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Abstract

Efficient and flexible algorithms for solving low-order transport problems are highly desir-

able in a great number of applications. Such solvers are useful not only as rapid design

and evaluation tools in their own right, but as acceleration techniques to be used in larger,

more precise simulations. The focus of this thesis is a novel discretization and solver for the

elliptic simplifications to the neutron transport equation; encompassing diffusion, Simpli-

fied 𝑃𝑁 (𝑆𝑃𝑁 ) methods, and Generalized Simplified 𝑃𝑁 which is the evolution of new theory

pertaining to the 𝑆𝑃𝑁 boundary conditions. Demonstrations on a 1D test problem show

that our new 4th-order Legendre-Gauss-Lobatto discretization has the same ℎ-convergance
(5th order) as traditional NEM, achieving the maximum convergence order imposed by the

Bramble-Hilbert lemma. Unlike more traditional finite element methods, our discretization

also preserves continuity at interfaces, and minimizes the number of basis functions used to

represent these conditions. Our numerical results also show that this order of convergence

extends to multidimensional problems without the need for transverse integration, and is

capable of being applied to certain kinds of unstructured mesh.

The system of equations this discretization produces are also amenable to simplification

and solution via hierarchical fast solvers such as the Hierarchical Poincaré-Steklov Method.

This method contains explicit representations of certain conserved quantities, making it at-

tractive for an extension of the 1D nodal method into multiple dimensions. This hierarchical

method is implemented in a proof-of-concept multigroup code with the capability to handle

deformed structured meshes, with no spatial homogenization. The solver utilizes no trans-

verse leakage approximation in its multidimensional calculations, and is designed to operate

on a sub-pinmesh. An eigenvalue solver based on power iteration is also implemented. Clear

avenues exist for the acceleration of this solver with structured linear algebra packages, as

well as the expansion from the deformed grid to a truly unstructured mesh. This solver is

verified using a Method of Manufactured Solutions order-of-accuracy study which proves

that maximal convergence order is still obtainable. Additionally, eigenvalue results are pre-

xiv



sented for 2D problems derived from the common benchmark C5G7, and are compared with

reference obtained from the Method of Characteristics code MPACT. This analysis reveals

typical errors characteristic of all methods based upon a spherical harmonics representation

of the angular flux, further indicating proper functioning of the solver procedure. Overall,

we establish a new discretization and solver framework for low-order transport equations.

Future work may focus on developing high performance parallel implementations, more nu-

merically robust implementations, and more generic unstructured mesh implementations.
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Chapter 1

Introduction

1.1. Motivation

There are enormous incentives for improvements of all kinds in Partial Differential Equation

(PDE) solvers for reactor applications. In terms of accuracy, a more accurate solver increases

operational knowledge of the reactor core; allowing a skilled designer to create systems that

can push the limits of reactor power and lifespan. In terms of speed, a faster solver not only

allows designers to work faster, but also allows regulators and evaluators to more quickly

analyze new designs. In terms of capability, solvers that can simulate more regimes allow

the exploration of new reactor technologies that may one day become the industry standard.

The entire space of potential improvements to reactor design hinge on simulations that can

augment the current state of the art.

The work in this dissertation is designed around reaching a code that has a large domain

of applicability at a high level of performance, while accepting some trade-offs in absolute

accuracy. This does not mean that we seek a poor or weakly-converged solution; but rather

that proven and conventional low-order multigroup discretizations are the principal targets

as opposed to techniques such as Method of Characteristics (MOC) [4] or Monte Carlo [8].

The ones targeted specifically are those discretizations arising from the simplified spherical

harmonic approximations of transport, such as diffusion or Simplified 𝑃𝑁 (𝑆𝑃𝑁 ).

These discretizations have been extensively used, but they have known and well-studied

shortcomings. For example, they are known to struggle in regimes where the angular flux

is very sharply peaked in angle. While in theory higher-order expansions of 𝑁 can fix this,

they cannot overcome the approximations inherent to the assumptions inherent to this “Sim-
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plified” approach. Conventional wisdom and experience generally suggests that expansions

past 𝑆𝑃5 or 𝑆𝑃7 are not worthwhile in terms of accuracy gain vs. the added computational

cost [47]. However, recent advances in the theory surrounding these discretizations have

emerged as a Generalized 𝑆𝑃𝑁 (𝐺𝑆𝑃𝑁 ) [13], which will be discussed further in Section 1.4.1.

It is because of this combination of both a reliable history and new developments in the

theory that these simplifications are selected for study in this dissertation.

1.2. The Weak Formulation

1.2.1. PDE Solver Theory

The field of solver theory is one of the foundational branches of numerical analysis, which

primarily concerns itself with the numeric solution of PDEs. One of the principal concepts

in this theory is known as the Weak Formulation of a PDE. Consider a partial differential

equation for the function 𝜙, defined below over a domain D:

−∇2𝜙(𝑥) = 𝑓 (𝑥) for 𝑥 ∈ D, (1.1a)

𝜙(𝑥) = 𝜙0(𝑥) for 𝑥 ∈ 𝜕D. (1.1b)

Here the function 𝑓 represents an inhomogeneous source term, while the function 𝜙0 rep-

resents a Dirichlet boundary condition. This specific equation (the Poisson Equation with

Dirichlet boundary conditions) is chosen as an example because it is among the simplest

non-trivial elliptic PDEs.

The representation of Equation (1.1) is known as the Strong Form, which is typically used

if one intends to solve a PDE by hand. This formulation does not readily make it clear how

this equation may be solved in a discrete manner, however; particularly when the functions

𝑓 and 𝜙0 may be allowed to take on any arbitrary definition. Rather than work with these

functional equalities to solve PDEs numerically, we work instead with the Weak Form:

−∫
D
𝜓(𝑥)∇2𝜙(𝑥) 𝑑𝑥 = ∫

D
𝜓(𝑥)𝑓 (𝑥) 𝑑𝑥 for all 𝜓(𝑥) ∈ 𝐿2(D), (1.2a)

𝜙(𝑥) = 𝜙0(𝑥) for 𝑥 ∈ 𝜕D. (1.2b)

The weak form states that the above relation holds true for all square-integrable functions

2



𝜓 . Strictly speaking, this representation is obtained by simply operating on Equation (1.1)

both sides of Equation (1.2a) by ∫D 𝜓(𝑥)(⋅) 𝑑𝑥 , which is known as the dual of the function 𝜓 ,
sometimes written 𝜓 ∗. This dual 𝜓 ∗ is a bounded linear operator on the region D, which is

uniquely defined for any square-integrable function 𝜓 .
While this equation appears more complicated it is actually a significant simplification;

instead of the functional statement of equality in the strong form, we have a much more

tractable scalar comparison. Additionally, by changing and using different functions 𝜓 , this
can provide us with as many unique algebraic equations as we might choose. Note however,

that the topic of boundary conditions has not entirely improved. Howwe treat the boundary

conditions we have (and the manner in which they transform) is a complex topic which will

come up many times throughout this research.

1.2.2. Discretization

A fundamental part of solver theory is the process of discretization. Because no computer

can work in truly infinite-precision arithmetic, the continuous problem must somehow be

discretized into a finite number of unknowns. This discretization is not always as simple as,

for example, sampling a solution at a finite number of points. Rather, it is more common in

modern methods to instead represent the solution as a linear combination of a finite number

of continuous functions. While the result may not seem discretized in that it has a precisely-

defined value everywhere, this is still a discretization because we have reduced a concept

which has infinite dimensionality (the true solution) to one with finite dimensionality (a

linear combination).

In general the weak form of a PDE is much more amenable to this type of discretization

than the strong form, for reasons which will become clear in the next section. Suffice to

say that by choosing a finite set of representative and trial functions, we can obtain the set

of algebraic equations we seek. The most straightforward way to translate this concept of

the weak formulation into algebraic equations is known as the Weighted Residuals Method

(WRM), also called the Method of Weighted Residuals [17, 18].

The Weighted Residuals Method

The underlying idea behind the WRM is quite general, and is in fact the basis of a wide

range of popular methods; including virtually every form of Finite Element Method (FEM),

3



Nodal Method [19], Collocation method [29], and more. The fundamental derivation starts

by writing a representation of the solution in terms of known ‘basis functions’ as:

𝜙(𝑥) ≊
𝑁
∑
𝑗=1

𝜙𝑗𝑏𝑗(𝑥). (1.3)

This equation may then be substituted into the strong form representation (Equation (1.1))

and rearranged like so:

𝑓 (𝑥) −
𝑁
∑
𝑗=1

𝜙𝑗T 𝑏𝑗(𝑥) ≈ 0, (1.4)

which is a statement that, given perfect coefficients 𝜙𝑗 of a finite number of basis functions

the residual should approach zero.

We have assumed linearity of the differential operator T ; while this is not a requirement

for WRM in general, it will be assumed throughout this work, since the 𝑆𝑃𝑁 and 𝐺𝑆𝑃𝑁
approximations are linear. Fromherewe convert to theweak form as described in Section 1.2.

We do this by conceptualizing the dual 𝜓 ∗ as an inner product, which is simpler to write and

understand than a complicated integral formulation. 𝜙∗ is then defined as:

𝜓 ∗ = (𝜓 , ⋅)D𝜔0 = ∫
D
𝜓(𝑥)(⋅) 𝜔0(𝑥)𝑑𝑥, (1.5)

where the integration is carried out on some domain D with a principal weighting function.
This is a property of the inner product, and will be discussed later in this section.

The weak form is a statement that, when the above operator is applied to both sides of

Equation (1.4), the equation will hold for all functions 𝜓(𝑥) that lie within some functional

space. For the purposes of this work, the space will be taken as the set of square-integrable

functions over the domain, 𝐿2(D). To form the WRM discretization, we must choose a set of

𝑁 weighting functions. Applying the dual of each of these weighting functions to the resid-

ual and asserting equality to zero then generates a set of 𝑁 algebraic equations. Assuming

the underlying PDE is relatively well-behaved, this will create a well-posed problem. Rep-
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resenting these weighting functions as 𝜔𝑖(𝑥), 1 ≤ 𝑖 ≤ 𝑁 , a set of equations are obtained:

(𝜔𝑖(𝑥), 𝑓 (𝑥) − T
𝑁
∑
𝑗=1

𝜙𝑗𝑏𝑗(𝑥))
D

𝜔0
= 0, 1 ≤ 𝑖 ≤ 𝑁 . (1.6)

Note that the set of functions 𝜔𝑖(𝑥) is distinct from the principal weighting function 𝜔0(𝑥).
While they are denoted similarly, they possess a different purpose. The principal weighting

function is there primarily to simplify the use of certain orthogonal functions. For example,

the Chebyshev polynomials may be used as a basis function set 𝑏𝑗(𝑥); but doing so efficiently

requires setting the principal weighting function 𝜔0 such that the Chebyshev polynomials

are orthonormal. In this sense, the principal weighting function is a property of the inner

product, and is distinct from the functions 𝜔𝑖(𝑥) which are a property of the method as a

whole.

Many methods exist to choose the weights 𝜔𝑖 and these choices lead to a huge number

of different methods. The 𝑁 algebraic equations obtained have dependent variables 𝜙𝑗 , and
the properties of the algebraic system and its solution depend heavily upon the choice of

functions (both 𝜔𝑖(𝑥) and 𝑏𝑖(𝑥)); particularly the spaces they span. It is this mechanism

which drives the differences between Nodal Expansion Method (NEM) and FEM solutions of

a given elliptic problem. To illustrate this phenomenon, consider a simple case where one is

given 𝑁 node points 𝑥𝑖 for a 1D problem, and the weighting functions are defined simply as

a delta-function 𝛿(𝑥 − 𝑥𝑖). The algebraic equations simplify down quite neatly into:

𝑁
∑
𝑗=1

𝜙𝑗T 𝑏𝑗(𝑥𝑖) = 𝑓 (𝑥𝑖), 1 ≤ 𝑖 ≤ 𝑁 , (1.7)

which is simply an expression of the Collocation method. In this way the function sets allow

a great deal of customizability [17].

Boundary Conditions

There is one very important observation to be made concerning Equation (1.6); it does not

contain any information concerning boundary conditions. Before getting into the specifics

of how to include these, it is important to discuss how to handle large domains in a WRM.

Consider a full problem domainD composed of heterogeneous materials, and suppose we
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want to discretize such a domain into smaller parts– each homogenous. This technique has

significant advantages in the stability of the underlying method, since sharp discontinuities

exist at cell boundaries where they can be treated specially; rather than relying on basis

refinement to accurately capture sharp transition regions. To accommodate this, the domain

D would be split into 𝑁𝑐 distinct, non-overlapping subdomains D𝑐 such that

D =
𝑁𝑐
⋃
𝑐=1

D𝑐 and ∅ = D𝑖 ∩D𝑗 ∀𝑖 ≠ 𝑗, (1.8)

whereD represents the closure ofD. Basis and weighting functions are then modified to be

cell-based by multiplying them with an additional ‘characteristic function’ defined as

𝜒 𝑐(𝑥) = {1 𝑥 ∈ D𝑐

0 otherwise
, (1.9)

and changing their argument to map to the appropriately smaller domain.

This is a more mathematically rigorous way to look at the situation, but clearly it compli-

cates the underlying concepts. We use this point of view to exhibit the nature of interface

conditions. This domain decomposition is a way to, without loss of generality, treat the sep-

arate homogenous regions as independent problems coupled by these interface conditions.

These are much like a boundary condition, but slightly weaker in form; an example are the

first-derivative jump condition at material interfaces for the flux in diffusion theory:

𝐷𝐿
𝑑𝜙𝐿
𝑑𝑥 |𝑥=𝑥0 = 𝐷𝑅

𝑑𝜙𝑅
𝑑𝑥 |𝑥=𝑥0 , (1.10)

where 𝐷, the diffusion coefficient, is a material-dependent property. In principle, neither 𝜙𝑅
nor 𝜙𝐿 is known, but knowing one provides a complete boundary condition for the other.

Thus, it is the primary mechanism by which the domain is decomposed into smaller, coupled

problems.

Whether an interface or a boundary condition is used, the information still must be in-

jected into the discretization somewhere. Effectively, there are three options to choose from:

1. Insert a homogenous interface/boundary condition by only including basis functions

which satisfy this condition.

6



2. Insert the interface/boundary condition through the weighting functions.

3. Insert the interface/boundary condition as a substitution into each algebraic equation.

Most transport discretizations involve a set of mixed, non-homogenous boundary condi-

tions. Technique 1 relies on a homogenous condition, which removes it from consideration.

Technique 2, inserting via the weighting functions, however, is possible. If properly done, it

can even provide guarantees that the numeric solution will satisfy the boundary conditions

exactly (even if the solution itself is not exact). This topic is discussed further in Section 2.1.1.

The third method refers to a transformation of the Laplacian term of a PDE. More specif-

ically, an integration-by-parts or Gaussian identity is applied to this term which results in

a set of equations containing only first-order derivatives and boundary values of the cells.

This is discussed further in Section 2.2.

1.2.3. Functional Spaces in PDE Solvers

The vector spaces spanned by the sets of functions [𝜔𝑖]𝑖=𝑁𝑖=1 and [𝑏𝑖]𝑖=𝑁𝑖=1 have special signifi-

cance in terms of the properties of the approximate solution. This is clearest when discussing

span {[𝑏𝑖]𝑖=𝑁𝑖=1 }; the approximate solution must lie in this vector space. The absolute minimum

error in solving a given problem, therefore, is related to a hypothetical projection of the true

solution into this space. For this reason, an approximate solution space that is as close as

possible to the true solution space is highly desired.

The space spanned by the weighting functions span {[𝜔𝑖]𝑖=𝑁𝑖=1 } is more complicated but no

less important. While the basis span is related to error bounds, the weighting span is more

closely tied to the types of error modes allowed to be present in the approximate solution.

This is perhaps clearest to see when discussing the CollocationMethod, in which the weight-

ing functions are defined as a set of delta functions with support at predetermined points. It

is clear to see fromEquation (1.7) that this essentially selects points from the domain at which

the residual of the approximate solution will be exactly zero; that is, the PDE is (locally) sat-

isfied exactly at these special points. This does not mean that the value of the approximate

and true solutions are equal; but it does mean that the value of the approximate solution and

its derivatives at that point exactly solve the PDE. Other choices are possible, which result

in more complex behaviors; for example, in the case of an elliptic PDE, a weighting function

which is constant will create an approximate solution that obeys a conservation law.
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Later, the review of NodalMethods and Finite ElementMethods of Chapter 2 will use these

observations to understand the fundamental differences between both categories ofmethods.

The observations discussed in this section have strong impacts on how the solutions of each

method should be expected to behave.

1.3. History

𝑆𝑃𝑁 is a simplification of the 𝑃𝑁 transport equations first conceived by Gelbard [21]. The

𝑃𝑁 equations themselves arise when one projects the angular flux into a finite number of

angular moments, or spherical harmonics, assigning coefficients to some number of these

functions. However, this system grows very quickly with the number of moments 𝑁 and is

challenging to solve; the number of PDEs grows as (𝑁 +1)2, and they are coupled together in

non-trivial ways. Gelbard created 𝑆𝑃𝑁 out of this system by noting that in 1D slab geometry,

the streaming term of the 𝑃𝑁 equations was extraordinarily simple. Rather than a mess of

couplings at the streaming term, the result was a trivial number of problems of the same form

as the simpler diffusion equation. By simply replacing the 𝑥 coordinate and 𝑑
𝑑𝑥 operatorswith

their 3D analogues 𝑟 and ∇, a 3D form is obtained which Gelbard called the 𝑆𝑃𝑁 equations.

Needless to say, this approach is not very rigorous, something Gelbard knew perfectly

well. However, this was not done carelessly; but rather from a place of deep understand-

ing about the differential operators involved. The relative ease of implementation into an

existing diffusion code meant that it was occasionally applied by various researchers, de-

spite having a relatively weak theoretical backing. Every time 𝑆𝑃𝑁 was used, the method

seemed to provide results with enhanced accuracy, and these successes eventually led to a

much more rigorous analysis of 𝑆𝑃𝑁 theory. This was the subject of two successful analyses

which confirmed 𝑆𝑃𝑁 ’s place in the hierarchy of transport simplifications. These studies

were carried out by Larsen and Pomraining asymptotically [35] and continued variationally

by Pomraining [54].

Pomraining’s work determined conclusively that 𝑆𝑃𝑁 was related asymptotically to the

slab geometry 𝑃𝑁 equations, while Larsen et al. presented an asymptotic derivation demon-

strating that 𝑆𝑃𝑁 represented an asymptotic correction to diffusion theory. While both stud-

ies were informed by the structure of the equations Gelbard arrived at, they nonetheless

serve as important independent confirmations of 𝑆𝑃𝑁 as its own unique representation of

“low-order” transport. Additional variational analyses were developed to derive the 𝑆𝑃𝑁
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equations, which are in some ways more convincing than the asymptotic version, if less

intuitive. Of particular note in these later studies is Brantley and Larsen’s work which pro-

duced a more rigorous derivation of the boundary conditions [10].

In addition to these derivations, there were others performed prior to 1990 which are of

interest; particularly those that identified situations where 𝑃𝑁 reduces to 𝑆𝑃𝑁 . This prospect

is simultaneously deeply unexpected and profoundly interesting. 𝑃𝑁 has in principle (𝑁 +1)2
unknown functions, while 𝑆𝑃𝑁 has only (𝑁 +1)/2. For these systems to return approximate

solutions which are in every aspect identical is quite shocking. This equivalence is discussed

in Gelbard’s own original paper, as well as a recent review article by McClarren [47]. Of

additional note is a terse abstract in ANS transactions by Selengut [57] who claimed a 𝑃3
equivalent 𝑆𝑃3 material interface condition. Such a condition could theoretically provide

𝑃𝑁 -𝑆𝑃𝑁 equivalence in piecewise-homogenous regions, which is by far the most common

implementation of existing transport simulation codes. However, it is rather doubtful that

this is achievable in general [11]. Nonetheless, it is somewhat of an open topic in the field.

…In any case, the boundary conditions as derived by any of these theories remain some-

what of a sticking point. They include derivations of boundary conditions, but these deriva-

tions almost uniformly assume a local 1D behavior in the flux. While this forms a very nat-

ural extension of 𝑆𝑃𝑁 as it was originally derived (from the 1D 𝑃3 equations) it would seem

to pose a potential issue in multiple dimensions; and it is this issue that 𝐺𝑆𝑃𝑁 is formulated

to solve.

Work on the various simplifications to transport continues to evolve as new approxima-

tions based on 𝑃𝑁 emerge or change. The most recent development in this saga is the in-

troduction of a so-called 𝐺𝑆𝑃𝑁 by Chao [13], who reformulated 𝑆𝑃𝑁 in order to relax the

pre-existing requirement that a solution be ‘locally 1D’ near material interfaces. Dropping

this requirement involves substantial mathematical work, which can be seen in full in the

entire set of Chao’s papers [11, 12, 13, 14].

The key concept enabling this is the realization that in 𝑆𝑃𝑁 , the principal simplification

from full transport is that the 𝑛-th angular flux moment 𝜙𝑛(𝑥) is rotationally symmetric

about the vector of neutron current ∇𝜙𝑛(𝑥). This idea plays a leading role in all the math

that follows; the relaxation of locally 1D behavior is altered in favor of this key concept.

This does not affect the ‘bulk’ governing equations but radically changes how boundary and

interface conditions are derived. Additionally, Chao takes care to call out that the interface

conditions which manifest in 𝐺𝑆𝑃3 are exactly the form evoked in Selengut’s paper in his
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work studying 𝑆𝑃3 − 𝑃3 equivalence. This claim would be the strongest evidence yet that

the 𝑃𝑁 system of equations may be reduced to a 𝑆𝑃𝑁 -like system in the case of piecewise

homogenous regions, and would represent a significant advancement in low-order transport

calculations.

1.4. 𝑆𝑃𝑁 Transport Theory

The targets of this work are low-order transport approximations which eliminate the explicit

dependence of the neutron flux on angle, instead introducing functions which are angular

moments of the true flux; such as scalar flux and neutron current. Specifically, those that

originate from the 𝑃𝑁 approximation, where the angular flux is considered to be a linear

combination of spherical harmonic functions in angle, up to order 𝑁 . These moments are

themselves spatially dependent, since the 𝑃𝑁 approximation is one of angular dependence:

𝜓(𝑥, Ω̂) =
𝑁
∑
𝑛=0

𝑁
∑

𝑚=−𝑁
Φ𝑛𝑚(𝑥)𝑌𝑛𝑚(Ω̂), (1.11)

where often, one takes 𝑌𝑛𝑚 as the real spherical harmonic for simplicity. 𝑃𝑁 itself gives rise

to a family of low-order transport approximations; though by far the most significant is 𝑆𝑃𝑁 .

1.4.1. Derivation of the 𝑆𝑃3 Equations
A full reproduction of the various works deriving 𝑆𝑃𝑁 from transport [10, 35, 54] is out of

scope of this dissertation. It may be achieved through either an asymptotic or variational

approach and the references listed are quite rigorous in deriving both the 𝑆𝑃𝑁 method (prin-

cipally 𝑆𝑃3) and its boundary conditions. However, a brief derivation similar to the original

Gelbard paper [21] will be included here, starting from the time-independent multigroup

neutron transport equation:

(Ω̂ ⋅ ∇)𝜓 𝑔(𝑥, Ω̂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Streaming

+ Σ𝑔𝑡 𝜓 𝑔(𝑥, Ω̂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Total Interaction

= 1
4𝜋

𝐺
∑
𝑔′=1

∫4𝜋 Σ𝑠,𝑔←𝑔′(Ω̂ ⋅ Ω̂′)𝜓 𝑔(𝑥, Ω̂′) 𝑑Ω̂′
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Scattering Source

+ 1
4𝜋 𝑄

𝑔(𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Inhomogeneous or

Fission Source

.

(1.12)
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For the purpose of this derivation, we will consider only a single group and allow the source

terms to include the group-to-group scattering source. Thus,

(Ω̂ ⋅ ∇)𝜓 (𝑥, Ω̂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Streaming

+ Σ𝑡𝜓(𝑥, Ω̂)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Total Interaction

= 1
4𝜋 ∫4𝜋 Σ𝑠(Ω̂ ⋅ Ω̂′)𝜓 (𝑥, Ω̂′) 𝑑Ω̂′
⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

Scattering Source

+ 1
4𝜋 𝑆(𝑥)⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑆𝑜𝑢𝑟𝑐𝑒𝑇 𝑒𝑟𝑚𝑠

.
(1.13)

From here, one may take the equation into a 1D, azimuthally isotropic form; effectively, the

𝑃𝑁 slab geometry. Here, the 𝑃𝑁 equations exhibit very simple coupling, a fact exploited in

deriving 𝑆𝑃𝑁 :

Ω̂𝑧
𝑑
𝑑𝑥 𝜓(𝑥, Ω̂𝑥) + Σ𝑡𝜓(𝑥, Ω̂𝑥) = 1

2 ∫
1

−1
Σ𝑠(Ω̂𝑥 Ω̂′𝑥)𝜓 (𝑥, Ω̂′𝑥) 𝑑Ω′𝑥 + 1

4𝜋 𝑆(𝑥). (1.14)

One may expand 𝜓 as in Equation (1.11) and operate on Equation (1.14) by ∫4𝜋 𝑌𝑛0(Ω̂)(⋅) 𝑑Ω̂.

Assuming the real spherical harmonics are used, this expands the flux as desired into the

azimuthally symmetric spherical harmonic functions. The factor 𝑁 is arbitrary, but as we

seek the 𝑆𝑃3 equations, we choose 𝑁 = 3 to obtain 4 coupled differential equations. Writing

the flux moments Φ𝑛0 as 𝜙𝑛:

𝑑
𝑑𝑥 𝜙1(𝑥) + Σ𝑡𝜙0(𝑥) = Σ𝑠0𝜙0(𝑥) + 1

2𝑆(𝑥), (1.15a)

𝑑
𝑑𝑥 (13𝜙0(𝑥) +

2
3𝜙2(𝑥)) + Σ𝑡𝜙1(𝑥) = Σ𝑠1𝜙1(𝑥), (1.15b)

𝑑
𝑑𝑥 (25𝜙1(𝑥) +

3
5𝜙3(𝑥)) + Σ𝑡𝜙2(𝑥) = Σ𝑠2𝜙2(𝑥), (1.15c)

𝑑
𝑑𝑥 (37𝜙2(𝑥)) + Σ𝑡𝜙3(𝑥) = Σ𝑠3𝜙3(𝑥), (1.15d)

where the usual 𝑃𝑁 closure (Φ𝑛𝑚(𝑥) = 0 for 𝑛 > 𝑁 ) is used. If the conventional removal

cross-sections and diffusion coefficient are defined as

Σ𝑟𝑛 = Σ𝑡 − Σ𝑠𝑛, 𝐷0 = 1
3(Σ𝑟1)

−1, and 𝐷2 = 9
35(Σ𝑟3)

−1, (1.16)
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the form of Equation (1.15) becomes a bit simpler. Equations (1.15b) and (1.15c) may be used

to solve for the odd moments in terms of even ones, yielding:

𝑑
𝑑𝑥 𝜙1(𝑥) + Σ𝑟0𝜙0(𝑥) = 1

2𝑆(𝑥), (1.17a)

− 1
Σ𝑟1

𝑑
𝑑𝑥 (13𝜙0(𝑥) +

2
3𝜙2(𝑥)) = 𝜙1(𝑥), (1.17b)

𝑑
𝑑𝑥 (25𝜙1(𝑥) +

3
5𝜙3(𝑥)) + Σ𝑟2𝜙2(𝑥) = 0 (1.17c)

− 1
Σ𝑟3

𝑑
𝑑𝑥 (37𝜙2(𝑥)) = 𝜙3(𝑥). (1.17d)

These may be collapsed into second-order form by plugging Equations (1.17b) and (1.17d)

into Equations (1.17a) and (1.17c). After doing so, the second-order derivatives terms are

made into Laplacians in order to obtain a set of multidimensional equations:

−𝐷0∇2(𝜙0(𝑥) + 2𝜙2(𝑥)) + Σ𝑟0𝜙0(𝑥) = 𝑄(𝑥), (1.18a)

−𝐷2∇2𝜙2(𝑥) + Σ𝑟2𝜙2(𝑥) = 2
5[Σ𝑟0𝜙0(𝑥) − 𝑄(𝑥)]. (1.18b)

Note this source 𝑄 is not the same as the original 𝑄(𝑥) in Equation (1.12), but is either the

inhomogeneous (for fixed-source problems) or fission (for eigenvalue problems) source plus

group-to-group scattering, as these pertain to the scalar flux.

In this formulation the scalar flux is equivalent to the function 𝜙0. However, it is conve-

nient to instead use the common convention of using a representation ̂𝜙0 ≡ 𝜙0(𝑥) + 2𝜙2(𝑥)
as the unknown, because this better retains the diffusion form of the two equations:

−𝐷𝑔
0∇2 ̂𝜙𝑔0 (𝑥) + Σ𝑔𝑎0 [ ̂𝜙𝑔0 (𝑥) − 2𝜙𝑔2 (𝑥)] = 𝑆𝑔(𝑥), (1.19a)

−𝐷𝑔
2∇2𝜙𝑔2 (𝑥) + [Σ𝑔𝑎2 + 4

5Σ
𝑔
𝑎0] 𝜙𝑔2 (𝑥) = 2

5 [Σ
𝑔
𝑎0 ̂𝜙𝑔0 (𝑥) − 𝑆𝑔(𝑥)] . (1.19b)

Aside from the questions of mathematical rigor introduced by Equation (1.18) (let alone cast-

ing the equation into a 1D azimuthally-symmetric form), this derivation is somewhat opaque

and does not tell us much about how we may expect this approximation to behave.

The detailed derivations of Larsen, Brantley, and Pomraining [10, 35, 54] provided sig-

nificant insights about the performance of 𝑆𝑃𝑁 ; namely, where it performed well, where it

broke down, and the reasons why. These are most intuitively understood from the asymp-
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totic analysis; as they arise naturally from the nature of the derivation. In these analyses, a

small dimensionless parameter is introduced to the 𝑃𝑁 equations such that

𝜎𝑡 →
𝜎𝑡
𝜖 , 𝜎𝑠 →

𝜎𝑠
𝜖 , 𝜎𝑎 → 𝜖2𝜎𝑎, 𝑄 → 𝜖𝑄. (1.20)

Therefore, in principle, the approximation will be most accurate when:

• Total and Scattering cross-sections are of similar order, and much larger than absorp-

tion (𝜎𝑡 ≳ 𝜎𝑠 ≫ 𝜎𝑎) (i.e. scattering-dominated systems)

• The source terms (encompassing external, scattering, and fission) are small (1 ≫ 𝑄)

In practice, the theory maintains a surprising amount of flexibility with regard to where it

tends to be valid. The above assumptions need not be overwhelmingly true, and it is rare

(though possible) that diffusion theory outperforms 𝑆𝑃𝑁 . Because diffusion itself may also

be derived via this analysis, by dropping terms of order 𝜖4 relative to 𝑆𝑃𝑁 ’s terms of 𝜖6,
this tends to occur when the assumptions made above are categorically incorrect; which is

uncommon in most reactor designs and materials.

1.4.2. Boundary and Interface Conditions

The interface conditions obtained by Brantley, Larsen, and Pomraining throughout their

various publications may be expressed as an equality on the boundary of two regions, 𝑖 and
𝑗, between certain quantities. For 𝑥 on this boundary, and a unit vector 𝑛̂𝑖 or 𝑛̂𝑗 representing
the outward-pointing normal with respect to either region:

̂𝜙𝑖0(𝑥) = ̂𝜙𝑗0(𝑥), 𝐷𝑖0(𝑛̂𝑖 ⋅ ∇) ̂𝜙𝑖0 + 𝐷𝑗
0(𝑛̂𝑗 ⋅ ∇) ̂𝜙𝑗0 = 0, (1.21a)

𝜙𝑖2(𝑥) = 𝜙𝑗2(𝑥), 𝐷𝑖2(𝑛̂𝑖 ⋅ ∇)𝜙𝑖2 + 𝐷𝑗
2(𝑛̂𝑗 ⋅ ∇)𝜙𝑗2 = 0, (1.21b)

which are notably similar to the familiar diffusion interface conditions. This extension of this

simple form to the 𝑆𝑃3 equations is a consequence of the ‘locally-1D’ assumption, depicted

in Figure 1.1. The assumption presumes that the gradient of the scalar flux (and thus, the

principal axis of the 𝑆𝑃𝑁 expansion) is parallel to the normal direction at that interface (top).

In principle, however, there is no such restriction, and these may be misaligned (bottom);

which may be significant in multidimensional problems. An alternate formulation of these
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(a) Locally-1D Assumption (b) Relaxed Assumption

Figure 1.1: Spherical Harmonic Moments and the Locally 1D Assumption

conditions is a set of conserved quantities, denoted with an underline:

𝜙0(𝑥) = ̂𝜙0(𝑥), (1.22a)

𝐽 0(𝑥, 𝑛̂) = 𝐷0(𝑛̂ ⋅ ∇) ̂𝜙0(𝑥), (1.22b)

𝜙2(𝑥) = 𝜙2(𝑥), (1.22c)

𝐽 2(𝑥, 𝑛̂) = 𝐷2(𝑛̂ ⋅ ∇)𝜙2(𝑥). (1.22d)

These may be separated into “flux-like” and “current-like” conserved quantities which have

even- and odd-ordered derivatives, respectively.

It is also possible to construct a representation based upon partial currents, which are

sometimes more useful; consider two adjacent cells with scalar fluxes 𝜙𝐿(𝑥) and 𝜙𝑅(𝑥), and
their values at a hypothetical central boundary 𝑥 = 𝑥0. Then, recall the definition of the

partial current operators under diffusion theory:

J +(𝐷, 𝜙(𝑥)) = 1
4𝜙(𝑥) −

𝐷
2
𝑑𝜙
𝑑𝑥 and J −(𝐷, 𝜙(𝑥)) = 1

4𝜙(𝑥) +
𝐷
2
𝑑𝜙
𝑑𝑥 . (1.23)

These definitions apply due to the continuity relations in Equation (1.21) on the simple prin-

ciple that the two moments are fully decoupled from one another under this formulation

of the interface conditions. The conservation laws may then be expressed as either Equa-

tion (1.24a) or Equation (1.24b) below:

𝜙𝐿(𝑥0) = 𝜙𝑅(𝑥0), 𝐷𝐿 𝑑𝜙𝐿
𝑑𝑥 |𝑥=𝑥0 = 𝐷𝑅 𝑑𝜙𝑅

𝑑𝑥 |𝑥=𝑥0 , (1.24a)

J +(𝐷𝐿, 𝜙𝐿)|𝑥=𝑥0 = J +(𝐷𝑅, 𝜙𝑅)|𝑥=𝑥0 , J −(𝐷𝐿, 𝜙𝐿)|𝑥=𝑥0 = J −(𝐷𝑅, 𝜙𝑅)|𝑥=𝑥0 . (1.24b)
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The equivalence of these representations can be seen by simply noting that

2 (J +(𝐷, 𝜙)|𝑥=𝑥0 + J −(𝐷, 𝜙)|𝑥=𝑥0) = 𝜙 and J +(𝐷, 𝜙)|𝑥=𝑥0 − J −(𝐷, 𝜙)|𝑥=𝑥0 = 𝐷𝑑𝜙
𝑑𝑥 .
(1.25)

The boundary conditions are a bit of a separate matter; though they still look quite familiar

1
2

̂𝜙0(𝑥) + 𝐷𝑖0(𝑛̂𝑖 ⋅ ∇) ̂𝜙0(𝑥) = 3
8𝜙2(𝑥) + ∫

2𝜋

0 ∫
0

−1
2𝑃1(|𝜇|)𝜓 𝑏(𝑥, 𝜇, 𝜑) 𝑑𝜇 𝑑𝜑, (1.26a)

21
40𝜙2(𝑥) + 𝐷𝑖2(𝑛̂𝑖 ⋅ ∇)𝜙2(𝑥) = 3

40
̂𝜙0(𝑥) + 3

5 ∫
2𝜋

0 ∫
0

−1
2𝑃3(|𝜇|)𝜓 𝑏(𝑥, 𝜇, 𝜑) 𝑑𝜇 𝑑𝜑. (1.26b)

The generally familiar form is, again, due entirely to the assumption of local 1D behavior.

1.4.3. The Generalized 𝑆𝑃𝑁 Extension

In Chao’s formulation, 𝐺𝑆𝑃𝑁 [11, 12, 13, 14], the locally 1D assumption of Figure 1.1 is

claimed to be significantly relaxed or eliminated. This formulation derives certain quantities

which must be conserved at interfaces, which are then used to define interface and boundary

conditions. These come in two types: flux-like quantities (denoted with a 𝜙̲) and current-

like quantities (denoted with a 𝐽 ̲); much like in Equation (1.22). However, Chao’s conserved

quantities are significantly more complicated. For isotropic scattering and a defined unit

normal 𝑛̂, we have:

𝜙0(𝑥) = 𝜙0(𝑥), (1.27a)

𝐽 0(𝑥, 𝑛̂) = − 1
3Σ𝑡

(𝑛̂ ⋅ ∇)(𝜙0(𝑥) + 2𝜙2(𝑥)), (1.27b)

𝜙2(𝑥, 𝑛̂) = 𝜙2(𝑥) − 3
2 (∇

2 − (𝑛̂ ⋅ ∇)2) ( 2
15Σ2𝑡

𝜙0(𝑥) + 11
21Σ2𝑡

𝜙2(𝑥)) , (1.27c)

𝐽 2(𝑥, 𝑛̂) = − 9
35

(𝑛̂ ⋅ ∇)
Σ𝑡

[𝜙2(𝑥) − 5
2
(∇2 − (𝑛̂ ⋅ ∇)2)

Σ2𝑡
( 2
15𝜙0(𝑥) +

11
21𝜙2(𝑥))]

− 2
15

(𝑛̂ ⋅ ∇)
Σ𝑡

(𝜙0(𝑥) + 2𝜙2(𝑥)) . (1.27d)
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These quantities are essentially corrections on the boundary to account for the fact that the

flux gradient is no longer assumed to be parallel to the surface normal as it is in the Brantley-

Larsen formulation. Because of this, handling the angular dependence on the boundary

is more complicated and conservation of these quantities (flux moments and net current

moments) must be adjusted to match this new relaxation.

One of the significant complications of 𝐺𝑆𝑃𝑁 is that these quantities all exist only on

the boundary, except for the zeroth-order flux moment 𝜙0. The corrected second-order flux

moment is defined only on the boundary, and not within the internal space of a cell. By

contrast, the Brantley-Larsen conditions have the property where the flux-like conserved

quantities are all continuous and defined everywhere; though current values are still purely

a boundary quantity.

Despite all these changes, it is easy to note that if the locally-1D condition with respect to

the material interface is enforced on Equation (1.27), they trivially reduce to the Brantley-

Larsen forms. Simply take the (∇2− (𝑛̂ ⋅ ∇)2) terms to zero and the result appears (with some

constant differences due to different conventions in Chao’s work).

The boundary conditions are significantly simpler to write, though their derivation is a

complicated process involving some intermediate quantities used to present equations Equa-

tion (1.27) (which are not reproduced here). The vacuum boundary conditions for Chao’s

formulation with isotropic scattering are given as:

𝐽 0(𝑥) =
1
2𝜙0(𝑥) +

5
8𝜙2(𝑥), (1.28a)

𝐽 2(𝑥) = − 7
24𝜙0(𝑥) +

35
24𝜙2(𝑥), (1.28b)

with a general formulation for any albedo present in [13].

If we are to adapt these to the more conventional form where ̂𝜙0(𝑥) = 𝜙0(𝑥) − 2𝜙2(𝑥), the
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conserved quantities of Equation (1.27) transform to:

𝜙0(𝑥) = ̂𝜙0(𝑥) − 2𝜙2(𝑥), (1.29a)

𝐽 0(𝑥) = −(𝑛̂ ⋅ ∇)3Σ𝑡
̂𝜙0(𝑥), (1.29b)

𝜙2(𝑥) = 𝜙2(𝑥) − 3
2 (∇

2 − (𝑛̂ ⋅ ∇)2) ( 2
15Σ2𝑡

𝜙0(𝑥) + 9
35Σ2𝑡

𝜙2(𝑥)) , (1.29c)

𝐽 2(𝑥) = −(𝑛̂ ⋅ ∇)Σ𝑡
[ 215

̂𝜙0(𝑥) + 9
35𝜙2(𝑥)] +

9
14

(𝑛̂ ⋅ ∇)(∇2 − (𝑛̂ ⋅ ∇)2)
Σ3𝑡

[ 215
̂𝜙0(𝑥) + 9

35𝜙2(𝑥)] .
(1.29d)

1.5. Outline

In this dissertation, discretizations and solvers will be discussed that arise from foundational

PDE solver theory such as the WRM. These discussions are presented as follows:

In Chapter 2, the origins and properties of various forms of both the NEM and the FEM

are discussed. The most advantageous of these are synthesized into an original discretiza-

tion applicable to the spherical harmonic simplifications of the linear Boltzmann transport

equation. Chapter 2 also contains a 1D convergence study where the errors of these types of

methods are examined and evaluated on even footing. This comprehensive study of varying

discretizations represents original work not found cohesively in the literature on low-order

transport discretization methods.

In Chapters 3 and 4, a solver recently published in the applied mathematics commu-

nity [27, 45, 46] known as Hierarchical Poincaré-Steklov (HPS) is derived and adapted to

governing equations of interest; Diffusion, 𝑆𝑃3, and 𝐺𝑆𝑃3. While the algorithms behind HPS

are not novel work, the adaptations made in order to apply this to the equations of interest

are significant extensions that enable its application to a wider variety of problems. In ad-

dition to handling a more general set of boundary and interface conditions, the extensions

paint a clear picture of how to enable the use of this solver on unstructured grids.

The theory is then extended to a 2DMethod ofManufactured Solutions (MMS) verification

study of a naïve implementation of this solver in Chapter 5. Verification is conducted for

both a heterogeneous and non-separable problem, on deformed grids developed to simulate

an unstructured mesh as a proof-of-concept. Chapter 6 extends this study into multigroup
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reactor problems to examine how the governing equations of diffusion and 𝑆𝑃3 behave using
this solver implementation on a sub-pin and pin-homogenized meshes. This consists of sub-

pin mini-lattice problems derived from the C5G7 benchmark, as well as a reproduction of a

pin-homogenized assembly problem studied by Chao et al. [14].

Lastly, Chapter 7 contains some implementation details on the solver as implemented.

Specifically, this includes some topics on how efficient computations may be conducted as

well as topics pertaining to the extension to truly unstructured meshes. Additionally, future

areas involving the corner point balance, an open question resulting this work, are addressed.

A performance analysis is reproduced with some details specific to low-order transport. The

closing Chapter 8 ends discussing the conclusions of this work and a note on future research

directions.
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Chapter 2

Nodal and Finite Element Methods

Constructing a discretization is often an intensive process that starts with examining exist-

ing methods and identifying their strengths and shortcomings. The nodal methods invented

for diffusion have been the standard for nearly 50 years. More recently, there has been

increased use of FEMs for diffusion and low-order transport. However, their exact mathe-

matical relationship to existing methods and relative performance has not been thoroughly

explored.

This chapter will perform a review of such solvers as they apply to low-order transport.

Sections Sections 2.1 and 2.2 will cover common existing implementations of the NEM and

FEM, commenting on their differences, strengths, and weaknesses as the chapter progresses.

Particular attention is paid to how each extends to multiple dimensions or the treatment of

conserved quantities. The advantages of each are synthesized into a novel form of discretiza-

tion in Section 2.3, here called the Legendre-Gauss-Lobatto method. Section 2.4 contains a

comprehensive study of the methods described in this chapter as applied to a simple, 1D

2-group diffusion test problem; in a unified analysis which has not been found in existing

literature.

2.1. Nodal Expansion Method

The NEM, also called the Method of Moments in other applications [48], is one of the classic

methods of obtaining solutions to general PDEs. In fact, the method has quite a long his-

tory, with the core concepts stretching back almost as far as the origin of the weak formula-

tion itself. The NEM as used for neutronics applications solidified in 1977, with Finnemann
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providing a way to efficiently solve certain 3D problems via the framework of Transverse

Integration (TI) [19]. This development propelled this new TI-NEM to be a workhorse for

reactor calculations in subsequent decades.

2.1.1. Canonical 1D-NEM

The conventional form of the NEM uses the Legendre Polynomials as a basis function to

represent the flux. Their properties of completeness mean that they are guaranteed cer-

tain forms of convergence and generate systems of equations that are solvable and not

badly-behaved. Additionally, properties of orthogonality greatly simplify some aspects of

the derivation. The 1D formulation is fairly simple, and arises from a desire to produce a

numerical solution which:

1. Obeys neutron conservation (continuity) with respect to node-averaged fluxes.

2. Obeys current continuity at cell interfaces.

Because each internal cell boundary has two associated interface conditions, and the external

boundaries each have one associated boundary condition, this requires three ormore degrees

of freedom per cell in 1D.

The end result is a framework for a discretization in 1D where three equations per cell

are fully specified, and 𝑁 − 3 remain free, where 𝑁 is the degrees of freedom per cell. In

all varieties of NEM currently in use, a WRM approach is used to close this system, which

requires 𝑁 − 3 additional functions to be specified. Broadly speaking, in a canonical NEM

implementation, two choices are common. The first is known as a Galerkin or semi-Galerkin

choice, and the second known asMoments weighting. In a semi-Galerkin approach, the basis

functions are used as the weighting functions to close the system. By contrast, the moments

approach simply uses the monomials {𝑥 𝑖, 𝑖 ≥ 0}.
Notably, both Legendre and Moments weighting include the constant function. This

weighting is what must be enforced to satisfy node-averaged neutron conservation; so in

practice, only 2 weighting functions need be excluded. Typically, the high-order polynomi-

als are left out; since the low-order polynomials more effectively reduce interpolation error.

There is some evidence presented in the original Finnemann paper [19] that a Moments

weighting results in a more accurate solution by virtue of computational stability. However,

it alsomakes the algebra, and therefore, the implementation, significantlymore complex; and
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so the semi-Galerikin approach remains themost common. In exact-precision arithmetic, the

two approaches will produce identical results, since both weightings span the same vector

space.

(a) Legendre Basis Functions (b) Chebyshev Basis Functions (of the First Kind)

Figure 2.1: Common basis functions in Nodal Methods

2.1.2. NEM and Spectral Tau Methods

NEMs in general are a specific subset of a larger category of methods known as ‘Spectral-’ or

Lanczos-𝜏 methods [34], a general class of PDE discretizations based in part on theWRMpro-

cedure [30]. In Section 1.2.2, different methods by which BC information may be included in

WRM procedures was discussed. Commonly, WRM supposes homogenous boundary condi-

tions and a set of basis functions which obey these conditions; however, as we noted, many

problems exist for which this is difficult or impossible. Spectral-𝜏 methods were first de-

rived to account for this deficiency, and the procedure is essentially the same as discussed

in Section 2.1.1. A WRM procedure is used to generate a deficient set of algebraic equations

using the lowest polynomial order bases as weighting functions. The deficient system is

then closed by asserting that the trial solution obeys boundary (or interface) conditions.

There are a few differences, however; most notably, the standard basis functions in spectral-

𝜏 methods are Chebyshev polynomials of the first kind. Practical methods often make ex-

tensive use of recurrence relations to simplify the Laplacian or other differential terms. Ad-

ditionally, 𝑝-refinement is most common when more accurate solutions are desired. That

is, enhanced accuracy is obtained by increasing the polynomial order of the basis functions,
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rather than subdividing the mesh. The use of Chebyshev polynomials provides a more ro-

bust guarantee of convergence (which is spectral in 𝑝) for general problems, including time-

dependent ones. However, for the class of problems arising from Diffusion/𝑆𝑃𝑁 , Legendre

polynomials are sufficient to provide this guarantee, and are significantly easier to imple-

ment given their simpler orthogonality. Note however, that while 𝑝-refinement is rare in

Nodal Methods, they still inherit this spectral convergence in 𝑝.

Formulation of BC as Operators

While in parts of this section, the WRM and NEM methods have been framed in opposition

to one another, they are more closely related than it may seem. The conservation laws are

trivial to write in the strong form; we simply enforce equality of the partial current operators

defined in Equation (1.23) (or, equivalently, continuity of flux and net current). But they may

also be written as functions to be used in a WRM procedure, further unifying the methods.

Consider a 1D, 1-group problem of either Diffusion or 𝑆𝑃𝑁 using a Brantley-Larsen BC

formulation. Then, at a single boundary (suppose at some position 𝑥 = 𝑥′), there exist two

continuity relations associated with the positive and negative partial currents:

𝜔±(𝑥) = ∑
all cells 𝑐

(T ∗𝑐 )−1(𝛿𝑐,𝑎 − 𝛿𝑐,𝑏) (
∞
∑
𝑖=1

1
‖𝑏𝑖‖2

J ±(𝐷𝑐 , 𝑏𝑖)(𝑥′)𝑏𝑖(𝑥)) , (2.1)

Where T ∗𝑐 is the adjoint of the differential operator for cell 𝑐, and J ± is the familiar partial

current operator acting on the function 𝑏𝑖. The functional norm is defined using the same

inner product relation as the WRM procedure; that is, ‖𝑏𝑖‖2 = (𝑏𝑖, 𝑏𝑖)𝜔0 . In most cases, this

is the ordinary 𝐿2 functional norm. Note also that this definition presumes the existence of

an infinite set of basis functions spanning the space associated with this inner product; and

further that the chosen basis is a finite subset of this. This is trivially satisfied by any set of

polynomials which are ‘complete’, including the Legendre polynomials.

To understand why we claim this is the conservation weighting function, we consider the

resulting algebraic equation when the corresponding residual is equated to zero. First, define

a residual function in cell 𝑐 as:

𝑟𝑐(𝑥) = 𝑄𝑐(𝑥) − T𝑐𝜙𝑐(𝑥) = 𝑄𝑐(𝑥) − T𝑐
𝑁
∑
𝑖=1

𝜙𝑐𝑖 𝑏𝑖(𝑥), (2.2)
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and the true, analytic solution as ̅𝜙(𝑥). Then the WRM procedure yields:

(T −∗𝑎
∞
∑
𝑖=1

J ±(𝐷𝑎, 𝑏𝑖)(𝑥′)
𝑏𝑖(𝑥)
‖𝑏𝑖‖2

, 𝑟𝑎(𝑥))
D𝑎

− (T −∗
𝑏

∞
∑
𝑖=1

J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′)
𝑏𝑖(𝑥)
‖𝑏𝑖‖2

, 𝑟𝑏(𝑥))
D𝑏

= 0. (2.3)

From here, we use the definition of the adjoint to transpose it onto the other term in the

inner product. We also use the identity:

T −1𝑐 𝑟𝑐(𝑥) = T −1𝑐 𝑄𝑐(𝑥) − 𝜙𝑐(𝑥) = 𝜙𝑐(𝑥) − 𝜙𝑐(𝑥) =
∞
∑
𝑖=1

𝜙𝑐 𝑖𝑏𝑖(𝑥) −
𝑁
∑
𝑖=1

𝜙𝑐𝑖 𝑏𝑖(𝑥).

We then have:

(
∞
∑
𝑖=1

J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′)
𝑏𝑖(𝑥)
‖𝑏𝑖‖2

,
∞
∑
𝑖=1

𝜙𝑐 𝑖𝑏𝑖(𝑥) −
𝑁
∑
𝑖=1

𝜙𝑎𝑖 𝑏𝑖(𝑥))
D𝑎

−

(
∞
∑
𝑖=1

J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′)
𝑏𝑖(𝑥)
‖𝑏𝑖‖2

,
∞
∑
𝑖=1

𝜙𝑐 𝑖𝑏𝑖(𝑥) −
𝑁
∑
𝑖=1

𝜙𝑏𝑖 𝑏𝑖(𝑥))
D𝑏

= 0 (2.4)

∞
∑
𝑖=1

𝜙𝑎𝑖J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′) −
𝑁
∑
𝑖=1

𝜙𝑎𝑖 J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′)−

[
∞
∑
𝑖=1

𝜙𝑏𝑖J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′) −
𝑁
∑
𝑖=1

𝜙𝑏𝑖 J ±(𝐷𝑏 , 𝑏𝑖)(𝑥′)] = 0 (2.5)

J ± (𝐷𝑎, 𝜙𝑎) (𝑥′) − J ±(𝐷𝑎, 𝜙𝑏)(𝑥′) − J ± (𝐷𝑏 , 𝜙𝑏) (𝑥′) + J ±(𝐷𝑏 , 𝜙𝑏)(𝑥′) = 0 (2.6)

J ±(𝐷𝑎, 𝜙𝑎)(𝑥′) = J ±(𝐷𝑏 , 𝜙𝑏)(𝑥′) (2.7)

Where the movement of the flux coefficients inside the J ± operator is made possible by the

fact that J ± is linear in its second argument.

This procedure tells us two things; firstly, that using the somewhat abstract and con-

voluted weighting function is fundamentally equal to requiring conservation of the partial

currents. In effect, using the more convenient conservation approach is no different from

using a full WRM with this weighting function. Secondly, it tells us that these weighting

functions 𝜔± span the space of solutions which do not follow the appropriate interface con-

dition between subdomains 𝑎 and 𝑏. This is the mechanism by which the WRM and all its

23



derived methods (Spectral-𝜏 , Nodal Methods, and more) are able to produce algebraic equa-

tions which maintain fundamental conservation laws.

2.1.3. Analytic and Semi-Analytic Methods

A semi- or fully-analytic method is one which uses basis functions which are more closely

tied to the true solution space of the underlying problem. These spaces are clearly defined

under certain conditions that happen to be satisfied in some solver implementations; that is,

a lack of up-scattering and a polynomial source term. In these cases, the solution space may

be defined as the set of polynomials up to a certain order (determined by the polynomial

order of the source) plus enough functions to span the null space of the differential operator.

For 1D diffusion, these are the hyperbolic trigonometric functions sinh and cosh, which

take as an argument the positional variable divided by diffusion length.

Purely Analytic Nodal Methods

The Analytic Nodal Method (ANM) [58] is perhaps the most popular out of the purely ana-

lytic methods. In 3D, the only approximation performed in this method is the approximation

of quadratic transverse leakage (discussed in Section 2.1.4). However, most formulations are

limited to 2 groups as the algebraic complexity of any higher-group formulations rapidly

becomes extremely complex [37]. As conventionally implemented, the ANM typically com-

putes only the node-averaged fluxes and face-averaged currents. Obtaining the flux in any

more detail requires a flux reconstruction method.

This motivated the development of the Analytic Functional Expansion Nodal (AFEN)

method, which solves the multidimensional diffusion equation while simultaneously gen-

erating the appropriate basis functions [50]. This process of finding the corresponding basis

functions is similar to what is mentioned above; finding the null space of the operator. In this

case, an eigenvalue/eigenvector decomposition is performed, and the resulting information

is used to build the basis.

Additionally, a method described as the Unified Nodal Method (UNM) has also been devel-

oped based on the ANMwith the goal of removing problematic instabilities [38]. Specifically,

the ANM has a tendency to be unstable in cells which are very near-critical. The principal

idea is to decouple the 2-group problem via similarity transformation, and solve the com-

ponent parts. The basis functions for this approach are defined on 𝑥 ∈ [−1
2 ,

1
2] and may be
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written

𝐴0(𝑥) = 1, (2.8a)

𝐴1(𝑥) = 2𝑥, (2.8b)

𝐴2(𝑥) = 6𝑥2 − 1
2, (2.8c)

𝐴3(𝑥) = 1
𝐾𝑔
3,𝑐

[12 sinh(2𝜅𝑔𝑐 𝑥) − 𝑥 sinh(𝜅𝑔𝑐 )] , (2.8d)

𝐴4(𝑥) = 1
𝐾𝑔
4,𝑐

[𝜅
𝑔𝑐
2 cosh(2𝜅𝑔𝑐 𝑥) + 3 (𝑥2 − 1

2) sinh(𝜅
𝑔𝑐 ) − 3 (𝑥2 − 1

12) 𝜅
𝑐𝑔 cosh(𝜅𝑐𝑔)] , (2.8e)

where if 𝜆𝑝 is the eigenvalue corresponding to a given group, then:

𝜅𝑔𝑐 = ℎ
2√𝜆𝑝 , 𝐾𝑔

3,𝑐 = 𝜅𝑔𝑐 cosh(𝜅𝑔𝑐 ) − sinh(𝜅𝑔𝑐 ), 𝐾𝑔
4,𝑐 = (𝜅𝑔𝑐 )2 sinh(𝜅𝑔𝑐 ) − 3𝐾𝑔

3,𝑐 . (2.9)

The Semi-Analytic Nodal Method

A different evolution of the ANM led to the formulation of what is known as the Semi-

Analytic Nodal Method (SANM). This evolution was motivated by having a clean and sim-

ple way to extend the accurate ANM solutions to an arbitrary number of groups [52]. In

order to decouple the complicated scattering relations that arise from such a method, the

scattering sources are projected into a polynomial form (Equation (2.10a) shows a 1D exam-

ple). The flux, however, is still solved over an augmented polynomial space; typically some

variation of A𝑔 of Equation (2.10a), where P𝑁 is the space of polynomials up to degree 𝑁 .

When the scattering source 𝑆𝑔←𝑔′ is computed, this is projected into polynomial space via

the projection operator 𝑃𝑔′ .

A𝑔 = P𝑁 ∪ {sinh(𝑥/𝐿𝑔), cosh(𝑥/𝐿𝑔)}, (2.10a)

𝑆𝑔←𝑔′(𝑥) = ∑
𝑔′≠𝑔

𝑃𝑔′Σ𝑔←𝑔′Φ𝑔′(𝑥), where 𝑃𝑔 ∶ A𝑔 ↦ P𝑁 . (2.10b)

This projection injects some error, but the problem is much more tractable in its derivation

and implementation. It is also significantly easier to adjust an existing NEM code to use this

method than any of the fully analytic ones.
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2.1.4. Transverse Integration

While 1D problems are all well and good for an abstract, theoretical analysis, real-world

problems demand 2D or 3D treatment. TI is primarily a way to decompose amulti-D problem

into a set of coupled 1D problems that are easier to solve and may be easily iterated upon.

The underlying mechanism is true to the method’s name; by identifying ‘corridors’ of nodes,

or subdomains in the problem, the PDE may be integrated along the transverse dimensions

such that one ends up with a set of simple 1D problems. Consider a 3D diffusion equation,

in a single group for simplicity:

−∇ ⋅ (𝐷∇𝜙(𝑥)) + Σ𝑟𝜙(𝑥) = 𝑄(𝑥),
𝜕𝐽𝑥
𝜕𝑥 + 𝜕𝐽𝑦

𝜕𝑦 − 𝐷 𝜕2
𝜕𝑧2𝜙(𝑥) + Σ𝑟𝜙(𝑥) = 𝑄(𝑥). (2.11)

The transverse integration operator for a corridor parallel to the 𝑧-direction is:

1
Δ𝑥Δ𝑦 ∫

Δ𝑥/2

−Δ𝑥/2 ∫
Δ𝑦/2

−Δ𝑦/2
(⋅) 𝑑𝑦 𝑑𝑥. (2.12)

Letting an overbar denote the flux and source terms which have been integrated by this

operator, we see that applying this operator to the 3D diffusion equation yields:

1
Δ𝑥 ∫

Δ𝑥/2

−Δ𝑥/2
𝜕𝐽𝑥
𝜕𝑥 𝑑𝑥 + 1

Δ𝑦 ∫
Δ𝑦/2

−Δ𝑦/2
𝜕𝐽𝑦
𝜕𝑦 𝑑𝑦 − 𝐷 𝜕2

𝜕𝑧2
̅𝜙(𝑧) + Σ𝑧 ̅𝜙(𝑧) = ̅𝑄(𝑧). (2.13)

One key contribution of Finnemann was to provide the technique for estimating the leakage

source from neighboring nodes in the transverse directions. This is done via a parabolic

approximation with respect to the adjacent nodes [19]. This essentially resolves the issue

of the added integral terms in Equation (2.13), fully transforming it into a 1D equation. The

iteration proceeds by recomputing these transverse terms as necessary in between the it-

erations, which cycle between the 𝑥 , 𝑦 , and 𝑧 directions. The flux representation for this

method may be written like so:

𝜙(𝑥) = 𝜙0𝑃0(𝑥) +
𝑁
∑
𝑖=1

𝜙𝑥𝑖 𝑃𝑖(𝑥) +
𝑁
∑
𝑖=1

𝜙𝑦𝑖 𝑃𝑖(𝑦) +
𝑁
∑
𝑖=1

𝜙𝑧𝑖 𝑃𝑖(𝑧). (2.14)
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Equation (2.14) is specifically selected such that, for a given TI operator, only the constant

term and the longitudinal variable remain after application.

Limits of the Transverse Integration Procedure

The transverse integration procedure has limits, however. Most evidently, one needs to be

able to define these corridors and the transverse directions. In structured grids, either Carte-

sian or hexagonal, this is not an issue; but if a more complicated problem necessitates an un-

structured grid, the method is wholly inapplicable, without some way to map the result to a

satisfactory grid. Furthermore, there are to the authors’ knowledge, as-yet unsatisfied ques-

tions pertaining to the transverse leakage source. Specifically, the necessity of the quadratic

approximation is a curious one. More accurate approximations seem to do nothing for the

method, and indeed have been found to make it worse in some cases [36]. This is highly

counter-intuitive; and a suitable explanation has yet to be found.

2.1.5. Variational Nodal Methods

The limits of TI are a long-standing problem in the field of nuclear engineering, and this

work is far from the first attempt at eliminating them. Another category of method which

eliminates TI in multidimensional expansions is known as the Variational Nodal Method

(VNM). The basic approach, as summarized by Zhang and Li in [61], is to, in terms of the

spatial and angular variables:

1. Write a functional that has the neutron transport equation as a stationary condition.
That is, if this functional 𝐹 is stationary at a certain value of its arguments (for simplic-

ity, assume two functions 𝜌 and 𝜂), the solution of the neutron transport equation may

be computed from these functions (𝜌 and 𝜂). In this context, stationary means that a

perturbation of the arguments first-order in a small factor 𝛿 leads to a perturbation in

the overall functional which is second-order or higher in 𝛿 .

𝐹[𝜌 + 𝛿𝜌, 𝜂 + 𝛿𝜂] = 𝐹[𝜌, 𝜂] + 𝑂(𝛿2) (2.15)

2. Introduce a series of truncated spatial and angular expansions into the functional.
Effectively, this is a limitation of the arguments 𝜌 and 𝜂 in Equation (2.15) to a finite
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number of degrees of freedom. Whether these are in space, angle, or some mixture is

up to the designer of a given method.

3. Find the stationary conditions of this “reduced” or “truncated” functional.
This process may be conducted by deriving the first order perturbation terms, and

asserting that they cancel. This allows for the computation of the degrees of freedom

in the arguments of 𝐹 ; and therefore, determining the flux per item 1.

The general nature in which one may write and solve for these spatial and angular expan-

sions means that the VNM is extremely flexible in its design. However, this flexibility also

makes it extremely difficult to categorize; as so much of the characteristics of the VNM de-

pend on the exact method one uses to arrive at the final equations. The most typical appli-

cation involves the second-order transport equation, derived using the even- and odd-parity

angular fluxes:

𝜓𝑒(𝑥, Ω̂) = 1
2 [𝜓(𝑥, Ω̂) + 𝜓(𝑥, −Ω̂)] and 𝜓𝑜(𝑥, Ω̂) = 1

2 [𝜓(𝑥, Ω̂) − 𝜓(𝑥, −Ω̂)] . (2.16)

Assuming isotropic scattering, this gives rise to the second-order neutron transport equation:

Ω̂ ⋅ ∇𝜓𝑜(𝑥, Ω̂) + Σ𝑡(𝑥)𝜓𝑒(𝑥, Ω̂) = Σ𝑠(𝑥) ∫4𝜋 𝜓𝑒(𝑥, Ω̂)𝑑Ω̂ + 𝑄(𝑥) (2.17a)

Ω̂ ⋅ ∇𝜓𝑒(𝑥, Ω̂) + Σ𝑡(𝑥)𝜓𝑜(𝑥, Ω̂) = 0, (2.17b)

which is used to derive a functional for the variational method. Such a choice will guarantee

continuity of the neutron flux and current, as mentioned by Zhang and proven by Palmiotti,

Carrico, and Lewis [20]. But this is not necessarily the only way one may arrive at such a

conservative form.

While a full review of the numerical details comprising the many VNM implementations

is out of scope of this document, the review provided by Zhang [61] is quite comprehensive.

The implementation of VARIANT [51] is notable for being both the first, as well as perhaps

the most widely used. It has also been implemented in ERANOS [16]. More context of

the VNM, particularly in the backdrop of finite element and response matrix methods, is

available in a review conducted by Lewis and Dilber [40].
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2.2. Finite Element Methods

The FEM, like NEM has a very long history, and is much more popular in other fields. In

general, the FEM has a simpler formulation and a wider range of applicability, since most

formulations of FEM require only the first derivative of the functions used. While it was ini-

tially conceived in the early 40s [15], a full and rigorous analysis of the underlying theory did

not emerge until the late 60s ([5, 49, 62], among others), at which point development of diffu-

sion and transport simulation codes was alreadywell underway. Furthermore, early versions

of the FEM applied to multidimensional problems were quite memory-intensive, since they

produced a fully-coupled system of equations not amenable to TI (see Section 2.2.1). Though

FEM and NEM draw on many similar ideas, these paths very quickly diverged.

Broadly speaking, the common FEMs used today can be divided into the Discontinuous-

Galerkin Finite Element Method (DG-FEM) and the Continuous Finite Element (CFEM) va-

rieties. These come with their own unique advantages and disadvantages which will be

discussed in the following sections. One of the more notable parts of the FEM common to

most of its varieties is how 2nd order PDEs are reduced to a form involving only first deriva-

tives of the input functions. This is sometimes referred to as a bilinear form, which arises

from applying integration-by-parts to a second-derivative term in the governing equations.

Consider an equation corresponding to a weighting function 𝜔𝑖(𝑥) ‘moment’ of the Poisson

equation:

∫
D𝑐

𝜔(𝑥)∇2𝜙𝑗(𝑥)𝑑𝑥 = 0

∫
D𝑐

[∇ ⋅ (𝜔(𝑥)∇𝜙(𝑥)) − (∇𝜔) ⋅ (∇𝜙)] 𝑑𝑥 = 0

∫𝜕D𝑐
𝜔(𝑥)(𝑛̂ ⋅ ∇)𝜙(𝑥) 𝑑𝑥 − ∫

D𝑐
(∇𝜔) ⋅ (∇𝜙) 𝑑𝑥 = 0. (2.18)

This weak formulation of the equation is central to most DG-FEM implementations, though

it is in principle no different mathematically to the original form. The need to only take a

single derivative is highly desirable, since a numerical derivative inherently reduces stability

of many calculations. Additionally, it allows for the use of purely linear basis functions if

desired. Note how the surface term is defined on a cell boundary. This term cannot in

principle be localized to a given cell, as it belongs to both simultaneously. Resolving this

issue will be discussed further in Section 2.2.2
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2.2.1. Tensor Product Extension

The incompatibility with TI and the increased memory use relative to NEM stems from the

method bywhich FEM is extended tomultiple dimensions. The standard procedure for doing

so is called Tensor Product Extension (TPE). If there are 𝐷 dimensions, then the 1D basis and

weighting are extended into their 𝑁 -D variants (denoted here with an underbar) as:

𝑏𝑖1…𝑖𝐷 (𝑥) =
𝐷
∏
𝑑=1

𝑏𝑖𝑑 ( ̂𝑒𝑑 ⋅ 𝑥), 𝜔𝑖1…𝑖𝐷 (𝑥) =
𝐷
∏
𝑑=1

𝜔𝑖𝑑 ( ̂𝑒𝑑 ⋅ 𝑥); (2.19)

where ̂𝑒𝑑 is the 𝑑-th dimension’s unit vector. Naturally, this raises the number of the un-

knowns to the power 𝐷, which is one reason TPE was not heavily used for multidimensional

reactor calculations in [19]. Such an implementation was far too costly for the computers

of the time, and because all basis functions depend on all 3 spatial unknowns, transverse

integration does not decouple the problem as it does for a Legendre basis.

2.2.2. Discontinuous Galerkin FEM

In the DG-FEM, the regions of the problem have a large degree of independence. Like

NEM, basis functions are defined within a single cell, and interact with their neighbors only

through the boundary terms in Equation (2.18). Unlike NEM, there are no explicit relations
enforcing continuity between these representations. The consequence of this is that the

solution does not obey any strict form of continuity, hence the ‘Discontinuous’ identifier.

Nonetheless, a correct implementation of the relevant Diffusion/𝑆𝑃𝑁 equations tends to re-

sult in very minor discontinuities provided a reasonable input [2, 3].

Thismethod is also fully Galerkin, and also an example of a ‘pure’WRM.A common choice

of basis is the 𝑁 -th order Lagrange polynomials, though in principle a wide variety of valid

choices exist. The Lagrange polynomials simply tend to make the underlying algebra more

simple. These possess the useful properties that each basis function may be identified with

a single ‘node’ within the subdomain, at which this basis function takes on the value 1 while

all others are zero. Common choices for these points include equidistant nodes, Chebyshev

nodes, or the nodes of various different numeric quadrature rules. Generating the algebraic

equations is done by using these points in a numeric quadrature rule to evaluate the integrals

resulting from the WRM procedure.
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(a) Lagrange-type basis with Newton-Cotes Nodes (b) Lagrange-type basis with Gauss-Lobatto Nodes

Figure 2.2: Common basis sets in Finite Element Methods

An important aspect of the DG-FEM is how boundary quantities are defined. Consider

Equation (2.18), reproduced below:

∫𝜕D 𝜔(𝑥)(𝑛̂ ⋅ ∇)𝜙(𝑥) 𝑑𝑥 − ∫
D
(∇𝜔) ⋅ (∇𝜙) 𝑑𝑥 = 0. (2.20)

The term (𝑛̂ ⋅ ∇)𝜙 evaluated in the integral on the left is commonly referred to in applied

mathematics as the numerical flux, though for consistency it will be referred to as a numerical

current here. These quantities are defined on the boundary, and thus must be determined by

a relation involving cells on both sides. This choice obviously impacts the sparsity pattern

of the underlying discretization. As we will see in Section 2.4 it is also a significant factor in

the speed of convergence.

2.2.3. Numeric Currents

These currents may include what are known as Penalty Terms, in which case they form an

Interior Penalty Finite Element Method (IP-FEM). Penalty terms enforce the continuity of

flux or current in a specific way or with prescribed weights. These must be determined a
priori and in a sufficiently general way such that they work for a wide variety of problems.

An important note is that the interfacial currents are not guaranteed to be conserved (in

the strong sense) for a general choice of numeric current. Only methods which can be said to

be completely conservative, to use the terminology of Arnold et al. [2] will produce a solution
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that satisfies this conservation. Otherwise, it may only be said to be conserved in a weak

sense, in the limit of many basis functions.

To rigorously define these numeric currents, a second-order problemmust be broken into a

system of first-order differential equations. Consider the 1D single-group diffusion equation

in a homogenous medium

−𝐷∇2𝜙(𝑥) + Σ𝑟𝜙(𝑥) = 𝑄(𝑥). (2.21)

And use Fick’s law to break it up into first-order equations:

∇ ⋅ 𝐽 (𝑥) + Σ𝑟𝜙(𝑥) = 𝑄(𝑥), (2.22a)

𝐽 (𝑥) + 𝐷∇𝜙(𝑥) = 0. (2.22b)

Now, suppose we wish to solve this on 2 adjacent cells, sharing a boundary at 𝑥0 with normal

vector 𝑥̂ . We will convert this to a weak formulation by defining two test functions; one

scalar 𝑏(𝑥) and one vector 𝛽(𝑥). These are defined such that both 𝑏 and each component

of 𝛽(𝑥) belongs to the set of square-integrable functions 𝐿2(D), where D𝑐 is the domain

of the cell these bases belong to. Operating on Equation (2.22a) with ∫D𝑐 𝑏(𝑥)(⋅) 𝑑𝑉 and

Equation (2.22b) with ∫D𝑐 𝛽(𝑥) ⋅ (⋅) 𝑑𝑉 :

∫
D𝑐

𝑏(𝑥)∇ ⋅ 𝐽 (𝑥) 𝑑𝑉 + Σ𝑟 ∫
D𝑐

𝑏(𝑥)𝜙(𝑥) 𝑑𝑉 = ∫
D𝑐

𝑏(𝑥)𝑄(𝑥) 𝑑𝑉 , (2.23a)

∫
D𝑐

𝛽(𝑥) ⋅ 𝐽 (𝑥) 𝑑𝑉 + 𝐷 ∫
D𝑐

𝛽(𝑥) ⋅ ∇𝜙(𝑥) 𝑑𝑉 = 0. (2.23b)

The divergence law is then applied to each differential term, such that:

∫
D𝑐

𝑏(𝑥)∇ ⋅ 𝐽 (𝑥) 𝑑𝑉 = ∫𝜕D𝑐
𝑏(𝑥)𝐽 (𝑥) ⋅ 𝑑𝑆 − ∫

D𝑐
∇𝑏(𝑥) ⋅ 𝐽 (𝑥) 𝑑𝑉 , (2.24a)

∫
D𝑐

𝛽(𝑥) ⋅ ∇𝜙(𝑥) 𝑑𝑉 = ∫𝜕D𝑐
𝜙(𝑥)𝛽(𝑥) ⋅ 𝑑𝑆 − ∫

D𝑐
∇ ⋅ 𝛽(𝑥)𝜙(𝑥) 𝑑𝑉 . (2.24b)

The flux and currents 𝜙(𝑥) and 𝐽 (𝑥) on the boundary 𝑥 ∈ 𝜕D𝑐 are then replaced with their
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numeric variants; denoted with a hat:

−∫
D𝑐

∇𝑏(𝑥) ⋅ 𝐽 (𝑥) 𝑑𝑉 + ∫𝜕D𝑐
𝑏(𝑥) ̂⃗𝐽 (𝑥) ⋅ 𝑑𝑆 + Σ𝑟 ∫

D𝑐
𝑏(𝑥)𝜙(𝑥) 𝑑𝑉 = ∫

D𝑐
𝑏(𝑥)𝑄(𝑥) 𝑑𝑉 ,

(2.25a)

−𝐷 ∫
D𝑐

∇ ⋅ 𝛽(𝑥)𝜙(𝑥) 𝑑𝑉 + 𝐷 ∫𝜕D𝑐
̂𝜙(𝑥)𝛽(𝑥) ⋅ 𝑑𝑆 + ∫

D𝑐
𝛽(𝑥) ⋅ 𝐽 (𝑥) 𝑑𝑉 = 0. (2.25b)

A choice of these numeric currents is required in order to fully define a DG-FEM. A full

survey including studies of many different schemes for choosing these currents has been

performed by Arnold et al. [3]. We note that if an expression for ̂⃗𝐽 may be derived purely in

terms of 𝜙, it is trivial to plug back in Fick’s law to Equation (2.25a) to obtain a second-order

PDE for the flux alone.

Of these schemes, a handful are notable for being fully consistent and stable. To write

them compactly, we define some notation. First, let 𝜙ℎ and 𝐽ℎ be the approximate fluxes and

currents as represented in the chosen basis set. Then, on a boundary between elements,

let the two sides be represented with a + and − superscript; each with their own outward-

pointing unit normals 𝑛̂. The average and jump operators may then be defined:

{𝑓 } = 1
2 (𝑓

+ + 𝑓 −) , [[𝑓 ]] = 𝑓 +𝑛̂+ + 𝑓 −𝑛̂−, [[𝑔]] = 𝑔+ ⋅ 𝑛̂+ + 𝑔− ⋅ 𝑛̂−. (2.26)

These include the classic IP-FEM method, a method presented by Brezzi et al. [2], and a

method presented by Bassi et al. [7]. Here, the parameter 𝛽 and the functions 𝛼𝑗 and 𝛼𝑟
̂𝜙 ̂⃗𝐽

IP {𝜙ℎ} {−𝐷∇ℎ𝜙ℎ} − 𝛼𝑗([[𝜙ℎ]])
Brezzi et al. {𝜙ℎ} {𝐽ℎ} − 𝛼𝑟 ([[𝜙ℎ]])
Bassi et al. {𝜙ℎ} {−𝐷∇ℎ𝜙ℎ} − 𝛼𝑟 ([[𝜙ℎ]])

Table 2.1: Selected numeric currents of unified DG-FEM analysis [3]

are effectively user-defined constants that must be known a priori. Arnold et al. go into

some detail on how precisely to choose these values to achieve stability and consistency, but

ultimately they depend in some way on user-specified values and the grid spacing.

Of particular note in Table 2.1 is the IP-FEM method which satisfies the constraint of an

expression for ̂⃗𝐽 defined solely in terms of the flux 𝜙ℎ. It is therefore this method which

is analyzed in Section 2.4. However, care must be taken with mixed boundary conditions;
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a case difficult to find in the literature. The challenge is arriving at an expression for the

penalty terms which does not cause spurious penalties at the boundaries of the problem,

where they can lead to detrimental effects on convergence. For IP-FEM, the function 𝛼𝑗 is
known to have the form:

𝛼𝑗(𝑦) = 𝜂𝑒𝑦, (2.27)

per Arnold et al. [3]; where the quantity 𝜂𝑒 is a positive real number which may depend on

the given edge 𝑒. Requiring these spurious penalty terms to vanish at the edges means that

the evaluation of ̂⃗𝐽 at the boundary must be zero. Writing this out for the boundary of a

problem where the + side is within the domain, and the − half is absent:

̂⃗𝐽 |𝜕D𝑐 = −𝐷{∇ℎ𝜙ℎ} − 𝜂𝑒[[𝜙ℎ]] = −𝐷2 ∇ℎ𝜙
+
ℎ − 𝜂𝑒𝜙+ℎ 𝑛̂ (2.28)

= −𝐷2 (𝑛̂ ⋅ ∇ℎ)𝜙
+
ℎ − 𝜂𝑒𝜙+ℎ . (2.29)

We may force this to equal zero by asserting the boundary condition on 𝜙+ℎ . In the case of

the zero-reentrant flux condition, this requires setting 𝜂𝑒 = 1
4 .

2.2.4. Continuous FEM

The CFEM is an implementation of the FEM which is fundamentally quite different from the

DG-FEM seen in most applications today. Rather than basis functions being associated with

the interior of each node, basis functions are instead associated with the intersection points

of the mesh, which is often unstructured. Basis functions are no longer uniquely identified

within a subdomain, but rather are defined on the problem domain as a whole (though in

practice, they are defined only on a small, local cluster of nodes). A requirement of the

implementation is that on the boundary of any given basis function’s support, it drops to

zero.

Several complexities in this approach have led to DG-FEM becoming much more popular

for general differential equations. One issue is that increasing the basis function order is

often very difficult, as it involves adding extra basis functions on edges and interiors, which

interact with each other in potentially complex ways. In particular, forms of parallelism

based on domain decomposition will see their communication cost (and implementation
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complexity) increase significantly.

For these reasons many implementations use simple piecewise linear bases, which need

only be defined at the aforementioned intersection of subdomains. However, this is a big

problem in applications with strict conservation laws, since this does not provide enough

degrees of freedom to enforce all relevant conservation laws within each cell. While ℎ-
refinement addresses this to some extent, it still leaves an approximate solution which does

not satisfy conservation laws in any strong sense.

2.3. The Legendre-Gauss-Lobatto Method

The Legendre Gauss-Lobatto (LGL) method is a new type of discretization arising fromWRM

in much the same way as NEM and FEM do. This method has been developed with a focus

on maintaining the specific properties of accuracy we care about in NEM, including a strict

enforcement of conservation laws, while inheriting the flexibility of FEM methods. For rea-

sons which will be discussed in the next chapter, this method in particular is very amenable

to a variety of hierarchical fast solver techniques.

The ‘base’ of this method is essentially a DG-FEMprocedurewith collapsed basis functions

at cell boundaries, such that the end result reduces to a CFEM in a 1D geometry. Consider,

in 1D, the Discontinuous-Galerkin equation for cell 𝑐:

𝐷𝑐 ∫
D𝑐

𝑑𝑏𝑖
𝑑𝑥

𝑁
∑
𝑗=1

𝜙𝑗
𝑑𝑏𝑗
𝑑𝑥 𝑑𝑥 − 𝐷𝑐 [𝑏𝑖(𝑥)

𝑁
∑
𝑗=1

𝜙𝑗
𝑑𝑏𝑗
𝑑𝑥 ]

𝜕D𝑐+

𝑥=𝜕D𝑐−

+Σ𝑡 ∫
D𝑐

𝑏𝑖(𝑥)
𝑁
∑
𝑗=1

𝜙𝑗𝑏𝑗(𝑥) 𝑑𝑥 = ∫
D𝑐

𝑏𝑖(𝑥)𝑄(𝑥) 𝑑𝑥, (2.30)

whereD𝑐 is the subdomain of interest, and also happens to be the support of the basis func-

tion 𝑏𝑖; since these bases are defined on a cell-by-cell basis. The basis functions above form

a Lagrange basis of the form given in Equation (2.31), with nodes 𝑥𝑘 defined as the Gauss-

Lobatto numeric quadrature points:

𝐿𝑗(𝑥) = ∏
𝑘≠𝑗

𝑥 − 𝑥𝑘
𝑥𝑗 − 𝑥𝑘

. (2.31)
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An important property of this Lagrange basis is that it forms a partition of unity. This means

that the constant function is always in the span of a Lagrange basis, which is essential in

maintaining neutron conservation. Additionally, this basis has been constructed to allow

for quadrature-based self-lumping [44]. This will later enable fast numerical quadrature

evaluations in Chapter 4

From here, we condense neighboring basis functions between cells. This is done to force

the approximate solution to be continuous; effectively making this into a CFEM scheme. In

1D, the basis then changes to resemble that in Figure 2.3, which notably has a first-derivative

discontinuity at the boundary. This might seem unwanted, but it is in fact, expected and

desirable; without it, the basis could not hope to accurately capture the ‘kink’ in the flux

which appears at material interfaces.

Figure 2.3: LGL Basis Functions

This has the somewhat startling result that wemay drop the leakage term, and still enforce

current continuity. To prove this, consider Equation (2.30) for 𝑖 ≠ 1, 𝑖 ≠ 𝑁 . In this case, we

will always have 𝑏𝑖(𝜕D+) = 𝑏𝑖(𝜕D−) = 0, so the streaming term may be dropped with no

consequence. However, consider now 𝑖 = 𝑁 for cell 𝐿. This basis is identical to the basis

corresponding to 𝑖 = 1 of the neighboring cell to the right, which we will call 𝑅. In the

WRM approach, the bounds of the integral fundamentally span the whole problem; it is only

because we have decomposed it into subdomains that we are able to simplify this to distinct

regions. Because the basis now spans multiple regions, the domain of the integral must
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likewise expand; and so we end up with:

∫
D𝐿∪D𝑅

𝐷̲(𝑥) 𝑑𝑏 ̲𝑑𝑥
𝑑𝜙̲
𝑑𝑥 𝑑𝑥 − 𝐷𝐿 [𝑏𝑁 (𝑥)

𝑁
∑
𝑗=1

𝜙𝑗
𝑑𝑏𝑗
𝑑𝑥 ]

𝜕D𝐿+

𝑥=𝜕D𝐿−
− 𝐷𝑅 [𝑏1(𝑥)

𝑁
∑
𝑗=1

𝜙𝑗
𝑑𝑏𝑗
𝑑𝑥 ]

𝜕D𝑅+

𝑥=𝜕D𝑅−

+ ∫
D𝐿∪D𝑅

Σ𝑡̲ (𝑥)𝑏(̲𝑥)𝜙̲(𝑥) 𝑑𝑥 = ∫
D𝐿∪D𝑅

𝑏(̲𝑥)𝑄(𝑥) 𝑑𝑥. (2.32)

Note the underbar notation, which denotes a piecewise quantity for compactness; returning

the relevant material property depending on whether 𝑥 is located in subdomain 𝐿 or 𝑅. The
basis function 𝑏 ̲ is piecewise as well, returning 𝑏𝑁 (𝑥) for 𝑥 ∈ D𝐿 and 𝑏1(𝑥) for 𝑥 ∈ D𝑅. Here

we use the fact that 𝑏1 and 𝑏𝑁 are zero at the boundary the two cells do not share, allowing

that term to be eliminated. At the other boundary, they are both necessarily 1, since the

Lagrange basis is a partition of unity. Then:

∫
D𝐿∪D𝑅

𝐷̲(𝑥) 𝑑𝑏𝑑𝑥
𝑑𝜙̲
𝑑𝑥 𝑑𝑥 − [𝐷𝐿

𝑑𝜙𝐿
𝑑𝑥 |𝑥=𝜕D𝐿+ − 𝐷𝑅

𝑑𝜙𝑅
𝑑𝑥 |𝑥=𝜕D𝑅−]

+∫
D𝐿∪D𝑅

Σ𝑡̲ (𝑥)𝑏(̲𝑥)𝜙̲(𝑥) 𝑑𝑥 = ∫
D𝐿∪D𝑅

𝑏(̲𝑥)𝑄(𝑥) 𝑑𝑥. (2.33)

The bracketed term is precisely the application of the continuity of net current whichmust be

satisfied to obey conservation laws. We simply drop this term, and the resulting approximate

solution is guaranteed to be both continuous and consistent with the first-derivative jump

condition of the typical material interface condition for Diffusion or Brantley-Larsen 𝑆𝑃𝑁 .

As has been stated elsewhere in this work, this is equivalent to enforcing conservation of

partial currents.

2.4. Convergence Analysis

To analyze the convergence of each of these methods, reference implementations were cre-

ated for a 1D, 2-group heterogeneous diffusion problem. The purpose of this was to put each

discretization method on equal footing, in order to meaningfully compare errors produced

in each approach. Since this type of problem has a known analytic solution, error compar-

isons can be made directly without any additional complications regarding the existence or

behavior of the true solution.
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A depiction of this case is shown in Section 2.4 with material information included. An-

alytic solutions to this problem with vacuum boundary conditions are presented in Ap-

pendix A.

Figure 2.4: Analytic solution to a simple 1D/2G
Diffusion problem

Fuel Region:

Σ𝑓𝑡 = 0.5 Σ𝑓𝑠0 = 0.41 Σ𝑓𝑠1 = 0.25Σ𝑓𝑠0
Σ𝑡𝑡 = 1.0 Σ𝑡𝑠0 = 0.2 Σ𝑡𝑠1 = 0.25Σ𝑡𝑠0

Σ𝑠2←1 = 0.04 𝑄𝑓 = 10 𝑄 𝑡 = 0
Moderator Region:

Σ𝑓𝑡 = 0.25 Σ𝑓𝑠0 = 0.11 Σ𝑓𝑠1 = 0.25Σ𝑓𝑠0
Σ𝑡𝑡 = 0.5 Σ𝑡𝑠0 = 0.5 Σ𝑡𝑠1 = 0.25Σ𝑡𝑠0

Σ𝑠2←1 = 0.11 𝑄𝑓 = 0 𝑄 𝑡 = 0

Since the NEM/DG-FEM both technically permit using different basis functions, both the

Lagrange and Legendre Polynomials were tested. The different discretizations were formed

explicitly as matrices and solved exactly, to minimize the effect of solver error on the dis-

cretization results. Convergence was analyzed by examining the groupwise sum of the func-

tional 𝐿2 norm over the entire problem domain, which entails computing an integral of the

error over the entire space. This is done using an extremely high-accuracy adaptive inte-

gration procedure; not a low-resolution pointwise estimation. This approach was chosen to

minimize the additional discretization error.

Results are shown in Figure 2.5, which consists of generally expected results. Most ob-

viously, we have the semi-analytic methods UNM and SANM behave exactly as expected,

with UNM hovering near the square root of machine precision for any mesh size and SANM

dropping quickly due to the decreasing error in group-to-group scattering. Note that the

rise upwards at small grid sizes is largely due to poor conditioning in the implementation,

which could be tweaked to work better in the small-cell limit. However, regardless of the

implementation details, the small-cell limit of SANM does have stability issues, which can

only be partially addressed without reformulating the method.

The remaining solver types achieve the expected maximum convergence, with the excep-
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Figure 2.5: ℎ-convergence of 1D 2-group Test Problem

tion of the one labeled DG-FEM. There is some super-convergence observed for the LGL

case. This is sometimes observed for CFEMs, so it is not surprising to see it appear here.

The subpar convergence of “DG-FEM” is caused by the choice of numeric current men-

tioned in Section 2.2.2. This method shown uses a form of current construction vaguely

reminiscent of upwinding. Effectively, the numeric currents are derived from the expres-

sion for conservation of the partial current into the node. For example, the numeric current
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𝑗𝑐𝑐+1/2 representing the numeric current for cell 𝑐 at boundary 𝑐 + 1/2 would be given by:

1
4𝜙

𝑐(𝑥𝑐+1/2) + 𝐷𝑐
2
𝑑𝜙𝑐
𝑑𝑥 |

𝑥𝑐+1/2
= 1

4𝜙
𝑐+1(𝑥𝑐+1/2) + 1

2𝑗
𝑐
𝑐+1/2,

𝑗𝑐𝑐+1/2 =
1
2 (𝜙

𝑐(𝑥𝑐+1/2) − 𝜙𝑐+1(𝑥𝑐+1/2)) + 𝐷𝑐 𝑑𝜙𝑐
𝑑𝑥 |

𝑥𝑐+1/2
. (2.34)

This approach is, to again use the terminology of Arnold et. al. fully conservative, but does
not obey the full set of properties required for an optimal FEM method.

2.4.1. Theoretical Convergence Limits

For any WRM-based PDE solver, the fundamental limit of convergence for a polynomial

basis is a result obtained by the Bramble-Hilbert Lemma, which states that:

inf
𝑣∈P𝑚−1‖𝑢(𝑥) − 𝑣(𝑥)‖𝐿2 ≤ 𝐶(𝑚)ℎ𝑚‖𝑢(𝑚)‖𝐿2 ; (2.35)

i.e. a polynomial 𝑣 of degree 𝑚 − 1 fundamentally must have a minimum interpolation error

proportional to the grid spacing ℎ𝑚. So the best possible convergence we can hope for is 5th

order, which is achieved by theNEM, IP-FEM, and LGLmethods. Note that the Semi-Analytic

methods are not subject to this maximum because their basis functions are non-polynomial

in nature.
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Chapter 3

Fast Solvers and Hierarchical Methods

“Fast Solvers” undoubtedly sounds like a particularly vague and optimistic way to label any

form of algorithmic solver; after all, what is or is not considered ‘fast’ can change exceedingly

rapidly both with theory and physical computing hardware. However, it does take on a

concrete meaning in the applied mathematics community, and essentially refers to a class of

algorithms which solve a given problem with optimal- or near-optimal scaling with respect

to the number of unknowns. Naturally then, ‘optimal’ refers to 𝑂(𝑁 ) algorithms, where

𝑁 is the number of unknowns. While definitions of this ‘near-optimal’ phrasing vary, a

common definition is ‘less than 1 polynomial order away from optimal’, in limit of large-

𝑁 . In this sense, 𝑂(𝑁 log𝑁) would be considered near-optimal and thus ‘Fast’; though it is

worth impressing that this is not a universal definition.

This relaxed definition categorizes many commonly-used algorithms as ‘Fast’; the Fast

Fourier Transform, for example, being among themost prominent though it does not achieve

linear performance. Another relevant example is the Fast Multipole Method (FMM). Orig-

inally developed as a way to accelerate force calculations on collections of charges (Fig-

ure 3.1), the FMM sacrifices a small amount of accuracy in order to rapidly accelerate certain

calculations; to the point where they can take 𝑂(𝑁 log𝑁) time in some cases. This loss

in accuracy may be customizable down to the error already incurred by working in finite-

precision arithmetic. Such methods are sometimes called Quasi-Direct.

In this chapter, some of the theory behind developing these types of algorithms will be

covered in Section 3.1. Additionally, the concept of Poincaré-Steklov operators will be intro-

duced in Section 3.1.1 to facilitate this theory as it pertains to the subject of interest; elliptic

PDEs. This section will also discuss notational conventions which will be used through-
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Figure 3.1: Charge Lumping in the FMM

out this dissertation. These topics will then be used to reproduce a derivation of the HPS

method. While the derivation put forth in Section 3.2 is not original work, the solver has

been adapted to be fit for purpose in low-order transport problems.

3.1. Hierarchical Solver Theory

The blueprint for creating fast algorithms often proceeds somewhat like this:

1. Recursively partition the unknowns into a finite set of groups until the problem is

trivial (or at least tractable); creating a ‘tree’ structure.

2. Perform a trivial calculation upon every leaf in this tree.

3. Iterate on the couplings that connect nodes with their parents until the solution is

satisfactory.

Depending on the problem, either step 2 or step 3 may dominate the work required; an

explanation of the consequences of this may be seen in Section 7.5. This has the potential

to perform very well; provided that there is a way to decompose the problem that results in

step 3 remaining tractable.
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The question then arises; for elliptic PDEs, which couplings are the strongest? The an-

swer to this is the spatial coupling. Qualitatively, this may be observed by considering the

discretization of the Laplacian operator ∇2. The 5-point Laplacian stencil for uniform grids

is

∇2ℎ𝑢(𝑥, 𝑦) =
1
ℎ2 [𝑢𝑖+1,𝑗 + 𝑢𝑖,𝑗+1 − 4𝑢𝑖,𝑗 + 𝑢𝑖−1,𝑗 + 𝑢𝑖,𝑗−1] + 𝑂(ℎ2); 𝑢𝑖,𝑗 = 𝑢(𝑥𝑖, 𝑦𝑗), (3.1)

where ℎ is small, and therefore nearby points 𝑢𝑖,𝑗 and 𝑢𝑖±1,𝑗±1 are tightly coupled. In the

limit of small grid spacing, the magnitude of the coupling in this differential operator will

overwhelm anything else; even the coupling between angular moments in the 𝑆𝑃𝑁 or 𝐺𝑆𝑃𝑁
equations.

Another way to demonstrate this is via Green’s functions. The Green’s function of a

differential operator defines the response of the solution at 𝑥 to a delta source at 𝑥′. Consider
the 3D Laplacian problem:

𝐺(𝑥, 𝑥′) = − 1
4𝜋 ‖𝑥 − 𝑥′‖−1, (3.2)

which demonstrates that the coupling in this example falls off as the inverse of distance.

Whereas in the Fast Fourier Transform algorithm, the weakest couplings are ‘cut’ by even-

odd parity, we must find a way to ‘cut’ the far-away spatial couplings of an elliptic PDE.

This is achieved by splitting the domains spatially into many independent cells. If done

properly, such a decomposition will reduce the average distance between two points in any

subdomain; effectively severing the weakest coupling while leaving the strongest intact.

3.1.1. Poincaré–Steklov Operators

A PDE may be solved independently on small pieces such as these, but they must somehow

be stitched back together into a cohesive whole. This difficulty is a consequence of the well-

known challenge in solving these types of problems, where information takes a long time

to diffuse through the tight couplings between points. While it is most obvious in finite

difference-style discretizations, it remains a problem in others. To handle this, we introduce

a new tool known as the Poincaré–Steklov operator.

This operator maps the Dirichlet boundary condition of an elliptic PDE to the Neumann

boundary conditionwhich yields the same solution. As either condition is known to uniquely
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determine a solution, thismapping and its inverse arewell-defined. Used in conjunctionwith

an interface condition, this operator may be used to effectively solve for flux values at the

boundaries between cells, even across material discontinuities. These operators have been

used in domain decomposition methods for both homogeneous problems [1] (in which the

boundaries have no physical meaning) as well as heterogeneous problems [55] (in which the

coefficients of the PDE change abruptly across these boundaries). The flexibility in which

this approach enables domain decomposition motivates the creation of a hierarchical data

structure such that this boundary may be separated from the two cells connected to it; a

formal description of which follows in the next section.

The remainder of this chapter will concern existing fast algorithms for dealing with these

topics. While the algorithms themselves are not novel, their application and the adaptations

required in applying these to 𝑆𝑃𝑁 and 𝐺𝑆𝑃𝑁 is original work.

3.1.2. Geometric Decomposition

Consider for simplicity a square problem domain subdivided in the 𝑥 and 𝑦 directions such

that the number of subdivisions 𝑁 is a power of two. This yields 𝑁 2 overlapping subdo-

mains, or nodes, which will form the leaves of a binary tree. Within each of these leaves, a

representation using the LGL basis functions is adopted, which utilizes a set of unknowns

which may be thought of as being located at the Gauss-Lobatto points in the cell.

This representation spans the space of polynomials belonging to the 2D-TPE of polyno-

mials up to order 𝑝 within each cell. However, because LGL basis functions are being used,

this means that the unknowns located on the cell boundaries are shared between the two

cells on that boundary. To draw a distinction between these two types of unknowns, they

are broken into two sets; points on the boundary of these fine cells belong to a boundary set

I𝑏; while those on the interior belong to an interior set I𝑖.
To effectively solve for each unknown in the problem, we consider the problem domain as

a whole. Wemay create a root node, with its own boundary and interior sets. This is done by

extracting a set of unknowns from the problem domain, such that the remaining unknowns

form two disjoint sets, as seen in Figure 3.2. This extracted set should not contain any points

interior to the leaves.

In Figure 3.2, the interior and boundary sets are colored blue and red, respectively; a

convention that will be used for the remainder of this document. Points in gray exist, but
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Figure 3.2: Depiction of a paritioning of the root node.

are not included in either of these named sets. On the left, these are colored with respect to

the interior and boundary of the leaves. On the right, the definition of the interior/boundary

of the root is shown; the extracted points become the interior, while the boundary of the

root (which is the boundary of the problem itself) becomes the exterior.

This partitioning is carried out recursively, with the scheme in full resembling a binary

tree as in Figure 3.3. An example root node 𝛾 , branch node 𝛽 and leaf node 𝛼 are depicted in

𝛾

𝛽1

𝛽3

𝛼1 𝛼2

𝛽4

𝛼3 𝛼4

𝛽2

𝛽5

𝛼5 𝛼6

𝛽6

𝛼7 𝛼8 Leaf Nodes

Branch Nodes

Root Node

Figure 3.3: Domain Tree Structure

Figure 3.4. Each node in the tree of Figure 3.3 has its own distinct interior and boundary sets.

When necessary, one may distinguish between the index sets for each of these nodes with

a superscript, e.g. I𝛼𝑏 and I𝛽𝑏 . Note that Figure 3.4 also shows a new set of points colored

in black on the leaf node 𝛼 . These points belong to a third index space I𝑐 which is isolated

from the others for reasons which will be discussed further in Section 4.7.

The reason for this binary partition is motivated by the work that is involved in coupling

the solutions on these regions together. While a quad-tree may seem more intuitive for a

2D problem, it will become clear in Section 3.2.2 and Section 7.5.1 that the work involved in
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𝛾
𝛽 𝛼

Figure 3.4: Depiction of Index Spaces for Leaf and Branch Nodes.

coupling these regions is proportional to the size of the interface between them. In fact, this

proportionality is super-linear, and so using a quad-tree (doubling the size of the interface)

is most likely not advisable.

3.1.3. Operator Partitions and Index Spaces

A significant motivation for defining the index spaces I𝑏 , I𝑖, and I𝑐 is how they allow con-

venient shorthand to refer to the values of a vector on a subset of points. Or, in addition,

the restriction of an operator to a subset of its full row/column space. For example, suppose

that a problem domain consists of many leaf nodes, and we wish to write the coefficients of

the flux 𝜙 which correspond to the interior of a 2D cell 𝜏 ; expressed as 𝜙(I𝜏𝑖 ).
Alternatively, suppose we have an equation 𝐴̲̲𝜙 = 𝑄, where 𝐴̲̲ ∶ Iall ↦ Iall, where

Iall = I𝑏 ∪ I𝑖 ∪ I𝑐 . These index spaces already make the definition of such an operator much

easier to write, but they further allow compact representations of partitions of 𝐴 such that:

⎡⎢⎢
⎣

𝐴(I𝑏; I𝑏) 𝐴(I𝑏; I𝑖) 𝐴(I𝑏; I𝑐)
𝐴(I𝑖; I𝑏) 𝐴(I𝑖; I𝑖) 𝐴(I𝑖; I𝑐)
𝐴(I𝑐 ; I𝑏) 𝐴(I𝑐 ; I𝑖) 𝐴(I𝑐 ; I𝑐)

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝜙(I𝑏)
𝜙(I𝑖)
𝜙(I𝑐)

⎤⎥⎥
⎦
=
⎡⎢⎢
⎣

𝑄(I𝑏)
𝑄(I𝑖)
𝑄(I𝑐)

⎤⎥⎥
⎦
. (3.3)

This notation will be used frequently throughout the rest of this dissertation, and will often

be shortened further like so: 𝐴(I𝑖; I𝑏) = 𝐴𝑖𝑏 , or 𝜙(I𝜏𝑐 ) = 𝜙𝜏𝑐 . The operator N will also make

frequent appearances as the operator which defines the current-like conserved quantities of

the elliptic PDE discretized by 𝐴. As these quantities are defined along the boundary of the

problem, it satisfies the mapping N ∶ Iall ↦ I𝑏 . For 𝑆𝑃3, the definitions of these quantities
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are contained in Equation (1.22) (Diffusion will use the same but for the zero-th moment

only). 𝐺𝑆𝑃3 will instead use the current definitions of Equation (1.29).

3.2. Hierarchical Poincaré–Steklov Solver

The Hierarchical Poincaré-Steklov Solver is a type of solver for elliptic PDEs discussed in

length in recent papers [27, 45] and a textbook [46] written by Professor Per-Gunnar Mar-

tinsson from The University of Texas (Austin). A central theme, in Martinsson’s own words

is that “only small amounts of information survive across long distances [which] can be used

to build solvers for elliptic PDEs that are fast, robust, and highly accurate”.

Exploiting this information sparsity is critical to achieving the fast performance of the

method.

3.2.1. Summary of Solution Procedure

The solution procedure contains two steps; the build stage and the solve stage. The method

presupposes the existence of the treelike structure of subdomains discussed in Section 3.1.2.

However, this tree may be generated simultaneously with the build stage if a method of

decomposition is prescribed.
= I𝑏
= I𝑖
= I𝑐

3
Solve: At the top-
most level, the
fully-built P-S op-
erator can be used
with the boundary
conditions to solve
for flux at the do-
main boundary.

1 Build: Create local operators from local data and
child cell operators:

Solution operator 𝑆 ∶ 𝜙( ) ↦ 𝜙( )
P-S operator 𝑇 ∶ 𝜙( ) ↦ 𝐽( )

2 Solve: create inhomogeneous source terms arising
from particular solution.

4 Solve: apply the local solution operator on the par-
ent solution to compute flux values 𝜙( ) = 𝑆𝜙( ).

Figure 3.5: HPS Solver Algorithm for 2D Grid
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The build stage decomposes the problemmatrix into an Interpolative Decomposition, which

may be used in the solve stage to solve the given matrix for any number of different source

terms. Essentially, the solve stage is an efficient application of the global differential opera-

tor’s inverse. This is highly advantageous for things like power iteration or group-sweeping

that require iteration, with a changing source term. While there are undoubtedly concerns

of the memory required to store this decomposition, there are effective ways to do so ow-

ing to the way this decomposition is structured. Namely, it is composed of a hierarchical

structure of highly compressible operators; allowing it to be represented with relatively low

memory overhead in such a way that the most important couplings are preserved. These

types of storage methods are discussed further in Section 7.3. As for the algorithm, the de-

tails of the build and solve stages are discussed in Sections 3.2.2 and 3.2.3, respectively. How

this is embedded into a larger solver for fixed-source or eigenvalue calculations is covered

in Section 4.8.

3.2.2. Build Stage

The algorithm begins, as discussed in Section 3.1, by considering how to solve the PDE

restricted to an isolated leaf node. This is Step 1 depicted in Figure 3.5. If the local solution

to the PDE 𝜙𝜏 is separated into a homogeneous 𝜙𝐻 and particular 𝜙𝑃 solution, a pair of

equations is obtained by restricting Equation (3.3) to the interior set:

𝐴𝜏𝑖𝑖𝜙𝐻𝑖 + 𝐴𝜏
𝑖𝑏𝜙𝐻𝑏 + 𝐴𝜏𝑖𝑐𝜙𝐻𝑐 = 0 and 𝐴𝜏𝑖𝑖𝜙𝑃𝑖 = 𝑄𝜏𝑖 , (3.4)

since 𝜙𝑃𝑏 and 𝜙𝑃𝑐 are zero by the definition of a particular solution. The solution operator 𝑆
for a given cell 𝜏 (written 𝑆𝜏 ) is given by solving the homogeneous equation for 𝜙𝑖 in terms

of 𝜙𝑏;

𝜙𝐻𝑖 = −(𝐴𝜏𝑖𝑖)−1𝐴𝜏
𝑖𝑏𝜙𝐻𝑏 − (𝐴𝜏𝑖𝑖)−1𝐴𝜏𝑖𝑐𝜙𝐻𝑐 . (3.5)

Define: 𝑆𝜏 = −(𝐴𝜏𝑖𝑖)−1𝐴𝜏
𝑖𝑏 and 𝑅𝜏 = −(𝐴𝜏𝑖𝑖)−1𝐴𝜏𝑖𝑐 ; (3.6)

𝜙𝐻𝑖 = 𝑆𝜏𝜙𝐻𝑏 + 𝑅𝜏𝜙𝐻𝑐 . (3.7)

The other operator needed is the Poincaré-Steklov operator 𝑇 . The previous expression for 𝑆
is inserted into the definition of the current 𝐽 = N 𝜙 as follows, noting that the contribution
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due to the induced current of the particular solution must also be included:

N 𝜏 ⎡⎢⎢
⎣

𝜙𝐻𝑏
𝜙𝐻𝑖 + 𝜙𝑃𝑖

𝜙𝐻𝑐

⎤⎥⎥
⎦
= N 𝜏 ⎡⎢⎢

⎣

𝐼
𝑆𝜏
0

⎤⎥⎥
⎦
𝜙𝐻𝑏 +N 𝜏 ⎡⎢⎢

⎣

0
𝑅𝜏
𝐼

⎤⎥⎥
⎦
𝜙𝐻𝑐 +N 𝜏 ⎡⎢⎢

⎣

0
(𝐴𝜏𝑖𝑖)−1𝑄𝜏𝑖

0

⎤⎥⎥
⎦
, (3.8)

and proceed to define:

𝑇 𝜏 = N 𝜏 (I𝑏; I𝑏 ∪ I𝑖) [
𝐼
𝑆𝜏] 𝐺𝜏 = N 𝜏 (I𝑏; I𝑖 ∪ I𝑐) [

𝑅𝜏
𝐼 ] 𝐻 𝜏 = N 𝜏 (I𝑏; I𝑖)(𝐴𝜏𝑖𝑖)−1𝑄𝜏𝑖 . (3.9)

Therefore,

𝐽 = 𝑇 𝜏𝜙𝐻𝑏 + 𝐺𝜏𝜙𝐻𝑐 + 𝐻 𝜏𝑄𝜏𝑖 . (3.10)

In this scheme, the corner points are treated as external to the HPS solver itself, to be resolved

by a corner point balance; discussed further in Section 4.7. The operator 𝐺𝜏 is necessary to

incorporate the effects these corner points have on interfacial currents, and 𝑅𝜏 incorporates
the effects on the interior. 𝐻 𝜏 incorporates the effects due to the PDE’s particular solu-

tion. These operators are computed and stored for every leaf node in the problem, and map

between the following index spaces:

𝑆𝜏 ∶ I𝜏𝑏 ↦ I𝜏𝑖 , 𝑇 𝜏 ∶ I𝜏𝑏 ↦ I𝜏𝑏 , 𝑅𝜏 ∶ I𝜏𝑐 ↦ I𝜏𝑖 , 𝐺𝜏 ∶ I𝜏𝑐 ↦ I𝜏𝑏 , 𝐻 𝜏 ∶ I𝜏𝑖 ↦ I𝜏𝑏 . (3.11)

For reference, the size of these index spaces (assuming a quadrilateral grid and basis functions

of order 𝑝) for the leaves are:

size{I𝜏𝑏 } = 4𝑞(𝑝 − 1), size{I𝜏𝑖 } = 𝑞(𝑝 − 1)2, size{I𝜏𝑐 } = 4𝑞, (3.12)

where 𝑞 is the number of angular moments; in diffusion, 𝑞 = 1, while for 𝑆𝑃𝑁 or 𝐺𝑆𝑃𝑁 𝑞 = 𝑁 .

For the 4th order basis on quadrilaterals, and assuming the 𝑆𝑃3 equations, this gives sizes:

𝑆𝜏 ∶ 18 × 24, 𝑇 𝜏 ∶ 24 × 24, 𝑅𝜏 ∶ 18 × 8, 𝐺𝜏 ∶ 24 × 8, 𝐻 𝜏 ∶ 24 × 18, (3.13)
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for the leaves. The sizes for branches vary; but the branches do not have an associated 𝐺𝜏

or 𝑅𝜏 operators, since they do not need to carry forward values on the corners.

For a more general formulation, one may define a quadrature rule on a given 2D element,

and count up the number of quadrature points on the boundary edges 𝑁𝑓 , interior 𝑁𝑖, and
corners 𝑁𝑣 .

size{I𝜏𝑏 } = 𝑞𝑁𝑓 , size{I𝜏𝑖 } = 𝑞𝑁𝑖, size{I𝜏𝑐 } = 𝑞𝑁𝑣 . (3.14)

One may avoid storing these operators on the leaves if one is willing to recompute them

every time a solution is needed. This may be advantageous for extremely large problems,

as it will reduce total memory requirements drastically. However, this makes the solution

procedure somewhat slower (though it does not affect the scaling of the method).

The next step of the build stage is to compute these local operators for the branch nodes,

which represent the merging of two children. Consider Figure 3.6, describing how the index

spaces of two merging boxes, denoted 𝛼 and 𝛽 , overlap. While I𝛼𝑖 and I𝛽𝑖 are disjoint, the

boundary and corner sets are not. The intersection of these two sets becomes the new inte-

rior, while the union of the two boundaries excluding this overlap forms the new exterior.

𝛼 𝛽I𝛼𝑏 I𝛽𝑏

I1 = I𝛼𝑏 − I𝛽𝑏
I2 = I𝛽𝑏 − I𝛼𝑏
I3 = I𝛼𝑏 ∩ I𝛽𝑏

Figure 3.6: Index Spaces in a Merge Operation

All operators for the cell 𝜏 with children 𝛼 and 𝛽 may be derived by requiring conserva-

tion laws to hold on the interior index space and solving for 𝜙3. From the definition of the

subdomains’ Poincaré-Steklov operators, we have the two matrix equations

[𝑇
𝛼11 𝑇 𝛼13

𝑇 𝛼31 𝑇 𝛼33
] [𝜙1𝜙3

] = [𝐽1𝐽3
] and [𝑇

𝛽
22 𝑇 𝛽23
𝑇 𝛽32 𝑇 𝛽33

] [𝜙2𝜙3
] = [𝐽2𝐽3

] . (3.15)

However, the sign convention for 𝐽3 differs between these two cells, since 𝑁 is computed

using an outward-oriented normal vector. Asserting conservation laws hold on I3 therefore
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means enforcing that the sum of each 𝐽3 is equal to zero:

𝑇 𝛼31𝜙1 + 𝑇 𝛼33𝜙3 + 𝑇 𝛽32𝜙2 + 𝑇 𝛽33𝜙3 = 0

𝜙3 = (𝑇 𝛼33 + 𝑇 𝛽33)−1 [−𝑇 𝛼31 −𝑇 𝛽32] [
𝜙1
𝜙2
] , (3.16)

𝑆𝜏 ≡ (𝑇 𝛼33 + 𝑇 𝛽33)−1 [−𝑇 𝛼31 −𝑇 𝛽32] , 𝜙3 = 𝑆𝜏 [𝜙1𝜙2
] . (3.17)

With 𝑆𝜏 defined, one can show by substituting in 𝜙3 to the expressions for 𝐽1 and 𝐽2 in

Equation (3.15) that:

[𝐽1𝐽2
] = [𝑇

𝛼11𝜙1 + 𝑇 𝛼13𝜙3
𝑇 𝛽22𝜙2 + 𝑇 𝛽23𝜙3

] = [𝑇
𝛼11 0
0 𝑇 𝛽22

] [𝜙1𝜙2
] + [𝑇

𝛼13
𝑇 𝛽23

] 𝜙3

= ([𝑇
𝛼11 0
0 𝑇 𝛽22

] + [𝑇
𝛼13

𝑇 𝛽23
] 𝑆𝜏) [𝜙1𝜙2

] , (3.18)

𝑇 𝜏 ≡ [𝑇
𝛼11 0
0 𝑇 𝛽22

] + [𝑇
𝛼13

𝑇 𝛽23
] 𝑆𝜏 , [𝐽1𝐽2

] = 𝑇 𝜏 [𝜙1𝜙2
] . (3.19)

We now pause to comment on the physical meaning of the terms in Equation (3.19). The

first term is a composite operator handling the response on the boundary of each child indi-

vidually. Because the boundary set is composed of 2 disjoint parts, this produces a diagonal

structure. The second term expresses the effect from flux transiting across one cell to affect

the current on the other side.

Equation (3.17) is somewhat alarming, however. It contains a matrix inverse, and while

the properties of 𝑇 are such that there are fast methods available to compute it, it will be a

notable factor in the expected runtime. This will be discussed further in Section 7.3.

When this process is completed for every node, the decomposition is fully built. This

algorithm in full is succinctly defined in Algorithm 1. The end result of this decomposition

is a single 𝑇 operator for the root, and an 𝑆𝜏 and 𝐻 𝜏 defined for each node. In addition, all

leaves will have an 𝑅𝜏 and 𝐺𝜏 . Everything else may be discarded as we iterate up the levels

of the tree.

Of some note is the traversal pattern, which is depth-first. This pattern of traversal means
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Algorithm 1 HPS Build Stage

Let D be a Binary Tree of subdomains, with each node 𝜏 containing
𝜙(I𝜏𝑖 )
for 𝜏 ∈ DFS(D) do ▷ Depth-First Traversal

if 𝜏 is a Leaf then
𝑋 𝜏 ← (𝐴𝜏𝑖𝑖)−1
𝑆𝜏 ← −𝑋 𝜏𝐴𝜏

𝑖𝑏 ▷ 𝜙(I𝜏𝑏 ) ↦ 𝜙(I𝜏𝑖 )𝑇 𝜏 ← N 𝜏
𝑏𝑏 +N 𝜏

𝑏𝑖𝑆𝜏 ▷ 𝜙(I𝜏𝑏 ) ↦ 𝐽(I𝜏𝑏 )𝑅𝜏 ← −𝑋 𝜏𝐴𝜏𝑖𝑐 ▷ 𝜙(I𝜏𝑐 ) ↦ 𝜙(I𝜏𝑖 )𝐻 𝜏 ← N 𝜏
𝑏𝑖𝑋 𝜏 ▷ 𝑄(I𝜏𝑖 ) ↦ 𝐽(I𝜏𝑏 )𝐺𝜏 ← N 𝜏
𝑏𝑐 ▷ 𝜙(I𝜏𝑐 ) ↦ 𝐽(I𝜏𝑏 )

else
Let 𝛼 and 𝛽 be the children of 𝜏
Let I1 = I𝛼𝑏 − I𝛽𝑏 ▷ See Figure 3.6

I2 = I𝛽𝑏 − I𝛼𝑏
I3 = I𝛼𝑏 ∩ I𝛽𝑏 = I𝜏𝑖

𝑋 𝜏 ← (𝑇 𝛼33 + 𝑇 𝛽33)−1
𝑆𝜏 ← 𝑋 𝜏 [−𝑇 𝛼31 −𝑇 𝛽32] ▷ 𝜙(I𝜏𝑏 ) ↦ 𝜙(I𝜏𝑖 )
𝐻 𝜏 ← [𝑇

𝛼13
𝑇 𝛽23

] 𝑋 𝜏 ▷ 𝐽 (I𝜏𝑖 ) ↦ 𝐽(I𝜏𝑏 )

𝑇 𝜏 ← [𝑇
𝛼11 0
0 𝑇 𝛼22] + [𝑇

𝛼13
𝑇 𝛽23

] 𝑆𝜏 ▷ 𝜙(I𝜏𝑏 ) ↦ 𝐽(I𝜏𝑏 )
Delete 𝑇 𝛼 and 𝑇 𝛽

end if
end for
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that no node is ‘processed’ without first processing its children. It is a way to ensure that

the required 𝑇 operators are present during the build step of the branches and root. Also

of importance are the index spaces defined on the branches/root, which are a more general

version of those defined on Figure 3.6. From here we move on to the solve stage.

3.2.3. Solve Stage

The solve stage of the algorithm represents steps 2–4 of Figure 3.5. As mentioned previously,

the corner points are assumed to be known. Step 2 involves an “upward” sweep from the

leaf nodes as particular solutions are constructed from the applied source 𝑄 and the corner

points. Let 𝜙 and 𝑔 be 2 vectors of unknowns spanning the whole space. Here, 𝑔 represents

the currents induced by the inhomogeneous source term. The purpose of the upward sweep

is to propagate these currents to the boundary of the problem. To do so, we may compute

𝜙(I𝜏𝑖 ) = {𝑋
𝜏𝑄𝜏𝑖 + 𝑅𝜏𝜙(I𝜏𝑐 )

𝑋 𝜏𝑔(I𝜏𝑖 )
𝑔(I𝜏𝑏 ) = {−𝐻

𝜏𝑄𝜏𝑖 (I𝜏𝑖 ) − 𝐺𝜏𝜙(I𝜏𝑐 ) 𝜏 is a leaf

−𝐻 𝜏𝜙(I𝜏𝑖 ) 𝜏 is a branch
, (3.20)

where the order of the sweep proceeds from the children to the parents. The extra corner

terms 𝑅𝜏 and 𝐺𝜏 are no longer needed after processing the leaves, because they must only

be accounted for once in the sum.

When this upward pass is complete, the induced current at the domain boundary has been

fully constructed. In step 3, this induced current is used in conjunction with the root 𝑇 op-

erator to compute the value of the flux moments at the boundary via the specified boundary

condition.

The final step, the downward sweep, then proceeds to compute the solution from the

boundary, mapping the solution to node interiors. In this iteration,

𝜙(I𝜏𝑖 ) = 𝜙(I𝜏𝑖 ) + 𝑆𝜏𝜙(I𝜏𝑏 ), (3.21)

with the reverse of the previous condition; the parent of any given node must be processed

before the children. Once this iteration is complete, 𝜙 contains the solution to the discretized

PDE. The procedure is outlined in Algorithm 2

The first stage of this algorithm is the depth-first traversal which, again, ensures that chil-

dren are processed before parents. In this stage, a temporary variable 𝑔 is used to accumulate
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Algorithm 2 HPS Solve Stage

LetD be a Binary Tree of subdomains, with each node 𝜏 containing the
indices I𝜏𝑖
Let 𝑔 and 𝜙 be vectors defined over all of D and the domain boundary.
for 𝜏 ∈ DFS(D) do ▷ Depth-First Traversal

if 𝜏 is a Leaf then
𝜙(I𝜏𝑖 ) = 𝑋 𝜏 [𝑄(𝑥𝑘)]𝑘∈I𝜏

𝑖𝑔(I𝜏𝑖 ) = −𝐻 𝜏 [𝑄(𝑥𝑘)]𝑘∈I𝜏
𝑖
− 𝐺𝜏𝜙(I𝜏𝑐 )

else
𝜙(I𝜏𝑖 ) = 𝑋 𝜏𝑔(I𝜏𝑖 )𝑔(I𝜏𝑖 ) = −𝐻 𝜏𝜙(I𝜏𝑖 )

end if
end for

𝜙(Iroot
𝑏 ) = [𝜙(𝑥𝑘)]𝑘∈Iroot

𝑏

for 𝜏 ∈ BFS(D) do ▷ Breadth-First Traversal
𝜙(I𝜏𝑖 ) = 𝜙(I𝜏𝑖 ) + 𝑆𝜏𝜙(I𝜏𝑏 )

end for
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the currents induced by the inhomogeneous source. At the root node, the flux is then found

using the boundary condition. For simplicity, this algorithm shows the procedure for the

Dirichlet condition; which simply requires setting the flux. Neumann conditions may be

used instead by solving a system involving 𝑔, 𝑇 root, and the specified values. The procedure

is completed with a downward-sweep, shown here with a breadth-first traversal. This type

of traversal will process the parent before moving onto the children, ensuring that 𝜙(I𝜏𝑏 )will

always exist at the time a node is processed.

3.3. Summary

In this section, the HPS algorithm has been written more or less as contemporarily derived.

There are a handful of adjustments; but otherwise this derivation is not especially remark-

able, and generally similar to existing versions [46]. Perhaps the most significant adjustment

has been the more codified relationship between the corner points and the bulk problem; a

topic which will return in Section 4.7.

This algorithm is quite general, and applies to virtually any elliptic PDE. Non-elliptic PDEs

could in theory still be solved by this method; but the guarantee of compressibility is lost,

and there would be little motivation in pursuing it. However, deriving the required oper-

ators is not simple. A prescription is needed for the operators 𝐴(I𝑖, Iall) and N , used in

the definitions for the leaves above. These are closely tied to the physics of the underlying

problem, and deriving these will be the topic of the upcoming chapter.
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Chapter 4

Derivation of HPS Kernels for Low-Order
Transport

4.1. Indexing

While an indexing scheme has been hinted at in some previous sections, a more concrete

one will be laid down here. In a cell, the order of indices proceeds from the boundary to the

interior to the corners. Figure 4.1 shows this for 4th-order basis functions.

1

1

1

1
1 2 3

6
5
4

7 8 9

12
11
10

19
16
13

20
17
14

21
18
15

22 23

24 25

𝑦𝑥

Figure 4.1: Depiction of Cell Indexing.

This scheme is altered for lower- or higher-ordered bases by expanding or shrinking the

interior (blue) square and shifting the corner indices appropriately. Accordingly, one cannot

use less than quadratic bases; to do so would make the interior set empty. Note that the

coordinates match the indexing scheme of 2D arrays; the first coordinate 𝑥 corresponds to

the first index of the array, and so on.

Along the boundaries, the ordering is not rotational because the ordering must be shared
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with adjacent nodes. A rotational ordering would cause complications in referencing bound-

ary values because the ordering flips when considering two adjacent nodes. In a structured

grid, the ordering may be taken as always increasing in 𝑥 and 𝑦 , the global coordinates. This

eliminates ambiguity because the structured nature of the mesh may always be mapped to

a Cartesian grid.

However, this is merely a convenient simplification. An unstructured grid may still be or-

dered; but this ordermust be determined and assignedwhen the unstructured grid is bisected

to form nodes.

4.2. Energy Group Scattering

The derivations to follow in Sections 4.4 to 4.6 are for a single energy group. The reason for

this is that the work to be done depends strongly on the coupling width between cells. The

number of groups is a multiplier on this quantity, because a given spatial point will have at

least as many unknowns as there are groups.

Since repeated solves of this decomposition are fast, we opt to build separate decomposi-

tions for each energy group and resolve scattering behavior via group sweeping. The struc-

ture of the discretization makes any other form of acceleration or blocking in energy group

infeasible. As the energy group is a direct multiplier on the size of most operators, it sub-

stantially increases the work involved while interfering with their compressibility. The scat-

tering source is updated continually through the sweep, which proceeds among the groups

involved in the upscattering process until convergence. Convergence in this instance is mea-

sured by the absolute maximum norm ℓ1.
In the scheme used for the remainder of this paper, the solution within each energy group

(as well as its corner point values; see Section 4.7) is fully converged before continuing to

the next group. Partial convergence for the group-wise flux has been implemented, but not

observed to provide a benefit in the test cases studied for Chapters 5 and 6.

4.3. Coordinate Transformation

The differential equations forming the problem of interest; whether that is diffusion, 𝑆𝑃𝑁 , or

𝐺𝑆𝑃𝑁 ; are all given in global coordinates 𝑥 = (𝑥1, 𝑥2). However, when solving on individual
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cells, the quadrilaterals that form the mesh are taken to the unit cell 𝑢 = (𝑢1, 𝑢2) ∈ [−1, 1]2
This has a significant impact on the computation of any derivatives or integrals we intend

to compute, which must take this transformation into account.

Recall that a linear mapping may be described in matrix form as:

[𝜕𝑥1𝜕𝑥2
] = [

𝜕𝑥1
𝜕𝑢1

𝜕𝑥1
𝜕𝑢2𝜕𝑥2

𝜕𝑢1
𝜕𝑥2
𝜕𝑢2

] [𝜕𝑢1𝜕𝑢2
] , [𝜕𝑢1𝜕𝑢2

] = [
𝜕𝑢1
𝜕𝑥1

𝜕𝑢1
𝜕𝑥2𝜕𝑢2

𝜕𝑥1
𝜕𝑢2
𝜕𝑥2

] [𝜕𝑥1𝜕𝑥2
] .

These are two conventions for the Jacobian matrix 𝐽 . We will use the form:

𝐽 = [
𝜕𝑥1
𝜕𝑢1

𝜕𝑥1
𝜕𝑢2𝜕𝑥2

𝜕𝑢1
𝜕𝑥2
𝜕𝑢2

] = ([
𝜕𝑢1
𝜕𝑥1

𝜕𝑢1
𝜕𝑥2𝜕𝑢2

𝜕𝑥1
𝜕𝑢2
𝜕𝑥2

])
−1

, or 𝐽𝑖𝑗 =
𝜕𝑥𝑖
𝜕𝑢𝑗

, 𝐽−1𝑖𝑗 = 𝜕𝑢𝑖
𝜕𝑥𝑗

. (4.1)

These relationsmay bewrittenmuchmore compactly using the implied-sumnotation, where

repeated indices imply a sum over that index. This notation will be used throughout the

remainder of this section, where:

𝜕
𝜕𝑢𝑗

= 𝐽𝑖𝑗 𝜕
𝜕𝑥𝑖

and 𝜕
𝜕𝑥𝑗

= 𝐽−1𝑖𝑗
𝜕
𝜕𝑢𝑖

. (4.2)

The gradient operator in local coordinates is trivial to derive, and expressed in Equation (4.3).

Because it is a single derivative, the spatial variation of the transformation does not enter

into the expression. The gradient of a function 𝑓 is simply expressed in local coordinates as:

(∇𝑥𝑓 )𝑖 = 𝜕
𝜕𝑥𝑖

𝑓 = 𝜕𝑢𝑗
𝜕𝑥𝑖

𝜕
𝜕𝑢𝑗

𝑓 = 𝐽−1𝑗𝑖 (∇𝑢𝑓 )𝑗 = 𝐽−𝑇∇𝑢𝑓 (4.3)

For a normal derivative we may simply prepend the above expression with an 𝑛𝑖 (expressed
in global coordinates) to contract this into a scalar.

Higher-order derivatives are more involved, however. When discussing GSP3 in Sec-

tion 4.6 we will see that we need a total of 4 higher-order differential operators. These

are ∇2, (𝑛̂ ⋅ ∇)2, (𝑛̂ ⋅ ∇)3, and (𝑛̂ ⋅ ∇)∇2. In order to simplify the resulting calculations, we will

define tensors Ξ:

Ξ𝑖𝑗𝑘 = 𝜕
𝜕𝑥𝑗

𝜕
𝜕𝑥𝑘

𝑢𝑖 Ξ𝜇𝑖𝑗𝑘 = 𝜕
𝜕𝑥𝑖

𝜕
𝜕𝑥𝑗

𝜕
𝜕𝑥𝑘

𝑢𝜇 (4.4)
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and let 𝔻𝑢
𝑑 be a rank-𝑑 tensor denoting the 𝑑-th mixed derivative in the coordinate system

specified by 𝑢, such that 𝔻𝑢1 = ∇𝑢 . It is by definition symmetric under index permutations.

Now, consider the Laplacian ∇2:

∇2𝑥𝑓 = (𝔻𝑥2𝑓 )𝑖𝑖 = 𝜕
𝜕𝑥𝑖

( 𝜕
𝜕𝑥𝑖

𝑓 ) = 𝜕
𝜕𝑥𝑖

(𝜕𝑢𝑗𝜕𝑥𝑖
(∇𝑢𝑓 )𝑗) = ( 𝜕

𝜕𝑥𝑖
𝜕𝑢𝑗
𝜕𝑥𝑖

) (∇𝑢𝑓 )𝑗 +
𝜕𝑢𝑗
𝜕𝑥𝑖

( 𝜕
𝜕𝑥𝑖

(∇𝑢𝑓 )𝑗)

= Ξ𝑗𝑖𝑖(∇𝑢𝑓 )𝑗 +
𝜕𝑢𝑗
𝜕𝑥𝑖

𝜕𝑢𝑘
𝜕𝑥𝑖

(𝔻𝑢2𝑓 )𝑘𝑗 , (4.5)

and its normal derivative (𝑛̂ ⋅ ∇)∇2:

(𝑛̂ ⋅ ∇)∇2 = 𝑛𝛼 𝜕
𝜕𝑥𝛼

[Ξ𝑗𝑖𝑖(∇𝑢𝑓 )𝑗 +
𝜕𝑢𝑗
𝜕𝑥𝑖

𝜕𝑢𝑘
𝜕𝑥𝑖

(𝔻𝑢2𝑓 )𝑘𝑗]

= 𝑛𝛼 [ 𝜕
𝜕𝑥𝛼

(Ξ𝑗𝑖𝑖(∇𝑢𝑓 )𝑗) + 𝜕
𝜕𝑥𝛼

(𝜕𝑢𝑗𝜕𝑥𝑖
𝜕𝑢𝑘
𝜕𝑥𝑖

(𝐷𝑢2𝑓 )𝑘𝑗)]

= 𝑛𝛼[Ξ𝑗𝛼𝑖𝑖(∇𝑢𝑓 )𝑗 + Ξ𝑗𝑖𝑖
𝜕𝑢𝜇
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝜇𝑗 + Ξ𝑗𝛼𝑖
𝜕𝑢𝑘
𝜕𝑥𝑖

(𝔻𝑢2𝑓 )𝑘𝑗

+ 𝜕𝑢𝑗
𝜕𝑥𝑖

Ξ𝑘𝛼𝑖(𝔻𝑢2𝑓 )𝑘𝑗 +
𝜕𝑢𝑗
𝜕𝑥𝑖

𝜕𝑢𝑘
𝜕𝑥𝑖

𝜕𝑢𝜇
𝜕𝑥𝛼

(𝔻𝑢3𝑓 )𝜇𝑘𝑗].

(4.6)

From here wemove on to the second directional derivative (𝑛̂⋅∇)2. Note that we are assuming

non-curvilinear mesh boundaries, so the normal vectors are fixed. The result may be written

as:

(𝑛̂⋅∇𝑥)2 = 𝑛𝛼 𝜕
𝜕𝑥𝛼

(𝑛𝛾 𝜕
𝜕𝑥𝛾

𝑓 ) = 𝑛𝛼𝑛𝛾 𝜕
𝜕𝑥𝛼

(𝜕𝑢𝛿𝜕𝑥𝛾
𝜕
𝜕𝑢𝛿

𝑓 ) = 𝑛𝛼𝑛𝛾 (Ξ𝛿𝛼𝛾 (∇𝑢𝑓 )𝛿 +
𝜕𝑢𝛿
𝜕𝑥𝛾

𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿) .
(4.7)

To go from this to the third directional derivative we simply prepend another directional

derivative operator:

(𝑛̂ ⋅ ∇𝑥)3 = 𝑛𝜇 𝜕
𝜕𝑥𝜇

(𝑛𝛼𝑛𝛾 (Ξ𝛿𝛼𝛾 (∇𝑢𝑓 )𝛿 +
𝜕𝑢𝛿
𝜕𝑥𝛾

𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿))

= 𝑛𝜇𝑛𝛼𝑛𝛾 𝜕
𝜕𝑥𝜇

(Ξ𝛿𝛼𝛾 (∇𝑢𝑓 )𝛿 +
𝜕𝑢𝛿
𝜕𝑥𝛾

𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿)

= 𝑛𝜇𝑛𝛼𝑛𝛾 [Ξ𝛿𝜇𝛼𝛾 (∇𝑢𝑓 )𝛿 + Ξ𝛿𝛼𝛾
𝜕𝑢𝜈
𝜕𝑥𝜇

(𝔻𝑢2𝑓 )𝜈𝛿 + 𝜕
𝜕𝑥𝜇

(𝜕𝑢𝛿𝜕𝑥𝛾
𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿)] .

(4.8)
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The final term within the brackets above may be expanded as:

𝜕
𝜕𝑥𝜇

(𝜕𝑢𝛿𝜕𝑥𝛾
𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿) = Ξ𝛿𝜇𝛾
𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿 +
𝜕𝑢𝛿
𝜕𝑥𝛾

Ξ𝛽𝜇𝛼 (𝔻𝑢2𝑓 )𝛽𝛿 +
𝜕𝑢𝛿
𝜕𝑥𝛾

𝜕𝑢𝛽
𝜕𝑥𝛼

𝜕𝑢𝜈
𝜕𝑥𝜇

(𝔻𝑢3𝑓 )𝜈𝛽𝛿 .

And so:

(𝑛̂ ⋅ ∇𝑥)3 = 𝑛𝜇𝑛𝛼𝑛𝛾[Ξ𝛿𝜇𝛼𝛾 (∇𝑢𝑓 )𝛿 + Ξ𝛿𝛼𝛾
𝜕𝑢𝜈
𝜕𝑥𝜇

(𝔻𝑢2𝑓 )𝜈𝛿 + Ξ𝛿𝜇𝛾
𝜕𝑢𝛽
𝜕𝑥𝛼

(𝔻𝑢2𝑓 )𝛽𝛿

+ 𝜕𝑢𝛿
𝜕𝑥𝛾

Ξ𝛽𝜇𝛼 (𝔻𝑢2𝑓 )𝛽𝛿 +
𝜕𝑢𝛿
𝜕𝑥𝛾

𝜕𝑢𝛽
𝜕𝑥𝛼

𝜕𝑢𝜈
𝜕𝑥𝜇

(𝔻𝑢3𝑓 )𝜈𝛽𝛿].
(4.9)

For a description of how the tensors Ξ may be computed, see Appendix B.

4.4. Diffusion

With the preliminaries now over, let us know derive the HPS kernel for the diffusion equa-

tions. This necessitates a scheme for determining𝐴𝑖𝑖,𝐴𝑖𝑏 , and𝐴𝑖𝑐 from Equation (3.3); as well

as the operator N . These operators will allow the construction of all the required matrices

in Algorithms 1 and 2.

We first derive a scheme for the sub-matrices of 𝐴. These are generated from the WRM

equations associated with the internal basis functions 𝑏𝜇 ∀𝜇 ∈ I𝑖. In this scheme, 𝜇 is effec-

tively an integer indexing a given point within I𝑖, as in Figure 4.1. Using this notation, the

differential operator for diffusion may be plugged into Equation (1.6) to obtain:

∫
cell 𝜏

𝑏𝜇(𝑥) [ ∑
𝜈∈Iall

𝜙𝜈 (−𝐷𝜏∇2𝑥 + Σ𝜏𝑟 ) 𝑏𝜈(𝑥)] 𝑑𝑥 = ∫
cell 𝜏

𝑏𝜇(𝑥)𝑄(𝑥)𝑑𝑥, (4.10)

where 𝜈 , like 𝜇, is indexing basis functions in the manner of Figure 4.1. The entries of 𝐴 are

then given by extracting terms of this sum; the row 𝜇, column 𝜈 entry of 𝐴 is the coefficient

of the basis expansion function 𝑏𝜈 of equation corresponding to weighting function 𝜔𝜇 = 𝑏𝜇 ,
since a Galerkin scheme is used. Plugging in the differential operator to Equation (1.6) and
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selecting 𝑏𝜇 from the sum, each entry of the matrix may be computed as:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = −𝐷𝜏 ∫
cell 𝜏

𝑏𝜇(𝑥)∇2𝑥𝑏𝜈(𝑥) 𝑑𝑥 + Σ𝜏𝑟 ∫
cell 𝜏

𝑏𝜇(𝑥)𝑏𝜈(𝑥) 𝑑𝑥. (4.11)

We now seek to simplify the streaming term by eliminating second-order derivatives, for

reasons which will become clear shortly. Expanding via an integration-by-parts yields

∫
cell 𝜏

𝑏𝜇(𝑥)∇2𝑥𝑏𝜈(𝑥) 𝑑𝑥 = ∫
cell 𝜏

[∇𝑥 ⋅ (𝑏𝜇(𝑥)∇𝑥𝑏𝜈(𝑥)) − (∇𝑥𝑏𝜇(𝑥)) ⋅ (∇𝑥𝑏𝜈(𝑥))] 𝑑𝑥

= ∮𝜕(cell 𝜏 ) 𝑏𝜇(𝑥)∇𝑥𝑏𝜈(𝑥) 𝑑𝑥 − ∫
cell 𝜏

∇𝑥𝑏𝜇(𝑥) ⋅ ∇𝑥𝑏𝜈(𝑥)𝑑𝑥. (4.12)

With the streaming term decomposed, we may nowmake a simplification; since we are only

concerned with 𝜇 ∈ I𝑖, and the basis functions associated with this space are zero on the

boundary, we can eliminate the surface terms entirely. The expression then simplifies to:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = 𝐷𝜏 ∫
cell 𝜏

∇𝑥𝑏𝜇(𝑥) ⋅ ∇𝑥𝑏𝜈(𝑥)𝑑𝑥 + Σ𝜏𝑟 ∫
cell 𝜏

𝑏𝜇(𝑥)𝑏𝜈(𝑥) 𝑑𝑥. (4.13)

From here we convert the derivatives in global coordinates and function evaluations to the

local ones. This is particularly important because a normal derivative in global coordinates

does not translate to a normal derivative in local coordinates. In general, off-diagonal terms

in the inverse Jacobian will create a derivative in local coordinates with components in both

the normal and tangential directions. It is necessary to insert an operation by this matrix at

each gradient computation as in Equation (4.3)

𝐴𝜏 (I𝑖, I)𝜇𝜈 = 𝐷𝜏 ∫
cell 𝜏

(𝐽−𝑇 (𝑢)∇𝑢𝑏𝜇(𝑢)) ⋅ (𝐽−𝑇 (𝑢)∇𝑢𝑏𝜈(𝑢))|𝐽−1(𝑢)|𝑑𝑢

+ Σ𝜏𝑟 ∫
cell 𝜏

𝑏𝜇(𝑢)𝑏𝜈(𝑢)|𝐽−1(𝑢)|𝑑𝑢, (4.14)

where cell 𝜏 is conventionally the reference cell domain ([−1, 1]2 for 2D, [−1, 1]3 for 3D).

Note also that |𝐽−1(𝑢)| denotes the determinant of the inverse Jacobian matrix.

There are multiple options for evaluating this integral. The simplest and fastest is to

simply use a Gauss-Lobatto quadrature as this basis has been designed for. This quadrature

is only exact for polynomials up to order 2𝑛 −3, where 𝑛 is the number of quadrature points,

61



meaning that this will never yield exact results given the presence of a polynomial of order

2𝑛 as well as the Jacobian.

If more precise results are required, one may also choose to use a more detailed numeric

integration procedure. While this is a large cost owing to the number of Jacobian evaluations

it will require, it does not fundamentally affect the scaling of the method. The effects that

these two choices have on the error will be seen in Chapter 5.

Implementing the quadrature introduces a sum in 𝛾 over the full index space. Let 𝑢𝛾 and

𝜔𝛾 be the quadrature points and weights, respectively; and further, let 𝐽−𝑇𝛾 be the inverse

Jacobian matrix transposed and evaluated at quadrature point 𝛾 . Then, since the basis func-

tions are orthonormal with respect to this quadrature, the diffusion kernel for 𝐴 may be

expressed as:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = ∑
𝛾∈Iall

𝜔𝛾
|𝐽𝛾 |

[𝐷𝜏 (𝐽−𝑇𝛾 ⋅ [∇𝑢𝑏𝜇]𝑢=𝑢𝛾 ) ⋅ (𝐽
−𝑇𝛾 ⋅ [∇𝑢𝑏𝜈]𝑢=𝑢𝛾 ) + Σ𝜏𝑟 𝛿𝜇𝛾 𝛿𝜈𝛾 ] . (4.15)

This diffusion kernel may be simplified via the definition of a “local current” vector 𝜁𝛾𝜇 =
(𝐽−𝑇𝛾 [∇𝑢𝑏𝜇]𝑢=𝑢𝛾 ). This term does not have any physical meaning, but is a convenient quan-

tity, allowing the kernel to be written compactly as:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = ∑
𝛾∈Iall

𝜔𝛾
|𝐽𝛾 |

[𝐷𝜏 (𝜁𝛾𝜇 ⋅ 𝜁𝛾 𝜈) + Σ𝜏𝑟 𝛿𝜇𝛾 𝛿𝜈𝛾] . (4.16)

To complete the kernel definition, we define also the current operator N as:

N 𝜏 (I𝑏 , I)𝜇𝜈 = −𝐷𝜏 (𝑛̂𝜇 ⋅ 𝐽−𝑇𝜇 ⋅ [∇𝑢𝑏𝜈]𝑢=𝑢𝜇) = −𝐷𝜏 (𝑛̂𝜇 ⋅ 𝜁𝜇𝜈) , (4.17)

by extracting from Equation (1.22) the definition of 𝐽0̲.

4.5. 𝑆𝑃3
This process may be repeated for 𝑆𝑃3 with only minor changes. The most significant change

occurs because 𝑆𝑃3 is a PDE over 2 fields (𝜙0 and 𝜙2) rather than just one; which affects the

indexing and flattening of 𝜇, 𝜈, 𝛾 ∈ Iall. For our purpose, we will arrange these so that the

locality of the sets I𝑏 , I𝑖, and I𝑐 are conserved; that is, the field index will be the innermost
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component of the loop, such that the coefficients 𝜙0 and 𝜙2 at a point are always adjacent.

We will reuse the previous definition of the local current, 𝜁 . Furthermore, we adopt the

convention for flux moments that define the scalar flux as 𝜙 = 𝜙0 − 2𝜙2 (preserving the

diffusion-like structure of the underlying PDE). Then, the 𝑆𝑃3 kernel for 𝐴𝜏𝜇𝜈 may be ex-

pressed as the 2 × 2 matrix acting on the 0th and 2nd order moments:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = ∑
𝛾∈Iall

𝜔𝛾
|𝐽𝛾 |

[𝐷
𝜏0(𝜁𝛾𝜇 ⋅ 𝜁𝛾 𝜈) + Σ𝜏𝑟0𝛿𝜇𝛾 𝛿𝜈𝛾 −2Σ𝜏𝑟0𝛿𝜇𝛾 𝛿𝜈𝛾

−2
5Σ𝜏𝑟0𝛿𝜇𝛾 𝛿𝜈𝛾 𝐷𝜏2(𝜁𝛾𝜇 ⋅ 𝜁𝛾 𝜈) + (Σ𝜏𝑟2 + 4

5Σ𝜏𝑟0) 𝛿𝜇𝛾 𝛿𝜈𝛾
] .

(4.18)

As before, the current operator is defined to complete the kernel derivation:

N 𝜏 (I𝑏 , I)𝜇𝜈 = [𝐷
𝜏0 (𝑛̂𝜇 ⋅ 𝜁𝜇𝜈) 0

0 𝐷𝜏2 (𝑛̂𝜇 ⋅ 𝜁𝜇𝜈)
] . (4.19)

4.6. 𝐺𝑆𝑃3
The interface conditions defined in Chao’s series of papers [11, 12, 13, 14] are defined through

the definition of 2 flux-like and 2 current-like conserved quantities. These conserved quan-

tities are reproduced below for convenience, using the same convention as the end of Sec-

tion 1.4.3 where scalar flux 𝜙 = 𝜙0 − 2𝜙2.

𝜙0(𝑥) = 𝜙0(𝑥) − 2𝜙2(𝑥), (4.20a)

𝐽 0(𝑥, 𝑛̂) = − ∇𝑛
3Σ𝑡

𝜙0(𝑥), (4.20b)

𝜙2(𝑥, 𝑛̂) = 𝜙2(𝑥) − 3
2 (∇

2 − ∇2𝑛) ( 2
15Σ2𝑡

𝜙0(𝑥) + 9
35Σ2𝑡

𝜙2(𝑥)) , (4.20c)

𝐽 2(𝑥, 𝑛̂) = −∇𝑛Σ𝑡
[ 215𝜙0(𝑥) +

9
35𝜙2(𝑥)] +

9
14

∇𝑛(∇2 − ∇2𝑛)
Σ3𝑡

[ 215𝜙0(𝑥) +
9
35𝜙2(𝑥)] , (4.20d)

where ∇𝑛 = (𝑛̂ ⋅ ∇). The underbar on the LHS of these equations denotes that the value is

conserved at boundaries.

Naturally, the flux-like quantities have even-ordered derivatives, while the current-like

quantities have odd ones. It is also worth noting that both second-order quantities have
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a directionality in their definition; rendering conservation on the boundary a functional

equality. We will return to this issue in Section 4.7

Under our discretization, preserving the flux-like quantities demands that on boundaries,

we store the ‘underbar’ quantities 𝜙0̲̲ and 𝜙2̲̲. The remaining interior and corner quantities

are stored as the coefficients of a Lagrange basis over the set of points, as in normal 𝑆𝑃3 of

Section 4.5. This means that an operator is necessary to convert the versions of flux that are

stored on boundaries 𝜙̲(I𝑏) and the actual basis coefficients 𝜙(I𝑏).

4.6.1. The Transfer Operator

The transfer operator T is a way to handle this conversion so it can be encoded into the

linear operators that form the HPS kernel. It is a linear map such that

⎡
⎢
⎢
⎣

𝜙𝑏
𝜙𝑖
𝜙𝑐

⎤
⎥
⎥
⎦
= T

⎡⎢⎢
⎣

𝜙𝑏
𝜙𝑖
𝜙𝑐

⎤⎥⎥
⎦
=
⎡⎢⎢
⎣

T (I𝑏; I𝑏) T (I𝑏; I𝑖) T (I𝑏; I𝑐)
0 𝐼 0
0 0 𝐼

⎤⎥⎥
⎦

⎡⎢⎢
⎣

𝜙𝑏
𝜙𝑖
𝜙𝑐

⎤⎥⎥
⎦
, (4.21)

where in practice, a Lagrange basis guarantees this transformation is always full rank and

T (I𝑏; I𝑖) = 0.
The operator itself may be defined element-wise via the flux-like conserved quantities of

Equation (4.20). Equation (4.22a) shows this equation in the same format as N of the HPS

kernels:

T𝜇𝜈 = [ 𝛿𝜇𝜈 −2𝛿𝜇𝜈
− 1
5Σ2𝑡 (∇

2𝑏𝜈 − ∇2𝑛𝑏𝜈)𝑢=𝑢𝜇 𝛿𝜇𝜈 − 27
70Σ2𝑡 (∇

2𝑏𝜈 − ∇2𝑛𝑏𝜈)𝑢=𝑢𝜇
] for 𝜇 ∈ I𝑏 , 𝜈 ∈ Iall,

(4.22a)

T𝜇𝜈 = [𝛿𝜇𝜈 0
0 𝛿𝜇𝜈

] for 𝜇 ∈ I𝑖 ∪ I𝑐 , 𝜈 ∈ Iall.

(4.22b)

To inject this change of basis, the governing equations applied via 𝐴 as well as the current
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expressions must be modified by a similarity transformation:

T 𝐴T −1
⎡
⎢
⎢
⎣

𝜙𝑏
𝜙𝑖
𝜙𝑐

⎤
⎥
⎥
⎦
= T 𝑄 and 𝐽 = NT −1

⎡
⎢
⎢
⎣

𝜙𝑏
𝜙𝑖
𝜙𝑐

⎤
⎥
⎥
⎦
. (4.23)

This has some fairly profound impacts on the HPS algorithm as stated in Algorithm 1. These

impacts arise from 2 sources: Equation (3.4) and Equation (3.8). We reproduce them below

with the added transfer operator:

𝐴𝜏𝑖𝑖𝜙𝐻𝑖 + 𝐴𝜏
𝑖𝑏T −1

𝑏𝑏 𝜙𝐻𝑏 + (𝐴𝑖𝑏T −1
𝑏𝑐 + 𝐴𝜏𝑖𝑐) 𝜙𝐻𝑐 = 0

𝜙𝐻𝑖 = −(𝐴𝜏𝑖𝑖)−1𝐴𝜏
𝑖𝑏T −1

𝑏𝑏 𝜙𝐻𝑏 − (𝐴𝜏𝑖𝑖)−1 (𝐴𝑖𝑏T −1
𝑏𝑐 + 𝐴𝜏𝑖𝑐) 𝜙𝐻𝑐 . (4.24)

Redefine: 𝑆𝜏 = −(𝐴𝜏𝑖𝑖)−1𝐴𝜏
𝑖𝑏T −1

𝑏𝑏 and 𝑅𝜏 = −(𝐴𝜏𝑖𝑖)−1 (𝐴𝑖𝑏T −1
𝑏𝑐 + 𝐴𝜏𝑖𝑐) ; (4.25)

𝜙𝐻𝑖 = 𝑆𝜏𝜙𝐻𝑏 + 𝑅𝜏𝜙𝐻𝑐 . (4.26)

This redefines the operators 𝑆 and 𝑅, but otherwise the algorithm is unchanged. Note that

restrictions of the inverse transfer operator apply after the inverse is computed. Otherwise,

the rectangular T −1
𝑏𝑐 would not be well-defined. Turning to the currents:

N 𝜏T −1𝜙 = N 𝜏
⎡
⎢
⎢
⎣

T −1
𝑏𝑏 𝜙𝐻𝑏 + T −1

𝑏𝑐 𝜙𝐻𝑐
𝜙𝐻𝑖 + 𝜙𝑃𝑖

𝜙𝐻𝑐

⎤
⎥
⎥
⎦
= N 𝜏 ⎡⎢⎢

⎣

T −1
𝑏𝑏
𝑆𝜏
0

⎤⎥⎥
⎦
𝜙𝐻𝑏 +N 𝜏 ⎡⎢⎢

⎣

T −1
𝑏𝑐
𝑅𝜏
𝐼

⎤⎥⎥
⎦
𝜙𝐻𝑐 +N 𝜏 ⎡⎢⎢

⎣

0
(𝐴𝜏𝑖𝑖)−1𝑄𝜏𝑖

0

⎤⎥⎥
⎦
,

(4.27)

and again, proceed to define 𝑇 𝜏 , 𝐺𝜏 , and 𝐻 𝜏 . However, the definitions are slightly modified:

𝑇 𝜏 = N 𝜏 (I𝑏; I𝑏 ∪ I𝑖) [
T −1
𝑏𝑏
𝑆𝜏 ] , 𝐺𝜏 = N 𝜏 ⎡⎢⎢

⎣

T −1
𝑏𝑐
𝑅𝜏
𝐼

⎤⎥⎥
⎦
, 𝐻 𝜏 = N 𝜏 (I𝑏; I𝑖)(𝐴𝜏𝑖𝑖)−1𝑄𝜏𝑖 , (4.28)

which recovers the same relation as in Section 3.2.2:

𝐽 = 𝑇 𝜏𝜙𝐻𝑏 + 𝐺𝜏𝜙𝐻𝑐 + 𝐻 𝜏𝑄𝜏𝑖 . (4.29)
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This redefines 𝑇 and 𝐺, but the actual build and solve stages (Algorithms 1 and 2) are oth-

erwise unchanged. Furthermore, these changes only apply to the leaf nodes; so the actual

impact on the algorithm as a whole is minimal.

With these differential operators defined element-wise, the transfer operator T has a full

definition. This carries through all the operators in Algorithms 1 and 2, completing the

adjustments to the kernel.

4.7. Corner Point Solver

Everything discussed in both this chapter and Chapter 3 has been limited to deriving a solu-

tion on the interior and boundary points of cells, never the corner points. Instead, a corner

point solution has been assumed to be known, and corrective terms (𝐺𝜏 and 𝑅𝜏 ) derived from

that known value.

There is no cleanway to assign these corner points to a cell or face, since there aremultiple

correct ways to do so. Consider a corner on the northeast part of a quadrilateral; this point

could be correctly identified with either the northern or eastern face. Doing so would lead

to a conservation law applied in one direction but not the other, in an arbitrary choice.

The coupling of these corners also poses a problem. Consider Equation (4.18) for 𝜈 ∈ I𝑐 .
Clearly all the delta terms vanish, as the sets I𝑖 and I𝑐 are disjoint. However, in the case

of a diagonal Jacobian matrix (indicating a orthogonal Cartesian mesh), the dot products of

local currents 𝜁 will also vanish. This is also true for the case of N𝜇𝜈 , which means that the

corner points do not couple at all to the bulk problem. However, they must be computed if

a detailed flux reconstruction is desired. The fact they do not couple simply means that the

other flux moments need not be recomputed when these values are obtained.

It is worth mentioning that this problem is by no means unique. While the circumstances

are somewhat different, early multi-D nodal methods also required corner reconstruction

techniques to provide anything more than a node-averaged flux. Slightly more recently,

these types of methods have also been used to compute terms arising from TI in hexagonal

geometries; when 6 elements intersect at a single point.

In the case of 𝐺𝑆𝑃3 or in the case of a non-regular grid, the coupling terms between the

corners and edges do not vanish. Here, the corner points must be resolved in an iteration

with the other flux moments; as changes in each affect the values obtained for the other. For

this iteration, each leaf node defines a corner point flux values per field, per corner of the
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element. Then, an external corner point solver can use the interior and boundary fluxes to

derive source terms for a solve operation on these values, and updated corner points may

be computed. These are used with the corrective operators 𝐺𝜏 and 𝑅𝜏 in the HPS solver,

and the process iterates until convergence. More details on this process will be covered in

Section 4.8.1.

The operator generated in this process does not change from iteration to iteration. It may

be generated once per problem and factored, if desired, to enable rapid corner point solves.

While a scheme for doing this for optimal scaling is not implemented, a factorization using

SuperLU [41] has been found to be sufficient for the problems examined in this dissertation.

The equations for these corner point relations come from trying to best satisfy the existing

continuity relations on the corner points. Consider a corner consisting of an intersection be-

tween 4 elements, depicted in Figure 4.2c. In this case, we define 4 unknowns per field; one

per element. In addition to continuity of scalar flux at the corner point, we have also several

equations arising from the vector equation corresponding to continuity of the net current.

These include continuity of normal currents across boundaries, continuity of parallel cur-

rents along boundaries, and a “balance expression” depicted in Figure 4.2c; all located at the

corner itself. Which of these we choose to generate the equations depends on the problem

at hand; see Sections 4.7.1 and 4.7.2.

(a) Normal Current Equality (b) Parallel Current Equality (c) Current Balance

Figure 4.2: Expressions of Current Continuity

This approach has significant drawbacks; among others, it is a significant computational

cost which carries the risk of destroying the method’s optimal performance. However, it is

important to note that finding a way around this is an open topic of research. While this

method has been chosen for its mathematical and physical rigor, there is in principle nothing

wrong with using an approximate method. The crux of this is that whatever approximate
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method is used, it must remain stable. However, maintaining this stability is a very thorny

problem; and thus far, no approximate method tested has performed adequately for physical

meshes.

4.7.1. 𝑆𝑃3
The conventional interface conditions for 𝑆𝑃3 make these the simplest. At an interface, we

know that the scalar flux and secondmoment are typically treated as continuous. This means

that for both fields, if the elements touching the corner are indexed by cardinal directions,

we may state:

𝜙NW(𝑥𝑐) = 𝜙NE(𝑥𝑐) = 𝜙SE(𝑥𝑐) = 𝜙SW(𝑥𝑐). (4.30)

Naturally, this is only 3 equations. To close the system we pick the current balance equation

depicted in Figure 4.2c, which effectively enforces:

∑
corner 𝑐

− ̂𝑟 𝑐 ⋅ 𝐽 𝑐0(𝑥𝑐) = 0, (4.31)

where the unit vector − ̂𝑟 is the vector directed into the corner point, bisecting the angle

formed by the cell edges.

4.7.2. 𝐺𝑆𝑃3
𝐺𝑆𝑃3 maintains the requirement that scalar flux is continuous, but we can no longer assume

that 𝜙2 will be continuous in general. We have conservation of the underbarred quantity

𝜙2, but as mentioned in Section 4.6 this is a functional equality over angle and not straight-

forward to implement. What we may do instead is assert that the fluxes are equal when

considering the normal direction across cells, as shown in Figure 4.3 for a regular grid.

However, these are not independent in all circumstances. For a regular grid, this only

amounts to three linearly independent conditions. We again must close the system, and so

we choose the current balance equation on the second current for this purpose. So, for the

first moment, we have:

𝜙NW0̲ (𝑥𝑐) = 𝜙NE0̲ (𝑥𝑐) = 𝜙SE0̲ (𝑥𝑐) = 𝜙SW0̲ (𝑥𝑐), (4.32)
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𝜙NW2̲

𝜙SW2̲

𝜙NE2̲

𝜙SE2̲

𝑛̂𝑁
𝑛̂𝐸

𝑛̂𝑆
𝑛̂𝑊

Figure 4.3: Conservation of 𝜙2̲ for 𝐺𝑆𝑃3

∑
corner 𝑐

− ̂𝑟 𝑐 ⋅ 𝐽 𝑐0(𝑥𝑐) = 0. (4.33)

And for the second moment:

𝜙NE
2 (𝑥𝑐 , 𝑛̂𝑊 ) = 𝜙NW

2 (𝑥𝑐 , 𝑛̂𝐸), (4.34a)

𝜙SE2 (𝑥𝑐 , 𝑛̂𝑊 ) = 𝜙SW2 (𝑥𝑐 , 𝑛̂𝐸), (4.34b)

𝜙NW
2 (𝑥𝑐 , 𝑛̂𝑆) = 𝜙SW2 (𝑥𝑐 , 𝑛̂𝑁 ), (4.34c)

𝜙NE
2 (𝑥𝑐 , 𝑛̂𝑆) = 𝜙SE2 (𝑥𝑐 , 𝑛̂𝑁 ), (4.34d)

∑
corner 𝑐

− ̂𝑟 𝑐 ⋅ 𝐽 𝑐2(𝑥𝑐 , − ̂𝑟 𝑐) = 0. (4.35)

These second moment equations are an over-specified system, and must be reduced to 4

conditions. This is done by reducing Equation (4.34) to 3 equations; but the manner in which

this is done is somewhat arbitrary. While one may simply be omitted, this has the potential

to introduce an asymmetric error term relative to the same problem solved with the simpler

𝑆𝑃3 or diffusion conditions. It is suggested instead to reduce these conservation equations

to 3 by averaging two equations (one 𝑥-directed, one 𝑦-directed) together.
The choice of RHS for Equation (4.35) is a pragmatic one. As mentioned previously, this

corner point solver must be embedded in an iteration with HPS; which is formally described

in Section 4.8. This causes no small number of difficulties in regard to stability of the overall

solver. While 𝐽 2 is not a physical quantity (and thus there is no reason to necessarily expect it

to have zero inflow at the corners), the actual value of this is somewhat of an open question.

Likewise, the question of what effects forcing it to zero might have is also somewhat of an
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open question. It is thought that this will make the solution of the equation more “𝑆𝑃3-like”;
a theory supported by the conclusions of Chapter 6.

4.8. Total Algorithm

4.8.1. Fixed-Source Solver

HPS may be embedded into a group-sweeping and corner point iteration to form a fixed-

source solver, shown in Algorithm 3. The fixed-source solver is useful for problems contain-

ing a known inhomogeneous source, or for analyses like Method of Manufactured Solutions.

After initialization, the decomposition is computed for each energy group. This decomposi-

tion will never need to be recomputed for the same problem, unless the diffusion, scattering,

or removal cross-sections change. The group sweeping iteration then begins, proceeding

until convergence of every Φℎ𝑝𝑠𝑔 and Φ𝑐𝑟𝑛𝑔 ; which are the fluxes resolved by the HPS and cor-

ner point solvers, respectively. Any metric may be used to determine convergence; here the

maximum absolute difference is used with a fixed tolerance.

Within the group sweeping iteration, the scattering source is updated continuously; so as

one sweeps down the groups, the source is updated each time. The source is only necessary

on the interior points; meaning that the corner points need not be used to compute it. The

algorithm shows the iteration proceeding for all groups for simplicity, but once each group

has been solved for at least once, only groups involved in up-scattering must be revisited.

After the scattering source is computed, the iteration between the HPS and corner point

solver begins. The same convergence metric as before is used to determine convergence of

Φ.
When the convergence criteria are satisfied, the group-wise flux is stored in Φℎ𝑝𝑠 and Φ𝑐𝑟𝑛.

4.8.2. Eigenvalue Solver

The fixed-source solver as defined may then itself be embedded into a larger eigenvalue

iteration. The scheme presented here is a straightforward power iteration scheme, with no

acceleration technique. Simple accelerations like a Wielandt shift are possible, but omitted

for simplicity. As before, the decompositions are first computed on all energy groups, and

will never need to be recomputed unless the PDE coefficients change.
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Algorithm 3 Fixed-Source Solver Procedure

Given a vector of inhomogeneous sources 𝑄𝑔
Φℎ𝑝𝑠𝑔 , Φ𝑐𝑟𝑛𝑔 ← 1⃗ ∀1 ≤ 𝑔 ≤ 𝐺
for g=1,G do

Compute the HPS Decomposition for group 𝑔
end for
while Φℎ𝑝𝑠𝑔 and Φ𝑐𝑟𝑛𝑔 are not converged ∀𝑔 do

for g=1,G do
Compute 𝑄scat𝑔 = ∑𝑔′≠𝑔 Σ𝑠,𝑔←𝑔′Φℎ𝑝𝑠𝑔 ▷ Scattering Source

while Φℎ𝑝𝑠𝑔 and Φ𝑐𝑟𝑛𝑔 are not converged do

Update Φℎ𝑝𝑠𝑔 using 𝑄𝑔 + 𝑄scat𝑔 and Φ𝑐𝑟𝑛𝑔 via HPS procedure

Update Φ𝑐𝑟𝑛𝑔 using Φℎ𝑝𝑠𝑔 via corner point solver
end while

end for
end while
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The power iterations then begin with a computation of the initial fission source (assuming

a flat flux). It only needs to be computed on the interior of the problem; hence the corner

points are not used in its computation. With the fission source accounted for, the group

sweeping iteration begins, computing and updating the scattering source as in Section 4.8.1.

This part of the iteration is fundamentally equivalent to Algorithm 3, including the corner

point iterations.

When this fixed-source solver completes, the estimate for the eigenvalue and critical flux

are updated by computing the norm of the total flux. Critical flux is then normalized. For this

to properly work, the HPS and corner solutions must be recombined or concatenated; shown

here using the ⊕ symbol. The type of norm used for this purpose is unimportant, so long as

it is a true norm and is used both to compute 𝑘 and normalize the flux. The implementation

presented in this dissertation computes total power from Φℎ𝑝𝑠 and Φ𝑐𝑟𝑛, and uses this as a

normalization factor.
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Algorithm 4 Eigenvalue Solver Procedure

Φℎ𝑝𝑠𝑔 , Φ𝑐𝑟𝑛𝑔 ← 1⃗ ∀1 ≤ 𝑔 ≤ 𝐺
𝑘 ← 1
for g=1,G do

Compute the HPS Decomposition for group 𝑔
end for
while Φℎ𝑝𝑠𝑔 , Φ𝑐𝑟𝑛𝑔 and 𝑘 are not converged ∀𝑔 do

for g=1,G do
Compute 𝑄fiss𝑔 = 𝜒𝑔 ∑𝐺

𝑔′=1 𝜈Σ𝑓 ,𝑔′Φℎ𝑝𝑠
𝑔′ ▷ Fission Source

end for
while Φℎ𝑝𝑠𝑔 and Φ𝑐𝑟𝑛𝑔 are not converged ∀𝑔 do

for g=1,G do
Compute 𝑄scat𝑔 = ∑𝑔′≠𝑔 Σ𝑠,𝑔←𝑔′Φℎ𝑝𝑠𝑔 ▷ Scattering Source

while Φℎ𝑝𝑠𝑔 and Φ𝑐𝑟𝑛𝑔 are not converged do

Update Φℎ𝑝𝑠𝑔 using 𝑄scat𝑔 + 𝑄fiss𝑔 and Φ𝑐𝑟𝑛𝑔 via HPS procedure

Update Φ𝑐𝑟𝑛𝑔 using Φℎ𝑝𝑠𝑔 via corner point solver
end while

end for
end while
𝑘 ← ‖Φℎ𝑝𝑠𝑔 ⊕ Φ𝑐𝑟𝑛𝑔 ‖
Φℎ𝑝𝑠𝑔 , Φ𝑐𝑟𝑛𝑔 ← Φℎ𝑝𝑠𝑔 ,Φ𝑐𝑟𝑛𝑔

‖Φℎ𝑝𝑠𝑔 ⊕Φ𝑐𝑟𝑛𝑔 ‖
end while

73



Chapter 5

The Method of Manufactured Solutions

5.1. MMS for Single-Field Differential Equations

The Method of Manufactured Solutions is a well-studied technique for PDE verification. It

is useful in instances where true analytic solutions to a PDE are difficult to come by. This

makes it a useful tool in multidimensional convergence analyzes where non-trivial solutions

are extremely difficult to construct. The basic idea is quite straightforward, and will be

illustrated here with the diffusion equation.

One starts with the desired final solution ΦMMS. The necessary source term 𝑄MMS is then

computed as

𝐷0∇2ΦMMS(𝑥) + Σ𝑎0ΦMMS(𝑥) = 𝑄MMS(𝑥). (5.1)

The source term is then given to the method under analysis to solve. Order of convergence

is obtained by comparing the error with the known true solution as the grid is refined.

The output of the solver is a vector of basis coefficients corresponding to the evaluation

of the computed solution at the Gauss-Lobatto points within each cell. The 𝐿2 error on the

domain may be computed by evaluating the sum of integrals over the cells D𝑐 :

‖𝜙(𝑥) − ΦMMS(𝑥)‖𝐿2(D) =
√
∑
𝑐
∫
D𝑐

(𝜙(𝑥) − ΦMMS(𝑥))2 𝑑𝑥 (5.2)

≈
√
∑
𝑐
∑
𝑘
𝜔𝑘 (𝜙(𝑢𝑘) − ΦMMS(𝑢𝑘))2 | 𝜕𝑥𝜕𝑢 |. (5.3)
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5.2. MMS for Multi-Field Differential Equations

5.2.1. Construction of Source Terms

The moment that multiple fields are added to a differential equation, the complexity of an

MMS convergence study increases dramatically. This is because while the reduction of fields

into the final solution is known, the partition of the manufactured solution into each field is

not known. That is, ΦMMS is known, and it is known to equal 𝜙0(𝑥) − 2𝜙2(𝑥). However, this

gives zero information about either 𝜙0 or 𝜙2 alone, and so is insufficient to compute source

terms.

To sidestep this issue, one must work with the governing equation of the PDE. Recall

Equation (1.19), taken here for 1 region and 1 group for simplicity.

−𝐷0∇2𝜙0(𝑥) + Σ𝑎0 [𝜙0(𝑥) − 2𝜙2(𝑥)] = 𝑄(𝑥), (5.4a)

−𝐷2∇2𝜙2(𝑥) + [Σ𝑎2 + 4
5Σ𝑎0] 𝜙2(𝑥) =

2
5 [Σ𝑎0𝜙0(𝑥) − 𝑄(𝑥)] . (5.4b)

Manipulating the Equation (5.4a) assuming a known ΦMMS:

𝐷0∇2 [ΦMMS(𝑥) + 2𝜙2(𝑥)] + 2Σ𝑎0𝜙2(𝑥) = Σ𝑎0𝜙0(𝑥) − 𝑄MMS(𝑥), (5.5)

which may be substituted into the RHS of the other equation:

−𝐷2∇2𝜙2(𝑥) + [Σ𝑎2 + 4
5Σ𝑎0] 𝜙2(𝑥) =

2
5 (𝐷0∇2 [ΦMMS(𝑥) + 2𝜙2(𝑥)] + 2Σ𝑎0𝜙2(𝑥))

−𝐷2∇2𝜙2(𝑥) + Σ𝑎2𝜙2(𝑥) =
4𝐷0
5 ∇2ΦMMS(𝑥) + 4

5∇
2Φ2(𝑥)

− (45𝐷0 + 𝐷2) ∇2𝜙2(𝑥) + Σ𝑎2𝜙2(𝑥) =
4𝐷0
5 ∇2ΦMMS(𝑥)

∇2𝜙2(𝑥) −
Σ𝑎2

4
5𝐷0 + 𝐷2

𝜙2(𝑥) =
4𝐷0

4𝐷0 + 5𝐷2
∇2ΦMMS(𝑥). (5.6)

This is technically an improvement, as we have a well-posed PDE for Φ2 alone. However,

it is impossible to analytically solve in general. The upcoming section will focus on a 1D-

extruded flux, such that this PDE reduces to a 1D Ordinary Differential Equation. In Sec-

tion 5.2.3, we will return to the question of a truly 2D non-separable solution.
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5.2.2. Modelling Heterogeneous Problems

While a 1D extruded problem is rather simple, it can be made more interesting by modelling

a heterogeneous problem, withmaterial discontinuity. One potential choice of manufactured

solution in this case is

𝑓quad(𝑧) = {𝐶
− ( 𝑧22𝑎 + 𝑥) −𝑎 < 𝑧 < 0

𝐶+ (− 𝑧2
2𝑎 + 𝑥) 0 < 𝑧 < 𝑎

and
Φ𝑥−quad
mms (𝑥) = 𝑓quad(𝑥)

Φ𝑦−quad
mms (𝑥) = 𝑓quad(𝑦)

. (5.7)

The resulting polynomial source will imply a certain structure of solution. For diffusion,

this implication is trivial; the diffusion solution will, of course, be equal to this piecewise

quadratic. 𝐶+ and 𝐶− may then be found using the interface condition.

For 𝑆𝑃3, this source instead implies a form of:

𝜙±0 (𝑧) = 𝐶0±0 + 𝐶0±1 𝑧 + 𝐶0±2 𝑧2 + 𝐻 0±0 cosh(𝑧/𝐿) + 𝐻 0±1 sinh(𝑧/𝐿), (5.8)

𝜙±2 (𝑧) = 𝐶2±0 + 𝐶2±1 𝑧 + 𝐶2±2 𝑧2 + 𝐻 2±0 cosh(𝑧/𝐿) + 𝐻 2±1 sinh(𝑧/𝐿). (5.9)

where 𝐿 is the diffusion length 𝐿2 = 𝐷/Σ𝑟 for the material of interest. One may create a

homogeneous system of equations with respect to the coefficients 𝐶 and 𝐻 which holds for

solutions obeying boundary conditions, interface conditions of 𝜙0 and 𝜙2, and equality of

terms such that 𝜙0(𝑧)−2𝜙2(𝑧) = 𝑓quad(𝑧). Any choice of coefficients 𝐶 and 𝐻 falling into the

null space of this matrix will give rise to a 1D-extruded solution to the PDE.

5.2.3. Non-Separable Problems

Solving for a truly 2D solution is a much more difficult problem. While some analytic so-

lutions exist, they do so typically by way of simplicity or a symmetry reduction to a 1D

form. If a true 2D solution is desired, the most practical way to go about it is to define a

suitable problem and apply a Fourier method to solve it to arbitrary precision. A problem

is defined with even ΦMMS over [−𝑏, 𝑏]2 and reflective boundary conditions. The relevant

eigenfunctions of ∇2 on this problem are:

𝑏𝑖𝑗(𝑥, 𝑦) = cos(𝜔𝑖𝑥) cos(𝜔𝑗𝑦) with 𝜔𝑘 = 2𝜋𝑘
𝑏 . (5.10)
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If the Laplacian of the manufactured solution also obeys the boundary condition, solving the

PDE is trivial. First defining some constants:

𝐿−2 = Σ𝑎2
4
5𝐷0 + 𝐷2

and 𝐴0 =
4𝐷0

4𝐷0 + 5𝐷2
, (5.11)

the solution may be expanded as:

ΦMMS(𝑥, 𝑦) =
𝑁
∑
𝑖,𝑗=1

𝐶𝑖𝑗𝑏𝑖𝑗(𝑥, 𝑦). (5.12)

This allows the coefficients to be computed:

−(𝜔2𝑖 + 𝜔2𝑗 )𝐶𝑖𝑗 −
𝐶𝑖𝑗
𝐿2 = 𝐴0

∬𝑏𝑖𝑗(𝑥)∇2ΦMMS(𝑥) 𝑑𝑥
∬ 𝑏2𝑖𝑗(𝑥) 𝑑𝑥

𝐶𝑖𝑗 = − 𝐴0
𝜔2𝑖 + 𝜔2𝑗 + 𝐿−2

∬𝑏𝑖𝑗(𝑥)∇2ΦMMS(𝑥) 𝑑𝑥
∬ 𝑏2𝑖𝑗(𝑥) 𝑑𝑥

. (5.13)

While it requires many integral evaluations, this allows the true solution to be computed

to an arbitrary level of precision. With enough terms, this approach allows us to study

multidimensional spatial convergence accurately. Themanufactured sourcemay be obtained

by plugging in the now-known forms of ΦMMS and 𝜙2 into Equation (5.4a):

𝑄MMS(𝑥) = −𝐷0∇2 [ΦMMS(𝑥) −∑
𝑖,𝑗

𝐶𝑖𝑗𝑏𝑖𝑗(𝑥)] + Σ𝑟0ΦMMS(𝑥). (5.14)

5.3. Numerical Results

5.3.1. Heterogeneous MMS

As mentioned in Section 5.2.2, the solution space for heterogeneous solutions is limited to

1D extrusions. However, while the solution itself may be limited to 1D extrusions, we are

free to perturb the mesh in order to make this case decidedly non-trivial. We consider 7-

group 𝑆𝑃3 and 𝐺𝑆𝑃3 based on cross-sections obtained from the C5G7 benchmark [39]. The

geometry under study has fuel in the positive 𝑥 half-plane, and moderator in the negative 𝑥
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half-plane.

The vertices of the mesh describing this problem are perturbed by a parameter propor-

tional to the grid size to simulate how convergence might behave on an unstructured grid.

This pseudo-random factor 𝛿 satisfies −𝜎ℎ ≤ 𝛿 ≤ 𝜎ℎ, where ℎ is the length of a side of the

unperturbed element. To guarantee convexity, we must have 0 ≤ 𝜎 < 1
4 . An example of

this perturbation on an 8 × 8 grid is depicted in Figure 5.1. Note that for this case, the per-

turbation normal to the material interface has been zeroed out. This is done to maintain a

deterministic boundary and fuel volume. Interfaces in both the 𝑥 and 𝑦 directions are used

to demonstrate symmetry.

(a) 𝜎=0.0 (b) 𝜎=0.25

Figure 5.1: Structured Grid Perturbation

For the manufactured solution itself, we choose Equation (5.7) in both the 𝑥 and 𝑦 direc-

tions. The kernel evaluation is carried out using Gauss-Lobatto integration as described in

Chapter 4. For diffusion, this results in a matrix 𝐴 defined as:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = ∑
𝛾∈Iall

𝜔𝛾
|𝐽𝛾 |

[𝐷𝜏 (𝜁𝛾𝜇 ⋅ 𝜁𝛾 𝜈) + Σ𝜏𝑟 𝛿𝜇𝛾 𝛿𝜈𝛾] , 𝜁𝛾𝜇 = (𝐽−𝑇𝛾 [∇𝑢𝑏𝜇]𝑢=𝑢𝛾 ). (5.15)

For 𝑆𝑃3/𝐺𝑆𝑃3, both use the following prescription for 𝐴:

𝐴𝜏 (I𝑖, I)𝜇𝜈 = ∑
𝛾∈Iall

𝜔𝛾
|𝐽𝛾 |

[𝐷
𝜏0(𝜁𝛾𝜇 ⋅ 𝜁𝛾 𝜈) + Σ𝜏𝑟0𝛿𝜇𝛾 𝛿𝜈𝛾 −2Σ𝜏𝑟0𝛿𝜇𝛾 𝛿𝜈𝛾

−2
5Σ𝜏𝑟0𝛿𝜇𝛾 𝛿𝜈𝛾 𝐷𝜏2(𝜁𝛾𝜇 ⋅ 𝜁𝛾 𝜈) + (Σ𝜏𝑟2 + 4

5Σ𝜏𝑟0) 𝛿𝜇𝛾 𝛿𝜈𝛾
] .

(5.16)

These two sets of equations are distinguished by their respective formulations of the operator

N ; for more details, see Section 4.6.

Results are shown in Figure 5.3, which may at first glance seem rather confusing. Here,
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(a) 𝜙0 (b) 𝜙2 (c) 𝜙

Figure 5.2: MMS Quadratic Function

diffusion is computing the correct solution exactly at every grid spacing; while 𝑆𝑃3 and 𝐺𝑆𝑃3
have a much larger error, converging at 4th order. Diffusion is able to capture the exact

solution because the quadratic manufactured solution falls perfectly within the span of the

basis. The same cannot be said for 𝑆𝑃3 and 𝐺𝑆𝑃3, which, as shown in Equation (5.8), have

hyperbolic trigonometric terms. These terms vanish when the two moments are combined

into a scalar flux; but they still incur a discretization error, which manifests as convergence

despite the scalar flux falling in the span of the bases separately.

Aside from falling one order short fromwhat is expected from the Bramble-Hilbert lemma

(Equation (2.35)), the convergence is otherwise very well-behaved. For the 𝑥 and 𝑦 directed

fluxes, the errors are entirely indistinguishable, as their plots completely overlap. This is

expected, but shows that the solver is preserving rotational symmetry. Additionally, the

convergences depend very little on the parameter of mesh perturbation 𝜎 .
To remedy the shortfall in convergence, the kernel may be adjusted to use a more inten-

sive numerical integration scheme to compute the integrals of Equation (4.14) and the 𝑆𝑃3
analogue. For our purposes, we pass this task off to QUADPACK [53]. These integration

schemes are able to recover detail that the approximate one does not; primarily because

they will evaluate the Jacobian (and basis functions) many more times and at many different

points than the standard Gauss-Lobatto scheme. Naturally, this detailed integration scheme

is much more costly. However, it does not impact the scaling of the method; since it is scales

linearly with the number of leaf nodes. In either case, when the more advanced scheme is

used, the maximum convergence rate of fifth order is obtained, shown in Figure 5.4.
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Figure 5.3: Quadratic MMS Results with Gauss-Lobatto Integration
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Figure 5.4: Quadratic MMS Results with QUADPACK Integration
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5.3.2. Non-separable MMS

In the non-separable case we consider a homogeneous medium containing a fuel material.

Within this material, we force a “Quadratic Cosine” solution:

Φcosq
MMS(𝑥) = cos ([(𝑥𝑎 )

2
− 1] [(𝑦𝑎 )

2
− 1]) , (5.17)

defined over the same domain as the quadratic one, 𝑥 ∈ [−𝑏, 𝑏]2. This rather convoluted

function was chosen because both it and its second derivative satisfy a reflective boundary

condition. 2D Fourier moments 𝐶𝑖𝑗 (see Equation (5.13)) were taken for all 𝑖 + 𝑗 < 128, where

the largest magnitude moment was less than 1.5 × 10−9.
The same mesh perturbations shown in Figure 5.1 are used, as is the Gauss-Lobatto inte-

gration scheme.

(a) 𝜙0 (b) 𝜙2 (c) 𝜙

Figure 5.5: MMS Quadratic Cosine Function

As before, Figure 5.7 achieves only 4th order convergence. Using QUADPACK to perform

a numeric integration in the kernel, as in the previous case, recovers the full expected order

of convergence. The results are plotted on Figures 5.6 and 5.7. In general, they mirror all the

important properties of the extruded case; with the caveat that diffusion is now converging,

as the solution is no longer as simple.
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Figure 5.6: Quadratic Cosine MMS Results with Gauss-Lobatto Integration
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Figure 5.7: Quadratic Cosine MMS Results with QUADPACK Integration

5.3.3. Conclusions

These results are highly encouraging and demonstrate the proper functioning of the solver

implementation. While the 1D extruded, non-perturbed 𝐺𝑆𝑃3 cases reduce to 𝑆𝑃3, the other

cases do not do so in general; as the tangential derivative terms of Equation (1.27) are non-

trivial in every other case. Additionally, these results show that the HPS solver is capable of

recovering the full order of convergence expected from a polynomial expansion method via

the Bramble-Hilbert lemma Equation (2.35). While the simpler and faster numerical integra-

tion is expected to be sufficient for most cases, it would be concerning if the limit could not

be recovered.
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This shows we have successfully completed the first part of our overall goal. The study

outlined here demonstrates quite conclusively that we have a working high-order, multidi-

mensional discretization of the 𝑆𝑃3 and 𝐺𝑆𝑃3. Furthermore, this is solved via our targeted

fast method, HPS; though the existing implementation is suboptimal. This method enforces

continuity relations in a strong manner, and has been analyzed with a novel MMS technique

for multi-field equations not previously observed in the literature. On top of all of these

achievements, the degradation in performance for working on deformed grids is incredibly

slight; which indicates that this approach could readily extend to an unstructured mesh.
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Chapter 6

Numerical Results

6.1. Testing Methodology

6.1.1. Benchmark Specification

All tests in this section are derived from the C5G7–2D benchmark [39], a widely available test

frequently used to examine many types of neutronics solvers. The discretizations analyzed

range from the simplified spherical harmonic approximations discussed here, to 𝑆𝑁 , Method

of Characteristics, and even Monte Carlo codes. C5G7 specifies a 7-group neutron structure

with energy boundaries shown in Table 6.1

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7
Upper [eV] 2.0E+07 1.0E+06 5.0E+05 1.0E+03 1.0E+02 10 0.0635
Lower [eV] 1.0E+06 5.0E+05 1.0E+03 1.0E+02 10 0.0636

Table 6.1: C5G7 Energy Bounds

The geometry of the benchmark is quite simple. Pin cells exist on a lattice of 1.26 cm. All

cells are either reflector cells (empty) or contain one of a fuel, control, or instrumentation

rod. Regardless of type, all are assumed to have the same radius of 0.54 cm and are fully

homogeneous. Fuel rods vary and include Mixed-Oxide (MOX) fuel of varying plutonium

fraction; all at 3.3% enrichment.
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6.1.2. Problem Mesh

Sub-pin meshes are utilized in this analysis. These are constructed using an area-preserving

quadrilateral mesh. This mesh remains structured, though it will obviously be deformed to

accommodate the cylindrical pins. Several refinement levels are considered, constructed via

repeated bisection of mesh cells.

Figure 6.1: Pincell Mesh at Various Refinement Levels.

One may expect this highly-refined mesh at the boundary of the fuel element to pose

problems for numerical methods. However, they aid greatly in resolving the sharp flux gra-

dient at the boundary, and attempts to prune these elements have detrimental effects on the

spatial convergence.

However, this mesh is used only for the diffusion and 𝑆𝑃3 results. While many attempts

were made to incorporate 𝐺𝑆𝑃3 results, stability issues have prevented the acquisition of

consistent eigenvalues and critical fluxes. These difficulties arise from the three-way combi-

nation of high-ordered derivatives in the interface condition, high flux gradients, and corner

point iteration. Regretfully, a suitable stabilization scheme has yet to be found. However,

𝐺𝑆𝑃3 does perform adequately on pin-homogenized lattices; a topic discussed in Section 6.4.

6.1.3. Quantities of Interest

Results are compared via the computed eigenvalue of the system and relative pin powers,

when available. In the case of the HPS solver, these quantities are found via an unsophisti-

cated power iteration scheme with no acceleration; discussed in Section 4.8.2. The perfor-

mance of this can be improved via Wielandt shift or other algorithms; but these are beyond

the scope of this work.
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Spatial convergence is analyzed as a function of the grid refinement; depicted in Figure 6.1.

The reference criticalities and pin powers is a highly-converged MOC solution obtained us-

ing the deterministic code MPACT [31].

6.2. Fuel Pin Tests

Before moving into multi-pin cases, a fuel pin test is performed and compared to the MOC

reference. These utilize the UO2 fuel material at 3.3% enrichment and moderator cross-

sections, with reflective boundary conditions. A qualitative plot depicting the computed

shape of the critical power is given in Figure 6.2

Figure 6.2: Critical Flux for UO2 Fuel Pin

Subdivisions per
Side of Pin Cell 4 8 16 32 Reference

Diffusion 1.32583 1.32577 1.32576 1.32575 1.32586
Δ𝑘eff [pcm] -3 -9 -10 -11

𝑆𝑃3 1.32370 1.32362 1.32358 1.32357 1.32586
Δ𝑘eff [pcm] -216 -224 -228 -229

Table 6.2: Criticality Results for Single UO2 Fuel Pin

In this instance, diffusion produces startlingly accurate results in the eigenvalue. While

for this case in isolation, it seems like a very good result, there is reason to be cautious. The

88



eigenvalue alone is not a particularly robust indicator of the solution quality, and it is possible

to arrive at a good figure for criticality with a poor flux shape. We will see in Section 6.3 that

there is more to look at here than just the eigenvalue.

The 𝑆𝑃3 eigenvalue results, by comparison are notably worse. This is not altogether un-

characteristic behavior for 𝑆𝑃3 as applied to a sub-pin mesh [42]. While 𝑆𝑃3 is “more correct”

than diffusion in this regime, as more variables in angle are used; this does not resolve the

issue of the underlying approximation obeying the same limitations. These methods in gen-

eral are known to be inaccurate within a fewmean free paths of any material discontinuities;

and excessive spatial refinements can interact with this inaccuracy to degrade the quality of

solutions further.

However, even here the increase in error is relatively slight. A 230 pcm error off of anMOC

method is still relatively accurate when discussing methods based on spherical harmonic

expansions.

6.3. Mini Lattice Tests

Three small lattices are studied for comparison with the MOC reference.

These are a 3 × 3 fuel lattice, 3 × 3 fuel with 8.7% plutonium fraction MOX center, and a

3 × 3 with control rod center. The 3 × 3 fuel lattice is naturally identical to the nominal fuel

radius of the previous section, since they are both infinitely repeated. Identical results are

expected and obtained.

The control rod case is expected to break down somewhat for any of the spherical har-

monic transport simplifications, owing to the strong directionality of the flux near the ab-

sorber.

6.3.1. Fuel Lattice

The 3 × 3 fuel lattice is an unremarkable simulation compared to the 1 × 1 fuel pin. The flux

shape (Figure 6.3) and convergence results (Table 6.3) are identical to the 1D counterpart,

which is a strict requirement of a valid discretization scheme. Given that this is a quasi-

direct method, the eigenvalue being exactly equal is expected.

One property of note is that as in the single-pin case, the eigenvalues converge quite

quickly with spatial refinement in this scheme. The difference from coarse to fine is under
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Figure 6.3: Critical Flux for UO2 Lattice

Subdivisions per
Side of Pin Cell 4 8 16 32 Reference

Diffusion 1.32583 1.32577 1.32576 1.32575 1.32586
Δ𝑘eff [pcm] -3 -9 -10 -11

𝑆𝑃3 1.32370 1.32362 1.32358 1.32357 1.32586
Δ𝑘eff [pcm] -216 -224 -228 -229

Table 6.3: Criticality Results for UO2 Fuel Lattice

20 pcm for both the Diffusion and 𝑆𝑃3 equations.

6.3.2. MOX Lattice

We examine next the critical flux shape for the UO2-MOX lattice, depicted in Figure 6.4. The

form of the solution includes all the normal features expected with this geometry. In partic-

ular, a sharp peak in fast neutron flux localized around the MOX fuel pin, and corresponding

depression in the thermal flux. The physical cause of this is the MOX pin’s comparatively

high fission cross-section at thermal energies. The difference in eigenvalue results between

diffusion and 𝑆𝑃3 is less stark here; but still significant. Again, the 𝑆𝑃3 eigenvalue appears

to indicate worse results.

However, as mentioned previously, this eigenvalue alone is not enough to assess solution

quality. If the relative pin powers are compared with the reference solution, a percentage
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Figure 6.4: Critical Flux for MOX Pin Surrounded by UO2

Subdivisions per
side of Pin Cell 4 8 16 32 Reference

Diffusion 1.29616 1.29611 1.29610 1.29609 1.29949
Δ𝑘eff [pcm] -333 -338 -339 -340

𝑆𝑃3 1.29526 1.29519 1.29517 1.29516 1.29949
Δ𝑘eff [pcm] -423 -430 -432 -433

Table 6.4: Criticality Results for UO2-MOX Lattice

error may be obtained. Figures 6.5a and 6.5b show the errors in pin power relative to MPACT

for 2 and 32 subdivisions per side of a pincell, respectively. As in the eigenvalues, conver-

gence is slight, and very slightly worsens relative to the reference. Errors in the central

pin are quite large, nearing 7%. The 𝑆𝑃3 solutions for these same numbers of subdivisions,

depicted in Figures 6.5c and 6.5d, are greatly improved, resolving the power of the central

pin to less than 2% with a similar improvement in the surrounding pins. This fact is a very

strong indicator that the diffusion eigenvalue looks as good as it does due to a beneficial

cancellation of errors; and not because it is actually obtaining a better solution.
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(a) Diffusion 2 × 2 Subdivisions (b) Diffusion 32 × 32 Subdivisions

(c) 𝑆𝑃3 2 × 2 Subdivisions (d) 𝑆𝑃3 32 × 32 Subdivisions

Figure 6.5: MOX Mini-Lattice Pin Powers
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6.3.3. Control Rod Lattice

Figure 6.6: Critical Flux for Control Rod Surrounded by Fuel

Moving on to the critical flux shape of the UO2-Control lattice (Figure 6.6), we again see

the expected qualitative features. A deep dip in the flux for the lower energy groups is readily

apparent at the central lattice point; along with a peaking of fluxes at the corner lattice sites.

The eigenvalue results for this case, shown in Table 6.5, are quite poor; which is somewhat

expected due to the tendency of the simplified spherical harmonics methods to break down

near strong absorbers. The higher-order 𝑆𝑃3 method is generally better able to cope with

these scenarios, which is likelywhy the 𝑆𝑃3 eigenvalue is at last more accurate than diffusion.

Subdivisions per
Side of Pin Cell 4 8 16 32 Reference

Diffusion 0.84855 0.84863 0.84868 0.84870 0.89505
Δ𝑘eff [pcm] -4650 -4642 -4637 -4635

𝑆𝑃3 0.87541 0.87550 0.87554 0.87556 0.89505
Δ𝑘eff [pcm] -1964 -1955 -1951 -1949

Table 6.5: Criticality Results for UO2-Control Rod Lattice

Examining the relative pin powers shows that the available errors are quite small. This

strongly suggests that the majority of the error in the flux shape for both methods occurs in
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the central absorber; which is unsurprising, as this is where the directional peaking of the

angular flux will be the largest.

(a) Diffusion 2 × 2 Subdivisions (b) Diffusion 32 × 32 Subdivisions

(c) 𝑆𝑃3 2 × 2 Subdivisions (d) 𝑆𝑃3 32 × 32 Subdivisions

Figure 6.7: Control Rod Mini-Lattice Pin Powers
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6.4. Pin-Homogenized Lattice Tests

The 𝐺𝑆𝑃3 method has at the time of this writing one primary implementation known as the

Generalized Transverse Integration Nodal (GTIN) method. This method has been bench-

marked by Chao et al. in a paper covering several different geometries [14]. One of these

geometries (Problem 2) is a pin-homogenized lattice with Gadolinium integral fuel burnable

absorber pins, in a 17 × 17 lattice depicted in Figure 6.8. Cross-section data for this 2-group

problem is available in the original study [14].

Figure 6.8: Full Homogenized Lattice Test Case

This case specifically is chosen due to the large differences observed by Chao et al. be-

tween the diffusion, 𝑆𝑃3, and 𝐺𝑆𝑃3 method implemented in GTIN, termed 𝐺𝑆𝑃 (0)3 by Chao.

The superscript in this notation denotes a treatment of anisotropic scattering; and is identi-

cal to the implementation of 𝐺𝑆𝑃3 as described in this dissertation. This pin-homogenized

assembly uses a regular mesh, with 1, 2, 4, or 8 subdivisions. It should be noted that the

homogenized material does not change as the mesh is refined; meaning the results are not

representative of the underlying geometry. They are presented in order to analyze the spatial

convergence of this HPS method. Criticality values and the MOC reference [14] are shown

in Table 6.6.

The results corresponding to 1 region per pincell agree very well with the analysis of

GTIN. There are minor improvements in accuracy which may be related to eliminating the

transverse leakage approximation. However, as this grid is refined, the𝐺𝑆𝑃3 solution appears
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Subdivisions per
Side of Pin Cell 1 2 4 8 Reference

Diffusion 1.17835 1.17767 1.17756 1.17755 1.18874
Δ𝑘eff [pcm] -1039 -1107 -1118 -1119

𝑆𝑃3 1.18775 1.18663 1.18639 1.18637 1.18874
Δ𝑘eff [pcm] -99 -211 -235 -237

𝐺𝑆𝑃3 1.18899 1.18717 1.18658 1.18642 1.18874
Δ𝑘eff [pcm] 25 -157 -216 -232

Table 6.6: Criticality Results for Homogenized Gad. Lattice

to converge to the same value as 𝑆𝑃3. The reason for this is currently unknown, but could

be related to the current method of handling the corner point balance; as the effects of this

would increase as spatial resolution increases.

Pin power comparison results for this case are presented below (reference data obtained

fromChao et al.) Tabulated in Table 6.7 are themaximumpin power errors between theMOC

reference and each method, given in %. These are given for the same spatial refinements as

in Table 6.6; 1, 2, 4, and 8 subdivisions per side of a pincell. Here the story for maximum pin

1 2 4 8
Diffusion 3.322 3.339 3.349 3.350
𝑆𝑃3 0.917 0.912 0.930 0.932
𝐺𝑆𝑃3 0.682 0.790 0.888 0.920

Table 6.7: Pin Power Maximum Percentage Error

power error is much the same as for the criticalities. 𝐺𝑆𝑃3 initially provides a much better

error than 𝑆𝑃3, which quickly decays as the mesh is refined; both of which give significantly

improved errors relative to diffusion. To reiterate, while the precise cause is undetermined, it

is believed that this is due to effects from the corner point solver becoming more prominent

on high-resolution meshes.

6.5. Conclusions

These mesh refinement studies of the high-order discretization and solver demonstrate a

clear and rapid convergence of both the eigenvalue and critical flux to a specific solution.

While the results of this convergence are not fully consistent with the MOC reference, the
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manner in which the discrepancy behaves is consistent with the behavior of the simplified

spherical harmonics approximations. That is, the error is maximized when the angular flux

becomes very sharply peaked. So while the magnitudes of these errors are sometimes at the

limits of what could be considered an acceptable solution, this still demonstrates a success

in the solver’s ability to converge to the solution of a complex 2D PDE.

While the 𝐺𝑆𝑃3 implementation could not converge on this sharply varying flux using

the pin-resolved mesh, it was analyzed on a pin-homogenized assembly case with reflective

boundary conditions. This analysis showed the same rapid convergence as the previous case;

but rather than an anomalously accurate diffusion solution, there was a clear progression in

accuracy in the eigenvalue from diffusion to 𝑆𝑃3 to 𝐺𝑆𝑃3. As the mesh is refined, however,

the 𝐺𝑆𝑃3 eigenvalue solution approaches the same value as 𝑆𝑃3. Pin powers, as studied using

the maximum percentage difference from the reference, followed an identical trend. This is

believed to highlight the need for a more rigorous corner point treatment.

97



Chapter 7

High Performance HPS

While the original aim of this dissertation was to achieve a highly performant implemen-

tation, this goal turned out to be too lofty. In lieu of this, we provide a description of the

qualitative aspects of several performance critical steps in the algorithm. These topics form

the basis of future extensions to this work; should the opportunity arise.

Supplementing this discussion, an approximate performance analysis is reproducedwithin

this section to estimate expected performance gains. This includes a complexity study as a

modified reproduction of the work of Hao and Martinsson [27], as well as an original study

of the compressibility of the operators relating specifically to the diffusion and 𝑆𝑃3/𝐺𝑆𝑃3
systems of equations.

7.1. Operator Computation and Storage

7.1.1. Differential Operators

Among themost time-consuming parts of this research code implementation are the routines

which compute the differential operators to be used in the definitions of N . This is espe-

cially pronounced in 𝐺𝑆𝑃𝑁 , which needs a full set of linear operators discussed at length in

Section 4.6 and Appendix B. The most difficult to construct are any of those operators which

involve 𝑛̂. These must be precomputed for a set of normal vectors corresponding to normal,

tangent, or corner-directed unit vectors.

For expediency, these operators may be generated as a pair of tensors; one of rank-𝑘 and

one of rank-(𝑘 + 2), where 𝑘 is the order of the directional derivative being discretized. For
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example, (𝑛̂ ⋅ ∇) can be stored as a list of rank-1 tensors (the unit vectors of interest) and

a rank-3 tensor which is contracted with the desired unit vector when necessary. This is

intuitive for the first-order derivatives, but less so for higher-ordered versions.

For example, the operator (𝑛̂ ⋅ ∇)3𝑓 necessitates a rank-3 and rank-5 tensor, defined as:

[(𝑛̂ ⋅ ∇)3]𝜇𝜈 = 𝜂𝑖𝑗𝑘𝜌𝑖𝑗𝑘𝜇𝜈 𝜂𝑖𝑗𝑘 = 𝑛̂𝑖𝑛̂𝑗 𝑛̂𝑘 𝜌𝑖𝑗𝑘𝜇𝜈 = [(𝔻𝑥3)𝑖𝑗𝑘]𝜇𝜈 , (7.1)

where the square brackets [⋅] denote a discretization of the differential operators to the basis

equations used. This increases the memory footprint, but only in accordance with the num-

ber of leaf nodes being simultaneously processed. Once a leaf node has been processed and

the HPS operators (such as 𝑆 and 𝑇 ) are created, these constructions may be safely deleted.

7.1.2. Leaf Storage

Storage of the leaf-level operators of the interpolative decomposition can be quite expensive,

as alluded to in Section 3.2.2. These operators include 𝑆, 𝑅, 𝐺, and 𝐻 defined in Section 3.2.2;

whose sizes on the leaves (for 𝑆𝑃3 and 𝐺𝑆𝑃3) are reproduced here:

𝑆𝜏 ∶ 18 × 24, 𝑅𝜏 ∶ 18 × 8, 𝐺𝜏 ∶ 24 × 8, 𝐻 𝜏 ∶ 24 × 18. (7.2)

For diffusion, one may halve the sizes in both dimensions. While individually these are very

small operators, a simple implementation will store the 4 operators for each leaf as implied

by Algorithm 1. This amounts to just short of 10kB per group per mesh cell, which can

increase to an exorbitant memory cost for large or highly detailed problems. If thesememory

requirements become too great, the leaf operators may be deleted during factorization and

rebuilt in the solve stage. This adds to the duration of the solve stage, but does not increase

the scaling; since it is only for the leaves that these must be regenerated.

7.2. Mesh Partitioning

The partitioning of themesh has the potential to dramatically affect the runtime of the solver.

For this method, the two most important metrics for determining what constitutes a “good”

mesh partition are

1. The fullness of the tree representing hierarchical domain decomposition.
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2. The “numerical area” of the partitions in this hierarchy.

Maximizing the fullness of the tree may be thought of as a heuristic comprised of minimizing

the tree height, and maximizing the tree balance. Here, the “numerical area” may be thought

of as the number of unknowns (not the physical area) that exist on the partition separating

two subdomains of the problem.

Furthermore, if any sort of parallelism is implemented in the node calculations, such a

structure may also limit the available concurrency. Simple schemes may decompose the

problem at a given height of the mesh partitioning tree into a set of “embarrassingly par-

allel” problems; meaning that lower tree heights better enable parallelism. More advanced

schemes with task queues and dependencies will find that the dependency graph is isomor-

phic to the mesh partitioning tree, and so arrive at the same end result. However, the heights

of the tree may not be reduced arbitrarily without consequences, as doing so runs into the

other limitation: the numerical area of the interfaces.

This numerical area may have a strong impact on performance, for reasons which are

discussed in Section 7.5.1. Essentially, at every merge operation conducted in Algorithm 1,

a matrix must be inverted with a size corresponding to this numerical area. The more un-

knowns there are, the bigger this matrix becomes, and the performance may suffer. The

numerical areas of partitions in a problem depend strongly on the partitioning method used.

Currently, a standalone tool included in the METIS libraries known as mpmetis is used.

This tool very effectively partitions a mesh into distinct subdomains regardless of the under-

lying physical shape; and the process is easily generalized to an unstructured mesh format.

mpmetis is configured to utilize recursive bisection as the partitioning method. This

strikes a good balance between the numerical area connecting partitions and overall tree

balance. The reason a bisection is chosen rather than splitting the region into 4, 8, or more

regions is discussed briefly at the end of Section 3.1.2; but it effectively comes down to the

fact that this increases the numerical area of the partitions greatly. In theory, it also exposes

more parallelism; but more work is needed to determine if allowing this higher degree of

concurrency is worthwhile. Regardless of the underlying partitioning scheme the impacts

of the potentially large interfaces can be mitigated through structured linear algebra. This

aspect of the algorithm is discussed next in Section 7.3.
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7.3. Compressible Linear Algebra

The efficient use of a fast direct method demands that the underlying matrices, representing

compressible operators within the problem, are efficiently stored and utilized. If stored or

used naïvely, this leads to a breakdown of the ‘fast’ nature of the method, requiring huge

amounts of memory and yielding slow performance. This is, in fact, a large reason why

direct methods are unused in most nuclear applications; simple approaches to discretize the

problem yield intractable numerical problems even for relatively simple configurations.

These compressible operators discussed above are not sparse in structure, but they are

sparse in information. Revealing this information sparsity may be done by storing the op-

erator as a rank-structured matrix. One way to do this is by computing the Singular Value

Decomposition (SVD) and truncating all singular values smaller than a specified tolerance;

but this is an extremely expensive and wasteful approach. A more effective way is to use a

partitioned matrix representation that divides up the underlying operator in such a way that

separates the low-rank blocks from the dense ones. It can then store the low-rank blocks

in such a way that the operator does not need to be re-decomposed every time we wish to

work with it.

As a class of matrix representations, these enable the methods discussed in Section 3.2 by

allowing the fast multiplication and inversion techniques which lend HPS its excellent scal-

ing. In this way, the solver can distinguish which information is significant, and therefore

must be computed; and which information is below some tolerance, and can be safely dis-

carded. This is a clear advantage when compared to conventional direct solvers which will

compute all couplings even if they only affect the original solution by an amount smaller

than machine precision.

7.3.1. HODLR Matrices

Hierarchical Off-Diagonal Low-Rank (HODLR)matrices are themost prescribed rank-structured

format in that they are fairly simple and strictly defined. In a HODLR matrix, the matrix 𝐴
is represented as a 2 × 2 block matrix. The off-diagonal blocks are represented by the outer

product of a number 𝑘 ≪ 𝑛/2 singular vectors, where 𝑛 is the matrix size. The on-diagonal

blocks are represented as HODLR matrices themselves; or dense matrices if they are suffi-

ciently small. Typically, 𝑘 is kept constant for all matrices in the recursive structure.

These matrices have been extensively studied [6]; the important characteristics will be
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Figure 7.1: Depiction of HODLR matrix representation.

reproduced here, but the derivations are not included. Such a format will require

Memory = 𝑂 (2𝑘𝑛 log2(𝑛/𝑛𝑝))⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
Off-Diagonal

+ 𝑂 (𝑛 𝑛𝑝)⏟⏟⏟⏟⏟⏟⏟⏟⏟
On-Diagonal

(7.3)

with 𝑛𝑝 is the size of the dense blocks, and 𝑛 is the size of the entire matrix. 𝑘 is the maximum

rank of the off-diagonal blocks, again assumed to be constant. The complexity of matrix-

vector multiplication comes out to

𝑂𝑀𝑉 (𝑛𝑘 log2(𝑛)) (7.4)

While the factorization cost is approximately

𝑂𝐿𝑈 (𝑘3𝑛 log2 𝑛 + 𝑘2𝑛 log22 𝑛) (7.5)

A format like this suffers from complexities on the off-diagonal block when the vectors

which form the submatrix must change. This is most apparent when considering the sum of

two HODLRmatrices. This grows the number of outer product vectors to as much as 2𝑘, and
a scheme must be determined that will reduce this back down to 𝑘. Even for large blocks,

however, the SVD may be a viable way to perform this projection, given the fixed low-rank

nature of the submatrices.

7.3.2. HSS Matrices

Hierarchical Semi-Separable (HSS) Matrices are HODLR matrices that satisfy a special con-

dition known as the “Nestedness Condition.” This relates 𝑈 and 𝑉 of the SVD for the compo-
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nent blocks in such a way that these bases for the parents may be derived from the children

or vice versa. To illustrate such a matrix format, consider a matrix 𝐴 such that at a given

‘level’ ℓ ≥ 1, one has a HODLR matrix:

𝐴(ℓ)
𝑖 = [ 𝐴(ℓ+1)

2𝑖 𝑈 (ℓ+1)
2𝑖 𝑆(ℓ+1)2𝑖 𝑉 ∗(ℓ+1)

2𝑖
𝑈 (ℓ+1)
2𝑖+1 𝑆(ℓ+1)2𝑖+1 𝑉 ∗(ℓ+1)

2𝑖+1 𝐴(ℓ+1)
2𝑖+1

] (7.6)

Note that this level ℓ grows as the submatrices shrink. Qualitatively, the nestedness condition

asserts that the row spaces for each column and the column space for each row are equal.

What this means in practice is that the basis matrix 𝑈 ℓ𝑖 may be computed from the 𝑈 matrices

in the submatrix 𝐴(ℓ+1)
2𝑖 such that:

𝑈 (ℓ)
𝑖 = [𝑈

(ℓ+1)
2𝑖 0
0 𝑈 (ℓ+1)

2𝑖+1
]𝑋 (ℓ)

𝑖 , (7.7)

meaning that the space described by 𝑈 (ℓ+1)
𝑖 may be decomposed into two orthogonal spaces

described by 𝑈 (ℓ+1)
2𝑖 and 𝑈 (ℓ+1)

2𝑖+1 . The same applies to the row spaces 𝑉 and a new matrix 𝑌 .
For a more detailed discussion on nestedness, see [6].

Storing the information required to compute this requires storing two 2𝑘 × 𝑘 matrices 𝑋
and 𝑌 at each level, but eliminates the requirements for storing the singular vectors except at

the root level. The overall storage requirements therefore improve to 𝑂(𝑘𝑛). Matrix-vector

multiplication also improves to 𝑂(𝑘𝑛), which will be discussed in detail shortly. Interestingly,

usage of these data structures bears incredibly strong relationships to the FMM [60]. This

connection is quite deep, and in fact one may think of the use of these operators (HSS and the

H matrices) as implying a form of algebraic FMM. This algebraic nature sidesteps many of

the complexities of a traditional geometric FMM such as interaction lists; which are instead

inferred from the structure of the matrix itself.

To demonstrate this connection and the manner in which it speeds up computation, con-

sider the application of such a matrix 𝐴 to a vector 𝑥 . The vector is first successively pro-

jected into the space where the diagonal product with 𝑆 may be conducted. This necessitates

a product with the matrices 𝑉 ∗(𝑝), where 𝑝 is the largest level ℓ and creates a set of new vec-
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tors 𝑥𝑝𝑖 ∀𝑖:

𝑥𝑝𝑖 = 𝑉 (𝑝),∗
𝑖 𝑥 (I𝑝𝑖 ) , (7.8)

where I𝑝𝑖 is an index space corresponding to the entries of 𝑥 being multiplied by 𝑉 ∗(𝑝)
𝑖 We

follow up by computing the vectors of subsequent levels 1 ≤ ℓ < 𝑝 by:

𝑥ℓ𝑖 = 𝑌 (ℓ),∗𝑖 [𝑥
ℓ+12𝑖

𝑥ℓ+12𝑖+1
] , ∀𝑖 at level ℓ for ℓ = 𝑝 − 1, … , 1. (7.9)

The resulting vectors may be multiplied with the diagonal singular values.

[ 𝑦 ℓ2𝑖
𝑦 ℓ2𝑖+1

] = [ 0 𝑆(ℓ)2𝑖,2𝑖+1
𝑆(ℓ)2𝑖+1,2𝑖 0 ] [ 𝑥ℓ2𝑖

𝑥ℓ2𝑖+1
] ∀𝑖 at level ℓ for ℓ = 1, … , 𝑝 − 1. (7.10)

This solution 𝑦 is then propagated back up to the highest levels where it may be changed

back into the appropriate space via the 𝑈 operators:

[𝑦
ℓ+12𝑖

𝑦 ℓ+12𝑖
] = [𝑦

ℓ+12𝑖
𝑦 ℓ+12𝑖

] + 𝑋 (ℓ)
𝑖 𝑦 ℓ𝑖 ∀𝑖 at level ℓ for ℓ = 1, … , 𝑝 − 1. (7.11)

Finally, the final operations by 𝑈 happen as well as the contributions of the dense blocks:

𝑦 (I𝑝𝑖 ) = 𝑈 (𝑝)
𝑖 𝑦𝑝𝑖 + 𝐴(I(𝑝)𝑖 , I(𝑝)𝑖 ) 𝑥 (I(𝑝)𝑖 ) . (7.12)

This completes the product, stored in 𝑦 . A notable feature of this algorithm for the product

is that each submatrix which forms a part of the HSS matrix 𝐴 is utilized in a matrix product

only once. This means that the complexity of a matrix-vector operation is the same as the

storage complexity, referenced earlier as 𝑂(𝑘𝑛) [6]. This utilization pattern is helpful in that

sophisticated algorithms have a predictable access pattern for the matrices making up the

HSS representation. This means the code is theoretically able to reliably prefetch or evict

these operators, which individually tend to be small, from memory; resembling a form of

blocked matrix multiplication.
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7.3.3. Hierarchical Matrices

The structured matrix formats of Sections 7.3.1 and 7.3.2 are special cases of a generalized

concept known as a Hierarchical or H matrix.

These are thoroughly described by Hackbush et al. in a wide array of published works [23,

24, 25, 26]. For the purposes of this work, it is sufficient to understand that HODLR matrices

generalize to the H class of matrices, while HSS matrices generalize to H2 matrices. The

superscript 2 implies the “doubly-hierarchical” structure of both the matrix structure and

the basis vectors stored in this decomposition. This concept is related to the “Nestedness

Condition” of Section 7.3.2.

The data structures involved in the H2 matrices, and the patterns contained in the algo-

rithms for operations such as the inverse or matrix-vector multiplication, resemble strongly

a form of Algebraic FMM. This is particularly apparent in the description of the matrix-

vector multiplication of Section 7.3.2. “Algebraic” here denotes a kind of algorithm where

information is not encoded based on neighbor lists or geometric relations, but rather in the

strengths of couplings between elements of the matrix; a complete abstraction from local-

ized quantities. In this sense, we are “lumping” basis coefficients together, and computing

only the action of these coefficients when it will yield a result above what will affect the

discretized math. A more complete analysis of the relationship between the data structures

and algebraic FMM can be found in [60].

While some libraries for the handling of hierarchical matrices exist, such as H2lib [9],

HLIBpro [33], and STRUMPACK [56], one that can support this work must be able to support

not only the matrix-vector product and inverse operations, but also a partition operation.

This is necessary to handle the merge operations in the definition of the Poincaré-Steklov

operators. While these capabilities are theoretically part of most libraries implementing

these styles of matrices, the conventions are radically different. In particular, the process by

which these are built in HPS, with smaller matrices embedded into larger ones, is theoreti-

cally a very efficient way to construct these compressible operators. However, it is not how

hierarchical matrices are conventionally defined. For example, HSS matrices are conven-

tionally initialized top-down using a user-supplied cluster tree representing the structure of

the problem. This is not an insurmountable problem, but solving it will likely require custom

build routines. This works best when the underlying library exposes a lot of the underlying

data structures, as H2lib [9] does.
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The libraries implementing these hierarchial matrices are known to provide substantial

benefits in both runtime and memory savings. For a multifrontal solver, HSS matrix libraries

have been demonstrated to provide up to a 7× total speedup, while using as little as 24% of

the memory of the ordinary multifrontal solve [22].

7.4. The Corner Point Balance

Solving the corner point balance, even if properly decomposed, represents a significant cost

which is exterior to the “fast” algorithm presented in Section 3.2. For performance reasons, it

is highly desired to establish an approximate but numerically stable way to derive a working

approximation of these values. The method of resolving the corner points currently exists as

a precise solver designed for maximum consistency and stability; but this is not strictly nec-

essary. The iterative nature of Algorithms 3 and 4 means that only an approximate method

is required; but no matter what approximation is chosen, it must lead to a stable method

upon iteration between HPS and this corner point solver.

Finding such an approximate method is an open problem in resolving this work. The

‘exact’ method as derived in Section 4.7 works for diffusion and 𝑆𝑃3, but struggles for cer-

tain problems in 𝐺𝑆𝑃3. However, this method itself has a few concerns hanging over it as

well; particularly in the conservation of the second angular moments which have a tenuous

physical meaning. And so, this itself is also subject to future research.

One such example of a pattern in which one may work with the corner point balance

approximately is related to past implementations of corner point reconstruction. In some

previous approaches, such as that used in TRIPEN [32], a system would be constructed for

these corner points and solved using the ILU(0)-BiCGStab algorithm. Alternatively, some

iterative spatial sweep over the corners is also possible, and may provide improved perfor-

mance if the sweep can be implemented in parallel and converges quickly.

A working approximate method enables the fast solver to perform as advertised, while

greatly helping the future possibility of an extension into 3D space. The problem of corner

points is significantly exacerbated in 3D as the number of them grows to include points on

the edges of cuboids as well as cuboid vertices. Solving such a system would be challenging

without a reliable approximate method.
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7.5. Complexity Analysis

7.5.1. Operation Count

Naturally the performance of any method should not be taken on faith alone, so here a rudi-

mentary complexity analysis will be reproduced here based on the work of Martinsson [46].

The analysis within this section is a reproduction of the aforementioned paper where minor

changes are made to convert it to a 2D analysis rather than the 3D case as printed.

Assume that we have a 2D mesh which is recursively partitioned into halves until the leaf

nodes are reached. Consider a mesh with 𝑁 total unknowns, on a cube of 𝑛 × 𝑛 points. To

form the hierarchy, the overall mesh is recursively bisected in the 𝑥 and 𝑦 directions in turn

until the leaf nodes (which have a total of 𝑚 unknowns each) are defined. The number of

levels in this hierarchy will be represented by 𝐿 which must be divisible by 2. Each level

𝑙 then contains 2𝑙 regions, if the root (or largest) node is considered to be 𝑙 = 0, and the

problem has 2𝐿 leaf nodes. It becomes important to know the number of unknowns which

exist on the interface in a given level; these couple the nodes together. This value, denoted

𝑚𝑙 , is estimated as 𝑚𝑙 ∼ 2−⌊𝑙/2⌋𝑛.
Both the build and solve stages will be analyzed in this section. First, the build time, which

has 2 separate components; the leaves and the merge operations. The leaves are relatively

simple to estimate. In a worst-case scenario, there is one material per subdomain, which

makes the dominant cost the factorization of 𝐴𝜏𝑖𝑖 for each cell. This cost will be 𝑂(2𝐿𝑚2) ∼
𝑂(𝑁𝑚), which is linear in the number of unknowns. Certain accelerations are possible in the

case of regular mesh cells or duplicate regions. However, these will be left aside for purposes

of generality.

The next part to consider are the merge operations. The dominant cost here is by a wide

margin, the inverse operation on the 𝑇 operators. This is because for non-leaf nodes, the

number of boundary and internal unknowns are of the same order, and this factorization

will certainly be a similar or higher complexity to the multiplication, depending on the un-

derlying data structure used. The size of this matrix is, of course, the size of the interface

between the 2 nodes being merged. Suppose that this factorization will take some number

of operations 𝑂(𝑚𝛼
𝑙 ) where 𝛼 is some positive number. For a naïve formulation, it will be

equal to 3; but algorithms involving rank-structured matrices reduce this to some real num-

ber in the range [1, 3]. The precise value will be determined by the compressibility of the
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underlying matrix, and so varies from case to case; in general for elliptic problems it follows

a rough logarithmic trend with size [46]. Matrices arising from discretizations that maintain

compressibility as the problem size increases will therefore see a better 𝛼 . A brief study on

the compressibility of the operators arising from Low-order transport in Chapter 4 will be

conducted in Section 7.5.2.

The number of merges required at each level is half the number of nodes per level. Add

to this the leaf node time, and the order of operation count may be represented as:

𝐿
∑
𝑙=0

2𝑙(𝑚𝑙)𝛼 + 𝑁𝑚2 ∼
𝐿
∑
𝑙=0

2𝑙(2−𝑙/2𝑛)𝛼 + 𝑁𝑚 (7.13)

∼
𝐿
∑
𝑙=0

2𝑙(1−𝛼/2)𝑛𝛼 + 𝑁𝑚 (7.14)

∼ 𝑁 𝛼/2
𝐿
∑
𝑙=0

2𝑙(1−𝛼/2) + 𝑁𝑚, (7.15)

a nearly identical result to that obtained inMartinsson’s work [46], but here is adapted to two

dimensions. As he noted, this permits two regimes; in the case of an 𝛼 less than 2, we wind

up with a total cost 𝑂(𝑁𝑚) dominated by the term corresponding to the leaf calculations.

Alternatively, if 𝛼 is greater than 2 (but still less than 3, the worst case) we instead may

expect a complexity of 𝑂(𝑁 𝛼/2) which could in principle span 𝑂(𝑁 ) to 𝑂(𝑁 3/2).
Martinsson’s work analyzed the case of a three-dimensional problem, where the only sig-

nificant change is that the break-point 𝛼 becomes 3
2 . In that case, the scaling in the leaf-

dominated regime changes to 𝑂(𝑁𝑚2). Meanwhile, the upper end of the estimate changes

to 𝑂(𝑁 2𝛼/3), thus spanning 𝑂(𝑁 ) to 𝑂(𝑁 2).
However, this analysis is somewhat simplistic and says nothing of the likelihood of where

𝛼 may fall. This is not a failing of the analysis itself but rather a statement of how much

depends on the compressibility of the differential operators, and the exact complexities of

the structured linear algebra algorithms. Despite this, more detailed analyses have been per-

formed which better take into account the impact of the low-rank inversion techniques men-

tioned throughout this section. These reveal the estimates above to be rather pessimistic, and

the number of interaction ranks for elliptic problems tends to scale much more gently than

the worst-case analyses suggest; something examined in the next section. In a numerical
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experiment and in-depth analysis performed by Hao and Martinsson [27], a still pessimistic,

but tighter upper bound on the build stage was 𝑂(𝑁 4/3) for general 3D problems.

7.5.2. Compressibility Study

The compressibility of the Poincaré-Steklov operator 𝑇 is a critical part that guarantees the

stated performance of the method. This operator is generated as part of the build stage in

Section 3.2.2 and is one of the more computationally-intensive parts of the code, as discussed

in Section 7.5.1. This compressibility is governed by the numerical rank of the off-diagonal

blocks. Recall the definition of 𝑇 in terms of the merger of two children:

𝑇 𝜏 ≡ [𝑇
𝛼11 0
0 𝑇 𝛽22

] + [𝑇
𝛼13

𝑇 𝛽23
] 𝑆𝜏 , (7.16)

where the subscripts indicate the index spaces of a merge operation, as in Figure 3.6. The

off-diagonal blocks for this 𝑇 𝜏 may be computed from the second term;

[𝑇
𝛼13

𝑇 𝛽23
] [𝑆𝜏31 𝑆𝜏32] = [ 𝑇 𝛼13𝑆𝜏31 𝑇 𝛼13𝑆𝜏32

𝑇 𝛼23𝑆𝜏31 𝑇 𝛼23𝑆𝜏32
] . (7.17)

The numerical rank of these at a given tolerance 𝜖 (for the purpose of this research, we use

𝜖 = 1.0 × 10−12) may be obtained by computing the SVD of these blocks and counting the

number of singular values above this tolerance.

This analysis is performed on the real problems of Sections 6.3 and 6.4. Data is obtained

by finding the maximum of the numerical rank between the two off-diagonal blocks of the

root 𝑇 operator. While not perfect, this is a satisfactory estimate of overall compressibility.

The number of significant singular values 𝜎 > 𝜖 is plotted in Figure 7.2 against the spatial

problem size 𝑁/𝑛𝑓 . Here, 𝑁 is the total number of unknowns for a given system while 𝑛𝑓
is the number of fields in the PDE; for 𝐺𝑆𝑃3 and 𝑆𝑃3, this is 2; while for diffusion this is 1.

As the problem size grows, this is expected to increase at a rate of ∼ log2 𝑁 . Figure 7.2a

shows the compressibility of the 3 × 3mini-lattices of Section 6.3. These values for the three

different cases are not meaningfully different; so only one (the MOX lattice) is plotted here.

The two dashed lines correspond to the two expected trends of log2 𝑁 . For this problem, the

compressibility is quite close to the intended scaling; with only a short ramp-up period. The
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(a) Compressibility for 3 × 3 Mini-Lattice (b) Compressibility for Pin-Homogenized As-
sembly

Figure 7.2: Compressibility in Low-Order Transport

magnitudes are also rather notable; only ∼ 80 significant singular values at the top level,

with an overall problem size of over 100,000 is quite remarkable.

The compressibility for the pin-homogenized assembly of Section 6.4 is plotted in Fig-

ure 7.2b. While the initial trend of the ramp-up is inverted (a flatter increase rather than a

sharper one), the story is much the same. 𝐺𝑆𝑃3 has a slightly increased number of singu-

lar values for the same problem as compared to 𝑆𝑃3, but this increase is quite minimal. All

governing equations still tend to the same overall trend of log2 𝑁 .

This trend in compressibility is, on its own, insufficient to make a determination about

the scaling bottlenecks in Section 7.5.1. However, matrix ranks following a trend of log2 𝑁
is a tighter bound than used in the study conducted by Hao and Martinsson [27]; which was

noted to be pessimistic. That pessimistic bound corresponded to an 𝛼 = 2. Thus, we may

reasonably expect the introduction of a structured linear algebra package into the existing

implementation to result in a method which scales as 𝑂(𝑁 log𝑁) or better in 2 dimensions,

to use the same formulas as in Section 7.5.1.

110



Chapter 8

Conclusions and Future Work

8.1. Summary and Conclusions

This dissertation follows the development of a novel solver and discretization from founda-

tional theory and analysis such as the WRM, all the way through to final evaluation with

C5G7-derived small lattice problems. Our motivation for carrying out this implementation

and study has been to create a fast neutronics solver with a very wide domain of applica-

bility based upon the proven simplified spherical harmonic discretizations. Such a solver

could enable design-space evaluations of reactor designs which may be very different from

the technologies currently seen in use today.

In Chapter 1, an overview of the developments in spherical harmonic discretizations was

presented; including both the original history of 𝑆𝑃𝑁 theory and recent extensions such

as 𝐺𝑆𝑃𝑁 . These extensions are thought to allow a more rigorous boundary treatment by

removing the locally-1D assumption at material interfaces. This theory formed the backdrop

for the development and analysis of a novel 1D discretization with collapsed basis functions,

described as the LGL discretization. This discretization lends itself particularlywell to certain

recently-published algorithms from the applied math community. Chapter 3 presents one

such algorithm, known as HPS, in a form amenable to the discretizations studied. HPS is

desired specifically because of its notion of conserved interface quantities and the explicit

form of interface conditions.

Analysis of HPS as applied to Diffusion, 𝑆𝑃3, and 𝐺𝑆𝑃3 was divided into a MMS study in

Chapter 5 and more complex benchmark-derived problems in Chapter 6. MMS analysis veri-

fied the solver implementation and demonstrated that the maximum convergence order (5th)
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imposed by the Bramble-Hilbert lemmamay be achieved by this discretization. However, the

quadrature-based self-lumping built into the discretization makes a simpler numerical inte-

gration more tractable, with a penalty of only one order of convergence. The more compre-

hensive analysis of Chapter 6 consisted of a test on a deformed pin-resolved mesh modelling

3 mini-lattice problems for diffusion and 𝑆𝑃3; followed by a large pin-homogenized assem-

bly problem analyzed with diffusion, 𝑆𝑃3, and 𝐺𝑆𝑃3. The results, consisting of criticality and

pin-power comparisons, revealed errors typical of the simplified spherical harmonic equa-

tions. That is, errors became largest for problems with large amounts of directionality in the

angular flux (for example, near strong absorbers). 𝐺𝑆𝑃3 performed well at low refinement

levels for the lattice problem, reproducing similar results as Chao et al. [14]. Refinements,

however, caused the 𝐺𝑆𝑃3 solution to approach 𝑆𝑃3 values; which is thought to be due to the

treatment of the corner balance.

Chapter 7 first covers various topics of performance related to this solver in Sections 7.1

and 7.2, before moving onto the topic of structured linear algebra in Section 7.3. Such a

computational package is a high priority for future work, as discussed in that section. It

enables the kind of special treatment for compressible operators and efficient storage imple-

mentations that lend the HPS method its optimized scaling. The corner point solver is also

discussed, with some direction on the future efforts in that space. This too is a high pri-

ority for future work; as stable methods for this balance are necessary if the stated scaling

behavior is to be reached. With both of these concerns addressed, a proper scaling study

in time and memory cost could be performed on the solver implementation; which would

much more conclusively prove the results of the brief complexity analysis and compressibil-

ity study included at the end of Chapter 7.

The design space for nuclear reactors has been growing for some time. This growth is

not limited to exclusively Gen-IV reactors such as molten salt or gas-cooled cores, but in-

cludes also subtler changes which make approximations once commonly-used become trou-

blesome. Smaller cores and greater heterogeneity in neutron flux, design features that occur

in small modular reactors, both have the potential to strain common assumptions used in

the analysis of large light water reactors. The work in this thesis demonstrates that solver

techniques exist that leverage proven modelling techniques while avoiding some of these

assumptions; predominantly the transverse leakage approximation. The benefits inherent

to these hierarchical fast solvers; their scaling in operations and memory, the parallelism

inherent in these domain decompositions; are enormous in today’s supercomputing climate
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and it is our hope that these structured methods will continue to be analyzed for use in a

wide variety of scientific computing applications.

8.2. Matrix Decomposition Updates

Of critical importance for reactor design calculations is the ability to incorporate feedback

from other governing physics of the problem in question. For example, thermal feedback

has a profound impact on the neutronics of a problem given how it alters the cross-sections

and therefore the coefficients of the underlying governing equation; be it diffusion, 𝑆𝑃3 or

𝐺𝑆𝑃3.
While this in principle would force a re-computation of the global operator, requiring a

new build step as discussed in Section 3.2.2, there is research being performed into coefficient

updates for these matrix decompositions [43]. An optimized coefficient update is expected

to complete in roughly the same amount of time as a solve step, which would be a dra-

matic improvement over a full refactor. While the estimates in this reference are likely to be

optimistic (primarily due to the fact that coefficient updates for transport affect the bound-

ary conditions between cells), they still provide a pathway to performing updates without

resorting to a full rebuild of the problem. Support for these coefficient updates is highly de-

sired as a topic of future work to make this solver approach more amenable to multi-physics

coupling.

8.3. Truly Unstructured Grids

Results presented in Chapter 6 utilized a deformed but ultimately structured grid. However,

this limitation is not imposed by transverse leakage. Rather, it is imposed by the manner

in which this work has structured the corner point solver and the iterations between it and

the HPS method; particularly, that described in Algorithm 3 and section 4.7 Relaxing this

assumption is simple in principle; but does require some extra data pertaining to traversals

of the unstructured grid after the partitioning process described in Section 7.2. To borrow

an expression, the complexity comes not from anything strictly mathematical but from the

bookkeeping involved in storing the mesh and appropriate neighbor information.

Additionally, setting up the corner point equations in unconventional mesh cell configu-

113



rations (such as the intersection of 3 quadrilaterals on the domain boundary) can be more

difficult than the prescribed intersection of 2 or 4 which occur in the structured grid. The

prescribed intersections are very predictable, and it is trivial to determine whether a given

corner needs boundary conditions or interface conditions based on whether it is the inter-

section of 4 or fewer elements, respectively. In less predictable configurations, more book-

keeping is required; but it is not a limit of the physics or problem representation.

8.3.1. Non-Quadrilateral Elements

Automated meshing tools frequently choose to use triangular meshes as opposed to quadri-

lateral ones. Part of this is a conventional detail of how FEMs are normally applied, but trian-

gular meshes are substantially easier to generate and generally suffer from fewer problems

than their quadrilateral counterparts. This is primarily because there are far fewer “degen-

erate” triangular mesh cells (collinear or coincident points) while quadrilateral meshes may

become concave, self-intersecting, or themselves collinear.

Regardless of the reason, since there are so many tools dedicated to these triangular

meshes it would be a good idea to have a solver that can support these. Support for these

types of meshes is not trivial but it amounts to a relatively short list of code changes. The

kernels of Chapter 4 must be altered to be defined upon a unit right triangle. In order to do

this, one needs:

1. A Gauss-Lobatto quadrature rule on the unit triangle

2. High-order Lagrange basis functions defined on these nodes

3. A re-derivation of the discrete differential operators (Section 4.3) and associated tensors

(Appendix B)

The most difficult of these is item 2. Quadrature rules have been studied on the unit trian-

gle and suitable versions found [59]. However, defining a basis on this quadrature is because

the information encoded in the differential operators quite complex and is fundamentally dif-

ferent from the tensor product counterpart on the quadrilaterals [28]. These new bases (and

a set of shape functions corresponding to the three vertices of the triangle), if found, enable

a re-derivation of the differential operators of the problem.
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Appendix A

Analytic Diffusion Solutions

Recall the problem geometry and material data specified in Chapter 2: Noting the symmetry

Fuel Region:

Σ𝐹𝑡,1 = 0.5 Σ𝐹𝑠0,1 = 0.41 Σ𝐹𝑠1,1 = 0.25Σ𝑓𝑠0
Σ𝐹𝑡,2 = 1.0 Σ𝐹𝑠0,2 = 0.2 Σ𝐹𝑠1,2 = 0.25Σ𝑡𝑠0

Σ𝐹𝑠0,2←1 = 0.04 𝑄𝐹0 = 10 𝑄𝐹1 = 0
Moderator Region:

Σ𝑀𝑡,1 = 0.25 Σ𝑀𝑠0,1 = 0.11 Σ𝑀𝑠1,1 = 0.25Σ𝑓𝑠0
Σ𝑀𝑡,2 = 0.5 Σ𝑀𝑠0,2 = 0.5 Σ𝑀𝑠1,2 = 0.25Σ𝑡𝑠0

Σ𝑀𝑠0,2←1 = 0.11 𝑄𝑀1 = 0 𝑄𝑀2 = 0

of the problem, analytic solutions will be derived for 𝑥 ∈ [0, 8], separated into 3 regions

denoted with a superscript; the inner moderator 1, fuel region 2, or outer moderator 3. The

region 0 ≤ 𝑥 < 𝑎 is the inner moderator, and is denoted 𝑀1; for this case, 𝑎 = 2 cm. The

region 𝑎 ≤ 𝑥 < 𝑏 is fuel, denoted 𝐹 , with 𝑏 = 4 cm for this case. The region 𝑏 ≤ 𝑥 < 𝑐 is

the outer moderator, denoted𝑀2. 𝑐 = 8 cm for this case. Coordinates may be assumed to be

positive.

First, define some diffusion coefficients and removal cross-sections:

Σ𝐹𝑟0,𝑔 = Σ𝐹𝑡,𝑔 − Σ𝐹𝑠0,𝑔 , (A.1a)

Σ𝑀𝑟0,𝑔 = Σ𝑀𝑡,𝑔 − Σ𝑀𝑠0,𝑔 , (A.1b)

Σ𝐹𝑟1,𝑔 = Σ𝐹𝑡,𝑔 − Σ𝐹𝑠1,𝑔 , (A.1c)

Σ𝑀𝑟1,𝑔 = Σ𝑀𝑡,𝑔 − Σ𝑀𝑠1,𝑔 . (A.1d)
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Note that 𝑀1 and 𝑀2 are assumed to be the same material 𝑀 .

𝐷𝐹1 = (3Σ𝐹𝑟1,1)−1 𝐷𝐹2 = (3Σ𝐹𝑟1,2)−1 𝐷𝑀1 = (3Σ𝑀𝑟1,1)−1 𝐷𝑀2 = (3Σ𝑀𝑟1,2)−1

𝐿𝐹1 =
√

𝐷𝐹1
Σ𝑟0,1

𝐿𝐹2 =
√

𝐷𝐹2
Σ𝑟0,2

𝐿𝑀1 =
√

𝐷𝑀1
Σ𝑟0,1

𝐿𝑀2 =
√

𝐷𝑀2
Σ𝑟0,2

(A.2)

As the problems lack up-scattering, the fast flux is solved first via method of undetermined

coefficients. The assumed forms of the flux are as follows, with the superscript indicating

the region index.

𝜙𝑀11 (𝑥) = 𝐶10 cosh(𝑥/𝐿𝑀1 ) (A.3a)

𝜙𝐹1 (𝑥) = 𝐶11 sinh(𝑥/𝐿𝐹1 ) + 𝐶12 cosh(𝑥/𝐿𝐹1 ) + 𝐴10 (A.3b)

𝜙𝑀21 (𝑥) = 𝐶13 sinh(𝑥/𝐿𝑀1 ) + 𝐶14 cosh(𝑥/𝐿𝑀1 ) (A.3c)

We have 5 interface and boundary conditions to satisfy (symmetry at 𝑥 = 0 is automatically

satisfied by the form for 𝜙𝐹1 ). These are given as continuity of flux, continuity of net current,

and zero re-entrant current at the outer boundary.

𝜙𝑀11 (𝑎) = 𝜙𝐹1 (𝑎), (A.4a)

𝜙𝐹1 (𝑏) = 𝜙𝑀21 (𝑏), (A.4b)

𝐷𝑀1
𝑑𝜙𝑀11
𝑑𝑥 |𝑥=𝑎 = 𝐷𝐹1

𝑑𝜙𝐹1
𝑑𝑥 |𝑥=𝑎, (A.4c)

𝐷𝑀1
𝑑𝜙𝐹1
𝑑𝑥 |𝑥=𝑏 = 𝐷𝐹1

𝑑𝜙𝑀21
𝑑𝑥 |𝑥=𝑏 , (A.4d)

0 = 1
4𝜙

𝑀21 (𝑐) + 𝐷𝑀
2

𝑑𝜙𝑀21
𝑑𝑥 |𝑥=𝑐 . (A.4e)

We may also define 𝐴10 from the particular solution:

𝐴10 =
𝑄𝐹1
Σ𝑟0,1

(A.5)
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Evaluating the first 4 conditions:

𝐶10 cosh ( 𝑎
𝐿𝑀1

) − 𝐶11 sinh ( 𝑎
𝐿𝐹1

) − 𝐶12 cosh ( 𝑎
𝐿𝐹1

) = 𝐴10,

(A.6a)

𝐶10 𝐷
𝑀

𝐿𝑀1
sinh ( 𝑎

𝐿𝑀1
) − 𝐶11 𝐷

𝐹

𝐿𝐹1
cosh ( 𝑎

𝐿𝐹1
) − 𝐶12 𝐷

𝐹

𝐿𝐹1
sinh ( 𝑎

𝐿𝐹1
) = 0,

(A.6b)

𝐶11 sinh ( 𝑏
𝐿𝐹1

) + 𝐶12 cosh ( 𝑏
𝐿𝐹1

) − 𝐶13 sinh ( 𝑏
𝐿𝑀1

) − 𝐶14 cosh ( 𝑏
𝐿𝑀1

) = −𝐴10,

(A.6c)

𝐶11
𝐷𝐹1
𝐿𝐹1

cosh ( 𝑏
𝐿𝐹1

) + 𝐶12
𝐷𝐹1
𝐿𝐹1

sinh ( 𝑏
𝐿𝐹1

) − 𝐶13
𝐷𝑀1
𝐿𝑀1

cosh ( 𝑏
𝐿𝑀1

) − 𝐶14
𝐷𝑀1
𝐿𝑀1

sinh ( 𝑏
𝐿𝑀1

) = 0.

(A.6d)

The final condition requires some extra work to put into the proper form.

1
4 [𝐶

13 sinh ( 𝑏
𝐿𝑀1

) + 𝐶14 cosh ( 𝑏
𝐿𝑀1

)] + 𝐷𝑀1
2𝐿𝑀1

[𝐶13 cosh ( 𝑏
𝐿𝑀1

) + 𝐶14 sinh ( 𝑏
𝐿𝑀1

)] = 0

𝐶13 [sinh ( 𝑏
𝐿𝑀1

) + 2𝐷𝑀1
𝐿𝑀1

cosh ( 𝑏
𝐿𝑀1

)] + 𝐶14 [cosh ( 𝑏
𝐿𝑀1

) + 2𝐷𝑀1
𝐿𝑀1

sinh ( 𝑏
𝐿𝑀1

)] = 0 (A.6e)

Combined with the 4 equations above, this forms a linear system of 5 equations and 5 un-

knowns. This may be solved analytically, but the process does not provide any profound

insights; in practice, simply constructing a matrix with the appropriate elements and solv-

ing the resulting system will yield a perfectly good solution.

As for the thermal solutions, the path is much the same, but a new form of the particu-

lar solution is now used. The equations, again computed via the method of undetermined

coefficients, are as follows:

𝜙𝑀12 (𝑥) = 𝐶20 cosh(𝑥/𝐿𝑀2 ) + 𝐴20 cosh(𝑥/𝐿𝑀1 ) (A.7a)

𝜙𝐹2 (𝑥) = 𝐶21 sinh(𝑥/𝐿𝐹2 ) + 𝐶22 cosh(𝑥/𝐿𝐹2 ) + 𝐴21 sinh(𝑥/𝐿𝐹1 ) + 𝐴22 cosh(𝑥/𝐿𝐹1 ) (A.7b)

𝜙𝑀22 (𝑥) = 𝐶23 sinh(𝑥/𝐿𝑀2 ) + 𝐶24 cosh(𝑥/𝐿𝑀2 ) + 𝐴23 sinh(𝑥/𝐿𝑀1 ) + 𝐴24 cosh(𝑥/𝐿𝑀1 ) (A.7c)
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The relations closing the system are very similar to the previous (fast) case:

𝜙𝑀12 (𝑎) = 𝜙𝐹2 (𝑎), (A.8a)

𝜙𝐹2 (𝑏) = 𝜙𝑀22 (𝑏), (A.8b)

𝐷𝑀2
𝑑𝜙𝑀12
𝑑𝑥 |𝑥=𝑎 = 𝐷𝐹2

𝑑𝜙𝐹2
𝑑𝑥 |𝑥=𝑎, (A.8c)

𝐷𝑀2
𝑑𝜙𝐹2
𝑑𝑥 |𝑥=𝑏 = 𝐷𝐹2

𝑑𝜙𝑀22
𝑑𝑥 |𝑥=𝑏 , (A.8d)

0 = 1
4𝜙

𝑀22 (𝑐) + 𝐷𝑀
2

𝑑𝜙𝑀22
𝑑𝑥 |𝑥=𝑐 . (A.8e)

Before continuing, expressions for the coefficients 𝐴must be derived. This may be obtained

by plugging in the particular solutions to the differential equation:

𝐴20 [
𝐷𝑀2
(𝐿𝑀1 )2 + Σ𝑀𝑟0,2] = Σ𝑀𝑠0,2←1𝐶10 ,

𝐴20 =
Σ𝑀𝑠0,2←1
𝐷𝑀2

[(𝐿𝑀1 )−2 + (𝐿𝑀2 )−2]−1 𝐶10 . (A.9)

The same approach is used to define the other 4 𝐴 coefficients:

𝐴21 =
Σ𝐹𝑠0,2←1
𝐷𝐹2

[(𝐿𝐹1 )−2 + (𝐿𝐹2 )−2]
−1 𝐶11 ,

(A.10a)

𝐴23 =
Σ𝑀𝑠0,2←1
𝐷𝑀2

[(𝐿𝑀1 )−2 + (𝐿𝑀2 )−2]−1 𝐶13 ,

(A.10b)

𝐴22 =
Σ𝐹𝑠0,2←1
𝐷𝐹2

[(𝐿𝑀1 )−2 + (𝐿𝑀2 )−2]−1 𝐶12 ,

(A.10c)

𝐴24 =
Σ𝑀𝑠0,2←1
𝐷𝑀2

[(𝐿𝑀1 )−2 + (𝐿𝑀2 )−2]−1 𝐶14 .

(A.10d)
Using these relations, and the interface/boundary conditions, a matrix equation may be gen-

erated for the thermal group. This may then be solved and combined with the particular

solution, in a similar manner to the fast flux.
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Appendix B

Mesh Derivative Tensors for the
Quadrilateral Case

This appendix describes the practice by which the rank-3 and rank-4 Ξ tensors of Section 4.3

may be computed.

Inverting the bilinear interpolation is likely impossible analytically, and certainly infea-

sible. Instead, we make use of implicit differentiation. Take the expression for 𝑥(𝑢, 𝑣) and
𝑦(𝑢, 𝑣):

𝑥(𝑢, 𝑣) =
4
∑
𝑗=1

𝑥 𝑐𝑗 𝜎𝑗(𝑢, 𝑣) 𝑦(𝑢, 𝑣) =
4
∑
𝑗=1

𝑦 𝑐𝑗 𝜎𝑗(𝑢, 𝑣)

Where 𝑥 𝑐𝑗 ,𝑦 𝑐𝑗 are the global coordinates of the corner indexed by 𝑗 and 𝜎(𝑢, 𝑣) are the bilinear

shape functions. For a cell over [−1, 1]2, these take the form:

𝜎𝑗(𝑢, 𝑣) = 1
4(𝑢 ± 1)(𝑣 ± 1), (B.1)

where the signs depend on which corner 𝑗 the index refers to. By operating on these with

second-order derivatives, the desired terms of Ξ may be solved for.
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𝜕2
𝜕𝑥2 𝑥(𝑢, 𝑣) =

4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕
𝜕𝑥 (𝜕𝑢𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑣

𝜕𝑥
𝜕𝜎𝑗
𝜕𝑣 )

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [𝜕
2𝑢

𝜕𝑥2
𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑢

𝜕𝑥
𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 + 𝜕2𝑣

𝜕𝑥2
𝜕𝜎𝑗
𝜕𝑣 + 𝜕𝑣

𝜕𝑥
𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑣 ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ000
𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑢

𝜕𝑥 (
�
�

�
�𝜕𝑢

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢2 + 𝜕𝑣

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ) + Ξ100

𝜕𝜎𝑗
𝜕𝑣 + 𝜕𝑣

𝜕𝑥 (𝜕𝑢𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 +

�
�
�
�𝜕𝑣

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑣2 )]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ000
𝜕𝜎𝑗
𝜕𝑢 + Ξ100

𝜕𝜎𝑗
𝜕𝑣 + 2𝜕𝑢𝜕𝑥

𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

4
∑
𝑗=1

𝑥 𝑐𝑗
𝜕𝜎𝑗
𝜕𝑢 Ξ000 + 𝑥 𝑐𝑗

𝜕𝜎𝑗
𝜕𝑣 Ξ100 = −2

4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕𝑢𝜕𝑥
𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

A similar process on the y coordinates yields:

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ000
𝜕𝜎𝑗
𝜕𝑢 + Ξ100

𝜕𝜎𝑗
𝜕𝑣 + 2𝜕𝑢𝜕𝑥

𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

These two equations combined yield a system of 2 equations with unknowns Ξ000 and Ξ100.
Thus, these two equations determine these two values in the tensor.

Similarly, applying 𝜕2
𝜕𝑦2 yields the 2 equations:

𝜕2
𝜕𝑦2 𝑥(𝑢, 𝑣) =

4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕
𝜕𝑦 (𝜕𝑢𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑣

𝜕𝑦
𝜕𝜎𝑗
𝜕𝑣 )

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [𝜕
2𝑢

𝜕𝑦2
𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑢

𝜕𝑦
𝜕
𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 + 𝜕2𝑣

𝜕𝑦2
𝜕𝜎𝑗
𝜕𝑣 + 𝜕𝑣

𝜕𝑦
𝜕
𝜕𝑦

𝜕𝜎𝑗
𝜕𝑣 ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ011
𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑢

𝜕𝑦 (
�
�
�
�𝜕𝑢

𝜕𝑦
𝜕2𝜎𝑗
𝜕𝑢2 + 𝜕𝑣

𝜕𝑦
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ) + Ξ111

𝜕𝜎𝑗
𝜕𝑣 + 𝜕𝑣

𝜕𝑦 (𝜕𝑢𝜕𝑦
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 +

�
�
�
�𝜕𝑣

𝜕𝑦
𝜕2𝜎𝑗
𝜕𝑣2 )]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ011
𝜕𝜎𝑗
𝜕𝑢 + Ξ111

𝜕𝜎𝑗
𝜕𝑣 + 2𝜕𝑢𝜕𝑦

𝜕𝑣
𝜕𝑦

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]
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and

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ011
𝜕𝜎𝑗
𝜕𝑢 + Ξ111

𝜕𝜎𝑗
𝜕𝑣 + 2𝜕𝑢𝜕𝑦

𝜕𝑣
𝜕𝑦

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

We note that this is the same result as flipping all but the first index of Ξ and swapping

𝜕𝑥 ⇒ 𝜕𝑦 .
The mixed derivative is a little different; starting again from the 𝑥 coordinate:

𝜕2
𝜕𝑥𝜕𝑦 𝑥(𝑢, 𝑣) =

4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕
𝜕𝑥 (𝜕𝑢𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑣

𝜕𝑦
𝜕𝜎𝑗
𝜕𝑣 )

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [ 𝜕2𝑢
𝜕𝑥𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑢

𝜕𝑦 ( 𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 ) +

𝜕2𝑣
𝜕𝑥𝜕𝑦

𝜕𝜎𝑗
𝜕𝑣 + 𝜕𝑣

𝜕𝑦 ( 𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑣 )]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ001
𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑢

𝜕𝑦 (
�

�
�
�𝜕𝑢

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢2 + 𝜕𝑣

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑣𝜕𝑢)

+ Ξ101
𝜕𝜎𝑗
𝜕𝑣 + 𝜕𝑣

𝜕𝑦 (𝜕𝑢𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 +

�
�

�
�𝜕𝑣

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑣2 ) ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ001
𝜕𝜎𝑗
𝜕𝑢 + Ξ101

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝜎𝑗

𝜕𝑢𝜕𝑣 (
𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥 + 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑥 )]

Analogously:

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ001
𝜕𝜎𝑗
𝜕𝑢 + Ξ101

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝜎𝑗

𝜕𝑢𝜕𝑣 (
𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥 + 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑥 )]

Since Ξ𝑖𝑗𝑘 is symmetric under permutations of 𝑗, 𝑘 this is sufficient to determine the entire

tensor. We must now repeat the process for Ξ𝜇𝑖𝑗𝑘 . While this tensor is symmetric under

permutations of 𝑖, 𝑗, 𝑘 we must still do a significant amount of algebra.

121



A reminder from the previous page:

𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 = 𝜕𝑣

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑣 = 𝜕𝑢

𝜕𝑥
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

𝜕
𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 = 𝜕𝑣

𝜕𝑦
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

𝜕
𝜕𝑦

𝜕𝜎𝑗
𝜕𝑣 = 𝜕𝑢

𝜕𝑦
𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

𝜕3
𝜕𝑥3 𝑥(𝑢, 𝑣) =

4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕2
𝜕𝑥2 (

𝜕𝑢
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑣

𝜕𝑥
𝜕𝜎𝑗
𝜕𝑣 )

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕
𝜕𝑥 [𝜕

2𝑢
𝜕𝑥2

𝜕𝜎𝑗
𝜕𝑢 + 𝜕2𝑣

𝜕𝑥2
𝜕𝜎𝑗
𝜕𝑣 + 2𝜕𝑢𝜕𝑥

𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [𝜕
3𝑢

𝜕𝑥3
𝜕𝜎𝑗
𝜕𝑢 + 𝜕2𝑢

𝜕𝑥2 (
𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 ) +

𝜕3𝑣
𝜕𝑥3

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝑣

𝜕𝑥2 (
𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑣 )

+ 2 (𝜕
2𝑢

𝜕𝑥2
𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 + 𝜕𝑢

𝜕𝑥
𝜕2𝑣
𝜕𝑥2

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 + 𝜕𝑢

𝜕𝑥
𝜕𝑣
𝜕𝑥

�
�

�
�
��

[ 𝜕
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]) ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0000
𝜕𝜎𝑗
𝜕𝑢 + Ξ000

𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 + Ξ1000

𝜕𝜎𝑗
𝜕𝑣 + Ξ100

𝜕𝑢
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

+ 2 (Ξ000
𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 + Ξ100

𝜕𝑢
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ) ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0000
𝜕𝜎𝑗
𝜕𝑢 + Ξ1000

𝜕𝜎𝑗
𝜕𝑣 + 3 (Ξ000

𝜕𝑣
𝜕𝑥 + Ξ100

𝜕𝑢
𝜕𝑥 )

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

With the auxiliary equation:

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ0000
𝜕𝜎𝑗
𝜕𝑢 + Ξ1000

𝜕𝜎𝑗
𝜕𝑣 + 3 (Ξ000

𝜕𝑣
𝜕𝑥 + Ξ100

𝜕𝑢
𝜕𝑥 )

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]
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Under an exchange of 𝜕𝑥 ⟺ 𝜕𝑦 :

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0111
𝜕𝜎𝑗
𝜕𝑢 + Ξ1111

𝜕𝜎𝑗
𝜕𝑣 + 3 (Ξ011

𝜕𝑣
𝜕𝑦 + Ξ111

𝜕𝑢
𝜕𝑦 )

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ0111
𝜕𝜎𝑗
𝜕𝑢 + Ξ1111

𝜕𝜎𝑗
𝜕𝑣 + 3 (Ξ011

𝜕𝑣
𝜕𝑦 + Ξ111

𝜕𝑢
𝜕𝑦 )

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ]

Now we need a mixed derivative:

𝜕3
𝜕𝑥2𝜕𝑦 𝑥(𝑢, 𝑣) =

4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕2
𝜕𝑥2 (

𝜕𝑢
𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 + 𝜕𝑣

𝜕𝑦
𝜕𝜎𝑗
𝜕𝑣 )

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 𝜕
𝜕𝑥 [ 𝜕2𝑢

𝜕𝑥𝜕𝑦
𝜕𝜎𝑗
𝜕𝑢 + 𝜕2𝑣

𝜕𝑥𝜕𝑦
𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝜎𝑗

𝜕𝑢𝜕𝑣 (
𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥 + 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑥 )]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [ 𝜕3𝑢
𝜕𝑥2𝜕𝑦

𝜕𝜎𝑗
𝜕𝑢 + 𝜕2𝑢

𝜕𝑥𝜕𝑦 ( 𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑢 ) +

𝜕3𝑣
𝜕𝑥2𝜕𝑦

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝑣

𝜕𝑥𝜕𝑦 ( 𝜕
𝜕𝑥

𝜕𝜎𝑗
𝜕𝑣 )

+
�
�
�
�
��

( 𝜕
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 ) (

𝜕𝑢
𝜕𝑦

𝜕𝑣
𝜕𝑥 + 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑥 ) +

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

𝜕
𝜕𝑥 (𝜕𝑢𝜕𝑦

𝜕𝑣
𝜕𝑥 + 𝜕𝑣

𝜕𝑦
𝜕𝑢
𝜕𝑥 ) ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0001
𝜕𝜎𝑗
𝜕𝑢 + Ξ001

𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 + Ξ1001

𝜕𝜎𝑗
𝜕𝑣 + Ξ101

𝜕𝑢
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

+ 𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 (

𝜕2𝑢
𝜕𝑥𝜕𝑦

𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑦
𝜕2𝑣
𝜕𝑥2 + 𝜕2𝑣

𝜕𝑥𝜕𝑦
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦
𝜕2𝑢
𝜕𝑥2) ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0001
𝜕𝜎𝑗
𝜕𝑢 + Ξ001

𝜕𝑣
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 + Ξ1001

𝜕𝜎𝑗
𝜕𝑣 + Ξ101

𝜕𝑢
𝜕𝑥

𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣

+ 𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 (Ξ001

𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑦 Ξ100 + Ξ101
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 Ξ000) ]

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0001
𝜕𝜎𝑗
𝜕𝑢 + Ξ1001

𝜕𝜎𝑗
𝜕𝑣

+ 𝜕2𝜎𝑗
𝜕𝑢𝜕𝑣 (2Ξ001

𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑦 Ξ100 + 2Ξ101
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 Ξ000) ]
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And companion equation:

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ0001
𝜕𝜎𝑗
𝜕𝑢 + Ξ1001

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝜎𝑗

𝜕𝑢𝜕𝑣 (2Ξ001
𝜕𝑣
𝜕𝑥 + 𝜕𝑢

𝜕𝑦 Ξ100 + 2Ξ101
𝜕𝑢
𝜕𝑥 + 𝜕𝑣

𝜕𝑦 Ξ000) ]

Again, under the exchange of 𝜕𝑥 ⟺ 𝜕𝑦 :

0 =
4
∑
𝑗=1

𝑥 𝑐𝑗 [Ξ0011
𝜕𝜎𝑗
𝜕𝑢 + Ξ1011

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝜎𝑗

𝜕𝑢𝜕𝑣 (2Ξ001
𝜕𝑣
𝜕𝑦 + 𝜕𝑢

𝜕𝑥 Ξ111 + 2Ξ101
𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥 Ξ011) ]

0 =
4
∑
𝑗=1

𝑦 𝑐𝑗 [Ξ0011
𝜕𝜎𝑗
𝜕𝑢 + Ξ1011

𝜕𝜎𝑗
𝜕𝑣 + 𝜕2𝜎𝑗

𝜕𝑢𝜕𝑣 (2Ξ001
𝜕𝑣
𝜕𝑦 + 𝜕𝑢

𝜕𝑥 Ξ111 + 2Ξ101
𝜕𝑢
𝜕𝑦 + 𝜕𝑣

𝜕𝑥 Ξ011) ]
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