawls the pages on any site in four phases which alternate between
browserless and browser-based crawling. . . . . . . . . . . . . . . . . . . . . . . 52

5.8 Example signature for JavaScript code from www.nytimes.com. . . . . . . . . . . 54
5.9 Cache hit rate for JavaScript files that initiate fetches for other URLs. . . . . . 56
5.10 Approximate set cover captures a large fraction of JS files (“JS”), while the

number of pages in the set cover (“Pages”) are a small fraction of the total
corpus size. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

5.11 Overview of my Sprinter implementation. . . . . . . . . . . . . . . . . . . . . . 60

ix

www.usnews.com
www.chicagotribune.com
www.nytimes.com


5.12 Comparison of (a) crawling throughput and (b) fidelity of Sprinter against the
three baselines. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

5.13 Number of pages crawled during each of the different phases of Sprinter and the
corresponding throughput achieved in each phase. . . . . . . . . . . . . . . . . . 64

5.14 A timeline of Sprinter’s crawl of Corpus50k, showing the duration and number of
pages crawled in each phase. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

5.15 Incremental benefit offered by each of the techniques used in Sprinter. . . . . . 66
5.16 Percentage of pages selected by Sprinter for browser-based crawling as a function

of number of pages crawled per site . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.17 Sprinter’s crawling throughput as a function of the number of pages per site. . . 68
5.18 Sprinter can crawl pages faster by leveraging signature information from previous

crawls of the same corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6.1 Across the landing pages of 300 sites, distribution of fraction of bytes on the page
accounted for by JavaScript. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

6.2 Examples of page snapshots loaded from IA . . . . . . . . . . . . . . . . . . . . 75
6.3 Comparison of errors thrown during page loads from the web and from IA. . . . 77
6.4 Fraction of total bytes accounted for by JavaScript as a function of number of

pages in my corpus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.5 www.nytimes.com screenshots show two different infographics, which can be tog-

gled by clicking the button on top of the infographic. . . . . . . . . . . . . . . . 79
6.6 www.money.cnn.com contains stock market information for S&P 500 and S&P

1500 which can be toggled by using the tab icon on top. . . . . . . . . . . . . . 80
6.7 Storage overheads of other formats . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.8 For every page in Corpus3K, fraction of resource requests which cannot be

matched with any crawled resource. . . . . . . . . . . . . . . . . . . . . . . . . 85
6.9 Code snippet from www.nytimes.com where the main frame first fetches a third-

party JavaScript file hosted on www.js.sentry-cdn.com and then cautiously invokes
a function from it inside an if condition. . . . . . . . . . . . . . . . . . . . . . . 88

6.10 High-level overview of Jawa. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
6.11 Total storage necessary to store corpus of 1 million page snapshots. . . . . . . . 93
6.12 When snapshots of 3K pages are served, (a) number of resources requested by

client which are not stored, and (b) fraction of resources stored for a snapshot
which are not fetched by the client. . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.13 Comparison of crawling throughput, normalized to that offered by ArchiveBox. 98

x

www.nytimes.com
www.js.sentry-cdn.com


LIST OF TABLES

TABLE

4.1 Potential parallelism speedups with varying numbers of cores . . . . . . . . . . 40

5.1 Comparison of number of APIs that need to handled by Sprinter and a lightweight
browser. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.1 Overview of the main insights that influence my design of Jawa. . . . . . . . . . 82
6.2 Comparison of indices maintained by IA and Jawa . . . . . . . . . . . . . . . . 92
6.3 Writes on crawling index and reads on serving index . . . . . . . . . . . . . . . 99

xi



ABSTRACT

We are increasingly relying on the internet and specifically the world wide web (WWW) to

exchange information and access services. Despite its ubiquitous use, there are two key

barriers to accessing information that is shared on the web: 1) Many web pages suffer from

poor performance with respect to both end-user loading latency and crawling throughput as

observed by large-scale web crawlers. 2) Many web pages cease to exist over time causing a

significant fraction of published information to no longer be available.

My dissertation addresses these issues by employing fine-grained data-flow and control-

flow analysis of web computations, specifically JavaScript execution. Using this analysis, I am

able to extract and modify JavaScript runtime behavior during web page loads and leverage

this ability to build a number of web systems. First, I propose a client-side computation

caching system that stores results of JavaScript (JS) execution to reduce compute delays

and improve web page load times. I show that up to 85% of JavaScript runtime can be

skipped by using such a computation cache. Second, I demonstrate that legacy JavaScript

code has untapped potential for parallelization across multiple cores of modern smartphones

to improve page load times. I show that 88% speedup in JS execution can be achieved

by parallelizing execution on 8 cores of a given mobile device. Third, I built Sprinter, a

distributed web crawler that crawls the web at 5 times the rate of traditional browser-based

crawlers while preserving perfect fidelity. Sprinter accomplishes this by carefully selecting a

subset of pages on any site to be crawled which it crawls using a browser, and caches the

corresponding compute. It then performs browser-less crawling of the remaining pages on

that site using those cached computations. Finally, I built Jawa, a web archival crawler that

reduces the storage overhead of web archives by 41% while eliminating all fidelity issues.

Jawa accomplishes this by exploiting the differences between live and archived pages, and

accurately identifying and patching the sources of non-determinism that impair JavaScript

execution on archived pages.
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CHAPTER 1

Introduction

The unique ability of the human species to efficiently communicate and preserve knowledge

has led to its significant advancement. For most of our existence, such discourse occured

either through word of mouth or written text. In the modern era, however, much of this

communication occurs on the internet. The internet has helped overcome the space-time

barriers to information exchange by exponentially reducing the delay incurred by alternate

means of communication.

A key component of the internet that enables such communications is the world wide

web (WWW). A vast majority of the information and services that we consume today are

exchanged over the web. Common examples include online shopping, e-banking and the

exchange of published information in the form of research articles and digital journals. As

of today, there are over 2B websites hosting around 6B webpages, and around 4.5B people

have interacted with these pages to date [41]. Each day this number grows and our reliance

on the web is only expected to increase with time.

1.1 Problems with the Modern Web

Despite decades of work to improve the web, it continues to be impeded by two major issues.

• Poor Performance. This manifests itself in two distinct ways. First, poor latency for

web page loads, as observed by individual users loading pages on mobile devices such as

smartphones. Despite accounting for more than half of global web traffic [97, 100, 182],

mobile web performance in the wild continues to operate at a far slower pace than

users are willing to tolerate [78, 82, 108]. Not only does this result in poor quality of

experience for users and high web page abandonment rates [117], but also millions lost

in revenues for major web service providers [101].
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The second performance issue is poor crawling throughput as observed by large-scale

web crawlers. These crawlers power a large number of modern services such as search

engines and web archives and they enable web researchers to study the web. Further,

recent smart-assistants and generative AI tools rely on data from the web to train

various kinds of machine learning models. To keep up with the web’s rate of the

change in terms of the content on existing pages as well as additions of new pages, it

is critical that web crawlers crawl pages at an extremely high throughput.

• High Ephemerality. The modern web notoriously suffers from link rot i.e., a page

that existed at a particular URL ceases to exist at some point in the future. For exam-

ple, millions of external links included in Wikipedia articles no longer work [36, 119].

The net result is that the work that authors of web pages put into identifying which

external pages they should link to is going to waste over time. In turn, users end up

missing out on the carefully selected context and pointers to related information/ser-

vices that web publishers intended to provide them.

To make external links on web pages resilient to link rot, the state-of-the-art solution

is to capture a snapshot of every linked page when a link is created and to serve this

page snapshot to users who may choose to visit this link in the future. For example,

when a web publisher wishes to link to a page, they can ask web archives to crawl the

page and store a copy. The publisher can then link to this stored page snapshot on

the archive, which remains unmodified over time. There are around 150 web archives

in the US alone, with Internet Archive being on of the biggest archives, storing 600B

web pages, and other digital information like software, audio and video files [30].

Despite such massive web archiving initiatives, most archives suffer from two funda-

mental issues. First, due to the consistently growing size of web pages, web archives

must spend large amounts of money on their storage costs. Since most web archives

are non-profit institutions, this increasing cost restricts the portion of the web they

can archive. Resulting poor web coverage means that for a large number of pages on

the live web, not one single archival copy exists. Second, a large number of pages when

loaded from the archives suffer from poor fidelity. The final rendered page is often

missing a number of critical resources such as images, or the content is improperly laid

out due to various kinds of runtime errors.
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1.2 Thesis Statement and Contributions

In this dissertation, I propose a number of optimizations that mitigate both the above issues

of the web. In doing so, this dissertation supports the following thesis statement – It is

practical to speed up web page loads both for individual users and web crawlers and enable

efficient web archiving without any loss in fidelity by leveraging runtime behaviors of web

computations which can be accurately and efficiently extracted with the help of fine-grained

program analysis.

With this ability to understand and modify runtime behavior during web page loads

in various contexts, I have built systems that reduce the page load times of web pages as

perceived by end-users, improve crawling throughput of web crawlers and reduce storage

overhead of web archives while simultaneously improving fidelity of archived page loads.

The key contributions can be summarized as follows:

1. Improve web page load times by reducing computation delays. Over the

last few decades, web pages have consistently increased in size. As a result, not only

is there an increase in network utilization to download more page bytes, but also an

increase in the amount of client-side computations performed while loading these pages.

I studied both the cause of this delay and its net impact on the end-to-end latency of

web page loads. Specifically, I found that despite eliminating all network delays, client-

side computation alone degrades quality of experience beyond what users are willing

to tolerate. Moreover, JavaScript execution is the key contributor to this client-side

computation delay.

To reduce the JavaScript execution overhead while preserving correctness I propose two

separate optimizations. First, JavaScript memoization, where I envision augmenting

the client browser with a computation cache that stores results of JavaScript executions.

This cache can be used to identify and skip repeated executions across loads of the same

page. This client-side cache is compatible with legacy web pages as it is maintained

entirely on the client-side, requiring no support from web servers. My analysis across

roughly 230 pages reveals that, even on a modern smartphone, such an approach could

reduce client-side computation by a median of 49% on pages which are most in need

of such optimizations.

Second, parallelize JavaScript execution across different cores available on modern

smartphones. As a first step towards this vision, I identify which functions can be safely

parallelized depending on the state they access. I discovered that modern web pages

are highly amenable to safely reaping parallelism speedups. For example, offloading

computations across 8 cores of a flagship phone can speedup JavaScript execution
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time by 88%. Multiple cores on smartphones are now common in both developed and

emerging markets [? ]

Investigating the potential benefits of both optimizations required building a custom

JavaScript analysis framework. This framework takes JavaScript code as input and

outputs 1) a modified JavaScript code and 2) a runtime library. The instrumented

code enabled me to extract the relevant runtime behaviors in order to perform the

above analysis. I describe this analysis engine in more detail in chapter 3.

2. High-throughput high-fidelity crawling of the Modern Web. Increasing client-

side computations have a detrimental impact on the crawling throughput of web

crawlers as well. Increasing JavaScript bytes on pages implies that the rendering

process is increasingly relying on client-side execution of JavaScript in order to dis-

cover resources and add visual and functional components to the page. As a result,

traditional static crawlers, devoid of any JavaScript interpretation capabilities, miss

out on critical resources when crawling pages. Conversely, replacing static crawlers

with browser-based crawlers results in exponentially higher compute overheads which

yields a much lower crawling throughput in exchange for the accurate discovery of all

resources required to render any page.

To resolve this performance-fidelity trade-off, I built Sprinter, a new hybrid web crawler

that efficiently combines browser-based and browserless (static) crawling to get the

best of both. The key to Sprinter’s design is my observation that crawling workloads

typically include many pages from every site that is crawled and, unlike in traditional

user-facing page loads, there is significant potential to reuse client-side computations

across pages. Taking advantage of this property, Sprinter crawls a small, carefully

chosen, subset of pages on each site using a browser, and then efficiently identifies and

exploits opportunities to reuse the browser’s computations on other pages. Sprinter

was able to crawl a corpus of 50,000 pages 5x faster than browser-based crawling, while

still closely matching a browser in the set of resources fetched.

3. Reducing storage overhead and eliminating fidelity issues of web archives.

JavaScript on web pages does not only negatively impact its performance. It turns

out that it is detrimental to web archival as well. Increasing JavaScript bytes per page

implies an increasing storage cost of archiving each page. More importantly, the non-

determinism introduced by JavaScript often causes archived pages to load with poor

fidelity, i.e., runtime errors and missing resources. To address these problems, I built

Jawa, a new design for web archives that significantly reduces the storage necessary

to save modern web pages while also improving the fidelity with which archived pages
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are served. Key to enabling Jawa’s use at scale are my observations on a) the forms of

non-determinism that impair the execution of JavaScript on archived pages, and b) the

ways in which JavaScript’s execution fundamentally differs between live web pages and

their archived copies. On a corpus of 1 million archived pages, Jawa reduces overall

storage needs by 41%, when compared to the techniques currently used by the Internet

Archive.

1.3 Dissertation Plan

This dissertation is organized as follows: In chapter 2, I describe the page loading process

of modern web pages and the different components involved. I explore the loading process

in three different contexts: user-facing page loads, large-scale crawling by web crawlers, and

storage and retrieval of web pages by web archives. In chapter 3, I describe the design and

implementation of a custom JavaScript analysis engine that will be used in the remainder of

the dissertation. In chapter 4, I describe the two optimizations to reduce computation delays

for end-user page loads: client-side memoization and parallelization of JavaScript execution

on mobile devices. In chapter 5, I describe the design of Sprinter, a web crawler which crawls

pages at 5 times the rate of traditional browser-based crawlers while ensuring near perfect

fidelity of crawls. In chapter 6, I describe the design of Jawa, a web crawler that significantly

reduces the storage cost of web archiving while eliminating any JavaScript induces fidelity

issues. I conclude the dissertation and discuss future directions in chapter 7.
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CHAPTER 2

Background and Related Work

2.1 Background

I begin by describing the web page loading process in three different execution contexts.

First, user-facing page loads. Second, web crawlers performing large-scale crawls of the

web. Third, storing and loading archived web pages. For each of the context, I describe the

performance metrics that are of relevance.

2.1.1 User-facing page loads

The most common form of access to information on the web is individual users loading pages

using different devices such as smartphones, tablets, laptops etc. To visit any particular page,

a user enters the page URL inside a web browser. This browser is responsible for fetching

and rendering the page on the client device. Some of the most commonly used browsers are

Google Chrome, Firefox and Microsoft Edge.

HTML Tree. The first step in loading a web page is to download the HTML file cor-

responding to the page URL. The HTML file is written in a tree-like syntax [26], which

is parsed by the browser to create a document object model (DOM) tree. There is a 1-1

mapping between the HTML tree and the DOM tree. While parsing the HTML tree, the

browser might encounter URLs to various embedded resources. Each of these resources are

fetched over the network and processed according to their type.

JavaScript. Using <script> tags HTML files can include JavaScript code. JavaScript

is a managed language which is supported by all modern web browsers, and used by page

developers to create more dynamic and customized web pages. By default, JavaScript tags

block the HTML parser. If the JavaScript code is not inline, then the browser must first

fetch the resource file, incurring network latency. It then offloads control to the JavaScript
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execution engine embedded inside the browser to parse, compile and execute JavaScript code.

This code can access the HTML tree, while also initiating more resource fetches.

To sidestep the network latency incurred while fetching JavaScript resources, modern

HTML syntax allows for special tags such as async or defer which allow for fetching

JavaScript resources asynchronously.

Cascading stylesheets. A web page may use cascading stylesheets (CSS) to define

the visual presentation of the HTML tree. These files are contained within the <style>

tags. Similar to JavaScript code, these style files can also be embedded inline or contained

inside separate stand-alone files. CSS files also follow a tree-like syntax where a style for a

given node automatically gets applied to all the children nodes (unless otherwise specified)

resulting in the ”cascading” aspect of these stylesheets.

Other embedded resources. Other common media types on web pages include images,

fonts, videos, and JSON-based text files. The browser fetches these resources asynchronously,

so as to not negatively impact the page loading performance. Apart from these, the latest

HTML syntax allows for over 1000 media types [35].

Frames. A single web page can consist of multiple frames. The very first HTML file

fetched when a page is visited represents the top-level frame for that page. The top-level

frame can embed nested frames using the <iframe> tag, where each frame is represented by a

unique HTML file. Frames are used for isolating content from different domains, that might

be rendered on a given page. Such isolations are critical for various security reasons [199].

Page load timeline. Once the browser completes the construction of the DOM

tree (by fully parsing the top-level HTML file and all embedded resources), it fires a

domContentLoaded event. While creating the DOM tree, the browser also creates a style

tree from the CSS style rules to create a CSSOM tree (CSS object model tree). Once both

the trees are created, the browser combines them to create a hybrid tree where every DOM

node is annotated with the corresponding style. Using this hybrid tree and the screen dimen-

sions of the client device, the browser creates a render tree, wherein it computes the location

(x-/y-coordinates) of every visual element of the tree. Note that not all nodes of the tree are

visual elements, for e.g, <li> is a visual DOM node, whereas <head> is not. The final step

is to paint this render tree on the screen. Upon completion of this paint task, the browser

fires the onLoad event indicating that the entire page load process has been completed.

Performance and correctness metrics. For end-user page loads, the key performance

metric is the latency of page loads, i.e., how long does it take for the web page to complete

loading? However, there is no fixed definition of what constitutes a complete page load.

There exists a number of metrics that can be used to estimate when a page has finished

loading. Some of the most commonly used metrics are page load time (PLT), speed index,
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above-the-fold time, largest contentful paint etc. Each metric is determined by the firing of

different events on the page. For example, PLT is measured as the time between the onload

event and the start of the page load.

The correctness of the web page is defined with respect to two components: visual and

functional. A correct visual component implies that the web page visually looks identical

to what is expected by the web developer. Since modern web pages can be customized to

different users, this correctness accounts for all the possible expected variations in the visual

component. The functional component accounts for all the interactions on the page. A web

page loads correctly from a function point of view if all the interactions on the page work as

expected.

2.1.2 Web crawling

To make the most of the enormous trove of information available on the web, all of us today

rely upon a range of efforts. Web search engines help users find pages relevant to their needs.

Data from the web serves as input to smart assistants such as Siri and Alexa, and is used

to train generative AI models that can answer user questions. Web archives store repeated

snapshots of web pages to document changes over time and to preserve the content of deleted

pages. Researchers continually study the web to help improve its performance and security.

All of the above is enabled with the help of scalable web crawlers. Web page loads initiated

by web crawlers can be starkly different from the page loads initiated by individual users.

How a web crawler crawls any given page is dictated by the information that the crawler

wants to extract. For example, if a crawler simply wants to download all of the resources

on a given page, then it would crawl the page by first downloading the page’s HTML, and

then recursively fetching all embedded links to images, CSS stylesheets, scripts, etc. In

some cases, simply downloading the page’s HTML suffices. Often times, crawlers want to

interact with the page, for example trigger some buttons, menu icons on the page or take a

screenshot of the final rendered page. In either case, the crawler has to load the page using

a web browser or a tool that emulates a browser [57] in order to capture that information.

Similar to end-user page loads, there is no single event that indicates when crawling a

given page has completed. If the crawler wants to capture a visual screenshot of the entire

page, then the page is fully crawled only after the onLoad event is fired and the page has

finished rendering. However, if the crawler wants to capture post page load interactions,

then the crawl finishes once the crawler is done triggering the relevant interactions on the

page, which in turn needs to wait for the page to finish loading.

Performance and correctness metrics. Large-scale web crawlers do not care about the
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latency of individual page loads, as they are often crawling multiple pages in parallel [80, 118,

122, 148, 194]. Instead, the key performance metric for crawlers is the overall throughput

which is defined as the number of pages crawled per second.

Correctness of the crawling task is defined with respect to the output. For example, if the

crawler only cares about taking screenshots of the final rendered page, then that screenshot

needs to be identical to what one would get while crawling the page using a browser.

2.1.3 Web archival

URLs are brittle pointers to information on the web. Over time, a page may cease to exist

at the URL where it was originally available [138, 200] or the content available at that URL

might change due to the page being modified [172, 105].

Therefore, web archives play a key role in the web ecosystem, enabling users to lookup

the content that existed at any particular URL at various times in the past. Web archives

are used for a wide variety of use cases, such as web-data analytics, genealogical analysis,

and even as legal evidence [129]. To support these uses, a number of organizations—cultural

heritage institutions, national libraries, and public museums—operate web archives to ensure

long-term preservation of content on the web. A recent survey estimates that there are 119

web archives in the United States alone [104].

The largest and most popular of these archives, Internet Archive (IA), has archived over

600B web pages to date, storing data in excess of 100 petabytes [31]. It repeatedly crawls

web pages over time and saves many snapshots of every page. For every page snapshot,

IA first downloads all resources (e.g., HTMLs, CSS stylesheets, JavaScripts, images) on the

page). It stores these resources after rewriting all URL references to point to the copy hosted

by the archive. When a user wants to later view any stored snapshot of a page, the user’s

browser loads the snapshot from IA in the same manner as it would load any page on the

live web. Other archives [44, 39] only store the screen capture of the final rendered page as

an image or PDF file.

Performance and correctness metric. Web archives care about a number of perfor-

mance metrics. Since these archives rely on web crawlers to capture and store web pages,

high crawling throughput is critical to efficiently keep up with the growth rate of the web.

Post crawling, it is important that the storage cost incurred to preserve these pages is low.

This helps to store a larger number of pages and to achieve a better coverage of the web.

Also, most of these archives are run by non-profit institutions and therefore a lower storage

cost allows them to stay afloat for longer. Finally, spending all of these resources on captur-

ing the web is of little use if this information cannot be accessed accurately. Archived pages
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are expected to mimic the live page in most visual and functional aspects. This property is

referred to as the fidelity of archived pages and one of the primary concerns of web archives.

2.2 Related Work

2.2.1 Faster web page loads

Prior work on faster web page loads either optimizes for lower compute overhead, network

delay, or both.

Reducing web computation overheads. Prior measurement studies have analyzed the

performance of mobile web browsers [207, 160? , 177]. They have found browser compu-

tations to be a primary contributor to high page load times. In response to these studies,

three separate lines of work have been done to mitigate these delays.

First, certain sites have manually developed mobile-optimized versions of their pages

using restricted forms of HTML, JavaScript, and CSS, e.g., according to the Google AMP

standard [115, 132]. This requires web developers to rewrite a given web page respecting

this new specification.

Second, some systems [71, 210, 175, 89] offload computation tasks to well-provisioned

proxy servers, which return computation results that are fast to apply. Though effec-

tive, such systems pose significant scalability challenges to support large numbers of mo-

bile clients [196]. Worse, by relying on (often third-party) proxy servers, these systems

violate HTTPS’ end-to-end security guarantees [170]; clients must trust proxies to preserve

the integrity of their HTTPS objects, and also must share private Cookies to accelerate

personalized page content.

Third, systems like Prophecy [165] enable servers to return post-processed page files that

elide intermediate computations. However, content alterations with these systems may break

page functionality [65], particularly for pages that adapt execution based on client-side state

that servers are unaware of, e.g., localStorage.

Parallelization efforts. ParaScript [154] and others [159] leverage new runtimes and

compiler information to speculatively parallelize iterations for hot loops in long-running

JavaScript code (not page loads, where compilation overheads are too costly). Zoomm [87]

and Adrenaline [147] leave JavaScript execution unchanged, and instead parallelize tasks

such as CSS rule parsing. Lastly, several libraries [61, 64] aid developers in writing parallel

JavaScript code by abstracting inter-worker messaging. However, developers are responsible

for identifying and enforcing (safe) parallelism decisions.

Network optimizations for the web. Systems such as Alohamora [133], Vroom [187],
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and others [99, 208] leverage HTTP/2’s server push and preload features to proactively

serve files to clients in anticipation of future requests (thereby hiding download delays).

Fawkes [150] develops static HTML templates that can be rendered while dynamic data is

fetched. Polaris [164] and Klotski [86] reorder network requests to minimize the number of

effective round trips while respecting inter-object dependencies. Cloud browsers [197, 170,

163] shift network round trips to wired proxy server links. Content delivery networks [173,

106] serve popular objects from proxy servers that are geographically close to clients, while

compression proxies [65, 195, 176] selectively compress objects in-flight between servers and

clients. Lastly, a handful of systems prefetch content according to predicted user browsing

behavior [179, 146, 213].

Concolic execution for web optimization. Oblique is a third-party web accelerator

which enables secure outsourcing of page analysis. Oblique symbolically executes the client-

side of a page load, generating a prefetch list of symbolic URLs. Each symbolic URL describes

a URL that a client browser should fetch, given user-specific values for cookies, the User-

Agent string, and other sensitive variables. Those sensitive values are never revealed to

Oblique’s analysis server. Instead, during a real page load, the user’s browser concretizes

URLs by reading sensitive local state; the browser can then prefetch the associated objects.

Experiments involving real sites demonstrate that Oblique preserves TLS integrity while

providing faster page loads than state-of-the-art accelerators. For popular sites, Oblique is

also financially cheaper in terms of VM costs.

Compute memoization. Memoization is widely used across different kinds of application.

Prior work has leveraged memoization techniques to reduce compile-time latency [201, 130]

, improve runtime performance [111, 204], minimize scheduling overheads [92], and enable

faster auditing of web applications [135].

2.2.2 Web crawling

Scalable web crawling. The engineering issues associated with web crawling are well

studied [122, 216, 66, 139, 79, 80]. Some of these crawlers [139, 80, 79] are able to achieve a

crawling throughput of upwards of 1000 pages per server. Lee et al [139] designed IRLbot

which was able to crawl 1800 pages per second on a single server, crawling over 6 billion

pages in 41 days. UbiCrawler [79] is a scalable distributed crawler that is platform-agnostic

and supports features such as graceful degradation in the presence of faults. BUbiNG [80]

claims to be the first open-source crawling software which scales linearly with the number of

servers achieving throughput of 1000 pages per second per server.

All of these crawlers focus on efficient URL discovery and how to minimize the number of
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spam pages crawled. Also all of these crawlers only download the HTML file for every page

URL.

Web crawling algorithms A large amount of prior work has explored the best algorithm

to discover new URLs to crawl. The earliest work used breadth first [184] and depth first [94]

search to discover new URLs. More advanced algorithms used backlinks-based context graphs

to estimate the likelyhood of a page leading to a relevant page, even if the source page itself

is not relevant. [155] One crawler explored using lexical knowledge, specifically hierarchical

topic classifier to select links for crawling [88].

Incremental crawling A large amount of prior work [96, 148, 90, 203] has focused on

incremental web crawling, i.e., how to efficiently recrawl pages. These crawlers aim increase

the overall freshness of the crawled dataset, i.e., reduce the likelyhood of crawling the same

page twice when there is little to no change in the page content between the two crawls. These

crawlers used various different models to measure the change in page content over time, and

often rely on a heuristic based threshold to identify changes that qualify as significant enough

change in the page content.

Resource bottlenecks of large-scale distributed systems. Prior work has studied the

bottlenecks in scaling various distributed data processing workloads such as sorting [186],

data analytics [178], and distributed deep learning [206, 192, 68]. These efforts first identify

the hardware resource (CPU, GPU, network, or disk) that constrains overall performance,

and then propose solutions to optimize the utilization of that resource.

2.2.3 Web archiving

Impact of JavaScript on web crawlers. Prior work has shown that it is important

for web crawlers to execute JavaScript when crawling pages, both in the context of web

archives [83, 84, 85] and web search engines [1], else many important resources on a page

will often go uncrawled. Our work highlights that, due to the non-deterministic execution

of JavaScripts, archived pages often have poor fidelity even when pages are crawled using a

browser which executes all scripts on every page.

Beyond executing JavaScripts while crawling a page, systems like Conifer [18] also save all

resources on the page that are fetched while the user is interacting with the page. However,

such systems are designed for private web archival, i.e., a user saves a page and its constituent

resources for the user’s own personal use later. If users load a page archived by a different

user using a different device/browser, they will face the same fidelity issues seen on the

Internet Archive.

Coverage of web archives. Many measurement studies [67, 70] have demonstrated
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that web archives are far from comprehensive in archiving all pages on the web. Prior

work [151, 134] has attempted to address the incompleteness caused due to large portions

of the web not being openly available (e.g., behind paywalls) and requiring user logins (e.g.,

social media). In contrast, I seek to enable web archives to improve their coverage by reducing

the costs associated with archiving any corpus of pages; thereby, for the same budget, a web

archive can crawl and save more pages.

Supporting bulk processing of archives. Web archives are often used by researchers

to perform large scale analyses of historical information. Xinyue et al. [211] demonstrate the

performance penalties of the WARC format for such batch processing workloads, and many

systems [144, 5, 125] have been developed to enable programmatic analysis of large corpuses

without needing to access each individual resource on every page.

Archives as data source. A large amount of prior work has studied the efficacy of

web archives with respect to their utility in specific tasks. For example, Gomes et al [114]

studied how useful web archives is for humanities scholars, specifically historical researchers.

Their work explores a number of use cases that illustrate how web-archived information

can support future historical research and discuss a number of pre-existing tools that can

facilitate this research. Other work [124] has studied a more general scholarly use of web

archives. The authors have defined key characteristics of scholarly use of digital sources and

translated those into a set of key requirements for web archives. In conclusion, they show

how current web archives fail to meet the evolving scholarly requirements, necessitating new

web archival methods.

JavaScript record and replay systems. A number of prior systems [72, 158, 190]

enable users to record and replay JavaScript execution, both in the context of browsers [72]

and independent JavaScript programs [190]. These record and replay tools are critical for

debugging JavaScript based errors. Therefore, to ensure high fidelity replay, all of these

systems identify and patch all sources of non-determinism to match the recorded version.

Code reachable through event handlers. JavaScript testing tools automate the process

of testing by dynamically constructing test cases to achieve maximum code coverage. A

key part of this process is identifying all code that can be potentially executed by event

handlers. Doing so requires heavyweight symbolic execution analysis [136], or exhaustively

going through all possible orders and inputs [74].

Program analysis on the web. JavaScript on the web has been notorious for various

kinds of security, privacy and performance issues. A large body of prior work focuses on

addressing such issues by relying on sophisticated program analysis techniques [205, 214].

Such techniques, however, incur a high computation cost. This is why, in solutions for

optimizing web performance [136, 164, 149] which use computationally expensive JavaScript

13



analysis techniques, web servers perform such analysis in the background to mitigate the

impact of their overheads. For archival systems, even if crawled JavaScript resources are

processed offline, the cost for computationally heavyweight processing is not sustainable.

Dead code elimination on the web. One way to reduce the storage cost of web pages is

to eliminate dead code (i.e., code that is never reachable) from resources such as JavaScript

and CSS. Tools [102, 52] which do so using static analysis are widely used.
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CHAPTER 3

JavaScript Analysis Engine

To overcome the various performance and archiving issues of the modern web, I turned to

a fine-grained understanding of the client-side computations that are incurred during web

page loads. For example, to reduce client-side computation delays by eliminating redundant

computations, one needs to identify which computations act on the same input and produce

the same output. Modern browsers such as Chrome and Firefox, provide a very high-level

information about client-side computations incurred during the page loading process. For

example, Chrome provides a breakdown of the total client-side computation with respect

to the various computation tasks such as parsing, compiling, JavaScript execution, painting

and rendering. If one wants to dig deeper, Chrome’s JavaScript profiler can provide runtime

information about the various JavaScript functions executed during the page load. However,

both pieces of this information are available only after the page has finished loading. There

is no web API that would allow a web developer to inspect different properties of the runtime

during the page load itself.

To overcome these shortcomings of the modern browsers and their managed runtime

APIs, I built a custom JavaScript analysis engine. This engine enables me to extract various

different properties about JavaScript execution during and after page load, for example,

what variables are declared in the global JavaScript scope, and their values at the end of the

page load. In the rest of this chapter, I describe the main purpose of such an engine, and

our implementation methodology.

3.1 Objective

The high-level objective of the analysis engine is to identify and extract data-flow and control-

flow information of JavaScript executions performed during web page loads. Data-flow in-

formation consists of all the program state that was accessed, specifically the variables read
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or written, the corresponding values at the time of the access, and a reference (or the under-

lying address) for that variable. Control-flow information, on the other hand, accounts for

which parts of the program were executed, and the order of execution. For example, which

functions were executed, and which code branches were taken within those functions. Both

control-flow and data-flow information can be tracked at various different granularities. For

example, a finer granularity would involve tracking data-flow and control-flow at an instruc-

tion level, i.e., which state was accessed by any given instruction, and what other instructions

preceded and succeeded the execution of the given instruction. A coarser granularity can

track the same information at a JavaScript file level.

With the help of such information about JavaScript runtimes, I was able to identify

various optimization opportunities. For example, having access to the state read (inputs)

and written (outputs) by every JavaScript function on the page, I was able to identify

the potential benefits of computation memoization. When the same JavaScript function

is invoked multiple times with the same inputs, one can store the corresponding outputs,

so that for each future invocation, the execution of the function can be skipped by simply

reusing the previously generated outputs. Skipping JavaScript execution in this manner will

reduce the total computation while preserving all correctness properties of the execution,

i.e., the execution proceeds in a manner identical to how it would without any memoization.

3.2 Implementation

3.2.1 Methodology

To extract runtime properties of JavaScript execution within a browser, I have to inject in-

strumentation code since there is no browser API that already provides such a functionality.

Instrumentations can be applied at two different places. First, since most browsers’ source

code is openly available, one could modify the browser code to perform such tracking. For

example, in the case of Chrome, V8, which is Chrome’s JavaScript interpreter, could be mod-

ified to track different runtime behaviors. Second, instrumentation code could be injected

directly into the JavaScript code itself to perform application level tracking. This is made

feasible by the flexibility of the JavaScript language which supports prototype patching and

overriding in-built APIs with the help of dynamic shims [121].

Both in-browser and in-language instrumentations have been widely used by prior

work [164, 165, 169] to extract different kinds of runtime behaviors about the browsers in gen-

eral. Both approaches provide different trade-offs. In-browser instrumentation is preferable

from a stealth perspective as the runtime code has no means of detecting the instrumented
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code. In-browser code is also less likely to inflate the execution time of the instrumented

code since it is written in a lower-level language (C or Rust) which has better performance

than dynamic languages such as JavaScript. Conversely, in-language code is easier to in-

tegrate and modify over time. This is because modern browser code, albeit open sourced,

is extremely complex with millions of files and 1000s of dependencies. Even small changes

in the code can cause compilation or correctness issues. For example, it took me multiple

days to identify the exact portions of the Chrome’s source code that had to be modified in

order to increase the size of the client-side local storage [2]. For similar reasons, I chose to

instrument the language code instead of the browser code.

3.2.2 Analysis framework

The JavaScript analysis framework consists of two parts, a static and a dynamic analyzer.

The static analyzer inspects the JavaScript code, identifies where and what instrumentation

code to inject. This analysis is done prior to the JavaScript file being compiled and executed

by the browser. It can happen either online, i.e., during the page load process itself by

intercepting the JavaScript code enroute to the browser using a man-in-the-middle proxy.

Or it can happen offline, either on the web server side, where the server has instrumented

the file prior to the client’s request for it, or on the client-side where the file might be locally

stored in the browser’s cache.

The dynamic analyzer is essentially a runtime library that is executed alongside the

instrumented code to extract and store the various different runtime properties during the

page load process. This library is also injected in the page source code itself (usually at the

beginning of the HTML file).

3.2.2.1 Static analysis

The static analysis is written as a NodeJS framework. NodeJS offers support in the form of

a large number of third-party libraries that make analyzing and rewriting JavaScript code

much easier. I used the Esprima library [123] to parse JavaScript code and create an abstract

syntax tree (AST). This AST is used to identify points in the code where relevant code can

be injected, for example, function boundaries, function calls, branch statements and more.

The AST is also traversed to identify scopes of the different JavaScript variables used.

JavaScript supports multiple variable scopes. Global scope contains all the variables defined

outside any function, whereas local scope contains all the variables defined inside a function.

JavaScript runtime also supports a closure scope, which is scope inside a nested function,

which persists even after the immediately enclosing function has finished execution. For
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function foo(){
   b = newProxy(b,fn);
   a = newProxy(a,fn);
   a = b.c; // b = {c:4}
}

fn = function(){
    read: function(obj){log(obj,”read”)},
    write: function(obj){log(obj,”write”)}
}

log = [[“b.c”, “read”,”4”],[“a”,”write”,”4”]]

function foo(){
   a = b.c;
}

file.js

file-inst.js

Figure 3.1: Input and output of the JavaScript analysis engine

example, if function B is nested inside function A, then the local scope inside function B can

be accessed by the code inside function A even after function B is done executing. My static

analyzer also maintains a list of all inbuilt JavaScript APIs so as to not mis-classify them

as global variables. For example, the API Array is used to create array objects. From the

perspective of the AST scope analysis, Array can be like any other global variable because

it is not declared inside any scope. To handle such cases, my static analyzer exhaustively

enumerates all inbuilt JavaScript APIs.

Once all the variables in a given JavaScript code are grouped in their respective scopes,

the analysis framework inserts code around their accesses. I use JavaScript proxy objects

to track reads and writes to any given variable. JS proxies also allow me to define what

value is returned when the underlying object is accessed. Using this property, I can eas-

ily implement aliasing. For example, a = b.c is rewritten as b = newProxy(b, fn); a =

newProxy(a, fn); a = b.c. a and b are replace with their proxy counterparts. Moving for-

ward, anytime a or b are accessed, my custom function fn gets invoked which logs their

corresponding values. Also, fn wraps the return object in a proxy object itself, so that all

future accesses of the returned object are tracked. Therefore, when b.c is read, the returned

value is wrapped in a proxy object that is assigned to a. Any future access to b.c using a as

the alias will be automatically tracked. Figure 3.1 contains a listing showing how my static

analyzer rewrites a given JavaScript function.
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3.2.2.2 Dynamic analysis

JavaScript is a dynamically typed language and therefore static analysis can only as-

sist so much in extracting runtime properties. Certain JavaScript APIs such as eval or

document.write can cause the runtime to compile and execute new JavaScript code. For

example, eval(a) will cause the JavaScript runtime to evaluate (i.e., compile and execute)

the string represented by the variable a. Identifying the value of a just with static analysis

is infeasible.

To remedy this, I inject a small runtime library that interacts with the rest of the

JavaScript code at execution time to accurately extract different runtime behaviors. In

the rest of this section, I describe some of the key characteristics of my dynamic analyzer.

Reference management. Being a dynamically typed language, JavaScript doesn’t pro-

vide support for pointers. Therefore, there is no way to get the underlying address of any

given variable. This can cause issues with accurately identify data-flow information for

JavaScript execution. Let’s understand this with the help of an example. In JavaScript, all

non-primitive (non String, Numeric, Boolean data types) objects are assigned by reference.

So when variable a, which refers to an array (a = [0, 1, 2, 3]), is assigned to another variable

b using b = a, then the JavaScript runtime creates a shallow copy, i.e., both a and b refer

to the same object, where b is an alias to a. Modifying b using something like b.push(4),

will cause a to have the new value [0, 1, 2, 3, 4] as well. Now, consider two functions A and

B which write to the variables a and b respectively. Since the JavaScript runtime doesn’t

provide any means to get the address of the underlying object (with the help of a pointer),

my analysis would log two separate variables being written by the two functions. This can

have negative ramifications for certain kinds of analysis, for example, dependency analysis

where one needs to identify functions with write-write dependencies, since A and B would

be falsely annotated to not have any dependencies.

To overcome this limitation, my dynamic analyzer maintains a custom address for each

object allocated on the JavaScript heap. In order to do this, it maintains a key-value map,

where the keys represent the objects and the values respect a unique address for that object.

I simply assign these addresses using a monotonically increasing sequence number, starting

at 0. The keys to this map are unique, i.e., two variables pointing to the same underlying

object will refer to the same value in this map. So in the above example, when variable a is

accessed the first time, it gets added to the key-value map, and gets assigned a new address.

Later when variable b is accessed, upon performing a lookup, my analyzer identifies that this

object was already assigned an address, and therefore returns the same address as that of a.

This helps identifying when same objects are accessed using different aliases.
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Serialization Any information extracted during the JavaScript execution needs to be mi-

grated outside of the browser context and stored on disk for future post-hoc analysis. To

do this, all the tracked information needs to be serialized, i.e., converted to a string for-

mat (referred to as object pickling in some languages). JavaScript provides an in-built API

specifically for this purpose JSON.stringify which converts any given object into a JSON

compatible string. This string can be later parsed using JSON.parse to create a JSON object

from a given string.

Turns out that this JavaScript’s serializer lacks a number of key features necessary to

implement efficient and accurate serialization for the purpose of fine-grained analysis. It is

unable to serialize a number of JavaScript objects such as classes, functions, specific data

types such as Date, RegEx, SharedArrays etc. When any of these objects are passed to the

JSON.stringify function, it returns ”{}” an empty object as the output. It also throws an

error while trying to serialize circular objects, i.e., objects that contain a reference to itself.

Moreover, it doesn’t preserve any reference information during serialization, i.e., all object

references are destroyed during serialization and parsing. These are only some of the most

notable limitations of the default serializer.

To tackle these limitations, I built a custom serializer on top of the default serializer. This

serializer, which I refer to as the omniSerializer, is capable of serializing most JavaScript

objects such as functions, classes and other in-built data types. For example, to serialize a

RegExp object types, I simply extract the underlying regular expression. So when serializing

a variable a, such that a = newRegExp(”. ∗ ”), the serialized output looks something like

”{type: RegExp, source: ’.*’}”. It also embeds reference information during serialization,

and as a result can directly handle circular objects. I also built a custom parser, similar to

JSON.parse so as to be able parse any object stringified using my custom serializer.

Additional properties. Thanks to the flexibility offered by the JavaScript runtime in

modern browsers, apart from extracting runtime behavior, I were also able to control and

modify it. The browser API specifications [152] allow for modification of most of the APIs,

barring a specific few, for e.g, window.document or document.location. This means that

my dynamic analyzer can overwrite most of the in-built APIs to control their behavior. For

example, I can overwrite the Date API to always return the same date value, regardless of

when it was invoked, so as to eliminate the resultant non-determinism. Similar implementa-

tions can be used to modify client-characteristic values such as user-agent, width and height

of the client device etc.

Using a runtime library, I can also trigger various kinds of interaction with the page.

For example, identifying all the existing event handlers for the corresponding events (user

interactions) implemented by the page, and triggering them automatically. Scrolling web
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pages to discover below-the-fold content, and navigating to different parts of the page or to

a different website by interacting with different components of the page.

These JavaScript analysis capabilities enabled by the analysis engine play a critical role

in all of the optimizations I describe in the remainder of this dissertation.
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CHAPTER 4

Making Page Loads Faster By

Reducing Compute Delays

This chapter focuses on improving web page performance from the perspective of individ-

ual users loading pages on mobile device. I begin by studying the impact of client-side

computations on the end to end page load times. I discover that JavaScript execution

disproportionately contributes to the total client-side computations. I then propose two

separate techniques to reduce this JavaScript overhead – execution memoization and exe-

cution parallelization across multiple cores of mobile devices. As a first step towards both

these optimizations, in this dissertation, I estimate the potential for such techniques and the

upper-bound in execution time speedups that can be achieved by them.

4.1 Rethinking Client-side Caching for the Mobile

Web

Recent years have witnessed significant growth in the amount of web traffic generated through

mobile browsing [42]. Unfortunately, mobile web performance has not kept up with this rapid

rise in popularity. Mobile page loads in the wild are often much slower than what users can

tolerate [107], with many pages requiring more than 7 seconds to fully render [23].

A key contributor to slow mobile page loads is client-side computation—in particular,

JavaScript execution—as seen in my measurements (§4.2.1) and in prior studies [161, 187].

Given the importance of fast page loads for both user satisfaction [117] and content provider

revenue [3], much effort has been expended to alleviate this bottleneck by reducing the work

that mobile devices must do to load pages. However, despite their promising results, existing

solutions have (fundamental) practical drawbacks that have hindered adoption.
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• Offloading computation tasks in page loads to well-provisioned proxy servers, which ship

back computation results for clients to apply locally [71, 175, 210], poses numerous security

and scalability challenges. Clients must trust proxies to preserve the integrity of HTTPS

objects, and they must share (potentially private) HTTP Cookies with proxies in order to

support personalization. In addition, proxies require non-trivial amounts of resources to

support large numbers of mobile clients [196].

• Having origin web servers return post-processed versions of their pages which elide in-

termediate computations [165] results in fragile content alternations that may break page

functionality [65]. For example, pages may adapt execution based on client-side state (e.g.,

localStorage); servers are inherently unaware of this state while generating post-processed

pages, and thus risk violating page correctness. Moreover, like proxy-based solutions, this

approach places undue burden on web servers to generate optimized versions for the large

number of pages they serve (including versions personalized to individual users).

We argue that the key to easing deployability is to shift the focus to solutions which only

require client-side changes. Doing so sidesteps the security, privacy, and correctness concerns

discussed above. Moreover, only a handful of browsers need to be updated for most users to

benefit [9].

As a first step towards this vision, in this paper, I ask: how much web computation

can be eliminated by a purely client-side solution? To answer this question, I propose a

rethink of the functionality of client browser caches. While client-side caching has been

a staple optimization in page loads for decades, browsers have used their caches only to

eliminate network fetches; recent caching proposals for improved hit rates share the same

focus [167, 209]. In contrast, I propose that browser caches be extended to enable reuse of

computations from prior page loads.

The idea of computation reuse, commonly known as computation memoization, dates

all the way back to late 1960s [156] when the idea of a function “remembering” results

corresponding to any set of specific inputs was first introduced. Memoization has found

wide applicability in language compilers [171, 201, 202] as well as other domains such as

image search [128], image rendering [81] and data center computing [120, 77, 140]. In this

paper, I study the potential of such an approach in the context of web page loads and make

contributions along the following dimensions:

1. Granularity. The granularity at which computation is cached can have a significant

impact on potential benefits, and must be amenable to the fact that cache entries may

be from page loads performed several minutes or even hours ago. For example, we

find that 11% of JavaScript code on the landing page of the median Alexa top 500 site

changes each hour, thereby precluding computation reuse at a page level [165, 175].
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Instead, we propose finer-grained computation caching at the granularity of JavaScript

functions. Our proposal is rooted in my finding that 96% of JavaScript code is housed

inside JavaScript functions on the median page.

2. Efficacy. To measure the potential benefits of my proposal, I developed an automated

JavaScript tracing tool that dynamically tracks all accesses to page state made by

each function invocation in a page load; this information is required to determine the

reusability of computation from prior page loads. I experiment with a state-of-the-

art phone (Google Pixel 2) and over 230 pages (landing pages of top Alexa sites and

random sites from DMOZ [20]). For the subset of these pages which require clients

to perform over 3 seconds of computation (“high-compute pages”), I estimate that

client-side reuse of JavaScript executions can eliminate 49% of client-side computation

on the median page.

3. Practicality. Finally, I sketch the design of a browser-based system that performs

computation caching. I outline the practical challenges of such a system, which largely

revolve around the high state tracking and cache management overheads. To alleviate

those overheads without sacrificing substantial reuse opportunities, my key finding is

that 80% of total JavaScript execution time is accounted for by 27% of functions on the

median high-compute page. This allows for the system to target only a small fraction

of functions while reaping most of the potential computation caching benefits.

4.1.1 Motivation

I begin by presenting a range of measurements to illustrate the large (negative) impact

that client-side computation has on overall page load times (PLTs). Our experiments use

a modern smartphone (Google Pixel 21) with Google Chrome (v73), and consider landing

pages from the Alexa top 1000 sites; these pages are more likely to incorporate recommended

best practices for enabling fast page loads.

Mobile web page loads often have very high compute. I record each page and then

load it within the Mahimahi replay environment [163] over an emulated 4G network [37];

emulation was done using Chrome’s network shaping feature. I focus my analysis on the

223 pages which experienced PLTs greater than 3 seconds (the “Shaped, all cores” line in

Figure 4.1), since these loads are slower than user tolerance levels [107].

Since page loads consist of fetching resources over the network and processing those

resources to display functional content, the observed load times could be high due to network

1We believe a more recent version of Google Pixel (e.g., Pixel 4) would show some, albeit limited, im-
provements in the total client-side computation time due to a slightly higher CPU clock speed [93].
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Figure 4.1: Page load times, with or without network delays (shaped vs. unshaped)

and when using all 8 CPU cores or only 4 of them. Results are for 223 landing pages

with load times over 3 seconds with a shaped network.

or computational delays. To distinguish between these two factors, I loaded the 223 slow

landing pages again using Mahimahi, but this time with an unshaped network. I note that

this represents the best case performance for prior (complementary) web optimizations that

target network delays [197, 164, 86, 212]. As shown in the “Unshaped, all cores” line of

Figure 4.1, 39% of these pages (i.e., 86 pages) continue to experience load times greater

than 3 seconds, despite the lack of network delays; I call these “high-compute” pages. While

client-side computation may not always be the primary bottleneck when these pages are

loaded in the wild (i.e., network fetches may constitute the critical path), these results show

that compute delays alone would slow down many web pages beyond user tolerance levels.

Our findings, while in line with recent work [187, 161], are in stark contrast to observations

made by earlier studies. For example, a decade ago, Wang et al. [212] found that high network

latency and the serialization of network requests in page loads are the key contributors to poor

mobile web performance. Since then, the mobile web landscape has changed significantly in

three ways. First, due to a 680% increase over the last 10 years in the number of bytes of

JavaScript included on the median mobile page [43], the amount of client-side computation

as part of web page loads has dramatically increased. Second, the quality of mobile networks

has improved greatly, e.g., over the last 10 years, on the average mobile connection globally,

bandwidth has increased from 1MBps to 19MBps and RTT has decreased from 700ms to

65ms [60, 55, 54]. Lastly, the increased adoption of HTTP/2 has reduced the serialization

of network requests; while HTTP/2 did not exist a decade ago, the fraction of requests on

the median page that are served over HTTP/2 is now up to 67% [28].
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Figure 4.2: Fraction of browser computation accounted for by JavaScript execution.

Results are for 200 random landing pages in the Alexa top 1000 and 86 high-compute

pages.

Compute will continue to slow down page loads. Improvements in CPU performance

generally come from increase in either the number of cores or the clock speed of each core.

However, with mobile devices, improvements have been largely due to the former, with clock

speeds increasing at a far slower rate, e.g., CPU clock speed on the Samsung Galaxy S series

increased from 1.9GHz in 2013 to 2.73GHz in 2019; the number of CPU cores doubled during

that time (from 4 to 8).

Unfortunately, this trend of increased cores provides little benefit to the mobile page load

process. Web browsers are more dependent on clock speed than the number of cores [? ]

because they are unable to fully take advantage of all available CPU cores (described more

below). Indeed, Figure 4.1’s “Unshaped, 4 cores” line shows that PLTs are largely unchanged

even when I disable 4 out of 8 CPU cores on the Pixel 2.

Cellular networks, on the other hand, are projected to continue to get significantly

faster [16]. Given these trends, as well as the energy restrictions that hinder CPU speeds on

mobile devices [183], client-side computation will likely continue to significantly contribute

to load times.

JavaScript execution dominates computation delays. Computation delays in page

loads stem from numerous tasks that browsers must perform, such as parsing and evaluating

objects like HTML, CSS and JavaScript, and rendering content to the screen. Furthermore,

the JavaScript engine in the browser spends time compiling and executing JavaScript, and

doing garbage collection. I analyzed the loads of each page in my corpus to identify which

of these compute tasks browsers spend the most time on. I consider two sets of pages: 200
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Figure 4.3: (a) Server-side acceleration techniques send a processed page to the client.

(b) Client-side acceleration requires initial web page loads to populate the computation

cache, and then subsequent page loads to utilize this cache.

random pages from the Alexa top 1000 sites, and the 86 high-compute pages from above.

I find that JavaScript execution is the primary contributor to browser computation delays

in page loads. In particular, Figure 4.2 shows that JavaScript execution accounts for 64% and

65% of overall computation time for the median page in the two sets of pages, respectively.

This explains why page load performance does not benefit much from more cores, as I

saw above. JavaScript execution in browsers is single-threaded and non-preemptive for each

frame in a web page [185]. While this single-threaded model greatly simplifies web page

development, it does so at the cost of degraded performance and resource utilization.

4.1.2 Client-side computation reuse

To overcome the practical limitations of prior systems, I advocate for a purely client-driven

approach to reduce client-side computation in mobile page loads. Rather than having clients

reuse the results of server-side or proxy-side page load processing, I envision each client

reusing computations from its own page loads from the past. More specifically, like how web

browsers cache objects to exploit temporal locality in a client’s page loads [215] and eliminate

redundant network fetches, I propose that browsers also reuse JavaScript executions from

prior page loads.
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Figure 4.4: Fraction of JavaScript that matches across two loads of the same page one

hour apart.

4.1.2.1 Need for fine-grained computation reuse

Although conceptually straightforward, my proposal necessitates a fundamentally new ap-

proach for how computation is reused. The primary difference between my vision and ex-

isting proxy-/server-side approaches is that of timing (Figure 4.3). In existing solutions, a

proxy/server loads a page in response to a client request and returns a compute-optimized

version, which the client applies a few seconds later. In this workflow, clients download a

single post-processed object that reflects all of the state in the latest version of the page.

In contrast, if the browser locally caches computations from one of its page loads, the time

gap until a subsequent load in which the cached computation is reused can be unbounded.

As this time gap grows, operating the cache at the granularity of an entire page becomes

increasingly suboptimal since even a small change to page content will render the page-level

cached object unusable in subsequent page loads.

To better understand how often and in what ways web pages change over time, we load

the landing pages of the Alexa top 500 sites twice, with a 1 hour time gap, and compare

1) the JavaScript source code fetched during each page load, and 2) the final window object

that represents the constructed JavaScript heap. For source code, I compute the fraction

of bytes that are identical, and for the heap, I compute the fraction of keys within the

window object, whose values have the same SHA-1 hash in both loads. Figure 4.4 shows

that both parts of web computation change over the course of an hour on most pages. A

common reason behind this frequent change in page content is the increasing dynamism in

modern web pages [162]; web servers often compute responses on-the-fly in order to deliver

customized content catered to individual users.
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4.1.2.2 Our proposal: function-level caching
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(a) Landing pages of 150 sites out of Alexa top 500
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(b) Pages loaded at a time gap of 1 day
Figure 4.5: Reusable JavaScript execution across different time intervals and across

different sets of sites.

While the above results highlight that a page-level caching approach (i.e., a client entirely

reuses computation results from a prior page load) will present minimal opportunities for

computation reuse,2 they also show that large parts of JavaScript content remain unchanged

2One approach to handling small changes in page content is to patch page-level caching data. However,
a client-side caching solution precludes this approach because clients are unaware of content changes until
they fully load the latest version of a page (thereby foregoing caching benefits).
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across loads of a page. For the median page, Figure 4.4 shows that 86% of heap state and 89%

of JavaScript source code match between two loads separated by an hour; also, JavaScript

state changes by over 75% across an hour on only 25% of pages. Taken together, there

exists significant potential for computation caching, but a fine-grained strategy is necessary

to realize the savings.

Determining how fine a granularity to cache at (e.g., small or large code blocks) involves

a tradeoff between potential benefits and storage overheads. Finer-grained caching would

result in more cache entries and subsequently higher storage overhead, but would also offer

more potential benefits (and be less susceptible to page changes).

I observe that a natural solution for balancing this tradeoff is to leverage the fact that most

of the JavaScript code on a page is typically within JavaScript functions. On the median

landing page among the Alexa top 500 sites, 96% of all the JavaScript code is inside functions.

Furthermore, JavaScript functions represent a logical unit of compute as intended by the code

developer. These properties naturally lend themselves to a function-level compute caching

approach.

4.1.3 Benefits of client-side compute cache

Given the single-threaded nature of JavaScript execution (§4.2.1), if a JavaScript function

is deterministic, then its execution is reusable when it is invoked with the exact same input

state as one of its prior invocations, i.e., outputs from the prior invocation can be applied

without executing the function again. In this section, I estimate the potential benefits of

client-side computation caching by determining the percentage of JavaScript execution time

that can be eliminated by reusing the results of function invocations from prior page loads.

4.1.3.1 Overview of JavaScript function state

A JavaScript function has access to a variety of web page state – global objects, local

variables, function arguments, and closures – with the precise set being determined by web

security policies (e.g., same-origin policy) and scope restrictions implicit to each state’s

definition. All of this state is mapped to objects on the JavaScript heap, DOM tree, and disk

storage (like localStorage and sessionStorage). Given this, a JavaScript function execution

can be summarized by the combination of its 1) input state, or the subset of the page’s state

that it consumes, and 2) externally visible effects, such as its impact on the page’s global

JavaScript heap, calls to internal browser APIs (e.g., DOM), and network fetches.

30



4.1.3.2 Quantifying potential for computation reuse

Methodology: I use the following approach to estimate the benefits of reusing computation

from one page load in a subsequent page load. First, I identify all functions which make

use of non-deterministic APIs (e.g., Math.random, Date, key traversal of dictionaries, and

timing APIs [158]) and network APIs (e.g., XHR requests), and mark all such functions as

uncacheable. For all remaining JavaScript functions, during both loads, I track the input

state consumed by every invocation. Note that I do not include the input state of the nested

functions in the parent functions, instead they are treated as separate function invocations.

For each function, I then perform an offline analysis to determine which of its invocations

in the later page load had the same input state as an invocation in the initial load; all

matching invocations could be skipped via client-side computation caching. I then correlate

this information with function execution times reported by the browser’s profiler to compute

the corresponding savings in raw computation time.

To employ the above methodology, I record web pages with Mahimahi [163] and then

rewrite those pages using static analysis techniques [164]. The rewritten pages contain

instrumentation code required to track and log function input state; it suffices to log only

input states as my goal here is to only estimate the potential for reuse, and not to actually

reuse prior computations. I then reload each instrumented page in Mahimahi and extract

the generated logs. I run my experiments on three different corpora: landing pages for the

Alexa top 500 sites, landing pages from 100 (less popular) sites in the 0.5 million-site DMOZ

directory [20], and the 86 high-compute sites from Figure 4.2.

Reuse across loads of the same page. As discussed in Section 6.4, the time between the

page load where the cache is populated and the load where the cache is used to skip function

invocations is unbounded. I therefore compare input states for each function invocation

across pages loads spaced apart by 1 minute, 1 hour, and 1 day.

Our dynamic tracing tool was successfully able to track input state of JavaScript invo-

cations for 150 of the 500 Alexa pages and 33 of the 86 high-compute pages. Since the

distribution of load times across these subsets of sites matches the overall distribution in the

respective corpus, I expect my findings to be representative of other pages too. Figure 4.5(a)

shows that, for the median Alexa page, 73% and 57% of JavaScript execution time can be

skipped via computation caching across 1 minute and 1 day. From Figure 4.5(b), the frac-

tion of JavaScript execution that is reusable a day later is higher (76%) for pages which are

more in need of computation caching: the high-compute pages.3 Since JavaScript execution

3To minimize the instrumentation overhead of my tracing tool, I exclude tracking of closure state for
high-compute pages. On the subset of these pages which I are able to successfully load with closure state
tracking enabled, I see that 59% of JavaScript execution time can be reused a day later on the median page.
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Figure 4.6: Reusable JavaScript execution across pairs of pages.

accounts for 65% of client-side computation on the median high-compute page (Figure 4.2),

I estimate a net savings of 49% for the median page. This translates to 990ms of eliminated

execution time even on the state-of-the-art Pixel 2 phone. I observe similar reuse potential

for the DMOZ pages (48 out of the 100), with a median of 70% of Javascript execution time

being reusable across a day.

Reuse across loads of different pages. Thus far, I have focused on reusing computations

from a prior load of the exact same page. However, I observe that traditional browser caches

support object reuse even across pages. More specifically, object caches are keyed by an

object’s resource URI, which may appear on multiple pages; this is a common occurrence for

pages on the same site, e.g., a shared jQuery library. Inspired by this, I extend my analysis

of computation caching to examine how cache entries can be reused across loads of different

pages from the same site.

I sample 10 sites at random from the Alexa top 1000, and then select 20 random pages on

each site. For example, www.gamespot.com/3-2-1-rattle-battle/ and www.gamespot.com/101-

dinopets-3d/ constitute two pages on the same site. We then compare all pairs of pages on

the same site to determine what percentage of JavaScript execution time can be reused

between each pair. In other words, I load each of the 20 pages in a site once, load all of

these pages again after a time gap, and evaluate how much of the JavaScript execution time

on the latter load of a page can reuse executions from prior loads of the other 19 pages. My

tool successfully tracked input states for 80 out of the 200 pages. Figure 4.6 shows, that

for the median pair, 29% and 15% of JavaScript execution time can be reused across time

intervals of 1 minute and 1 day, respectively. The % of reuse varies from site to site, with it

being as high as 80% for www.ci123.com and as low as 9% for www.prezi.com.
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Note that a user can benefit from all of the reductions in client-side computation that

I estimate in this section, both across loads of a page and across loads of multiple pages

on the same site, with only modifications to the user’s web browser. In contrast, a large

number of domains need to adopt prior server-side computation eliding strategies [165] in

order for users to see benefits across all of the pages they visit. Furthermore, since JavaScript

execution can be reused across pages as well, even the very first load of any page at a client

can be sped up by reusing computation from that client’s prior loads of other pages on the

same site.

4.1.3.3 Characterizing computation cache misses

While my results above highlight the significant potential for computation reuse, I see that

not all function invocations can be serviced by the cache. To investigate the reason for such

misses, I analyze the data for the “1 day” line from Figure 4.5(a), and plot in Figure 4.7 the

breakdown of the total execution time into reusable and non-reusable components (marking

the reason precluding reuse).

Non-determinism. Functions which invoke non-deterministic APIs are not amenable to

computation caching. Figure 4.7’s “Nondeterminism” shaded area shows the amount of

execution time marked non-reusable due to the presence of non-deterministic functions on

the page. For the median page in my corpus, 0.5% of total non-reusable time was accounted
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for by such non-deterministic functions.

Changes to JavaScript source code. For a function’s execution to be reusable from

an earlier page load, the source code of the JavaScript object file containing the function’s

definition should not have changed since that load.4 As previously shown in Figure 4.4, 11%

of JavaScript source code is subject to change within a time period of one hour. The longer

the time gap between loads, the more susceptible are web pages to load object files with

different source code [209].

Figure 4.7 shows that change in source code is the predominant reason for non-reusable

computation. Further analysis reveals that for 13% of pages, change in source code was the

only reason hindering reuse.

Changes to input state. Figure 4.7 also shows the percentage of non-reusable computation

accounted for by changes in the input state of a function. A JavaScript function can observe

different sets of inputs across invocations on different page loads, either due to changes in

server-side state or due to non-determinism on the page.

Changes in server-side state can influence the responses sent to the client, which in turn

can affect the input state of JavaScript invocations. For example, www.cnblogs.com sends

a cookie known as RNLBSERVERID as a part of the response to a client request. This

cookie value is used for server-side load balancing. Since the value of this cookie changes

dynamically depending on server logic, a JavaScript function on this page reads different

values for this cookie across loads spread out by 1 hour or more, causing this function to

forego the use of results from prior invocations.

Inputs to a function can also change across loads due to non-determinism in functions

which are invoked earlier in the page load. In order to distinguish between server-side state

and non-determinism as the cause for change in input state, I load the same recorded set of

webpages twice using Mahimahi. This eliminates any potential changes in the source code

of JavaScript object files and server-side state. I then compare the input state across these

two loads. Any mismatch could only be due to non-determinism on the page. Figure 4.5(a)’s

“0min” line shows that for the median page, 18% of the total execution time is non-reusable

due to such non-determinism.

4.1.4 Envisioned system

While my primary goal in this chapter is to motivate the need for client-side solutions and

quantify the potential benefits of my proposed client-side reuse of JavaScript executions, I end

4 Though it would suffice for only the source code within the function’s boundaries to remain unchanged,
my analysis considers cache entries for a function as non-reusable if the file containing the function changes.
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by describing how web browsers might implement a computation cache and the challenges

in doing so.

4.1.4.1 System workflow

Figure 4.8 illustrates my envisioned approach. When the user loads a page, the browser would

fetch and cache previously un-cached resources, as it does today. The browser can then use

(offline) static program analysis to instrument the cached scripts to track the state that each

JavaScript function accesses or modifies (Section 4.1.3.1). Finally, when an instrumented

script is executed in any page load, prior to executing every instrumented function, the

browser can perform a computation cache lookup in search of a matching entry (i.e., a prior

invocation of the same function with the same inputs); if a match is found, the browser

would apply the effects from that cache entry instead of executing the function; otherwise,

it would execute the function and add a new entry to the cache.

4.1.4.2 Practical challenges

Although my proposed design requires only browser modifications (easing deployability), my

data collection in Section 4.1.3.2 reveals several overheads that hinder practicality.

• Tracking: The instrumentation required to track per-function state accesses and mod-

ifications can result in user-facing slowdowns of up to 200× [91]. To mask these over-

heads, tracking could be performed offline or using spare CPU cores (§4.2.1), but such
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solutions would require special care (designed per page) to avoid negatively impacting

persistent client- or server-side state (e.g., cookies) via, say, idempotent functions [210].

• Cache management: Similar to the browser’s network cache, the computation cache

would incur various caching overheads in terms of lookup times and storage. These

overheads are exacerbated in the case of computation cache because of differences in the

granularity at which the two caches operate: cache entry per resource in the network

cache versus cache entry per function invocation in the compute cache. On the median

landing page across the Alexa top 500 sites, the number of function invocations per

page load (close to 9K) are more than two orders of magnitude higher than the number

of resources fetched (30). Therefore, the overheads associated with the compute cache

are likely to be much higher than with the network cache.

Solution. To address these overheads, I make the following key observations: 1) the

distribution of execution time across JavaScript functions on a page is (typically) heavily

skewed towards only a small fraction of functions, and 2) these small fraction of functions

have relatively stable execution times across page loads. For the high-compute pages in

my corpus, 80% of execution time on the median page is accounted for by only 27% of the

functions. Across loads separated by an hour, the execution time for the median of these

functions changed by only 15%. This implies that, to sidestep the aforementioned overheads

without sacrificing most reuse benefits, only the subset of functions accounting for the bulk of

the execution time should be considered for caching. Note that function-level execution time

information can be easily extracted using built-in browser profilers [95] at low overheads.

4.1.5 Summary

Despite an abundance of proposed solutions, client-side computation continues to slow down

mobile web page loads. To overcome this, I propose a purely client-side solution to elide

web computations: augmenting web browsers with a computation cache. As a first step

towards this vision, I empirically motivate the need for a finer granularity of computation

reuse than prior systems, and I quantify the potential for client-side reuse of JavaScript

function executions. I estimate that 49% of client-side computation can be reused across

loads even a day apart on the median high-compute web page. I outlined a potential system

architecture to realize my proposed client-side web computation cache and the challenges

entailed in reaping the estimated benefits.

The mobile web landscape is highly dynamic, with the underlying technology changing at

a rapid rate. In light of this dynamism, it is hard to predict the applicability of a technique,
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such as ours, even a few years down the line. However, I believe that certain web trends

will continue to hold, as they have in the past, and would therefore continue to enable

JavaScript computation reuse. First, prior studies [215, 174] have shown that more than

half the web pages browsed by users are revisits. I expect page revisits to be as common

going forward. Second, despite the web’s dynamism, it has been shown that large parts of

web page content are fairly static [150, 209]. Taken together, I believe there will continue

to exist significant opportunity for reusing JavaScript computations as a means to improve

mobile web performance in the long run.

4.2 Automatic JavaScript Parallelism for Resource-

Efficient Web Computation

In the previous section, I discussed how client-side computation alone results in poor quality

of experience for mobile web users. To mitigate the impact of high computation, I proposed

a system that automatically identifies opportunities for JavaScript computation caching and

skips executing certain functions using this computation cache.

In this work, I propose a tangential solution to the same problem. Specifically, I observe

that there exists a fundamental inefficiency in the computation model that browsers employ

(§4.2.1). To simplify page development, JavaScript execution is single-threaded [168, 165],

and worse, JavaScript and rendering tasks are forced to share a single “main” thread per

frame in a page [116]. Consequently, browsers are unable to take advantage of the growing

number of CPU cores available on popular phones in both developed and emerging regions [?

? ]. This inefficiency will only worsen as, due to energy constraints, increased core counts

have become the main source of compute resource improvements on phones [183, 109].

A natural solution to this inefficiency is to parallelize JavaScript computations across

a device’s available cores. Browsers have included support for pages to spin up parallel

JavaScript computation threads in the form of Web Workers [153, 56] for over 8 years now.

Yet, only a handful of the top 1,000 sites use Workers on their landing pages, largely due to

the challenges of writing efficient, concurrent code [73, 127]. These challenges manifest in

two ways for the web.

• Determining which JavaScript executions on a page frame can be safely parallelized re-

quires a precise understanding of the page state accessed by every script, due to the

language’s lack of synchronization mechanisms (e.g., locks). Placing the onus of this task

on web developers [147, 61] is impractical, while reliance on browsers to speculatively make

parallelism decisions [87, 154] is inefficient.
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• How to efficiently execute scripts in parallel is also not straightforward due to the re-

strictions that browsers impose on Workers. In particular, they cannot access a page’s

JavaScript heap or DOM tree, and coordinating with the main thread, which has these

privileges, adds overheads.

In this work, I ask How much parallelization potential exists in JavaScript execution on

legacy web pages?

4.2.1 Motivation

In this section I look at how the multiple cores on modern smartphones affect the total

client-side JavaScript execution time.

Browsers make poor use of CPU cores. Computation resources on mobile phones have

globally increased in recent years, with improvements in both CPU clock speeds and total

CPU cores. However, due to the energy constraints on mobile devices, increased core counts

have been (and likely will continue to be) the primary source of improvements [183, 109]. For

example, since their inception in 2016, Google’s Pixel smartphones (our developed region

phone) have improved clock speeds from 1.88 GHz to 2.15 GHz, while doubling the number

of CPU cores (from 4 to 8). Similarly, the popular Redmi A series in India and Pakistan [58]

(our emerging market phone) observed the same doubling in CPU cores (2 to 4) during that

time period, while seeing only a modest clock speed improvement from 1.4 GHz to 1.75 GHz.

Unfortunately, although browsers can automatically benefit from clock speed improve-

ments, I find that they fail to leverage available cores. To illustrate this, I iteratively disabled

CPU cores on the phones in each setting and observed the impact on page load times. As

shown in Figure 4.9, additional CPU cores yield minimal load time improvements, e.g., going

from 1 to 8 cores on the Pixel 3 resulted in only a 8% speedup for the median page.

To determine the origin of these computation inefficiencies, I must consider the com-

putation model that browsers use today. My discussion will be based on the Chromium

framework [116], which powers the Chrome, Brave, Opera, and Edge browsers that account

for 70% of the global market share [63, 59]. Figure 4.10 depicts Chromium’s multi-process

architecture. I focus on the renderer process which houses the Rendering and JavaScript

engines, and thus embeds the core functionality for parsing and rendering pages.

The Rendering engine parses HTML code, issues fetches for referenced files (e.g., CSS,

JavaScript, images), applies CSS styles, and renders content to the screen. During the HTML

parse, the rendering engine builds a native representation of the HTML tree called the DOM

tree, which contains a node per HTML tag. As the DOM tree is updated, the rendering

engine recomputes a layout tree specifying on-screen positions for page content, and issues
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Figure 4.10: Computation model for Chromium browsers.

the corresponding paint updates to the browser process.

The JavaScript engine is responsible for parsing and interpreting JavaScript code specified

in HTML <script> tags, either as inline code or referenced external files. During the page

load, the JavaScript engine maintains a managed heap which stores both custom, page-

defined JavaScript state and native JavaScript objects (e.g., Dates and RegExps). JavaScript

code can initiate network fetches via the browser process (e.g., using XMLHttpRequests), and

can also access the rendering engine’s DOM tree (to update the UI) using the DOM interface.
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# of Cores % Speedup in Total JavaScript Runtime
2 cores 54%
4 cores 79%
8 cores 88%

Table 4.1: Potential parallelism speedups with varying numbers of cores. Results list

median speedups in total time to run all JavaScript computations per page in the

developed region.

The DOM interface provides native methods for adding/removing nodes and altering node

attributes; DOM nodes accessed via these methods are represented as native objects on the

JavaScript heap.

The problem: single-threaded execution. JavaScript execution is single-threaded and

non-preemptive [168, 165]. Worse, within a renderer process, all tasks across the two engines

are coordinated to run on a single thread, called the main thread.5 This lack of parallelism

largely explains the poor use of CPU cores described earlier. A primary reason for this

suboptimal computation model is that the JavaScript language and DOM data structure

(shared between the two engines) lack synchronization mechanisms (e.g., locks) to enable

safe concurrency. Adding thread safety is feasible, but browsers have continually opted for

a serial-access model to simplify page development. Browsers do create a separate ren-

derer process per cross-domain iframe in a page (as per the Same-origin content sharing

policy [62]). However, for the median page in the Alexa top 10,000, the top-level frame

accounts for 100% of JavaScript execution delays.

In summary, despite benefits regarding simplified page development, the single-threaded

execution model that browsers impose results in significant underutilization of mobile device

CPU cores, inflated computation delays, and degraded page load times. I expect this negative

interaction to persist (and worsen) moving forward given the steady and unrelenting increase

in the number of JavaScript bytes included in mobile web pages, e.g., there has been a 680%

increase over the last 10 years [126].

4.2.2 Estimating benefits of parallelizing JavaScript execution

Given the results in §4.2.1, a natural solution to alleviate client-side computation delays

in mobile page loads is to parallelize JavaScript execution across a device’s available CPU

cores. However, not all workloads are amenable to parallel execution. In particular, I face

the restriction that any introduced parallelism should preserve the page load behavior (and

the final page state) that developers expected when writing their legacy pages—I call this

5Some Chromium implementations move final-stage rendering tasks to raster/composite threads that
create bitmaps of tiles to paint to the screen.
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property safety.

To estimate the potential benefits of parallelism with legacy pages, I analyzed the

JavaScript code for each page in my corpus; in this section, I focus on page loads rep-

resentative of those in developed regions. Since JavaScript functions account for 94% of

the JavaScript source code on the median page, my analysis operates at the granularity of

functions, i.e., when splitting computations on a page across CPU cores, all code within a

function runs sequentially on the same core. For completeness, I convert all code outside

of functions into anonymous functions. For each function, I recorded both its runtime in a

single load, as well as all accesses that it made to page state (in the JavaScript heap or DOM

tree, as described below) in that load.

I instrument the JavaScript source code to log all accesses to state in both the JavaScript

heap and DOM tree; my instrumentation matches recent dynamic analysis tools [164, 169,

165], but with the following differences based on my parallelism use case.

• First, I care not just about the state that remains at the end of the page load [165], but

also any state accessible by multiple functions during a page load. Hence, in addition to

global heap objects, I track all accesses to closure state: non-global state that is defined by

a function X and is accessible by all nested functions that execute in X’s enclosed scope

(anytime during the page load) [157].

• Since signatures will ultimately be used for pass-by-value offloading to Workers, only the

finest granularity of accesses are logged. For instance, if object a’s “foo” property is read,

I would log a read to a.foo, not a.

• For the DOM tree, I adopt a coarser approach than prior work. Instead of logging reads

and writes to individual nodes in the DOM tree, I only logs whether a function accesses

any live DOM nodes, either via DOM methods or references on the heap, and if so, whether

they are reads or writes. Tracking at the coarse granularity of accesses to the entire DOM

tree is conservative with respect to parallelism. However, finer-grained tracking is not

beneficial because, as I explain later, my design has the browser’s main thread serialize all

DOM operations.

Using these state access logs, I estimated an upper bound on parallelism benefits by max-

imally packing function invocations to available cores and recording the resulting end-to-end

computation times. To ensure safety (defined above), my analysis respects two constraints:

1) functions can run in parallel if they access disjoint subsets of page state or only read the

same state, and 2) functions that exhibit state dependencies (i.e., access the same state and

at least one writes to that state) execute in an order matching that in the legacy page load.

As shown in Table 4.1, legacy pages are highly amenable to safely reaping parallelism

speedups. For example, distributing computation across 4 cores could bring a 75% reduction
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in the total time required to complete all JavaScript computations on the median page. These

resources are now common in both developed and emerging markets [? ]. In this dissertation,

I only leveraged my JavaScript analysis engine to identify and extract relevant state access

information to accurately measure potential benefits from parallelizing JavaScript execution.

Leveraging my analysis engine, Shaghayaghi et al built Horcrux [149], a web optimization

system that actually reaps these parallelization opportunities to speed up web page loads.

4.2.3 Summary

In Horcrux [149], the authors implemented a web accelerator based on my findings of high

JavaScript parallelization potential on modern web pages. Horcrux reduced the total client-

side computation by around 40% on the median page in their corpus, using a smartphone

with 8 cores. Since JavaScript execution accounts for 50% of client-side computation, this

implies that Horcrux was able to speed-up JavaScript execution by around 80%. This result

aligns exactly with my findings of the potential benefits feasible, discussed in this chapter.

The reason behind Horcrux’s low overhead while offloading execution to multiple cores

was twofold. First, Horcrux generates per-function signatures on the server-side, i.e., it

relies on the participation of web servers. This eliminates the overhead of performing static

analysis and extracting signature information, which is computationally expensive. Second,

Horcrux only offloads functions at the granularity of root functions, minimizing the offloading

overhead.
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CHAPTER 5

Sprinter: Speeding Up High-Fidelity

Crawling of the Modern Web

In this chapter, I highlight the importance of crawling the web at scale, and how little

attention it has received from the research community in the recent years. I describe how

current crawling practitioners have to choose from crawling techniques that sit at the opposite

ends of the performance-fidelity trade-off; either crawl with high throughput, i.e., large

number of pages per second, and sacrifice on the fidelity of the crawls, or crawl pages with

perfect fidelity at the cost of significantly lower crawling throughput.

To address this trade-off, I present the design of Sprinter which combines browser-based

and browserless crawling to get the best of both. The key to Sprinter’s design is my obser-

vation that crawling workloads typically include many pages from every site that is crawled

and, unlike in traditional user-facing page loads, there is significant potential to reuse client-

side computations across pages. Taking advantage of this property, Sprinter crawls a small,

carefully chosen, subset of pages on each site using a browser, and then efficiently identifies

and exploits opportunities to reuse the browser’s computations on other pages. Sprinter

was able to crawl a corpus of 50,000 pages 5x faster than browser-based crawling, while still

closely matching a browser in the set of resources fetched.

5.1 Problem Statement

To make the most of the enormous trove of information available on the web, all of us today

rely upon a range of efforts. Web search engines help users find pages relevant to their needs.

Data from the web serves as input to smart assistants such as Siri and Alexa, and is used

to train generative AI models that can answer my questions. Web archives store repeated

snapshots of web pages to document changes over time and to preserve the content of deleted
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Figure 5.1: Tradeoff between fidelity and performance with different crawlers.

pages. Researchers continually study the web to help improve its performance and security.

A key enabler for all of the above is a capability that I take for granted today: the

ability to crawl the web at scale. Web crawlers have traditionally crawled a page by first

downloading the page’s HTML, and then recursively fetching all embedded links to images,

CSS stylesheets, scripts, etc. If one deploys many such so called static crawlers [118, 98]

across a fleet of machines, the rate of crawling is limited by the network bandwidth of each

machine.

Given that web crawlers have existed for over three decades, why revisit this topic now?

Because, static crawlers no longer suffice. On today’s web, the URLs of many of the resources

on a page are determined at runtime, rather than being statically embedded in the page’s

source. To discover and fetch such resources, modern “dynamic” crawlers [11, 6, 10] leverage

web browsers such as Chrome, Firefox, or Edge. However, due to the compute overheads

associated with JavaScript (JS) execution and with browsers in general, the rate at which

one can crawl pages drops by an order of magnitude relative to static crawling (Figure 5.1).

Consequently, dynamic crawlers need to be deployed across a much larger number of servers

in order to sustain the same crawling throughput as that feasible with static crawlers.

Thus, anyone seeking to crawl the web today has to make do either with the poor per-

formance of dynamic crawlers or the incompleteness of static crawlers. Unfortunately, there

is no easy fix. One could try to augment a static crawler with a lightweight JavaScript

execution engine, but keeping up with constantly evolving web APIs is a challenge best

left to the developers of widely used browsers. On the other hand, proposals that attempt
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to mitigate the impact of client-side web computations on user-perceived web performance

have little utility in the context of crawling. For example, overlapping the browser’s com-

putations with its network activity [164, 86, 208] or parallelizing the browser’s execution of

JavaScripts [149] can reduce page load times, but crawling throughput remains unchanged

since the total amount of client-side computation is the same.

I address this undesirable status quo with Sprinter, a new crawler which judiciously

combines browser-based and browserless crawling. Sprinter crawls pages at a much faster rate

than dynamic crawlers while matching them in the resources fetched. Our main observation

is that large-scale web crawling workloads typically include many pages from each site and

there is significant potential to reuse client-side computations across pages (§5.3.1).To exploit

this property, my design of Sprinter is based on three key principles.

First, when Sprinter crawls a page using a browser, it strives to minimize the amount of

JS code executed. For every script file on a page, Sprinter attempts to reuse the browser’s

execution of that file on a previously crawled page. In user-facing page loads, execution of

the same file is seldom exactly identical across multiple pages. In contrast, Sprinter can

reuse JS execution at such a coarse granularity because it can skip executing a JS file as

long as the URLs of the resources that file would fetch match those fetched during a prior

execution of that file.

Second, even if none of the JS files on a page are executed, crawling the page with a

browser imposes significant compute overhead. Therefore, on any site, Sprinter crawls the

vast majority of pages on the site without a browser. To realize browserless crawling that

does not sacrifice fidelity, I implement a lightweight page instrumentation framework that

tracks the web APIs used on any page without support for executing these APIs. When it

crawls a page without a browser, Sprinter uses this instrumentation to identify whether it

can safely reuse JS executions from pages that it previously crawled with a browser.

Lastly, to maximize the fraction of pages that can be crawled without a browser, Sprinter

crawls the pages on a site in a carefully chosen order. For any given site, Sprinter efficiently

identifies a subset of pages such that most of the scripts seen on other pages are fetched as

part of this subset. Sprinter crawls these pages first using a browser and captures the effects

of JS executions. Most of the remaining pages can then be crawled without a browser, since

Sprinter can identify all resources to be fetched on those pages without executing any JS

code or web APIs.

I used Sprinter to crawl a corpus of 50,000 pages spread across a diverse collection of

100 sites. It offered a 5x speedup in crawling throughput compared to existing dynamic

crawlers. When I recrawled the same corpus a week later, the rate at which Sprinter crawls

pages improved by a further 78%. Importantly, Sprinter preserves almost all resource fetches
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issued by a browser-based crawler, and it is compatible with legacy web servers. Sprinter’s

source code is available at https://github.com/goelayu/Sprinter.

5.2 Background and Motivation

I begin by describing common web crawling workloads and quantifying the limitations of

existing strategies for supporting these workloads.

5.2.1 Target workloads

Web crawlers take as input a seed list of URLs to pages that need to be crawled. The

input configuration to the crawler can specify a range of options such as timeout per page,

retry policy, politeness constraints (i.e., time gap between crawls of pages on the same site),

and whether other pages discovered while crawling the seed list should also be recursively

crawled. Some crawlers provide the option of saving page screenshots [6] and triggering

user interactions (e.g., scrolling or clicking) on rendered pages [10]. In this work, I focus on

supporting the common need for crawlers to save the content of resources that are fetched

on every page that is crawled. To not make any assumptions about what the crawls will be

used for, I aim to fetch and save all page resources requested by a browser such as Chrome,

rather than a subset that may suffice for a particular use case.

I focus on supporting workloads where pages are crawled from a large number of sites.

This is the case in any large-scale system that relies on web crawls, e.g., to support web

search, ChatGPT, and Siri, their providers aim to crawl the entire web. Even in more fo-

cused crawls, it is common to crawl many sites and many pages in each site. For example,

after every presidential term in the US, the Internet Archive captures a snapshot of 1.3

million government websites, crawling roughly 700 pages on average per site [32]. Simi-

larly, research studies attempting to understand the web’s security vulnerabilities [180] have

crawled roughly 2500 pages per site. When pages are crawled from a single site (e.g., a

research study of pages on Facebook), the rate at which pages can be crawled is constrained

by the rate limits imposed by the site being crawled.

5.2.2 Shortcomings of static crawling

As mentioned earlier, web crawling has traditionally relied on static crawlers, which identify

all the resources to fetch on every page by extracting links embedded in the page’s source.

To demonstrate and quantify why static crawlers are now insufficient, we compile Corpus10k,

a collection of 10,000 pages comprising 100 randomly sampled pages from each of 100 sites:
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Figure 5.2: Compared to a dynamic (i.e., Chrome-based) crawler, a static crawler

both fails to fetch some resources and fetches many additional resources. Distribution

shown is over 10,000 pages spread across 100 sites. Note logscale on x-axis.

roughly 33 sites chosen at random from three ranges – [1, 1000], [1000, 100k], and [100k, 1m] –

from Alexa’s site rankings. This corpus spans a diverse collection of sites and is representative

of real-world crawls in that it includes a large number of pages per site crawled.

On a server which has a 16-core 2.1 GHz Intel Xeon CPU, a 1 Gbps network connec-

tion, and a 500 GB SSD disk, I crawl every page in Corpus10k using a custom crawler

which loads every page in Google Chrome but also fetches all URLs, both absolute and

relative, that are embedded in text-based resources (i.e., HTML, CSS, and JS). I record

all responses using a web record and replay tool [15]. I then separately crawl every page

from my recorded copy once using Chrome and once using my custom static crawler (which

mimics wget2 [24], a state-of-the-art static crawler), with network caching enabled in both

cases, i.e., across all pages, each unique resource was only fetched once. Comparing the two

types of crawlers in this manner eliminates any differences that might arise due to server-side

non-determinism [136].

First, the “Dynamic - Static” line in Figure 5.2 shows that a static crawler fails to fetch

32% of bytes on the median page. This is because, on a modern web page, which resources

are served to a client are often determined only when the client executes the scripts included

on the page. Since a static crawler can identify the URLs of a page’s resources only by

parsing the source code of the page, it is blind to such resource fetches. Figure 5.3 shows an

example.

47



var EA = fetch(“crazyegg.com/usnews.com.json”)
// json contents:  {

script_url: ”crazyegg.com/commonscripts/759.js”
}

const n = document.createElement("script");
n.src = EA.script_url;
const r = document.getElementsByTagName("script")[0];
r.parentNode.insertBefore(n, r);

9297.js

utag.js

Figure 5.3: Snippet of JS code from www.usnews.com. The browser first fetches a JSON

file, and then requests a JS file referenced inside the JSON.

Second, Figure 5.2’s “Static - Dynamic” line shows that, on the median page, the static

crawler fetches 93% more bytes than fetched by Chrome; on some pages, this overhead

is as high as 200x. These extra resource fetches arise because, within a single page, web

developers often embed resources that are applicable across a large number of client device

types, expecting the client browser to download the resources applicable to it. Examples

include multiple resolutions of the same image, or different font files for the same HTML text.

To enable the client to pick the appropriate version of any particular resource, modern pages

either use media queries [47] or CSS selectors [19]; see Figure 5.4 for examples. A static

crawler is unable to evaluate media queries and does not know which CSS selectors are

dynamically applied during JavaScript execution. Therefore, it offers no control on whether

to fetch only resources applicable to the machine used for crawling a page or to fetch every

resource that might be requested in any load of the page.

5.2.3 Compute overheads of browser-based crawling

Given the shortcomings of static crawlers, state-of-the-art web browsers are often employed

to crawl pages [6, 11, 10]. I observe that Chrome is the most widely used in browser-based

crawling frameworks because of its better support for web APIs [51] and for automation

capabilities [14]. For this reason, in the rest of this paper, I refer to Chrome1 when discussing

overheads of browser-based crawling.

I observe that the average number of pages that I could crawl per second with Chrome

1I use Chrome in a headless mode as it is known to be more compute efficient [193, 75].

48

www.usnews.com


<picture>
<source srcset=”ct.img/600x338” media=“(min-width:768px)”>
<source srcset=”ct.img/400x225” media=“(min-width:0px)”>

</picture>

.icon-calendar
{font-family: {src: url(“fonts/icomoon.woff”)}}

index.html

style.css

if (body.firstChild.hasAttr(“data-widget”)){
var inode = document.createElement(“i”);
inode.class = “icon-calendar”;
body.firstChild.insertBefore(inode)

}

widget.js

Figure 5.4: Code snippet from www.chicagotribune.com showing the two causes for a

static crawler’s extra resource fetches. (a) It will fetch both versions of the ct.img

image, irrespective of the width of the client device’s display. (b) It will fetch the

font file fonts/icomoon.woff, whether or not the CSS selector .icon-calendar is used

in the rest of the page. The CSS selector is only added if the HTML code contains a

data-widget attribute.

was only 12% of that achievable with the static crawler. The cause for this significant

drop in crawling throughput is shown in Figure 5.5, which plots the average utilization of

CPU, network, and disk with either crawler. Unlike the static crawler, which was limited by

network bandwidth, the dynamic crawler ended up saturating all CPUs. If I were to use a

10 Gbps network, more than 5000 CPU cores would be necessary for the dynamic crawler

to fully utilize the network, which is infeasible to accommodate on a single server.

I break down the reasons behind Chrome’s high CPU usage using data from Chrome’s

in-built profiler [13]. I find three primary contributors: 1) the JavaScript engine, which is

responsible for parsing and interpreting JS code, 2) inside the rendering engine, computa-

tion of the layout tree which specifies on-screen positions for page content, and 3) time spent

inside Chrome’s internal code, into which the profiler has no visibility. Together, these three

sources of computation account for 96% of the compute delays on the median page, with

JavaScript execution alone accounting for about half. Given the complex inter-dependencies

between these three tasks, none of them can be simply eliminated to reduce Chrome’s com-
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Figure 5.5: A comparison of average CPU, network, and disk utilization by static and

dynamic crawlers.

putation overheads. For example, JavaScript execution queries layout information when

scripts inspect the position of elements on the screen.

5.2.4 Minimizing browser’s computation delays

The observation that the amount of client-side computation needed to load a web page

has increased in recent times is not new. A large body of prior work [210, 165, 149, 164]

has focused on addressing the impact of this overhead on user-perceived web performance.

However, those solutions have little utility in the context of web crawling for two reasons.

First, many proposals for reducing the impact of client-side computation on page load

times aim to either increase the overlap between the browser’s use of the client CPU and

network [164, 187] or parallelize the browser’s execution of scripts on a page [149]. Such

solutions can reduce the end-to-end latency of individual crawls, but the total amount of

computation that the crawler needs to perform, and thus the crawling throughput, will

remain unchanged.

Second, others [165, 210, 4] rely on server-/proxy-side support to ship processed versions

of pages so as to minimize the amount of JavaScript that clients need to execute. Notwith-

standing the fact that such solutions are not usable until they are adopted by millions of

domains, I estimate their best case utility by crawling pages in Corpus10k with script execu-

tion in Chrome disabled. A comparison of “Dynamic” and “Dynamic w/o script execution”

in Figure 5.5 shows that the latter marginally reduces the gap between CPU and network uti-
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lization. However, client-side computation remains a significant bottleneck, thereby limiting

crawling throughput to still be only 17 pages per second.

Alternatively, one could attempt to build a lightweight browser from scratch which only

supports crawling, but does not enable users to visit web pages, i.e., has no graphical inter-

face, does not support user interactions, etc. However, significant engineering effort would

be required to constantly keep up with updates in HTML, CSS, and JavaScript APIs. For

example, when I load the landing pages of the top 1000 Alexa sites using a version of Chrome

from five years ago (v65), it fails to fetch 16% of the resources fetched by the most recent

version of Chrome (v114). This is because certain JavaScript APIs that are commonly used

today were not supported by Chrome v65, e.g., support for optional chaining [38] was only

added in v80. It would be best for web crawlers to rely on widely used browsers which are

well-maintained, instead of having to replicate the effort in a lightweight browser dedicated

to crawling.

5.3 Overview

The takeaway from the previous section is that, today, operators of web crawlers are stuck

with having to choose between two less than ideal options: use static crawlers and miss out on

some resources, or make do with the poor performance of dynamic browser-based crawlers. I

seek to resolve this quandary by enabling high-fidelity crawling at high throughput. I do so

while respecting two constraints. First, I make sure to crawl all the resources on a page that

a browser would fetch, but make it configurable whether to crawl only the resources relevant

to the machine on which the crawler is executed. Second, to make my crawler compatible

with the legacy web, I require no changes to web pages and the servers that host them.

5.3.1 Observations and approach

The high-level observation that guides my approach is that, on any site, there typically is

significant overlap across pages both in the JavaScript code that they include and JavaScript-

initiated fetches when a browser loads them. Figure 5.6 demonstrates this property on the

pages in Corpus10k.

First, for every site, out of all the unique JS files seen on at least one of the 100 pages

on that site, I compute the fraction which are included in multiple pages; here, I consider

the combination of a file’s URL and a hash of its source code to be a unique identifier for a

file. The “Same source” line plots the distribution of this fraction across the 100 sites in my

corpus. For the median site, 72% of JS files were shared across multiple pages.
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Figure 5.6: For the sites in Corpus10k, most JavaScript files appear on multiple pages

and a script typically fetches the same resources on all the pages which include that

script.

Store/lookup 
signatures

Pages to crawl 
dynamically

Phase 1: Static crawl

Download only 
statically linked

JS files to compute 
set cover

Phases 2,4: Dynamic crawl

Load pages 
while executing 
instrumented JS

Page URLs

Phase 3: Static crawl

Crawl pages 
where all JS 

can be skipped

Pages to crawl statically

Compute 
cache

Pages to recrawl dynamically

Lookup
signatures

Figure 5.7: Sprinter crawls the pages on any site in four phases which alternate between

browserless and browser-based crawling.

Next, I examine the likelihood that a JS file fetches the same set of resource URLs when

it is executed on different pages. For this, I consider a script file’s execution uniquely by

the file’s URL, the hash of its source, and the set of URLs it fetches. When I consider only

those executions which result in at least one fetch, the “Same source + same fetches” line

in Figure 5.6 shows that, on the median site, 65% of unique file executions – at least with

respect to resource fetches – are repeated across multiple pages.

The takeaway from these observations, coupled with the property that web crawling

workloads typically crawl a large number of pages per site (§5.2.1), is that there exists

significant redundancy in a dynamic crawler’s execution of JS files. When the browser used

by the crawler executes a JS file that it had previously executed on a different page on the

same site, the numbers from Figure 5.6 indicate that the same set of resources are often

requested as on the previous page. The browser’s network cache will ensure that it does not
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have to waste network bandwidth in re-downloading those resources. But, the browser will

still execute every JS file in its entirety just to identify these resources.

To improve crawling performance by reducing the crawler’s computations, our approach

aims to first eliminate redundant execution of JS files. Specifically, whenever my crawler,

Sprinter, crawls any page, it skips executing a JS file if a) it has already executed that file

while crawling a different page on the same site, and b) it identifies that, if executed, the

file will fetch the same resources as it did on the previously crawled page. However, as

observed earlier (§5.2.4), a browser imposes high compute overhead even when it is used to

load pages with execution of scripts disabled. Therefore, second, on pages where it can reuse

the executions of all JS files, Sprinter does not even employ a browser to crawl those pages.

Put together, Sprinter uses a browser to crawl only a small subset of pages in each site and

minimizes the browser’s execution of JavaScripts.

5.3.2 Challenges

Realizing the above approach requires us to answer the following three questions.

• Whenever a script appears on multiple pages, it is not guaranteed to initiate the same

resource fetches on all pages; in my corpus, 48% of repeated scripts had at least one

execution where they fetched a different set of URLs than what they fetched in their first

execution. Prior to executing a script, how can Sprinter efficiently identify that the script’s

execution will match a prior execution, and it is safe to skip executing it?

• Classic memoization involves storing the results of execution and using them to skip future

executions of the same code in the same runtime context. In contrast, when Sprinter

crawls a page without a browser, how can it reuse the browser’s prior computations on

other pages? Mimicking the entire browser runtime will significantly increase complexity

and degrade performance.

• Finally, on each site, which subset of pages should Sprinter crawl using a browser? To

minimize Sprinter’s compute overheads, it is key that the subset be small. However, for

Sprinter to crawl all the remaining pages on the site without a browser, I must ensure that

the script executions on the pages crawled using a browser suffice to skip executing all the

JS files on the remaining pages.

5.4 Design

As shown in Figure 6.10, Sprinter crawls a corpus of pages from any particular website in four

phases. In the first phase, Sprinter identifies the subset of pages that need to be crawled with
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var gKey = window.grumi.key; // “bfd2-4adc”
fetch(`https://www.geoedge.com/${gKey}/grumi-ip`)
var NYTD = {PageViewID:‘mubjhislka7867’};
window.NYTD = NYTD;

{
Reads: [“window.grumi.key”,”bfd2-4adc”],
Writes: [“window.NYTD”,”{PageViewID:‘mubjhislka7867’}”]
Fetches: [“https://www.geoedge.com/bfd2-4adc/grumi-ip“]

}

vendor.js

Signaturevendor.js

Figure 5.8: JavaScript code from www.nytimes.com which reads a global variable using

the window object and, based on the property read, fetches a URL. It also writes to

the window object. Signature for this includes the global state read and written (both

the keys and the values) and the fetches initiated.

a browser. It crawls those pages in the second phase while skipping JS executions whenever

feasible. Next, Sprinter crawls the remaining pages on the site using its augmented static

crawler. Finally, it recrawls some of the pages from the third phase using a browser. I present

my design of Sprinter by first describing its operation in phases 2 (§5.4.1) and 3 (§5.4.2),

and lastly, phases 1 and 4 (§5.4.3).

5.4.1 Memoizing JavaScript execution

Sprinter maintains a compute cache in order to take advantage of the opportunities to reuse

JS executions across the pages on a site. On any page that Sprinter crawls with a browser,

prior to executing JS on the page, the browser looks up the compute cache to determine

whether the execution can be skipped. Upon a cache miss, the browser executes the JS code

and logs a summary of its execution in the compute cache, for use on other pages.

Execution signatures to enable reuse. When JS code runs within a browser, it can

read from or write to the JavaScript heap and HTML DOM object. It can also read the

return values from various web APIs. Therefore, to enable reuse of JS executions without

violating correctness, we associate the execution of every block of JS code with a signature

which includes the values at the start of executing that block of code for all state from the

heap or DOM that is read within that block. When the browser executes any block of JS

code, its execution is guaranteed to result in the same externally visible effects (i.e., writes to
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the DOM and heap, and URL fetches) as a prior execution which had the same signature, if

the block does not invoke any non-deterministic APIs (e.g., Date, Random or Performance).

Figure 5.8 shows an example block of code and the corresponding signature.

However, to construct code signatures, modern browsers provide no APIs to extract the

necessary runtime information about JavaScript execution. To remedy this, Sprinter uses a

custom JS instrumentation framework, similar to the ones used in prior work [112, 149, 165].

This instrumentation framework runs inside a man-in-the-middle (MITM) proxy which sits

in front of the browser. For every new JS file requested by the browser, the proxy statically

analyzes the code in the file and rewrites it by injecting code that tracks the state and APIs

that are accessed when the file is executed. Sprinter’s instrumentation tracks variables on

the heap which are in either 1) the global scope, which is accessible using the window object,

or 2) the closure scope, which is created within a function but persists after the function’s

execution if there exists a nested function declared in the same enclosed scope. For the DOM

object, Sprinter tracks all APIs that can read from (e.g., getElementById) or write to (e.g.,

appendChild) the DOM.

Once the browser finishes loading a page, Sprinter’s injected JS code compiles signatures

for the scripts on the page and stores them in the compute cache which is co-located with the

proxy. These signatures include both the above-mentioned information needed to identify

the opportunity for reuse, and the writes to the heap and DOM that need to be executed

when the corresponding code is skipped, along with any fetches initiated; see Figure 5.8.

When a previously cached JS file is fetched in future page loads, the proxy embeds stored

signatures for the code in this file directly into the file. When processing each JS file, the

browser uses the embedded signatures to determine if any code within the file can be skipped.

Granularity of JS execution reuse. Given my results from §5.3.1, it is natural to try

and reuse the browser’s JS executions at the granularity of entire files, i.e., prior to processing

any script file, the browser uses cached signatures for that file to determine whether to skip

all the code in the file or execute all of it. However, as shown in the “Full signature” line in

Figure 5.9, the cache hit rate is pretty poor. On the median site in Corpus10k, less than 40%

of JS file executions can be skipped.

To improve the hit rate, my key insight is that, unlike in user-facing page loads, I do

not need to restrict Sprinter’s skipping of a JS file’s execution only when it is guaranteed

to execute in a manner exactly identical to a previous execution of the same file. Rather,

as long as I can guarantee that the code will fetch the same resource URLs, I can skip it.

A crawler does not need to preserve other aspects of JavaScript execution, such as visual

changes by modifying the DOM or functional changes by adding event handlers that allow

users to interact with the page.
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Figure 5.9: Cache hit rate for JavaScript files that initiate fetches for other URLs.

This observation enables us to trim file signatures and only include state that influ-

ences resource fetches. To identify this state, I turn to dynamic taint tracking [189]. Our

instrumentation of any JS file marks all statements that initiate URL fetches (such as

XMLHTTPRequest.send) and all DOM nodes with a src property as sinks. I also mark

all control-flow statements as sinks. At the end of any file’s execution, I include in the file’s

signature only those reads which propagate values to any of the sinks.

The “Trimmed signature” line in Figure 5.9 shows that trimming the signatures stored in

Sprinter’s compute cache improves the cache hit rate on the median site to over 80%. This

is because a large fraction of reads performed by JS on the web does not influence the set of

URLs fetched. Furthermore, I see that the cache hit rate with Sprinter is close to the best

achievable hit rate, which I obtain via post-hoc analysis of JS executions to identify when the

set of URLs fetched matched a prior execution. The gap between “Trimmed signature” and

“Oracle” is due to Sprinter’s conservative tracking of all control-flow dependencies, instead

of only the ones that influence the URLs fetched.

5.4.2 Statically crawling pages

So far, I have discussed how Sprinter reuses execution across pages. However, as mentioned

in §5.2.3, JS execution is only a part of the total compute overhead of web browsers. To

maximize Sprinter’s performance, I now discuss how it crawls pages without a browser in

phase 3.

Crawling without a browser. I observe that the primary utility of crawling a page
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within a browser is its implementation of the JavaScript heap and the DOM object, and

its support of various APIs. However, if I are able to skip executing a file, I only need to

compile the read state in its signature, for which I need a log of all the writes performed by

previously executed or skipped JS files. I do not need to apply these writes to the browser’s

heap and DOM since there are no user interactions at the time of crawling.

Based on this insight, Sprinter’s static crawler maintains a shadow heap, which is a key-

value map from the properties of the heap to the corresponding values. It also maintains a

shadow DOM, which it constructs by parsing the page’s HTML at the start of every page

load and offers the same read and write APIs as the ones provided by the browser.

For every page that it statically crawls in phase 3, Sprinter fetches the page’s HTML,

extracts all embedded resource URLs, and recursively fetches them. For every JS file fetched,

the static crawler looks up the shadow heap and DOM to construct the file’s signature. Upon

a successful cache hit, Sprinter logs the writes included in the file’s signature to the shadow

heap and shadow DOM, and issues any resource fetches included in the signature. It repeats

this process until all resources on the page have been fetched. Whenever there is a cache

miss for a JS file, the static crawler is unable to execute the file, and it defers these pages

for browser-based crawling in phase 4 (§5.4.3).

Handling additional fetches. Crawling pages as described above has the downside of

fetching additional resources that a browser would not (as described in §5.2.2). For Corpus10k,

this increases the total number of bytes fetched by 3.5x. Unlike during dynamic crawling,

when the network is severely underutilized (Figure 5.5), these additional fetches significantly

degrade overall throughput when crawling without a browser.

If the input configuration to Sprinter specifies that only the resources relevant to the

machine executing the crawler be downloaded, its static crawler does so by leveraging the

browser’s processing of pages crawled earlier in phase 2. First, during every page load exe-

cuted within a browser, Sprinter adds to its compute cache the media queries evaluated and

the corresponding value (true or false). For any media query encountered during browserless

page loads, the static crawler fetches the corresponding URL if the compute cache either

returns a true value or does not contain any entry for that media query. Similar to my

observation of similarity in JS executions across pages, I find that, for the median site in

Corpus10k, 92% of all media queries occur on more than one page. Second, the static crawler

uses the cached signatures for JS files to identify which selectors were applied when the

browser executed those files. It fetches only the URLs contained within these selectors.
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the number of pages in the set cover (“Pages”) are a small fraction of the total corpus

size.

5.4.3 Scheduling page crawls

Given the high compute overhead of loading pages in a browser and extracting signatures, I

must minimize the number of pages that Sprinter crawls using a browser. However, Sprinter

can crawl a page without a browser only if it is able to skip executing every JS file on that

page. Hence, the subset of pages on any site that Sprinter crawls without a browser in phase

3 should ideally be such that all of the JS files that appear on any of these pages also appear

in at least one of the pages previously crawled with a browser in phase 2. This does not

guarantee that the static crawler will find a compute cache entry with a matching signature

for every JS file, but at least makes it possible.

Need for scheduling. Since the set of JS files on any page is not known apriori, Sprinter

could use a browser to crawl the pages on any site in a random order and switch to browserless

crawling once the set of JS files converges, i.e., once the union of JS files remains unchanged

for n consecutive pages crawled. But, I find that there is no value of n that offers a good

tradeoff between compute overheads and coverage of JS files. For example, with n = 2, I

would need to crawl only 8% of pages on the median site in Corpus10k with a browser, but

only 49% of the JS files seen across all the pages on this site appear on those pages. With

n = 10, the fraction of JS files covered by browser-based loads increases to 82%; however,

38% of pages now need to be crawled using a browser.

Efficient identification of set cover. Sprinter takes an alternate approach of carefully
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selecting which subset of pages on each site to crawl using a browser in phase 2. Though I

cannot predict which JS files are on the remaining pages, I leverage my finding from §5.3.1

that the same JS file often fetches the same resources across pages of a site. Therefore,

instead of finding a subset of pages that includes all the JS files used on that site, I find

a subset that includes all the JS files that are statically embedded in the remaining pages.

When these files are executed as part of the browser-based loads, all the JS files that are

dynamically fetched on this site’s pages will likely be fetched and executed.

Thus, in phase 1, Sprinter crawls all pages using a static crawler which only fetches the

JS files that are directly linked. I then have a set of JS files for every page, and Sprinter

computes the set cover, i.e., the subset of sets whose union matches the union of all sets.

Since computing the optimal set cover is NP-complete [103], I use a greedy heuristic which

runs in polynomial time and is known to closely approximate the optimal [198]. Figure 5.10

shows that, on the median site in Corpus10k, Sprinter selects only 7% of pages to be crawled

using a browser, yet these pages cover over 80% of all the JS files seen across all pages on

the site.

Given this methodology for choosing which pages to crawl with a browser in phase 2,

there are multiple reasons why Sprinter’s static crawler may not find a matching compute

cache entry for every JS file that it fetches. First, since the set cover is only based on

statically linked JS files, some dynamically fetched JS files may not have been encountered

in the browser-based loads. Second, even for files that were executed by the browser, those

executions may not have had the same signature as that expected by the static crawler. If

the static crawler runs into either issue on any page, Sprinter recrawls that page using a

browser in phase 4.

5.5 Implementation

Our implementation of Sprinter has three components, which work together as shown in

Figure 5.11.

Dynamic crawler. Sprinter’s dynamic crawler is written in 1150 lines of NodeJS code.

This dynamic crawler allows Sprinter to load pages using Chrome in phases 2 and 4. To

automate Chrome, the crawler uses the Puppeteer library [40]. At the end of every page

load, it uses Chrome’s DevTools protocol [14] to collect runtime information, and it then

sends the per-file signatures that it compiles to the man-in-the-middle (MITM) proxy.

Static crawler. The static crawler, used in phases 1 and 3, is written in 920 lines of

Golang. It uses the goquery library [25] to create a virtual DOM for every HTML file and

the cascadia library [12] to parse and query CSS selectors.
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Figure 5.11: Overview of my Sprinter implementation.

MITM proxy. The MITM proxy is an HTTP proxy written in 350 lines of Golang.

It intercepts requests and responses for every resource fetched by the static and dynamic

crawlers. The proxy also statically analyzes and instruments JS files, for which it uses a

static analyzer written in 1200 lines of NodeJS code. The static analyzer uses Babel [7], a JS

transpiler, to create the abstract syntax tree for every JS file. While instrumenting JS files,

the static analyzer enables tracking of the JS heap and DOM. Even though all web APIs

should ideally be tracked since their return values can potentially influence URL fetches,

my evaluation shows that the subset of APIs that my implementation currently supports –

all values accessible from the window object directly, e.g., window.navigator.userAgent –

largely suffices. Our finding is in accordance with prior work which studied the impact of

web APIs on URL fetches [136]. The proxy also runs a gRPC server to receive signatures

from the dynamic crawler.
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Figure 5.12: Comparison of (a) crawling throughput and (b) fidelity of Sprinter against

the three baselines.

5.6 Evaluation

I evaluate Sprinter with respect to the fidelity with which it crawls pages and its performance

in terms of crawling throughput. I also estimate the effort that would be required to maintain

its implementation over time as web APIs evolve. I compare it to various options that exist

for web crawling today. Our key findings are as follows:
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• When compared to dynamic browser-based crawlers, Sprinter improves crawling through-

put by 5x while preserving over 99% of the bytes fetched.

• Even in comparison to prior web accelerators that rely on assistance from web servers to

reduce in-browser computations when loading pages, Sprinter delivers 2.4x higher crawling

throughput.

• Sprinter’s performance benefits significantly improve as more pages are crawled per site,

e.g., its crawling throughput increases by 2.1x when the number of pages per site goes up

from 100 to 500.

• Sprinter’s performance improves as the same corpus is crawled repeatedly over time, e.g.,

the second crawl of my corpus is 78% faster than the first run 1 week earlier.

5.6.1 Evaluation setup

Workload. I expand my corpus of pages to include 500 randomly sampled pages in each

of 100 sites. This new corpus, which I refer to as Corpus50k, retains the same properties as

Corpus10k: diverse set of sites, and representative of real-world crawling workloads in having

a large number of pages per site. As described in §5.2.2, I crawl every page in this new

corpus using a custom crawler which fetches the resources downloaded by either dynamic

or static crawlers, and I use a record-replay tool [15] to record all request-response headers

along with the corresponding payloads.

Hardware configuration and crawling methodology. I store the recorded pages in

an SSD drive of a Linux server which hosts 450 web servers to concurrently service HTTP

requests with the appropriate recorded content. The crawlers run on a different Linux server

with a 16-core 2.1 GHz Intel Xeon CPU, 128 GB RAM, and a 1 Gbps Ethernet connection

to the server housing recorded pages. Crawling performance in this setup matches what I see

when crawling pages from the live web, but eliminates the impact of any server-side effects

on my evaluation of performance and fidelity.

Baselines. Our primary baselines represent existing static and dynamic crawlers. For

the static approach, I port wget2, a popular open-source crawler, to be compatible with

my proxy-based setup; I verified that my static crawler is identical to wget2 in terms of

fetched content. For the dynamic approach, I first considered three popular open-source

crawlers: Archivebox [6], Browsertrix [10], and Brozzler [11]. However, my benchmark

results for each revealed substantial performance drawbacks, likely because their primary

goal was high fidelity, not necessarily high throughput. Specifically, undue overheads stem

from spawning a new browser instance for each crawled page, using a CPU-intensive MITM

proxy, and relying on an outdated Chrome automation framework. Therefore, I instead built
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an in-house Chrome-based crawler that achieves 20%, 33%, and 250% higher throughput

than Archivebox, Browsertrix, and Brozzler, respectively. I verified that my custom crawler

fetches the same set of resources as Archivebox when used to crawl the landing pages for the

100 sites in Corpus50k.

Our third baseline is representative of prior server-/proxy-assisted solutions to reduce

client-side computations in user-facing page loads [165, 210]. To the best of my knowledge,

none of these systems are open sourced, and we are unaware of any domains that have

adopted these techniques. Therefore, to evaluate Sprinter against this prior work, I consider

the best case outcome of these systems, where all client-side JS execution is eliminated. I

mimic such a scenario by using my Chrome-based crawler to crawl a version of every page

wherein I include links to all the resources fetched by JS files in the page’s main HTML.

The browser loads this modified HTML with JS execution disabled. I refer to this baseline

as server assisted dynamic crawling.

Metrics. I measure the crawling throughput of each crawler as the average number of pages

it can crawl per second on a single server. For each crawler, I run a sufficiently large number

of instances so as to saturate either the CPU or the network. I expect crawling throughput

to linearly increase with the number of servers. I run 5 trials for each experiment and plot

the median value, with error bars plotting the minimum and the maximum values.

I consider the default goal of crawling to be to match a Chrome-based crawler. Therefore,

I measure the fidelity offered by a crawler as the fraction of bytes it fetches of all the resources

fetched by Chrome when crawling the same pages. When the goal is to crawl all resources

that are relevant to any client device, I measure fidelity as the fraction of bytes fetched out

of the union of the resources fetched by the static and dynamic crawlers.

5.6.2 Throughput and Fidelity

5.6.2.1 Comparison with baselines

To compare Sprinter with the three baselines, I load pages in Corpus50k using each of the

four crawlers separately. I monitor the resources fetched by each crawler on every page,

and the total time taken to finish crawling the entire corpus. I also monitor the CPU and

network utilization to identify the bottleneck for each crawler.

Figure 5.12(a) plots the crawling throughput achieved with each crawler, and Fig-

ure 5.12(b) shows the fidelity achieved.2 Static crawler achieves the best crawling throughput

by far of 96 pages per second. However, it misses out on 37% of the bytes fetched by the

2I see no variation across runs in the resources fetched by each crawler because all of my crawls rely on
one snapshot of every page crawled from the live web.
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Figure 5.13: Number of pages crawled during each of the different phases of Sprinter

and the corresponding throughput achieved in each phase.

dynamic crawler. In contrast, the dynamic crawler could only crawl at a rate of 6 pages

per second. Since CPU utilization was at 100% throughout the entirety of the crawl with

the dynamic crawler, throughput increased to 13 pages per second with the server-assisted

dynamic crawler, which does not execute any JS.

Sprinter offers a significant additional speedup, improving crawling throughput to 31

pages per second, a 5x improvement relative to the dynamic crawler. Importantly, it does so

without requiring any changes to the web and while preserving 99.2% of the bytes fetched

by the dynamic crawler. The 0.8% of bytes that went unfetched stem from the incomplete

support for all web APIs in my current implementation. 50% of these unfetched bytes

correspond to JavaScript files, 27% to images, and 17% to HTMLs, with the remaining

accounted for by CSS and other content types. While no resources went unfetched on the

median page, the 90th percentile page was missing 1 resource.

5.6.2.2 Throughput in each phase

Sprinter’s crawling throughput varies widely across phases. Figure 5.13 plots the number of

pages crawled in each phase and the corresponding throughput. Whereas, Figure 5.14 shows

a timeline of how Sprinter’s crawling of the pages in Corpus50k proceeds over time.

• No page is fully crawled in phase 1; Sprinter only statically crawls the HTML files and

embedded JavaScript files for every page so as to identify the subset of pages to be crawled

with a browser in phase 2. Therefore, phase 1 finishes in 151s, the quickest of all four

phases.
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number of pages crawled in each phase.

• Phase 2 is the slowest since Sprinter not only has to crawl pages with a browser, but

it also has to incur the overheads of statically analyzing and rewriting every JavaScript

file, executing these instrumented files inside Chrome, and processing the information it

collects to generate and store per-file signatures. In this phase, Sprinter crawls 1413 pages

in 620s, resulting in a crawling throughput of a little over 2 pages per second.

• Sprinter crawls the vast majority of pages in phase 3: 42497 pages in 316s. The average

throughput of 135 pages per second in this phase is even higher than what a static crawler

can achieve (96 pages per second, as shown in Figure 5.12(a)). This is because, unlike

a static crawler, Sprinter leverages browser-based execution of media queries and CSS

selectors in phase 2 to eliminate fetches of resources relevant only for other client types.

• In Phase 4, Sprinter recrawls the remaining 6090 pages with a browser; about a quarter

of these are because they contained a JS file not executed in phase 2, and the remaining

pages incurred at least one compute cache miss. The crawling throughput of 11 pages per

second in this phase is better than in phase 2 because significantly fewer JS files need to

be instrumented.

At the end of phase 4, Sprinter’s compute cache had 3089 entries. The cache hit rate of

95.6% is the key enabler of Sprinter’s throughput improvements as it could crawl a large

fraction of pages in phase 3, without requiring a browser. I cannot further reduce the total

crawl time by immediately spawning a browser to crawl any page that incurs a cache miss

in phase 3 because both phases 3 and 4 are bottlenecked by the CPU.
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Figure 5.15: Incremental benefit offered by each of the techniques used in Sprinter.

5.6.2.3 Contribution of techniques

To understand the performance benefits of each of the techniques used in Sprinter, I incre-

mentally add them to the dynamic crawler and measure crawling throughput.

First, I evaluate the benefits of only using JS memoization (§5.4.1) in Chrome, loading

all pages in the corpus in a random order. Figure 5.15 shows that “Dynamic+JS reuse”

provides a roughly 66% speedup over “Dynamic”.

Next, I crawl some of the pages with a browser and the rest using Sprinter’s augmented

static crawler (§5.4.2). To determine which pages to crawl using a browser, I consider the

strawman approach (§5.4.3) wherein I transition to browserless crawling once the union of

JS files remains unchanged for n consecutive pages. For Corpus50k, I observe that n = 25

results in browser-based loads fetching the same fraction of all JS files as that covered by

Sprinter’s chosen set cover. Even this unsophisticated combination of dynamic and static

crawling – “Sprinter w/ random schedule” in Figure 5.15 – roughly doubles the crawling

throughput.

Finally, by efficiently choosing a carefully chosen subset of pages to crawl with a browser,

Sprinter crawls 88% fewer pages using a browser in phase 2, resulting in a further 1.6x

improvement in throughput.

5.6.3 Sensitivity to crawling parameters

I evaluate the impact of the following three configuration parameters on Sprinter’s crawling

throughput: 1) the number of pages crawled per site, 2) the time gap between repeated
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function of number of pages crawled per site. Bars show value for median site, with
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crawls, and 3) whether fetching all statically embedded resource URLs is desired.

5.6.3.1 Number of pages per site

The key to Sprinter’s high crawling throughput is its judicious partitioning of pages, crawling

a small fraction using a browser and the remaining without. I examine how the fraction

chosen for browser-based crawling varies as a function of the number of pages being crawled

per site. For 5 different values of the number of pages per site, Figure 5.16 plots this fraction

for the 25th, median, and 75th percentile sites. The percentage of pages in Sprinter’s carefully

selected “set cover” for the median site goes down from 6% with 100 pages per site to 1.6%

with 500 pages per site. As a result, Sprinter is able to crawl a corpus of 10k pages at an

average rate of 15 pages per second. But, for a 50k page corpus, its throughput improves to

31 pages per second (Figure 5.17). Akin to how a static crawler benefits more from network

caching with more redundant resource fetches, Sprinter’s compute cache enables it to reuse

more client-side computations when it crawls more pages per site.

On the flip side, lower the number of pages per site, lower Sprinter’s throughput. Fig-

ure 5.17 shows that, with 10 pages per site, Sprinter crawls 4 pages per second on average,

which is slower than the dynamic crawler. For Sprinter to offer any benefit, I see that it

must be asked to crawl at least 20 pages per site. As a result, workloads that only crawl

landing pages of sites [17] will not benefit from Sprinter.
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Figure 5.17: Sprinter’s crawling throughput as a function of the number of pages per

site.

5.6.3.2 Repeated crawling

In many web crawling workloads, the same corpus of pages is repeatedly recrawled. For

example, a web search engine must ensure that its search index reflects the latest content on

every page, and web archives must track changes to page content over time. In such cases,

Sprinter will crawl the entire corpus in 4 phases the first time. However, when the corpus

is recrawled, Sprinter can directly jump to crawling pages statically in phase 3, leveraging

JS execution signatures from the previous crawls. Pages where no compute cache entry was

found for at least one JS file would have to be recrawled with a browser in phase 4.

To measure the crawling throughput with Sprinter when the same corpus is crawled

multiple times, I recrawl Corpus10k once three weeks after our initial crawl, and again a week

later. I then use Sprinter in my replay setup to crawl pages from my last copy of the corpus.

I run Sprinter once starting with an empty compute cache, once using signatures from the

crawl a week before, and once using signatures from the crawl a month before.

Figure 5.18 shows that reusing signatures from a week ago improves Sprinter’s throughput

by 78% as compared to when no prior crawl existed. Reusing month-old signatures also

speeds up Sprinter. But, since the compute cache entries are more stale and more previously

unseen JS files are fetched, the benefits are significantly lower.
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Figure 5.18: Sprinter can crawl pages faster by leveraging signature information from

previous crawls of the same corpus.

5.6.3.3 Preserving static fetches

Thus far in my evaluation, I have considered the goal of crawling to be to fetch the same

resources on every page as a dynamic crawler. However, in some cases, it might be desirable

to also crawl all resources that would be fetched by a static crawler. For example, web

archivists might want to preserve all versions of every image on a page, so as to be able to

accurately render the preserved page irrespective of the client device used to visit this page

in the future.

In these cases, Sprinter can be configured to not eliminate fetches using the techniques

mentioned in §5.4.2. The resultant throughput of Sprinter drops to 28 pages per second

which, though 9% lower than when it only tries to match the dynamic crawler, is still 4.6x

faster than the dynamic crawler. This drop in throughput is because of Sprinter’s static

crawler having to fetch additional bytes in phase 3.

Note that the impact of this configuration option on Sprinter’s throughput depends on

the number of pages crawled per site. With more pages per site, phase 3 is able to achieve

higher crawling throughput due to the benefits of network caching.

5.6.4 Maintainability

Web APIs and their specifications are constantly updated [142]. Web crawlers need to

be correspondingly updated over time to ensure that web pages using the latest APIs are

accurately crawled. Dynamic crawlers leveraging web browsers such as Chrome and Firefox
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Chrome
version

Lightweight browser Sprinter

# of APIs
added

# of files
added/-
modified

# of APIs
added

LOC
added

v108 4 41 1 9

v109 3 70 1 13

v110 4 58 1 6

v111 7 109 0 0

Total 18 278 3 28

Table 5.1: Comparison of number of APIs that need to handled by Sprinter and a

lightweight browser.

simply need to update to the latest version of the browser, as these browsers are well-

maintained and constantly updated to support most of the latest web APIs.

To get a measure of the effort that would be needed to maintain Sprinter or a lightweight

browser such as phantomJS, I look at all the APIs added in the 4 most recent versions of

Chrome (v108 to v111). For each API, I manually read its specification. Only a subset of

these would need to be implemented by a lightweight browser designed for the purpose of

crawling, e.g., any API that takes effect only during user interactions would not have to be

handled. Sprinter’s instrumentation of JS code would need to keep track of an even smaller

subset of APIs, only those which influence execution signatures, i.e., any API that can read

from or write to the global state.

Table 5.1 compares the number of APIs that need to be tracked and implemented by

Sprinter versus a lightweight browser designed for crawling. Across the four versions, a

lightweight browser would be required to implement 18 APIs; in Chrome’s source, these APIs

touch 278 files (Chrome’s commit history only shows files added/modified, not the number

of lines of code). In contrast, Sprinter needs to handle only 3 of these APIs, requiring 28

lines of code.

5.7 Summary

Over the years, crawling web pages with high fidelity has evolved from a workload that is

limited by network bandwidth to a CPU-intensive one. In this chapter, I showed that the

key to mitigating this new bottleneck is to strategically minimize the use of the web browser

and its execution of JavaScripts. My design of Sprinter does so by efficiently identifying and

exploiting opportunities to safely reuse the browser’s computations across the pages on any

site. I hope that my work will spur a new wave of innovation in scalable web crawling, a

task that underlies many important systems in today’s society.
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CHAPTER 6

Jawa: Web Archival in the Era of

JavaScript

In this chapter, I introduce the problems faced by web archives that are trying to preserve

web pages and allowing individual users to access them at a later point. I investigate the

root cause for two problems in particular: storage overhead of preserving page snapshots

and the fidelity issues incurred while loading the archived pages. I then describe the design

of Jawa, a new design for web archives which significantly reduces the storage necessary

to save modern web pages while also improving the fidelity with which archived pages are

served. Key to enabling Jawa’s use at scale are our observations on a) the forms of non-

determinism which impair the execution of JavaScript on archived pages, and b) the ways in

which JavaScript’s execution fundamentally differs between live web pages and their archived

copies. On a corpus of 1 million archived pages, Jawa reduces overall storage needs by 41%

when compared to the techniques currently used by the Internet Archive.

6.1 Introduction

URLs are brittle pointers to information on the web. Over time, a page may cease to exist

at the URL where it was originally available [138, 200] or the content available at that URL

might change due to the page being modified [172, 105].

Therefore, web archives play a key role in the web ecosystem, enabling users to lookup

the content that existed at any particular URL at various times in the past. Web archives

are used for a wide variety of use cases, such as web-data analytics, genealogical analysis,

and even as legal evidence [129]. To support these uses, a number of organizations—cultural

heritage institutions, national libraries, and public museums—operate web archives to ensure

long-term preservation of content on the web. A recent survey estimates that there are 119
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web archives in the United States alone [104].

The largest and most popular of these archives, Internet Archive (IA), has archived over

600 billion web pages to date, storing data in excess of 100 petabytes [31]. It repeatedly

crawls web pages over time and saves many snapshots of every page. For every page snapshot,

IA first downloads all resources (e.g., HTMLs, CSS stylesheets, JavaScripts, images) on the

page). It stores these resources after rewriting all URL references to point to the copy hosted

by the archive. When a user wants to later view any stored snapshot of a page, the user’s

browser loads the snapshot from IA in the same manner as it would load any page on the

live web.

In this paper, I argue that this modus operandi no longer suffices due to the preponder-

ance of JavaScript on modern web pages [43, 111, 162]. Specifically, the widespread use of

JavaScript hinders web archives from satisfying two of their primary objectives: 1) to cap-

ture and save as much of the web as feasible, and 2) to ensure that archived page snapshots

faithfully mimic the original page.

• Higher operational costs: First, the total number of bytes on the median web page

has more than tripled over the last decade [27]. A significant contributor to this increase

has been the increased usage of JavaScript. For example, across Internet Archive’s copies

of the home pages of 300 randomly sampled sites, I see that JavaScript accounts for 44%

of the bytes on the median page in 2020, as compared to 20% in 2000 (§6.2). Since web

archives are typically run by non-profit institutions with limited budgets, needing to store

more bytes per page reduces the number of pages they can crawl and archive.

• Poor page fidelity: The archived copies of many JavaScript-heavy pages render with

missing images and improperly laid out content (§6.2.1). This occurs due to the non-

deterministic execution of JavaScript; when a user loads an archived copy of a page,

the resource URLs requested by the user’s browser can differ from those saved by the

archive when it crawled the page. Consequently, the web archive returns errors for some

of the requested resources. Due to the complex dependencies between the resources on a

page [207, 86, 164], one failed resource fetch often has a cascading effect on the rest of the

page load.

The challenge in holistically addressing both problems is that trying to reduce storage

overheads by not saving some of the JavaScript found on crawled pages risks further degrad-

ing fidelity. A web archive could statically or symbolically analyze the JavaScript code on

every page to identify what subset is necessary to preserve correctness in all potential loads

of the page. However, the computational overheads of such methods [136, 145] render them

impractical at the scale of a web archive, e.g., the Internet Archive crawls roughly 5000 pages

per second [211]. To jointly address JavaScript’s adverse impacts on storage and fidelity us-
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ing computationally lightweight methods, I observe and leverage three fundamental ways in

which JavaScript’s execution on archived pages differs from that on the live web.

First, a significant fraction of JavaScript is dedicated to either sending user data to a

page’s origin servers or processing dynamically constructed server responses, e.g., to enable

users to post comments or to push notifications. Any such functionality cannot work on

archived pages, and therefore, the associated code need not be stored by web archives.

Fortunately, the JavaScript code on any page is typically partitioned into several files, and

I find that most of the code that will be non-functional in the context of a web archive

is cleanly compartmentalized into a subset of these files that exhibit identifiable patterns

in their URLs. Consequently, I show that web archives can efficiently, and safely, prune

unnecessary JavaScripts by relying on URL-based filters to identify and discard JavaScript

source files.

Second, many lines of JavaScript code are executed only in certain control flows, e.g.,

when a page is loaded on a smartphone, and not on a desktop. But, among the various

sources of non-determinism that dictate whether or not a specific line might get executed,

some sources are absent in loads of archived page snapshots; clients maintain no state across

loads and server responses for the same request URL do not vary. Moreover, a web archive

should actively eliminate those sources of non-determinism which can cause clients to request

different resource URLs than those crawled. Thanks to the resulting reduction in non-

determinism, I find that much of the JavaScript code on an archived page will never be

exercised in any load of that page, making it moot for a web archive to store such code.

Lastly, a critical use of JavaScript is to enable users to interact with a page after the page’s

load has completed. On live pages, identifying all the code used to support such interactions

is generally challenging because the code that is exercised varies based on how users interact

with the page. For example, the input given to a search bar determines the server’s response;

based on the number of search results, JavaScript for paginating the results may or may not

get executed. In contrast, I find that the subset of interactions that do work on archived

pages (e.g., navigational menus and image carousels) distinctly differ from those that do not

with respect to the properties of the page state they access. This greatly simplifies the task

of identifying the code necessary to preserve post-load interactions.

Based on my three observations, I design and implement Jawa (JavaScript-aware web

archive), a system for crawling and saving web pages. Jawa enables web archives to save

many more pages than they could today for the same cost, e.g., it reduces the total amount

of storage necessary to store a corpus of 1 million web pages by 41%. Importantly, Jawa

enables this reduction both while increasing the rate at which pages can be crawled by 39%

and significantly improving the fidelity of archived pages: for the vast majority of archived
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Figure 6.1: Across the landing pages of 300 sites, distribution of fraction of bytes on

the page accounted for by JavaScript.

pages, Jawa ensures that the page is rendered in a manner identical to how it was when the

page was crawled, and all page functionality that can possibly work on an archived page does

work. Source code for Jawa, including scripts to reproduce the key results in the paper, are

available at https://github.com/goelayu/Jawa.

6.2 Background and Motivation

As mentioned earlier, the Internet Archive (IA) is the largest and most popular web archive

in the world today. For every page that it crawls, IA stores all the individual resources

on that page (such as HTMLs, CSS stylesheets, JavaScript files, and images) in the Web

ARChival format (also known as the WARC format [48]). Client browsers can load archived

pages from IA’s Wayback Machine [50] in a manner identical to how they do on the live

web. When the Wayback Machine receives a request for any resource, it looks up an internal

index to locate the WARC record for this resource and then responds along with relevant

HTTP headers. IA rewrites all resource files so that all statically embedded URLs point to

IA’s web servers. For URLs which are dynamically generated via JavaScript, IA rewrites

them on the fly using client-side API shims.

This architecture sufficed when IA began operating two decades ago. However, the web

today is very different. In particular, JavaScript (JS) has become significantly more common.

For example, Figure 6.1 shows that JS accounts for 44% of the bytes on the median page

today; up from 20% in 2000. In this section, I show that this increase in JS hinders the

ability of web archives to meet their two primary objectives: 1) to crawl and capture as
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(a) dailycaller.com [46] (b) bostonglobe.com [45]

Figure 6.2: Examples of page snapshots loaded from IA.

much of the web as possible, and 2) to preserve page fidelity, i.e., when an archived page is

loaded by a user, it should ideally match the page as it was crawled, both in visual (how the

page looks) and functional (user interactions supported on the page) aspects.

To support my claims, in this section (and in the rest of the paper), I consider pages from

300 sites, comprising 100 randomly chosen sites from each of three ranges from Alexa’s site

rankings: [1, 1000], [1000, 100K], and [100K, 1M]. Using these 300 sites, I construct two

corpuses. Corpus3K contains one of IA’s copies from September 2021 for 1 landing and 9

internal pages per site. Corpus1M contains 3500 page snapshots for each site out of all of IA’s

page snapshots from September 2020. Note that both corpuses contain a mix of old and

new pages. Though both corpuses contain page snapshots which were archived in the last

couple of years, many of these pages were created before then. This is because IA recrawls

pages over time to track changes to page content.

6.2.1 Poor fidelity due to JS non-determinism

When a user loads a web page, scripts on the page often dynamically construct the URLs for

many of the resources on the page. In doing so, JS execution can leverage various sources of

non-determinism: client-side state (e.g., cookies, local-storage), client-characteristics (e.g.,

user-agent), random number generators, etc. When a user loads an archived page, these

sources of non-determinism can potentially lead to a different set of resource URLs being

requested compared to what was crawled by the archive. This, in turn, leads to two significant
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problems.

Failed fetches. First, IA returns a resource not found error (HTTP status code 404)

for all resource URLs not stored at the archive, resulting in many archived pages rendering

incorrectly. Figure 6.2 shows two examples of screenshots of page snapshots loaded from IA.

In both cases, JS code on the page dynamically constructs the URLs of images to fetch by

taking into account the screen size of the client loading the page. Since my client appears

to differ from IA’s crawler,1 these pages end up being rendered incorrectly.

Runtime errors. Second, the execution of many scripts halts prematurely with runtime

errors, which in turn leads to more resources going unfetched. I inspect the runtime logs

generated by Chrome when loading the pages in Corpus3K; specifically, the JavaScript console

log and the network log. Figure 6.3 compares the number of errors seen in these logs during

page loads from the web and when loading snapshots of these pages archived by the IA on

the same day. Loading pages from IA results in more errors of both types. The total

number of bytes that went unfetched because of these failed network requests cumulated to

5% and 45% of bytes on the median and 95th percentile page respectively.

6.2.2 High storage overhead

The more obvious downside of more JavaScript on web pages is that it increases a web

archive’s storage needs. To quantify this impact, I compute the total amount of storage

required to store all the pages in Corpus1M.Across all pages, I account for storing a single

copy for every unique (resource URL, SHA-256 content hash) combination; IA applies similar

deduplication to reduce storage overheads [49]. Despite the fact that scripts are often shared

across pages (e.g., JavaScript libraries like jQuery are used by many sites and pages on the

same site include a common set of scripts), JS accounts for 49% of all the bytes stored;

resources of all other types (HTML, CSS, images, etc.) account for the remaining 51%.

Note that these numbers account for the size of textual resources such as HTML, CSS,

and JS after compression. Also note that my corpus of a million pages appears to be large

enough to approximate the utility of deduplication at scale because the fraction of total bytes

accounted for by JavaScript plateaus after 750K pages as shown in Figure 6.4.

Overall, the fact that scripts roughly double the amount of storage that a web archive

needs to deploy is concerning because web archives are largely reliant on donations to cover

their operational expenses [21]. For example, IA spends around $18 million dollars each year

in operational expenses and attributes over 60% of its earnings to donations [33]. Needing

1We look at the HTTP response headers of the archived resources to gather information about the client
used by IA.
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Figure 6.3: Comparison of errors thrown during page loads from the web and from IA.

to store more bytes per page means that an archive can store fewer pages for the same cost.

6.2.3 Downsides of alternate archival formats

To sidestep the shortcomings of IA that I have discussed thus far, a web archive could instead

store and serve the end result of any page load, thereby preempting the need for clients to

execute JavaScript.

Preserving post-load interactions. One such alternate archival format is to store

a screenshot of the rendered page in the PNG or PDF format, as employed by private

archiving institutions like Stillio [44] and PageVault [39]. However, many pages today enable

users to interact with the content on the page, and storing screenshots of pages fails to

preserve these post-load interactions [169]. Web developers enable such interactions by

registering event handlers while a page is being loaded; these event handlers are triggered

and executed when the user later interacts with the page. For example, modern pages often

include carousels or sliders to display images and tabs to group information in separate

categories; see, for example, the infographics on https://www.nytimes.com/interactive/2021/

world/india-covid-cases.html. Event handlers are also used to enable users to navigate to

other pages on the same site, e.g., the menu under the “Explore” button on https://www.

coursera.org. Prior studies have shown that it is important to preserve such informational

and navigational interactions even on archived pages [129].

I analyze the pages in Corpus3K to determine how many contain interactions that should

work on archived copies. Specifically, I load every page after instrumenting all scripts so that
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of pages in my corpus.

I can track all event handler registrations. I identify all event handlers which are associated

with page elements whose attributes contain keywords such as menu, navbar, slider, carousel,

dropdown, etc.; I consider 13 such keywords commonly associated with informational and

navigational interactions. I find that 91% of the pages contained at least one such event

handler.

Examples showing importance of event handlers.

Event handlers can be categorized into one of the three: 1) informational, 2) navigational,

and 3) transactional. The third category of event handlers are not expected to work with

archived pages since there in no back-end origin server. Figures 6.5 and 6.6 provide some

screenshots of event handlers for the first two categories, which are essential for archived

pages.

Overhead of capturing JavaScript heap. Alternatively, client-local interactions en-

abled by event handlers could be preserved by storing a) every page’s final rendered HTML,

b) all resources referenced from this HTML (such as CSS and images), and c) the JavaScript

heap, which stores custom, page-defined JavaScript state as well as native JavaScript ob-

jects [166]. However, modern browsers do not expose the entire JavaScript heap [137]; only

the global scope of the heap is accessible using the “window” object. The closure scope,

which is a non-global scope that is defined by any function and is accessible only by the

nested functions that execute in that function’s enclosed scope [157], is not accessible. This

is a key roadblock because event handlers often access closure state; 47% of the pages in

Corpus3K contain at least one such handler (we describe how I perform the state tracking

necessary to obtain this result in §6.4).
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Figure 6.5: www.nytimes.com screenshots show two different infographics, which can

be toggled by clicking the button on top of the infographic.

To access closure state, a web archive’s crawler could statically analyze and rewrite the

scripts on every page prior to executing them. However, I find that the combined overhead of

performing the static analysis necessary to identify different scopes and running instrumented

scripts inflates the time to crawl the median page in Corpus3K by 2x; this overhead increases

to 6x at the 99th percentile. Such computational overhead will significantly increase costs

for a web archive crawling thousands of pages every second [211].

Storage cost. Apart from the above shortcomings, these alternate storage formats also

necessitate more complex deduplication across page snapshots which share resources but

differ in the final outcome of the page load. If I use simple file-level deduplication, as is the

case today in IA, Figure 6.7 shows that storing page snapshots as PNG screenshots or as

DOM+Heap results in significant storage overhead for our corpus; for the median site, the

former results in a 1.2x overhead in storage and the latter inflates storage needed by almost

32x.

6.3 Overview

To overcome the adverse impacts of JavaScript on web archival, my high-level insights stem

from two key differences between the loads of live and archived pages. In this section, I

describe these differences and outline the challenges entailed in leveraging these differences.
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Figure 6.6: www.money.cnn.com contains stock market information for S&P 500 and

S&P 1500 which can be toggled by using the tab icon on top.

6.3.1 Distinguishing properties of archived pages

No back-end origin server. Modern web pages include a range of functionalities which

require communication with the page’s origin servers, e.g., enabling users to post comments

and having servers push updates to users while they are on a page. However, when a user

loads an archived page snapshot, only that functionality on the page will work which can be

served using the resources crawled when this snapshot was captured.

Limited sources of non-determinism. To deliver a dynamic user experience, many

pages on the web adapt how they are rendered based on 1 server-side state, 2 client-

side state (e.g., cookies, local storage), 3 client characteristics (e.g., user-agent, screen

dimensions), and 4 “Date”, “Random”, and “Performance” APIs (we refer to these as

DRP APIs for the sake of brevity). For example, after a script on a page fetches a JSON

from the origin server, its subsequent control flow might depend on the contents of that

JSON, which itself might be influenced by the contents of a client-side cookie. In loads

of archived pages, the first two sources of non-determinism are absent: in response to the

request for a particular resource in a specific page snapshot, a web archive will always serve

the copy it fetched when crawling that snapshot; whereas, client browsers do not maintain

any state across loads of archived pages.
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Figure 6.7: Storage overheads of other formats

6.3.2 Challenges

In order to leverage the above-mentioned differences to both improve page fidelity and reduce

storage overhead in web archives, I need to answer several questions.

What are the causes of poor page fidelity? While some sources of non-determinism

are absent in the loads of archived pages, the remaining sources – client characteristics,

DRP APIs, and asynchronous execution of timer handlers and script fetches – still result in

non-deterministic JS execution. Determining which of these factors is responsible for clients

requesting different resource URLs than those crawled is key to eliminating failed resource

fetches and the resultant runtime errors.

How to efficiently prune non-functional and unreachable code? In any page that

it crawls, a web archive need not save any JS code that either relies on interactions with the

page’s origin servers or would never be executed in any load of the page (due to the absence

of certain sources of non-determinism). One could potentially use methods like symbolic or

concolic execution to perform reachability analysis and identify both unreachable code and

non-functional code; the latter comprises code that is reachable from RPCs to origin servers.

However, as reported in prior work [136, 149, 145], these methods for analyzing JS code

are computationally expensive, requiring tens of minutes per page. Increasing the compute

overheads of crawling to such a large extent would nullify any storage savings.

How to ensure code pruning does not hamper fidelity? While eliminating non-

functional code reduces storage cost, doing so comes at the risk of inadvertently hurting

fidelity. In particular, the code that is retained must function as it would if no code were

discarded. Checking that any method identified for code elimination does preserve this

81



Goal Observations Section

Improve fi-
delity

APIs for client characteristics are the key cause for failed
resource fetches

§6.4.1

Differences in URLs due to DRP APIs can be resolved
using server-side URL matching algorithms

Prune non-
functional
code

Most of JS code which will not function on archived pages
is in third-party source files, which can be identified based
on their URLs

§6.4.2

First-party scripts typically use third-party code cau-
tiously, so that reliability of former is not dependent on
availability of latter

Prune
unreachable

DRP APIs typically have no impact on control flow §6.4.3

code For event handlers associated with post-load interactions
which work on archived pages, page state accessed is dis-
joint across handlers and user input does not influence
control flow

Table 6.1: Overview of the main insights that influence my design of Jawa.

property is non-trivial because browsers do not offer any APIs to extract runtime information

that can be used to identify state dependencies between different scripts on any page.

6.3.3 Requirements

Based on all the considerations discussed thus far, I focus on three objectives.

• High fidelity. First, I seek to ensure that any archived page faithfully mimics the original

page in two respects: 1) how the page is rendered, and 2) all functionality on the page

which does not require communicating with the page’s back-end servers works.

• Low cost. Second, I aim to enable a web archive to improve its coverage by reducing

the amount of storage needed for any collection of page snapshots. In doing so, I seek

computationally lightweight methods so as to minimize the cost overheads associated with

maintaining the same rate of crawling pages as today.

• Simplicity. Lastly, my solutions must be simple to implement. In my discussions with

the Internet Archive, they have emphasized that simplicity is key for any proposed changes

to be viable in practice.

6.4 Design

I describe my design of Jawa in three parts. I begin by describing how Jawa improves page

fidelity by eliminating the sources of non-determinism which result in failed resource fetches
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while loading archived pages. Thereafter, I present the methods used by Jawa to identify

what subset of crawled JS files need not be saved: first to eliminate non-functional code,

and second to prune unreachable code while preserving post-load interactions. To enable

Jawa’s use at scale, the overriding principle that guides all aspects of my design is to minimize

computational overheads by leveraging properties of JS typically found on the web; Table 6.1

provides an overview of my observations. Later (§6.7), I describe how a web archive which

uses Jawa could potentially handle pages which do not satisfy these properties.

Analysis framework. Throughout this section, I use my custom JavaScript analysis

framework (4.5K LOC) to study the properties of JavaScript found on pages in Corpus3K.

As in prior program analysis tools for JavaScript [149, 166, 111], our analysis framework first

performs offline, static analysis of the JS in a page, converting each JS file into an abstract

syntax tree (AST) representation. It then parses this AST to identify the different JS scope

levels – local, block, closure, and global – and leverages this information to associate each JS

variable to its corresponding scope. The framework also uses the AST to detect JS function

invocations.

Building on these insights, my framework instruments pages with code that is triggered in

each function invocation, and records the arguments to the function, all the closure and global

scope variables read and written inside the function body, and the return value. Special care

is taken to (1) record all accesses to the DOM, (2) track accesses of any global variable’s prop-

erties via an alias, e.g., “var a = window” followed by a read of “a.innerHeight”, (3) identify

DOM elements with registered event handlers and the corresponding handler functions, and

(4) monitor and control the return values of browser APIs such as “navigator.userAgent”.

6.4.1 Improve fidelity by eliminating failed fetches

To ensure that users do not encounter failed resource fetches when they load archived pages,

a web archive could rewrite every stored page to ensure that, when the page is loaded,

the flow of execution and the return values of all browser APIs match those seen when

the page was crawled.2 If a web archive were to eliminate sources of non-determinism in

this manner, I observe that fixing the schedule of execution cannot result in any loss of

functionality; after all, developers of pages have no control over the client-side schedule of

execution of asynchronous scripts. However, a page’s developer can indeed ensure that code

on the page behaves differently based on the results from browser APIs. Therefore, I seek

to understand the impact of these APIs on resource URLs and eliminate only those sources

of non-determinism which result in failed fetches during loads of archived pages.

2Alternatively, a web archive could crawl every page under all possible combinations of non-determinism.
Doing so is not only impractical, but would dramatically inflate compute and storage overheads.
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Impact of different sources of non-determinism. I measure the impact of each

source of non-determinism as follows. I first load my locally stored copies of all pages

in Corpus3K with a desktop client. I then reload these pages mimicking a different client

(“iPhone 6”). Mimicking a different client allows me to exercise different values of most

client characteristics, such as user-agent, screen dimensions, and OS. I reload all pages once

more, this time matching the client characteristics used in the original load.

On 72% of pages, at least one different resource URL was requested in the second load

compared to the first load; these two loads differ in the values for both APIs for client

characteristics and DRP APIs. Whereas, when comparing the third load to the first, which

differ only with respect to DRP API values, the corresponding fraction was 52%. Note that,

in both cases, even one failed resource fetch can have a cascading effect, resulting in many

other resources going unfetched.

Variance in resource URLs due to non-determinism results in failed network fetches only

if a web archive (like IA) expects requests from clients to specify URLs which are identical to

the ones crawled. However, across loads of a page, if the same resources are being requested

using different URLs, it might suffice for the web archive to employ a better algorithm to

match URLs requested to those crawled.

To check if this is the case, I consider two URL matching algorithms used in prior work:

1 querystrip, where the query string in any URL (i.e., the portion of the URL beyond the

delimiter ‘?’) is stripped before initiating a match [163], and 2 fuzzy matching, which lever-

ages Levenshtein distance [141] to find the best match for any given URL [53]. Querystrip

relies on the fact that query strings are typically used for updating server-side state, and

they do not influence the content of the response. Fuzzy matching accounts for cases where

non-determinism across loads results in simple string transformations of the URLs for the

same resources. In any page load, I match URLs in the order they are requested, and I

match any requested URL against those crawled URLs that have not already been matched.

Figure 6.8(a) shows that, on many pages, a significant fraction of URLs were unmatched

with both algorithms, when APIs for client characteristics were a source for diverging URLs.

This is because, when client characteristics differ, often the number of resources fetched on

the same page changes. For example, www.nytimes.com fetches the JavaScript file player-

embedded.js on mobile clients to enable video players, whereas it fetches no such scripts on

desktop clients.

Digging deeper into DRP APIs. In contrast, when DRP APIs are the only source

of non-determinism, Figure 6.8(b) shows that either URL matching algorithm suffices to

eliminate almost all failed resource fetches. However, this might be the case only because

I compare two loads of every page, and the return values of DRP API invocations did not
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Figure 6.8: For every page in Corpus3K, fraction of resource requests which cannot be

matched with any crawled resource. The impact of different URL matching algorithms

is shown when the sources of non-determinism are (a) APIs for client characteristics

as well as DRP APIs, and (b) only DRP APIs.

sufficiently differ to have an impact.

To capture the effects of all possible return values of DRP APIs, I turn to concolic

execution [110, 191, 136], a variant of symbolic execution which executes programs concretely

(rather than symbolically) while ensuring complete coverage of all control flows. I modify

a prior concolic execution tool [136] to only track control flows influenced by DRP APIs. I

then randomly sample 300 pages from Corpus3K because it takes around 20 minutes per page

with this tool. On all pages, DRP APIs had no impact on control flow. Thus, comparing

any two loads of a page suffices to examine the divergence in URLs across loads due to these

APIs.

Takeaways. These results influence my design of Jawa in two ways. First, I instrument

all scripts on any page so that, when clients execute these scripts, all APIs for client char-

acteristics return the same values as when the page was crawled. Compared to a thin-client

model where a web archive serves requests for pages by executing page loads on behalf of

users [53], my approach of letting users execute page loads on their devices reduces server-

side overheads. Second, I do not need to account for any differences across loads in DRP

APIs because the impact of these differences can be accounted for with server-side matching

of requested URLs to crawled URLs.

Note that I choose to patch all invocations of client characteristic APIs, and not just the

ones which influence the URLs fetched. This is because, even if a particular invocation of an
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API does not impact which URLs are fetched, it can impact the reachability of code which

assumes that state dependent on the client’s type has been setup earlier in the page load.

Hence, if different API invocations return inconsistent values, this could exercise code which

accesses uninitialized state, resulting in runtime errors.

6.4.2 Pruning non-functional code

I now turn my attention to reducing the storage overhead of JavaScript on web archives.

Jawa’s crawler uses two complementary approaches to take advantage of the two previously

mentioned properties which distinguish archived page snapshots from pages on the web. The

key consideration in both cases is to ensure that pruning any JavaScript code does not affect

the execution of the remaining code.

Characteristics of non-functional code. Our first approach for pruning JavaScript

code is based on two observations about the code which will not work on archived copies of

pages, i.e., code which relies on clients interacting with origin servers. First, on a typical

page, I find that most of such code is compartmentalized into a few files, rather than being

evenly spread across all JavaScript source files on the page. As I will show later, these

files do not contain any code that is worth preserving. Second, functionality which will not

work on archived pages is largely implemented by third-party scripts. Even though some of

the functionality which relies on communication with origin servers (e.g., intra-site search,

login) is implemented by the first-party origin, I only focus on discarding third-party files,

for reasons discussed shortly.

The implication of these observations is that, to identify most of the non-functional

JavaScript code in archived pages, it is unnecessary to perform any complex code analysis.

Instead, it suffices to assemble and use a “filter list” which captures the features distinctive

to the URLs of scripts containing non-functional code; when crawling pages, a web archive

would simply have to discard (and not even fetch) any script whose URL matches the filter

list.

For example, via manual analysis of the URLs of all scripts seen in Corpus1M, I assemble

a filter list comprising 45 rules. I consider those script URLs which are included on many

pages. For each such popular script, I first visit the domain on which the script is hosted

to understand the services offered by that domain. In cases where a domain hosts scripts of

many kinds, some of which are important to retain even on archived pages, I examine the

script’s content to determine its utility.

Every rule in my list matches URLs at one of three granularities: 1) domain, i.e., filter

any file hosted on that domain (e.g., “zephr.com” enables support for user subscriptions),
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2) file name, i.e., filter scripts if the file name matches, regardless of the domain hosting

the script (e.g., “jquery.cookie.js” is used for cookie management), and 3) URL token, i.e.,

filter scripts if a specific keyword appears anywhere in their URL (e.g., “pagesocial-sdk” and

“recaptcha”).

Recall that Corpus1M comprises page snapshots crawled from the Internet Archive, which

already discards resources that users often block on the live web, e.g., ads. In contrast, my

filter list aims to prune scripts which implement functionality that is important to preserve

on the live web, but will not work on archived copies. Moreover, since a few popular third-

party service providers are used by the vast majority of websites [143], I find that I only

need to add 6 rules to my filter list to account for pages on 300 additional sites beyond the

300 sites included in Corpus1M.

Filtering has no impact on fidelity. Discarding a subset of the JS files on a page

might, however, break the execution of code in files that are retained. Therefore, I study the

impact of filtering along two dimensions: 1) visual (i.e, does the page look the same?), and

2) functional (i.e, are post-load interactions that will work on archived pages unaffected?)

I load every page in Corpus3K with and without filtering enabled. I take a screenshot

after every page load. Leveraging my JavaScript instrumentation described earlier, I also

1) identify all event handlers registered during each page load, 2) trigger all event handlers

after the page load completes, and 3) track all values read or written from the JavaScript

heap and DOM by these handlers.

First, when I compare the screenshots for every page with and without filtering, I observe

that these screenshots differ in the value of at least one pixel for 109 of the 3000 pages in

Corpus3K. Upon manual examination of these 109 pages, I find that all differences are either

due to animations or because DRP APIs result in a different timestamp on the page. Second,

for all event handlers registered by the unfiltered files, I find 35 pages on which at least one

value accessed by at least one of these event handlers differed across loads with and without

filtering. Again, these differences were not consequential: they were due to differences in

timing information, e.g., some event handlers log the times at which their execution starts

and ends.

A key reason for these positive results, which show that Jawa’s filtering has no impact

on the fidelity of the code retained, is my explicit choice to only consider third-party source

files for filtering. On the one hand, most third party scripts are self-encapsulated, i.e., the

code in these files only interacts with itself or the files it subsequently fetches. On the other

hand, as shown in Figure 6.9, first-party scripts typically invoke third-party code cautiously,

so that the former is unaffected in the off chance that the latter fails to be fetched.

Note that one cannot simply eliminate all third-party scripts; that would render dysfunc-
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<script src="https://js.sentry-cdn.com/7bc8b.min.js" </script>
<script>

if (window.Sentry) {
window.Sentry.onLoad(function() {

window.Sentry.init({
maxBreadcrumbs: 30,

environment: 'prd', });
});

}
</script>

Figure 6.9: Code snippet from www.nytimes.com where the main frame first fetches a

third-party JavaScript file hosted on www.js.sentry-cdn.com and then cautiously invokes

a function from it inside an if condition.

tional many post-load interactions which do work, and are important to preserve, on archived

pages. As I show later in my evaluation (§6.6), while discarding files which match my care-

fully curated filter list enables significant storage savings, doing so preserves all navigational

and informational interactions.

6.4.3 Prune unreachable code

In the Javascript files which do not match Jawa’s filter list, many lines of code will never

be executed in any page load. This is because 1) some sources of non-determinism are

absent in loads of archived pages (§6.3.1), and 2) Jawa eliminates non-determinism caused

by asynchronous execution and APIs for client characteristics (§6.4.1). Furthermore, I found

that DRP APIs have no impact on control flow. Yet, identifying all reachable code remains

challenging: beyond the code executed while crawling the page, I also need to retain the

code for users’ post-load interactions.

Challenges in preserving interactions. Post-load interactions are enabled via event

handlers which are registered while a page is being loaded. Every event handler is associated

with a specific DOM node on the page, and is bound to a specific action that would trigger

the handler, such as a click, scroll, mouse hover, etc.

The code that is exercised when an event handler on a page is invoked can vary as a

function of a) the order in which the user interacts with different elements on the page, b)
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the inputs that the user provides to these events [74], and c) the return values of browser

APIs. It is easy to see how the latter two can impact code reachability, e.g., in response

to a search query, the number of search results can influence certain client type-specific UI

features, such as the option of splitting the results across multiple pages. The order in which

events are triggered can impact the execution of some handlers if the state read (from the

DOM or JavaScript heap) by one handler could have been written to in a prior invocation

of this or another handler. In particular, since I only care about identifying reachable code,

only read-write dependencies which impact branch conditions are of interest.

I analyze the impact of these sources of non-determinism on the event handlers found on

pages in Corpus3K. I capture the state accessed by event handlers as described earlier in

§6.4.2. For each event handler on a page, I check whether there is a read-write state overlap

with itself or with any other event handler on the page, and if there was an overlap, whether

this state is used in a branch condition. I also identify all handlers which accept user inputs;

these include mouse events (e.g., click, mouseover, mouseon), keyboard inputs (e.g., keyup,

keydown), and text inputs (e.g., “INPUT” or “FORM” DOM nodes). When I invoke each

such handler, if a branch statement is executed, I conservatively conclude that the handler’s

inputs could impact the control flow of the handler.

On each page, I compare two sets of event handlers: those which work on the live version

of these pages, and the subset which will work on archived copies. The former set comprises

all handlers registered when I load the page without filtering. I identify the latter set of

handlers by loading every page with Jawa’s filtering enabled, and ignoring handlers which

interact with origin servers (i.e., they are registered on either “INPUT” or “FORM” DOM

nodes with a corresponding “action” attribute). On the median page, 14 event handlers

work on the live page and 7 on the archived copy. At the 90th percentile, the corresponding

numbers are 170 and 44.

Impact of order. On 40 of the 3000 pages in Corpus3K, at least one pair of handlers that

work on the live page had a read-write dependency which could affect the control flow of one

of these handlers. In contrast, I found no such case when focusing on the handlers which

work on archived pages. This stark difference is because dependencies between handlers

arise on live pages predominantly due to analytics, e.g., handlers registered with certain

DOM nodes update locally maintained state to track if the user interacted with those nodes;

when the user navigates away from the page, another handler reads this state and sends this

information to back-end servers if the user did interact with those DOM nodes.

Impact of user input. Across all pages, none of the event handlers which work on

archived copies read inputs which influenced branch predicates. Whereas, when I loaded all

pages without filtering, 1134 of the 3000 pages had at least one handler which interacted
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Figure 6.10: High-level overview of Jawa.

with back-end servers. In such cases, the responses from servers could potentially impact

what code gets executed on the client.

Impact of browser APIs. As discussed earlier (§6.4.1), Jawa eliminates non-determinism

caused by APIs for client characteristics. That leaves DRP APIs. Among the handlers that

work in an archived context, 449 of the 3000 pages had at least one handler which invoked an

API from either “Date” or “Math.random”. All the invocations of “Math.random” APIs were

due to the jQuery library assigning unique identifiers to elements inside its ElementSelector

function [34]. Whereas, the “Date” API was used only for logging the start and end time

of handler executions. Thus, in all of these cases, DRP APIs did not impact the reachable

code for any event handler.

Takeaways. These results demonstrate why prior work which aims to identify code

reachable by event handlers performs complex JavaScript program analysis [74, 188]. In

contrast, I find that no source of non-determinism impacts the code executed by handlers

which work on archived pages. Therefore, on any page, to identify the code necessary to

retain for post-load interactions to work, it suffices for Jawa to invoke every handler once

and save the code that is executed.
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6.4.4 Summary

Put together, my observations on the differences between loads of archived and live pages

enable Jawa to use a fairly simple methodology to crawl and save pages, as shown in Fig-

ure 6.10. For every page that it crawls, Jawa fetches all those resources which do not match

its filter list. For the remaining files, it 1 injects code to identify what code was executed

during the page load and in what order, and 2 triggers every registered event handler using

default input values (e.g., the default x and y coordinates for a mouse click event is 0,0) and

identifies the code executed. Finally, it stores those portions of the page that are exercised

in either step above. It instruments the retained code so that, when users load the page,

their browser follows the same execution schedule and uses the same client characteristics.

6.5 Implementation

Implementing a web archive involves several considerations which are outside the scope of this

paper, e.g., distributing data across servers, detecting and coping with hardware failures, etc.

Our implementation focuses on the aspects of a web archive addressed by Jawa (Figure 6.10),

namely crawling and storing page snapshots. I also describe the impact of Jawa’s design on

serving page snapshots to users.

6.5.1 Crawling pages

When crawling a page, Jawa’s crawler (1.2K LOC) uses a Node.js based man-in-the-middle

proxy to interpose on all requests/responses. The proxy uses the Esprima [123] and Beau-

tifulSoup [8] libraries to instrument JavaScript and HTML files as they are fetched. Jawa

references the filter list for every outgoing request and, using regular expression matching,

blocks the request for any resource whose URL matches any of the rules in the filter list.

For all the remaining resources fetched, Jawa selectively instruments JS files prior to their

execution. This instrumented code, upon execution, enables Jawa to 1) interpose on all

browser APIs, 2) track the subset of JS code executed (in terms of JS functions), and 3)

helps enumerate all event handlers registered on the page. The instrumentation overhead

incurred by the crawler is significantly lower compared to when tracking all state accesses

(§6.4).
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Crawl index

Key Value

IA URL List of (content hash, WARC file ID) tuples

Jawa (URL, content hash) List of (start byte offset, end byte offset,
WARC file ID) tuples

Serving index

Key Value

IA (URL, timestamp) (WARC file ID, byte offset)

Jawa (URL, timestamp) List of (WARC file ID, byte offset) tuples

Table 6.2: Comparison of indices maintained by IA and Jawa.

6.5.2 Storing page snapshots

For every page that it crawls, Jawa saves only a subset of the JavaScript code on that page.

Consequently, when the same JavaScript file (e.g., a library) is included on many pages,

it is often the case that different subsets of this file need to be stored as part of different

page snapshots, thereby preempting simple file-level deduplication, as used by the Internet

Archive today [49].

Our solution is to store every unique file as a set of partitions; each partition represents

a different disjoint subset of the file: from a specific start byte offset to an end byte offset.

When Jawa crawls a new page snapshot, for every JavaScript file crawled that is not filtered,

it identifies the subset of code in this file relevant for this snapshot. It then looks up the

crawl index (Table 6.2) to determine if this subset is already covered by the byte ranges

in this file that have previously been stored. The crawler creates new WARC records for

portions of the file that have not been previously stored and appends new entries to the

crawl index. The crawl index is processed asynchronously to produce the serving index (like

is the case today with Internet Archive).

6.5.3 Serving page snapshots

The implication of storing any JavaScript file’s contents as above is that, when a client

requests for a file while loading a page snapshot, one does not know which of the partitions

stored for this file are relevant for this particular snapshot. Instead, a web archive which

uses Jawa can return the union of all stored partitions for the requested JavaScript file; after

all, the portion of the file needed for any snapshot is a subset of the stored partitions. Since

the size of this union is at most equal to the size of the original file, clients will have to fetch

no more bytes than they do today.

92



6.6 Evaluation
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Figure 6.11: Total storage necessary to store corpus of 1 million page snapshots.

I evaluate Jawa with three metrics: storage (to store crawled resources and to store indices),

fidelity (similarity of archived page snapshots to the corresponding original pages) and per-

formance (both for crawling and serving). In all cases, I compare against the corresponding

techniques currently in use by the Internet Archive (§6.2), which I refer to as IA*.3 In some

3IA* refers to me mimicking the techniques used by IA.
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cases, I also break down the utility/overhead of each of Jawa’s components. The key findings

from my evaluation are as follows:

• Jawa reduces the storage needed for my corpus of 1 million page snapshots by 41%. This

reduction stems from Jawa discarding 84% of JavaScript bytes.

• Despite this significant reduction in storage, on a random sample of pages, all event han-

dlers that one would expect to function on archived pages continue to work.

• When I mimic loads of archived pages from IA, at least a quarter of resource fetches fail

on more than 10% of pages. Whereas, on over 99% of pages, Jawa eliminates all failed

network fetches and ensures that the set of resources requested from the archive match

those crawled.

• Crawling throughput with Jawa improves by 39%, thanks to my use of lightweight tech-

niques for code analysis and filtering of JavaScript files.

6.6.1 Storage

6.6.1.1 Storage for resources

To begin, I consider the total amount of storage needed to store the resources in my Corpus1m

corpus. I crawl all of these page snapshots from IA using my crawler (§6.5). On each page,

Jawa’s crawler only fetches third-party JavaScripts which do not match its filter list. Apart

from my manually curated filter list for pruning code which will not function on archived

pages, I also leverage the open-source filter list from EasyList [22], which is widely used by

many browser extensions to identify ads and analytics. In every script that it does fetch

when crawling a page snapshot, Jawa’s crawler identifies the subset of code necessary for

this snapshot and stores the portion of this subset that is not covered by the subsets of this

file previously stored.

Figure 6.11(a) shows that Jawa stores 40 GB of JavaScript across the 1 million pages,

a reduction of 84% compared to IA*. Of course, to store the entire corpus, all resources

on every page snapshot need to be saved, not only JavaScripts. For resources other than

scripts (images, CSS, HTML, fonts), Jawa offers no storage benefits; it stores them exactly

as IA*. Yet, I see a 41% reduction in total storage: 535GB with IA* to 314GB with Jawa

(Figure 6.11(b)). This is because, as seen earlier in §6.2.2, JavaScript files account for 49%

of all the bytes across all pages, even after file-level deduplication. Since 63% of the more

than 140 PB of data stored by IA is devoted to web page snapshots [30, 31], I estimate that

Jawa can reduce IA’s storage needs by 35 PB.

Sources of storage benefits. Storage savings enabled by Jawa stem from a combination
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of not storing filtered files and pruning unreachable code. When I break down the impact

of the filter lists I use, Figure 6.11(a) shows that my custom filter list alone reduces the

total amount of JavaScript saved by 36%, and EasyList’s rules result in a further reduction

of 28%. Jawa also significantly reduces storage needs by eliminating unused code: the

difference between the two right most bars in Figure 6.11.

6.6.1.2 Storage for indices

In addition to storing crawled resources, both IA* and Jawa also need to store the crawling

and serving indices (Table 6.2). The former enables the crawler to not store duplicate content,

whereas the latter enables lookups of requested resources when serving page snapshots. For

my corpus of 1 million page snapshots, I find that size of both indices is marginally smaller

(15%) with Jawa than with IA*. First, for most script files, Jawa ends up having to store a

single WARC record; for such files, after the first time a subset of the file’s code is stored,

all subsequent page snapshots which include the same file end up needing the same subset.

Second, the increase in index entries for other files (for which multiple subsets end up being

stored) is offset by the elimination from the index of filtered files.

6.6.2 Fidelity

To evaluate Jawa’s preservation of page fidelity, I crawl all 3000 pages in Corpus3K from the

live web. I perform these crawls on a desktop, once with Jawa’s crawler, and once without

using any of its methods. I then load these pages from the two local copies, mimicking a

different client (“iPhone 6”). When using page snapshots saved by Jawa, I match requested

URLs to crawled URLs after stripping query strings.
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Figure 6.12: When snapshots of 3K pages are served, (a) number of resources requested

by client which are not stored, and (b) fraction of resources stored for a snapshot which

are not fetched by the client.

Resource fetches. I first evaluate Jawa’s impact on fidelity by examining the discrepancy

between the set of resources stored for any snapshot and the set of resources fetched by a

client when it loads that snapshot. Figure 6.12(a) shows that, while 7% of network requests

return a 404 on the median page in loads of IA*, this fraction drops to 0% with Jawa. On
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the 95th percentile page, the corresponding fractions are 36% with IA* and 0% with Jawa.

Consequently, Figure 6.12(b) shows that, while 10% of stored resources are not fetched on

the median page when mimicking loads from IA, this fraction drops to 0% with Jawa. On

the 95th percentile page, the corresponding fractions are 75% with IA* and 0% with Jawa.

Visual analysis. To check if the pages served by Jawa are identical to the ones it crawled,

I take a screenshot of every page both when crawling it and when I reload it from my local

copy. I then compare every pair of screenshots to check if the value of every pixel matches.

Apart from the visual differences accounted for by animations and non-determinism in 54

pages, both screenshots matched exactly for every other page when using Jawa. Since loads

of IA* do not patch APIs for client characteristics, differences in screen dimensions between

clients make it moot to compare screenshots.

Interactions. Finally, to evaluate Jawa’s impact on post-load interactions, I randomly

sample 150 pages. For each page, I load the versions that would be served by IA* and by

Jawa. To isolate the impact of Jawa’s techniques, I also consider an intermediate design

point (Only filter) where I only use Jawa’s filtering but do not prune unreachable code.

I categorize all event handlers on every page into three types: 1) navigational, i.e., they

help in navigating either to a different page (e.g., a navigational bar) or within the page

(e.g., a scroll-to-bottom button), 2) informational, i.e., they help make more information

available (e.g., carousels or tabs), and 3) transactional (e.g., login or post buttons). On

archived pages, transactional event handlers will not function. So, on each of the 150 sampled

pages, I manually trigger all event handlers that belong to the first two categories. All 124

navigational interactions and 100 informational interactions worked as expected in all three

loads: IA*, Only filter, and Jawa. Key to preserving these post-load interactions are Jawa’s

carefully curated filter list for discarding non-functional code, and its methods for identifying

and retaining all reachable code. In contrast, if I discard all third-party files or if I use

Jawa’s filter list but save only the functions registered as handlers, then only 42% of these

interactions work in the former case and 10% in the latter.

6.6.3 Performance

Crawling throughput. IA’s production crawler is not public to the best of my knowledge.

Therefore, I turn to two open-source crawlers: Brozzler [11] and ArchiveBox [6]. Brozzler

is operated by IA, and used alongside their production crawler. Whereas, ArchiveBox is a

very active and commonly used crawler by individual archivists (over 12K stars on GitHub).

I find that Brozzler is 20% slower than ArchiveBox because of the latter’s more efficient

implementation of their headless Chrome interface. I also note, that on a server with 32
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Figure 6.13: Comparison of crawling throughput, normalized to that offered by

ArchiveBox.

cores and 128 GB RAM, I were able to crawl 5000 URLs in 15 minutes with ArchiveBox.

With this crawling throughput, IA would need to dedicate 900 such servers for crawling pages,

which is comparable to the number of servers they currently claim to use [29]. Therefore, I

evaluate Jawa against ArchiveBox.

Figure 6.13 shows that Jawa’s crawler offers throughput comparable to Archivebox when

all of Jawa’s techniques are disabled (Jawa baseline). Enabling all the methods in Jawa’s

design increases my crawler’s throughput by 39%.

To breakdown the overheads, I measure the latency of each of the techniques used by

Jawa’s crawler in isolation, namely 1) filter: filtering JavaScript files, 2) code injection (CI):

instrumenting the code in fetched scripts, 3) dynamic tracking (DT): dynamically tracking

code execution and event handler registration, and finally 4) event triggering (ET): invoking

event handlers and capturing the code executed. Figure 6.14 shows that not having to fetch

filtered scripts completely offsets the overheads of all other techniques. Not only does Jawa’s

crawler not fetch any scripts which match its filter list, but all the resources that would have

been fetched by the filtered files also go unfetched; this latter set of files often do not match

the filter list.

Jawa also impacts crawling throughput by requiring more writes to the crawling index

because, unlike IA*, it spreads the code in some script files across multiple WARC records.

I cannot quantify the performance impact of doing so since my setup does not match a

production archive like IA. However, I can quantify the number of additional writes that

Jawa performs to the crawl index, compared to IA*. Table 6.3 shows that the number of

writes to the crawl index decrease with Jawa; due to filtering, fewer files are crawled.

98



0

100

200

300

400

500

600

Filter CI DT ET

La
te

nc
y(

m
s)

−5000

−2500

0

1000

2000

Filter CI DT ET

Figure 6.14: Benchmarking the overhead of techniques used in Jawa’s crawler. Bars

plot median across pages, and whiskers plot 10th and 90th percentiles. Graph on the

left zooms in on the yrange 0 to 500ms in the graph on the right.

Index I/Os per page Reduction in I/Os
with IA* per page with Jawa

50th %ile 90th %ile 50th %ile 90th %ile

Crawling 3 15 1 5

Serving 41 107 1 3

Table 6.3: Writes on crawling index and reads on serving index; values shown for 50th

and 90th percentile page on median site.

Serving performance. When serving page snapshots, Jawa’s only overhead is in needing

to potentially lookup multiple WARC records in order to respond to a request for a JavaScript

file. I find that page load times on IA’s Wayback Machine are proportional to the number

of resources on the requested page snapshot, or equivalently, the number of WARC records

that IA needs to lookup to serve the snapshot. Therefore, as a proxy for estimating Jawa’s

impact on user-perceived performance, I examine the increase due to Jawa in the number

of WARC records read when serving page snapshots. Table 6.3 shows that the number of

index lookups decrease with Jawa; again, thanks to filtering, a client has to fetch fewer files

per snapshot.

99



6.7 Verifying Page Properties

Jawa’s methods for pruning non-functional and unreachable code are based on three prop-

erties that I found to be true on archived web pages:

• DRP APIs have no impact on control flow

• Discarding third-party JavaScript files which match a manually curated filter list has no

impact on fidelity

• For post-load interactions which work on archived pages, the event handlers which power

them do not have read-write dependencies that influence branch conditions

All of these observations are rooted in my empirical analysis of a variety of web pages in

Corpus3K: 9 internal pages and 1 landing page in each of 300 sites, which span a wide

range of rankings among Alexa’s top million sites. However, I recognize that not all pages

may abide by these properties. For example, consider a page which shows the time until a

deadline and switches the font color when the time remaining is below a threshold; such a

page would violate the first property listed above.

To handle such cases, I observe that web archives do not crawl every page just once; they

repeatedly recrawl pages over time in order to capture changes to every page’s content. For

any given page, in some crawls of the page, a web archive can disable all of Jawa’s methods

and check if the properties expected to be true indeed hold on this page. For example,

like the analysis I performed (§6.4), the web archive can instrument scripts to track state

accesses, and then examine dependencies between event handlers and between files which do

or do not match the filter list. It can also perform concolic execution to verify that DRP

APIs have no impact on control flow.

The key to restricting the compute overheads of these heavyweight analyses is to run

them on a sample of snapshots. To determine the sampling rate, a web archive can leverage

properties that are stable across a page’s snapshots. For example, upon analyzing all of

IA’s snapshots for 300 randomly chosen pages, I observe that the median page has the same

number of runtime errors for an average of 53 snapshots. Therefore, once in every 53 crawls

of any of these pages, a web archive can disable filtering and check if the number of runtime

errors matches prior crawls where filtering had been used. If there is a mismatch, the web

archive can disable the use of filtering for this page going forward. Since Jawa serves any

JavaScript file to users as the union of all partitions of this file stored across crawls (§6.5),

disabling filtering in one crawl of the page will also benefit all prior crawls of that page.
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6.8 Discussion

How future proof is Jawa? In the immediate future, recent trends [43] indicate that

the amount of JS on pages will continue to increase, making it important for web archives

to adopt Jawa’s techniques for pruning JS and for eliminating fidelity issues due to the non-

determinism introduced by JS. In the long term, I expect that the principles that dictate

Jawa’s design will continue to hold: to serve pages with high fidelity, 1) archives must account

for non-determinism, and 2) a large fraction of JS can be discarded with no risk.

Optimize already archived pages. Jawa’s simple techniques make it highly amenable

to be used with pages that have already been archived. First, a web archive can significantly

reduce its storage needs by discarding all JS files that match Jawa’s filter list. Second, the

web archive can rewrite the HTML of every archived page to include a custom script which

will enforce the same client characteristics as the crawler when users load the page. The

only aspect of Jawa that would be hard to use on already archived pages is the elimination

of unreachable code, as that requires invoking all event handlers on every page.

6.9 Artifact Appendix

Abstract

My open-source artifact contains the scripts and the data necessary to produce the key

results from this paper. It also contains the code for the analysis framework which informed

Jawa’s design.

Scope The artifact can be used to confirm the three main benefits of Jawa: a) reduced

storage overhead, b) improved fidelity by eliminating almost all failed network requests, and

c) improved crawling throughput.

Contents The artifact contains all the code required to generate the key results with

respect to three metrics: storage, fidelity and throughput. This includes a) Jawa’s filter

list and a NodeJS based crawler that leverages this filter list while loading web pages; b) a

NodeJS based analyzer that injests JS files and instruments them to track all the JS functions

executed at runtime, the set of event handlers registered, and the return values of browser

APIs; and c) a set of scripts to automatically run the above code on a given corpus of pages.

These scripts will produce the following results:

• E1: Reduced storage overhead using Jawa’s two techniques: eliminating non-functional

code using the filter list, and eliminating unused code by tracking the set of functions

executed during the page load plus those required for enabling user interactions. This

result will mimic the trend shown in Figure 6.11.

101



• E2: Improved page fidelity by eliminating almost all failed network requests. This

result will reproduce the number of failed requests and the corresponding number of

bytes not fetched, as shown in Figure 6.12.

• E2: Improved crawling throughput by reducing the number of IOs on the crawling

index. This result will mimic the trend shown in the “Crawling” column of Table 6.3.

Apart from the scripts, the artifact contains a corpus of 3000 pages which is pre-recorded

using the Mahimahi [163] tool. All scripts are run on this corpus of pages. Finally, the

artifact also contains the JS analysis framework which was used to inform Jawa’s design

choices (§6.3).

Hosting The source code of the artifact is hosted on https://github.com/goelayu/Jawa with

the corresponding commit ID: “07e358eeed7cc054747271b19070b5563f3ff189”. The corpus

of pages is hosted on Google Drive.

Requirements

Software dependencies

The artifact has been tested on Ubuntu 16.04.7 LTS. It requires installing the following

dependencies, in addition to the NodeJS dependencies included in the github repo (§6.9):

$ sudo apt -get install mahimahi google -chrome -stable parallel r-base r-

base -core

$ sudo sysctl -w net.ipv4.ip_forward =1

Installations

Setting up the artifact involves three steps: a) downloading the source code and installing

the NodeJS dependencies, b) patching the NodeJS dependencies to use the modified versions

included in the github repo, and c) fetching and extracting the corpus of pages to run the

analysis on.

Install the code

$ git clone https :// github.com/goelayu/Jawa

$ cd Jawa

$ npm install

$ export NODE_PATH=${PWD}

Patch the dependencies

$ vim node_modules/puppeteer -extra -plugin -adblocker/dist/index.cjs.js

# add to line 73:

return adblockerPuppeteer.PuppeteerBlocker.parse(fs.readFileSync ('../
filter -lists/combined -alexa -3k.txt ', 'utf -8'));

Fetch the data
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$ cd data

# download tarball from https :// drive.google.com/file/d/17

j6AYgaaXMhmV0VKWUmU_kMcHibMryVV/view?usp=sharing

$ tar -xf corpus.tar

Experiments workflow

As listed in §6.9, the artifact scripts will produce results corresponding to three metrics:

storage, fidelity and crawling throughput.

Fidelity

I provide scripts and data to exactly reproduce Figure 6.12 (both a and b). The corpus

used for this experiment contained 3000 pages. On a single core machine, it takes roughly

20–30 seconds for each page to load and, therefore, takes about 20 hours to load all 3000

pages once. I recommend to either run this experiment on a smaller corpus of pages (more

details below) or to use a multi-core (16–32 cores) machine to speed up the overall execution

time.

$ cd ../ae

# Usage: ./ fidelity.sh <corpus_size > <num of parallel processes >

$ ./ fidelity.sh 3000 1 # depending on the number of available cores on

your machine , provide the 2nd argument

The output graphs will be generated in the same directory: “count fidelity.pdf” and

“size fidelity.pdf”, corresponding to Figures 6.12(a) and 6.12(b), respectively.

Storage

Reproducing Figure 6.11 requires processing 1 million pages, which would take around

a week (even with 128 CPU cores). I instead provide scripts to process 3000 pages, and

demonstrate storage savings derived from both of Jawa’s techniques. I provide preprocessed

web pages, i.e., injected with instrumentation code to detect which functions are executed

at runtime, and code to track event handlers. You can fetch the the instrumented pages as

follows:

$ cd ../ data

# download tarball from https :// drive.google.com/file/d/16

Pt4a2l1CNxC8UBwjalgEki -UlGAnFUm/view?usp=sharing

$ tar -xf processed.tar

You can now run the end-to-end storage analysis script:

$ cd ../ae

# Usage: ./ storage.sh <corpus_size > <num of parallel processes >

$ ./ storage.sh 3000 1 # depending on the number of available cores on your

machine , provide the 2nd argument
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The above script will print three storage numbers (in bytes) to the console. a) Total

JS storage after deduplication (as incurred by Internet Archive); this mimics the “IA*”

bar in Figure 6.11(a). b) Total JS storage after applying Jawa’s filter; this mimics the

“IA*+Combined Filter” bar in Figure 6.11(a). c) Total JS storage after removing unused JS

functions; this mimics the “Jawa” bar in Figure 6.11(a).

Crawling throughput

I reproduce the throughput results from Table 6.3’s “Crawling” column. The storage

script above outputs the crawling index IOs as well. It prints the following two numbers: a)

reductions in crawling IOs for the 50th percentile page, and b) reductions in crawling IOs

for the 95th percentile page.

6.10 Summary

Since when the Internet Archive began operating in the late 1990s, a marked change on the

web has been the increased use of JavaScript. In this chapter, I shined light on two significant

problems caused by this change: broken rendering of archived pages, and petabytes of storage

wasted on JavaScript which will either be non-functional or never be used. Our design of

Jawa addresses these problems while emphasizing low overhead on both crawling and serving

pages. As a result of my work, web archives will be able to archive many more pages than

they can today for the same cost and ensure that archived pages more closely approximate

their original versions.
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CHAPTER 7

Conclusion

The past few decades have seen an exponential growth in the use of the internet, in particular

the world wide web (WWW). We increasingly rely on the web to access information and

services. Given this increased dependence on the web, a significant amount of effort has been

spent on improving the web, such as initiative to reduce page load times, to bolster privacy

and security policies, and others.

Despite these efforts, certain aspects of the web still fail to meet user expectations such

as slow web page loads on mobile smartphones. Also, a number of relevant web domains

such as crawling and archiving have been completely overlooked by systems researchers. In

this dissertation, I have attempted to address this gap in the literature by tackling the is-

sues of crawling and archiving the modern web and proposed two separate optimizations to

significantly speed up web performance for users of the mobile web. I first described how

modern web pages are highly amenable to JavaScript memoization technique in order to re-

duce the total client-side computations incurred during page loads. I then conducted similar

analysis to show potential speed ups in JavaScript runtime that are achievable by offloading

JS execution across multiple cores of modern smartphones. In chapter §5, I detailed the

design of Sprinter, a web crawler that addresses the performance-fidelity trade-off of modern

web crawlers. In chapter §6 I detailed the design of Jawa, a web crawler tailored towards

web archives which crawls and stores web pages by leveraging differences between live and

archived pages to reduce the storage overhead of preserving archived snapshots and eliminate

any fidelity issues resulting from JavaScript’s non-determinism.

In this rest of this chapter, I will summarize the main takeaways and lessons learned from

my dissertation and conclude with some future work.
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7.1 Lessons Learned

There are three main takeaways from the research summarized in this dissertation.

7.1.1 JavaScript’s negative impacts on web pages are not limited

to poor web performance

A significant amount of prior work on web performance has identified the negative impact

of client-side computation on page load times. Solutions to mitigate these impacts have

highlighted the need to reduce JavaScript execution. However, no prior work has charac-

terized this client-side computation nor quantified the impact of JavaScript execution. In

chapter §4, I breakdown client-side computation into each of its individual components—

painting, rendering, HTML parsing and JavaScript compilation and execution—to identify

how much JavaScript execution contributes to this overhead.

Although I was the first to precisely quantify the negative impacts of JavaScript execution

on web page load times, this sentiment was already known to some extent as prior work had

conducted analysis along similar lines [196]. In my dissertation, I uniquely identified a num-

ber of other negative impacts that JavaScript has on web pages. In chapter §6, I described

two negative impacts that JavaScript has on web archiving. JavaScript doubles the stor-

age overhead of web archives, despite using techniques like deduplication and compression.

Moreover, the non-determinism manifested by JavaScript that helps customize web pages for

the live web, degrades the fidelity of archived web pages by requesting URLs to be fetched

that were never archived to begin with.

In chapter §5, I demonstrated how performance of web crawlers is dictated entirely by

client-side computation overheads, and specifically JavaScript execution. This is different

from end-user page loads, because while JS execution degrades end to end latency, it is not

the only factor affecting performance. Network delays also play an important role. The

reason behind JavaScript’s bigger role in web crawling performance is the fact that crawlers

care about crawling throughput, i.e., number of pages crawler per second, as opposed to the

latency to download individual pages – the metric used to quality of experience for end-user

page loads. I observed that compute resources on the client-side get starved way before any

other resources (network, disk, memory) are saturated.

Although the use of JavaScript has become critical for web development, I believe that

identifying and quantifying its negative impacts on multiple facets of web pages will hopefully

lead to a more radical change in the way the web operates and call for more clean-slate web

designs.
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7.1.2 Differences in page loads in different contexts can be lever-

aged to overcome various issues with the web

While developing web pages, the first-order metric that page developers prioritize is the

quality of experience for individual users loading pages on their client devices such as smart-

phones, laptops, etc. This involves improving the page loading time and better user experi-

ence by customizing pages for the needs of individual users.

As pointed out in my research, these features unfortunately don’t bode well in other web

loading contexts such as web archiving or large-scale web crawling. For example, support for

dynamic rendering of web page loads by identifying what resources to fetch during the page

load process itself aids customizing the page for individual users. However, in the case of web

archiving, it results in poor fidelity of archived pages since the resultant non-determinism

results in requesting resources that were never archived by the web archive.

The key to mitigating such issues in different contexts, as shown in my work, is to under-

stand the differences in page loads in these different settings and leveraging these differences

to optimize for the relevant metric. In Jawa, I described how archived pages are different

from live pages in two ways. First, there is a lot of JavaScript code on an archived page

that is non-functional since it needs to interact with a back-end server in order to function

properly. For example, the ability to add comments to an article published on the web.

Second, a large amount of code is un-reachable since certain branch conditions will never be

taken. For example, if an authentication token is stored as a client-side cookie, the client-side

code can print the user information, and if not, it can print the login button, on the screen.

For archived pages, there will never be an authentication token stored in the cookies and

therefore one of those branches will never be taken. Leveraging these differences, I was able

to eliminate a large fraction of JavaScript code to reduce the total storage overhead incurred

by web archives.

Similarly, in Sprinter, I identified how web crawlers and individual users care about dif-

ferent aspects of JavaScript execution. For individual users loading pages, everything that

JavaScript does – add events to the page, DOM modifications to customize page for the user,

identify what resources to fetch – matters. For crawlers, on the other hand, only what re-

sources to fetch matters. As a result, I was able to exploit this difference to maximize reusing

JavaScript execution across pages of the same site, and improve crawling throughput by over

5x.
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7.1.3 Fine-grained analysis is feasible with the legacy web

The idea of fine-grained JavaScript analysis to optimize web performance was already intro-

duced in prior work [165]. However, the proposed solution involved rewriting the web page

on the server-side. This requirement of the participation by back-end web servers hindered

the adoption of such techniques, since to be viable in practice a large number of web domains

would have to adopt them.

In my dissertation, I showed that participation by back-end web servers is not a require-

ment to leverage the benefits of fine-grained analysis. As much diverse as the modern web

has become, there still exist a number of properties or trends that hold true for a large

variety of web pages. My work has capitalized on these trends in order to make fine-grained

analysis of web computations feasible for legacy web pages. I have demonstrated the efficacy

of this approach in two ways.

First, in Sprinter, I identified the trend of redundant JavaScript execution across pages

of the same site. Even though identifying redundant executions itself required heavy weight

fine-grained analysis which was computationally expensive, the fact that the degree of re-

dundancy was so high helped amortize the compute overheads associated with such analysis.

This meant that the analysis could be performed on client-side itself making it compatible

with the legacy web.

In Jawa, I took an alternate approach. Instead of employing the fine-grained analysis in

the system design itself, I performed offline analysis on a wide variety of web pages. Using

the offline analysis, I extracted common properties that applied to almost all of the pages.

Leveraging these properties, I designed Jawa. Clearly, not every web page is expected to

be compatible with those properties, however the pervasiveness of those properties was high

enough that it did not compromise on fidelity.

7.2 Future Work

The increasing ubiquity of the web has only fastened the rate at which it has evolved. The

web stack—server-side web page development to the client browsers used to visit pages–is

continuously evolving. For example, Google Chrome, the browser vendor with the largest

market share releases a minor version update every 2 weeks. Simultaneously there are 100s

of web features added/deprecated to the official web specifications [142]. As a result, it

becomes unclear whether the problems with the web today will continue to persist in the

future, and more importantly, whether the solutions presented today (including the ones in

this dissertation) will continue to address those same problems in the future as well.
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In the remainder of this chapter, I present a number of research problems relating to the

web. I begin with outlining a clean-slate design for the web, and then discuss individual

ideas with respect each of the web domains that were studied in this dissertation.

7.2.1 Clean slate design for the web

All the techniques and system designs presented in this dissertation are incremental changes

to the status quo. This property of my solutions was not by accident. The systems research

community often evaluates ideas on their practicality and ease of deployability. As a result,

my systems were deliberately designed to work with legacy web pages, and unmodified

browsers and required no manual work from web developers.

However, I believe that in order to overcome the array of problems tackled by web re-

searchers, it is important that we rethink the design of the web from the ground up. Instead

of proposing incremental changes compatible with the current web, I feel that there is a need

for a more radical approach. As a first step towards clean-slate web architecture, I propose

a couple of first principles that I believe the future web architects should base the design of

the web on.

• Versioning. Web has become a collective repository of human knowledge. Any new

contribution to this repository likely cites information created earlier, often by linking

to different web pages, ranging from news articles, to social media posts on Twitter,

Instagram etc. However, unlike other sources of information like books, information

on the web can be easily modified. As a matter of fact, web pages are often updated

over time, resulting in problems like content drift [131, 217].

I believe that the web should inherently support versioning, analogous to software

libraries and books. Each new revision gets annotated with a new version number,

allowing users to refer to a particular snapshot of the text with the corresponding

version number. This eliminates the need for web archives to repeatedly take snapshots

of web pages to allow access to historic information on any page.

• Crawling and archiving. A key contribution of this dissertation was pointing out

the often overlooked aspects of modern web pages – web crawling and web archiving.

The current web is designed mostly to cater to the needs to end users loading pages

using web browsers. As a result, both crawlers and web archives have to rely on a

range of techniques to efficiently crawl the web, store it, and enable access to it for

end-users.

I believe that web pages should be designed to serve the needs for both end-users and
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web crawlers. Depending on the user-agent of the client visiting a page, the web server

for that page can respond with different versions of the same page. A more dynamic

and customized version for end-users which will be optimized for user experience, high

performance and supports all kinds of user interaction. For crawlers, it would serve a

more static version of the page, ideally a single resource which contains all the relevant

bits of the page. Finally, for web archives it might serve an even more stripped down

version of the page, for example, by removing certain components such as search boxes

which would not be functional when loaded from the web archive.

• Resource identifier. Web pages are identified using URLs, which contain information

about the domain, host and directory on that host where the page is located. This

model worked perfectly when a host corresponded to a single server hosting the web

page and the URL path corresponded to the actual directory the web page resided in.

Today, this is no longer true, since most web pages use complex content management

systems which generate custom paths for each page.

Instead, I propose that web pages be uniquely identified by their content. This proposal

is based on the previous work on content centric networking which seeks to replace IP

based networking, due to the numerous limitations it presents [181]. One possible way

this could be implemented is by using content hashes to identify and locate each web

page, similar to how IPFS operates [76].

• Debloating. A large number of performance and archiving issues stem from the

increasing bloating of web pages. Content providers install a large number of analytics

and advertising libraries on web pages to track users and monetize content on their

page. Users, unfortunately, have no control over this, resulting in a large number

of privacy violations [69] but also detrimental quality of experience with slower page

loads.

I propose that users preferences be included in what resources to serve as a part of the

web page. Some browsers already have support for this, in the form of ad blockers and

privacy trackers. However, I believe that web should natively support such options,

instead of relying on browser vendors.

Next, I describe future work with respect to each of individual domains of web that I

worked on.
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7.2.2 Web performance

There is a long way to go before we achieve above par web performance for all users accessing

all kinds of web pages on all sorts of client devices. To this end, I propose two research

directions that haven’t received enough attention.

Understanding utility of JavaScript . In this dissertation I pointed out the detrimental

impacts of increasing JavaScript on web performance. Even though optimizing JavaScript

execution has helped reduce this overhead to some extent, I believe that the problem will

continue to exist as, given the web trends, the amount of JavaScript is only expected to

increase over the next few years. A key question that naturally arises is What is the utility

of this increasing JavaScript on web pages?

Currently we have a very limited understanding on the exact functionality or benefits

achieved by the megabytes of JavaScript that is loaded as a part of most pages. If we could

classify the existing JavaScript code into categories based on the functionality they provide,

we could understand the root cause of this significant increase in JS bytes on pages. Also,

by understanding what each of line JavaScript is essentially doing, we can make qualitative

decisions on what lines are more critical than others so as to be able to trade off some

JavaScript code for better performance.

System to study performance under different configurations . Each research study

on web performance builds its own corpus of web pages to study any present limitations

to better web performance and evaluates it on a test bed custom curated by the respective

researchers based on a number of factors such as availability of resources or assumptions

about the best smartphones, browser vendors etc. Moreover a lot of studies are restricted to

particular geographic locations, with most of the top-tiered conference work mostly focusing

on US-Europe market.

I believe that there is a rising need for a systematic way to study web performance given

this heterogenous environment with an exponential number of parameters such as location,

device type, browser type etc. I envision that ML models might be able to solve some of

challenges that come with navigating such a large configuration space. ML models can be

trained on the web performance metrics gathered by large browser vendors such as Google

Chrome to identify what optimizations would benefit what kinds of users. Similar techniques

can also be used to evaluate the efficacy of previous work on web performance to understand

how generalizable those techniques are.
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7.2.3 Crawling the web at scale

Utility of resource from crawlers perspective. In my work on improving the crawling

throughput of web crawlers while ensuring high fidelity of resource fetches, I showed how

existing crawlers sit at the opposite ends of performance-fidelity trade-off space. I assumed

that from a crawlers perspective, perfect fidelity implies fetching all resources that would be

fetched when a user loads a web page using a web browser. Even though this definition of

fidelity might be applicable for some cases of crawling, for example, when researchers crawl

the web to download all the resources of pages in order to study different aspects of pages,

for a large number of crawling purposes, fetching only a subset of resources might suffice.

For example, search engines that only rely on text based information to serve user queries

can only download the HTML file for every page they crawl, if all the textual information is

embedded in the HTML file itself.

I believe that there are two things missing from current crawling pipelines. First, crawlers

should be capable of charaterizing page resources on their contribution towards the final

rendered page. For example, would fetching a given JS file result in fetching more content

(images, or text) that will be rendered as a part of the final page, or would fetching a given

image file result in fetching of other resources due to resource dependencies. Second, crawlers

should allow their users to explicitly state the intent of crawling, for example, is the user

interested in fetching all resources, only text based resources or only images etc. Combined

with the page resource characterization, the crawler must be able to decide how a given

page should be crawled in order to fetch the relevant resources. If a given page relies on

JavaScript execution to fetch all the images, and the user requires images to be fetched, then

the crawler would load the page using a browser, so as to be able to execute the JavaScript

and accurately identify image URLs to be fetched. On other hand, if the user doesn’t care

about images, then the crawler could use simple static parsing techniques to download only

the relevant components of the page.

Automatic generation of crawlable versions . Given the increasing importance of

crawlers to power modern services, specifically AI-based services that rely on data gathered

from the web to train their respective models, I believe that web pages should provide native

support for crawlers. As mentioned in my proposal for the clean-slate web, web servers should

respond with the appropriate version of their site depending on what client is requesting the

access. Since often times crawlers aren’t going to interact with the page, or visually inspect

the page, the web server can respond with a much simpler, stripped down version of the

page for when requested by a crawler.

Currently, content providers don’t have an automated means of creating such a stripped
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down version of their web page. Large content providers have 100s of web pages hosted on

their servers, which means manually creating another version of each page which would result

in lots of developer effort. I propose an automated system that can take all the resources

on a given page and produce a crawling-friendly version of the page, that ideally can be

fetched as a single resource, without needing the crawler to use compute intensive methods

like browser-based crawling. This automated system can be used not only across different

pages of the same site, but also across different sites.

7.2.4 Efficient web archiving

Identifying what to archive. Increasing ephemerality of the web has resulted in lots

of web archiving initiatives. However, web archives have limited resources which makes it

infeasible for them to crawl and capture the entire web, which consists of trillions of web

pages, adding up to zetabytes of resources. For example, even though Internet Archive, the

largest web archive, has stored more than 600 billion web pages, it is still missing a large

number of critical pages.

To remedy this, I propose that crawlers also account for “freshness” as a metric while

measuring the efficiency of crawling. Instead of only focussing on crawling throughput,

crawlers should identify which pages to crawl. A page has maximum utility or adds maximum

freshness to the overall corpus being crawled if it contains the most unique content. This

would require constructing some kind of semantic summary of web pages, and computing

edit-distances on these semantic summaries to identify which pages are referring to similar

information and therefore not worth crawling. For example, two news articles from two

separate news organiziations covering the same news event are likely to report the same fact.

Moreover, organization with similar political stance are likely to overlap in their coverage

even more.
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[201] Arjun Suresh, Erven Rohou, and André Seznec. Compile-time function memoization.
In Proceedings of the 26th International Conference on Compiler Construction, 2017.

[202] Arjun Suresh, Bharath Narasimha Swamy, Erven Rohou, and André Seznec. Inter-
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