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ABSTRACT

Microscopists relentlessly strive to observe structure at the highest possible resolution. Over the
past century, there has been a transition away from photonic wave sources, including light and
X-rays, towards harnessing the potentials of electron optics. Whereas optical microscopes encoun-
tered their inherent far-field diffraction constraints long ago, thereby limiting characterization to
the micron or nanoscale, electron microscopes can now routinely image materials by using accel-
erated electrons.

The pursuit of achieving high-resolution micrographs has significantly advanced through the
development of aberration correctors. These devices utilize multi-pole magnetic lenses to rectify
imperfections in the electron probe. As a result, electron probes can now reach sub-angstrom
length scales, improving spatial resolution. This relentless pursuit of improving resolution played
a vital role in expanding our understanding of materials and biological structures at the atomic and
nanoscale levels.

Despite the remarkable progress in corrector hardware, there remains a increasingly need for
advanced algorithms capable of efficiently extract valuable information from sparse low-dose ac-
quisitions. The challenges are particularly pronounced in both atomic-scale measurements and 3D
imaging, where substantial radiation dosages may exceed the dose tolerance of materials. This ne-
cessity assumes an even greater significance for chemically sensitive measurements, wherein the
likelihood of capturing inelastic scattering events markedly diminishes.

To mitigate beam damage, reducing electron exposure is a common strategy but can lead to
a decrease in signal-to-noise ratio (SNR) – hindering the analysis process. The extent radiative
damage is particularly problematic for tomography experiments, where designing experimental
configurations suitable for a material’s tolerance is crucial for successfully obtaining accurate 3D
measurements.

Over the past few decades, efforts to enhance image SNR have occurred simultaneously with
developments in detector sensitivity and algorithms that faithfully reveals hidden structure lost in
noisy signals. By using the concept of ‘compressive sensing,’ it is possible to reduce dose through a
computational procedure that assumes signals should be sparse in some domain. More importantly,
compressive sensing provides theoretical guarantees for recovering signals. This thesis extends this
framework into the field of electron microscopy and uncovers several applications that benefit.
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The dissertation introduces image processing algorithms that enables such sparse chemical and
3D structural imaging of materials. These algorithms are designed to maintain maximal quality
with minimal radiative dosages. The development of several computational tools designed for
the visualization of high-resolution of material’s 3D structure and chemistry are presented in
this thesis; these tools are applied to several physical systems including catalytic, semi-organic
and oxide systems from projections micrographs collected by scanning transmission electron
microscopes. Most of the methods presented in this thesis have already been published in several
journals include Nature Communications, npj Computational Materials and Ultramicroscopy.
Overall, this research aims to push the boundaries of electron microscopy and unlock new insights
into the 3D structure and chemistry for a wider class of materials.

The first half of this thesis relates to image recovery and restoration. Chapter 2 provides
an introductory overview of electron microscopy, image formation, convex optimization, and
tomography algorithms. Chapter 3 presents the framework to eliminate structured stripe artifacts
that typically are introduced by mechanical polishing sample techniques for the preparation
transmission electron experiments. This elimination is achieved through constrained optimization
using total variation regularizers. Chapter 4 explores imaging denoising recovery within the
context of chemical maps. This is performed by the novel introduction of data fusion, which
correlates structural and chemical features from simultaneously acquired signals collected in
electron microscopes during spectroscopy experiments. We demonstrate image recovery at various
dimensions spanning from micron to atomic length scales.

The latter half of the thesis centers on contributions to 3D imaging. Chapter 5 presents the fused
multi-modal electron tomography framework for low dose 3D chemical imaging of materials. We
demonstrate high resolution chemical tomography on several hard and semi-organic materials. Be-
yond application, we also explored the dose limitations and sampling requirements for this novel
form of chemical imaging. Chapter 6 discusses the software and algorithmic developments for
enabling real-time 3D imaging of materials. We demonstrate real-time tomography on helical chi-
ral nanoparticles and the open-source platform that enables this experimentation for any researcher.

Conclusions and future work is presented in Chapter 7 with efforts for measuring the atomic
scale distribution of matter for objects larger than the electron probes. This experimental technique
enabled the measurement of hundreds of thousands of atoms, thus a new accomplishment for high
resolution 3D imaging.
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CHAPTER 1

Introduction and Background

Characterization lies at the heart of material science research. The discovery of crystal symme-
tries, quantification of defects, and inspection of new materials all demand reliable methods that
measure structural properties across scales ranging from the microscopic to the atomic level. Mod-
ern scanning transmission electron microscopes (STEM) have revolutionized our ability to explore
atomic-scale structure in a diverse range of materials (e.g., III-V Nitrides or perovskites) by using
high-energy electrons that can resolve individual bond-lengths. This chapter provides an introduc-
tion for image formation in electron microscopes and its extension for 3D tomographic imaging.
Additionally, we delve into the principles of convex optimization and its practical applications in
image recovery.

1.1 Scanning Transmission Electron Microscopy

Electron microscopes deliver imaging resolutions that surpass optical microscopes. This advantage
arises from fundamental differences between the utilization of light and electron waves. Optical
microscopes rely on visible light waves whose smallest wavelengths exceed 400 nm. This inher-
ently prevents light from resolving features smaller than half a micron. In contrast, the resolving
power of scattered electrons fundamentally lies in its picometer wavelengths. In the STEM, a co-
herent electron source emitting from a sharp metal tip (electron gun) generates free electrons that
are accelerated to voltages of 20-300 keV. To put this into perspective, at 80 keV the electron’s
velocity is roughly half the speed of light (λ = 4.18 pm) and it reaches about 80% of the speed of
light at 300 keV (λ = 1.97 pm). However the electromagnetic lenses used to focus the electrons
are often plagued by deviations that prevent the maximal achievable resolution.

Despite the advantages from accelerated electron waves, achieving maximal imaging resolu-
tions is constrained by imperfections inherent to electron magnetic lenses. These lenses play a
pivotal role in focusing accelerated electron waves, but frequently fall short of meeting ideal ex-
pectations. In 1936, Otto Scherzer demonstrated a fundamental resolution limit exists for rota-
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Figure 1.1: Aberration-Corrected STEM Microscope. Conceptual schematic of an aberration-
corrected electron microscope with an HAADF image of a HgS nanoparticle shown on the right.

tionally symmetric magnetic lenses from the inherent spherical aberrations they introduce [140].
In general, geometric aberrations are connected to the aperture cutoff (described by the conver-
gence semi-angle α) which constrains the extent to which a wave can be focused. Thus, geometric
aberrations, characterized by phase errors across the aperture plane prevent the maximal usable
convergence semi-angle (α). Simply put, the aperture cutoff defines the highest spatial frequencies
that can be faithfully transferred to the resulting image while omitting dominant high convergent
angle aberrations. In 1947 Otto outlined methods to circumvent this limitations by including non-
rotationally symmetric lenses that can correct and minimize geometric aberrations, thus leading
the pathway for modern microscopes that achieve sub-angstrom resolutions [141]. Nonetheless
focusing and aberration correction occur in lenses positioned above the specimen, however the
collection of scattering events provide image contrast in STEM micrographs.

In a STEM, the magnetic lenses focus and raster scan a small electron probe converged to a
focal diameter of 0.5− 50 Å across a sample. The electrons transmit through the sample and scat-
tering events are subsequently collected by a detector centered on the optical axis located in the
diffraction plane (Fig. 1.1a). At each probe position, the detector integrates all scattered electrons
within a defined exposure time, converting the measured collision events into a digital pixel inten-
sity. Two detectors commonly found in STEM microscopes are a disc geometry that integrates the
forward scattered electrons at low angles to produce a bright-field signal and a hollow annulus ge-
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ometry that integrates the high elastically scattered electrons yielding an annular dark-field (ADF)
image. ADF-STEM is a popular imaging mode because it produces directly interpretable signals
(Fig. 1.1b).

The contrast observed in ADF-STEM images can be approximated using an incoherent linear
imaging model. With the incoherent model, the resulting ADF-STEM image

(
I(x)

)
is charac-

terized as a convolution between the focused probe with an object
(
f(x)

)
. Mathematically this

is expressed as: I(x) = |ψ(x)|2 ⊗ f(x). The object function represents the specimen described
through the probability of scattering to large angles in the ADF detector: f(x) ∼

∫
D(k)∂σ(x)

∂ks
d2ks

where ∂σ(x)
∂ks

is the partial cross section of the specimen for scattering to angle ks and D(k) is the
function that expresses the annulus detector:

D(k) =

1, for αmin ≤ λ|k| ≤ αmax

0 otherwise
(1.1)

To approximately achieve incoherent imaging, the key requirement is to have a sufficiently large
detector radius. This minimum collection angle is primarily dependent on the electron probe.
Adjusting the collection range to a desired amount can be easily accomplished by modifying the
compression of the projector lenses. As a rough guideline, if αmin > 3α, then the image will gener-
ally be incoherent [68]. Practically, the inner detector angle can be larger, extending to αmin > 5α

to fully suppress diffraction contrast. This mode is often referred to as high-angle ADF (HAADF)
imaging.

Consequently, the image contrast for ADF-STEM imaging is influenced by both the electron
probe shape and material’s partial cross section. Specifically, the partial cross section describes the
angular distribution of incident electrons that undergo scattering due to the Coulomb potential of
a stationary atomic nucleus. The earliest model for elastic scattering was used by Rutherford to
explain the scattering of charged particles through the unscreened electrostatic field of a nucleus.
Notably, in the scenario of Rutherford scattering, image contrast can exhibit variations of up to Z2.
However, Rutherford scattering neglects the impact of electron cloud screening within the nuclear
electrostatic field, leading to an overestimation of scattering at smaller angles.

ADF micrographs produce directly interpretable images of atoms, where intensity is related
to Z-number. However the intensity only provides insight into relative chemistry. When specific
chemical identification is required, we rely on inelastic scattering events.
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1.2 Electron Spectroscopy

Measuring material chemical signatures are accessible through inelastic scattering events that oc-
cur between the microscope’s fast incident and core electrons that surround atoms within the spec-
imen. Whereas an elastic collision preserves kinetic energy and momentum, an inelastic col-
lision conserves the total energy and momentum, a part of the kinetic energy being converted
to atom–electron excitation. Within the scanning transmission electron microscope, two chemi-
cally sensitive spectroscopic methods are available: electron energy loss spectroscopy (EELS) and
energy-dispersive X-ray Spectroscopy (EDX).

1.2.1 Electron Energy Loss Spectroscopy

High-energy electrons that pass through a material can engage in several inelastic processes that
induce change the transmitted electron’s kinetic energy. Electron energy loss spectroscopy (EELS)
measures the interactions between the energetic incident electrons and solid-state materials that
are thin. A magnetic prism below the sample deflects scattered electrons, yielding a spectrum
that quantifies the number of transmitted electrons with specific energy losses (Fig. 1.3a). The
collective energy distribution of inelastically scattered electrons provides the local chemical char-
acteristics of the specimen.

Figure 1.2: EELS spectra and inelastic scattering. a A sample EELS spectrum of MnO2 [adapted
from eels.info]. b A classical (particle) view of electron scattering.

The EELS spectrum contains three primary regions: the zero-loss peak, the low-loss region, and
the core-loss region (Fig. 1.3a). The zero-loss peak encompasses the elastically scattered electrons
that might have incurred energy losses below the detectable threshold. Analyzing the zero-loss
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peak peak’s width facilitates the determination of the probe’s energy resolution (typically ranging
from 0.1 - 2 eV) and can also be utilized to estimate the specimen’s thickness. Coulomb interac-
tions between the high-energy incident electrons and the specimen results in inelastic scattering
that extend beyond the zero-loss peak. This region is characterized by scattering events involving
outer shell electrons, thus leading to collective electronic excitations of plasmons and phonons.
These surface plasmons describe the valence electron density and unfortunately can not measure
chemistry in specimen.

Information about the elements present are accessible by measuring the material’s core electrons
transitioning to unoccupied states above the Fermi level. During this process, the shell electrons
of atoms in the specimen move outside the attractive nucleus field leading to ionization of the
atom (Fig. 1.2b). The core loss edges are represented by an increase in intensity – representing the
ionization threshold, the energy that is approximately equivalent to its inner-shell binding energy.
Core-loss edges can be divided into two regions: the energy loss near-edge structure, extending
30-50 eV above the edge onset and extended energy loss fine structure which extends 200-300 eV
above the near-edge region. Both regions capture dipole transitions from a selected core-orbital to
unoccupied states above the Fermi level. While generally extended energy loss is rarely applied in
studies due to weak signal modulations, the fine structure from the onset peaks provides insights
into the unoccupied density of states [59, 85].

1.2.2 Energy Dispersive X-Ray Spectroscopy

EDX is the measurement of X-rays emitted from specimens. When the focused electron beam
strikes the specimen, it prompts the excitation of an inner-shell electron. This excited electron is
ejected from its orbital, resulting in the formation of an electron vacancy or “positively charged
hole.” An electron from a higher-energy outer shell can release energy in the form of X-rays to
drop into this vacancy. These emitted X-rays carry the distinct energy signature, closely tied to the
atom’s elemental identity and chemical concentration.

A solid-state detector captures and records the emitted X-ray energies. Positioned at an angle
relative to the specimen, this detector enables the separation and identification of X-rays based on
their distinct energies (Fig.1.3b). Current EDX detectors commonly offers total solid angles of 0.9
steradian, allowing 7% of the emitted x-rays to be analyzed. Modern microscopes can use several
detectors in unison, thus scaling the total solid angle accordingly. Notably, EDX serves a dual
purpose of qualitative and quantitative analysis, offering insights into the chemical composition
of a specimen. It empowers analysts to not only determine the presence of specific elements
but also ascertain the relative concentration of each element within the sample. The EDX image
intensity (Ia) is proportional to the sample thickness (t) and concentration (Ca) of element a. This
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Figure 1.3: Spectroscopy in the STEM Microscope. a Conceptual schematic inelastic signal
generation that occurs in the electron microscope. b-c Energy losses from transmitted electrons or
characteristic energies from emitted X-ray correspond to chemical signatures that can be used to
map the chemistry of materials (shown right).

relationship is estimated as: Ia = DCaρt/ζa where Da is the total electron dose, ρ is the specimen
density, and ζa is a sensitivity factor that is intrinsically linked to the ionization cross section and
characteristic X-ray generation probability [166].

While EDX exhibits relatively poor energy resolution (approximately 120 eV compared to 0.1
eV for EELS), it is frequently favored due to its straightforward quantification methodology. How-
ever, this preference comes with the drawback of reduced sensitivity to lighter elements, as the
X-ray fluorescence yield falls below 1% for Z < 10 [49]. Complexities arise when overlapping
peaks can obscure meaningful EDX analysis. Especially in the case of light element quantification
(e.g. K-peaks for carbon or oxygen), where heavier elements containing L-peaks within 100 eV
can interfere. Nonetheless these edges could still overlap for EELS, but they can still be distin-
guishable from the better energy resolution.

A fundamental challenge in either method (EDX or EELS) lies in dealing with the low signal-
to-noise ratio (SNR) that occurs from relatively small inelastic cross sections. The spectral mea-
surements are limited by a Poisson process as detections are triggered from individual electron or
X-ray counts arriving at the detector. Strategies aimed at improving SNR often involve increasing
the electron dose or prolonging the acquisition time per pixel to increase the counts. However,
these approaches carry the potential of accelerating irradiation damages or spatial drift leading to
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image distortions.
In combination both inelastic and elastic signals (EELS, EDX and HAADF) can provide a com-

prehensive understanding of the atomic-scale structure of materials. This signals can be simulta-
neously acquired across various length scales, spanning from micron to sub-angstrom resolutions,
to obtain projections at unique viewing angles.

1.3 Electron Tomography

Three dimensional characterization and visualization of nano-sized objects can be achieved
through electron tomography. The genesis of tomography traces back to the mathematical un-
derpinnings of reconstructing an object from its lower-dimensional projections, a concept first
formulated by Radon in 1917 [129]. The technique enables the recovery of specimen structures
by rotating the specimen around a fixed eucentric axis while acquiring projection images at sev-
eral viewing angles (commonly referred to as a tilt-series). A 3D reconstruction of the specimen’s
volumetric structure is reconstructed from a series of 2D projections.tg Although the foundational
mathematical principles were established early on, the first practical application emerged in 1956
when Bracewell employed them to reconstruct two-dimensional maps of microwave emissions
from the sun [12]. Over time, this approach found its place within the electron microscopy com-
munity, where De Rosier and Klug reconstructed the helical structure of the T4 bacteriophage tail
from a single TEM projection by leveraging prior knowledge about its helical symmetry [133]. Ex-
panding on this progress, spherical symmetry was harnessed in 1970 to successfully reconstruct the
negatively stained human wart virus and tomato bushy virus from multiple projections [32]. The
milestone achievement in the evolution of electron tomography came with the 3D reconstruction
of the low-symmetry fatty acid synthetase molecule in 1974 [72, 74].

To obtain a directly interpretable 3D volume (i.e. tomogram), each recorded image must satisfy
the projection requirement. This principle requires that the image intensities must exhibit a mono-
tonic correlation with specimen thickness [69]. In the case of bright field STEM, this criterion fails
as signal intensity can dramatically change with tilt from diffraction contrast. On the other hand,
ADF-STEM and chemically sensitive spectral maps effectively mitigate phase and diffraction con-
trast, resulting in image intensities that reflect variations in projected mass-thickness. Each of
these modalities, traditionally acquired independently, can be employed to measure a specimen’s
3D structure or chemistry. An illustration of a HAADF tomography experiment is presented in
Figure 1.4.

Projection images can be mathematically described by the Radon transform. For simplicity,
let’s begin by reconstructing a 2D image from a 3D object represented by the function f(x, y).
The projection data (pθ(t)) for the sample tilted by angle θ and ray at scanning position t =
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Figure 1.4: Diagram of single-axis electron tomography. Projections are recorded at regular
tilt increments of θ around a single fixed axis. A typical experiment contains 70 - 140 projection
images from ±70◦ separated by consistent 1 or 2◦ increments.

x cos θ + y sin θ is given by:

pθ(t) =

∫
L

f(x, y)ds =

∫ ∞

−∞

∫ ∞

−∞
f(x, y)δ(x cos θ + y sin θ − t)dxdy (1.2)

To fully appreciate the inherent challenges to accurately reconstruct our sample with sufficient
sampling, we can concisely visualize our tomography experiment in Fourier space. The Fourier
slice theorem is the fundamental principle for tomography, bridging the connection between the
Radon and Fourier transform. It states that projections are equivalent to central planes in Fourier
space (illustrated in Fig. 1.2). The Fourier transform of the projection is given by:

F [pθ(t)] =

∫ ∞

−∞
pθ(t) exp(−2πiωt)dt

= Pθ(ω)

(1.3)

Where ω is the frequency variable corresponding to t. Now let us consider the simplest form of the
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Fourier slice theorem, in the case where θ = 0:

F (kx, 0) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp(−2πixkx)dxdy

=

∫ ∞

−∞

[ ∫ ∞

−∞
f(x, y)dy

]
exp(−2πixkx)dx

=

∫ ∞

−∞
pθ=0(x) exp(−2πixkx)dx

= Pθ=0(kx)

(1.4)

In the general case, we can rotate the coordinates and obtain:

Pθ(ω) =

∫ ∞

−∞

∫ ∞

−∞
f(x, y) exp(−2πiωt)dxdy

= F (ω cos θ, ω sin θ)

= F (ω, θ)

(1.5)

Essentially, the Fourier slice theorem tells us that Pθ(ω) is F (kx, ky) in polar coordinates (kx =

ω cos θ and ky = ω sin θ). By acquiring projections at various angles, we can effectively fill in the
object’s information in Fourier space, enabling us to reconstruct the true structure with a single
inversion operation

(
F−1

[
F (kx, ky)

])
. Nonetheless a central challenge in this method arises from

to the disparity that measurements exist on a radial slices, while the inverse Fourier transform
requires data on Cartesian coordinates.

Figure 1.5: Fourier Slice Theorem. A projection of a 2D object in real-space is equivalent to the
central plane of the object’s full Fourier transform at the same angle (θ).
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To circumvent the complications of direct Fourier inversion, tomography can leverage the
Radon transform to produce tomograms. A fundamental linkage between Radon and Fourier space
exists, as both domains provide theoretically equivalent approaches to tomographic reconstruc-
tion [162]. The inverse Radon transform (commonly referred to as back-projection) is expressed
as follows:

f̂(x, y) =

∫ π

0

pθ(t)dθ (1.6)

In this process, the intensity projected onto individual pixel is linearly integrated into the recov-
ered object (f̂ ) along a ray corresponding to the relevant angle. This integration contributes to
the formation of object density. However, using the back-projection or inverse Fourier transform
alone often produces inaccurate reconstructions, because the density of samples diminishes toward
higher frequencies thus impeding resolution. We can combat the uneven sampling distribution
with the weighted back-projection (WBP) method [18]. As its name implies, WBP encompasses
two sequential steps: filtering and subsequently back-projecting the projections. Unfortunately
while filtering can preserve fine features, the consequence from incomplete sampling still has a
treacherous impact on resolution.

1.3.1 Resolution and the Crowther Criterion

Practical experimental limitations for electron tomography imposes significant limitations on
achieving perfect sampling in Fourier space. Firstly, due to radiation dose limitations, we only
have the liberty to acquire a finite number of measurements before the sample begins to degrade.
Notably, this finite measurements manifests as an radial imbalance between the low- and high-
frequency components. This limitation leads to reconstructions characterized by blurred features,
as sample density diminishes at higher frequencies. Ultimately, imbalanced sampling in Fourier
space adversely impacts resolution as fine spatial features are irrecoverable.

The spatial resolution of tomograms obtained from a single-axis tilt series exhibits anistropic
characteristics. Along the tilt axis, the resolution can be equivalent to the pixel size as defined by
the Nyquist limit (assuming perfect alignment). However, in directions perpendicular to the tilt
axis (y) the resolution can be reduced due to the discrete number of acquired projections (N ). The
best achievable resolution estimate was geometrically derived by Crowther as follows [33]:

dy =
πD

N
(1.7)

Eq 1.7 is known as the “Crowther criterion” which illustrates that achieving higher resolution for
a given object size necessitates an increased number of uniformly sampled projections. Figure 1.6
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Figure 1.6: Limited Angular Sampling. The Fourier slice theorem states that every angular pro-
jection (pθ(t)) contains full information about F (kx, ky). A finite, regular sampling of t translate
into a finite sampling along the projection lines (red lines). A limited sampling with only 20 views
(top row) is compared a fully sampled tilt series with 180 views (bottom row). The empty space
between adjacent planes negatively impacts the reconstruction quality.

demonstrates the effect of limited angular sampling on a Shepp-Logan phantom. When compared
to the reconstruction with uniform sampling (Fig. 1.6c,d), the lack of information in Fourier space
from the limited views cripples the quality – leading to the presence of streak artifacts and boundary
distortions that obscures the visibility of small pores (Fig. 1.6a,b).
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1.3.2 Resolution and the Missing Wedge

Achieving a full tilt range within an electron microscope is often hindered by hardware limita-
tions. These limitations result in an information gap along the kz direction when measuring the
3D structures of materials. The confined space between lenses restricts extensive sample rotations,
as electrons cannot transmit through the increased thickness at high tilt angles In most scenarios,
researchers can attain a maximum tilt angle (α) of 75◦. Ultimately this incomplete sampling pre-
vents the use of direct inversion methods as object recovery in electron tomography becomes an
under-measured problem. As a result, features along the z-axis are stretched by (eyz) that reduces
the z-axis resolution [128]. In the case of 2D tomography, a missing wedge along the kx-axis
(Fig. 1.7a) manifests as elongation along the y-axis (Fig. 1.7b).

dz = dyeyz = dy

√
α− sinα cosα

α− sinα cosα
(1.8)

Beyond limitations posed by the missing wedge, resolution can also be influenced by various
experimental factors including sample drift, alignment discrepancies, microscope stability, and
beam-induced damage. Fortunately practical resolution estimation has proven to be more a intri-
cate process due to the advancement of iterative algorithms designed to enhance overall quality by
formulating the process as an inverse problem.

Figure 1.7: The Missing Wedge and Limit Angular Sampling. The ground truth and sample to-
mography reconstruction of a Shepp-Logan Phantom using 40 projections with a 60◦ wide missing
wedge (highlighted in blue), which suffers from elongation artifacts along the vertical direction.
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1.3.3 Electron Tomography as an Inverse Problem

Inverse problems is the process of recovering a signal from a collection of observations by model-
ing the physics for generating measurements. Tomography and image restorations (e.g. denoising
or denoising) are two examples of inverse problems, where objectives are to either recover the 2D
or 3D specimen morphology or remove noise in an image. We can model the inverse problem as a
system of equations that expresses the outcome of measurements, given a complete description of
the physical system of interest. In case of tomography, this would involve generating projections
from the recovered object.

Iterative algorithms prove to be highly effective for solving large systems of linear equations,
particularly those requiring regularized to address noisy data. In the context of linear systems
of equations, our discrete inverse problem can be expressed as: Ax = b where x signifies the
recovered object, b represents the measured projections and A ∈ Rm×n stands as the matrix
modeling the measurement process, often referred to as the sensing or measurement matrix. In
the case of tomography, x would be the recovered volume or image of our specimen and A is the
Radon transform.

Unfortunately insufficient measurements for electron tomography experiments complicates the
reconstruction process. In cases where the problem is fully described, (i.e. sufficient projections
over the entire angular range), we can execute simple matrix inversion (x = A−1b). The direct
matrix inversion approach accurately recovers the object when the inverse problem is well-posed.
Hadamard’s conditions establish the prerequisites for a properly described problem, entailing the
existence of a unique and stable solution resilient to alterations in data. However, problems failing
to meet these conditions (e.g., A having fewer rows than columns) lead to nontrivial nullspaces,
thus invalidating the uniqueness condition. Thus, when insufficient projections are available, the
inverse problem is ill-posed.

Handling an ill-posed inverse problem necessitates a modification that yields a unique and stable
solution. One approach involves transforming the recovery process from a linear system (Ax = b)
into a least-squares problem, which results in solutions approximating the unknown solution (x̂):

x̂ = argmin
x

1

2

∥∥Ax− b
∥∥2

2
(1.9)

To solve the optimization problem stated in Eq. 1.9, we need to use numerical algorithms that
determine the given solution. Within the literature, a variety of optimization algorithms are avail-
able. Among the simplest are the first-order gradient descent algorithms, which follow the steepest
gradient direction. Extending this approach, the Simultaneous Iterative Reconstruction Technique
(SIRT) incorporates a projection operator to enforce constraints that align with realistic conditions.
The most common constraint is non-negativity which assumes the recovered object possesses pos-
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itive and real-valued attributes. The pseudo-code for SIRT is given as:

Initialize: x0 = 0, LA = ∥A∥22
for k = 1, . . . , Niter do ▷ Main Loop

xk = PC

(
xk−1 − 1

LA
A⊤(Axk−1 − b)

)
end for
Return: xNiter ▷ Return the Final Reconstruction

where PC is a projection onto a convex set C like non-negativity and LA is the Lipschitz constant.
Computation of the Lipschitz constant is useful for estimating appropriate step sizes that ensure
monotonic decay. Variants of SIRT consist of normalizing the gradient by the rows or columns
of A (e.g., Cimmino’s method or component averaging). An alternative approach, the algebraic
reconstruction technique (ART), also known as the Kaczmarz algorithm, involves only one row
from the measurement matrix (ai) per iteration. While each SIRT iteration entails a single matrix
vector multiplication operation, ART follows sweeping process that either passes through all the
rows sequentially or randomly. The pseudo-code for ART is given as:

Initialize: x0 = 0
for k = 1, . . . , Niter do ▷ Main Loop

for i = 1,m do ▷ Cycle Through all the Rows
xk,i = PC

(
xk,i−1 + ω

bi−aTi yk,i−1

∥ai∥22
ai

)
end for

end for
Return: xNiter ▷ Return the Final Reconstruction

Unfortunately, these first-order methods are known to exhibit slow convergence rates (O(1/k))
thus requiring several hundreds or thousands of iterations to obtain the final solution. Here, the
big-O notation for worst-case convergence means a decay rate proportional to 1/k. Modifications
to the first-order gradient methods can accelerate the convergence rate through the incorporation
of momentum. At a high level, momentum leverages previous steps during reconstruction as prior
information for the current step to provide a multiplicative boost in convergence. We can include
momentum into standard gradient descent optimization through the addition of an extrapolation
step after the gradient update.

Conceptually the momentum term nudges each iterate further down the parabolic landscape by
descending further along the previous update’s direction and dampens potential oscillations. While
the gradient descent algorithm is simple and guarantees monotonic improvement for every itera-
tion, the fixed learning rate can slowly progress toward the local solution. Increasing the learning
poses the risk of oscillating in regions of high curvature. Momentum-based descent adaptively
scales the step size in response to the local curvature per iteration. The advantages of momentum
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Figure 1.8: Momentum Accelerated Optimization. Traditional gradient descent (GD) juxta-
posed with Nesterov accelerated gradient descent (NAG). From comparable starting points, NAG
converges ∼ 3 times faster, requiring 9 steps to reach the minimum, while GD required 25 steps.

can be seen by seeking the global minimum of a synthetic landscape known as Booth’s Function
(Fig. 1.8)—a convex function often used to test optimization performance [80].

For the Booth landscape demonstration, standard gradient descent requires roughly 25 iterations
to reach the minimum due to a slowdown near the flat minimum. With momentum, the descent
retains speed and only requires ∼40% of steps to reach the solution (9 in total). This simple
modification remarkably achieves an optimal quadratic convergence rate [6]. Specifically, Nesterov
has shown analytically that the convergence rate of these classic first-order methods can be sped
up from O(1/k) to O(1/k2) after k iterations with the incorporation of momentum [118].

1.3.4 Improving Electron Tomography with Sparse Optimization

Although iterative methods offer a versatile approach for tackling large-scale linear systems, the
challenge lies in the ill-posed nature of the measurement matrix – especially in experiments where
minimal projections are available. In such cases, the resulting solution (x) becomes highly sus-
ceptible to errors present in the raw measurements (b). Worse, the complexity is exacerbated by
the fact that measurements are often not perfect, but rather are contaminated by noise and error
(b = b̂+ ε).

To address the intricacies of ill-posed problems, introducing regularity helps promote the pro-
duction of unique and stable solutions. Regularization helps facilitate accurate recovery from
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reduced measurements by incorporating any available information about the object prior to acquir-
ing any data. The regularizer should be chosen such that desirable recovery is encouraged. For

instance, the regularizer can be a p-norm
(
∥x∥p =

(∑n
i=1 |xi|p

)1/p) of the signal itself or involve

applying a transformative operation (e.g., wavelet transform or finite difference operator) on the
signal. The choice for the p-norm influences the type of signals that are favored, whether they em-
phasize differences in appearance or prioritize smoothness. Overall, the unconstrained regularized
cost function comes out as the following form:

x̂ = argmin
x

1

2

∥∥Ax− b
∥∥2

2
+ λR(x) (1.10)

Where λ is a regularization parameter that balances the trade-off between the data fidelity and
regularization (R(x)). Alternatively, we can express Eq. 1.10 as a constrained optimization where
a restriction is placed on the data fidelity term. If for example the noise level is known, the ε can
be selected directly on this knowledge.

x̂ = argmin
x

R(x) s.t.
1

2

∥∥Ax− b
∥∥2

2
< ε (1.11)

1.3.5 Compressed Sensing Tomography with Total Variation Regularization

Over the past two decades there has been a growing interest in regularizers designed to enforce
sparse recovery. This interest has been driven by the mathematical principal of compressive sensing
(CS) – which guarantees perfect (or sometimes near-perfect) signal recovery [40]. In this context,
signal sparsity refers when the number of non-zero values is significantly lower than the total
number of elements – often quantified using the ℓ0-norm (∥x∥0). To solve the CS problem, we
modify Eq. 1.11 with the ℓ0-norm as the regularizer (∥x∥0) and the hard constraint:

x̂ = argmin
x

∥x∥0 s.t. Ax = b (1.12)

Unfortunately testing all possible combinations that satisfy this constraint is computationally in-
tractable and can be shown to be NP -hard. Nonetheless, this intractability can be circumvented
by relaxing the ℓ0-norm using a more manageable approximation, commonly the ℓ1-norm, and
allowing some degree of data inconsistency within the unregularized formulation (Eq. 1.10). The
ℓ1-norm is renowned for promoting sparsity and convexity, rendering the optimization problem
computationally tractable.

Tomograms can be expressed as sparse in various ways. One prevalent approach involves rep-
resenting tomograms in the gradient magnitude domain, where relatively uniform regions are sep-
arated by distinct boundaries. An example of sparsity enforced by the gradient magnitude operator
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is illustrated in Figure 1.9 on a HAADF micrograph of ZnS-CuS nanocrystals. While the HAADF
image is composed of relatively large homogeneous regions, its gradient image is sparse as its
composed of 14.9% nonzero pixels.

Figure 1.9: Illustration of Sparsity in the Gradient Magnitude Domain. A HAADF micrograph
of ZnS-CuS nanoparticles and the magnitude of its spatial gradient shown right. While the HAADF
image may not be sparse, its gradient image is.

Total variation (TV) has emerged as a widely used regularizer in low-dose tomography imaging
challenges. This is due to its ability to sparsely represent the reconstructed object in the gra-
dient magnitude domain. Originally introduced by Rudin in 1992 for image denoising within a
continuous-domain framework [136], total variation has found utility in edge-preserving regular-
ization and sparse recovery within the field of tomography. Noteworthy contributions in this do-
main include the works of Sidky and Pan in medical CT, as well as Leary and Midgely in electron
tomography [154, 160].

TV norm penalizes abrupt transitions, thereby promoting smoother transitions within the signal.
Two variants of total variation norms (isotropic and anisotropic) are commonly employed in image
recovery tasks. The key distinction lies in how the isotropic norm treats all directions equally, thus
yielding a globally smooth solution. While the anistropic total variation preserves strong edges by
adapting its smoothing based on the local orientation of edges. Consequently, edges and features
are retained more effectively, as the directional aspects of gradients are taken into account.

The problem addressed throughout a significant portion of this thesis pertains to formulating
the unconstrained optimization (Eq. 1.10) as the Total Variation Minimization (TVMin) problem:

argmin
x

1

2

∥∥Ax− b
∥∥2

2
+ λ

∥∥x∥∥
TV

(1.13)

where
∥∥x∥∥

TV
=

∥∥∇x
∥∥
2,1

=
∥∥√|Dxx|2 + |Dyx|2

∥∥
1

and Di is the finite-difference approximation
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along the axis i. Note this formulation expresses the isotropic total variation for a 2D image; in 3D
an additional finite difference operation would be applied along the z-axis.

Alternatively we can use the anisotropic total variation which can be expressed as
∥∥x∥∥

ATV
=∥∥∇x

∥∥
1
=

∣∣Dxx
∣∣ + ∣∣Dyx

∣∣. In either case, we can express the total variation norm as ∥x∥TV . We
can use FISTA to solve Eq. 1.13 (shown below).

Initialize: x0 = y0 = 0, t0 = 1, LA = ∥A∥22, λ̄ := λ/LA

for k = 1, Niter do ▷ Main Loop
yk = yk−1 − 1

LA
A⊤(Ayk−1 − b) ▷ Gradient Descent

xk = argminy ∥y∥TV + 1/(2λ̄)||yk − y||22 ▷ Proximal Operation for TV
tk =

1
2
(1 +

√
1 + 4tk−1) ▷ Momentum weighting

yk+1 = xk +
tk−1−1

tk
(xk − xk−1) ▷ Momentum update

end for
Return: xNiter ▷ Return the Final Reconstruction
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CHAPTER 2

Removing Stripes, Scratches and Curtaining with
Non-Recoverable Compressed Sensing

1

Highly directional image artifacts such as ion mill curtaining, mechanical scratches, or im-
age striping from beam instability degrade the interpretability of micrographs. These unwanted,
aperiodic features extend the image along a primary direction and occupy a small wedge of in-
formation in Fourier space. Deleting this wedge of data replaces stripes, scratches, or curtain-
ing, with more complex streaking and blurring artifacts—known within the tomography commu-
nity as ‘missing wedge’ artifacts. Here, we overcome this problem by recovering the missing
region using total variation minimization, which leverages image sparsity-based reconstruction
techniques—colloquially referred to as compressed sensing—to reliably restore images corrupted
by stripe-like features. Our approach removes beam instability, ion mill curtaining, mechanical
scratches, or any stripe features and remains robust at low signal-to-noise. The success of this
approach is achieved by exploiting compressed sensing’s inability to recover directional structures
that are highly localized and missing in Fourier Space.

2.1 Introduction

Streaks, stripes, scratches and curtaining artifacts commonly degrade image quality in microscopy
datasets. This broad class of highly directional artifacts arise from varying conditions during image
scanning—or may be artifacts inherent to the specimen, but artificially introduced during sample
preparation such as curtaining during ion beam milling or mechanical scratches from polishing
techniques. As a result, these artifacts can plague micrographs across any length scale. At the
mesoscale, 3D focused ion beam (FIB) tomography is limited by the streaks induced by mill cur-
taining [174]. At high-resolution, stripes appear in scanning transmission electron microscopy

1This chapter is based on results from [147].
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(STEM) from beam instability and is most noticeable when signal is low relative to the back-
ground—common to bright-field (BF) detectors, imaging thick specimens or beam current fluctu-
ation. Even more broadly, stripe artifacts are seen in atomic force microscopes (AFM) [26], light
sheet fluorescence microscopy (LSFM) [98], and even globally at km length scales in planetary
satellite imaging [130]. When possible, these linear artifacts are best mitigated experimentally,
however experimental solutions are often difficult or unavoidable.

Over the years, a few methods have been demonstrated for destriping images outside of electron
microscopy. Statistical-based methods developed for multiple-sensor imaging systems in plane-
tary satellites assume the distribution of digital numbers in each sensor should be consistent (i.e.
histogram or moment matching) [130, 55]. However, these matching-based methods are highly
limited by the similarity assumption and fail on single-sensor imaging systems. Alternatively,
filtering-based methods suppress the presence of stripe noise by constructing a filter on a trans-
formed domain with a Fourier transform [26, 25] or wavelet analysis [161, 115]. Unfortunately,
filtering methods risk removing or suppressing useful structural information falling within the fil-
ter. The third approach treats the destriping issue as an ill-posed inverse problem. Prior knowledge
is used to regularize an optimization problem [11] and separate the unidirectional stripes from the
image [24, 1, 139]. A similar class of research, known as compressed sensing (CS), has become
highly successful toward solving inverse problems with incomplete data by finding maximally
sparse solutions — but has yet been applied to remove scratch and stripe artifacts.

In this chapter, we describe a compressed sensing inspired approach that can remove highly-
directional artifacts and demonstrate applications for ion mill curtaining, mechanical scratches,
and beam instability. Here, a wedge of information containing the stripe artifacts is removed in
Fourier space and the specimen’s information is recovered using total variation (TV) minimization,
which maximizes sparsity of the image’s gradient magnitude and preserves sharp edges. A data
constraint is imposed to produce a stripe free image with near identical appearance in signal-to-
noise. The algorithm effectively removes striping when the missing wedge encompasses all stripe
artifacts (typically 5º ∼ 10º) and is relatively insensitive to noise.

2.2 Background

The simplest way to remove streaks and stripes is to delete corresponding planes (or wedges) of
information in Fourier space, however in turn, this also degrades the image. To illustrate, Figure 2.1
shows a backscatter electron (BSE) image of a biomineral surface scratched during mechanical
polishing. The aperiodic scratches that extend a vertical direction (Fig. 2.1a) are confined in an
angular range (i.e., ∼5º) in Fourier space. Removing an information wedge (Figure 2.1b) can better
estimate the true object. However, deleting information in Fourier Space introduces smearing,
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elongation, and blurring (highlighted in the yellow circles). These missing wedge artifacts are well
known to the electron tomography community where larger wedge sizes exacerbate smearing and
elongation artifacts [110].

Recently, CS inspired approaches have been applied to tomography as a tool for recovering
information in the missing wedge. It is possible to reconstruct models with high data-fidelity from
sparse projections under the CS framework. TV minimization is widely used in image restoration
because of its ability to preserve edges [127]. The optimization problem for this algorithm can be
written as:

argmin
x

∥∇x∥1 s.t. Φx = b

where x and b represent the reconstructed image and measured data, Φ is the measurement matrix
and ∇ transforms the image to the gradient-magnitude (sparse) domain.

Compressed sensing has demonstrated high-quality signal recovery is possible from a minimal
number of measurements (b) by assuming maximal sparsity [40, 21]. CS solves inverse problems
(Φx = b) by seeking the sparsest representation of the original object (x) via ℓ1- norm optimiza-
tion [117, 160]. The theory of CS requires two assumptions to be true: (1) the object must have
a sparse representation in a known transform domain (i.e. to be compressible), (2) there must
be incoherence (i.e., contain a high level of dissimilarity) between the sensing and sparse basis
[103, 21]. Conveniently, experimental data is often sparse in certain domains, as reflected by the
compressibility of real-world information [42]. Incoherence expresses the level of dissimilarity be-
tween the sensing basis and the sparse basis [93] and depends on both how information is sampled
(or missing) and the structure of the information (i.e. specimen).

One popular sensing basis used in electron microscopy is the Fourier basis. Each plane in
Fourier space represents a projection of lines or stripes in real-space [12]. Thus, extended stripe-
like structures in an image are confined to a plane in Fourier space. This is illustrated in the vertical
scratches of Figure 1a, which exists in a horizontal plane of the FFT. If there is a small angular
range to the stripes, the planes will broaden out to a wedge. Unlike non-directional image features
that are typically spread-out in Fourier space, all knowledge of stripes becomes lost by removing
a well-chosen plane (or wedge) of information. Thus, without sufficient sampling of particular
Fourier planes, linear types of features cannot be retrieved by the standard CS sampling strategy.

In this work we demonstrate that TV minimization advantageously fails to restore stripes and
scratches confined within a missing wedge (low incoherence) – but recovers structural informa-
tion that is relatively spread in Fourier space (high incoherence). This provides the basis to our
destriping approach.
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Figure 2.1: Reconstruction of a scratched pearl surface. a) The original 10 keV BSE-SEM
image of a scratched biomaterial with its FFT below. b) The output from deleting a wedge of
information in Fourier Space. c) The TV minimization reconstruction and its Fourier Space image.
d) The residual between images (b) and (a). e, The residuals between images (c) and (a).

2.3 Results

Here we destripe images, by first removing the information in Fourier space containing unwanted
artifacts, thus creating a ‘missing’ wedge. This ‘missing’ wedge of information is then recovered
by minimizing the image’s TV using a gradient descent approach. Simply deleting information
within the ‘missing’ wedge in Fourier Space (Figure 2.1b) provides a poor estimate of the clean im-
age and creates elongation and blurring artifacts perpendicular to the ‘missing’ wedge (Fig. 2.1b).
The residuals reveal the quality of the decomposition by calculating the absolute difference be-
tween the output and the original image. The residuals from a wedge Fourier filter, for Figure
1b, shows the removal of both unwanted stripes and useful structural information (Fig. 2.1d), a
typical problem associated with filtering. However, recovering information in the ‘missing’ wedge
with TV minimization produces an image without these artifacts (Fig. 2.1c). Figure 1e shows TV
minimization only removed features that strictly pertain to the scratches. The gradient descent
incorporates a convergence parameter (a) and requires many iterations to converge. Large scale
simulations to investigate the optimal conditions for convergence found that for both experimental
and simulated images the algorithm normally converges after ∼150 iterations when a = 0.1.
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Figure 2.2: Reconstructions of BF-TEM and FIB images. a) The original contrast reversal 300
keV BF-TEM image of an AlGaN Quantum Well with horizontal intensity fluctuations and its FFT
on the top right-hand corner. b) The reconstruction with the TV- minimization algorithm and its
FFT. c) The residuals between images (a) and (b). d) The original 30 keV secondary electron
(SE)-SEM image of an aluminum sample with curtaining collected during a FIB tomography ex-
periment. e), The residuals between images (d) and (e). Contrast was reversed in (a) and (b) for
clarity.

Other stripe artifacts, such as beam instability common to BF-STEM images (Fig. 2.2a) or cur-
taining in FIB micrographs (Fig 2.2d) can also be removed with our approach. Figure 2.2a. shows
an atomic resolution image of an AlxGa1−xN quantum well suffering from unidirectional horizon-
tal stripes caused by current fluctuations in the beam. The stripes prevent assessment of interface
sharpness of the bright Al-rich layer. Similarly, waterfall/curtaining effects (Fig. 2.2d) — typically
arise in FIB-tomography due to irregular milling rates caused by specimen inhomogeneity [71].
The presence of curtaining artifacts reduces interpretability for segmentation or object recognition
[8]. Figures 2.2b-c and 2.2e-f demonstrate that our approach can separate the corrupted image into
the clean and stripped components. For beam instability, the stripes are unidirectional (i.e. per-
fectly horizontal) and in this case, the missing wedge is along the x-axis only (no angular spread).
In this limiting case, our approach converges to a one-dimensional problem with some similarity
to that proposed by [11, 24] for Earth satellite and FIB data.

An optimal wedge size must be just large enough to remove all the stripe artifacts. Figure 2.5
shows the performance of removing scratches for 4◦, 8◦, and 15◦ missing wedges. If too small
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Figure 2.3: Reconstruction of a BSE-SEM micrograph under various horizontal (0º) ‘Miss-
ing’ Wedge widths. a) The original 10 keV SEM image of a pearl sample with vertical scratches
highlighted by green arrows. b1-d1) The first row shows the images with a ‘missing’ wedge of
information as the blurring artifacts are prominent in the yellow circles. b2-d2) The second row
shows the TV minimization reconstructions with the removal of the blurring artifacts and loss of
features for large wedges highlighted in the red circles. FFT insets shown lower left.

of an angle is chosen, then scratch features remain (Fig. 2.5b1) before and after TV minimization
recovery (Fig. 2.5b2). Thus, a sufficiently large missing wedge should be used to ensure that all
information relating to the stripe, scratch, or curtaining has been removed in Fourier space (Fig
2.5c) and thus cannot be recovered with TV minimization. Increasing the missing wedge of infor-
mation exacerbates image degradation before TV minimization recovery (Fig. 2.5b1-d1) but less
noticeably after reconstruction. However, one must be cautious not to make the wedge unneces-
sarily large, as specimen features elongated along the direction of the scratches are susceptible to
alteration. The vertical domain boundary highlighted by red circles in Figure 2.5 is preserved using
an optimal angle of 8◦ but becomes blurred for much larger angles 15◦.

Our approach is robust even down to low signal to noise ratios (SNR) and has the capability to
preserve fine features from the original image. The algorithm consistently produced similar results
to the ideal image in Fig. 2.5c2, after random Gaussian white noise was added to Fig. 2.4a. The
standard deviation (σ) of Gaussian variance of the noise is related to SNR by σ = µ

SNR where
µ is the image’s mean. Even though low signal-to-noise (Fig. 2.4d1) makes the scratches less
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Figure 2.4: TV minimization reconstructions for decreasing SNR. a) The first row shows the
images after Gaussian additive white noise is implemented and b2-d2) the second row shows the
TV minimization reconstructions.

visible, the algorithm continues to recover the object. Noise preservation is expected from the
strict data constraint (Φx = b) that preserves all information in Fourier Space outside of the
missing wedge. The goal of this algorithm is not to filter or reduce noise, but to reproduce the
original image free from scratches and stripes. Softening the data constraint has been used in
electron tomography to smooth tomograms and reduce noise [83]. However, the reconstructed
image can be over smoothed by TV minimization if the data constraint is too relaxed. Typically,
in electron tomography experiments, missing wedges ≥25◦ are recovered with CS. However, here
we are showing that highly linear features may not be properly recovered. Because a hard data
constraint only allows noise reduction within the small region of the missing wedge (no more than
6% in Fourier Space), the noise structure looks nearly identical to the test images as shown by the
reconstructions in Fig. 2.4.

To further understand the relationship between SNR and the missing wedge, a quantitative study
was performed on a DF-S/TEM micrograph of InGaN nanowires (Fig. 5b). Figure 5a shows a plot
of the reconstruction’s root mean square error (RMSE) normalized by the RMSE of the images
before reconstruction (i.e. with missing wedge). Pixels with values below 1 indicate improvement
from the reconstruction. The typical blurring and elongation artifacts are highlighted by the red
circles in Fig. 5c. Similarly to the previous figure, the test image was exposed to random Gaus-
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Figure 2.5: Quantitative Study of SNR and Wedge Size. a) A plot of the RMSE normalized by
the error from various missing wedge sizes. Values below 1 indicate the reconstruction outperforms
loss of information. Wedges below 8º, consistently achieves satisfactory performance at all SNR
values above 10. b) DF-S/TEM micrograph (at 300 keV) of MBE grown InGaN nanowires with
platinum nanoparticles coated on the surface. c)

sian white noise to verify the algorithm’s performance across multiple SNRs. Our approach best
reconstructs the test object for small missing wedges (≤ 12◦) and SNR values above 10. The
reconstructions are visualized for two wedge sizes and SNR values (Fig. 5d-e) to verify the test
image (Fig. 5b) is accurately reconstructed while preserving its noise.
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2.4 Discussion and Conclusion

In this study, we demonstrate a compressed sensing-based approach to remove highly directional
artifacts that commonly occur from ion mill curtaining, mechanical scratches, and beam instabil-
ity. These highly directional aperiodic features can be removed without introducing blurring or
elongation artifacts by removing wedges of information in Fourier space and recovering with TV
minimization. Furthermore, our approach remains robust at low SNR. Overall, the qualitative re-
sults demonstrate that our technique achieves successful recovery, especially when small wedges
are implemented (≤ 10 ◦). Within electron microscopy, these artifacts may become more common
with the rising popularity of FIB sectional tomography that can contain curtaining or monochro-
mated STEM where lens instability causes current fluctuations and image banding. The destriping
technique investigated in this manuscript may also have application to a broader field of imaging
techniques—such as atomic force microscopy or Raman spectroscopy.

Moreover, this destriping study provides insight to the recoverability of missing wedges in
Fourier Space using compressed sensing. Specifically, we show highly directional features that ex-
ist within the missing wedge are not recoverable using TV minimization. This has implications for
electron tomography, where incomplete experimental measurement commonly results in a missing
wedge. Thus, we expect the recovery of highly extended, unidirectional features—such as inter-
faces—can become difficult for tomography. Acquiring projections perpendicular to interfaces or
linear features should overcome this limitation.
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CHAPTER 3

Imaging Atomic-Scale Chemistry from Fused
Multi-Modal Electron Microscopy

1

Efforts to map atomic-scale chemistry at low doses with minimal noise using electron mi-
croscopes are fundamentally limited by inelastic interactions. Here, fused multi-modal elec-
tron microscopy offers high signal-to-noise ratio (SNR) recovery of material chemistry at nano-
and atomic- resolution by coupling correlated information encoded within both elastic scattering
(high-angle annular dark field (HAADF)) and inelastic spectroscopic signals (electron energy loss
(EELS) or energy-dispersive x-ray (EDX)). By linking these simultaneously acquired signals, or
modalities, the chemical distribution within nanomaterials can be imaged at significantly lower
doses with existing detector hardware. In many cases, the dose requirements can be reduced by
over one order of magnitude. This high SNR recovery of chemistry is tested against simulated and
experimental atomic resolution data of heterogeneous nanomaterials.

3.1 Introduction

Modern scanning transmission electron microscopes (STEM) can focus sub-angstrom electron
beams on and between atoms to quantify structure and chemistry in real space from elastic and
inelastic scattering processes. The chemical composition of specimens is revealed by spectroscopic
techniques produced from inelastic interactions in the form of energy dispersive X-rays (EDX) [37,
88] or electron energy loss (EELS) [156, 114]. Unfortunately, high-resolution chemical imaging
requires high doses (e.g., > 106 e/Å2) that often exceed the specimen limits—resulting in chemical
maps that are noisy or missing entirely [67, 35]. Substantial effort and cost to improve detector
hardware has brought the field closer to the measurement limits set by inelastic processes [106,
89]. Direct interpretation of atomic structure at higher-SNR is provided by elastically scattered

1The results presented in this chapter lead to a publication in npj Computational Materials [144].

28



electrons collected in a high-angle annular dark field detector (HAADF); however, this signal
under-describes the chemistry [94]. Reaching the lowest doses at the highest SNR ultimately
requires fusing both elastic and inelastic scattering modalities.

Currently, detector signals—such as HAADF and EDX/EELS—are analyzed separately for
insight into structural, chemical, or electronic properties [157]. Correlative imaging disregards
shared information between structure and chemistry and misses opportunities to recover use-
ful information. Data fusion, popularized in satellite imaging, goes further than correlation
by linking the separate signals to reconstruct new information and improve measurement accu-
racy [64, 91, 38]. Successful data fusion designs an analytical model that faithfully represents
the relationship between modalities, and yields a meaningful combination without imposing any
artificial connections [19].

Here we introduce fused multi-modal electron microscopy, a technique offering high SNR re-
covery of nanomaterial chemistry by linking correlated information encoded within both HAADF
and EDX / EELS. We recover chemical maps by reformulating the inverse problem as a non-
linear optimization which seeks solutions that accurately match the actual chemical distribution
in a material. Our approach substantially improves SNRs for chemical maps, often around 300-
500%, and can reduce doses over one order of magnitude while remaining consistent with original
measurements. We demonstrate on EDX/EELS datasets at sub-nanometer and atomic resolution.
Moreover, fused multi-modal electron microscopy recovers a specimen’s relative concentration,
allowing researchers to measure local stoichiometry with less-than 15% error without any knowl-
edge of the inelastic cross sections. Convergence and uncertainty estimates are identified along
with simulations that provide ground-truth assessment of when and how this approach can fail.

3.2 Principles of Multi-Modal Electron Microscopy

Fused multi-modal electron microscopy recovers chemical maps by solving an optimization prob-
lem seeking a solution that strongly correlates with (1) the HAADF modality containing high
SNR, (2) the chemically sensitive spectroscopic modality (EELS and / or EDX), and (3) encour-
ages sparsity in the gradient domain producing solutions with reduced spatial variation. The overall
optimization function results as following:

argmin
xi≥0

1

2

∥∥∥∑
i

(Zixi)
γ − bH

∥∥∥2

2
+

λ1
∑
i

(
1Txi − bTi log(xi + ε)

)
+ λ2

∑
i

∥xi∥TV, (3.1)

29



where λ are regularization parameters, bH is the measured HAADF, bi and xi are the measured
and reconstructed chemical maps for element i, ε herein prevents log(0) issues but can also account
for background, the log is applied element-wise to its arguments, superscript T denotes vector
transpose, and 1 denotes the vector of nxny ones, where nx × ny is the image size.

The three terms in (3.1) define our multi-modal approach to surpass traditional dose limits for
chemical imaging. First, we assume a forward model where the simultaneous HAADF is a linear
combination of elemental distributions (xγ

i where γ ∈ [1.4, 2]). The incoherent linear imaging
approximation for elastic scattering scales with atomic number as Zγ

i where γ is typically around
1.7 [68, 90, 76]. This γ is bounded between 2 for Rutherford scattering from bare nuclear potentials
to 4/3 as described by Lenz-Wentzel expressions for electrons experiencing a screened coulombic
potential [31, 164]. Second, we ensure the recovered signals maintain a high-degree of data fidelity
with the initial measurements by using maximum negative log-likelihood for spectroscopic mea-
surements dominated by low-count Poisson statistics [39, 120]. In a higher count regime, this term
can be substituted with a simple least-squares error. Lastly, we utilize channel-wise total variation
(TV) regularization to enforce a sparse gradient magnitude, which reduces noise by promoting
image smoothness while preserving sharp features [136]. This sparsity constraint, popularized by
the field of compressed sensing (CS), is a powerful yet minimal prior toward recovering structured
data [40, 20]. When implementing, each of these three terms can and should be weighted by an
appropriately selected coefficients that balances their contributions. All three terms are necessary
for accurate recovery (Fig. 3.1).

3.3 High-SNR Recovery of Nanomaterial Chemistry

Figure 3.2 demonstrates high-SNR recovery for EDX signals of commercial cobalt sulfide (CoS)
nano-catalysts for oxygen-reduction applications—a unique class with the highest activity among
non-precious metals [135]. Figure 3.2a illustrates the model that links the two modalities (EDX
and HAADF) simultaneously collected in the electron microscope. The low detection rate for char-
acteristic X-rays is due to minimal emission (e.g., over 50% for Z > 32 and below 2% for Z < 11)
and collection yield (< 9%) [142]. For high-resolution EDX, the low count rate yields a sparse
chemical image dominated by shot noise (Fig. 3.2b). However, noise in the fused multi-modal
chemical map is virtually eliminated (Fig. 3.2d) and recovers chemical structure without a loss
of resolution—including the nanoparticle core and oxide shell interface. The chemical maps pro-
duced by fused multi-modal EM quantitatively agree with the expected stoichiometry—the speci-
men core contains a relative concentration of 39±1.6%, 42±2.5% and 13±2.4% and exterior shell
composition of 26±2.8%, 11±2.0%, 54±1.3% for Co, S, O respectively. The dose for this dataset
was approximately ∼105 e/Å−2 and a 0.7 sr EDX detector was used; however, these quantitative
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Figure 3.1: Consequence of Reconstructing Chemical Maps with Individual Components in
Cost Function. a) The raw EDX maps and simultaneous HAADF image. b) Reconstructing the
multi-modal dataset with Ψ1+Ψ2 (model + data-consistency). The chemical maps are slightly im-
proved but remain noisy. c) Reconstructing the multi-modal dataset with Ψ2+TV. This functional
form is equivalent to a denoising problem; thus the resulting maps produce common staircase arti-
facts associated with TV. d) Reconstructing the raw EDX maps with fused Multi-Modal Electron
Microscopy. Scale bar, 30 nm.
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estimates remained consistent when the dose was reduced to ∼104 e/Å−2.

Figure 3.2: Nanoscale multi-modal chemical recovery of CoS catalysts using EDX + HAADF.
a) Schematic highlighting the linked HAADF and EDX modalities collected in the microscope
for every probe position. The algorithm links and correlates information between the two signals
through an optimization process that produces chemical maps with higher SNRs. b) The raw EDX
chemical maps for the Co, S, and O elemental distributions. c) The simultaneous HAADF micro-
graph of the CoS nanoparticle. d) The multi-modal reconstructions for the elemental distributions.
e) EDX RGB overlay of the Co, S, and O maps. Scale bar, 30 nm.

Fused multi-modal electron microscopy accurately recovers chemical structure down to atomic
length scales—demonstrated here for EELS spectroscopic signals. EELS derived chemical maps
for Co3−xMnxO4 (x = 1.49) high-performing super-capacitor nanoparticles [125] are substantially
improved by fused multi-modal electron microscopy in Figure 3.3. This composite Co-Mn oxide
was designed to achieve a synergy between cobalt oxide’s high specific capacitance and manganese
oxide’s long life cycle [125, 9]. While the Co3−xMnxO4 nanoparticle appears chemically homoge-
neous in the HAADF projection image along the [100] direction (Fig. 3.3c), core-shell distinctions
are hinted at in the raw EELS maps (Fig. 3.3b). Specifically, these nanoparticles contain a Mn-
rich center with a Co shell and homogeneous distribution of O. However the raw EELS maps are
excessively degraded by noise, preventing analysis beyond rough assessment of specimen mor-
phology. The multi-modal reconstructions (Fig. 3.3d) confirm the crystalline Co-rich shell and
map the Co/Mn interface in greater detail (Fig. 3.3e). In the presence of cobalt and manganese, the
HAADF image lacks noticeable contrast from oxygen; the resulting oxygen map lacks detail and
benefits mostly from regularization.

Fused multi-modal electron microscopy accurately recovers chemical structure down to atomic
length scales—demonstrated here for EELS spectroscopic signals. EELS derived chemical maps
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Figure 3.3: Atomic-scale multi-modal chemical recovery of Co3−xMnxO4 supercapacitors us-
ing EELS + HAADF. a) Schematic highlighting the linked HAADF and EELS modalities col-
lected in the microscope at every probe position. b) Raw EELS maps for the elemental distributions
of Co, Mn - L2,3 and O - K edges. c) The simultaneous HAADF micrograph of the Co3−xMnxO4

nanoparticle. d) The multi-modal reconstructions for the elemental distributions. e) EELS RGB
overlay of the Co, S, and O maps. Scale bar, 2 nm.

for Co3−xMnxO4 (x = 1.49) high-performing super-capacitor nanoparticles [125] are substantially
improved by fused multi-modal electron microscopy in Figure 3.3. This composite Co-Mn oxide
was designed to achieve a synergy between cobalt oxide’s high specific capacitance and manganese
oxide’s long life cycle [125, 9]. While the Co3−xMnxO4 nanoparticle appears chemically homoge-
neous in the HAADF projection image along the [100] direction (Fig. 3.3c), core-shell distinctions
are hinted at in the raw EELS maps (Fig. 3.3b). Specifically, these nanoparticles contain a Mn-
rich center with a Co shell and homogeneous distribution of O. However the raw EELS maps are
excessively degraded by noise, preventing analysis beyond rough assessment of specimen mor-
phology. The multi-modal reconstructions (Fig. 3.3d) confirm the crystalline Co-rich shell and
map the Co/Mn interface in greater detail (Fig. 3.3e). In the presence of cobalt and manganese, the
HAADF image lacks noticeable contrast from oxygen; the resulting oxygen map lacks detail and
benefits mostly from regularization.

Figure 3.4 exhibits fused multi-modal electron microscopy at atomic resolution on copper sul-
phur heterostructured nanocrystals with zinc sulfide caps with potential applications in photo-
voltaic devices or battery electrodes [62]. The copper sulfide properties are sensitive to the Cu-S
stoichiometry and crystal structure at the interface between ZnS and Cu0.64S0.36. Figure 3.4 shows
high-resolution HAADF and EELS characterization of a heterostructure Cu0.64S0.36-ZnS interface.
Fused multi-modal electron microscopy maps out the atomically sharp Cu0.64S0.36-ZnS interface
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and reveals step edges between the two layers. The labeled points on the RGB chemical overlay
(Fig. 3.4d) shows the chemical ratios produced by multi-modal EM for the Cu0.64S0.36 and ZnS
regions—values which are consistent with the reported growth conditions. Figure 3.4e shows the
algorithm convergence for each of the three terms in the optimization function (Eq. 3.1)—smooth
and asymptotic decay is an indicator of reliable reconstruction.

Figure 3.4: Recovering chemistry in an atomically sharp ZnS-Cu0.64S0.36 heterointerface in-
terface. a) The raw EELS maps for the Cu, S, and Zn L2,3 edges. b) The multi-modal recon-
structions for the elemental compositions. c) The simultaneous HAADF micrograph of the ZnS-
Cu0.64S0.34 interface. d) Color overlay of the Zn, S, and Zn maps. The relative concentration for
the constituent elements consist of 48±5.9% for Zn, 59.9±3.2% for Cu and 38±2.6% for S in the
Cu0.64S0.36 layer and 48.9±6% in ZnS. e) Convergence plots for the three individual components
in the cost function. Scale bar, 1 nm.

Fused multi-modal imaging of Fe and Pt distributions from inelastic multislice simulations
(Fig. 3.5) provide ground truth solutions to validate recovery at atomic resolution under multiple
scattering conditions of an on-axis ∼8 nm nanoparticle. Here, we applied Poisson noise (Fig. 3.5b)
containing electron doses of ∼109 e Å−2, to produce chemical maps with noise levels resembling
experimental atomic-resolution EELS datasets (SNR ≃ 5). We estimated SNR improvements by
measuring peak-SNR for the noisy and recovered chemical maps [75]. Qualitatively, the recovered
chemical distributions (Fig. 3.5c) match the original images. Fig. 3.5d illustrates agreement of the
line profiles as the atom column positions and relative peak intensities between the ground truth
and multi-modal reconstruction are almost identical.

Simulating EELS chemical maps is computationally demanding as every inelastic scattering
event requires propagation of an additional wavefunction [43, 3]—scaling faster than the cube of
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Figure 3.5: Inelastic FePt nanoparticle simulation. a) Ground truth EELS images generated
from inelastic simulations. b) EELS maps degraded with Poisson shot noise. SNR shown on top
right. c) Recovered atomic-resolution EELS maps for the Fe and Pt distributions. Estimated SNR
shown on top right. d) Line profiles of the marked yellow bars (10 pixels in width) in (c) compares
the Multi-Modal reconstruction and ground truth. Scale bar, 1 nm.

the number of beams, O(N3 logN). Inelastic transition potentials of interest (in this case the L2,3

Fe and M4,5 Pt edges) were calculated from density function theory. Long computation times
(nearly 4,000 core-hours) result from a large number of outgoing scattering channels correspond-
ing to the many possible excitations in a sample. For this reason, there is little precedence for
inelastic image simulations. We relaxed the runtime by utilizing the PRISM STEM-EELS approx-
imation, achieving over a ten-fold speedup [14]. Future work may explore the effects of smaller
ADF collection angles with increased coherence lengths and crystallographic contrast [68, 179],
or thicker specimens where electron channeling becomes more concerning [5, 77].

3.4 Quantifying Chemical Concentration

Fused multi-modal electron microscopy can produce stoichiometricly meaningful chemical maps
without specific knowledge of inelastic cross sections. Here, the ratio of pixel values in the re-
constructed maps quantify elemental concentration. We demonstrate quantifiable chemistry on
experimental metal oxide thin films with known stoichiometry: NiO [45] and ZrO2. A histogram
of intensities from the recovered chemical maps are fit with Gaussian distributions to determine the
average concentration (Fig. 3.6). The recovered pixel values highlighted in Figure 3.6b,d followed
a single Gaussian distribution where the Zr and Ni concentrations are centered about 35±5.8% and
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Figure 3.6: Histograms of intensities for ZrO2 and NiO. Histogram of intensities for the Sul-
phur, Cobalt and Oxygen distributions. Due to the core-shell structure consisting of two phases, the
histograms contain of two Gaussian distributions. The specimen core contains a relative concen-
tration of 39±1.6%, 42±2.5% and 13±2.4% and exterior shell composition of 26±2.8%, 11±2.0%,
54±1.3% for Co, S, O respectively. Scale bar, 30 nm.

50±2.9%. More importantly, in the context of EDX, minimal preprocessing is required as stoi-
chiometry is decomposed from the HAADF micrographs (Fig. 3.6a,d). In both cases, the average
Ni and Zr relative concentration is approximately equivalent to the expected ratio from the crys-
tal stoichiometry: 33% and 50%. Convergence still needs to be reliably assessed (Fig. 3.6c,f) to
ensure the reconstructions traverse to the optimal minima defined by Eq. 3.1.

Alternatively, the heterogeneous CoS nanoparticles in Fig. 3.2 follows a bi-modal distribution
for the core and shell phases (Fig. 3.7). More importantly, measuring relative chemical concen-
tration remains accurate as we reduce our fields of view down to atomic length scales. As the
ZnS-CuS interface, the recovered relative chemistries matches expected crystal stoichiometry.

We further validate stoichiometric recovery on a synthetic gallium oxide crystal (Fig 3.8) where

36



Figure 3.7: Histograms of intensities for CoS chemical Maps. Histogram of intensities for
the Sulphur, Cobalt and Oxygen distributions. Due to the core-shell structure consisting of two
phases, the histograms contain of two Gaussian distributions. The specimen core contains a relative
concentration of 39±1.6%, 42±2.5% and 13±2.4% and exterior shell composition of 26±2.8%,
11±2.0%, 54±1.3% for Co, S, O respectively. Scale bar, 1 nm.

two overlapping Ga and O thin films of equal thickness have a stoichiometery of Ga2O3. The
simulated HAADF signal is proportional to

∑
i(xiZi)

γ where xi is the concentration for element
i and Zi is the atomic number. As shown by the histogram, the simulated results agree strongly
with the prior knowledge and successfully recovers the relative Ga concentration. The Gaussian
distribution is centered about 40±0.4% when the ground truth is 40%. The inset shows convergence
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plots.

Figure 3.8: Measuring relative concentration for experimental and synthetic datasets. Pixel
intensity histograms for an experimental Zr (green), Ni (blue) and synthetic Ga (red) concentra-
tion maps. The standard deviation (σ) for each element is reported. The raw and reconstructed
EDX maps are illustrated inside of the plot. Ground truth concentrations are highlighted by the
respective colored triangles above the top axis. Stable convergence for the three components in
the cost function: model term (orange), data fidelity (magenta), and regularization (turquoise) are
illustrated in the inset. Qualitatively the convergence is identical for all three example datasets. Zr
and Ni scale bars: 5, 10 nm, respectively.

We estimate a stoichiometric error of less-than 15% for most materials based on the relative con-
centration’s standard deviation (±7%) added in quadrature with the variation of solutions (±6%).
Although the algorithm shows stable convergence, the overall quantitative conclusions are slightly
sensitive to the selection of hyperparameters. We estimate incorrect selection of hyperparameters
could result in variation of roughly ±6% from the correct prediction in stoichiometery even when
the algorithm converges. We found measuring stoichiometry is robust across a range of γ values
close to 1.7. In cases where γ is far off (e.g., γ = 1.0), the quantification is systematically incorrect
(Fig. 3.9).

This error is comparable to estimating chemical concentrations directly from EELS / EDX
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Figure 3.9: The influence of γ for measuring chemistry Histogram of intensities for the Sulphur,
Cobalt and Oxygen distributions when γ varies between 1.0, 1.6, and 1.8. We see for values close
to 1.7, the specimen’s relative concentrations almost perfectly matches the distribution in Fig.
S5. However if gamma is far off from what is experimentally feasible (γ = 1.0), the measured
concentrations are incorrect. Scale bar, 30 nm.

spectral maps from the ratio of scattering cross section against core-loss intensity [131]. However,
traditional approaches require accurate knowledge of all experimental parameters (e.g., beam en-
ergy, specimen-thickness, collection angles) and accurate calculation of the inelastic cross-section
typically to provide errors roughly between 5-10% [44].

3.5 Influence of Electron Dose

To better understand the accuracy of fused multi-modal electron microscopy at low doses, we
performed a quantitative study of normalized root-mean-square error (RMSE) concentrations for
a simulated 3D core-shell nanoparticle (CoS core, CoO shell). Figure 3.10 shows the fused multi-
modal reconstruction accuracy across a wide range of HAADF and chemical SNR. The simulated
projection images were generated by simple linear incoherent imaging model of the 3D chemical
compositions highlighted in Fig. 3.10d–here the probe’s depth of focus is much larger than the
object. Random Poisson noise corresponding to different electron dose levels was applied to vary
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the SNR across each pixel.

Figure 3.10: Estimating dose requirements for accurate chemical recovery. a) A RMSE map
representing the reconstruction error as a function of multiple spectroscopic and HAADF SNR.
Brighter pixels denote results containing the incorrect concentrations from the ground truth. b)
Visualization of three points on the phase diagram corresponding to increasing ADF / chemical
electron dose. c) A plot of average standard error vs. RMSE demonstrating the two metrics are
linearly correlated. d) The 3D model for generating synthetic chemical and ADF projections.

Overall, the RMSE simulation map (Fig. 3.10a) shows the core-shell nanoparticle chemical
maps are accurately recovered at low-doses (HAADF SNR ≳ 4 and chemical SNR ≳ 2); however,
they become less accurate at extremely low doses. The RMSE map for multimodal reconstruction
shows a predictably continuous degradation in recovery as signals diminish. The degraded and
reconstructed chemical maps for various noise levels are highlighted in Figure 3.10b. The Co map
closely mirrors the Z-contrast observed in HAADF (not shown) simply because it is the heaviest
element present. Usually researchers will perform spectroscopic experiments in the top right corner
of Fig. 3.10a (e.g., HAADF SNR > 20, chemical SNR > 3), which for this simulation, provides
accurate recovery.

In actual experiments, the ground truth is unknown and RMSE cannot be calculated to assess
fused multi-modal electron microscopy. However we can estimate accuracy by calculating an
average standard error of our recovered image from the Hessian of our model. The standard error
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reflects uncertainty at each pixel in a recovered chemical map by quantifying the neighborhood
size for similar solutions (Figure 3.11). The average standard error across all pixels in a fused
multi-modal image provides a single value metric of the reconstruction accuracy (see Methods).
Figure 3.10c shows that RMSE and average standard error correlate, especially at higher doses
(SNR > 10).

Figure 3.11: Uncertainty Maps for Synthetic CoS Recovery Visualization of the standard error
(StdErr) maps for the synthetic CoS core shell simulation in Fig.. As we increase the electron dose,
the average StdErr pixel values for all three elements decreases.

〈
SNR

〉
denotes the average SNR

between the chemical and HAADF modality.
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3.6 Discussion and Conclusion

While this chapters highlights the advantages of multi-modal electron microscopy, the technique is
not a black-box solution. Step sizes for convergence and weights on the terms in the cost function
(Eq. 3.1) must be reasonably selected. This manuscript illustrates approaches to assess the validity
of concentration measurements using confidence estimation demonstrated across several simulated
and experimental material classes. Standard spectroscopic pre-processing methods become ever
more critical in combination with multi-modal fusion. Improper background subtraction of EELS
spectra or overlapping characteristic X-ray peaks that normally causes inaccurate stoichiometric
quantification also reduces the accuracy of fused multi-modal imaging.

Fused multi-modal electron microscopy offers little advantage in recovering chemical maps for
elements with insignificant contrast in the HAADF modality. This property is limiting for analyz-
ing specimens with low-Z elements in the presence of heavy elements (e.g., oxygen and lutetium).
Future efforts could resolve this challenge by incorporating an additional complementary elastic
imaging mode where light elements are visible, such as annular bright field (ABF) [54]. How-
ever in some instances, fused multi-modal electron microscopy may recover useful information
for under-determined chemical signals. For example, in a Bi0.35Sr0.18Ca0.47MnO3 (BSCMO) sys-
tem [138], only the Ca, Mn, and O EELS maps were obtained, yet multimodality remarkably
improves the SNR of measured maps despite missing two elements (Figure. 3.12).

Although fused multi-modal chemical mapping appears quite robust at nanometer or sub-
nanometer resolution, we found atomic-resolution reconstructions can be challenged by spurious
atom artifacts which require attention. However, this is easily remedied by down-sampling to fre-
quencies below the first Bragg peaks and analysing a lower resolution chemical map. Alternatively,
recovery with minimal spurious atom artifacts is achieved when lower resolution reconstructions
are used as an initial guess.
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Figure 3.12: Recovering Missing Elements for Bi0.35Sr0.18Ca0.47MnO3 (BSCMO) a) Raw EELS
spectrum for a BSCMO system shows Ca, O, and Mn core-loss edges, however, the Bi and Sr core
edges were not measured in this energy range. b) The simultaneously collected HAADF image
with the inset on the bottom right highlighting the A and B sites’ composition. c) RGB overlay
highlighting the chemical distribution. d) The raw EELS maps. e) The recovered chemical maps.
The purple circles highlight Ca vacancies. Here, the Bi and Sr were treated as a single unknown
signal since they are known a priori to occupy the same lattice sites. Although chemical maps of
Bi and Sr are missing, multi-modal reconstruction shows considerable improvement to the SNR
and quality of the Mn, Ca, and O distributions. Moreover, we see the recovered Bi + Sr map anti-
correlates with Ca as expected, however the small intensity between lattice sites is a minor artifact
that arises without spectroscopic measurement of Bi and Sr. Scale bar, 2 nm.
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CHAPTER 4

Imaging 3D Chemistry at 1 nm Resolution with
Fused Multi-Modal Electron Tomography

1

Measuring the three-dimensional (3D) distribution of chemistry in nanoscale matter is a long-
standing challenge for metrological science. The inelastic scattering events required for 3D chem-
ical imaging are too rare, requiring high beam exposure that destroys the specimen before an
experiment completes. Even larger doses are required to achieve high resolution. Thus, chemical
mapping in 3D has been unachievable except at lower resolution with the most radiation-hard ma-
terials. Here, high-resolution 3D chemical imaging is achieved near or below one nanometer reso-
lution in a Au-Fe3O4 metamaterial, Co3O4 - Mn3O4 core-shell nanocrystals, and ZnS-Cu0.64S0.36

nanomaterial using fused multi-modal electron tomography. Multi-modal data fusion enables high-
resolution chemical tomography often with 99% less dose by linking information encoded within
both elastic (HAADF) and inelastic (EDX / EELS) signals. Now sub-nanometer 3D resolution of
chemistry is measurable for a broad class of geometrically and compositionally complex materials.

4.1 Introduction

Knowing the complete chemical arrangement of matter in all dimensions is fundamental to en-
gineering novel nanomaterials [109]. Although electron tomography provides comprehensive 3D
structure at resolutions below 1 nm using elastic scattering signals [150, 172, 96], chemical to-
mography obtained from inelastic scattering remains largely out of reach. Several demonstrations
of chemical tomography using electron energy loss or x-ray energy spectroscopy (EELS / EDX)
accompanied the introduction of scanning transmission electron microscope (STEM) tomography
and provide a milestone for 3D imaging [113, 111, 119, 95]. However, chemical tomography from
core-excitation spectroscopy demands high electron doses that almost always exceed the specimen

1This chapter is currently in the review process.

44



limits (e.g., > 107 e/Å2) [35, 67, 29]. If attempting chemical tomography, researchers must sac-
rifice resolution by collecting few specimen projections (e.g., 5-10) and constrain the total dose
(e.g., < 106 e/Å2). Consequently, 3D resolution is penalized from undersampling and noisy chem-
ical maps [33]. Therefore, a paradigm shift is necessary for high-resolution chemical tomography.

We show achieving high-resolution 3D chemistry at lower dose requires fusing both elastic
and inelastic scattering signals. Typically these detector signals are analyzed separately and cor-
related [60, 102, 99]. However, correlative imaging disregards shared but also complementary
information between structure and chemistry and misses opportunities to recover useful informa-
tion [157]. Data fusion, popularized in satellite imaging, goes further than correlation by link-
ing separate signal modalities to reconstruct new information and improve measurement accu-
racy [64, 91, 39]. Recent developments in multi-modal data fusion paved new opportunities for
high-resolution chemical imaging by substantially reducing the dose requirements to successfully
acquire an atomic-resolution map [144]. In alignment with the principles of fused multi-modal
electron microscopy, we extend its algorithmic framework into the third dimension.

Here we introduce fused multi-modal electron tomography, which offers high signal-to-noise
(SNR) and high-resolution recovery of material chemistry in 3D by linking information encoded
within both elastic high-angle annular dark field (HAADF) and inelastic (EDX / EELS) scatter-
ing signals. Multi-modal electron tomography reconstructs the volumetric chemical structure of
specimens by solving a 3-term inverse problem that fuses signals from multiple detectors. This
framework enables new sampling strategies that minimize dose by measuring a high number of
HAADF projections alongside far fewer chemical projections—dose reductions of one-hundred
fold are readily achieved. Although the chemical structure is severely underdetermined, fusing
the two modalities fills in missing information, notably improving resolution and reconstruction
quality. Our approach demonstrates that researchers can measure 3D chemistry at 1 nm resolu-
tion using electron doses as low as 104 e/Å2 and as few as 9 spectroscopic maps while remain-
ing consistent with original measurements. Multi-modal tomography is validated across multiple
material systems, including Au-Fe3O4 superlattice clusters, core-shell Co3O4-Mn3O4 [121], ZnS-
Cu0.64S0.36 heterostructures [62], Cu-SiC nanoparticles and a range of simulated specimens. By
fusing modalities, chemical tomography is now possible at sub-nanometer resolution for a wider
class of material systems.

4.2 Principles of Fused Multi-Modal Electron Microscopy

High-resolution 3D chemical imaging is achieved using the multi-modal electron tomography
framework illustrated in Fig. 4.1a for a binary Au-Fe3O4 nanoparticle superlattice within a carbon-
based matrix. In multi-modal electron tomography, projections of the specimen structure are mea-
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sured from a HAADF detector and the specimen chemistry is extracted from spectroscopy (EELS
or EDX). These two detector modalities are fused during the reconstruction process to provide the
complete 3D chemical distribution of a specimen at high resolution and SNR. Figure 4.1b shows
the 3D reconstruction of each individual chemistry: larger 10.2 ± 1.1 nm Fe nanoparticles (blue)
and smaller Au 3.9 ± 0.4 nm nanoparticles (orange). Both chemistries are visualized simultane-
ously in Fig 4.1c to show the self-organization of the chemical superlattice. The light-element,
carbon matrix is shown in Fig. 4.2.

Figure 4.1: Nanoscale recovery of Au-Fe3O4 nanoparticle superlattice. a Schematic highlight-
ing the linked HAADF and EELS modalities for chemical tomography. HAADF projection im-
ages are collected at every tilt increment while core-loss EELS spectra are sparsely acquired every
few tilts. b The fused multi-modal reconstruction for the specimen’s Fe L2,3 (turquoise), O-K
(turquoise), and gold M4,5 edge (yellow). c Chemical overlay of the superlattice nanoparticles over
the entire 115 nm field of view. Scale cubes, 5 nm3.

In multi-modal tomography, the number of structural HAADF projections usually exceeds the
chemical projections. In this first demonstration, only 9 chemical maps (∆θ = 15◦) are measured
from the Fe-L2,3 and Au-M4,5 core-excitation edges in an EELS spectrum whereas 47 HAADF
images (∆θ = 3◦) are collected over a ±70◦ specimen tilt range. Linking both modalities into the
reconstruction enables a clear distinction between Fe3O4 and Au nanoparticles at high resolution
from just a few EELS maps and a total electron dose of 5 × 105 e/Å2—roughly two orders of
magnitude lower total electron dose than an equivalent conventional approach.

Fused multi-modal electron tomography reconstructs three-dimensional chemical models by
solving an optimization problem seeking a solution that strongly agrees with (1) the HAADF
modality containing high SNR, (2) the chemically sensitive spectroscopic modality (EELS and
/ or EDX), and (3) encourages sparsity in the gradient domain producing solutions with reduced
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Figure 4.2: Multi-Modal Reconstruction of Au-Fe3O4 Nanoparticles Inside a Carbon Sup-
port. The complete reconstruction of the Au-Fe3O4 nanoparticle superlattice inside the carbon
matrix (highlighted in purple). Scale cube, 10 nm3.

spatial variation. The overall optimization function is as follows:

argmin
xi≥0

λ1
2

∥∥∥Ah

∑
i

(Zixi)
γ − bH

∥∥∥2

2
+

λ2
∑
i

(
1TAcxi − bTi log(Acxi + ε)

)
+ λ3

∑
i

∥xi∥TV, (4.1)

xi is the reconstructed 3D chemical distributions for element i, bi is the measured 2D chemical
maps for element i, bH is the measured HAADF micrographs, Ah and Ac are forward projection
operators for HAADF and chemical modalities, λ are regularization parameters, ε herein prevents
log(0) issues but can also account for background, the log is applied element-wise to its arguments,
superscript T denotes vector transpose, and 1 denotes the vector of Nproj

chemnyni ones, where ny is
the number of pixels, ni is the number of elements present, and Nproj

chem is the number of projections
for the chemical modality.
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The three terms in Equation 4.1 define our fused multi-modal framework designed to surpass
traditional limits for chemical tomography. First, we assume a forward model where the simulta-
neous HAADF is a linear combination of the reconstructed 3D elemental distributions (xγ

i where
γ ∈ [1.4, 2]). The incoherent linear imaging approximation for elastic scattering scales with atomic
number as Zγ

i , where experimentally γ is typically around 1.7 [68, 90, 76]. This γ is bounded
between 4/3 as described by Lenz-Wentzel expressions for electrons passing through a screened
coulombic potential and 2 for Rutherford scattering from bare nuclear potentials [31, 164]. Sec-
ond, we ensure the recovered 3D distributions maintain a high degree of data fidelity with the
initial measurements by using the log-likelihood for spectroscopic measurements dominated by
low-count Poisson statistics [39, 120]. In a higher count regime, this term can be substituted with a
least-squares discrepancy (∥Ax− b∥22) [34]. Lastly, we include channel-wise isotropic total varia-
tion (TV) regularization to enforce a sparse gradient magnitude, which reduces noise by promoting
image smoothness while preserving sharp features [136]. This sparsity constraint, popularized by
the field of compressed sensing (CS), is a powerful yet modest prior for recovering structured
data [40, 20]. When solving Equation 4.1, each of these three terms should be weighted appropri-
ately by determining coefficients (λ) that balance their contributions. Ultimately, optimization of
all three terms is necessary for accurate recovery.

The improvement in reconstruction quality with fused multi-modal chemical tomography
(Fig. 4.3i) is dramatic when compared to traditional chemical tomography (Fig. 4.3c).

4.3 3D Chemistry at High-Resolution, Low-Dose

In tomography, 3D resolution is described by the Crowther criterion, which states resolution is lim-
ited by the object size and the number of specimen projections measured [87] – higher resolution
requires more projections [169]. For traditional chemical tomography, few chemical projections
are collected and the Crowther relation devastates resolution in 3D. This limitation occurs from the
high-dose requirements of chemical mapping (i.e., EDX, EELS) where only a few projections can
be collected before radiation damage alters the specimen structure.

Figure 4.3 shows how specimen projections from each modality are superimposed as planes
of information in Fourier space. Chemical tomography is sparsely sampled in Fourier space
(Fig. 4.3a), which results in a tomographic reconstruction containing artifacts and low SNR
(Fig. 4.3b,c). Despite the poor quality, traditional chemical tomography tracks the chemical distri-
bution, and the Mn shell (orange) can be seen surrounding the Co core (blue-green). In contrast,
elastically scattered electrons collected by the HAADF detector provide high signals at lower doses
and allow many projections to be collected—in practice, HAADF sampling is five to ten times more
finely spaced than chemical (Fig. 4.3d) [76]. The dose required for a single HAADF projection
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Figure 4.3: Nanoscale recovery of Co3O4-Mn3O4 core-shell nanoparticles. a-c Raw EELS
reconstruction for the Co (blue-green) and Mn (orange) L2,3 core-loss edges.d-f The HAADF
tomogram of Co3O4-Mn3O4 nanoparticle tracks the structure of the specimen but fails to describe
materials chemistry in 3D. g-i The fused multi-modal reconstruction. Scale cubes, 25 nm3. a,d,g
Representation in Fourier space of the projections used to reconstruct the tomograms. j Fused
multi-modal tomogram of a single Co3O4-Mn3O4 nanoparticle. Scale cube, 10 nm3. e A line
profile showing the average intensity across the diameter of the particle.

is 102-103 times lower than a chemical projection acquired using core-energy loss spectroscopy.
Thus, it is favorable to acquire more HAADF images and achieve higher resolution. Although
HAADF tomography permits high-resolution and high-SNR reconstructions of structure, it lacks
chemical specificity. This is seen in Figure 4.3e,f where the structure is well defined with low noise
but the Co and Mn regions are not identifiable.

Exploiting shared information in both modalities, multimodal tomography achieves a chemical
resolution in 3D comparable to high-resolution HAADF reconstructions. Although few chemical
measurements pose a severely underdetermined problem, fusing with the HAADF modality fills
in missing chemical information. This is reflected in Figure 4.3g where many HAADF projections
(e.g., 50-180) are measured while far fewer chemical projections (e.g., 5-15) are intermittently
measured. In this reconstruction, 9 EELS maps and 45 HAADF projections (50-200 mrad detector
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inner and outer semi-angles) were collected over a ±60◦ tilt range using a 2.4 Å probe with a 24.3
nm depth of focus (300 keV acceleration voltage, 10 mrad convergence angle). High-resolution
of 3D chemistry is visible in the the core shell Co3O4-Mn3O4 using multi-modal tomography in
Figure 4.3h,i.

Fused multi-modal electron tomography provides unique insight for studying heterostructured
nanocrystals with unprecedented geometries. In the case of Co3O4 - Mn3O4 nanocrystals, the
manganese oxide shell is divided into several ordered grains that grow on each surface plane for
the cobalt oxide nanocube core [121]. However the core and shell interface can vary per plane
driven by the growth interplay between strain and surface energy, resulting in the formation of
grain boundaries [151]. The complete 3D distribution of Co and Mn at the surface and interface
is difficult to discern with 2D projected EELS maps or HAADF reconstructions. Fortunately, the
fused chemical distributions reveals surface coverage of the shell grains and cross-sections quantify
the shell thickness and interface chemistry.

In cases where the HAADF distribution fails to provide any insight into the unique chemical
phases of transition metal heterostructures, fused multi-modal still succeeds. Figure 4.4 highlights
fused chemical tomography on heterostructured nanocrystals with applications in photovoltaic de-
vices and battery electrodes [62]. The copper sulfide properties are sensitive to stoichiometry and
crystal structure at the interface. The HAADF tomograms (Fig. 4.4a,d) fails to discern the Cu and
Zn rich phases due to minimal difference in atomic numbers between the two elemental species.
The voxel and pixel intensity across the interface is homogenous. The raw EELS spectra (Fig. 4.4e)
highlights in difference in SNR between the metal and light small atomic number species (carbon
and sulphur) where the number of counts is orders of magnitude smaller for the Cu and Zn core-
loss edges. This occurs because the excitation events for metal core edges is far fainter than light
elements. We can visualize the improvements from the raw and fused chemical reconstructions
where now the rich unique 3D phases have been recovered (Fig. 4.4b,c,d).

Fused multi-modal chemical tomography is flexible with any form of inelastic scattering spec-
tral signals where the measured chemistry is available. Figure 4.5 highlights the 3D chemical
distribution of Cu-supported silicon carbon (SiC) catalysts designed for the production of fuels
and chemicals from biomass. These silica supported catalysts efficiently convert ethanol into ac-
etaldehyde because of their high selectivity and stability [97]. The EDX spectra confirms the
composition of these nanoparticles, with additional Au background signal excited by the micro-
scope holder. The HAADF reconstruction reveals the specimen morphology, while the contrast
between the Cu and SiC composition is small (roughly 30% difference). These nanoparticles are
impregnated with Cu particles that vary in size from 6 to 40 nm in diameter. Through the fused
EDX tomogram, the rich Cu size distribution is entirely recovered at a far higher SNR than the raw
EDX maps (Fig. 4.5b). In addition, the small nanoparticles are resolved at near the Nyquist limit
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Figure 4.4: Multi-Modal EELS Tomography of ZnS - Cu0.64S0.36 Heterostructured Nanopar-
ticles. a The HAADF reconstruction and 2D slice are shown on the left. b The fused multi-modal
reconstruction illustrating CuS or ZnS-rich nanoparticles and oxidized shells. c 2D slices of the
chemical reconstructions with the noisy traditional reconstructions highlighted on the left of each
image. Scale bar, 50 nm. d The HAADF and fused multi-modal chemical tomogram for a smaller
field of view. e Representative EELS spectra for the S, C, Cu, and Zn core loss edges.

(Fig. 4.5c) from the sampling of this experiment (1.47 nm pixel size).
Data fusion eliminates noticeable noise in the final 3D chemical reconstruction without a loss

of resolution. This noise reduction accompanies a dose reduction of roughly one-hundred fold.
Linking the chemical projections to the high SNR HAADF signals dose-efficiently boosts the
chemical specificity. Figure 4.6 highlights the relationship between fused reconstruction accuracy
with SNR on either modality. Even at modest HAADF signals (e.g., SNR ≃ 10), multi-modal
tomography notably outperforms traditional chemical tomography (Fig. 4.6b). To illustrate, in
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Figure 4.5: Multi-Modal EDX Tomography of Cu-SiC Nanoparticles. a The HAADF recon-
struction with a few tilt micrographs is shown on right. b The fused multi-modal reconstruction
highlighting Cu nanoparticles embedded inside the SiC support and raw EDX maps are shown on
the right. Scale bar, 50 nm. c The PSF of an individual 3 nm nanoparticle inside the SiC. A few
2D slices of the reconstruction are shown on the right where we see the structure is sharp along the
orthogonal axis perpendicular to the missing wedge and approximately a 20% reduction in resolu-
tion along the missing wedge direction. Scale bar, 2 nm. d EDX spectra for a single tilt.

Figure 4.3, matching the resolution of fused multi-modal chemical tomography using traditional
methods would require 45 EELS maps—a five-fold dose increase. However, the SNR of each
chemical projection would still fall shortand requires roughly twenty-times additional dose. In
total, multi-modal chemical tomography performs well at one-hundredth the dose requirement of
traditional methods. Moreover, we can compare the performance of fused tomography against
conventional algorithms to see how chemical SNR can influence the accuracy. Figure 4.6c shows
fused multi-modal tomography consistently outperforms traditional and regularized chemical to-
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Figure 4.6: SNR Dependency for Successful Fused Multi-Modal Recovery. a The initial cor-
rupted chemical distributions for oxygen in the CuO-CoO synthetic dataset with increasing SNR.
b A heat map expressing the relationship between average reconstruction error and SNR for either
modality (HAADF or Chemistry) when 11 chemical maps (∆θ = +12◦) and 141 HAADF pro-
jections (∆θ = +1◦) are available. c SNR plot highlighting the average NRMSE as a function of
chemical SNR for reconstructions without any regularization or fusion (traditional tomography),
without fusion (compressed sensing) and within the multi-modal framework. 2D slices from oxy-
gen is shown on right.

mography (single modal compressed sensing algorithms) by 30-60% across all SNR. Eventually
regularized tomography reaches comparable average NRMSE at an SNR of 50.

Reduction of electron beam dose produce irreplaceable advantages for electron tomography—
both in terms of accessible resolution and the range of materials classes that can be imaged in
3D. Dose requirements for tomography scale quickly with higher resolution (resolution ∝ dose−4)
[70, 105]. In specific, For 3D chemical imaging, multi-modal electron tomography notably im-
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proves the sampling and dose constraints that limit resolution across a range of radiation sensitive
materials (Fig. 4.7).

Figure 4.7: Resolution and Electron Dose for Multi-Modal Electron Tomography. a Resolu-
tion and dose relationship for electron tomography approximates the best achievable resolution for
each material [116, 124, 92, 163, 30] – assuming an image contrast of 80%[105]. Fused multi-
modal electron tomography results in a much higher dose-efficiency which enables higher resolu-
tion at any dose limit. b Multi-modal (green) and conventional chemical tomography (blue). This
relationship between dose and resolution assumes sufficient tomographic sampling is achieved (i.e.
many projections)—in practice the actual resolution will be much lower. Dose limited resolution
assumes the material is adequately sampled (i.e. Crowther and Nyquist relations)

Ultimately, through the multi-modal data-fusion framework chemical tomography is now
achievable with orders of magnitude of less dose compared to conventional approaches. Fig-
ure. 4.8 highlights the amount of dose used to perform chemical tomography with conventional
approaches (CT) and with our multi-modal framework (MM). We see in all cases, our experiments
shown herein use at least 2 orders of magnitude less dose and achieves lower Nyquist limited
resolutions than ever perform.

4.4 Sub-nanometer Chemical Resolution in 3D

3D resolution of the chemical distribution in Au-Fe3O4 nanoparticle superlatice (Fig. 4.9a) is
demonstrated at or below 1 nm using multi-modal tomography. The achieved resolution is quanti-
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Figure 4.8: Historical Demonstrations of Multi-Element Chemical Tomography. The reported
dose and Nyquist limited resolutions for the fused multi-modal (MM) reconstructions reported
in this manuscript are compared to previous multi-element chemical tomography (CT) experi-
ments [95, 78, 134, 15, 155, 126, 79]. Note, the actual achieved 3D resolution of previously
reported chemical tomography may be lower than the Nyquist resolution.

fied in real and reciprocal space. In real space, the resolution limit is verified by visually inspecting
a single 3 nm Au nanoparticle (Fig. 4.9d). The edge sharpness between the reconstructed nanopar-
ticle and vacuum is visibly less than 1 nm. From line profiles, the half pitch resolution is 0.8
nm × 0.8 nm × 1.1 nm along the x, y, and z directions respectively. Along optimal directions
(x, y) the resolution is comparable to the Nyquist frequency (8.05 Å). The real-space resolution
is consistent with reciprocal space estimates of the cutoff frequency at which the signal drops to
the noise floor [109]. Figure 4.9b highlights power spectral density variations projected on three
orthogonal planes. Measured power spectral density along the kx-ky and kx-kz directions shows
information transfer roughly occurring at 0.99 nm and 1.02 nm respectively (Fig. 4.9c). These
directions conservatively represent the 3D resolution from an average of the high-resolution and
low-resolution (z-axis) directions. This 3D chemical resolution nearly matches the 3D HAADF
resolution 1.00 nm, 1.01 nm in Figure 4.9 (Supplementary Fig. 4.10).

For fused multi-modal chemical tomography, the HAADF 3D resolution provides a new upper
bound to the highest obtainable 3D chemical resolution. A reduction of resolution along the z-axis
is expected from the incomplete tilt range that creates a missing wedge of information in Fourier
space [93]. Avoiding this anisotropic resolution loss has been demonstrated by acquiring a full tilt
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Figure 4.9: Resolution Analysis of Au-Fe3O4 superlattice nanoparticles. a Fused EELS to-
mograms of Au-Fe3O4 nanoparticles. Scale cube, 2 nm3. b Power spectral density of the Fe
reconstruction along the principal axial directions shown on the right. Scale bar, 0.5 nm−1. c
Power spectral density profiles for kx-ky and kx-kz directions. d Line profiles of a 2.5 nm Au
nanoparticle gives a resolution of 0.8 nm, 0.8 nm, and 1.1 nm along the x, y, and z directions.

Figure 4.10: HAADF Resolution Analysis of Au-Fe3O4 superlattice nanoparticles. a Fused
EELS tomograms of Au-Fe3O4 nanoparticles. Power spectral density of the HAADF reconstruc-
tion along the principal axial directions shown on the right. Scale cube, 2 nm3. Scale bar, 0.5
nm−1. b Power spectral density profiles for YZ and XY planes. c Line scan profiles of a 2.5 nm
Au nanoparticle give a resolution of 1.00, 1.03, and 1.01 nm along the x, y, and z directions.
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range (±90◦) through the preparation of needle wire samples or preparing nanoparticles on carbon
nanofibers [167, 123]. Here, we observe approximately a 25% reduction in resolution along the
missing wedge direction of the multi-modal chemical reconstruction.

4.5 Influence of Sampling

Electron tomography simulations show a 3-5 fold improvement in the normalized root mean square
error

(
⟨NRMSE⟩

)
averaged across all elements when multi-modal tomography is used over con-

ventional chemical tomography. In Figure 4.11 synthetic gold decorated CoO / CuO nanocubes
inspired by real experimental data [123] provide a ground truth comparison to assess the accuracy
of fused multi-modal tomography. Simulated projection images are generated from a simple linear
incoherent imaging model of the 3D chemical composition with added Poisson noise (See Meth-
ods). The specimen tilt range is limited to ±70◦ to better match typical experimental conditions.
The advantages of multi-modal tomography are clearly visible in the 2D slices (Fig. 4.11b) taken
from 3D reconstructions obtained by conventional chemical tomography

(
⟨NRMSE⟩ = 1.301

)
and fused multi-modal tomography

(
⟨NRMSE⟩ = 0.33

)
. For all chemistries (Au, O, Cu, Co,)

fused multi-modal tomography is more consistent with the ground truth with higher resolution and
reduced noise.

For any number of chemical projections acquired, we see a notable reduction in NRMSE when
HAADF projections are integrated into the chemical reconstruction. Figure 4.11 shows the im-
proved fused multi-modal reconstruction accuracy across a wide range of HAADF and chemi-
cal projections for the gold-decorated CoO / CuO nanocubes. The reconstruction error (average
NRMSE) across most of the multi-modal parameter space is less than 0.40 compared to values
around 1.2 for conventional tomography. Pixel values on the diagram (Fig. 4.11a) represent the
average NRMSE across all of the elements. This NRMSE map shows data fusion strongly benefits
by increasing the HAADF information available. It requires substantially less dose to increase
the HAADF projections (i.e. moving vertically on the map) compared to increasing the chemical
projections (i.e. moving horizontally on the map).

Conventional chemical tomography does not use HAADF projections (bottom row, Fig. 4.11a)
resulting in an average reconstruction error larger than the entire multi-modal regime. In practice
fused multi-modal tomography is performed in the regime with equal or more HAADF projections
than chemical (i.e. top-left triangle). Multi-modal tomography also performs well when the chem-
ical projections exceed the number of HAADF projections, however, this is not practical since
HAADF signals can be acquired simultaneously with EDX and EELS.

Determining optimal regularization parameters for the phase diagram (Fig. 4.11a) is computa-
tionally expensive to explore due to its variability across sampling conditions. While grid search
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Figure 4.11: Estimating Sampling Requirements for Accurate Recovery with Synthetic
CoO/CuO Nanocubes. a An NRMSE map representing the reconstruction error as a function
of the number of HAADF and chemical tilts. Brighter pixels denote results containing incorrect
reconstructions from the ground truth. b Visualization of three points corresponding to conven-
tional chemical tomography (reconstruction without the HAADF modality), and low-dose fused
multi-modal electron tomography. c The 3D models used for generating synthetic chemical and
ADF projections. Scale bar, 75 nm.

could find the best parameters by exhaustively exploring all possible candidate values, the compu-
tation time would be expensive as each map would take approximately 125 days to complete on a
single GPU.

We efficiently explored the parameter space with Bayesian optimization (BO) — a machine
learning framework known for optimizing expensive unknown objective functions with minimal
evaluations [178, 23]. It works by building a probabilistic model of the objective function with
Gaussian processes (GP) regression. GP not only estimates our function of interest but also pro-
vides the uncertainty measurements to guide future predictions. BO takes into account past evalua-
tions when determining future hyperparameter selections via an acquisition function [84]. For our
simulations, we carried out BO with GP with the Matern kernel and GP Hedge acquisition strat-
egy [13]. By exploiting BO with GP, we are able to provide an atlas of balanced hyperparameters
for Eq. 4.1 with the CoCuO synthetic datasets. Overall, these maps can guide future scientists to
produce multi-modal reconstructions with reasonable hyperparameter selections.

Asynchronous parallel BO on supercomputing resources allowed us to efficiently run several
reconstructions simultaneously on a single node. This form of parallel computing resulted in sev-
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Figure 4.12: Hyperparameter Estimation with Bayesian Optimization for the CuO-CoO
Nanocubes. a Bayesian optimization optimizes the data fusion cost function (shown above) when
provided a given number of chemical and HAADF tilts. b 3D visualization of the ground truth Au
decorated CuO/CoO nanocubes. Scale bar, 75 nm. c Bayesian optimization parameter selection
landscape where each black dot represents one of the many attempts to find the minimum NRMSE.

eral factors of computational speed up as multiple GPUs received unique experimental parameters
(e.g., SNR or sampling) to reconstruct concurrently amongst each other. Specifically, the compu-
tation time to generate an NRMSE map was reduced by 99.8% – taking less than a day to complete
(18 hours) using GPU cluster resources available through Argonne and Oak Ridge National Labo-
ratories (Summit-OLCF and ThetaGPU-ALCF).

Fused multi-modal electron tomography provides direct measurement of materials 3D chem-
istry. This means the ratio of voxels intensity reveals the speciemns 3D stoichiometry without
knowledge of inelastic cross-sections. For the simulated CoO-CuO nanocubes, values agree with
the ground truth (Fig. 4.13)—concentrations of Cu, Co, and O are centered at the expected value
of 0.50. Here, stoichiometric precision of multi-modal tomography (σ = 0.04) is four-times better
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Figure 4.13: Measuring 3D Concentration for simulated CuO-CoO nanocubes. Histograms
of chemical concentrations for each voxel in traditional and fused multi-modal tomography recon-
structions. For traditional chemical tomography, the accuracy improves with SNR or increasing
projections. Multi-modal tomography maintains low error, especially for experimentally realistic
conditions.

than traditional chemical tomography (σ = 0.17).
For experimental Fe3O4 nanoparticles (Fig. 4.14), multi-modal tomography produces an aver-

age Fe concentration of 0.46 (0.43 expected) with a standard deviation of 0.15. Note, determining
stoichiometry using traditional chemical tomography also requires accurate calculation of the in-
elastic cross-sections for each experiment [47].
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Figure 4.14: Measuring 3D Stoichiometric Concentration of Au-Fe3O4 Superlattice Nanopar-
ticles. 3D chemical reconstructions for each element are shown with their corresponding voxel
intensity histograms. The mean values and standard deviations are 46.4±15.1%, 54.6±15.3%,
100±0% for Fe, O, and Au, respectively. The expected stochiometry of this system is 42.9%,
57.1%, 100%.

4.6 Discussion

While this chapter highlights the advantages of fused multi-modal electron tomography, the tech-
nique is not a simple black-box solution. Step sizes for convergence and weights on the terms in
the cost function (Eq. 4.1) must be reasonably selected (Fig. 4.15).

Standard spectroscopic pre-processing methods become ever more critical in combination with
multi-modal fusion. Improper background subtraction of EELS spectra [114] or overlapping char-
acteristic X-ray peaks that normally cause inaccurate stoichiometric quantification also reduces
the accuracy of fused multi-modal tomography. Although lighter elements have smaller elastic
cross-sections, they tend to have larger inelastic cross-sections which benefits chemical tomogra-
phy. For example, the K-shell cross-section (chemical spectroscopic signal) of Carbon (Z=6) is
over 20-fold larger than Germanium (Z=32) [46, 48]. EELS is advantageous for discerning lighter
elements whereas overlapping peaks may occur in EDX. In general, electron tomography is fa-
vorable for measuring volumes in the range of (10 nm)3 to (1000 nm)3 at resolutions around 3
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Figure 4.15: Assessing Convergence and Selecting Hyperparameters with Pareto Front
Curves. a Pareto fronts illustrates the relationship between reconstruction quality and regular-
ization parameters for multi-modal electron tomography. Depicted are the tradeoffs from three
reconstruction evaluation metrics: the multi-modal, self-consistency and average NRMSE across
all elements. We see the highest quality reconstruction (lowest NRMSE) occurs around the in-
flection point of the pareto front. b The three individual components in the cost function plotted
throughout the multi-modal electron tomography reconstruction process illustrates smooth asymp-
totic convergence. Convergence should be confirmed for accurate reconstruction.

to 30 Å [96]. Thick specimens with dimensions that far exceed the mean free path of the elec-
tron can produce inversion contrast that will cause electron tomography to fail [53]—also causing
failure for multi-modal electron tomography. Electron tomography performs best for thicknesses
less than three times the incident electron’s mean free path (e.g., < 550 nm for Silicon at 300
keV) [108]. In all electron tomography experiments, beam convergence angles should be chosen
to match the desired resolution and depth of focus [169]. As shown for 2D fused multi-modal elec-
tron microscopy [144], fused multi-modal tomography works best when elements have discernible
contributions to the HAADF contrast and all chemical elements have been imaged. Multi-modal
tomography leverages compressed sensing (e.g., TV min.) which assumes incoherence (i.e., a high
level of dissimilarity) between the sensing and sparsifying transform [22, 103, 147]—although
this assumption typically holds as demonstrated for the datasets presented herein.

4.7 Conclusion

In summary, we present fused multi-modal electron tomography that enables chemically-sensitive
3D reconstruction of matter with nanometer resolution at high SNR. Researchers no longer must
choose between measuring 3D structure without chemical detail or characterizing chemistry along
a single viewing direction. By linking signals from elastic (HAADF) and inelastic (EDX / EELS)
scattering processes, the traditional dose limits of chemical tomography are substantially sur-
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passed. In some cases, a one-hundred fold reduction in dose is estimated. To demonstrate, the com-
plete volumetric density of each chemistry was mapped in several systems including Au-Fe3O4,
Co3O4-Mn3O4, ZnS-Cu0.64S0.36, and Cu-SiC nanomaterials. In both synthetic and experimental
datasets, fused multi-modal electron tomography shows substantial advantages in the accuracy
of 3D chemical imaging. This approach enables chemical tomography of a wide range of pre-
viously inaccessible materials with moderate radiation sensitivity. At chemical resolutions of 1
nm, fused multi-modal electron tomography opens up new understanding of geometrically com-
plex materials—from 3D semiconductor gate stacks [100], clean energy materials [10, 175], or
photoluminescence quantum dot nanoparticles [165].

Here, fused multi-modal tomography used commonly available STEM detectors (HAADF,
EDX, and EELS), however, this approach can be extended to other modalities in development—
including pixel-array detectors [158], annular bright field [54], ptychography [82], low-loss EELS
[63], etc. Furthermore, the tremendous potential of multi-modal data fusion as a paradigm readily
enhances deep learning to capitalize on the unique advantages from both domains [65]. One can
imagine a future wherein all scattered and emitted signals in an electron microscope are collected
and fused for maximally efficient characterization of matter in all dimensions.
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CHAPTER 5

Real-time 3D Analysis During Electron Tomography

1

The demand for high-throughput electron tomography is rapidly increasing in biological and
material sciences. However, this 3D imaging technique is computationally bottlenecked by align-
ment and reconstruction which runs from hours to days. We demonstrate real-time tomography
with dynamic 3D tomographic visualization to enable rapid interpretation of specimen structure
immediately as data is collected on an electron microscope. Using geometrically complex chiral
nanoparticles, we show volumetric interpretation can begin in less than 10 minutes and a high-
quality tomogram is available within 30 minutes. Real-time tomography is integrated into tomviz,
an open-source and cross-platform 3D data analysis tool that contains intuitive graphical user in-
terfaces (GUI), to enable any scientist to characterize biological and material structure in 3D.

5.1 Introduction

Three-dimensional (3D) characterization across the nanoscale is now possible using scanning /
transmission electron microscopes (S/TEM) [32, 107, 110, 149, 171]. In an electron tomogra-
phy experiment, volumetric structure of biological or materials specimens are reconstructed from
high-resolution projection images acquired across many viewing angles [133, 73]. Unfortunately,
tomographic reconstructions can take one to several days to complete depending upon the dataset
size or algorithm(s) employed. Even worse, the reconstruction occurs offline, long after all the
data has been collected, preventing immediate interpretation during an ongoing experiment. While
advancements in detector hardware have boosted throughput with digital data collection [143],
substantial human effort and computational resources are still required to process the raw data be-
fore visualization. It has been a longstanding goal to begin 3D analysis of specimens in real-time
to allow immediate assessment of nanoscale structure and data quality [17].

1The results presented in this chapter lead publications in Ultramicroscopy and Nature Communications [148, 146].
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Here we present facile 3D visualization of specimens during an electron or cryo-electron tomog-
raphy experiment using the tomviz platform (tomviz.org). Our platform now provides interactive
3D material or biological structure in real-time to enhance high-throughput specimen interpreta-
tion. Tomviz offers multiple real-time reconstruction algorithms integrated into a fully graphical
interface that presents the user with immediate visualization during data collection. Achieving
high-throughput electron tomography requires an integrated pipeline that links the microscope
hardware to optimized reconstruction algorithms and efficient 3D volumetric visualization. A
multi-threaded data analysis pipeline runs dynamic visualizations that update as new data is col-
lected or reconstruction algorithms proceed. Iterative reconstruction algorithms efficiently accom-
modate new data and keep pace with typical experimental acquisition rates. Scientists can interac-
tively analyze 3D specimen structure concurrent with a tomographic reconstruction after or during
an experiment. The robust graphical interface allows for 3D specimens to be rendered as shaded
contours or translucent volumes that can be rotated, cropped, or sliced as the reconstruction occurs.
In favorable cases, structural interpretation can begin as early as 10 minutes and a high-resolution
volume is available after only 60% of data is acquired (∼30 minutes). The latest tomviz release
(v 2.0), is now packaged with real-time 3D analysis for electron tomography, is available as an
open-source cross-platform tool with compiled binaries certified for Linux, Mac, and Windows.

5.2 Real-Time Tomography Workflow

The real-time tomography workflow is illustrated in Figure 5.1: electron micrographs are collected,
passed to tomviz for reconstruction, and visualized as an interactive 3D rendering. This process
runs simultaneously and continuously while the electron microscope is being operated. During
experimental acquisition, tomviz monitors when new projections are collected (Fig. 5.1a) and
appends new data into the reconstruction process. Importantly, tomograms are reconstructed in
parallel with data acquisition. Real-time algorithms accommodate the arrival of new data without
restarting the reconstruction process. Iterative reconstruction methods are made efficient for real-
time processes by utilizing dynamic descent parameters.

Modifications to the common implementation for SIRT and TVmin were made to account for
the dynamic addition of input projections throughout an experiment. SIRT seeks the minimal
error between the reconstruction and experimental data: argminx ∥Ax − b∥2 where A is the
measurement matrix, b are the experimental projections and x is the tomogram. We can further
regularize the process through the assumption that our volumes should be piece-wise smooth and
minimize its total variation ∥x∥TV . Iterative algorithms require rescaling of the descent parameter
based on the number of projections sampled. SIRT can easily estimate the descent parameter
through calculation of the Lipschitz constant (L = ∥ATA∥2). The Lispchitz constant can be
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estimated by using the power method [86]. The descent parameter for TVmin is scaled by a
dampening envelope that ensures its magnitude decays linearly [148]. Non-iterative algorithms
such as WBP do not require rescaling of descent parameters and simply needs to reinitialize the
computation with the new projection images collected.

Dynamic reconstructions maintain pace with typical experimental acquisitions (e.g. 5123 –
10243 voxels) using a personal computer. The intermediate reconstructions are rendered in 3D and
immediately presented to the scientist (Fig. 5.1b). Thus, the tomogram dynamically improves with
time as both the reconstruction algorithm converges and additional specimen information arrives.
High-quality 3D reconstructions are available before the end of the experiment (Fig. 5.1c).

Figure 5.1: Real-Time Electron Tomography Workflow of a helical nanoparticle visualized
on tomviz. a, Specimen projections are sequentially collected in an electron microscope across an
angular range (< ±75◦) and continually passed to tomviz for reconstruction and live 3D visualiza-
tion. b, As projections accumulate during the experiment, the reconstruction updates in real-time
and resolution improves. Scale bar, 100 nm c, A high-quality tomogram is available for data inter-
pretation upon the end of an experiment.

Direct visualization of a specimen’s 3D structure enables immediate identification of morpho-
logical and internal information shortly after a tomography experiment begins. We demonstrate
real-time tomography on a helical nanoparticle comprised of a chiral dipeptide Cystine amino-acid
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coordinated with Cadmium (Cyst/Cd). The bowtie-shapped particles were synthesized using a
size limited self-assembly process described by Yan et. al. [170]. These semiconducting nanopar-
ticles contain strong tunable chiroptical properties due to a twisted geometry [170]. As shown
in Figure 5.1b, the overall morphology for the Cd/Cyst nanoparticle can be observed in as early
as 10 minutes and fine details are visible after 20-30 minutes of the experiment (roughly half-
completion). The specimen’s right handed chirality cannot be determined from a single projection
image and requires 3D imaging (Fig. 5.1c). With real-time tomography the material’s chirality and
symmetry were identified within the first third of data acquisition (∼15 minutes). This immediate
feedback can save researchers days of effort as reconstructions are no longer processed offline.
Moreover, real-time visualization allows quick adjustment and optimization of reconstruction pa-
rameters that can greatly influence the reconstruction quality. Ultimately, scientists can efficiently
investigate 3D nanostructure during imaging to guide experiments and redefine scientific objectives
while simultaneously operating the microscope.

5.3 Real-Time 3D Visualization During Reconstruction

Currently, the best tomographic reconstructions are obtained from algorithms that are slow and it-
erative. In practice, electron tomography experiments are limited by a finite and restricted angular
range (e.g. < ±70◦) resulting in incomplete information that degrades resolution in 3D [122]. It-
erative algorithms can recover tomograms with high spatial resolution and minimal reconstruction
error [4]. While these algorithms better estimate 3D structure from under-determined measure-
ments, they come at the expense of computational time [56]. Fortunately, using the tomviz tool,
iterative reconstructions can be visualized in real-time throughout the arduous computation.

Real-time tomography greatly alleviates the wait-time by visualizing the intermediate 3D
structure between algorithm iterations—beneficial during an experiment or analysis. Figure 5.2
demonstrates interactive visualizations of the Simultaneous Iterative Reconstruction Technique
(SIRT) [57] for a cobalt phosphide (Co2P) hyperbranched nanoparticle [176] (5123 pixels vol-
ume reconstructed across the 363.52 nm full field of view). SIRT tomograms begin with a loose
estimate [168] (Fig. 5.2a) and develop sharper, high frequency information with each increas-
ing iteration (Fig. 5.2b-c). Compressed sensing algorithms such as total variation minimization
(TVmin) seek maximally sparse solutions to recover high-resolution, low-noise structure using
fewer projections than conventional methods [154, 137]. Figure 5.2e-f demonstrates an interactive
3D visualization using TVmin reconstruction of a iron platinum (FePt) nanoparticle at atomic res-
olution (2563 pixels volume reconstructed across the 9.536 nm full field of view)—data provided
and pre-processed by Yang et. al. [173]. This work replicates the atomic resolution tomogram
using independent pre-processing and reconstruction methods. Recent developments in dynamic
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Figure 5.2: Demonstration of iterative reconstruction algorithms. a-c,Visualization of the Co2P
nanoparticle early, mid, and at the end of the reconstruction process. At the beginning, the under-
lying structure can partially be seen behind the excess of background intensity. In the middle of
the process, sharp features begin to form. The final iteration converges to a tomogram visually
similar to the input tilt series. Scale bar, 50 nm. e-g, Visualization of an atomic resolution FePt
nanoparticle. The atoms in the TV nanoparticle are resolved with increasing iteration and its pe-
riodicity demonstrated with the fast Fourier transform (FFT). Scale bar, 1 nm. d, h, A plot of the
normalized residual to demonstrate convergence.

compressive sensing [148] have also been incorporated into tomviz to accommodate the arrival of
new projections during an experiment.

In addition to early estimates of specimen structure, real-time tomography allows assessment of
the reconstruction convergence. This is observed qualitatively in the 3D visualization (Fig 5.2e-f)
and quantitatively plotted in the residuals (Figure 5.2d,h). Watching the convergence provides vi-
sual inspection and intuition to how hyperparameters influence the final 3D structure and ensures
proper convergence. For example, compressed-sensing inspired reconstruction methods are sensi-
tive to regularization weights and require visual inspection to assess accuracy [83]. Furthermore,
these advanced reconstruction algorithms do not exhibit predictable or monotonic convergence a
priori and require monitoring to optimize convergence and determine when to terminate[51, 52].
Even for traditional algorithms where convergence is more predictable, they are often slow and
changes become marginal—the scientist need not wait to begin interpreting the 3D structure.
Lastly, practical issues such as misalignment, spurious values in data (e.g. hot pixels), in-plane
rotations, and other pre-processing artifacts alter or degrade a reconstruction, however, these prob-
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Figure 5.3: Real-Time Simulation for the Raw FePt Nanoparticle. a, The raw FePt tomographic
projection images used for the real-time tomography simulation. Scale bar, 2 nm. b) As the
simulation progresses, the reconstruction quality improves and atoms become visible as early as
50% of the experiment. c) An atomic-resolution tomogram is available after all the projections are
reconstructed.

lems are diagnosable without completing a full reconstruction. Real-time assessment saves re-
searchers time by providing early feedback and optimizing reconstruction parameters to serve the
longstanding goal of high-throughput tomography.

Real-time tomography is agnostic to spatial resolutions and can faithfully reconstruct specimens
at atomic length scales. Figure 5.3 illustrates the progressive convergence of the FePt nanoparticle
while using the raw unaligned tilt series on tomviz. New unaligned HAADF projections (Fig. 5.3a)
are incrementally fed into the ART algorithm every minute – acquisition speeds representative
of experimental conditions. We see atomic scale structure becomes visible within 50% of the
experiment (Fig. 5.3b), and individual atomic columns are resolved by completion (Fig. 5.3c).
Further improvement can be achieved by integrating compressed sensing or regularized algorithms
to remove low SNR and sampling artifacts.

Alternatively, weighted back projection (WBP) reconstructions are ideal for quick assessment
of specimen morphology due to their fast, non-iterative computation [12, 16]. Figure 5.4 shows
screenshots taken from a live WBP reconstruction visualized using tomviz—time proceeds from
left to right. Figure 5.4a is a tomogram of gold (Au) nanoparticles on a strontium titanate (STO)
nanocubes. Figure 5.4b shows platinum (Pt) nanoparticles on a carbon (C) support with the rotation
axis along the x-direction. For WBP of single-axis tomography, partial volumetric updates are
provided slice by slice along the direction parallel to the rotation axis. In the software, the 3D
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Figure 5.4: Demonstration of live-WBP. Live tomographic reconstruction in tomviz shown
through freeze frames during progression of a weighted back projection algorithm (left to right).
This unique capability allows users to interact and analyze the 3D structure throughout reconstruc-
tion. In the actual software the reconstruction updates in real time. a, Live volume rendering of
Au/strontium titanate (STO) nanocubes. b, Live volume rendering of platinum (Pt) nanoparticles
on a carbon support. Scale bar, 50nm.

visualizations dynamically grow along one direction throughout the computation.

5.4 Dynamic Compressed Sensing for Real-Time Tomography

In addition to software advancements, we developed a dynamic CS framework that offers 3D spec-
imen reconstruction in real-time as projection data is collected. It enables direct feedback and on
the fly optimization of experimental parameters. The reconstruction algorithm begins immediately
upon acquiring the first projection and dynamically updates the 3D structure as new projections
arrive—unlike traditional schemes which start after the experiment is complete. This means re-
searchers can start analysis and characterization with high-fidelity tomograms before an experi-
ment is complete. Using scanning transmission electron microscope (STEM) tomography [110],
we demonstrate our method accelerates the final convergence by a factor of 2-3 over conventional
CS and provides insight into 3D nanostructure within 62% of the total experimental acquisition
time. We demonstrated dynamic reconstruction reduces reconstruction error for synthetic Au-
SrTiO3 nanoparticles by 27% and converges 100% faster than a traditional approaches. Moreover,
we show our iterative framework enables dynamic manipulation of the data-tolerance throughout
the reconstruction to efficiently explore tunable parameters without having completely reset the
algorithm. Implementing dynamic CS required complete parallelization that includes the 3D to-
tal variation regularization for the isotropic norm. Tomograms (∼ 5123 voxels) can reconstructed
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dynamically on modest multi-core laptops during an electron tomography experiment and larger
reconstructions (∼ 20483) are achievable with high performance computing.

The notion of sparsity has become widely used in signal processing and image reconstruction as
a prior knowledge to regularize solutions in underdetermined problems. It was greatly popularized
by the theory of compressed sensing [153] that demonstrates the possibility to accurately recover
the 3D structure of specimens (x̂) from an insufficient number of projections (b) with ℓ1-norm
optimizations. One of the most representative sparsity-exploiting algorithms is the total variation
minimization (TV-min), which was originally proposed for image denoising [136] and widely used
to reduce tomographic artifacts for reconstructions from a limited number of projections [152,
93, 61]. The technique can effectively remove noisy features while preserving the edges of the
object by minimizing its gradient magnitude. In this work, we consider a constrained optimization
problem defined as:

x̂∗ = argmin
x̂≥0

∥x̂∥TV s.t. ∥Ax̂− b∥2 ≤ ϵ (5.1)

where ∥.∥TV and ∥.∥2 denote the TV and ℓ2 norms, and ϵ is a data-tolerance parameter that controls
the trade-off between regularization (smoothness) and data fidelity. Here, a tomography experi-
ment is formulated as an inverse problem, Ax̂ = b, where A is the projection matrix that models
the measurement physics. The constrained optimization problem can be solved with a combination
of adaptive steepest-descent (ASD) to minimize TV and projection onto convex sets (POCS) to en-
force data constraints—commonly referred to as (ASD-POCS) [154]. This constrained optimiza-
tion provides physical meaning to the tunable regularization parameter, ϵ, which can be initially
estimated from the data quality [101]. Across all ‘flavors’ of compressed sensing tomography, the
optimization process begins after all data has been collected. The iterative process can take thou-
sands of iterations and runs from hours to a full day before converging to the designed solution.
Moreover, the regularization parameter (here, ϵ) is often task-dependent and needs be to adjusted
to produce the best image quality, further increasing the computation time for the reconstruction
process.

Dynamic reconstruction during data collection allows researchers early insight into 3D structure
throughout a tomography experiment. Figure 5.5 highlights the overall framework for the dynamic
CS algorithm. Instead of starting at the end of an experiment, the reconstruction task begins im-
mediately when the first projection is available. As more projections are experimentally acquired,
the new information is accommodated as additional constraints in the optimization process (Fig.
5.5a) and improves the reconstructed tomogram quality (Fig. 5.5b). Because the reconstruction
process is continuously running throughout the entire data acquisition, which typically take several
hours, dynamic compressed sensing is able to produce a high-quality reconstruction before or upon
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Figure 5.5: External and internal architecture of tomviz GUI. The tomviz platform is com-
posed of a multi-threaded pipeline that synchronously handles tomographic and 3D visualization
on separate threads. a, Tomviz monitors for recently acquired tilt projections within a directory
and b, automatically reads new data into the pipeline. c, As tomographic reconstructions proceed,
visualizations dynamically update and remain interactive for analysis.

arrival of the final projection (Fig. 5.5c).

5.5 Convergence of Dynamic Compressed Sensing

As dynamic CS progresses, in both iterations and the number of projections, it reduces RMSE
but eventually diverges from the optimal solution with minimal error and approaches a solution
defined by the optimization problem (Eq. 5.1). Iterative algorithms (e.g. Kaczmarz, Landweber, or
Cimmino Method) typically deviate from solutions with minimum RMSE when applied to noisy
data [50]. While RMSE is a useful quantitative measure to assess reconstruction performance, it
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does not match the visually desired solution [83]. Moreover, computing RMSE requires knowledge
of the true 3D specimen structure.

Figure 5.6: Dynamic CS convergence. a) 3D volume rendering with yellow indicating high
intensity (Au) and purple representing low intensity (SrTiO3). These tomograms were constructed
under the dynamic (left) and traditional (right) CS framework. b) Plots of data distance (DD), total
variation (TV) and RMSE for both the dynamic algorithm (black) and conventional (blue). c) 2D
cross-sections of the final output for each 3D reconstruction and the test object.

In real experiments the true solution is unknown and a tomogram’s RMSE cannot be measured.
Instead, the progression of a reconstruction’s TV and data distance (DD= ∥Ax̂ − b∥2) can be
utilized to assess the convergence towards an optimal solution. Figure 5.6 plots RMSE, DD and
TV vs. time for the Au-SrTiO3 phantom nanoparticle during a dynamic compressed sensing re-
construction. Throughout an experiment (shaded green), the data distance trends downward to the
specified data tolerance, ϵ (red line) indicating stable convergence. The incorporation of new data
creates sharp discontinuities in DD and TV. Unlike RMSE which drops with the addition of new
projections, DD and TV momentarily rise sharply because ASD-POCS is attempting to minimize
the distance between DD and ϵ by iteratively adjusting the weights between data fidelity and reg-
ularization. After the arrival of new data, the algorithm will sufficiently converge to a solution
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within ∼125 iterations. Dynamic CS performs best when there are enough iterations to satisfy its
data tolerance constraint (DD ≃ ϵ) before new projections are introduced. If additional projections
are added too quickly, the overall convergence may drift (See Fig. 5.7) and the algorithm will be
unable to reach its optimal solution by experimental completion.

Figure 5.7: Convergence criteria. Stable (blue) and unstable (black) convergence of RMSE, DD,
and TV for the synthetic Au/SrTiO3 nanoparticle. The blue curve shows proper convergence when
the reconstruction completes many iterations (125) prior to appending more projections. The black
curve shows incomplete convergence when insufficient intermediate iterations are not completed
and TV may drift away from the true solution (TV0).

5.6 Dynamic Parameter Tuning

Selecting ϵ often requires computing several reconstructions and ultimately relies on the scien-
tist’s judgement. Here we show dynamic compressed sensing allows ϵ to be tightened (decreased)
or loosened (increased) mid-reconstruction. Furthermore, the data-constraint can be reversibly
adjusted—reflecting stable and convex convergence. Generally speaking, selection of the data con-
sistency constraint, ϵ, depends on the SNR as it accommodates all sources of data inconsistency
(e.g. noise) and ensures re-projections are within a given ℓ2 distance from the actual (experimental)
data [177]. Dynamic parameter tuning allows researchers to more efficiently dial in the optimal pa-

74



Figure 5.8: Dynamic manipulation of data tolerance parameter. a) Tightening (reducing) ϵ de-
creases the regularization weight which gradually produces sharper 3D tomograms. b) Loosening
(increasing) ϵ allows for there to be more regularization and produce smoother 3D tomograms. c)
Plots demonstrating the progression of DD (gray) and RMSE (magenta) vs iteration. As the cal-
culation progresses, scientists can manipulate regularization without having to reset the algorithm.
The visually desirable solution is obtained when ϵ = 0.0225, highlighted in green. Reducing ϵ
below this value produces noisy reconstructions. Overestimating ϵ blurs away fine features such as
the Pt nanoparticles and internal voids.

rameter value. If ϵ is too low the reconstruction appears noisy; if ϵ is too high, detail and resolution
is degraded.

Figure 5.8 demonstrates that manipulating ϵ throughout the reconstruction consistently con-
verges in stable results. Here, we reconstructed a fully sampled Au/SrTiO3 tilt series and waited
until all of the optimization parameters (RMSE, DD, and TV) were fully converged prior to per-
turbing the data constraint. During iterations: 0–4,500 we reduced ϵ eight times by −0.025 before
increasing by +0.025 eight times during iterations 4,500–8,500. For this dataset, we found small
perturbations (|∆ϵ| ≤ 0.05) guarantee convergence within ∼100 iterations. Dynamic CS reli-
ably converges to solutions defined by the final ϵ chosen. Whether incrementally increased or
decreased, the final value of ϵ determines a nearly unique solution, which can be seen both visually
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(Fig 5.8a,b) and quantitatively in the RMSE 5.8c. Note that the minimal RMSE (ϵ ≃ 0.0175)
retains grainy artifacts and does not produce a desirable reconstruction due to Au particle’s high
intensities. As discussed by Jiang, et. al., the visually appealing result is generally obtained from a
slightly larger ϵ [83]. We observed similar data-tolerance properties, the visually desirable recon-
struction (highlighted in green Fig. 5.8) occurs at ϵ = 0.025.

5.7 The Live Tomography Software on tomviz

The latest tomviz release (v. 2.0) includes real-time tomography capabilities, is entirely open-
source (BSD License), runs on all operating systems (OSX, Windows, Linux) with certified in-
stallers, and can be implemented on rudimentary TEMs available at most institutions.

Figure 5.9: External and internal architecture of tomviz GUI. The tomviz platform is com-
posed of a multi-threaded pipeline that synchronously handles tomographic and 3D visualization
on separate threads. a, Tomviz monitors for recently acquired tilt projections within a directory
and b, automatically reads new data into the pipeline. c, As tomographic reconstructions proceed,
visualizations dynamically update and remain interactive for analysis.

The tomviz graphical user interface (GUI) (Fig. 5.9) provides an intuitive tomography tool that
allows scientists to focus on 3D specimen interpretation [145]. Tomviz monitors data directories
for the arrival of new projections during an experiment (Fig. 5.9 a) and visualizes the 3D recon-
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struction as it dynamically updates (Fig. 5.9 c). During a real-time tomographic reconstruction
users can zoom, rotate, slice, and segment the object to highlight regions of interest as the algo-
rithm runs independently. Each voxel in the 3D render (i.e. volumes or isometric contours) are
assigned a color and opacity controlled by the color-opacity transfer function overlayed on the
histogram visible at the top of the GUI (Fig. 5.9, top-right). Users can intuitively define voxel
transparency by selecting points on the curve and dragging it between transparent or opaque. The
data ‘Pipeline’ retains all transformations and modules performed to produce visualizations, all of
which can be saved in a state file for sharing and reproducibility.

A seamless user experience is enabled by an underlying multi-threaded framework of Python
/ C++ interactions. As the reconstruction occurs, algorithms written in Python trigger signals to
notify the application that a new volume is available. Tomographic reconstructions can either run
on basic computer infrastructure found on any laptop or scaled across multiple GPUs to process
large volumes (> 10243 voxels). Live reconstructions without performance degradation requires a
tripling of memory requirements. One data copy resides on the visualization (GUI) thread, another
on the reconstruction (Python) thread, plus a temporary copy for efficient staging and handoff.
The temporary copy allows the reconstruction to run unhindered during the handoff process. The
total memory usage for real-time reconstruction is usually well within a consumer grade computer
(c.a. 0.4 – 16 GB). After the reconstruction is complete, all copies are released from memory and
only the final reconstruction remains. Analytical reconstruction methods such as WBP can run
slice-by-slice with new reconstructed slices appended along a single reconstruction direction. For
iterative methods, we recommend updating the entire volume either every iteration or every few
(depending on the speed of computation)—especially for complex sampling schemes such as dual
or multiple-axis tomography which lacks a single rotation axes. Enhancements to the underlying
3D rendering (VTK) within tomviz were made to improve interactive visualization and analysis
throughout the reconstruction process [66].

5.8 Parallelization and Performance

Computational efficiency is key to the success of real-time tomography dynamic compressed sens-
ing. Several software advencements were required to develop an asynchronous platform that han-
dles visualization and tomographic reconstruction simultaneously to provide a seemless user expe-
rience. The multithreaded pipeline within the tomviz application executes long-running jobs while
simultaneously offering real-time visualization of the progress. As the reconstruction occurs, algo-
rithms written in Python can trigger signals to notify the application that a new volume is available.
A slot on the C++ side listens for this signal, using a mutual exclusive lock (mutex) on the image
data to secure access to the updated volume. The new data is copied into the foreground thread
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(main GUI), and once it is available the mutex is released. Once the application receives a signal
indicating that the output has been updated, downstream data operations can then be re-executed
and any connected visualization modules will also be notified. As an effect, the histogram is re-
calculated in another background thread while all the current visualization modules display the
rendered representation. In the case of the contour module, this will necessitate the recalculation
of the surface mesh or the update will be uploaded to the GPU for volume rendering.

Modifications to the common implementation for SIRT and TVmin were made to account for
the dynamic addition of input projections throughout an experiment. SIRT seeks the minimal
error between the reconstruction and experimental data: argminx ∥Ax − b∥2 where A is the
measurement matrix, b are the experimental projections and x is the tomogram. We can further
regularize the process through the assumption that our volumes should be piece-wise smooth and
minimize its total variation ∥x∥TV. Iterative algorithms require rescaling of the descent parameter
based on the number of projections sampled. SIRT can easily estimate the descent parameter
through calculation of the Lipschitz constant (L = ∥ATA∥2). The Lispchitz constant can be
estimated by using the power method [86]. The descent parameter for TVmin is scaled by a
dampening envelope that ensures its magnitude decays linearly [148]. Non-iterative algorithms
such as WBP do not require rescaling of descent parameters and simply needs to reinitialize the
computation with the new projection images collected.

As discussed previously (Section 5.5), the reconstruction process should reach stable solutions
before incorporating new projections. We emphasize that the overall computation should always
be faster than the data acquisition, so that by performing the image reconstruction on the fly, we
can obtain the reconstructed image almost right after the experiment finishes. This is seen in all the
previous cases we have presented, in which RMSE converges to a plateau value before the arrival of
a new projection. However, as the size of the object increases, the computational complexity grows
as O(N3), where N is the size of the object in each dimension; the experimental time, however,
grows only as O(N2). Therefore, for large physical systems (>20483), single laptop/desktop or
workstation is not powerful enough for dynamic compressed sensing. To overcome this problem,
we deployed high performance computing (HPC) resources at Theta, a Cray XC40 11.69 petaflops
supercomputer at Argonne Leadership Computing Facility.

We use Massage Passing Interface (MPI) [28] to parallelize our code across different nodes.
In particular, we distribute the 2D slices to different MPI processes. There are two dominant
computations involved in our algorithm: (1) ART – for minimizing ∥Ax̂ − b∥2; (2) TV – for
calculating the TV gradient of the object, ∥x̂∥TV. For ART, the computation is independent for
different slices and no data exchange is needed among the processes. For TV, each process only
needs to send the first and last slices owned by that process to the two nearby processes respectively.
The communication overhead thus is minimal. We expect our algorithm to scale efficiently in HPC
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supercomputers. Besides using MPI for the inter-node parallelism, for the intranode parallelism,
we use OpenMP [36] to parallelize the computation intensive loops.

5.9 Discussion and Conclusion

We demonstrate real-time visualization of electron tomography reconstructions as they proceed
during or after an experiment using tomviz, an open-source cross-platform tool compatible with
all electron microscopes. We achieved real-time electron tomography by integrating dynamic vol-
umetric data analysis tools, data input / output, processing, reconstruction and visualization into
a single software tool. In the actual software, the 3D visualizations are dynamically updated in
parallel with computation. This means that scientists need not wait for a reconstruction to com-
plete, or all data to be collected before beginning the interpretation of results. Continuous feedback
provides high-throughput and early diagnoses of 3D specimens, opportunities to optimize exper-
imental parameters, or investigate multiple regions of interest. Although dose is fundamentally
set by the experimental acquisition parameters (e.g. dwell time, beam current, sampling rate or
tilt increment), in practice real-time tomography may reduce dose by streamlining acquisition and
allowing the possibility of early termination if the reconstruction requirements are met. Optimized,
threaded pipelines and the iterative nature of tomographic methods allows tomviz to show inter-
mediate results with minimal impact on performance. This enables interactive 3D analysis of the
current reconstruction state while the reconstruction proceeds on a separate thread. A robust graph-
ical interface allows objects to be rendered as shaded contours or volumetric projections and these
objects can be rotated, cropped, or sliced. This capability opens radically new possibilities for
developing high-throughput, real-time tomographic reconstruction algorithms for geometrically
complex inorganic [81] or biological materials. Ultimately, interactive real-time visualization goes
beyond high-throughput and allows researchers to make early judgments to answer or identify new
scientific questions during experimentation.
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CHAPTER 6

Conclusion

As the field of material science is increasingly reliant on electron microscopy, underscoring the
growing demand for innovative techniques in advanced low-dose imaging, with expanding appli-
cations in organic matter. Notably, the integration of compressed sensing algorithms has been a
hallmark of inverse problem accomplishments in the past two decades, particularly through the
incorporation of sparse modeling. This dissertation focused on solving the challenges associated
with low-dose spectroscopy and real-time 3D imaging.

The relevance of sparse signal recovery was initially demonstrated in Chapter 2, where the
restoration of electron micrographs by removing structured stripe artifacts were presented. This
was achieved through a constrained cost function that minimizes the image’s total variation while
preserving information in Fourier Space. By capitalizing on the shortcomings of compressed sens-
ing, which struggles to recover highly localized directional structures missing in Fourier Space,
we achieved significant progress. In application, destriping has the most substantial impact on
soft matter (e.g., nacreous pearls) which are particularly susceptible to damage from mechanical
polishing methods [58]. Consequently researchers can allocate less emphasis on sample prepa-
ration, thus accelerating workflows and directing more emphasis on data analysis. Furthermore,
this destriping study provides insight into the recoverability of extended, unidirectional features
(e.g., interfaces), which can be problematic for inverse problems beyond electron microscopy.

In Chapters 3 and 4, a novel framework that facilitates data fusion between complementary
elastic and inelastically scattered signals within microscopes was introduced. This approach trans-
forms the exploitation of tangential features into a multi-objective inverse problem, promoting
synergy between available modalities. Remarkably, thoughtful design considerations yielded dose
reductions of over 99%, equating to two orders of magnitude, while enabling 2D and 3D chemistry
measurements at sub-angstrom and sub-nanometer resolutions, respectively. This fidelity enhance-
ment of chemical distributions, alongside material integrity retention, was consistently evident.
Multi-modal data fusion not only improves SNR but opens a pathway for the low-dose chemical
imaging of radiation-sensitive materials.
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Ultimately, this framework offers a new form of experimentation that efficiently utilizes all
the scattered and emitted signals in electron microscope to characterize the atomic structure of
matter. We can extend our work to additional modalities including phase-contrast signals like
integrated Differential Phase Contrast (iDPC) or electron ptychography [104, 27]. With phase
contrast signals, we can expanding the scope of multi-modal imaging to fully encompass the light
elements in oxides and soft materials as intensity would be linearly proportional to Z. Thereby
improving simultaneous high-resolution chemical imaging of heavy and light elements.

Chapter 5 introduces software and algorithmic strides that accelerate electron tomography, ren-
dering near real-time 3D imaging feasible. Through optimizations, the time required to display
volumetric visualizations was dramatically reduced from over 24 hours to under 20 minutes on
a software platform concurrently managing 3D rendering and reconstruction through separate
threads. Algorithmic developments further bolster this advancement by adaptively handling the
inflow of new projection views during microscope data acquisition. Intermediate visualization of
specimen structure boosts high-throughput, as researchers can assess the specimen’s integrity dur-
ing the experiment and diagnose practical issues that could hinder success. For instance, this work
enhances the likelihood of reconstructing highly beam-sensitive organic matter, which is prone to
degradation under the electron beam. Currently, the temporal resolution of real-time tomography
is partially constrained by the slow speed of the goniometer. The synergy of future improvements
in automated rapid acquisition with faster reconstruction speeds on GPU clusters holds promise
for rapidly visualizing 3D material structures within seconds. In the future, such rapid experi-
ments combined with the real-time tomography presented herein, can empower the investigation
of nanoscale dynamic processes in materials subjected to external stimuli, such as heat or liquid
environments in 3D [2].
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APPENDIX A

Automated Hyperparameter Tuning With Bayesian
Optimization

Bayesian optimization (BO) with Gaussian processes (GP) has emerged at the forefront of expen-
sive black-box optimization due to its efficient exploration capabilities. BO is designed to identify
the global optima of unknown functions and is well suited for reliably identifying preferred param-
eters in an unknown objection function f :

x̂ = argmin
x∈X

f(x) (A.1)

Where X denotes the search space and x̂ is the optimum. Bayesian optimization framework can be
applied to more unusual search spaces that involve categorical or conditional inputs. Because the
Bayesian optimization framework is very data efficient, it is particularly helpful in situations where
evaluations of f are costly and is non-differentiable or convex. In these situations, BO accounts
previous observations to efficiently guide the search process for future measurements.

Bayesian optimization involves two core components: (1) develop a posterior probability dis-
tribution of the parameter objective with GP regression and (2) specified control the exploration of
future measurements [84]. BO uses GP to model the objective as a joint distribution of functions
whose landscape (e.g. smoothness) is defined by a kernel or covariance function. In addition to
modeling the objective, the posterior distribution quantifies the uncertainty (standard deviation)
over all unsampled points. The acquisition function proposes sampling points while balancing the
importance between exploitation of extrema and exploration in regions with large uncertainty. Both
phases act as a safeguard against convergence to local optimum by exploring the entire parameter
space [23].

Figure A.1 shows the Bayesian optimization process to systematically determine the optimal
λ values from estimates of the RMSE landscape. Here we are trying to reconstruct synthetic Au-
STO nanocubes using the unregularized TV cost function (Eq. 1.13) with 47 low SNR projections
solved with the FISTA algorithm. In the case of this cost function, we only are trying to optimize
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Figure A.1: Determining optimal λ parameter for simulated compressed sensing electron to-
mography with Bayesian optimization. a The BO optimizer iteratively samples λ values and
performs a tomographic reconstruction to estimate the RMSE landscape. BO strategically deter-
mines the next point to sample after each measurement. b The final estimated landscape of RSME
vs λ. The blue star represents the Bayesian optimization’s minimum RMSE solution, and the yel-
low and red represent the minima for the DD and TV metrics, respectively. c-e Corresponding
reconstructions: c lies in the traditional regime, d is the RMSE minimizing reconstruction, and e
is an over-smoothed reconstruction.

our cost function in relation to our regularization parameter (λ). As more points are gathered,
certainty of the RMSE landscape improves. The variance in its estimate of the landscape is used
to predict the global minimum. The estimated landscape is updated after each prediction until a
certain number of iterations is performed or the solution converges. It is critical that the global
minimizer is within the bounds provided to the optimizer.

For simulated data, autonomous parameter tuning for iterative algorithms electron tomography
is achievable using Bayesian optimization with Gaussian processes. BO with GP autonomously
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reduces the computational time required to discover optimal tomography parameters without any
user intervention. This work is essential for large-scale tomographic simulations that require auto-
matic parameter selection and efficient use of computational resources. Specifically, BO was par-
ticularly useful for carrying out the big scale fused multi-modal tomography simulations (Fig. 4.11)
which required several observations to determine the optimal hyperparameters in Eq. 4.1. In the
case of 2D optimization, the estimated parameter landscape transitions from a simple 1D curve to
a surface as shown in Fig. 4.12c.
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APPENDIX B

User Manual for Real Time Tomography on tomviz

Electron tomography and cryogenic electron tomography (cryo-ET) generate three-dimensional
(3D) reconstructions of native biological and material specimens. However computational
bottlenecks in tomographic reconstruction stymie the 3D investigation of specimens. This set
of tutorials provides scientists with expedited analysis by enabling real-time tomography with
the ability to visualize intermediate volumetric results while reconstruction algorithms or data
collection is ongoing. The first two tutorials are quick demonstrations that illustrate real-time 3D
visualization capabilities without the need for an electron microscope.

The real-time electron tomography toolset is built using the publicly available tomviz platform.
Tomviz is a full featured tomography toolset with real-time analysis and reconstruction capabili-
ties. The software contains a multithreaded pipeline that enables interactive 3D visualization of the
current reconstruction state with minimal impact on performance. Thus, scientists can go beyond
superficial inspection to quantify specimen features or internal structure while simultaneously
operating the microscope. This immediate feedback can save researchers days of effort as recon-
structions are no longer processed offline. Real-time tomography also improves offline analysis
by dynamically visualizing iterative tomographic reconstructions as they progress. Whether the
computation runs online or offline, tomviz users can evaluate 3D specimen structure and optimize
the reconstruction accuracy in real-time. These features are highlighted herein as four tutorials:
the first two are quick demonstrations of real-time tomography using data pre-bundled with
tomviz, two more that demonstrate real-time tomography on an electron microscope, and the last
which shows how custom scripts with real-time 3D visualization can be written and used within
tomviz.
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B.1 Quick Demo: Live 3D Visualization During Reconstruc-
tion

In this demonstration, we will visualize a live tomographic reconstruction after all the data
has been collected (i.e. offline analysis). Live visualization provides insight into the specimen
structure as the computation evolves. This tutorial demonstrates live tomography using projection
images collected on a Co2P hyper-branched star nanoparticle—the dataset is prepackaged with
tomviz and does not require additional downloads.

(1) Load the tilt series data from the drop-down menu. In this section we’re going to start
by loading the projection images (i.e. a ‘tilt series’) from the Sample Data drop-down menu (Fig.
B.1). The dataset is a collection of projection images acquired across ±75◦ at a +2◦ increment of
a complex nanoparticle. When the data is loaded, it will appear in the ‘Pipeline’ panel along with
visualization modules automatically displayed on the ‘RenderView’ panel (Fig. B.2). To view the
projection images at each tilt, select the ‘Slice’ module from the ‘Pipelines’ column, use the ‘Slice’
slider located below in the ‘Properties’ panel (highlighted in red) and select the XY plane. These
projection images are intentionally slightly misaligned, fortunately our automatic algorithms will
implement the necessary corrections.

Figure B.1: Load the sample dataset Tomviz comes packaged with sample datasets that include
projection images taken across many specimen tilts (i.e. a tilt series).
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Figure B.2: View the tilt images. When projections are loaded into tomviz it is automatically
displayed as orthogonal slices. The parameters of each visualization mode can be set in the ‘Prop-
erties’ panel in the lower left. To view images along different tilts, use the ‘Slice’ slider (red box)
or manually enter the image you want to view.

(2) Preprocess and Align the Tilt Series. For BF-TEM, contrast inversion and CTF correction
is often applied. The data can be inverted by ‘Invert Data’ in Data Transforms and CTF correction
can be accessed in the Tomography dropdown menu. After the CTF of the instrument is specified
[132, 7, 159] the image data will be reweighted in Fourier space [112, 41].

The performance of tomography reconstruction algorithms depends on alignment quality. We
will begin the alignment process by shifting the projection images so the specimen’s center of mass
is located at the origin. Select ‘Image Alignment (Auto: Center of Mass)’ from the Tomography
drop-down menu (#1 in Fig. B.3b). In addition to aligning all the tilt images, tomviz needs the tilt
axis to be centered and parallel to the x-axis. Users can automatically rotate and translate the tilt
axis with algorithms available in the tomography drop-down menu. First, apply the auto rotation
alignment (#2 in Fig. B.3b) and then shift alignment (#3 in Fig. B.3b). The data is ready for
tomographic reconstruction after all alignments are applied.
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Figure B.3: Align the Tilt Images. The sample tilt series is slightly misaligned. We can automati-
cally correct misalignments by centering the images with the Center of Mass method (#1), rotating
the tilt axis (#2), and shifting its location (#3) so its center and parallel to x-axis.

(3) Launch a live-tomographic reconstruction. Several reconstruction algorithms are avail-
able with tomviz in the ‘Tomography’ drop-down menu. Run the SIRT algorithm for this live-
reconstruction visualization demonstration (Fig. B.4).

Figure B.4: Select the reconstruction algorithm for live visualization. The tomography menu
contains many algorithms for electron tomography. The reconstruction sub-section contains all
the iterative and direct algorithms for tomography. Here we will be selecting the Simultaneous
Iterative Reconstruction Technique (SIRT).
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SIRT is a fast and efficient iterative algorithm. The frequency of visual updates can be specified
in the final input box. For this example, we recommend setting the percentage to 100% (Fig.
B.5). Reducing the frequency of visual updates to 25-50% is useful when datasets are large or
computational hardware is limited (e.g. anytime a reconstruction proceeds slower than 1 iteration
per second). Tomviz also provides live-visualization capabilities for ART, WBP, or TVmin from
the Tomography drop-down menu. Once SIRT parameters have been specified, press the blue ‘Ok’
button (Fig. B.5, bottom right hand corner) to begin.

Figure B.5: Enter parameters for the SIRT algorithm

(4) Visualize the live volumetric process. Once the reconstruction begins, two additional
elements in the ‘Pipelines’ labeled ‘Reconstruct (SIRT)’ and ‘Reconstruction’ will appear. Tomviz
by default will continue visualizing the projection tilt images which can be identified from the lack
of modules below the ‘Reconstruction’ dataset icon (Fig. B.6a). Delete the previous ‘Outline’
and ‘Slice’ modules (Fig. B.6b), or click the eye to make the previous displays invisible (Fig.
B.6c), and reassign the modules to the reconstruction. You can visualize the 3D reconstruction by
selecting the ‘Volume’ or ‘Slice’ from the visualization modules toolbar (Fig. B.7) after selecting
the ‘Reconstruction’ dataset. These modules need to appear below the dataset icon (B.6b,c).
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Figure B.6: Visualizing Elements in the Data ‘Pipelines’. Once a dataset has been loaded and
live reconstruction begins, the pipeline can be populated with visualization modules of choice. a,
By default, tomviz will continue displaying the input dataset after the reconstruction is initialized.
b-c, To visualize updates for the live volumetric process, visualization modules should be present
below the ‘Reconstruction’ dataset icon.

Volume rendering is an exceptional method of displaying volumetric objects. Each voxel in the
volume is assigned both a color and an opacity based on its intensity. In tomviz, the color-opacity
map can be adjusted interactively by dragging points on the line overlaying the histogram. The
simplest method for examination of internal specimen structure is with individual 2D slices through
the tomogram. Orthogonal slicing allows users to view slices through the data perpendicular to
principal axes (x, y, z). Additional visualization modules such as a constant intensity contours can
be selected for surface rendering.
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Figure B.7: Visualizing a Live-SIRT reconstruction. The tomviz graphical user interface for 3D
visualization contains a variety of visualization tools for analyzing the 3D structure of specimens.
2D and 3D visualization modules can be selected from the top left menubar. Data transformations
and visualizations are recorded in the Data Pipelines column on the left side for reproducible
workflows. A histogram of voxel intensities is displayed on the top center where the black line
represents the opacity map. Users can exit the reconstruction early by pressing the ‘Cancel’ or
‘Ok’ (Done) button.

B.2 Simulated Demonstration of Real-Time 3D Tomography

In this section we will simulate real-time tomography during tomographic experiments without the
need for an electron microscope. Tomviz will monitor a local directory (folder) and automatically
append new projections into the reconstruction process. To simulate an experiment, we will
sequentially add pre-acquired images into the folder as though the data was being acquired.
The steps in this tutorial closely correspond to an experimental scenario where tomviz has been
installed on an electron microscope computer except the data has already been acquired.

(1) Initialize real-time tomography. To start a real-time reconstruction, load an empty dataset
from the Sample Data drop down menu (Fig. B.8a) and press the blue ‘OK’ button (Fig. B.8b). A
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volume comprised of elements with the value zero should appear. To start a real-time reconstruc-
tion, users can load any other dataset for this initial step. After a dataset is selected, select ‘Mark
Data As Tilt Series’ from the Tomography drop down menu (Fig. B.9a). Here the tilt angles are
irrelevant, continue by pressing the blue ‘Ok’ button and then ‘Initialize Real-Time Tomography’
(Fig. B.9b).

Figure B.8: Load an empty dataset to begin real-time tomography.

Figure B.9: Initialize a Real-Time Tomography Reconstruction.

(2) Enter parameters to monitor the local directory where data will arrive. Specify
the directory that will be monitored for new projections (i.e. the folder where projections are
saved). For this simulated experiment we will drag pre-acquired images into this folder. In
a real tomographic experiment, the microscope acquisition software would automatically save
projections images in this directory. For this demonstration we will define the target local directory
as a folder on the Desktop: /Path/To/Desktop/real time tomo demo (Fig. B.10).
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Figure B.10: GUI for real-time tomographic reconstruction.

(3) Enter parameters for tomography reconstruction. Reconstruction parameters such as
the desired algorithm, number of iterations, and micrographs’ file extension (dm4, dm3, ser) can be
specified in this sub-menu. Tomviz can extract the tilt angle from the metadata embedded in dm4
and ser files. Unfortunately the metadata is not available in dm3 files, thus tomviz needs to parse
the tilt angle from the file name in names in the following format: ‘∗ [ANGLE]degrees ∗.dm3’,
where [ANGLE] is the tilt angle. The default parameters provided in the dialog box (Fig. B.10)
will be sufficient. For this tutorial, use the tilt series provided as Supplementary Data Set 1.
Download the dataset from the Supplemental, we will load the data into tomviz in the next step.

(4) Run the real-time tomographic simulation. Once ready, click the blue ‘OK’ button
(Fig. B.10, bottom right hand corner). You should see a new element in the data pipelines
column and a progress bar will appear (shown in Fig. B.7). The progress bar will initially display
‘Initialize Real-Time Tomography Progress’, this means the script is currently monitoring the
folder dynamic tomo demo for new images. Start the simulation by dragging a few tilt-images
into the target directory (Fig. B.11). Once projections are detected, the progress status message
will update to ‘Reconstructing Tilt Angles’ and the reconstruction will begin.

Select the ‘Reconstruction’ dataset from the ‘Pipelines’ panel and either the volume or orthog-
onal slices from the visualization modules toolbar (Fig. B.7) to visualize the structure and observe
the specimen evolution. New projections will be incorporated into the reconstruction process after
the total number of iterations is complete (in this case 50). Copy 1-3 projections into the target
folder every minute to simulate usual experimental acquisition speeds. We recommend copying
data in chronological order, however, tomviz can still reconstruct the data if projections are passed
in a random order. Once satisfied with the reconstruction, press ‘Ok’ (Fig. B.7) to exit the recon-
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struction and continue with any desired post-processing.

Figure B.11: Copy individual projections into monitor directory. Tomviz responds to changes
in monitored folders once files are saved into the directory.

B.3 Tutorial: Live 3D Visualization During Tomography Ex-
periments with Electron Microscopes

In this tutorial we will explain how to perform real-time tomographic experiments while projection
images are collected on a scanning / transmission electron microscope (S/TEM). The process is
nearly identical the previous section, however experimental real-time tomography requires that
the microscope is aligned for tomography and the newly acquired data can be accessed by tomviz.

(1) Align the microscope and prepare the tomography experiment. We recommend using a
high-tilt tomography holder to perform single-axis tomography. The microscope must be properly
aligned before the acquisition begins to prevent any correctable distortions. Align the microscope
as one normally would for high-resolution imaging to reduce beam aberrations (e.g. stigmation or
comma). Next, find the maximal allowable (positive and negative) tilt range such that the region
of interest is visible. Achieving a ±70◦ tilt range or larger will provide best results.

Aligning the sample at eucentric height is essential to minimizing specimen drift and the need
for any stage refinement during acquisition. Figure B.12a shows an object located below the eu-
centric height (⊗) with the electron beam traveling from top to bottom. The object shifts and
rotates when tilted around eucentric height, while proper alignment allows the specimen to simply
rotate without any spatial translation (Fig. B.12b).
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Figure B.12: Specimen drift from eucentric height. a, If the eucentric height for the goniometer
is incorrect, tilting the specimen holder causes the specimen to sweep along an arc around the tilt
axis. b, After correcting the stage position, the specimen drift is reduced significantly.

In order to bring the stage to eucentric height, one should measure the sample drift as the stage
tilts from -50◦ to +50◦. Adjust the stage height by the drift’s magnitude and iterate through this
process until motion is minimized with minimal movement only due to the goniometer backlash.
Choose a field of view which accommodates the specimen or region of interest across all tilts
without the need to move the stage. Moreover, check that the detector camera length and gain does
not clip image intensities at any one tilt. All calibrations and acquisition parameters for real-time
tomography are now set properly and should not be changed during the tomography experiment.
Move over to tomviz to set reconstruction parameters prior to starting the experiment.

(2) Initialize real-time tomography. To start a real-time reconstruction, load an empty dataset
from the Sample Data drop down menu (Fig. B.8), Mark the Data as a Tilt Series (Fig. B.9a), and
then select ‘Initialize Real-Time Tomography’ from the Tomography drop-down menu (Fig. B.9b).

(3) Enter parameters for local directory monitoring. Users can specify the directory
that will be monitored for new projections (i.e. the folder where projections are saved). If
tomviz is installed on the microscope computer, the acquisition software could automatically
save projections images in this directory. However, this is not a necessary requirement as
users can manually drag images into the folder or download it onto a personal machine (e.g.
laptop). For this demonstration let’s define the target local directory as a folder on the Desktop:
/Path/To/Desktop/real time tomo demo (Fig. B.10).

(4) Enter parameters for tomography reconstruction. Reconstruction parameters such as
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the desired algorithm, number of iterations, and micrographs’ file extension can be specified in this
sub-menu. Tomviz will read the meta data to extract experimental parameters such as specimen
alpha tilt. The default parameters provided in the dialog box (Fig. B.10) will be sufficient.

(5) Start the real-time tomography experiment. Once ready, click the blue ‘OK’ button
(Fig. B.10, bottom right hand corner) and start collecting projection images. After collecting one
or two tilt images, transfer the acquired micrographs into the target directory (Fig. B.11). The
reconstruction will begin immediately after projections are detected inside the folder. Select either
the volume or orthogonal slices from the visualization modules toolbar (Fig. B.7) to observe the
specimen evolution. New projections will be incorporated into the reconstruction process after the
total number of iterations is complete (in this case 50). Once satisfied with the reconstruction,
press Ok (Fig. B.7) to exit the reconstruction and continue with any desired post-processing.
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