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PREFACE

This doctoral dissertation consists of five chapters. Chapter 1 introduces the reader to the back-
ground, motivation, objectives and contributions of this dissertation. The following three chapters
(i.e., Chapter 2, 3 and 4) are self-contained discussions and can be read independently. Chapter 2
and Chapter 3 are based on articles [1] and [2] published in the International Journal of Advanced
Manufacturing Technology in 2020 and 2021, respectively. Chapter 4 is partially based on article
[3] published in the CIRP Annals - Manufacturing Technology in 2023, as well as a manuscript in
preparation. Chapter 5 summarizes the conclusions and suggestions for future research emanating
from this dissertation.
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ABSTRACT

Intelligent manufacturing machines envisioned for the future must be able to autonomously select
process parameters that maximize their speed (productivity) while adhering to quality specifica-
tions. One of the major sources of quality degradation in feed drives of the manufacturing machines
is motion-induced servo error, which can be caused by several aspects such as limited bandwidth
of feedback controllers, flexible structures, or nonlinear friction. Another source of servo error
is force-induced servo error, which is caused by process force such as cutting force. Given that
motion- and force-induced servo errors tend to increase with higher motion speeds, there is a keen
interest in maximizing the speed of motion while respecting the tolerances on servo errors. To
enable this, numerous works in the feedrate optimization aim to maximize machine speed subject
to servo error constraints. However, the vast majority of the available methods only consider con-
straints on kinematics and/or static models of servo error without any incorporation of the dynamic
servo models, which leads to sub-optimal feedrates. Moreover, they do not quantify the uncertainty
of the servo error predictions, and hence may not effectively adhere to constraints in the presence
of high uncertainty due to the model inaccuracy.

To address these shortcomings, this dissertation proposes the framework and a set of method-
ologies for intelligent feedrate optimization approach enabled by uncertainty-aware physics-based
and data-driven servo dynamic models. First, it proposes feedrate optimization with constraints on
kinematics and servo error using physics-based servo dynamics. The optimization is formulated
with respect to a time-based path parameter, which enables the linear dynamic model to be included
in the optimization solved using linear programming. The integration of the servo dynamic model
enables dynamic components of the servo error to be incorporated in the feedrate optimization,
such as servo error pre-compensation, which allows for faster motions without violating tolerance
constraints. Furthermore, the accuracy and computational efficiency of the feedrate optimization
is improved using windowed sequential linear programming. Numerical feasibility is guaranteed
by imposing smooth switching between the feedrate-optimal trajectory and a conservative backup
trajectory. The performance of the feedrate optimization using physics-based servo model is val-
idated using a desktop 3D printer and a precision motion stage to demonstrate reduction in cycle
time while achieving similar quality to that of conservative approach used in the status quo.

Second, the dissertation augments the physics-based servo models with a data-driven servo

xii



model to form an uncertainty-aware digital twin in the feedrate optimization to correct for inac-
curacies introduced by dynamic uncertainties that are not modeled in the physics-based models.
Known uncertainty is incorporated via a set of physics-based models, while unknown uncertainty is
learned online by training the data-driven models via sensor measurements. The uncertainty-aware
digital twin predicts the distribution of servo error, which is used in the feedrate optimization to
constrain the servo error under desired tolerance and stringency. The proposed intelligent fee-
drate optimization is validated using a desktop 3D printer and a CNC machine tool prototype to
demonstrate cycle time reduction while achieving similar tolerance stringency with conservative
approach.

The broader impact of this dissertation is to achieve desired quality and higher productivity
with less trial-and-error. It is expected to be applicable to any manufacturing machines that use
feed drives.
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CHAPTER 1

Introduction and Literature Review

This doctoral dissertation proposes a framework and a set of methodologies for intelligent fee-
drate optimization subject to tolerance constraints using uncertainty-aware physics-based and data-
driven servo dynamic models. Section 1.1 provides background and motivation for the study, Sec-
tion 1.2 reviews the literature on servo error compensation and feedrate optimization, and Section
1.3 discusses the contributions and content outline of the dissertation.

1.1 Background and motivation

Quality and productivity are two important and often competing attributes in manufacturing.
Therefore, manufacturers often seek to maximize productivity subject to quality (tolerance) con-
straints. In practice, this goal is often achieved by trial-and-error, which is time-consuming, making
it impractical in some applications such as low-volume production (e.g., 3D printing). Recently,
there is a push for self-optimizing (intelligent) manufacturing machines that are capable of, among
other things, autonomously optimizing their process parameters to maximize productivity while
maintaining desired quality levels, without need for trial-and-error [8].

A feed drive is a controlled actuator/motor that is used to position the machine tools to the
desired location. They are used in a wide variety of manufacturing machines, including computer
numerically controlled (CNC) machine tools [9], wafer scanners [10], 3D printers [11], semicon-
ductor manufacturing equipment, etc (see Figure 1.2(a)-(c)). The servomotors in feed drives can
either be linear motors or rotary motors with a ball screw and nut assembly, which are used to
move the drive train, such as machine tool table on a guide. The motors are driven by electronic
amplifiers, which are connected to CNC systems that generate position commands at discrete time
intervals. Figure 1.1 shows an example of a feed drive that uses ball screw [4], which is most
frequently used in machine tool applications.

The feed drive control structure for a single axis can be modeled as a closed-loop servo system
consisting of mechanics and servo controller, as illustrated in Figure 1.3. The desired motion is
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Figure 1.1: Feed drive mechanism with a ball screw drive [4]

Figure 1.2: Examples of feed drives in (a) 3D printing (b) face milling (c) wafer scanning; dynamic
servo errors in feed drives manifested as (d) surface profile of 3D-printed block [5] (e) chatter
marks in face milling [6] (f) vibration response of ultra precision machines [7]

2



Figure 1.3: Control diagram of feed drives

modified using motion command generator, then is fed into the closed-loop system with feedback
and/or feedforward servo controller. The servo error is defined as the difference between desired
and output motion. Servo errors in machine tools can be caused by quasi-static errors (such as
thermal and geometric error) and/or dynamic errors. Dynamic servo errors are a major source
of inaccuracy in feed drives. One major source of dynamic servo error in feed drives is motion-
induced servo errors. They can result from the limited bandwidth caused by nonlinear flexible
structures or high-frequency components in command inputs. Another source of dynamic servo
error is disturbance forces such as manufacturing process forces (e.g., cutting force), friction, etc.

Motion-induced and disturbance-induced servo errors typically increase with motion speed, be-
cause of the limited bandwidth of servo controllers, mechanical components inside servo loop, and
transmission between disturbance and servo drives. Hence, dynamic servo errors are very impor-
tant in determining the trade-off between speed and accuracy. The servo errors lead to the actual
toolpath deviating from reference toolpath, which creates unwanted inaccuracy in manufacturing
parts, e.g., excessive surface roughness or form (contouring) errors, as illustrated in examples of
3D printing [5], face milling [6] and ultra precision machines [7] in Fig. 1.2(d)-(f). So it is of
interest to maximize speed subject to constraints on servo error by designing a motion command
generator with given servo controllers and mechanics.

The goal to maximize feedrate subject to servo error constraints has been extensively researched
under the topic of feedrate optimization. However, servo error is driven by dynamic effects as well
as uncertainties. Dynamic effects are caused by several aspects such as the mechanics (e.g., flexible
modes), feedback controller or feedforward servo controller (i.e., servo error pre-compensation),
whereas the uncertainties may be caused by nonlinear friction, unmodeled cutting forces, geomet-
ric errors, etc. To be able to perform effective feedrate optimization with servo error constraints,
this dissertation focuses on feedrate optimization that can account for servo dynamics and uncer-
tainties by incorporating servo dynamic models.
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Figure 1.4: Categorization of feedrate optimization methods and the associated approaches for
each chapter and appendix in the dissertation

1.2 Literature review

This section addresses literature review on feedrate optimization. Various feedrate optimization
methods are discussed from the perspective of servo error constraints in Section 1.2.1, whereas
they are discussed from the perspective of computational efficiency in Section 1.2.2.

1.2.1 Feedrate optimization with servo error constraints

Extensive research has been conducted in the field of feedrate optimization with the objective of
maximizing the feedrate while respecting servo error constraints, and can be categorized as Figure
1.4. The majority of feedrate optimization techniques primarily focus on maximizing the feedrate
while considering kinematic limits such as speed, acceleration, and jerk [12–19]. The kinematic
limits help to avoid saturation of the drives and act as an implicit (indirect) method to achieve dy-
namic positioning accuracy, by limiting high frequency motion commands. However, the existing
studies in [12–15] cannot incorporate servo error dynamics (including feedforward and feedback
controller dynamics) and cutting force, resulting in the need for a cautious selection of kinematic
limits to indirectly meet the requirements on dynamic parameters. This indirect approach is nec-
essary due to the nonlinear relationship between kinematics and dynamic parameters, which often
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leads to sub-optimal feedrates chosen by trial-and-error.
In order to directly constrain dynamic components, certain feedrate optimization methods in-

corporate limits on the servo error, in addition to kinematics, by using steady-state [20] or static
[21, 22] approximations of servo models associated with motion velocity and acceleration. How-
ever, their limited ability to directly incorporate dynamic aspects of servo error, such as dynamic
servo error pre-compensation, hinders their accuracy and effectiveness in optimizing feedrate.

To directly incorporate dynamic components via physics-based models, numerous feedrate
scheduling methods for CNC machines maximize feedrate in each NC block while keeping cut-
ting force under desired levels via mechanistic force models [23–35]. Some feedrate scheduling
techniques maximize feedrate while regulating machining error due to tool deflection [36–42] or
force-induced servo error [43, 44] under desired tolerance in CNC machine tools. However, the
works in [23–44] are unable to effectively constrain actual cutting force or servo error in situa-
tions where uncertainties arise from nonlinear dynamics or disturbances that are not incorporated
in the physics-based models. As a result, their capability to maximize feedrate while adhering to
dynamic constraints is severely restricted.

To effectively optimize feedrate with existence of uncertainties, data-driven approaches can be
used to provide more-accurate predictions of process or servo dynamics for feedrate optimiza-
tion using measured data from sensors. For example, some feedrate scheduling and optimization
techniques utilize artificial neural networks (ANNs) to predict and constrain dynamic parameters
like spindle power [45] or contour error [46]. However, the existing data-driven models used in
[45, 46] are trained offline through numerous experiments, which renders them unable to adapt to
uncertainties encountered in real-time that are not captured in the offline data.

For the data-driven models to adapt to uncertainties encountered in-situ for the feedrate opti-
mization, one approach is to estimate parameters of the physics-based models online. For exam-
ple, cutting force model parameters are corrected online using virtual simulations [47] to accurately
constrain tool deflection, torque, etc. in the feedrate scheduling. A model predictive control (MPC)
is exploited [48] to update initial states of servo dynamics model in real time via an observer, which
is used to accurately predict and constrain the servo error. Another approach is to exploit online
machine learning models. For example, ANN [49] can be trained real-time to predict cutting force
based on process parameters, and feedrate can be scheduled to regulate cutting force with a slow
update frequency. However, the works in [47–49] do not quantify or exploit the uncertainty of the
prediction. Hence, they may not effectively adhere to constraints in the presence of high uncer-
tainty due to lack of training data or sudden change of operating conditions.

To quantify uncertainties and impose robustness, there exist studies on maximizing feedrate
while regulating spindle power, where the spindle power is modeled as Gaussian Process Regres-
sion (GPR) [50]. The spindle power constraint is derived from a stochastic constraint with a fixed
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confidence level to safely optimize feedrate in uncertain environments. However, GPR in [50] is
updated cycle-by-cycle, which can be slow and may not effectively predict the spindle power for
non-repetitive processes. Moreover, it does not constrain the servo error, nor account for the prop-
agation of model uncertainties to the servo error. This oversight is critical in achieving desired part
accuracy in the feedrate optimization, especially for toolpaths with high curvatures that can create
significant structural vibration.

1.2.2 Feedrate optimization with computational efficiency

The vast majority of feedrate optimization methods are formulated with respect to a path-based
parameter discretized on the trajectory arclength domain. However, because of the nonlinear re-
lationship between feedrate (which is path-level) and axis-level constraints (e.g., jerk or servo
error constraints), it is numerically challenging to solve feedrate optimization. Several works use
gradient-based methods such as sequential quadratic programming (SQP) [16]. However, SQPs
are nonlinear optimization solvers that require heavy computational load. In order to solve the is-
sue of computational efficiency, some works use heuristic algorithm [51, 52] such as bidirectional
scanning method [21] or greedy algorithm [53]. On the other hand, several works approximate
nonlinear jerk constraints using pseudo-jerk [12, 13, 18, 54], i.e., replacement of nonlinear terms
in jerk by sub-optimal path-parameter terms. However, both heuristics and pseudo-jerk approaches
sacrifice optimality for efficiency. Overall, most feedrate optimization methods cannot achieve op-
timality and computational efficiency at the same time.

1.3 Dissertation contributions and outline

To address the shortcomings faced by feedrate optimization methods in state-of-the-art, this
dissertation (based on publications [1–3]) proposes a novel intelligent feedrate optimization using
uncertainty-aware physics-based and data-driven servo dynamic models. The proposed framework
is depicted in Figure 1.5. First, a manufacturer submits a part together with the desired dimensions
and servo error tolerance to an intelligent manufacturing machine. Then, the goal of the machine is
to autonomously produce the part as quickly as possible while respecting the given error tolerance.
The machine is equipped with uncertainty-aware servo dynamic models that predict the servo error,
which the machine can exploit for feedrate optimization with servo error constraints.

The uncertainty-aware servo dynamic models use the known uncertainty from the physics-based
models and trains the data-driven model using the machine’s sensor measurements to learn the
unknown uncertainty. The servo dynamic models predict and quantify the uncertainty of the servo
error, which is used in the feedrate optimization with desired tolerance on the servo error. Together
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Figure 1.5: Diagram of intelligent feedrate optimization using uncertainty-aware physics-based
and data-driven servo dynamic models

with the uncertainty-aware servo dynamic models, the feedrate optimization determines the fastest
feedrate to run the machine while respecting the limits for the servo errors (and the kinematic
limits of the machine) in a robust way. The measured sensor output is compared with the predicted
output and used to adjust the data-driven model and optimization algorithm in the next iteration of
the feedrate optimization.

Each chapter of this dissertation makes the following contributions as a step towards the intel-
ligent framework:

C.2 Chapter 2 proposes a time-based linear programming approach for feedrate optimization
that is able to incorporate linear servo dynamic models, such as physics-based servo model
and servo error pre-compensation, in the servo error constraints. The servo error con-
straint uses predictions from physics-based model and is able to include servo error pre-
compensation, thus optimally executing simultaneous feedrate optimization and servo error
pre-compensation. It is demonstrated in a 3D printer and a precision motion stage that the
proposed feedrate optimization can improve the cycle time up to 43% and 47%, respec-
tively, while closely adhering to the error tolerance, compared to conservative approaches or
feedrate optimization methods without incorporation of pre-compensation.

C.3 Chapter 3 builds upon Chapter 2 by improving the accuracy and computational efficiency of
feedrate optimization for long toolpaths via windowed sequential linear programming within
smaller batches. Feasibility is guaranteed by smooth switching between optimal solution and
conservative back-up solution. It is demonstrated in 3D printing that the studied approach
mitigates the linearization error and computational bottleneck of feedrate optimization from
Chapter 2, while still improving cycle time compared to conservative approach up to 25%.
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C.4 Finally, based on the foundations of Chapter 2 and 3, Chapter 4 proposes an intelligent fee-
drate optimization which incorporates physics-informed data-driven servo dynamic models,
i.e., digital twin. Physics-based models are incorporated to identify the known uncertainties,
while the data-driven model is used to learn the unknown uncertainties encountered in-situ
using sensor measurements. The physics-informed data-driven model predicts the servo er-
ror and its uncertainty, which is used in the feedrate optimization to constrain the servo error
under the desired tolerance and stringency. It is demonstrated in CNC milling and 3D print-
ing that the intelligent feedrate optimization approach reduces the cycle time by 38% and
17%, respectively, compared to the conservative approach, while staying close to the error
tolerance.

Chapter 5 summarizes the dissertation, presents conclusions and suggests recommendations for
future research.
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CHAPTER 2

Feedrate Optimization with Servo Error Constraints
using Physics-based Servo Dynamics Model

2.1 Overview

This chapter studies feedrate optimization (FO) with servo error constraints using physics-based
servo dynamics model. The systematic incorporation of servo dynamic models (including error
pre-compensation, i.e., SEP) into servo error constraints expands the feasible region of feedrate op-
timization, thus allowing for faster motions without violating tolerance constraints. Performance
of the method is validated using 3D printer and precision motion stage, and cycle time and tol-
erance adherence are compared with conservative approaches and feedrate optimization without
incorporating error pre-compensation.

This chapter is organized as follows: Section 2.2 contrasts time-based linear programming (LP)
and available path-based LP [19, 55] approaches for feedrate optimization. It shows that time-
based LP is similar to path-based LP in terms of computational efficiency but is superior to path-
based LP in handling jerk constraints and incorporating servo dynamics into feedrate optimization.
Section 2.3 presents the proposed approach for simultaneous feedrate optimization and servo error
pre-compensation (i.e., FO+SEP) using time-based LP. Section 2.4 validates the effectiveness of
the proposed FO+SEP approach in simulations and experiments carried out on a 3D printer and
planar motion stage. Conclusions are presented in Section 2.5.

This chapter is based on the following publication:

• Kim H, Okwudire CE. Simultaneous servo error pre-compensation and feedrate optimiza-

tion with tolerance constraints using linear programming. The International Journal of Ad-
vanced Manufacturing Technology. 2020; 109 (1); 809-821.
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yd = g(s)

s = 0 x

y

Figure 2.1: Parametric planar curve as function of path variable, s

2.2 Time-based vs path-based LP for feedrate optimization

Fig. 2.1 illustrates an arbitrary, curved path in the x-y plane with path parameter s ∈ [0, 1].
Note that s is a function of time t (i.e., s = s(t)). Let xd = f(s) and yd = g(s) denote a pair of
parametric equations in s, representing the x and y components of desired position, respectively.

An increasingly popular approach is to perform feedrate optimization via path-based LP, i.e.,
using s as the independent variable [19, 55]. In path-based LP, it is assumed that s represents arc
length, i.e., distance travelled along the curve, which is normalized by total travel length L. Let xd
and yd be already known in the defined domain of s. Then, the kinematic limits Fmax, Amax, and
Jmax on feedrate, axis acceleration and axis jerk respectively, can be imposed as

L |ṡ| ≤ Fmax∣∣∣∣d2xd(s)dt2

∣∣∣∣ = ∣∣x′′d(s)ṡ2 + x′d(s)s̈
∣∣ ≤ Amax∣∣∣∣d3xd(s)dt3

∣∣∣∣ = ∣∣x′′′d (s)ṡ3 + 3x′′d(s)ṡs̈+ x′d(s)
...
s
∣∣ ≤ Jmax

(2.1)

for ∀s, where x′d(s), x
′′
d(s), and x′′′d (s) denote geometric derivatives of xd(s) with respect to s; ṡ,

s̈, and ...
s are tangential velocity, acceleration, and jerk, respectively. The y-axis acceleration and

jerk limits are imposed in the same manner. Note that, instead of imposing feedrate limits as in Eq.
(2.1), axis velocity limits could be imposed in addition to axis acceleration and jerk limits [19, 55].

To facilitate path-based LP, a new parameter q = ṡ2 is introduced to remove the nonlinearity in
Eq. (2.1). With q, the following substitutions hold:

ṡ =
√
q, ṡ2 = q, ṡ3 = q

√
q

s̈ =
1

2
q′,

...
s =

1

2
q′′
√
q, ṡs̈ =

1

2
q′
√
q

(2.2)

With Eq. (2.2), the feedrate optimization with the same kinematic constraints is formulated as
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Eq. (2.3) for ∀s:

min
q
−
∫ 1

0

q(s)ds

s.t. L
√
q(s) ≤ Fmax∣∣∣∣x′′d(s)q(s) + 1

2
x′d(s)q

′(s)

∣∣∣∣ ≤ Amax∣∣∣∣x′′′d (s)q(s) + 3

2
x′′d(s)q

′(s) +
1

2
x′d(s)q

′′(s)

∣∣∣∣√q(s)

≤ Jmax

(2.3)

Here, the feedrate constraint can be linearized by squaring both sides, and the q′(s) and q′′(s)

terms in acceleration can be linearized by B-spline parametrization of q(s) with respect to s [19,
55]. However, because the

√
q(s) term in the jerk limit is still nonlinear, q(s) is replaced by

a precomputed upper bound q∗(s) . One candidate for q∗(s) is the solution obtained with only
velocity and acceleration constraints [19, 55] in Eq. (2.3). Then, the jerk constraint in Eq. (2.3) is
reformulated using pseudo jerk j̄(s) as:∣∣∣∣x′′′d (s)q(s) + 3

2
x′′d(s)q

′(s) +
1

2
x′d(s)q

′′(s)

∣∣∣∣√q∗(s)

= |j̄(s)| ≤ Jmax

(2.4)

Although path-based LP is capable of imposing linear feedrate and axis acceleration constraints
on FO, it cannot impose linear axis jerk constraints without the use of pseudo jerk, at the cost
of optimality [19, 55]. Moreover, because path-based LP uses q as the independent variable, it
is limited in its ability to accommodate servo dynamics, which uses time t as the independent
variable.

Therefore, this dissertation formulates a time-based LP approach for feedrate optimization,
adapted from the model predictive contour control framework proposed by Lam et al. [56]. Let s(t)
be discretized with fixed sampling interval Ts and expressed as a vector s = {s(0), s(1), . . . , s(N−
1)}T. Then, FO can be formulated as:

min
s
−

N−1∑
k=0

s(k)

s.t. s(k − 1) ≤ s(k) ≤ 1, ∀k = 1, 2, . . . , N − 1

(2.5)

The idea of Eq. (2.5) is that to minimize total time, the sum of s(k) over N time steps must be
maximized – i.e., the path from s(0) = 0 to s(N − 1) = 1 should be traversed as fast as possible,
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Figure 2.2: Desired toolpath

while satisfying the monotonicity and endpoint constraints on s in Eq. (2.5). In addition, it should
satisfy kinematic constraints Fmax, Amax, and Jmax on feedrate, axis acceleration and axis jerk,
respectively:

L
D[s]
Ts
≤ Fmax∣∣∣∣D2[x̂d]

T 2
s

∣∣∣∣ , ∣∣∣∣D2[ŷd]

T 2
s

∣∣∣∣ ≤ Amax∣∣∣∣D3[x̂d]

T 3
s

∣∣∣∣ , ∣∣∣∣D3[ŷd]

T 3
s

∣∣∣∣ ≤ Jmax
(2.6)

Here, D denotes finite difference operator, while Fmax, Amax, and Jmax are vectorized represen-
tations of the corresponding kinematic limits, and x̂d and ŷd are vectorized versions of x̂d(k) and
ŷd(k), respectively, similar to s. This notation is maintained hereinafter. The terms xd = f(s)

and yd = g(s) are generally nonlinear in s. Thus, at each time step k, they are linearized with
linearization points se(k) estimated from an initial unoptimized trajectory as

x̂d(k) =
∂f(s)

∂s

∣∣∣
s=se(k)

· (s(k)− se(k)) + f(se(k)) (2.7)

and ŷd(k) is obtained by linearizing g(s) in the same manner.
To compare time-based and path-based LP, a circular toolpath with radius, R = 5 mm is em-

ployed, as illustrated in Fig. 3. The kinematic constraints are Fmax = 30 mm/s, Amax = 0.5 m/s2,
and Jmax = 5 m/s3. For both path-based and time-based LP, s is discretized and represented using
B-splines [54, 55] as

s =N sps (2.8)
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Figure 2.3: Feedrate, axis acceleration and axis jerk profiles of path- and time-based LP with and
without jerk limits imposed

Figure 2.4: Block diagram of the proposed simultaneous SEP and FO method (y-component of
SEP and servo dynamics omitted for simplicity

where ps is the control point vector of length np; N s is the basis function matrix. By using ps as
the optimization variable in place of s, the problem size is substantially reduced because np ≪ N .
Here, a 5th degree B-spline with uniform knot vector and np = 40 control points are used.

Time-based LP is initialized using an unoptimized trajectory generated using trapezoidal accel-
eration profile (TAP) [57] with the just-given kinematic limits. First, only the feedrate and axis
acceleration limits are imposed on path-based and time-based LP. In this case, they yield almost
the same feedrate profile, as shown in Fig. 2.3. As a result, their cycle time and computation time
(using MATLAB® R2019a on a Windows PC with Intel Core i7-8750H CPU and 16 GB RAM)
is similar, as summarized in Table 2.1. This shows that both methods have similar computational
efficiency, under similar conditions. Next, the constraint on axis jerk and pseudo-jerk of Jmax = 5
m/s3 is introduced. Fig. 2.3 and Table 2.1 shows that the cycle time becomes 1.42 s for path-based
LP and 1.25 s for time-based LP. This discrepancy shows the sub-optimality introduced by the
pseudo-jerk relaxation. The computation time is also summarized in Table 2.1.
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Table 2.1: Cycle time and computation time for feedrate optimization (FO) using path-based and
time-based LP, without and with jerk constraints

FO algorithm Cycle time [s] Computation time [s]
w/o jerk Time-based LP 1.13 0.75

constraints Path-based LP 1.14 0.77
w/ jerk Time-based LP 1.25 1.89

constraints Path-based LP 1.42 1.35

Time-based LP is also superior to path-based LP because it can incorporate any linear servo
dynamics into FO. Conversely, path-based LP can only accommodate servo dynamics that are
linear with regard to velocity and acceleration [54, 58], without need for approximation. Given
these advantages, the time-based LP formulated in this section is selected for the simultaneous
servo error pre-compensation and feedrate optimization approach proposed in the next section.

2.3 Simultaneous feedrate optimization and servo error pre-
compensation using time-based LP

2.3.1 Framework of feedrate optimization and servo error pre-
compensation using time-based LP

Fig. 2.4 shows a block diagram of the proposed simultaneous feedrate optimization and servo
error pre-compensation, or FO+SEP. The idea is to impose contour error (tolerance) constraints on
feedrate optimization taking servo error pre-compensation into account. Contour error, denoted as
CE hereinafter, has been selected as the accuracy index in feedrate optimization because it directly
impacts the ability of part quality to meet tolerance specifications in manufacturing [59–62]. How-
ever, because the proposed approach uses LP, CE must be estimated using linear dynamics. To
do this, linearized desired x-axis position, x̂d, is used to generate modified position command x̂dm
using a servo error pre-compensation process represented by Cx. A linear model, Ĝx, of the actual
servo dynamics, Gx, is used to estimate the x-axis position as x̂ and tracking error as êx = x̂d− x̂.
A similar process is followed to obtain êy = ŷd − ŷ, using Cy and Ĝy.

CE is defined as the orthogonal distance between an actual trajectory point at time k and the
reference toolpath [63], denoted as ϵc(k) in Fig. 2.5. Approximate CE, denoted as ϵ̂c(k), can be
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computed from the axis tracking errors using a linear estimation [62] as

ϵ̂c(k) = − sin θ(k)êx(k) + cos θ(k)êy(k)

= − sin θ(k)(1− ĜxCx)x̂d(k)

+ cos θ(k)(1− ĜyCy)ŷd(k)

(2.9)

where θ(k) is the angle of incline of the curve (x̂d, ŷd) at time step k. The linear approximation
of CE ϵ̂c (including the effects of servo error pre-compensation using Cx and Cy) is imposed as an
additional constraint on the time-based LP formulation of Section 2 as:

|ϵ̂c| = |− sinθ(I− ĜxCx)x̂d

+ cosθ(I− ĜyCy)ŷd| ≤ Êmax

(2.10)

where Êmax is the vectorized form of the maximum allowable approximate (i.e., linearized) CE,
Êmax;Cx, Ĝx,Cy and Ĝy are matrix (lifted) versions of the corresponding system dynamics [64];
and I is the identity matrix. The implication is that a model of servo error pre-compensation is
incorporated into feedrate optimization, yielding FO+SEP. The optimized xd and yd from FO+SEP
are then applied to the actual servo dynamics, Gx and Gy, after being pre-compensated using Cx
and Cy, respectively. Note that if Cx = Cy = 1, then it means that no servo error pre-compensation
is considered in feedrate optimization.

2.3.2 Realization of servo error pre-compensation in FO+SEP using filtered
B splines

It is worth pointing out that Cx and Cy can be any linear servo error pre-compensation (feed-
forward tracking control) method, e.g., [5, 57, 59, 60, 63, 65, 66]. However, among the available
linear SEP methods, the filtered B spline (FBS) approach [5, 66] stands out because of its effec-
tiveness and versatility in handling any type of linear system dynamics [5]. Therefore, it is selected
for servo error pre-compensation in this chapter.

The FBS approach parameterizes modified command xdm (see Fig. 2.4) using B splines as
xdm = Nxpx, where Nx is the basis function matrix of degree m and px is a vector of n control
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Figure 2.5: Contouring error ϵc and its linear approximation ϵ̂c

points as 
xdm(0)

xdm(1)
...

xdm(N − 1)


︸ ︷︷ ︸

=xdm

=


N0,m(ξ0) N1,m(ξ0) · · · Nn−1,m(ξ0)

N0,m(ξ1) N1,m(ξ1) · · · Nn−1,m(ξ1)
...

... . . . ...
N0,m(ξN−1) N1,m(ξN−1) · · · Nn−1,m(ξN−1)


︸ ︷︷ ︸

=Nx


px(0)

px(1)
...

px(n− 1)


︸ ︷︷ ︸

=px

(2.11)

where ξ ∈ [0, 1] is the spline parameter, representing normalized time; it is uniformly discretized
into ξ0, ξ1, . . . , ξN−1. Each basis function Nj,m(ξ) is defined as

Nj,m(ξ) =
ξ − ḡj

ḡj+m − ḡj
Nj,m−1(ξ)

+
ḡj+m+1 − ξ
ḡj+m+1 − ḡj+1

Nj+1,m−1(ξ)

Nj,0(ξ) =

1 ḡj ≤ ξ ≤ ḡj+1

0 otherwise

(2.12)

where j = 0, 1, . . . , n − 1, and ḡ = [ḡ0, ḡ1, . . . , ḡm+n] is a normalized uniformly-spaced knot
vector defined in [0,1]. Accordingly, the system output is expressed as x ≈ Ĝxxdm = Ñxpx,
where Ñx = G̃xNx (i.e.,Nx filtered by G̃x). The tracking error is modeled as Eq. (2.13):

ex = xd − x ≈ xd − Ñxpx (2.13)
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Then, the least-squares solution for minimizing eT
xex yields optimal coefficients p∗x as:

p∗x = (Ñ
T
xÑx)

−1Ñxxd = Ñ
†
xxd (2.14)

where † represents pseudoinverse. Therefore, xdm = Nxp
∗
x = NxÑ

†
xxd, which leads to Cx =

NxÑ
†
x. The same process is applied to yd. Accordingly, Cx = NxÑ

†
x and Cy = N yÑ

†
y are

substituted into Eq. (10) to realize FO+SEP using the FBS approach.

2.4 Experimental validation

For validation of the proposed FO+SEP approach, two experimental setups are used. The first
set of experiments, described in Section 4.1, is carried out on a desktop 3D printer commonly
used for rapid prototyping. The second set of experiments, described in Section 4.2, is carried out
on a linear motor driven planar motion stage typically used in industry for precision positioning.
Demonstration of the proposed method on two experimental setups helps to show its versatility.

2.4.1 Desktop 3D printer

2.4.1.1 Experimental setup

A Lulzbot Taz 6 3D printer is used, as shown in Fig. 2.6. The optimization algorithms are im-
plemented on dSPACE DS1202 real-time control board running at 1 kHz sampling rate, connected
to DRV8825 stepper motor drivers for x, y, z, and e- (extruder) axes stepper motors. ADXL335
accelerometers are attached on the build plate and extruder to measure x, y-axes acceleration.

In this section, FO denotes feedrate optimization without incorporating servo error pre-
compensation in the servo loop, i.e., Cx = Cy = 1, and is compared with FO+SEP. To execute
FO and FO+SEP with error constraints, the x and y axis servo dynamics of the printer must be

Figure 2.6: Experimental set up
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Figure 2.7: Measured and curve fitted FRFs of x and y axes of 3D printer

measured in the form of frequency response functions (FRFs) and modeled, via curve fitting, as
Ĝx and Ĝy. Fig. 2.7 shows the measured and modeled FRFs of the x- and y-axes of the printer.
The input of each FRF are swept sine acceleration commands to the stepper motor, and the out-
put is relative acceleration between the build plate and nozzle measured using the two ADXL335
accelerometers. The discrete-time transfer function representation of Ĝx and Ĝy are shown in Eq.
(2.15), where the open-loop bandwidth is located around 30 Hz for both axes.

Ĝx =
0.021z5 − 0.061z4 + 0.044z3 + 0.033z2 − 0.056z + 0.012

z6 − 5.627z5 + 13.38z4 − 17.2z3 + 12.6z2 − 4.994z + 0.836

Ĝy =
0.018z5 − 0.053z4 + 0.038z3 + 0.027z2 − 0.048z + 0.017

z6 − 5.648z5 + 13.48z4 − 17.4z3 + 12.8z2 − 5.093z + 0.856

(2.15)

Moreover, in recovery of x, y axes displacement from acceleration measurements, a Luenberger
state observer [67] is used. Observer gains are chosen such that the dynamics of the observer
error (i.e., difference between estimated position using the linear system model in Eq. (2.15) and
observed position) obtains global asymptotic convergence with observer frequency f = 10 Hz.

2.4.1.2 Benchmarking to determine approximate CE limit

Unoptimized position commands generated using trapezoidal acceleration profile (TAP) [57]
are used for benchmarking to determine suitable approximate CE limit to traverse a circle of 5 mm
radius. Two sets of kinematic limits are used. They are:

• Conservative: Fmax = 30 mm/s, Amax = 0.5 m/s2, Jmax = 5 m/s3;

• Aggressive: Fmax = 50 mm/s, Amax = 10 m/s2, Jmax = 5000 m/s3

Fig. 2.8(a) shows the TAP feedrate profile generated using the conservative and aggressive
kinematic limits; the acceleration and jerk profiles are omitted for the sake of brevity. Fig. 2.8(b)
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Figure 2.8: (a). Commanded feedrate and (b) simulated (approximated) and actual (measured) CE
profiles of conservative and aggressive TAP motion commands

shows simulated (approximated) and actual (measured) CE profiles of the conservative and aggres-
sive TAP position commands applied to the 3D printer. The simulations are performed using the
curve fit linear dynamic model in Eq. (2.15). Conservative TAP yields maximum simulated and
actual CEs of 14 µm and 54 µm, respectively. Conversely, Aggressive TAP yields maximum sim-
ulated and actual CEs of 30 µm and 141 µm, respectively. The reason for the discrepancy between
the simulated and actual CEs is due to dynamics like friction and geometric errors not included in
the linear model, as well as errors due to linear approximation of the CE in Eq. (2.9) and constraint
equations in Eq. (2.6) and (2.10). As a result of these discrepancies between the linear dynam-
ics/approximations and the actual dynamics, it is very important to determine the approximate CE
limits (Êmax), used in the proposed FO+SEP, that correspond to acceptable tolerance (i.e., actual
CE). Prior work [68] has shown that the aggressive TAP results in poor print quality, while the
conservative TAP (with maximum actual CE of 54 µm) yields acceptable print quality on the Taz
6 printer. Therefore, Êmax = 14 µm is selected as the approximate CE for LP-based optimization
to help keep actual CEs close to the target 54 µm in reality.

2.4.1.3 Optimization results using FO and FO+SEP

In this section, FO and the proposed FO+SEP are compared with a goal to achieve similar ac-
curacy as Conservative TAP in Fig. 2.8(b) with the shortest cycle time. To do this, the aggressive
kinematic limits in Section 4.1.2 are imposed on both FO and FO+SEP, together with an approxi-

19



0 0.2 0.4 0.6 0.8 1
0

50

-10

0

10

-10

0

10

0 0.5 1
Time [s]

-5

0

5

0 0.5 1

Time [s]

-5

0

5

2
3

FOFO + SEP (Proposed)

Time [s]

x 103 x 103

Figure 2.9: Feedrate, acceleration and jerk profiles of trajectories generated by FO and FO+SEP
using aggressive kinematic limits and Êmax = 14 µm
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Figure 2.10: Simulated (approximated) and actual (measured) contour error (CE) profiles of FO
and FO+SEP

mate CE limit of Êmax = 14 µm using Eq. (2.10). For FO, Cx = Cy = I (i.e., tolerance constraints
are imposed without SEP). However, for FO+SEP,Cx andCy are generated via the FBS approach
described in Section 3.2. using a 5th degree B-spline with uniform knot vector and n = 40 control
points. Another 5th degree B-spline with uniform knot vector and np = 40 control points is used
to parametrize s to reduce the problem size, as explained in Section 2. Both the FO and FO+SEP
cases are initialized using unoptimized TAP trajectories.

Fig. 2.9 shows the commanded feedrate, acceleration, and jerk profiles of FO and FO+SEP.
Fig. 2.10 shows the simulated (approximated) and actual (measured) CE profiles. Both FO and
FO+SEP enforce the approximate CE limit in the LP optimization, leading to the system staying
close to the target in experiments. However, FO has to slow down because it hits the approximate
CE limit while FO+SEP is able to stay very close to the maximum speed throughout the motion.
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Table 2.2: Comparison of cycle and computation time of FO and FO + SEP

Cycle time [s] Computation time [s]
FO 1.13 37.5

FO + SEP (Proposed) 0.64 1.8

x

y

z

8.3 mm

Support brim

Figure 2.11: CAD model of cylinder

As a result, FO+SEP completes the motion in 0.64 s, which is 43% faster than FO at 1.13 s, as
summarized in Table 4.3. Note that implementing SEP after FO (i.e., independent approach) would
not lower the cycle time of FO; it would only reduce the CE, which has little or no practical value
if the desired tolerance has already been met. The computation time for FO+SEP is 1.8 s; FO’s is
much higher at 37.5 s because it is operating very close to the imposed error constraint.

To further validate the findings, a cylinder of height 8.3 mm consisting of three concentric
circular toolpath of radii 4.39 mm, 4.69 mm and 5 mm are printed using the same 3D printer, as
shown in Fig. 2.11. Conservative and Aggressive TAP as well as FO and FO+SEP, as discussed
above, are applied to each circular toolpath at each layer of the print. Fig. 2.12 shows the side and
top view of the printed cylinders for the four cases. FO and FO+SEP save 10.9% and 50.5% in
cycle time, respectively, compared to Conservative TAP, while maintaining similar surface quality.
However, Aggressive TAP results in poor surface quality, though it takes a similar length of time
as FO+SEP to print.

2.4.2 Precision motion stage

The performance of FO+SEP is also validated without the use of state observer, by testing on a
precision motion stage with direct encoder feedback. This is to show that FO+SEP is applicable to
various types of servo systems that suffer from limited bandwidth.
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Figure 2.12: Side and top view of printed cylinders using Conservative TAP, Aggressive TAP, FO
and FO+SEP on a support brim

2.4.2.1 Experimental setup

A biaxial linear-motor-driven motion stage (Aerotech ALS 25010) is used, as shown in Fig.
2.13. The optimization algorithms of FO and FO+SEP are implemented on dSPACE DS1103 real-
time control board running at 1 kHz sampling rate, connected to Soloist CP controller/drive. Each
axis is controlled by pre-tuned closed-loop P-PI controller and velocity feedforward. The planar
motion stage is equipped with optical linear encoders with resolution 0.1 µm to provide position
feedback on each axis.

As with the 3D printer, the servo dynamics of the x and y axis are measured in the form of FRFs
and fitted as transfer functions. Fig 2.14 shows the measured and modeled FRFs of each axis of
the planar motion stage. The input of each FRF are position commands constructed by swept sine
acceleration to the servomotor, and output is the position measured by encoders on each axis.

Figure 2.13: Experimental setup
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Figure 2.14: Measured and curve fitted FRFs of x and y axes of planar motion stage
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Figure 2.15: (a) Commanded feedrate and (b) simulated (approximated) and actual (measured) CE
profile of TAP motion commands

2.4.2.2 Benchmarking to determine approximate CE limit

Unoptimized position commands generated using a Conservative TAP [57] are used for bench-
marking to determine suitable approximate CE error in traversing a circle of 5 mm radius. Fig.
2.15(a) shows the TAP feedrate profile generated using conservative kinematic limits of Fmax = 40
mm/s, Amax = 0.4 m/s2, Jmax = 4 m/s3; the acceleration and jerk profiles are omitted for the sake
of brevity.

Fig. 2.15(b) shows simulated (approximated) and actual (measured) CE profiles of the TAP
position commands applied to the planar motion stage. The simulations are performed using the
curve fit linear dynamic model of Fig. 2.14. The conservative TAP yields maximum simulated and
actual CE of 13 µm and 50 µm, respectively. Because the actual contouring accuracy of the TAP is
considered to be satisfactory, Êmax = 13 µm is selected as the approximate CE limit for LP-based
optimization, to help keep CE close to the target 50 µm in reality.
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Figure 2.16: Feedrate, acceleration and jerk profiles of trajectories generated by FO and FO+SEP
using aggressive kinematic limits and Êmax = 13 µm

2.4.2.3 Optimization results using FO and FO+SEP

We compare FO and the proposed FO+SEP with a goal to achieve similar accuracy as Conser-
vative TAP in Fig. 2.15(b) with the shortest cycle time. To do this, aggressive kinematic limits are
imposed on both FO and FO+SEP as: Fmax = 80 mm/s, Amax = 8 m/s2, Jmax = 8,000 m/s3. In
addition, approximate CE limit of Êmax = 13 µm is imposed. In FO,Cx =Cy = I, and in FO+SEP,
Cx and Cy are generated via the FBS approach described in Section 3.2 using a 5th degree B-spline
with uniform knot vector and n = 30 control points. To reduce the problem size, another 5th degree
B-spline with uniform knot vector and np = 30 control points is used to parametrize s. Both the
FO and FO+SEP are initialized using unoptimized TAP trajectories.

Fig. 2.16 shows the commanded feedrate, acceleration, and jerk profiles of FO and FO+SEP.
Fig. 2.17 shows the simulated (approximated) and actual (measured) CE profiles. Both FO and
FO+SEP enforce the tolerance in simulations, which enforces the experimental error close to the
target. However, as was in the experiment with the 3D printer, FO has to slow down because it
hits the CE limit while FO+SEP is able to stay very close to the maximum speed throughout the
motion. Consequently, FO+SEP completes the motion in 0.42 s, which is 47% faster than FO at
0.79 s, as summarized in Table 2.3. Note that the cycle time of FO is only 0.15 s (i.e., 16.0%)
faster than the conservative TAP. The computation time for FO+SEP is 0.04 s; FO’s is higher at
0.12 s because it is operating very close to the approximate error limit imposed.
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Table 2.3: Comparison of cycle and computation time of FO and FO + SEP

Cycle time [s] Computation time [s]
FO 0.79 0.12

FO + SEP (Proposed) 0.42 0.04

2.5 Conclusions

This chapter has introduced a new concept of simultaneous feedrate optimization and servo er-
ror pre-compensation (i.e., FO+SEP), and proposed a novel approach for realizing FO+SEP using
time-based LP.

A time-based LP approach, which uses time as the independent variable, is formulated and
compared with commonly-used path-based LP. Time-based LP is preferable to path-based LP in
two aspects: (1) axis jerk constraints can be imposed without the use pseudo-jerk approximation,
and (2) any general linear dynamics constraints can be incorporated. It is shown in the simulations
that time-based LP provides an elegant and computationally efficient approach for FO+SEP.

Compared to the standard practice of performing feedrate optimization and servo error pre-
compensation independently, FO+SEP relaxes the error tolerance constraints imposed on feedrate
optimization, allowing shorter cycle times without violating tolerance constraints. a 3D printer
and precision motion stage yielded up to 43% and 47% reduction, respectively, in cycle time using
FO+SEP compared to FO, subject to the same tolerance and kinematic constraints.
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CHAPTER 3

Feedrate Optimization using Physics-based Servo
Dynamics Model for Long Toolpaths

3.1 Overview

Chapter 2 studied a new concept of feedrate optimization where servo error pre-compensation
is integrated into feedrate optimization (i.e., FO+SEP), yielding large reductions in motion time
without sacrificing positioning accuracy relative to independent approach. However, FO+SEP was
achieved using linear programming (LP). As a result, it had two major shortcomings: (i) inaccuracy
in enforcing nonlinear constraints due to linearization errors; and (ii) poor computational efficiency
for long trajectories because it processed the full motion trajectory in one batch.

This chapter addresses the problem by proposing a new approach for FO+SEP using windowed
sequential linear programming (Win-SLP), where LP is iteratively applied to FO+SEP in small
overlapping batches, thus significantly improving its accuracy and computational efficiency. This
chapter also addresses the potential for infeasibility in achieving FO+SEP using Win-SLP by im-
posing smooth switching between the optimal Win-SLP solution and a conservative backup solu-
tion, thus guaranteeing the existence of a feasible solution. Finally, using the proposed Win-SLP,
this chapter demonstrates the practical benefits of FO+SEP on long toolpaths in experiments on a
3D printer, leading to 25% reduction in cycle time without sacrificing motion accuracy compared
to independent approach of feedrate optimization and servo error pre-compensation.

In Section 3.2, the proposed approach for FO+SEP using Win-SLP is presented. A series of
simulations are carried out in Section 3.4 to validate the effectiveness of the proposed approach
with regard to accuracy, computational efficiency and feasibility. Then, in Section 3.5, the practical
benefit of the proposed Win-SLP approach for FO+SEP is demonstrated in experiments on a 3D
printer with long tool paths, as an example of a servo system that suffer from limited bandwidth.
Conclusions are presented in Section 3.6.

This chapter is based on the following publication:
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• Kim H, Okwudire CE. Accurate and computationally efficient approach for simultaneous

feedrate optimization and servo error pre-compensation of long toolpaths—with application

to a 3D printer. The International Journal of Advanced Manufacturing Technology. 2021;
115 (7-8); 2069-2082.

3.2 Motivation

A major problem with the LP-based FO+SEP approach presented in Chapter 2 is that the ac-
curacy of the solution highly depends on the trajectory se in Eq. (2.7), estimated from an initial
unoptimized trajectory, as it is used to initialize the solution and linearize the feedrate optimiza-
tion’s kinematic constraints in Eq. (3.1) and servo error constraints in Eq. (3.2). As s tends to se,
the linearization error converges to zero; however, when s moves further away from se, depending
on the polynomial order of the nonlinearity in Eq. (3.1) and (3.2), the linearization error diverges.
Another issue with the approach in Chapter 2 is that it processes all N points of the motion tra-
jectory in one shot. This approach is reasonable for short trajectories where N is small [1], but is
impractical for long trajectories (which are typical in manufacturing) due to the curse of dimen-
sionality. Hence, an approach to address these two issues together with a scheme to guarantee
feasible solutions is needed.

min
s

N−1∑
k=0

−s(k)

s.t. s(k − 1) ≤ s(k) ≤ 1 ∀k = 1, 2, ..., N − 1;

L
D[s]

Ts
≤ Fmax;∣∣∣∣D2[x̂d]

T 2
s

∣∣∣∣ , ∣∣∣∣D2[ŷd]

T 2
s

∣∣∣∣ ≤ Amax

(3.1)

|êx| =
∣∣∣(I− ĜxCx)x̂d

∣∣∣ ≤ Emax (3.2)
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3.3 A new approach for FO+SEP using windowed sequential
linear programming (Win-SLP)

3.3.1 Formulation of FO+SEP using SLP

Sequential linear programming (SLP) is an optimization technique for solving nonlinear opti-
mization problems iteratively using LP [69]. Given an estimate of the optimal solution, a sequence
of first-order approximations (i.e., linearization) of the problem is executed. In other words, given
a constrained nonlinear programming problem with decision variable q, cost function J(q), and a
set of inequality constraints l(q):

min
q

J(q)

s.t. l(q) ≤ 0
(3.3)

an initial set of linearization points q0 is given to render the problem in Eq. (3.3) into Eq. (3.4).

min
q

J(q0) +
∂J

∂q

∣∣∣
q=q0

· (q − q0)

s.t. l(q0) +∇l(q0)
T · (q − q0) ≤ 0

(3.4)

Solving Eq. (3.4) using LP gives the optimal solution q1 at the 1st iteration. Then, q1 is used to
define a new set of linearization points to compute optimal solution q2 at the 2nd iteration, and this
process is repeated i times until an acceptable level of accuracy in the optimal solution q∗ = qi is
attained.

In a similar manner, using SLP, first FO+SEP uses s0 = se at the 1st iteration to linearize the
nonlinear term x̂d, ŷd to solve for s1; then s1 is used as linearization points in the 2nd iteration,
and so on until the optimal solution s∗ = si is obtained. Accordingly, Eq. (3.1), (3.2) can be
reformulated as the pseudocode in Eq. (3.5).

28



1: Initialize:
i = 0

s0 = s
e

2:

3: do
4: i = i+ 1;

5: mins
∑N−1

k=0 −si(k)
6: s.t. ∀k ∈ [1, N − 1],

7: si(k − 1) ≤ si(k) ≤ 1;

8: LD[si]
Ts
≤ Fmax;

9:
∣∣∣D2[x̂d,i−1]

T 2
s

∣∣∣ , ∣∣∣D2[ŷd,i−1]

T 2
s

∣∣∣ ≤ Amax;

10:
∣∣∣(I − ĜxCx)x̂d,i−1

∣∣∣ , ∣∣∣(I − ĜyCy)ŷd,i−1

∣∣∣ ≤ Emax
11: while

∣∣∣∑N−1
k=0 si(k)−

∑N−1
k=0 si−1(k)

∣∣∣ ≥ tol

12: s∗ = si

(3.5)

Here, tol represents the maximum allowable difference between previous and current values of
the cost function; Furthermore, x̂d,i−1 and ŷd,i−1 in Eq. (3.5) respectively represent x̂d and ŷd of Eq.
(2.7) evaluated using si−1 instead of se.

3.3.2 Formulation of FO+SEP using Win-SLP

Notice that SLP is more computationally expensive than LP because it involves repeated ex-
ecutions of LP. To address this problem, a windowed SLP (Win-SLP) scheme is implemented
as illustrated in Fig. 3.1(a). In Win-SLP, rather than optimizing si(k) over k ∈ [0, N − 1] for
i = 1, 2, ..., the SLP optimization discussed in Eq. (3.5) is applied within a window j defined
over k ∈ [jNc, jNc + Np − 1], where j = 0, 1, 2. . . , is the window index, Np is the length of the
preview interval and Nc < Np is the length of control interval over k ∈ [jNc, jNc+Nc− 1]. Upon
completion of the optimization, the window j advances to window j + 1 by Nc time steps. This
process is repeated until si(jNc +Nc − 1) = 1. In mathematical terms, FO+SEP using Win-SLP
at iteration i and window j can be formulated as Eq. (3.6), (3.7):

min
s

jNc+Np−1∑
jNc

−si(k) (3.6)
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Figure 3.1: Illustration of Win-SLP applied on (a). the current window j − 1 with control interval
Nc and preview interval Np, and its augmentation of the final solution s∗ by Nc points at the end to
serve as a complete initial solution s0 for (b). the next window j

s.t. ∀k ∈ [jNc + 1, jNc +Np − 1],

si(k − 1) ≤ si(k) ≤ 1;

L
D[si]

Ts
≤ Fmax;∣∣∣∣D2[x̂d,i−1]

T 2
s

∣∣∣∣ , ∣∣∣∣D2[ŷd,i−1]

T 2
s

∣∣∣∣ ≤ Amax

(3.7)

For j = 0, s0 = se is used for determining x̂d0 and ŷd0. However, starting from j = 1, s0 is
calculated as

s0(k) =

s∗(k) k ∈ [jNc, jNc +Np −Nc − 1]

s̄(k) k ∈ [jNc +Np −Nc, jNc +Np − 1]
(3.8)

where s∗ as shown in Fig. 3.1(a) indicates the optimal solution obtained by applying Win-SLP
until window j − 1; s̄ is defined as:
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s̄(k) = s∗(jNc +Np −Nc − 1)

+ ∆end(k − (jNc +Np −Nc − 1))

where

∆end = s∗(jNc +Np −Nc − 1)

− s∗(jNc +Np −Nc − 2)

(3.9)

The implication of Eq. (3.8) is that the unused portion of s∗ from window j − 1 is used to
partially initialize the optimization in window j. To make up for the missing Nc points used up in
window j − 1, s̄ is defined in Eq. (3.9) such that the speed of the last point of s∗ in window j − 1

is maintained in the last Nc points of s0 in window j, as illustrated in Fig. 3.1(a).
Also, at k = jNc, kinematic and monotonicity constraints must be enforced between the so-

lution from window j − 1 and the solution being computed by Win-SLP in window j. This is
achieved as follows (for k = jNc):

s∗(k − 1) ≤ si(k) ≤ s∗(k − 1) +
Fmax
L

Ts∣∣∣∣ x̂d,i−1(k)− 2x̂∗d(k − 1) + x̂∗d(k − 2)

T 2
s

∣∣∣∣ ≤ Amax∣∣∣∣ ŷd,i−1(k)− 2ŷ∗d(k − 1) + ŷ∗d(k − 2)

T 2
s

∣∣∣∣ ≤ Amax∣∣∣∣ x̂d,i−1(k + 1)− 2x̂d,i−1(k) + x̂∗d(k − 1)

T 2
s

∣∣∣∣ ≤ Amax∣∣∣∣ ŷd,i−1(k + 1)− 2ŷd,i−1(k) + ŷ∗d(k − 1)

T 2
s

∣∣∣∣ ≤ Amax

(3.10)

Note that x̂∗d(k) and ŷ∗d(k) are respectively defined as x̂d(k) and ŷd(k) evaluated using s∗(k).
The same method in Eq. (3.10) can be also used to ensure axis jerk continuity. The ten inequalities
in Eq. (3.10) can be concatenated as lcont and mcont in Eq. (3.11) by using the relationship in Eq.
(2.7) for si on k ∈ [jNc, jNc + 1]:

lcont,j · si ≤mcont,j (3.11)

Furthermore, let Nsys,x and Nsys,y respectively represent the lengths of the finite impulse re-
sponse of Ĝx and Ĝy. Then, Nsys = max(Nsys,x, Nsys,y) determines the number of time steps
needed for perturbations in both x, y axis to decay to negligible levels. Let êx,i(k) be defined as
êx(k) evaluated using si(k). Then, the domain of k that the inequality êx,i(k) ≤ Emax is evaluated
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at should be k ∈ [jNc −Nsys, jNc +Np − 1]. In other words, it also includes the Nsys time steps
preceding the beginning of the current window j at k = jNc that contribute to êx,i(k). Thus, the
constraints on êx,i−1 are formulated as Eq. (3.12):

|êx,i−1| =

∣∣∣∣∣∣(I− ĜxCx)︸ ︷︷ ︸
Γx

[
x̂∗
d

x̂d,i−1

]∣∣∣∣∣∣ ≤ Emax (3.12)

It can be re-written as Eq. (3.13):

∣∣∣∣∣[Γx,p Γx,c

] [ x̂∗
d

x̂d,i−1

]∣∣∣∣∣ ≤ Emax

∴ −Emax − Γx,px̂
∗
d ≤ Γx,cx̂d,i−1 ≤ Emax − Γx,px̂

∗
d

(3.13)

where Γx,p and Γx,c represents rows of Γx that correspond to x̂∗
d (past Nsys points from jNc) and

x̂d,i−1 (current Np points from jNc), respectively; here, x̂∗
d and x̂d,i−1 are x̂∗d(k) ∀k ∈ [jNc −

Nsys, jNc− 1] and x̂d,i−1(k) ∀k ∈ [jNc, jNc+Np− 1], respectively. A similar equation with Γy,p,
Γy,c, ŷ∗

d and ŷd,i−1 can be written to constrain êy,i−1.
Finally, FO+SEP using Win-SLP can be represented as the pseudocode in Eq. (3.14):

1: Initialize:
i = 0

j = 0
2: do
3: if j = 0 then
4: s0 = s

e

5: else
6: Eq.(9)
7: end if
8: do
9: i = i+ 1;

10: mins
∑jNc+Np−1

k=jNc
−si(k)

11: s.t. Eq.(8),(12),(14)
12: while

∣∣∣∑jNc+Np−1
k=jNc

si(k)−
∑jNc+Np−1

k=jNc
si−1(k)

∣∣∣ ≥ tol

13: s∗(k) = si(k) ∀k ∈ [jNc, (j + 1)Nc − 1]

14: j = j + 1;

15: while s(jNc +Nc + 1) < 1

(3.14)
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Figure 3.2: Block diagram of FO+SEP using LP (Note: y-component of SEP and servo dynamics
are omitted for simplicity)

3.3.3 Guaranteeing feasibility of Win-SLP

Since Eq. (3.14) is defined as a finite horizon optimization with preview length Np << N , the
solution determined at window j may lead to infeasibility in future windows, with no recourse to
generate a feasible solution [70]. Infeasibility could be catastrophic in online implementation of
FO+SEP where it is impossible to go back to the past to re-compute a feasible solution. Therefore,
to guarantee feasibility using Win-SLP, we develop a scheme whereby at window j, solution si
must have a complementary backup solution that is feasible ∀k ∈ [jNc, N − 1].

The proposed approach is illustrated in Fig. 3.3 and summarized as a flow chart in Fig. 3.4. In
Fig. 3.3(a), an optimal trajectory s∗(k) ∀k ∈ [(j−1)Nc, (j−1)Nc+Np−1] (represented as 1⃝), as
well as a feasible backup solution s̃(k) ∀k ∈ [(j−1)Nc+Np, (j−1)Nc+Np+Nsys−1] (represented
as 2⃝) is created to smoothly patch onto 1⃝. When the window recedes by Nc as in Fig. 3.3(b)
and k is updated from k = (j − 1)Nc to jNc, the trajectory transitions to the previously-generated
backup (represented as 3⃝) if either of the below two attempts encounters infeasibility:

• Attempt 1: Optimization of si(k) ∀k ∈ [jNc, jNc+Np−1] (represented as 4⃝) for any SLP
step i;

• Attempt 2: Generation of a feasible backup solution s̃(k) ∀k ∈ [jNc + Np, jNc + Np +

Nsys − 1] (represented as 5⃝)

This iterative process is possible by the definition of backup solution se in Eq. (2.7) in Chapter
2; at k = 0, se serves as a kinematically conservative profile that satisfies constraints in Eq. (3.14).

The reason for generating the backup solution s̃ up toNsys time steps beyond the end of window
j is that the transition from 1⃝ to 3⃝ can create a transient effect on the actual response of the system
dynamics x and y in Fig. 3.2. These transients can cause êx and êy to violate their tolerance limit
Emax. However, this perturbation will die down in both axis within Nsys time steps; thus, if there
exists a feasible trajectory s∗(k) ∀k ∈ [jNc + Np, jNc + Np + Nsys − 1], there also will exist

33



Figure 3.3: Overview of scheme to guarantee feasibility of Win-SLP consisting of: (a) generation
of backup solution in window j − 1; and (b) adoption of first Np points of backup solution (i.e.,
3⃝) if no optimal solution 4⃝ or backup solution 5⃝ can be found in window j

a feasible trajectory on the rest of the trajectory, i.e., ∀k ∈ [jNc + Np + Nsys, N − 1], due to
the availability of sc which is the ultimate backup solution. Therefore, guaranteeing a feasible
solution on Nsys backup points is enough to guarantee feasibility within the entire trajectory s∗(k)
k ∈ [0, N − 1].

Furthermore, the smoothness of the transition from 1⃝ to 3⃝ can be guaranteed by how s̃, as
well as se, is generated: First, the values of the final displacement, feedrate, and acceleration
at s∗((j − 1)Nc + Np − 1) (the last point of 1⃝) are identified and represented as sin, fin, and
ain, respectively. Then, a standard trapezoidal acceleration profile (TAP) [71] is created from
s = s∗((j − 1)Nc + Np − 1) to s = 1. TAP chooses a conservative set of limits on the feedrate
and acceleration as Fmax,c and Amax,c, as well as initial boundary conditions as sin, fin, and ain,
respectively, to create s̃. Also, to ensure smoothness at the axis level, the axis velocity profiles of
x̂d and ŷd evaluated using s̃ are filtered with a moving average filter H(z) [72] with time constant
τ = Fmax,c/Amax,c. By choosing the first Nsys points of s̃, s̃k ∀k ∈ [(j − 1)Nc +Np, (j − 1)Nc +

Np+Nsys−1] is generated such that it connects to 1⃝ smoothly. Then, a check is made on whether
s̃(k) ∀k ∈ [(j − 1)Nc +Np, (j − 1)Nc +Np +Nsys − 1] respects the limits to determine whether
Attempt 2 (described above) is feasible in window j − 1 as in Eq. (3.15):

−Emax − Γx,px̂
∗
d ≤ Γx,cx̃d ≤ Emax − Γx,px̂

∗
d (3.15)
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Figure 3.4: Flow chart of scheme for guaranteeing feasibility of FO+SEP using Win-SLP discussed
in Section 3.3
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where x̃d represents x̂d defined at s̃(k) ∀k ∈ [(j − 1)Nc +Np, (j − 1)Nc +Np +Nsys − 1] with
H(z) applied, and x̂∗

d represents x̂∗d(k) ∀k ∈ [(j − 1)Nc +Np −Nsys, (j − 1)Nc +Np − 1].

3.4 Validation of proposed approach via simulation

The goal of this section is to validate the accuracy, computational efficiency and guaranteed
feasibility of the proposed Win-SLP approach for FO+SEP via a series of simulations. For this
purpose, a 2nd order linear system dynamics in the x and y axis has been selected, as shown in Eq.
(3.16):

Gx = Gy =
ω2
n

s2 + 2ζωns+ ω2
n

(3.16)

Its parameters are chosen as ωn = 2π × 50 = 314.16 rad/s and ζ = 0.1. Then, Gx and Gy

are discretized with sampling time Ts = 1 ms and approximated as an FIR filter by stacking its
truncated impulse response as Eq. (3.17): T

Gx ≈


ximp 0 0

0 ximp
...

...
... . . . 0

0 0 ximp

 (3.17)

where ximp is the truncated impulse response column vector of Gx with length Nsys, which is
identified as 400 for the system in Eq. (3.16). For SEP, Cx = Cy is generated via the filtered
B spline (FBS) approach [73] because of its effectiveness and versatility in handling any type of
linear system dynamics [74].

A 5th degree B spline with uniform knot vector is used to generate Cx using the FBS method.
The number of trajectory points in the B spline is selected as the length of sc, and the ratio of
number of B spline basis functions to the length of the trajectory is 1:20. In Win-SLP, Np = 50 and
Nc = 15 are used so that adjacent windows are overlapped by 35 points; tol = 10−3 is used for
SLP termination threshold.

All simulations are conducted using circles of radius R. The simulations are conducted using
MATLAB® R2019a on a Windows PC with Intel Core i7-8750H CPU and 16 GB RAM. In each
simulation, the initialization trajectory, sc, is generated using trapezoidal acceleration profile (TAP)
[71] with conservative kinematic limits as Fmax,c = 30 mm/s, Amax,c = 0.5 m/s2, Jmax,c = 5 m/s3.
The following algorithms are used implement FO+SEP:

• Case A: LP (performed in one batch);
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Figure 3.5: Feedrate, acceleration and jerk profiles of trajectories generated by FO+SEP using LP,
SLP and Win-SLP (proposed) for short circular toolpath (R = 5 mm). The switching of the Win-
SLP solution to the backup solution at the marked instances enables it to guarantee feasibility at
the cost of optimality (as long as the starting solution, sc, is feasible)

• Case B: SLP (performed in one batch); and
• Case C: Win-SLP (with smooth switching)

In all cases, Fmax = 50 mm/s, Amax = 10 m/s2, Jmax = 5000 m/s3, which are borrowed from
the prior work [1]. For the first set of simulations, a short circular toolpath (R = 5 mm) with tight
tracking error constraints of Emax = 3 µm are used. Note that, with R = 5 mm, sc yields maximum
tracking error of 1.24 µm with a cycle time of 1.58 s, meaning that it is feasible under all limits of
Fmax, Amax, Jmax, and Emax.

Fig. 3.5 shows the commanded feedrate, acceleration, and jerk profiles of the three cases. Fig.
3.6 shows the simulated tracking error profiles in both x and y axis, êx and êy, which are simulated
using the discretized version of the dynamics in Eq. (3.16). LP violates the tracking error tolerance
in both x and y axis due to linearization errors, because the LP solution is linearized with sc which
is significantly different from the optimal solution. Conversely, SLP and Win-SLP satisfy all the
kinematic and tracking error constraints, which highlights their accuracy relative to LP, and why
LP is considered unacceptable for FO+SEP.

The importance of smooth switching in guaranteeing the feasibility of Win-SLP can also be seen
from Fig. 3.5 and 3.6. Observe that the Win-SLP solution has to switch several times between the
optimal and backup solution in order to maintain feasibility. The implication is that, without the
backup solution, Win-SLP would fail to yield a feasible solution. The cycle time of the LP, SLP
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Figure 3.6: Simulated axis tracking error profiles of LP, SLP, and Win-SLP (proposed) showing
the inaccuracy of LP and the accuracy of SLP and Win-SLP in enforcing constraints

Figure 3.7: Computation time vs. radius R of the circular trajectory for FO+SEP using SLP and
Win-SLP (proposed) showing the superior computational efficiency of Win-SLP relative to SLP
for long toolpaths

Table 3.1: Cycle time and constraint satisfaction accuracy of FO+SEP using LP, SLP and Win-SLP
for short toolpath (R = 5 mm)

LP SLP Win-SLP (Proposed)
Cycle time [s] 0.704 0.737 0.795

Satisfies Constraints Accurately? No Yes Yes
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Figure 3.8: Experimental setup: Lulzbot Taz 6 3D Printer

and Win-SLP solutions for FO+SEP are summarized in Table 3.1, along with their accuracy in
enforcing constraints. Though LP provides the shortest cycle time, it is inaccurate. SLP and Win-
SLP are accurate but the cost of switching multiple times to the backup solution is that Win-SLP
has slightly (7.9%) longer cycle time than SLP.

The advantage of Win-SLP manifests itself as the length of the toolpath grows, as is typical
in practice. The computational efficiency of SLP relative to Win-SLP degrades rapidly with in-
creasing toolpath length. To demonstrate this, a second set of simulations is carried out on circular
toolpaths with R ranging from 5 mm to 100 mm; Emax = 3 µm in all cases. As shown in Fig. 2.8,
the computation time for SLP increases exponentially as R grows larger (which in return increases
N ), whereas Win-SLP achieves nearly linear relationship because of its fixed window size Np. As
R reaches 35 mm, SLP fails due to the computer running out of memory, whereas Win-SLP is able
to carry out the optimization up to R = 100 mm (and beyond, not shown). Together, these two
sets of simulations demonstrate the accuracy and feasibility guarantees of the proposed Win-SLP
approach for FO+SEP, together with its computational efficiency for long toolpaths.

3.5 Experimental validation

3.5.1 Experimental setup

Long toolpaths are commonplace in manufacturing. Therefore, through experiments carried out
in this section, we seek to demonstrate the benefit of the proposed Win-SLP approach to FO+SEP
on improving productivity (compared to independent approach of feedrate optimization and servo
error pre-compensation, i.e., FO then SEP) when both are applied to long toolpaths. A Lulzbot
Taz 6 3D printer shown in Fig. 3.8, is used for the experiments. The optimization algorithms are
implemented offline on a dSPACE 1007 real-time control board running at 1 kHz sampling rate,
connected to DRV8825 stepper motor drivers for x, y, z, and e- (extruder) axes stepper motors.
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Figure 3.9: Measured and curve fitted FRFs of x and y axes of 3D printer

The setting is used for conducting experiments in the following Section 3.5.2 and 3.5.3.
To execute both FO+SEP and FO then SEP, the x and y axis servo dynamics of the printer must

be measured in the form of frequency response functions (FRFs) and modeled, via curve fitting, as
Ĝx and Ĝy. Fig. 2.10 shows the measured and modeled FRFs of the x-and y-axes of the printer.
The input of each FRF is swept sine acceleration commands to the stepper motor, and the output
is relative acceleration between the build plate and nozzle measured using two ADXL335 tri-axial
accelerometers. The discrete-time transfer function representation of Ĝx and Ĝy is shown in Eq.
(3.18).

Ĝx

=
0.026z5 − 0.078z4 + 0.055z3 + 0.042z2 − 0.069z + 0.023

z6 − 5.652z5 + 13.4z4 − 17.07z3 + 12.31z2 − 4.768z + 0.775

Ĝy

=
0.199z3 − 0.349z2 + 0.174z − 2.14× 10−27

z4 − 1.934z3 + 0.958z2 − 2.733× 10−17z + 1.947× 10−34

(3.18)

3.5.2 Benchmarking to determine Emax

The desired path is chosen as a butterfly curve [75] shown in Fig. 3.10, where x̂d and ŷd
are parameterized in s using quintic spline interpolation with minimal feedrate fluctuation [76].
Similar to Section 4, se is selected as a TAP position trajectory with conservative kinematic limits
as Fmax,c = 30 mm/s, Amax,c = 0.5 m/s2, and Jmax,c = 5 m/s3; it is smoothened at the axis level
using a digital filter H(z) with time constant τ = 0.06 s. These conservative kinematic limits are
known from prior work [1, 77] to give acceptable quality. Therefore, we use the conservative
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Figure 3.10: Desired path of butterfly curve

Figure 3.11: Commanded feedrate, acceleration and jerk profiles of conservative TAP

TAP trajectory generated using them to determine Emax for FO+SEP and FO then SEP. Fig. 3.11
shows the feedrate, axis acceleration, and axis jerk profiles of the conservative TAP command.
Fig. 3.14 shows the simulated x and y axis tracking errors obtained by applying the conservative
TAP command to the transfer functions of the 3D printer given in Eq. (3.18). The conservative
TAP yields maximum tracking error of 127.4 µm and 55.2 µm for the x and y axis, respectively.
Therefore, Emax = 127.4 µm is chosen as the tolerance limit that must be satisfied by FO+SEP and
FO then SEP.
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Figure 3.12: Commanded feedrate, acceleration and jerk profiles of FO then SEP, FO+SEP (Pro-
posed), and TAP with aggressive kinematics (Aggr.)

3.5.3 Optimization results using FO+SEP and FO then SEP using Win-SLP

We compare FO then SEP and the proposed FO+SEP using Win-SLP with a goal to achieving
Emax = 127.4 µm with the shortest cycle time. To do this, aggressive constraints from our prior
work [1], namely, Fmax = 50 mm/s, Amax = 10 m/s2, and Jmax = 5000 m/s3 are imposed on both
FO+SEP and FO then SEP. In FO then SEP, Cx = Cy = I are selected (i.e., tolerance constraints
are imposed without SEP). On the other hand, in FO+SEP, Cx and Cy are generated using FBS
approach [73, 74], where a 5th degree B-spline with uniform knot vector, and n = 500 control
points are used. Both FO+SEP and FO then SEP are initialized at i = 1 and j = 0 by using the
conservative TAP in Fig. 3.11 as se;Np = 50,Nc = 20 and tol = 10−3 are used for Win-SLP on both
FO+SEP and FO then SEP, and Nsys is identified as 450 for the system dynamics in Eq. (3.18).
Note that in both FO+SEP and FO then SEP, servo errors are compensated after the optimization
using the Cx and Cy generated using FBS.

Fig. 3.12 shows the commanded feedrate, acceleration and jerk profiles of FO+SEP and FO
then SEP. Fig. 3.13 shows the resulting tracking error simulated based on the system dynamics
in Eq. (3.18). As a reference, the aggressive kinematic limits are used to generate an aggressive
TAP trajectory shown in Fig. 3.12. The resultant tracking errors after SEP are also shown in Fig.
3.13. Notice that, because the aggressive TAP trajectory is not optimized, it results in violations of
the tracking error limit. It is this inability to guarantee that tolerance limits will be respected that
leads to the use of conservative TAP profiles in practice. Conversely, notice that both FO+SEP and
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Figure 3.13: Simulated tracking error profiles of FO then SEP, FO+SEP (proposed), and TAP with
aggressive kinematics (Aggr.)

Figure 3.14: Simulated tracking error of conservative TAP on x and y axis and the approximate
error limit Emax

FO then SEP enforce the kinematic and tracking error constraints. However, FO then SEP has to
slow down by transitioning to the backup solution many times from 0 s to 2 s because the error
constraint in Eq. (3.13) with Cx = Cy = I has narrower feasible region than FO+SEP due to the
independent application of FO and SEP. On the other hand, FO+SEP is able to stay close to the
maximum feedrate throughout the motion with only one transition to the backup at 7.7 s. As a
result, FO+SEP completes the motion in 8.02 s, which is 21% faster than FO then SEP at 10.15 s,
as summarized in Table 3.2. The computation time for FO+SEP and FO then SEP are 37.76 s and
34.91 s, respectively.

Table 3.2: Cycle and computation time of FO then SEP and FO+SEP using Win-SLP approach

FO then SEP FO+SEP (Proposed)
Cycle time [s] 10.15 8.02

Computation time [s] 34.91 37.76
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Figure 3.15: CAD model of the butterfly plate of height 1.2 mm with outer contour defined by the
path in Fig. 2.11

3.5.4 3D print results

To further validate our findings, a butterfly-shaped 3D part whose CAD model [78] is shown in
Fig. 3.15 is printed using the Taz 6 3D printer of Fig. 3.8. The butterfly curve shown in Fig. 3.10
is used to define the outer contour for the part. To parameterize the entire trajectory in s, which
consists of curves and lines stacked in z-axis, first the CAD model in Fig. 3.15 is converted to
an STL model using a commercial slicing firmware. Then, each layer in z axis is further divided
into curves and lines, where the curves are parameterized in s using the same method described in
Section 5.2 and lines are indexed as w = 1, 2, ... and parameterized individually by identifying the
slope lm(w) and y-intercept ly(w) using Eq. (3.19).

x̂d =
1√

lm(w)2 + 1
s

ŷd =
lm(w)√
lm(w)2 + 1

s+ ly(w)

(3.19)

However, Eq. (3.19) only maintains axis-level continuity within a given line w; as soon as it
shifts to the next line w+ 1, axis acceleration or jerk may violate their limits of Amax, Jmax due to
the sharp corner at junction. Therefore, feedrate, or LD[s]

Ts
, is lowered between two adjacent lines

until discontinuity at axis level disappears. Then, all sets of curves and lines are optimized using
FO+SEP and FO then SEP using Win-SLP, as discussed in Eq. (3.14), with the same set of limits,
Fmax, Amax, Jmax, Emax, and Win-SLP parameters, Np, Nc, tol, as Section 5.3. As a benchmark, a
conservative TAP which uses the same set of slow kinematic limits and moving average filterH(z)

as in Section 3.5.2 is applied for comparison.
Fig. 3.16 shows the printed results of using conservative TAP, as well as FO+SEP and FO then

SEP both computed using the proposed Win-SLP. The computational time for the three methods
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Figure 3.16: Top view of printed butterfly plate using Conservative TAP, FO then SEP, and
FO+SEP. Both FO then SEP and FO+SEP were computed using the proposed Win-SLP approach

Table 3.3: Computation time for FO then SEP and FO+SEP for the butterfly plate in Fig. 3.16

FO then SEP FO+SEP (Proposed)
Computation time [s] 974.98 835.51

are summarized in Table 3. FO+SEP saves 25% in cycle time compared to FO then SEP while both
maintaining similar quality as the part printed using conservative TAP. The ability to print a very
long toolpaths using FO+SEP and FO then SEP demonstrates the practicality of the proposed Win-
SLP approach. Moreover, the reduction in cycle time highlights the benefits of applying Win-SLP
to FO+SEP rather than to FO then SEP.

3.6 Conclusions

This chapter has introduced a method to improve the accuracy in enforcing nonlinear con-
straints and the computational efficiency of simultaneous FO and SEP (i.e., FO+SEP) applied to
long toolpaths. The proposed method, dubbed Win-SLP, achieved windowed sequential linear pro-
gramming optimization, with feasibility guarantees using smooth transition between the optimal
solution and a conservative backup solution.

Win-SLP, which sequentially optimizes the path parameter within a limited horizon length, is
formulated and compared with full-preview (i.e., one-shot) LP and SLP. While both SLP and Win-
SLP improve accuracy in nonlinear axis-level constraints, Win-SLP shows superiority over SLP in
handling longer toolpaths. It is shown in the simulations that Win-SLP achieves both accurate and
computationally efficient approach for FO+SEP, while guaranteeing feasibility.

Furthermore, compared to the standard practice of sequential FO then SEP, FO+SEP relaxes
the error tolerance constraints in FO, allowing shorter cycle time without violating tolerance con-
straints. Experiments carried out on a 3D printer using the proposed Win-SLP approach yielded
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up to 25% cycle time reduction using FO+SEP compared to FO then SEP, subject to the same
tolerance and kinematic constraints.
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CHAPTER 4

Intelligent Feedrate Optimization using an
Uncertainty-aware Physics-informed Data-driven

Digital Twin

Chapters 2 and 3 studied feedrate optimization with servo error constraints using physics-based
servo models to improve cycle time while satisfying tolerance constraints. However, they cannot
accurately constrain actual servo error when unmodeled dynamics or uncertainties exist in motion
dynamics or external disturbances. Hence, their efficacy to maximize feedrate with servo error
constraints is very limited. Moreover, they do not estimate the uncertainty of the prediction, which
may cause the servo error constraints to be violated in the presence of high uncertainty due to lack
of training data or sudden change of operating conditions. This chapter addresses the issue by using
an uncertainty-aware physics-informed data-driven digital twin, which is a virtual representation
of physical system built on a bi-directional link between simulation and actual data, to optimize
feedrate with servo error constraints in a robust way.

Section 4.1 introduces the framework of the proposed intelligent feedrate optimization using
digital twin with quantified uncertainty. Section 4.2 describes the methodology of the proposed
digital twin for predicting contour error distribution. Section 4.3 provides a formulation for the
feedrate optimization with contour error constraint with desired stringency. Section 4.4 numeri-
cally validates the proposed method via a desktop 3D printer. Section 4.5 experimentally validates
the proposed method via a desktop 3D printer and a CNC machine tool prototype. Section 4.6
concludes the chapter and discusses future work.

Note that there are nomenclature changes made in this chapter compared to previous Chapters
2 and 3, which are listed as follows:

■ The desired trajectory and its linearized version are denoted as xd and x̂d respectively in
Section 2.2 for Chapters 2 and 3, whereas they are denoted as Xd and xd in Section 4.3 for
Chapter 4
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■ The optimized desired trajectory generated by feedrate optimization is denoted as x̂∗d in Sec-
tion 3.3.2 for Chapter 3, whereas it is denoted as xc in Section 4.2 for Chapter 4

■ The servo error is denoted as êx in Section 2.3 for Chapters 2 and 3, whereas a similar
notation ex is used to denote physics-based prediction error in Section 4.2.1 for Chapter 4

■ The path parameter and its estimated linearization points are denoted as s and se respectively
in Section 2.2 for Chapters 2 and 3, whereas they are denoted as p and p̄ in Section 4.3 for
Chapter 4

■ The lifted (matrix) representation of system dynamics corresponding to the current and past
trajectories are denoted as Γx,c and Γx,p respectively in Section 3.3.2 for Chapter 3, whereas
they are denoted as Φx,c and Φx,p in Section 4.3 for Chapter 4

■ Lastly, the lengths of window (batch) and the finite impulse response of system dynamics
are denoted as Np and Nsys respectively in Section 3.3.2 for Chapter 3, whereas they are
denoted as nw and nh in Section 4.2 for Chapter 4

This chapter is based on the following manuscript in preparation:

• Kim H, Kontar RA, Okwudire CE. Intelligent Feedrate Optimization using a Physics-
informed Data-driven Digital Twin with Quantified Uncertainty

4.1 Framework of intelligent feedrate optimization using digi-
tal twin with quantified uncertainty

The framework for the proposed intelligent feedrate optimization using digital twin with quan-
tified uncertainty is depicted in Figure 4.1. First, a manufacturer submits a part together with the
desired dimensions and contour error tolerance to an intelligent manufacturing machine. Then, the
goal of the machine is to autonomously produce the part as quickly as possible while respecting
the given error tolerance. The machine is equipped with a digital twin that predicts the contour
error, which the machine can exploit for feedrate optimization with contour error constraints.

However, several uncertainties exist in the physical system. Some portions are known from
available data or expert knowledge, while others such as nonlinear dynamics may be unknown. If
not considered, the known and unknown uncertainties cause violation of the contour error toler-
ance, hence the part quality, as illustrated in Figure 4.2(a). Understanding that uncertainty exists
in enforcing tolerance constraints, manufacturers have different levels of stringency in enforcing
constraints. For example, a manufacturer may want at least 99% of the produced parts to satisfy the
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Figure 4.1: Diagram of intelligent feedrate optimization using uncertainty-aware digital twin. A
manufacturer provides a part tolerance and stringency (i.e., the tolerance for quality constraint
violation under uncertainty). The intelligent machine leverages an uncertainty-aware digital twin
to optimize feedrate while satisfying the tolerance and stringency requirements

constraints. while another may be fine with 95% of the parts satisfying the same constraints. This
reflects their tolerance for quality constraint violations under uncertainty, which we term stringency
in this chapter. We propose that, instead of relying on trial-and-error, manufacturers can impose a
desired stringency η% of the given tolerance by incorporating the uncertainty of the contour error
prediction as shown in Figure 4.2(b). Imposing the stringency represents constraining the worst
case out of η% of the entire variation of contour error, so that η% of the manufactured parts adhere
to the imposed kinematic and tolerance constraints under the given uncertainty.

To do so, the digital twin uses the known uncertainty from the physics-based models and trains
the data-driven model using the machine’s sensor measurements to learn the unknown uncertainty.
The digital twin predicts and quantifies the uncertainty of the contour error, which is used in the
feedrate optimization with desired tolerance and stringency on the contour error. Together with the
uncertainty-aware digital twin, the feedrate optimization determines the fastest feedrate to run the
machine while respecting the limits for the contour errors (and the kinematic limits of the machine)
in a robust way. The measured sensor output is compared with the predicted output and used to
adjust the digital twin and optimization algorithm in the next iteration of the feedrate optimization.
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Figure 4.2: (a) Need for a tolerance range due to violation of error tolerance in presence of un-
certainties, (b) Proposed method of feedrate optimization with desired tolerance stringency using
quantified uncertainty

Figure 4.3: Flowchart of intelligent feedrate optimization using deterministic digital twin with
physic-based and data-driven servo models (y-axis omitted for simplicity)

4.2 Methodology for contour error prediction using an
uncertainty-aware digital twin

4.2.1 Overview of prediction of contour error using a deterministic digital
twin

A flowchart of the intelligent feedrate optimization using a deterministic digital twin based on
the previous work in [3] is depicted in Figure 4.3. Note that the internal model in [3] is removed
in this chapter. Small batches (i.e., look-ahead windows) xjd of a desired position trajectory, with
window length nw, are fed into an intelligent feedrate optimizer to produce the optimized motion
command, xjc where j = 0, 1, 2, . . . , represents the batch index. The optimized motion commands
are sent to the servo systemHx to produce actual position xj . The servo system is composed of a
servo error pre-compensation Cx followed by machine dynamicsGx, i.e.,Hx = GxCx.
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A key requirement for the intelligent feedrate optimization is accurate prediction of the servo
error, which is achieved using linear regression built upon the hybrid model presented in [79]. The
hybrid model takes input xjc and predicts the actual position x̂j using a stable, nominal (or repre-
sentative) physics-based model Ĥ

∗
x. The predictions x̂j do not capture the effects of unmodeled

dynamics and external disturbances. Therefore, the prediction error (delayed by one batch) of Ĥ
∗
x

is computed as ej−1
x = xj−1 − x̂j−1 and combined with x̂j and x̂j−1 to be fed into a data driven

model to generate an improved prediction x̃j which is used for constraining contour errors in the
feedrate optimization.

Each element x̃(t) of x̃, where t = 0, Ts, 2Ts, 3Ts, . . . represents discrete time at sampling
interval Ts, is modeled as

x̃(t) = βTψt (4.1)

where ψt is the deterministic feature vector and β is the weight vector that is learned using linear
regression. The sub elements of ψt are given by

ψt = [ 1︸︷︷︸
:=ψt1

x̂(t− n2Ts) · · · x̂(t)︸ ︷︷ ︸
:=ψt2

ex(t− n3Ts) · · · ex(t− Ts)︸ ︷︷ ︸
:=ψt3

]T
(4.2)

The sub elements ψt1, ψt2 and ψt3 were contained in the hybrid model of [79]. They respec-
tively represent a bias term, the past n2 and current time steps of x̂, and the past n3 time steps of
ex, where n2 and n3 are user defined.
x̃j at the j-th batch is predicted based on weight β from the previous batch j − 1, which is

trained as follows. For the 0-th batch, i.e., t = 0, Ts, . . . , (nw − 1)Ts, the weight vector β and its
covariance matrix P are initialized using ridge regression with a regularization factor λ as

β = (λI +ψtψ
T
t )

−1ψtx(t)

P = (λI +ψtψ
T
t )

−1
(4.3)

For the rest of the batches j = 1, 2, . . . , i.e., t = nwTs, (nw + 1)Ts, . . . , β and P are corrected
via recursive least-squares using a forgetting factor f0 as
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Figure 4.4: Flowchart of intelligent feedrate optimization using an uncertainty-aware digital twin
(with physics-based and data-driven servo models, y-axis omitted)

β ← β + k(x(t)− βTψt)

P ← 1

f0
(P − kψT

tP )

where k = Pψt(f0 +ψ
T
tPψt)

−1

(4.4)

Using the final weight in batch j − 1 to substitute for β, x̃j can be predicted using the feature
vector ψt formulated by Eq. (4.2). Since the past sensor data xj−1 is provided up to t = (jnw −
1)Ts, for entries in batch j that have unavailable terms in ψt3, ex is approximated using predicted
values x̃, i.e.,

ex = x− x̂ ≈ x̃− x̂ (4.5)

The same procedure is applied to y-axis to predict ỹ. Lastly, the contour error ε̃ can be estimated
from the predicted axis tracking errors ε̃x = xd− x̃ and ε̃y = yd− ỹ, using a linear approximation
[56] as

ε̃ = − sin(θ)ε̃x + cos(θ)ε̃y (4.6)

where θ is inclination angle of the curve (xd,yd).

52



4.2.2 Prediction and uncertainty quantification of contour error using
physics-informed data-driven digital twin

The accuracy of the predictions of the physics-based and data-driven servo models in Section
4.2.1 can be improved by incorporating the known uncertainty from the physics-based models. To
do so, a digital twin that uses physics-informed data-driven servo model is exploited. A flowchart
of the proposed intelligent feedrate optimization using the uncertainty-aware digital twin is given
in Figure 4.4. The key difference between Figure 4.3 and Figure 4.4 is that known uncertainty is
included in Ĥx, and unknown uncertainty embedded in xj is learned using the data-driven model
and used to predict x̂j with uncertainty.

Each element x̃(t) of the digital twin’s prediction of the output position x̃j is modeled as

x̃(t) = βTψt + ϵ (4.7)

where ψt ∼ N(µψt ,Σψt) is the feature vector defined as an uncorrelated Gaussian random vari-
able, β ∼ N(µβ,Σβ) is the weight vector defined as a correlated Gaussian random variable
learned via Bayesian linear regression, and ϵ ∼ N(0, σ2

ϵ ) is the unobserved Gaussian noise.
Unlike the point-estimation of x̃j from Section 4.2.1, a distribution x̃j ∼ N(µx̃j ,Σx̃j) is es-

timated in this section based on the uncertainties of the features and the weights. This chapter
proposes that the known uncertainties of the physics-based models are embedded into the feature
vector ψt in Eq. (4.7) to enable efficient training of β. To do so, a set of NH stable physics-based
models {Ĥ

i

x}
NH
i=1 is obtained, where each model Ĥ

i

x for i = 1, 2, ..., NH is identified in the form
of the complex-valued frequency response function (FRF) of the physical system Hx at discrete
frequencies ωk via experiments as

Ĥ
i

x(ωk) = ai(ωk) + bi(ωk)j (4.8)

Here ωk = k∆ω, where ∆ω is the increment of frequencies and k = 1, 2, ..., Nω
2
− 1 and j is the

unit imaginary number (which should not be confused with the batch index j used as superscript
elsewhere).

Then, the uncertainty in Ĥx is propagated to finite impulse response ĥx as follows. The discrete
sets {Ĥ

i

x(ωk)}
NH
i=1 for each k will introduce discrete sets of their real and imaginary coefficients,

namely {ai(ωk)}NHi=1 and {bi(ωk)}NHi=1. For computational efficiency, it is assumed that {ai(ωk)}NHi=1

and {bi(ωk)}NHi=1 are sampled from Gaussian distributions of a(ωk) and b(ωk), of which 99.73%,
i.e., 3-sigma range, lie within the minimum and maximum of the identified discrete sets. Then,
a(ωk) ∼ N(µa(ωk), σ

2
a(ωk)

) can be approximated as
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µa(ωk) =
max {a(ωk)}+min {a(ωk)}

2

σa(ωk) =
max {a(ωk)} − µa(ωk)

3

(4.9)

and b(ωk) ∼ N(µb(ωk), σ
2
b(ωk)

) can be approximated using the same procedure as Eq. (4.9).
Then, the impulse response ĥx (where ĥx[n] and n = 1, 2, ..., Nh) of the physics-based model

with sampling time Ts can be formulated using discrete inverse Fourier transform as

ĥ[n] =
1

Nω

Nω
2

−1∑
k=−Nω

2

(a(ωk) + b(ωk)j)e
2πj(n−1)(k−1)

Nω (4.10)

where Nh = 1
Ts∆ω

. Then, due to the linearity of Eq. (4.10), ĥ[n] follows a Gaussian distribution
ĥ[n] ∼ N(µĥ[n], σ

2
ĥ[n]

) as

µĥ[n] =
1

Nω

Nω∑
k=1

(µa(ωk) + µb(ωk)j)e
2πj(n−1)(k−1)

Nω

σ2
ĥ[n]

=
1

Nω

Nω∑
k=1

(σ2
a(ωk)

− σ2
b(ωk)

)e
2πj(n−1)(k−1)

Nω

(4.11)

Next, the uncertainty in ĥ[n] can be propagated to x̂(t) ∼ N(µx̂(t), σ
2
x̂(t)) as

µx̂(t) =

Nh∑
i=1

µĥ[i]xd(t− iTs)

σ2
x̂(t) =

Nh∑
i=1

σ2
ĥ[i]
xd(t− iTs)2

(4.12)

Finally, the feature vector follows an uncorrelated multivariate normal distribution ψt ∼
N(µψt ,Σψt), where
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µψt =[ 1︸︷︷︸
:=µψt1

µx̂(t−n2Ts) · · ·µx̂(t)︸ ︷︷ ︸
:=µψt2

x(t− n3Ts)− µx̂(t−n3Ts) · · ·x(t− Ts)− µx̂(t−Ts)︸ ︷︷ ︸
:=µψt3

]T

Σψt =[ 0︸︷︷︸
:=Σψt1

σ2
x̂(t−n2Ts)

. . . σ2
x̂(t)︸ ︷︷ ︸

:=Σψt2

σ2
x̂(t−n3Ts)

. . . σ2
x̂(t−Ts)︸ ︷︷ ︸

:=Σψt3

]T

(4.13)

As for the weight uncertainty, the priors, which are µβ and Σβ , are initialized as µβ0 and
Σβ0 in the 0-th batch using the nominal physics-based model µĥx from Eq. (4.11). To do so,
a trial desired trajectory xd(t), t = 0, Ts, ..., NxTs, is chosen such that it traverses a pre-defined
path with conservative kinematics used in practice. The nominal physics-based model µĥx is used
to filter xd and formulate x̂. Then, Section 4.2.1’s framework on deterministic feature vector is
borrowed to create multiple datasets consisting of feature vectors and corresponding predictions,
i.e., (ψ0, x(0)), (ψTs , x(Ts)), ..., (ψNxTs , x(NxTs)), assuming ψt is deterministic and ψt3 = 0 for
all t. Finally, µβ0 and Σβ0 can be optimized using the Maximum Likelihood Estimation (MLE) as

µβ0,Σβ0

= argmin
µβΣβ

Nx∑
i=0

(
−1

2
(x(iTs)− µT

βψiTs)
T(ψT

iTsΣβψTsi + σ2
ϵ )

−1

(x(iTs)− µT
βψiTs)

) (4.14)

where x(t) is approximated as x̂(t).
Finally, the posterior can be estimated via an error-in-variables (EIV) Bayesian regression [80],

based on the weight uncertainty β ∼ N(µβ,Σβ), i.e., the prior from Eq. (4.14), and the feature
uncertainty ψt ∼ N(µψt ,Σψt) from Eq. (4.13), using Bayes rule [81] as
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p(β|x(t),µψt ,Σψt) ∝ p(x(t),µψt ,Σψt |β) · p(β)

∝
∫
p(x(t),µψt ,Σψt ,ψt|β)dψt · p(β)

∝
∫
p(x(t)|ψt,β)p(ψt|µψt ,Σψt)dψt

· p(β)

∝ p(x(t)|β) · p(β)

(4.15)

Here, p(x(t)|β) and p(β) can be written as

p(x(t)|β) = exp
(
−1

2
(x(t)− βTµψt)

T(βTΣψtβ + σ2
ϵ )

−1

(x(t)− βTµψt)

)
p(β) = exp

(
−1

2
(β − µβ)TΣ−1

β (β − µβ)
) (4.16)

For efficient computation, the non-Gaussian probability density function p(x(t)|β) in Eq. (4.16)
is approximated as Gaussian using Laplace’s approximation [82], such that the log of p(x(t)|β)
becomes a quadratic function of β as

ln p(x(t)|β) ≈ ln p(x(t)|β)
∣∣∣
β=β̄︸ ︷︷ ︸

:=c0

+
d ln p(x(t)|β)

dβ

∣∣∣
β=β̄︸ ︷︷ ︸

:=c1

(β − β̄)

+
d2 ln p(x(t)|β)

dβ2

∣∣∣
β=β̄︸ ︷︷ ︸

:=c2

(β − β̄)2

(4.17)

where the local point β̄ is µβ from the previous batch, i.e., the prior mean. The coefficients c0, c1
and c2 in Eq. (4.17) can be derived using 0-th, 1-st and 2-nd derivatives of vector-valued function
ln p(x(t)|β) in Eq. (4.16) with respect to β, respectively, as
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c0 = −
1

2
(x(t)− β̄T

µψt)
T(β̄

T
Σψtβ̄ + σ2

ϵ )
−1(x(t)− β̄T

µψt)

c1 = −
1

2

(
2ΣT

ψtµψtx(t)β̄
T
β̄ +

(
2µ2

ψtσ
2
ϵ − 2Σψtx(t)

2
)T
β̄

− 2µψtx(t)σ
2
ϵ

)
· diag(ΣT

ψtβ̄
2
+ σ2

ϵ )
−1

c2 = −
1

2

(
diag(−4Σ2

ψtµψtx(t)β̄
3
) + diag(6Σ2

ψtx(t)
2)β̄

2

diag(12Σψtµψtx(t)σ
2
ϵ β̄)− 6µT

ψtΣψtµψtσ
2
ϵ

)
· diag(ΣT

ψtβ̄
2
+ σ2

ϵ )
−1

(4.18)

Using the simplified notation, Eq. (4.15) can be re-written as

p(β|x(t),µψt ,Σψt) = exp
((
c2 −

1

2
Σ−1
β

)
β2

+
(
c1 + µ

T
βΣ

−1
β

)
β + constant

) (4.19)

Thus, the updated variance and mean of the Gaussian posterior p(β|x(t),µψt ,Σψt) are

Σβ ← 𝕍𝕒𝕣[β|x(t),µψt ,Σψt ] = −
1

2

(
c2 −

1

2
Σ−1
β

)−1

µβ ← 𝔼[β|x(t),µψt ,Σψt ] =
(
c1 + µ

T
βΣ

−1
β

)
Σβ

(4.20)

where the posteriors µβ and Σβ are used as priors for the next batch.
Note that, if the feature ψt is assumed to be deterministic (i.e., zero feature uncertainty) such

that no known uncertainties are included in the Bayesian regression, the posterior β ∼ N(µβ,Σβ)

can be estimated as a closed-form solution using Bayes rule as
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p(β|µβ,Σβ)

= exp
(
−1

2
βT(σ−2

ϵ ψ
T
tψt +Σ−1

β )β

+ (σ−2
ϵ ψ

T
t x(t) +Σ−1

β µβ)
Tβ

)
∴ Σβ ← (σ−2

ϵ ψ
T
tψt +Σ−1

β )−1

µβ ← Σβ(σ
−2
ϵ ψ

T
t x(t) +Σ−1

β µβ)

(4.21)

Lastly, using the trained weight distribution from Eq. (4.20), the posterior predictive distribution
x̃(t) ∼ N(µx̃(t), σ

2
x̃(t)) can be written as

µx̃(t) = µ
T
βψt

σ2
x̃(t) = ψ

T
tΣβψt + σ2

ϵ

(4.22)

The same procedures are applied to learn βy ∼ N(µβy ,Σβy) and predict ỹ(t) ∼ N(µỹ(t), σ
2
ỹ(t))

based on y-axis feature vector ψty and unobserved noise ϵy. Using Eq. (A.13), the contour error
distribution ε̃(t) ∼ N(µε̃(t), σ

2
ε̃(t)) can be predicted as

µε̃(t) = − sin(θ(t))(xd(t)− µT
βψt)

+ cos(θ(t))(yd(t)− µT
βyψty)

σ2
ε̃(t) = sin(θ(t))2(ψT

tΣβψt + σ2
ϵ )

+ cos(θ(t))2(ψT
tyΣβyψty + σ2

ϵy)

(4.23)

4.3 Methodology of intelligent feedrate optimization with con-
tour error constraints

The feedrate optimization with contour error constraints using the quantified uncertainty from
the digital twin is formulated in accordance with authors’ previous work [1]. Taking the x-axis,
for example, a desired trajectory Xd = f(p) is parametrized with respect to a normalized, mono-
tonically increasing path variable p, which is a vectorized form of p. Then, Xd(t) is linearized as
xd(t) with respect to p(t) using an estimated linearization point p̄(t) as
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xd(t) = −
∂f

∂p

∣∣∣∣
p=p̄(t)

· (p(t)− p̄(t)) + f(p̄(t)) (4.24)

The procedure for computing the optimal pj (corresponding to the optimal feedrate) using the
uncertainty-aware digital twin is as follows. The path variable pj is maximized under monotonic-
ity, maximum feedrate, and axis-acceleration constraints as

max1Tpj

s.t. p(t− 1) ≤ p(t) ≤ 1

D[pj] ≤ V maxTs∣∣D2[xjd]
∣∣ ≤ AmaxT

2
s

(4.25)

where 1 is a ones-vector, D is a difference operator, and V max and Amax are the vectorized rep-
resentations of feedrate and acceleration limits, respectively. In addition, kinematic and dynamic
continuity between adjacent windows is enforced. The process described above for the x-axis can
be applied to the y-axis.

The feedrate optimization constrains the contour error under a given tolerance and stringency,
using the posterior predictive distribution from Section 4.2.2. To do so, we show that µϵ̃(t) and σϵ̃(t)
are linear in terms of xjd, by showing that the only alterable feature in ψt, which is the last term in
ψt2 (i.e., x̂(t)), is linear in xjd.

Let Φx ∈ ℝnh×nh be the matrix (lifted domain) representation of µĥx truncated by length nh.
The last nw rows in Φx can further be decomposed into two parts: its first nh − nw columns Φx,p

and its last nw columns Φx,c as

Φx =

[ ...
...

Φx,p Φx,c

]
(4.26)

If xc,p represents the last nh−nw elements of the xc at past timesteps, x̂(t) can be re-written as

x̂j = Φx,cx
j
d +Φx,pxc,p

∴ x̂(t) =M tΦx,c︸ ︷︷ ︸
:=T x

xjd +M tΦx,pxcp︸ ︷︷ ︸
:=T 0x

(4.27)

whereM t is a selection matrix that picks the entry at timestep t. Similarly, for y-axis, the alterable
term in ψty can be derived to be linear in terms of yjd, by using a similar notation as Eq. (A.8), i.e.,
ŷ(t) = T yy

j
d + T 0y.
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Then, the worst-case out of the η [%] variations of the contour error distribution, where η is a
user-defined stringency, is bounded by the tolerance Emax as a stochastic constraint by

p(ε̃(t) ≤ Emax) ≥ η (4.28)

For the sake of brevity, the negative stochastic contour error constraint p(ε̃(t) ≥ −Emax) ≥ η

is omitted. Then, inversion the both sides of Eq. (4.28) becomes

µε̃(t) ≤ Emax − Φ−1(η)σε̃(t) (4.29)

where Φ is the cumulative density function of the distribution of ε̃(t), which is invertible because
ε̃(t) follows a Gaussian distribution as was shown in Eq. (4.23).

In order to show that the contour error constraint in Eq. (4.29) is linear in terms of x̂jd and
ŷjd, the standard deviation term σε̃(t) in Eq. (4.23) is linearized with respect to ψt and ψty using
linearization points ψ̄t and ψ̄ty as

σε̃(t) ≈ Sxψt + Syψty + S00 + S01

where S00 = sin(θ(t))2(ψ̄
T
tΣβψ̄t + σ2

ϵ )

+ cos(θ(t))2(ψ̄
T
tyΣβyψ̄ty + σ2

ϵy)

S01 = −2 sin(θ(t))2Σβψ̄t − 2 cos(θ(t))2Σβψ̄ty

Sx =
1√
S00

sin(θ(t))2Σβ

Sy =
1√
S00

cos(θ(t))2Σβy

(4.30)

where ψ̄t is formulated via generating the terms x̂(t − n2Ts) · · · x̂(t) in ψ̄t2 by filtering the lin-
earization point f(p̄) with µĥx . Likewise, ψ̄ty is formulated using µĥy .

Finally, let the unalterable features in ψt be ψtu, and the weights corresponding to the alterable
feature in ψt, i.e., x̂(t), be denoted as βa and that to the unalterable features ψtu as βu. The same
notations ψtyu, βya and βyu will be held for y-axis. Then, by substituting Eq. (4.23), (A.8) and
(4.30) into Eq. (4.29), the contour error constraint be re-written as
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− sin(θ(t))(M tx
j
d − µ

T
βuψtu − µT

βa(T xx
j
d + T 0x))

+ cos(θ(t))(M ty
j
d − µ

T
βyuψtyu − µT

βya(T yy
j
d + T 0y))

≤ Emax − Φ−1(η)

(
Sxψtu + Sx(T xx

j
d + T 0x)

+ Syψtyu + Sy(T yy
j
d + T 0y) + S00 + S01

) (4.31)

which can be rearranged as linear in terms of xjd and yjd as

Uxx
j
d +U yy

j
d ≤ U 0

where Ux = − sin(θ(t))(M t − µT
βaT x) + Φ−1(η)SxT x

U y = cos(θ(t))(M t − µT
βyaT y)− Φ−1(η)SyT y

U 0 = sin(θ(t))(−µT
βuψtu − µT

βaT 0x)

− cos(θ(t))(−µT
βyuψtyu − µβya

TT 0y)

+ Emax − Φ−1(η)(Sxψtu + SxT 0x

+ Syψtyu + SyT 0y + S00 + S01)

(4.32)

Finally, the contour error constraint in Eq. (4.32) is also linear with respect to the decision
variable pj using the relationship in Eq. (4.24).

Note that the methodology of feedrate optimization described in Section 4.3 can be broadly con-
sidered as model predictive control (MPC) [83], because it: (1) optimizes manipulatable inputs,
e.g., desired trajectory, over a finite, receding horizon using (2) prediction of the dynamical sys-
tem’s behavior through a model that is updated via feedback. There are existing works on feedrate
optimization using MPC. For example, MPC can be formulated with an objective function that
is a weighted-sum of cycle time, lag and contour errors and control inputs, along with kinematic
constraints [56, 84] and error tolerance [85]. On the other hand, MPC in [48] uses an objective
function based on a tunable index of how far away an unattainable target position is from the cur-
rent position. However, all of the methods in [48, 56, 84, 85] use objective functions that require
trial-and-error to balance quality and productivity, which is philosophically different from the aim
of our dissertation, that is to autonomously maximize productivity subject to quality constraints.
Moreover, none of the existing works quantify the uncertainty of servo error prediction, which is
one of the main contributions of this dissertation.
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Figure 4.5: Experimental setup for Sections 4.4 and 4.5.1

4.4 Numerical validation of the intelligent feedrate optimiza-
tion using physics-informed data-driven digital twin

This section validates the importance of the uncertainty quantification of the proposed physics-
informed data-driven (PIDD) uncertainty-aware digital twin in feedrate optimization, by compar-
ing the method with the following approaches:

1. Conservative method, which is defined as the benchmark generated using a trapezoidal ac-
celeration profile [86] with kinematic limits tuned by trial-and-error to achieve the contour
error tolerance with η% stringency, by allowing up to (100−η)% RMS violation normalized
by Emax defined in Section 4.3

2. Physics-based (PB) method, which predicts the output position and its uncertainty using only
the known uncertainty obtained from the set of physics-based models {Ĥ

i

x}
NH
i=1 and {Ĥ

i

y}
NH
i=1

3. Data-driven (DD) method, which predicts the output position and its uncertainty by learning
the unknown uncertainty without incorporating any known uncertainties, i.e., the prior µβ0 ,
Σβ0, µβy0 and Σβy0 are initialized as zero at the 0-th batch, and β and βy are learned via
Bayesian linear regression for deterministic features in Eq. (4.21). Note that both the PB and
DD methods are subsets of the uncertainty-aware digital twin. However, we have separated
them out to highlight the effect of introducing uncertainty in both the PB and the DD models
through the PIDD method used in the uncertainty aware digital twin

62



Figure 4.6: Frequency response functions of the Nomad 3’s x-axis showing the known uncertainty
obtained under different input acceleration amplitudes

Figure 4.7: Frequency response functions of the Nomad 3’s y-axis showing the known uncertainty
obtained under different input acceleration amplitudes

A Nomad 3 three-axis desktop CNC machine tool is chosen as the simulated system, where
its setup is shown in Figure A.6. To analyze its known uncertainties, the position commands
are generated and commanded by dSPACE DS1007 real-time control board running at 500 Hz
sampling rate, connected to DRV8825 stepper motor drivers for the x-, y- and z-axes stepper
motors. ADXL335 accelerometers are attached on the x- and y-axis gantries to measure the x
and y-axes acceleration. The known uncertainties are identified by measuring FRFs, of which the
input is a swept sine acceleration command to the stepper motors, and the output is the relative
acceleration between the x- and y-axis using the accelerometers. The operating condition of the
FRFs is varied by modifying the input acceleration amplitude at discrete values: 2 m/s2, 3 m/s2

and 4 m/s2, and 3 FRFs are measured per each acceleration amplitude to collect a total of NH = 9

FRFs per axes.
The set of FRFs {Ĥ

i

x}9i=1 of the x- and y-axis of the printer are shown in Figure 4.6 and 4.7,
respectively. The uncertainties in Ĥx are then propagated to ĥx ∼ N(µĥx ,Σĥx

) to initialize µβ
and Σβ and construct µψt and Σψt in the physics-informed data-driven digital twin.

The output position x is simulated as the sum of motion-induced position xm and force-induced
position xf , as
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Figure 4.8: Desired toolpath

x = xm + xf = ĥx ∗ xc + xf
where ĥx ∼ N(µĥx ,Σĥx

) is sampled at every t

and xf (t) = Af sinωf t

(4.33)

where Af = 0.2 and ωf = 733 rad/s (7000 rpm) are chosen.
The butterfly trajectory [75] with its contour of the toolpath on the x- and y-axis shown in

Figure 4.8 is selected. For the DD and PIDD methods, nw = 10, n2 = 3, n3 = 10 and σϵ = 0.01 are
selected. For the DD and PIDD methods, stringency η = 95% is selected. Vmax = 30 mm/s, Amax
= 5 m/s2, and contour error limit of Emax = 0.4 mm are selected for the feedrate optimization. The
tolerance violation γ, which will be analyzed for each method, is defined as

γ(t) =


∣∣|ε(t)| − Emax∣∣ if |ε(t)| > Emax

0 otherwise
(4.34)

Figure 4.9 shows the optimized feedrate, acceleration, contour error, tolerance violation and
prediction error of all methods. The cycle times and RMS of tolerance violation γ are summarized
in Table 4.1. The PB method is the worst in prediction performance because it is not aware of the
unknown uncertainties caused by the force-induced servo error, and hence results in the highest
RMS tolerance violation. The DD method improves adherence to the tolerance by learning the
unknown uncertainties over time. However, DD method initially suffers from significant predic-
tion error due to its unawareness of known uncertainties. The proposed PIDD method with η =
95% enables restriction of the contour error under the desired stringency by incorporating known
uncertainties and learning unknown uncertainties the quickest, which enables it to conservatively
stay below the error limit most of the time. Overall, the PIDD method is able to reduce cycle time
by 19.3% compared to the conservative approach while maintaining a similar tolerance violation
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Figure 4.9: Feedrate, acceleration, contour error, tolerance violation, and prediction error using
conservative (Cons.) physics-based (PB), data-driven (DD) and proposed (PIDD) methods with η
= 95% for numerical validation

level. To demonstrate the effect of the selection of stringency, Figure 4.10 compares the com-
manded feedrate, acceleration, contour error, tolerance violation and prediction error of the PIDD
methods using η = 95% and 98%. It is observed that tuning η to a higher level has the effect of
making the optimized feedrate more conservative and reducing the error violation.

Note that the proposed PIDD method is not perfect in satisfying the contour error constraints.
One reason is that the prediction error is not perfectly zero, and the stringency constraints can only
ensure that the worst-case out of η% of contour error distribution is within the tolerance. This issue
can be mitigated by increasing η, which will entail more conservative feedrate. Another reason
might be due to the nonlinear effects neglected by linearization of the contour error constraint in Eq.
(4.30) and sub-optimal learning in β introduced by Laplace’s approximation in Eq. (4.17). These
problems can be addressed by applying nonlinear optimization and non-Gaussian EIV Bayesian
regression, at the price of higher computational cost.
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Figure 4.10: Feedrate, acceleration, contour error, tolerance violation, and prediction error using
the proposed (PIDD) methods with η = 95% (from Figure 4.9) and η = 98% in numerical validation

Table 4.1: Cycle times and RMS of tolerance violation γ for conservative (Cons.), physics-based
(PB), data-driven (DD) and proposed (PIDD) methods in Figures 4.9 and 4.10

Cons. PB DD PIDD
(η=95%)

PIDD
(η=98%)

RMS of γ [µm] 2.2 6.6 3.0 1.7 0.8
Cycle time [s] 8.89 4.49 5.17 6.47 7.17
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4.5 Experimental validation

For validation of the proposed approach, two experimental setups are used. The first set of
experiments, described in Section 4.5.1, is carried out on a Nomad 3 desktop CNC machine tool
used in Section 4.4, and the second set of experiments, described in Section 4.5.2, is carried out on
an Ender 3 Pro desktop 3D printer. Demonstration of the proposed method on two experimental
setups helps to show its versatility.

4.5.1 CNC machine tool

4.5.1.1 Experimental setup

For experimental validation, the same experimental setup with the machine tool in Figure A.6
in used. The optimization algorithm is implemented on dSPACE 1007 real-time control board
running at 500Hz sampling rate, connected to DRV8825 stepper motor drivers for x, y, and z- axes
stepper motors. Renishaw RKLC20-S optical linear encoders are attached to the x and y- axes
gantries to measure x- and y- axes positions that are fed back to dSPACE 1007.

4.5.1.2 Experimental results

This section validates proposed feedrate optimization using the same set of methods for com-
mand generation, which are conservative, PB, DD and the proposed PIDD methods. The same
desired butterfly trajectory in Figure 4.8 is used for air cutting and machining an aluminum work-
piece with a 3.175 mm diameter flat-end mill and spindle speed of 7000 rpm. Kinematic limits are
set as Vmax = 20 mm/s and Amax = 0.5 m/s2, and contour error bound is chosen as Emax = 0.1 mm
in the feedrate optimization; nw = 30, n2 = 2, n3 = 30 and σϵ = 0.01 are used in the DD and PIDD
methods. The desired stringency is chosen as η = 95% in the DD and PIDD method.

Figure 4.11 and 4.12 show the profiles of optimized feedrate, acceleration, contour error, tol-
erance violation, and prediction error of x- and y-axis using the conservative, PB, DD and PIDD
approaches in air-cutting and actual cutting, respectively. The PB method frequently violates the
tolerance due to unmodeled dynamics and/or cutting force, which results in significant predic-
tion error. The DD and PIDD methods reduce the prediction error compared to the physics-based
method, where the PIDD method is able to constrain the contour error closer to the limit using
the desired stringency, which allows the tolerance to be satisfied closely, similar to conservative
approach. The proposed PIDD approach completes the motion 38.06% and 29.02% faster than
the conservative method in air-cutting and machining, respectively, while maintaining a similar
level of tolerance adherence. The RMS prediction errors in x- and y-axis, cycle times and RMS
tolerance violations of each method in air-cutting and actual cutting are summarized in Table 4.2.
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Figure 4.11: Commanded feedrate, acceleration, contour error, tolerance violation, and prediction
error (with its zoomed-in images) of conservative, physics-based (PB), data-driven (DD) and pro-
posed (PIDD) approaches in air-cutting

Table 4.2: Comparison of RMS prediction errors, cycle times and RMS of tolerance violation γ
using conservative (Cons.), physics-based (PB), data-driven (DD) and proposed (PIDD) methods

Cons. PB DD PIDD
Air-cutting x Pred. Error [µm] N/A 17.8 17.5 10.2

y Pred. Error [µm] N/A 15.7 18.3 17.8
Cycle time [s] 40.2 20.00 21.12 24.90

RMS of γ [µm] 5.0 16.7 16.5 2.3
Cutting x Pred. Error [µm] N/A 47.2 17.3 16.7

y Pred. Error [µm] N/A 34.2 17.7 18.11
Cycle time [s] 39.39 20.04 22.96 27.25

RMS of γ [µm] 6.8 22.2 3.7 7.4
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Figure 4.12: Commanded feedrate, acceleration, contour error, tolerance violation, and prediction
error (with its zoomed-in images) of conservative, physics-based (PB), data-driven (DD) and pro-
posed (PIDD) approaches in actual cutting
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Figure 4.13: Machined parts and the zoomed-in images of upper left wing using conservative,
physics-based (PB), data-driven (DD) and proposed (PIDD) approaches

Figure 4.13 shows the machined surfaces and their zoomed-in images of upper left wing using
the trajectories from Figure 4.12. The surface machined using PB method shows vibration marks,
while the DD and PIDD methods mitigate the vibration and achieve similar quality to that of
conservative approach.

4.5.2 Desktop 3D printer

4.5.2.1 Experimental setup

The experimental setup using an Ender 3 Pro desktop 3D printer is shown in Figure 4.14. The
optimization algorithm is implemented on dSPACE 1007 real-time control board running at 500Hz
sampling rate, connected to DRV8825 stepper motor drivers for x, y, z and e- axes stepper motors.
The measured x and y- axes accelerations from ADXL335 accelerometers are fed back to dSPACE
1007. In recovery of x and y axes displacement from acceleration measurements, a Luenberger
state observer [87] is used. The observer gains are chosen such that the dynamics of the observer
error (i.e., discrepancy between estimated position using the nominal physics-based model µĥx
and observed position) obtains global asymptotic convergence with an observer frequency fo = 15
Hz.

4.5.2.2 Experimental validation of intelligent feedrate optimization

This section validates the proposed approach experimentally using the desktop 3D printer, by
comparing its performance with conservative, PB and DD methods. The butterfly toolpath in
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Figure 4.14: Experimental setup for Section 4.5.2

Figure 4.15: Known uncertainty of Ender 3 Pro’s x-axis

Figure 4.8 is used to optimize the feedrate for air-printing (i.e., no material extrusion) and actual
printing of the 3D printer. The known uncertainties of x- and y- axis of the printer are incorporated
from FRFs in Figures 4.15 and 4.16. For the DD and PIDD methods, nw = 30, n2 = 10, n3 = 30
and σϵ = 0.01 are used. For the PIDD method, the desired stringency is selected as η = 95%. For
feedrate optimization, Vmax = 70 mm/s, Amax = 3 m/s2 and Emax = 0.1 mm are chosen.

Figure 4.17 shows the profiles of optimized feedrate, acceleration, contour error and prediction
error of x- and y using conservative, PB, DD and PIDD methods. The RMS prediction errors, cycle

Figure 4.16: Known uncertainty of Ender 3 Pro’s y-axis
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Figure 4.17: Commanded feedrate, acceleration, contour error and prediction error using conser-
vative (Cons.), physics-based, data-driven and proposed approaches in air-printing

times and RMS tolerance violation of all methods are reported in Table 4.3. The PB approach
cannot predict the unknown uncertainties, and hence shows the most significant violation in the
contour error. The DD method mitigates the violation by learning the unknown uncertainties,
and the PIDD method further improves the accuracy by staying the closest to the tolerance with
the desired stringency. As a result, the PIDD method completes the motion 17.8% faster while
yielding contour error tolerance satisfaction as the conservative one.

To further validate our findings, a 3D-augmentation of the trajectory in Figure 4.8 with z-height
8 mm is printed using the same printer. Conservative, PB, DD and PIDD methods are applied at

Table 4.3: Comparison of RMS prediction errors, cycle times and RMS of tolerance violation γ
using conservative (Cons.), physics-based (Physics.), data-driven (Data.) and proposed methods in
air-printing

Cons. Physics. Data. Proposed
x Pred. Error [µm] N/A 37.4 22.1 18.1
y Pred. Error [µm] N/A 31.7 23.9 19.3

Cycle time [s] 4.70 1.97 2.73 3.86
RMS of γ [µm] 1.8 5.5 3.9 1.9
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Figure 4.18: Top and side views of 3D-printed butterfly models using conservative, physics-based,
data-driven and proposed approaches and their print times

each layer of the print. Figure 4.18 shows the top and side views of the printed butterflies using the
four methods, as well as their print times. The physics-based and data-driven prints show vibration
marks in the side view, while the proposed and conservative prints are able to achieve good quality.
Overall, the proposed method is able to achieve 15.51% print time reduction compared to the
conservative approach while achieving similar quality.

4.6 Conclusion and future work

This chapter presents the framework and the methodology for the intelligent feedrate optimiza-
tion using physics-informed data-driven digital twin with quantified uncertainty. The key contri-
butions of this chapter are summarized as follows.

• A novel physics-informed data-driven digital twin that predicts contour error and its uncer-
tainty is proposed. The digital twin is able to incorporate known uncertainty from physics-
based models and learn unknown uncertainty using an online data-driven model to predict
contour error’s distribution.

• For the first time, a feedrate optimization with constraints on kinematics and contour error
using quantified uncertainty is introduced. The contour error’s uncertainty using digital twin
enables the manufacturer to impose stringency constraints, which can replace trial-and-error
approach of tuning the tolerance used in practice.
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• We have demonstrated the effectiveness of the intelligent feedrate optimization using digital
twin with quantified uncertainty, to show up to 38% and 17% cycle time reduction using a
desktop CNC machine tool and a desktop 3D printer, respectively, while achieving similar
stringency of tolerance to that of the conservative approach.

As a limitation, the proposed method has made several assumptions in the methodology to
enable efficient computation, such as Gaussian distribution of frequency response function for
computing the known uncertainty and the linearization of contour error constraints for solving the
feedrate optimization as a linear programming. The future work will explore more sophisticated
(non-Gaussian) uncertainty distributions and nonlinear contour error constraints, at the expense
of higher computational cost and non-closed form solutions. Furthermore, additional forms of
learning to the uncertainty-aware digital twin, such as part-to-part or machine-to-machine learning,
will be investigated to improve prediction accuracy.

74



CHAPTER 5

Summary, Conclusions and Future Research

5.1 Summary and conclusions

This dissertation proposes the framework and techniques for maximizing productivity of feed
drive systems while satisfying the desired quality, by optimizing feedrate subject to kinematic and
error tolerance constraints. The proposed intelligent feedrate optimization uses an uncertainty-
aware physics-based and data-driven servo dynamic models and is solved using linear program-
ming to effectively and efficiently optimize feedrate while accurately meeting the constraints by
learning the uncertainties from the sensor feedback on-the-fly.

Chapter 2 proposes feedrate optimization technique formulated using time-based parameter,
as opposed to using path-based parameter in the vast majority of feedrate optimization such as
[13, 88, 89]. This enables the proposed approach to incorporate servo dynamic models, such as
servo error pre-compensation, which feedrate optimization can benefit from by allowing for faster
motion without violating the tolerances. Moreover, the use of time-based parameter allows the
optimization to be efficiently solved using linear programming. We validate the effectiveness of
the proposed method using a desktop 3D printer and precision motion stage, and show significant
cycle time reduction while closely meeting the tolerances. The proposed approach yield more
optimal (faster) feedrate than feedrate optimization without servo dynamic models, allowing up to
reduce cycle time by 50% compared to conservative approach.

Chapter 3 extends the feedrate optimization introduced in Chapter 2 to long and nonlinear
toolpaths, which introduce inaccuracy and computational inefficiency. To address the issue of in-
accuracy due to linearization of desired trajectory using estimated linearization point, the feedrate
optimization is executed multiple times, i.e., is solved using sequential linear programming, where
the current iteration uses constraints linearized by optimal solution from the previous iteration,
hence able to achieve local optimality in the final solution. Second, the issue of computation is
solved by optimizing feedrate within smaller dividend of trajectories, i.e., windows, to perform so-
called windowed sequential linear programming. Numerical feasibility is guaranteed by generating
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conservative backup trajectory at every window, thus avoiding halt of optimization due to infea-
sible solution. The proposed approach demonstrates up to 25% cycle time reduction compared to
conservative approach.

Chapter 4 augments the physics-based servo dynamic model used in Chapters 2 and 3 with a
data-driven model to robustly optimize feedrate in the presence of uncertainties. We propose that
by quantifying the uncertainty of servo error, the worst-case servo error can be constrained based
on the desired tolerance stringency. To effectively learn the uncertainty, the data-driven model
uses a feature vector composed of physics-based predictions and their prediction errors, updated
from sensor feedback, that embeds the known uncertainty of the servo system, such as variability
of the servo dynamics using different operating conditions. The weights in the data-driven model
is learned via Bayesian regression, which is used to learn the unknown uncertainty and predict
distribution of servo error. The proposed approach is validated using a desktop CNC machine
tool and 3D printer to demonstrate up to 38% cycle time reduction while showing similar tolerance
violation level to the conservative approach, where the kinematic limits are tuned by trial-and-error
to achieve desired tolerance stringency.

The proposed intelligent feedrate optimization is demonstrated to show significant cycle time
reduction compared to conservative approach using various types of machines, including 3D print-
ers, precision motion stages and CNC machine tools. It is further expected to be applicable to
any types of machines that use feed drives. The broader impact this dissertation aims to bring
is to achieve desired quality and higher productivity, with less trial-and-error for wide variety of
manufacturing machines.

5.2 Practical considerations for implementation on general
feed drive servo systems

For readers who wish to implement the proposed methodology of feedrate optimization on
general feed drive servo systems with any desired part geometry, this section discusses a guideline
for practitioners.

The first step in implementing the proposed feedrate optimization is to decompose the desired
part geometry into a set of toolpaths, then fit each toolpath in terms of trajectory arclength. How-
ever, because of the nonlinear relationship between a general curve parameter (e.g., spline parame-
ter) and arclength, techniques such as quintic spline interpolation with minimal feedrate fluctuation
[76] can be used to ensure smooth feedrate profile.

The second step is to determine appropriate kinematic limits and identify the known uncertainty
of the machine. For the kinematic limits, users can refer to the servo drive’s datasheet to find out

76



the maximum possible actuator velocity, acceleration and jerk limits that are within the saturation
level (linear behavior) and operational range [16, 17]. To identify the known uncertainties, one way
to do it is to manually measure the machine models in the form of frequency response function,
if there are no available information about variability of machine dynamics. The measurement
process requires: (1) an accelerometer to measure the machine’s accelerations, (2) a trajectory
command composed to sine sweep acceleration signals at several frequencies, and (3) and post-
processing tool to analyze the accelerometer data to generate a frequency response function. This
process should be repeated multiple times with different operating conditions to collect a set of
frequency response functions, such as by varying the magnitude of acceleration used in sine sweep
signal or nominal position of the machine.

The third step is to tune the parameters for feedrate optimization, namely: (1) window length
(denoted as Np in Chapter 3), (2) feature lengths (denoted as n2 and n3 in Chapter 4), and (3)
standard deviation of the unobserved noise (denoted as σϵ in Chapter 4). As a rule-of-thumb, Np

can be tuned such that it is at least longer than the time required for the slowest open-loop response
to reach 95% of the steady-state [90]. The feature lengths n2 and n3 can be tuned accordingly to
the user’s desired balance between prediction accuracy and computational cost. The trade-off can
also be determined by other limiting factors, such as computing power of the controller hardware.
Higher values of n2 and n3 will lead to more accurate predictions, but will increase computation
time because of the larger size of ψt and the corresponding weight β, and hence the size of the
matrix Σβ which needs to be inverted during Bayesian regression. Finally, one way of tuning σϵ
is to use maximum likelihood estimation [81] to determine the optimal value of σϵ at initial batch
j = 0. Another approach is to jointly learn σϵ along with β ∼ N(µβ,Σβ) and ψt ∼ N(µψt ,Σψt)

at every batch of the Bayesian regression, at the cost of higher computational complexity.
Finally, for real-time implementation of feedrate optimization, users may encounter computa-

tional bottleneck in the application stage and may need to improve the computational efficiency of
the executable script, depending on the controller hardware’s computing power. One technique is
to tune certain optimization parameters inside the solvers by referring to manuals such as [91, 92].
Efficient numerical techniques such as QR decomposition to invert matrices [93] or down-sampling
can also be used to reduce computational load.

5.3 Suggestions for future research

The objective of this dissertation was to develop a framework and a set of methodologies for
feedrate optimization subject to servo error constraints using uncertainty-aware physics-based and
data-driven servo dynamics model. This section provides the knowledge gaps and suggested di-
rections remaining for possible future research.
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First, the feedback loop created by the data-driven model used for feedrate optimization can
suffer from prediction instability. Although the kinematic limits inside the feedrate optimization
indirectly prevent motion instability, the trajectory may never be able to reach the end because the
servo error constraints can be active at every remaining window after reaching prediction insta-
bility due to inaccurate predictions. Towards ensuring stability, the use of spectral radius [94] to
detect instability for slowly-varying linear time-varying systems can be explored. Stability theo-
ries developed from data-driven model predictive control approaches [95] can also be applied to
guarantee stability in our work.

Second, the uncertainty-aware servo dynamic models make several assumptions and approx-
imations, such as: (1) assuming a Gaussian distribution form of machine dynamics’ known un-
certainty, (2) approximating the posterior distribution of data-driven models’ weights as Gaussian
using Laplace’s Approximation, and (3) linearization of contour error with respect to a feature
vector estimated using a nominal physics-based model. To extend our dissertation to general cases
with non-Gaussian uncertainty where (1) and (2) may not hold, hierarchical Bayesian regression
methods [96] or Gibbs sampling techniques [80] can be used. For cases with inaccurate nom-
inal physics-based model or highly nonlinear contour error constraints where (3) may not hold,
sophisticated nonlinear optimization solvers may be used.

Finally, additional forms of learning, such as part-to-part or machine-to-machine learning, will
be investigated to improve prediction accuracy in the framework of uncertainty-aware servo dy-
namic models.
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APPENDIX A

Intelligent Feedrate Optimization using
Physics-based and Data-driven Digital Twin with an

Internal Model

This appendix describes the framework and the methodology for intelligent feedrate optimiza-
tion using physics-based and data-driven digital twin, which is briefly discussed in Section 4.2.1
in Chapter 4. The materials in this appendix are based on the following publication:

• Kim H, Okwudire CE. Intelligent feedrate optimization using a physics-based and data-

driven digital twin. CIRP Annals. 2023.

A.1 Framework for intelligent feedrate optimization

The framework for the proposed intelligent feedrate optimization is depicted in Figure A.1.
First, an operator submits a part together with the desired contour error tolerance to an intelligent
manufacturing machine. The goal of the machine is to autonomously produce the part as quickly
as possible while respecting the given error tolerance and other machine constraints. The machine
is equipped with a digital twin (DT) comprising a physics-based model of its servo dynamics
together with a data-driven model that is trained on data gathered from the machine’s sensors.
The intelligent feedrate optimization algorithm uses the servo error predictions from the DT to
determine the fastest feedrate to run the machine while respecting the acceptable limits for the
servo errors (and the kinematic limits of the machine). The measured sensor output is compared
with the predicted output and used to adjust the data-driven model and optimization algorithm in
the next iteration of the feedrate optimization.
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Figure A.1: Diagram of intelligent feedrate optimization framework using a digital twin

Figure A.2: Flowchart of intelligent feedrate optimization using digital twin (y-axis omitted for
simplicity)

A.2 DT-based servo error prediction including cutting force ef-
fects

A flowchart of the proposed intelligent feedrate optimization is given in Figure A.2 for the x-
axis of a machine tool. Small batches (windows) xjd of a desired position trajectory are fed into an
intelligent feedrate optimizer to produce the optimized motion command, xjc where j = 0, 1, 2, . . . ,

represents the batch index. The optimized motion commands are sent to the servo system Hx to
produce actual position xj . The servo system is composed of a servo error pre-compensation Cx

followed by machine dynamics Gx, i.e., Hx = GxCx.
A key requirement for the feedrate optimization is accurate prediction of servo errors which

is achieved using a DT based on the hybrid model presented in [79] augmented with a periodic
internal model to facilitate prediction of cutting-force-induced servo errors. The hybrid model
takes input xjc and predicts the actual position x̂jc using a physics-based model Ĥx of Hx. The
predictions x̂jc do not capture the effects of unmodeled dynamics and cutting force disturbances.
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Therefore, the prediction error (delayed by one batch) of Ĥx is computed as ej−1
x = xj−1−x̂j−1 and

combined with x̂j and x̂j−1 then fed into a data driven model to generate an improved prediction
x̃j which is used for constraining servo errors in the feedrate optimization.

Each element x̃(t) of x̃j (where t = 0, Ts, 2Ts, 3Ts, . . . represents discrete time at sampling
interval Ts) is computed as

x̃(t) = ψtW (A.1)

where ψt is a row feature vector at time t andW is the corresponding column weight vector. The
sub elements of ψt are given by

ψt = [ 1︸︷︷︸
:=ψt1

x̂(t− n2Ts) · · · x̂(t)︸ ︷︷ ︸
:=ψt2

ex(t− n3Ts) · · · x̂(t− Ts)︸ ︷︷ ︸
:=ψt3

êx(t− n3Ts) · · · êx(t− Ts)︸ ︷︷ ︸
:=ψt4

]

(A.2)
The first three elements ψt1, ψt2 and ψt3 were contained in the hybrid model of [79]. They

respectively represent a bias term, the past n2 and current time steps of x̂ and the past n3 time
steps of ex, where n2 and n3 are user defined. The fourth element ψt4 is new in the proposed
hybrid model. It consists of ψt3 filtered by an internal model L that contains information about
dominant frequency components of the cutting force. Specifically, the internal model, in Laplace
domain, is a filter of the form

L(s) =
∑
i

ω2
i

s2 + ω2
i

(A.3)

where s is the Laplace operator and ωi (rad/s) are key harmonic frequencies contained in the cutting
forces. Notice that the filter in Eq. (A.3) introduces infinite gain (poles) at each ωi, hence ensuring
that the data-driven model emphasizes dynamics occurring at ωi.
x̂j at the j-th batch is predicted based on weight W from the previous batch j–1, which

is trained as follows. Given that the length of each batch is nw, for the 0-th batch, i.e.,
t = 0, Ts, . . . , (nw–1)Ts, the weight vector W and its covariance matrix P are initialized using
ridge regression with regularization factor λ

W = (λI +ψT
tψt)

−1ψT
t x(t)

P = (λI +ψT
tψt)

−1
(A.4)

For the rest of batches j = 1, 2, . . . , i.e., t = nwTs, (nw + 1)Ts, . . . , W and P are corrected via
recursive least-squares using a forgetting factor f0 as
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W ←W + k(x(t)−ψtW ), where k = PψT
t (f0 +ψtPψ

T
t )

−1

P ← P − kψtP
f0

(A.5)

Using the final weight in batch j–1 to substitute W in Eq. (A.1), x̃j can be predicted using
the feature vector ψt formulated by Eq. (A.2). Since the past sensor data xj−1 is provided up to
t = (jnw–1)Ts, for entries in batch j that have unavailable terms in ψt3, ex is approximated using
predicted values x̃, i.e.,

ex = x− x̂ ≈ x− x̃ (A.6)

and ψt4 can be similarly expressed using the approximated ψt3.
Finally, we show that x̃(t) is linear in terms of xjd, by showing that the only alterable feature

in ψt, which is the last term in ψt2 (i.e., x̂(t)), is linear in xjd. Let Φx ∈ ℝnh×nh be the matrix
(lifted domain) representation of Ĥx truncated by length nh. The last nw rows in Φx can further
be decomposed into two parts: its first nh − nw columns Φx,p and its last nw columns Φx,c as

Φx =

[ ...
...

Φx,p Φx,c

]
(A.7)

If xc,p represents the last nh−nw elements of the xc at past timesteps, x̂(t) can be re-written as

x̂j = Φx,cx
j
d +Φx,pxc,p

x̂(t) =M tΦx,cx
j
d +M tΦx,pxcp

(A.8)

whereM t is a selection matrix that picks the entry at timestep t.
Let the alterable and unalterable features in Eq. (A.2) be ψta(= x̂(t)) and ψtu, and their

corresponding sub-weights be W a and W u respectively. Then, using Eq. (A.8), x̃(t) is linearly
related to xjd by

x̃(t) = ψtaW a +ψtuW u

=M tΦx,cW a︸ ︷︷ ︸
:=T xt

xjd +M tΦx,pxcpW a +ψtuW u︸ ︷︷ ︸
:=T 0t

(A.9)
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A.3 Feedrate optimization using DT

The feedrate optimization using the DT is formulated in accordance with the previous Chapter
3. Taking the x-axis, for example, a desired trajectory Xd = f(p) is parametrized with respect to
a normalized, monotonically increasing path variable p. Then, Xd(t) is linearized as xd(t) with
respect to p(t) using an estimated linearization point pe(t) as

xd(t) = −
∂f

∂p

∣∣∣∣
p=pe(t)

· (p(t)− pe(t)) + f(pe(t)) (A.10)

The procedure for computing the optimal pj (corresponding to the optimal feedrate) using the
DT is as follows. The path variable pj is maximized under monotonicity, maximum feedrate, and
axis-acceleration constraints as

min1Tpj

s.t. p(t− 1) ≤ p(t) ≤ 1

D[pj] ≤ V maxTs∣∣D2[xjd]
∣∣ ≤ AmaxT

2
s

(A.11)

where 1 is a ones-vector, D is a difference operator, and V max and Amax are the vectorized rep-
resentations of feedrate and acceleration limits, respectively. In addition, kinematic and dynamic
continuity between adjacent windows is enforced. The process described above for the x-axis can
be applied to the y-axis.

The position predictions x̃j of the DT are integrated into the feedrate optimization by using
them to constrain the servo errors. To do this, we leverage the fact that the proposed hybrid model is
a linear operator, because its physics-based and data-driven components are both linear operators.
Therefore, the predicted servo error ϵ̃x(t) for t = jnwTs, . . . , ((j+1)nw–1)Ts in the j-th batch can
be expressed using x̃(t) from Eq. (A.9) as

ϵ̃x(t) = xd(t)− x̃(t) = (M t − T xt)x
j
d − T 0t (A.12)

The processes described above are repeated for the y-axis to compute ϵ̃jy. Finally, contour
error ϵ can be estimated from DT-predicted axis tracking errors ϵ̃x and ϵ̃y and constrained under
tolerance Emax using a linear approximation [56] as

|ϵ| = − |sin(θ)ϵ̃x + cos(θ)ϵ̃y| ≤ Emax (A.13)

where θ is inclination angle of the curve (xd,yd), and Emax is the vectorised representation of

83



Figure A.3: Velocity of desired trajectory on x-axis)

Figure A.4: Prediction error using DT without and with the internal model

Emax.
Overall, the DT-based intelligent feedrate optimization becomes a linear programming in terms

of the decision variable pj .

A.4 Numerical validation of DT-based servo error prediction

A simple simulation case study is presented here to highlight the importance of augmenting the
hybrid model in [79] with an internal model to enable accurate prediction of motion-induced and
cutting-force-induced servo errors. To do so, a desired trajectory on x-axis with its velocity shown
in Figure A.3 is selected with maximum velocity as 100 mm/s and acceleration as 1 m/s2. The
simulated output x is modeled as sum of motion-induced position xm and cutting-force-induced
position xf as

x = xm + xf =Hxxd + xf

xf (t) = 0.01ẋm(t) sin(ωf t)
(A.14)

where ωf = 523.6 rad/s (5000 rpm) is used. For the DT, nw = 20, n2 = 2, n3 = 20, λ = 0.01 and
f0 = 1 are used; for the internal model, ωi = ωf is used. The data-driven model is trained for one
cycle of the trajectory in Figure A.3 prior to testing. The physics-based model Ĥx is defined as a
2nd order system with ωn= 157 rad/s and ζ = 0.05; Hx is modeled with mismatch in coefficients
by 10% deviation as ω′

n = 1.1ωn and ζ ′ = 0.9ζ i.e.,
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Figure A.5: Desired toolpath

Hx =
2ζωns+ ω2

n

s2 + 2ζωns+ ω2
n

H̃x =
2ζ ′ω′

ns+ ω′2
n

s2 + 2ζ ′ω′
ns+ ω′

n
2

(A.15)

Figure A.4 shows the prediction error using the DT without and with the internal model. Using
the internal model, the RMS prediction error of x is reduced by 27.7%. The following Sections A.5
and A.6 will highlight the performance of the DT-based feedrate optimization using the internal
model in experiments.

A.5 Experimental setup

For experimental validation, Nomad3 three-axis CNC machine tool prototype is used, as shown
in Figure A.6. The optimization algorithm is implemented on dSPACE 1007 real-time control
board running at 500Hz sampling rate, connected to DRV8825 stepper motor drivers for x, y, and
z- axes stepper motors. Renishaw RKLC20-S optical linear encoders are attached on the x and y-
axes gantries to measure x and y- axes positions that are fed back to dSPACE 1007.

A frequency response function (FRF) is measured for the x and y axis of the machine to identify
the machine dynamic component of physics-based model, Ĝx and Ĝy. The input of each FRF
measurement is a swept sine acceleration command to the stepper motors, and the output is the
relative acceleration between the x and y axis using two PCB 393B05 shear accelerometers. Then,
the measured FRFs are modelled via curve fitting. The discrete-time transfer function of Ĝx and
Ĝy with Ts = 2ms are
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Figure A.6: Experimental Setup

Figure A.7: Experimentally identified disturbance frequencies for internal model

Figure A.8: Feedrate, acceleration, contour error and prediction error using conservative, physics-
based and DT-based feedrate optimization in air-cutting
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Ĝx =
0.487z3 − 0.8471z2 + 0.7827z − 0.3768

z4 − 2.149z3 + 2.037z2 − 0.9917z + 0.1495

Ĝy =
0.4378z3 + 0.4994z2 − 0.0569z + 0.0128

z4 − 0.1282z3 + 0.0217z2 − 0.001z + 0.0001

(A.16)

The servo error pre-compensation Cx and Cy are formulated using Ĝx and Ĝy via limited-
preview filtered B-spline method in [74].

A.6 Experimental validation of DT-based feedrate optimiza-
tion

The proposed DT-based approach is validated by comparing its performance with physics-based
approach (without data-driven model) and conservative method generated using a trapezoidal ac-
celeration profile with kinematic limits tuned by trial-and-error to achieve the servo error toler-
ances. A butterfly toolpath [75] in Figure A.9 is used for air cutting and machining an aluminum
workpiece with 3.175 mm diameter flat-end mill and spindle speed of 7000 rpm. Kinematic limits
are set as Vmax = 30 mm/s and Amax = 1 m/s2 in the feedrate optimization; nw = 30, n2 = 2, n3

= 30, λ = 0.01 and f0 = 1 are used in the data-driven model, which is pre-trained using one cycle
of physics-based feedrate optimization. The frequencies ωi of L in Eq. (A.3) are experimentally
identified as in Figure A.7, based on encoder data measured during cutting. A safety factor of 25%
is applied to the desired tolerance, i.e., a contour error bound of Emax = 0.12 mm is applied in
optimization to achieve error tolerance of 0.15 mm in experiments.

Figures A.8 and A.9 show the profiles of commanded feedrate, acceleration, contour error, and
prediction error of x and y using conservative, physics-based, and DT-based approaches in air-
cutting and machining, respectively. The DT-based approach reduces the prediction error in x-axis
by 47.3% and 45.7%, and in y-axis by 4.0% and 34.6% during air-cutting and machining, respec-
tively, compared to the physics-based method, which allows the tolerance to be satisfied. However,
the physics-based method violates the tolerance due to unmodeled dynamics and/or cutting force.
As a result, the proposed approach completes the motion 35.0% and 17.2% faster than the conser-
vative method in air-cutting and machining, respectively, without sacrificing contouring accuracy.
The DT-based algorithm runs in real-time by computing the entire trajectory for machining within
2.04 s. Figure A.10 shows the machined surfaces using trajectories from Figure A.9. The surface
quality of the proposed approach is improved compared to that of physics-based approach, while
staying similar to that of conservative part.
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Figure A.9: Feedrate, acceleration, contour error and prediction error using conservative, physics-
based and DT-based feedrate optimization in machining

Figure A.10: Machined surfaces using the three approaches investigated

88



A.7 Conclusions

This appendix discusses the framework and approach for intelligent feedrate optimization using
a DT that allows for a machine to produce parts with desired part quality specifications as quickly
as possible. The DT is first built on a physics-based dynamics model. Then, a data-driven model
with an internal model is updated on-the-fly to adapt to unknown dynamics and cutting force
disturbances. Using experiments on a CNC machine tool prototype, the proposed approach showed
its performance in accurately constraining the contour error while reducing cycle time by up to 35%
compared to conservative approach.
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