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Glossary 

 

Term Unit Definition 

Alpha   
Stock return in excess of a benchmark, meaning the 

average return unexplained by exposure to risk factors. 

Annual Growth of 

Water Consumption 
  Annual growth ratio of Water Use. 

Annual Stock 

Return 
  Returns the last price provided by the exchange. 

Annual Stock 

Volatility 
  

Volatility is a statistical measure of the dispersion of 

returns. In most cases, the higher the volatility, the riskier 

the security. 

Beta   
Beta is the volatility of a security or portfolio against its 

benchmark. 

Cash Flow Growth % 
Long term growth of operating cash, the money that is 

actually coming from business operations. 

Dividend Yield   

Sum of gross dividend per share amounts that have gone 

ex-dividend over the prior 12 months, divided by the 

current stock price. 

Earnings before 

Interest Expenses 

and Income Taxes 

(EBIT) 

$M Company’s operating profit and its profitability. 

Earnings-per-Share 

(EPS) Growth 
% 

Earnings per share (EPS) is a company's net profit divided 

by the number of common shares it has outstanding. 

Financial Leverage   
Measures the average assets to average equity. Average 

Total Assets / Average Total Common Equity 

Fix Asset Turnover   Financial ratio of net sales to net fixed assets 

Inventory Turnover   
A ratio that reveals the number of times a firm sells and 

replaces its inventory during a given period. 

Momentum   
Momentum refers to the capacity for a price trend to 

sustain itself going forward. 

Operating Margin % 
An important profitability ratio measuring revenue after 

the deduction of operating expenses. 



 xi 

Operating Return 

on Invested Capital 

(ROIC) 

% 

Return on invested capital (ROIC) is the amount of money 

a company makes that is above the average cost it pays for 

its debt and equity capital. 

Price-to-Book Ratio   

The P/B ratio measures the market's valuation of a 

company relative to its book value. It's calculated by 

dividing the company's stock price per share by its book 

value per share (BVPS).  

Private Equity (PE)   
Private equity (PE) refers to capital investment made into 

companies that are not publicly traded. 

Profit Margin   
Profit margin is the percentage of sales that a business 

retains after all expenses have been deducted. 

Property, Plant, and 

Equipment (PP&E) 
  

A company asset that is vital to business operations but 

cannot be easily liquidated. 

Return on Asset 

(ROA) 
% 

ROA refers to a financial ratio that indicates how 

profitable a company is in relation to its total assets. 

Return on Equity 

(ROE) 
% 

ROE is a gauge of a corporation's profitability and how 

efficiently it generates those profits. 

Revenue (Sales)   

Amount of sales generated by a company after the 

deduction of sales returns, allowances, discounts, and 

sales-based taxes. 

Sales Growth % 
Sales growth is the percent growth in the net sales of a 

business from one fiscal period to another. 

Size $M 

Size is log of market cap. Market cap is total current 

market value of all of a company's outstanding shares 

stated in the pricing currency. 

Tobin's Q % 
Ratio of the market value of a firm to the replacement cost 

of the firm's assets. 

Total Water 

Consumption (WC) 
103m3 

Total amount of water used to support a company’s 

operational process.  

Volume   
Total number of shares traded on security on the current 

day. 

Water Intensity per 

EBIT (WIPE) 
103m3/$M Annual Total Water Use/ EBIT 

Water Intensity per 

PP&E (WIPPE) 
103m3/$M Annual Total Water Use/ PP&E 

Water Intensity per 

Sales (WIPS) 
103m3/$M Annual Total Water Use/ Sales 
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Abstract 

Climate change and water availability impacts on corporate operational performance pose 

substantial risks to investors, shareholders, and the broader capital markets. Financial risks 

associated with climate and water are linked to short or long-term opportunity costs that are not 

disclosed in corporate accounting and formed the basis for the Task Force on Climate-Related 

Disclosures (TCFD), which forces corporations to disclose their financial risk exposures. The 

disclosure regulation aims to incentivize investment in corporate climate resilience through 

stewardship of natural resources. Given the knowledge gaps in water risk disclosure, quantitative 

approaches were developed to understand the financial materiality of water risk to corporate 

accounting and market performance. 

An exploration was conducted to test the hypothesis regarding the pricing of corporate 

water use intensity in the market and the potential quantification of this price premium using 

statistical tools and machine learning approaches. Indicators including water intensity relative to 

revenue, operating profit and net fixed assets were evaluated for representative companies from 

nine industry sectors. Using the statistical inference tool, propensity score matching (PSM), the 

analysis delved into the connection between water intensity and market metrics, accounting for 

corporate fundamentals. It showed that low water intensity results in improved returns over the 

benchmark (alpha), return on equity and long-term valuation (Tobin’s Q). In addition, water 

intensity based on corporate classification based on its activity was shown to be a poor proxy for 

water intensity benefits tied to financial metrics.   



 xiii 

 

The next step was to develop and test an imputation methodology combining econometric 

models and machine learning techniques to predict water intensity metrics for companies that are 

not disclosing water use risks. This methodology includes recursive feature elimination (RFE) 

method for feature selection, and the development of factor models using linear regression 

(OLS), generalized linear model (GLM), Lasso (LASSO), Random Forest (RF), and Adaptive 

boosting model (ADA). Random Forest models yielded the highest accuracy to impute water 

intensity indicators standardized to sales, operating profit and fixed assets from financial 

fundamentals, and allowed me to expand my testing universe from 500 to 2,525 company-years. 

Then, it explores the impact of water use indicators on market metrics, including share 

price return, short term operational (return on assets, ROA) and financial (return on equity, ROE) 

metrics, as well as long-term corporate valuation (using Tobin’s Q as a proxy). The difference 

between high- and low-water dependent companies, disclosing and non-disclosing (using 

imputed data) companies, as well as the impact of TCFD promulgation (2017) was tested. The 

results show that markets are rewarding companies exhibiting high water intensities with higher 

returns, though the effect is attenuated after TCFD implementation. Water intensity relative to 

sales and operating profit have a positive correlation with ROA and ROE, and a negative 

correlation to long term value. Again, the coefficients for ROA and ROE are decreasing post-

TCFD, while those for Tobin’s Q are increasing. Taken together, empirical evidence shows that 

markets are starting to price in water risk to companies. Interestingly, water intensity normalized 

to fixed asset investments exhibits a negative correlation to share price returns, indicating that 

investors are worried about capital-intensive companies delivering reduced returns. Using data 

science tools, my research offers new and valuable insights for business strategy and financial 



 xiv 

decision-making, emphasizing the need for managers to explore effective corporate water 

strategies to sustain or enhance competitiveness. 
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Chapter 1 Introduction 

Climate change and access to water impact corporate operational performance and thus 

expose investors and shareholders to excess (and poorly quantified) risks. Recently, the 

Securities and Exchange Commission (SEC) recognized that this risk should be disclosed, as 

proposed in its climate disclosure document which states that “a company must provide the 

location by zip code of properties subject to flooding risk and must provide such location and 

book value of assets located in regions of high-water stress”. Financial risks associated with 

water including impacts on supply chains, operations and logistics tend to be linked to short or 

long-term opportunity costs that have not generally been disclosed in corporate accounting and 

thus this information is difficult for investors and other stakeholders to evaluate. While research 

has been conducted on the impact of climate change on water quality and quantity, there is a 

dearth of research on the analysis of the relationship between climate change uncertainties and 

water risk exposures or water use intensities of companies. Given the requirement for future 

disclosure and the broader discussion around the cost climate transitioning under the Task Force 

on Climate-Related Financial Disclosures (TCFD), this research focuses on the understanding of 

financial materiality of water risk to corporate operations to inform risk management solutions.  

It is imperative for companies to understand their financial risk exposures to help with strategic 

decision-making to invest in risk management, depreciate stranded assets, or transfer climate 

water risk to insurance underwriters (Larson et al., 2012).   
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Climate change exacerbates water uncertainty around the world. The most recent 

Intergovernmental Panel on Climate Change (IPCC) report states that the temperature rises 

would bring big changes in the planet’s water cycle, including increasing extreme flooding 

incidence, severe drought, and water scarcity impacting society and the broader economy. In 

regard to flooding, as estimated by thermodynamic relationships, each additional one-degree 

Celsius of global warming is projected to increase extreme rainfall intensities by 7%. By 2050, 

the number of people at risk of floods will increase from its current level of 1.2 billion to 1.6 

billion (United Nations, 2020). Regarding water scarcity, over 60 million Americans are living 

under drought conditions. During the early to mid-2010s, approximately 1.9 billion people, 

accounting for 27% of the global population, resided in regions potentially facing severe water 

scarcity. Projections indicate a significant rise in this figure, from 2.7 to 3.2 billion people by 

2050 (United Nations, 2020). This impact will lead to increased competition for water resources, 

not only socially but also economically. Further, when considering the combined effects of 

growing populations, rising incomes, and expanding cities, we will see demand for water rising 

exponentially, while supply becomes more erratic and uncertain for individuals, communities, 

and corporate operations. The latter is expected to increase volatility in the capital markets.  

Climate change has become an economically disruptive force for companies (CDP, 2016; 

Daniel and Sojamo, 2012; Christ, 2017). In recent years, many companies have suffered 

operational losses due to various types of water risk exposures, including water scarcity, 

revoking of licenses to operate, flood impacts on operations, and reputational damage from poor 

water stewardship (Ceres, 2015; Ceres n.d.). The UK non-profit CDP Water Security, which 

annually aggregates corporate water risk data, noted that in 2018 alone there were US$38.5 

billion in reported operational losses due to water risks. In addition, ING, an investment bank, 
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published an estimate of financial assets under management (AUM) exposed to water risk to be 

$145 trn, including stocks, loans, private equity, and insurance portfolios.  Insurance companies 

alone have seen over $7 trn in water risk exposures in their portfolios and from claim payouts. 

Just in 2020, companies reported financial impacts of water risks reaching US$301 billion due to 

poor water management and globally distributed risks for businesses. In the Investor Water 

Toolkit (Ceres n.d.) published by Ceres, a non-profit focused on corporate environmental 

disclosures to shareholders and stakeholders, the financial materiality resulting from water 

dependency and related risks are shown to vary significantly by sector and industry (Figure 1.1).  

The figure illustrates a color-coded water risk classification based on water footprint data (water 

used per unit product produced) and by industry sector. The mining and energy industry are 

mainly impacted by water resulting from cooling and extractive processes, while the 

semiconductor manufacturer may find its water risks are related to the inability to source large 

volumes of high-quality water for circuit production.  

The water issues occur in different stages of their respective value chains and are 

therefore a widely distributed risk to corporations. As a result, water issues are increasingly 

viewed as financially-material business risks and are either transferred to insurance companies, 

addressed using new capital investments to ‘harden’ the plant or operations, or through 

accelerated asset depreciation. Importantly, business insurers are experiencing water as the 

medium through which they will be exposed to climate change (Moorcraft, 2021). 

This dissertation will develop a methodology to quantify the financial materiality of 

water risk exposures for public companies across multiple industry sectors by employing 

advanced data science tools aimed at understanding the impact of water intensity on financial 

accounting and market metrics. Since management of financial materiality of water risk falls 
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under the fiduciary requirements of corporate actors and their investors, it is my objective to help 

catalyze corporate water stewardship and stimulate investments in climate transitioning. 

 

Figure 1.1: Heat map of industry water risk hotspots for S&P 500 sectors and subsectors. The size of the rectangle 

indicates weight of industry in the index and color indicates high, medium, or low water risk classification using 

classification of SASB (Sustainable Accounting Standards Board) materiality indicators (Source. Ceres) 
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Chapter 2 Background and Motivation 

Businesses are presently encountering financially significant effects stemming from the 

competition for water resources and the resulting degradation of ecosystems. For corporations, 

water is an important part of the  natural resource inventory available to their operations, as 

articulated in the ‘natural resource-based view of the firm’ (Hart, 1995; Hart et al. 2011).  It is a 

critical material and natural capital for successful operations (Christ and Burritt, 2015The theory 

asserts that limitations imposed by the natural environment introduce disruptions that pose a 

threat to the current resources and capabilities of firms, which limit the capabilities to maintain a 

competitive advantage (Hart, 1995).  

The nexus between a secure water resource and strong financial performance can be 

elucidated using the framework of instrumental stakeholder theory (Jones et al., 1995), 

According to this theoretical framework, achieving enduring success in the business world 

necessitates a conscientious focus on the interests of stakeholders. These stakeholders encompass 

a broad array of groups and individuals who possess the ability to exert influence on, or 

experience the consequences of, the organization's pursuit of its objectives (Freeman et al., 1984, 

p. 46). Disregarding the interests of stakeholders can pose a formidable impediment to a firm's 

endeavors in realizing its strategic goals (Jensen et al., 2001), as the unfavorable responses from 

stakeholders have the potential to escalate operational costs. (Berman et al., 1999). Conversely, 

these strategic choices directed at the overarching goal of "maximizing firm value" by means of 
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elevating financial performance may exert a significant influence on market indicators and the 

overall financial performance of the organization. 

2.1 Assessing the Materiality of Water Risks 

Water risk factors drive basin-level adaptation to climate change, water pollution, or 

regulatory issues, and are starting to become accounted for in corporate financials. Financial 

material risks include operational risk, capital markets risk, reputational risk, and regulatory as 

well as litigation risks. A few examples serve to illustrate each of these risk vectors (WWF, 

2022; Freyman et al. 2015; Money et al. 2014; Davies, 2023) : 

Operational risk directly impacts sectors heavily dependent on water, such as food and 

beverage, energy, and semiconductors. Water scarcity poses risks, including stranded 

assets and increased operational costs, like water importation or disruptions to maritime 

transport due to low river levels. Nike's closure of four Thai factories due to flooding 

underscores the real-world consequences, with growing concerns over cotton harvests 

and prices. 

Capital markets risk is an offshoot of operational risks, stemming from diminished sales 

and heightened costs in an uncertain production environment. This can lead to adverse 

outcomes, including the loss of corporate contracts, exemplified by K+S Germany, or 

temporary production curtailment, as witnessed in the case of EDF during a 2020 

heatwave with low water levels. The financial metrics employed by equity analysts to 

gauge a company's value and future growth are consequently influenced when profits 

dwindle due to water-related issues. 
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Industrial water usage presents a significant challenge, as it competes with essential 

societal needs for limited water resources, exposing companies to potential reputational 

risks. An illustrative case is Coca-Cola's loss of an operating license in north India in 

2014 due to water disputes with local farmers. Similarly, the semiconductor industry, 

exemplified by Taiwan Semiconductor Manufacturing Co. Ltd. (TSMC), grapples with 

water scarcity, leading to competition with local communities and farmers. With TSMC's 

substantial daily water consumption exceeding 150,000 tons and the release of 

wastewater containing heavy metals and toxic solvents, these issues underscore the 

complexities faced by such industries. 

Regulatory and litigation risks take on various forms and contexts. Notably, EDF, a 

prominent energy utility heavily reliant on nuclear power, was compelled to cease 

electricity generation at its 2,600-megawatt Golfech nuclear power plant in France due to 

elevated ambient and water temperatures.  

These examples underscore the intricate and multifaceted nature of regulatory and 

litigation risks in today's business landscape. The impact of climate change and water uncertainty 

have resulted in the adaptation of business practices across industry sectors. 

 

2.2 Evaluation of financial implications from water 

2.2.1 Corporate water risk disclosures  

Corporations routinely disclose their water data in annual sustainability reports, including 

critical metrics like total water usage, withdrawal, and details about their water management 

practices. Notably, the United States places substantial emphasis on comprehensive water risk 



 8 

assessment across industry sectors, exemplified by the GICS framework used in the S&P 500 

index. Contemporary approaches to water risk reporting and ratings draw guidance from a variety 

of frameworks, including the Global Reporting Initiative (GRI), the Sustainable Accounting 

Standards Board (SASB), the Task Force on Climate-Related Financial Disclosures (TCFD), and 

the Carbon Disclosure Project (CDP)'s Water Disclosure Initiative. These frameworks collectively 

empower organizations to better comprehend and communicate their water-related impacts, 

enhancing informed decision-making and the adoption of sustainable practices. 

Reports focusing on water security play a pivotal role in compelling companies to not only 

disclose their environmental impact but also to take measures to mitigate it (Burritt et al. 2016; 

Reig et al. 2013). This call to action leverages the influence of investors and customers, fostering 

a sense of corporate responsibility. The motivations underpinning voluntary corporate disclosure 

are of paramount importance, as they have a profound impact on the quality of these disclosures 

and their reliability for various stakeholders in making informed decisions (Deegan et al., 2019). 

The data collected through these initiatives provides influential decision-makers with the necessary 

information to effectively manage risks, seize strategic opportunities, and drive efforts towards a 

more sustainable world. By delivering high-quality water-related business and financial insights, 

these reports enable investors and creditors to gain a comprehensive understanding of the risks and 

opportunities associated with pressing issues like water scarcity, pollution, and other critical 

challenges (Ben-Amar and Chelli, 2018; Zhang et al., 2021; Botha et al., 2022). 

Nevertheless, there is a notable void in comprehending the economic dimensions of 

voluntary water disclosure at the corporate operations and market performance impact level. The 

existing frameworks, while valuable, exhibit limitations in their capacity to effectively gauge water 

risk exposure and understand corporate responses for mitigating these risks (KPMG, 2013; Larson 
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et al., 2012; Leong et al., 2014; Squillace et al., 2012). These frameworks typically offer partially 

quantitative insights and, aside from the CDP Global Water Reports, do not sufficiently establish 

the connection between physical water risk and its financial ramifications in corporate operations. 

To meet the growing need for financially-material water data, there is a compelling call for 

standardized frameworks, expanded data coverage, and heightened data quality to facilitate more 

robust assessment and informed decision-making (WWF, 2022). It is regrettable that, despite the 

increasing recognition of the scarcity of natural resources and the importance of sustainable 

environmental management, many companies still do not disclose the ramifications of climate-

related water risks or their strategies for risk mitigation, thus constraining their ability and 

decisions to address these risks during periods of climate transition (Larson et al., 2012; Sokolov 

et al., 2021; Kotsantonis et al., 2019, Zhang et al., 2021). Burritt et al. (2016) highlighted the 

importance of firm size, water sensitivity, and ownership concentration as key indicators 

influencing water disclosures among Japanese companies. Regarding capital market implications, 

Zhou et al. (2018) observed a significant influence of water information disclosure on the cost of 

capital in China. Likewise, Zeng et al. (2020) identified a substantial inverse correlation between 

water disclosure and a firm's systematic risk. 

2.2.2 Corporate Financial Metrics to Account for Water Risk 

With corporate water risks manifesting themselves both at the watershed and corporate 

governance level, investment decision-making needs to be informed by a valuation of the 

opportunity cost of the impacted industry (e.g., Blacconiere and Northcut, 1997; Dowell et al., 

2000; McKinsey et al., 2009). Before utilizing an evaluation tool, it is crucial to scrutinize the 

various indicators for measuring water risks in manufacturing companies and the financial sector. 
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The water risk exposure at the company level arises from the interplay of external (basin water 

risk) and internal (operational water risk) factors within the company's operations and value chain 

(Orr et al., 2014).  

Basin water risk factors are external events and developments that lie beyond a company's 

production facilities. Nevertheless, they can have a significant impact on operations due to their 

reliance on water resources. The evaluation of basin water risk aims to gauge the probability of 

specific water-related risk exposures. Key indicators include physical water risks (water stress, 

scarcity, drought, water quality, and flooding), regulatory water risks (laws, policies, enforcement, 

and infrastructure conditions), and reputational water risks (local water conflicts and negative 

media coverage). These indicators provide a comprehensive framework for assessing and 

managing water-related risks in a company's operations. Especially the water intensity offers 

valuable insights into a company's water dependency. 

Operational water risk factors are closely tied to a company's response to climate impacts, 

including risk avoidance, mitigation, acceptance, or transfer strategies. These risks can lead to 

reduced revenues and increased costs, impacting accounting metrics such as operating profit and 

earnings (net profit). Banks are particularly susceptible to credit default risks arising from water-

related events that impact companies exposed to water risk, which no longer have the capacity to 

meet their debt obligations. Investors, on te other hand, focus on changes in a company's expected 

future cash flows, affecting its fair market value, as water risks impact profit margins, return on 

equity, and return on asset ratios (WWF, 2019). Companies  with higher Environmental, Social & 

Governance (ESG) ratings generally outperform those with lower ratings. Indeed, extensive 

literature indicates a positive, though moderate, relationship between environmental and financial 

performance (Griffin and Mahon, 1997; USEPA, 2000; Williams and Siegel, 2001; Orlitzky and 
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Benjamin, 2001; Orlitzky et al., 2003). Numerous studies confirm a positive association between 

environmental performance and a company's market value, as seen by Dowell et al. (2000) and 

Cohen et al. (1995). A wide array of empirical studies has explored the effects of corporate 

environmental performance either on accounting-based profitability measures or on market 

performance. However, these studies provided mixed results, in which environmental performance 

either positively or negatively impacted market performance or where corporate accounting 

metrics behaved in the opposite direction market indicators (e.g., Lewandowski, 2017; Misani and 

Pogutz, 2015; Iwata and Okada, 2011). 

Traditionally, government water pricing has been at the center of the policy toolbox to 

impact corporate water stewardship. However, the materiality of this cost to corporate operations 

has not resulted in significant shifts of water risk management strategies. Hence, a wide range of 

approaches and financial risk models have been proposed to translate the impact of water on 

businesses and the capital markets, in attempts to extract a signal that can be used for policy design, 

including water accounting standards as proposed by the Alliance for Water Stewardship. 

Water-related risks are often assessed using WRI's Aqueduct and WWF's Water Risk Filter 

(WRF), though companies often combine multiple tools to address recognized limitations related 

to localized geospatial risks. Both Aqueduct and WRF rely on global hydrologic models and 

datasets, offering global coverage but are inherently biased towards regions with available 

calibration and validation data, introducing uncertainties in model inputs and parameters (Döll et 

al., 2016). 

Water risk valuation tools have been reviewed in Ceres' Investor Water Toolkit (Figure2.1), 

which aggregates metrics to quantify the financial value of water value for equities, indexes, 
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private equity investments and fixed income products (loans and bonds). A comprehensive list of 

such tools can be found in WWF's Valuing Water Database (WWF, 2020). Water valuation tools 

face challenges in generating accurate outputs due to limitations in available data and the generally 

simple models used to quantify the opportunity cost from water exposure. They often fail to 

adequately consider risks associated with events like floods or droughts and lack sufficient insight 

into a company's risk mitigation strategies for water quantity and quality issues (Bonnafous et al., 

2017). Furthermore, there is a lack of clarity regarding how reputational and regulatory risks can 

manifest and impact a company's financial standing. These issues are common across various 

water valuation tools (Xu et al., 2021). 
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Figure 2.1: Financial tools to compute the impact of water risk in stocks, bonds, corporate debt, and investment 

portfolios (Source. Ceres, 2021). 

 

2.3  Machine Learning Tools to Uncover Water-Based Risk Pricing and Market 

Performance 

In spite of the availability of valuation tools, access to climate data, and intricate models 

of climate change non-linear behavior (Alonso-Robisco et al., 2022), substantial mathematical 

challenges remain when assessing climate impact on corporate activities and the broader economy. 

In part the limitations are due to the need for advanced statistical tools to their increasing 
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complexity of the datasets, incomplete information, and the lack of microeconomic (company 

level) data (López de Prado et al., 2019).  

These limitations are compounded by the current corporate disclosure approaches lacking 

financial depth, resulting in largely physical water risk disclosures (Josset and Larrauri, 2021). 

This poses substantial challenges for both corporate water risk management and economic 

policy. Financial risk exposures extend beyond sustainability, a recognized issue in ESG 

scholarship. This limitation hampers investors ability to accurately assess risk and return, and 

corporate risk managers access to quantitative insights for risk transfer, internal risk 

management, and climate transition cost and investment decisions (Alshehhi et al., 2018; Gangi 

et al., 2020; Khaled et al., 2021; Chan et al., 2022; Ortas et al., 2019; Zhou et al., 2021). 

Machine learning methods have gained prominence in the realm of climate finance 

(Rolnick et al. 2022; Kumar et al. 2022). In sustainable finance, machine learning approaches 

leverage diverse datasets encompassing accounting metrics, physical risk attributes, and market 

performance indicators to establish relationships between relevant independent variables (Bolton 

et al, 2016; Alareeni et al., 2020; Lewandowski, 2017; Busch et al., 2020). These relationships 

enable the creation of models that predict or impute outcome variables, addressing the challenges 

of limited data disclosure. The convergence of financial data with climate machine learning (ML) 

models represents a promising frontier, building upon earlier research. For example, Raza et al. 

(2022) explored the reliability of Environmental, Social, and Governance (ESG) scores for asset 

managers, by utilizing ML tools to assess how financial data influences ESG scores for non-

financial public companies in the USA, UK, and Germany (2008 to 2020). Plakandaras et al.(2018) 

harnessed ML techniques to model climate change as a geopolitical risk, predicting its impact on 

various financial assets. Rolnick et al. (2022) illustrated the substantial influence of deep learning 



 15 

in climate investments, facilitating the selection of low carbon-emitting companies for portfolios 

and optimizing investment timing. Nguyen et al. (2021) leveraged machine learning to refine the 

forecast of corporate carbon emissions, a pivotal element in investors' risk evaluations, while 

establishing links to financial performance metrics. 

2.4 Knowledge Gaps and Dissertation Structure 

Academic literature has shown that financial materiality and capital markets risk have been 

addressed from a theoretical input-output, resource competition, and theoretical stakeholder 

perspective. Yet, there is limited empirical evidence on the relationship between water intensity 

and financial metrics, either using operational accounting indicators or from a corporate financial 

performance perspective in the capital markets.  This information is important to help understand 

(1) whether companies are rewarded for taking action on their risk exposures and better water 

stewardship, (2) whether capital markets-based water risk assessment can serve to incentivize 

sustainable corporate behavior, and (3) which metrics should be used in financial disclosures to 

indicate water sustainability under new recommended SEC (Securities and Exchange 

Commission) policies, or TCFD (Task Force on Climate-Related Financial Disclosures) 

regulation.   

The literature gap has informed our hypothesis that quantitative empirical relationships can be 

constructed between water use intensity and corporate financial or market performance to 

understand the material risks experienced by companies, and to facilitate corporate decision-

making for economic and societal benefit. In turn, this work can lead to empirically tested 

theoretical frameworks for further academic inquiry. Our approach to testing this hypothesis is 

three-fold: 
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Objective 1. Development of a methodology on the use of causal inference to investigate how 

water use intensities are related to financial performance metrics of corporations. This causal 

inference is based on binary treatment variables (high-low water intensity companies), based on 

water use data as a continuous variable.  The machine learning method was used to evaluate the 

relationship between corporate financial fundamentals and water intensities standardized by sales, 

operating profit and investment in fixed assets, thus bridging the gap between the financial and 

environmental assets.  The rationale for standardization is that water is used for industrial 

production, resulting in revenue generation and operating profit, and thus allows for company-to-

company comparison.  The fixed asset denominator is an indicator of how efficiently a facility or 

plant uses water for production and provides a benchmark for the return on fixed assets.  The 

limitation of this objective is that very few companies (e.g., 20% of S&P 500-listed companies) 

disclose water-related information, hence, a machine learning based imputation model will need 

to be developed. 

Objective 2.  Testing and application of machine learning methods to impute missing water 

risk data for public companies that are not disclosing any information related to their climate-water 

related exposures.  The input metrics are derived from widely available corporate accounting data, 

and imputed water intensity metrics are tested using known corporate disclosures.  The intent is to 

extract the financial metrics that are most predictive for water intensity indicators, and to use these 

metrics to impute missing values across industry sectors.  Despite the broad availability of financial 

metrics from quarterly disclosures, missing data limits our capacity to explore long term trends for 

water intensity and to develop robust panel data for temporally dynamic market impact analysis 

from water risks.  Hence, imputation models will be tested for financial metrics, and regression 

models will be used for market impact analysis. 
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Objective 3.  Development of multiple regression tools to assess the impact of water intensity 

on firm performance indicators in the market, while controlling for various confounding factors 

such as size, financial leverage, beta, and other indicators. To evaluate the overall influence of 

water intensity on market performance, confounding variables will be derived from the Barra risk 

model, extensively employed for predicting corporate performance based on a wide array of 

financial indicators. Outcome variables include share price return, return on assets (ROA) and 

return on equity (ROE), as well as Tobin’s Q, a proxy for long term value of the firm.  Overall, 

our approach and results are consistent with the interpretation that investors are seeking 

compensation for the potential impacts of water risk in their investment decisions.  The regressions 

will be tested for two time periods, comprising before and after promulgation of the Task Force 

for Climate-Related Financial Disclosures (TCFD), a financial regulation that compels companies 

to disclose their climate risks. The investigation was structured around the primary research 

questions, following a three-step process outlined in Figure 2.2. 
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Figure 2.2:  Dissertation Organization 

This dissertation explores quantifying the effect of water intensity indicators on corporate 

financial performance in Chapter 3. Chapter 4 proposes a methodology for the development of 

econometric models to predict water intensity metrics based on machine learning models. Then in 

Chapter 5, a multiple regression analysis of water impact on US stock return and other performance 

with 10-year panel data is carried out for internal decision-making and externally facing investor 

needs. Chapter 6 concludes and discusses future research stemming from this dissertation. 
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Chapter 3 Does Corporate Water Efficiency Deliver Market Returns? Empirical Evidence 

from Propensity Score Matching 

This chapter is submitted to the International Journal Finance Research Letter. 

3.1 Introduction 

Unpredictable water availability leads to increased water competition, resulting in social 

and economic conflict. The natural environment is a critical commodity input for sustained 

operational performance of firms, as water constraints limit the capacity to maintain a 

competitive advantage (Hart, 1995; Hart and Dowell, 2011; Christ and Burritt, 2015). Current 

business operations are already witnessing substantial financial impacts due to water resource 

challenges and the resulting ecosystem degradation. Project risks stemming from environmental, 

social, health, and safety concerns have demonstrated increased operating costs and amplified 

investor risk (e.g., Zhou et al., 2018; CDP, 2023 Daniel and Sojamo, 2012; Christ and Burritt, 

2017, Burritt et al., 2016).  At the same time, a growing number of investors is recognizing the 

materiality of climate-related financial risks across their investment portfolios and is demanding 

information to help them evaluate these risks (WEF, 2020; SEC,2022).  As a result, an increasing 

number of firms is disclosing its water use in financial reporting (Yu et al., 2020; Zhang et al., 

2021), and the Bloomberg Terminal is tracking water intensity metrics. Academic literature has 

explored water disclosure from economic, firm strategy, and accounting perspectives. Kuo et al. 

(2021) showed that firms with more effective risk management strategies have been shown to be 

more willing to conduct social corporate responsibility (CSR) strategies, including natural 
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resource management. This paper tests the hypothesis that disclosing firms with better water 

resource management indicators are rewarded by the market. 

The reasoning behind this is rooted in financial theory, suggesting that risk premiums 

stem from three primary sources: compensation for shouldering risk, behavioral biases 

influenced by investor preferences, and market constraints such as limited liquidity (Cornell, 

2021). The premise is that if investors care about corporate management of competitive and 

irreplaceable resources like water, these risks can be priced in expected stock returns or other 

market performance metrics. Empirical research on CSR disclosures (Ting, 2021) has shown 

significant relationships with firm profitability (e.g. ROA), and corporate value (e.g. Tobin’s Q) 

for small firms, but not for large companies. Other findings indicate a positive, but weak 

relationship between environmental and financial performance (e.g. Griffin and Mahon, 1997; 

USEPA, 2000; Williams et al., 2001; Orlitzky et al., 2001; Orlitzky et al., 2003), and a positive 

link between environmental and the market value of companies (Dowell et al., 2000; Nagy et al., 

2016). These results, however, tend to be based on literature reviews or corporate strategy 

(Alshehhi et al., 2018; Gangi et al., 2020; Khaled et al., 2021; Chan et al, 2022), contributing to 

limited guidance and standards for corporate disclosures on the choice of metrics for corporate 

water impact and risk to financial performance (Hart and Milstein, 2003; Larson et al., 2012).  

Business water footprint accounting, the use of water for a unit production of goods, is 

considered most commonly as an indicator of water stress for production and consumption of 

water resources in operations (Wang et al., 2021), but the use of this metric in a financial risk 

context is limited (Christ and Burritt, 2017). Moreover, Hain et al. (2022) and Bingler et al. 

(2022) showed that different physical metrics can lead to heterogenous results and cause 

problems when testing whether financial markets price physical risks or CSR actions.  Hence, the 
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choice of metric to quantify water impact on corporate financial performance and to support 

decision-making in firm disclosures must be carefully considered (Unit, 2015; Snijder, 2017; 

Arnold et al., 2020). Guidance from the literature on climate risk impacts and firm performance 

indicates that carbon intensity relative to sales serves as a useful proxy for climate transition risk 

(Gurvich and Creamer, 2022). Similar metrics for water are being reported on the Bloomberg 

terminal. 

This paper makes two major contributions to literature. First, it shows that water intensity 

of firms has significant impacts on Tobin’s Q, alpha and ROA, but is not significantly priced in 

share performance.  The closest related reference is Pan and Qiu (2022) who showed that 

climate-induced floods impacted firm performance particularly based on ROA and Tobin’s Q 

metrics for firms with more tangible asset investment. Relatedly, Zhang (2022) documented that 

carbon intensity is priced in stock returns, and Acharya et al. (2022) showed that physical 

climate risk from heat (related to droughts) affected a stock price premium. Second, it 

demonstrates that intra-sector firms cannot necessarily be compared in terms of water risk 

impacts, as differences in firm fundamentals need to be considered.  Industry classifications (e.g. 

NAICS, GICS) reflect production activities (Phillips and Ormsby, 2016), not operational 

financials, and thus relational inference with financial accounting performance should not be 

implied (Krishnan and Press, 2003).  

 

3.2 Data and Metrics 

Water intensity indicators were standardized to sales (WIPS), operating margins (WIPE), 

and fixed asset investments (WIPPE), in accordance with Bloomberg reporting metrics. The firm 

universe is based on S&P 500 index components exported from Bloomberg environmental and 
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financial datasets between 2017 and 2019. The cutoff date is based on delayed availability of 

information, the dearth of corporate water disclosures before 2017, and to avoid market volatility 

impacts from the Covid-19 outbreak.   

Since the PSM method is binary, two cohorts were defined. Based on histogram analysis, 

the treated group comprised 30% of companies with low water intensities and the untreated 

group as the remaining 70% of firms with high water intensities. This allowed for comparison 

between leader and laggard companies (Table 3.1). Similar 30:70 splits have been used in firm 

analysis of carbon emissions (Görgen, 2019). Essential control variables were selected from the 

Barra Risk Factor model after correlation analysis (Bender, 2013; Giese et al, 2016), and after 

recursive feature elimination which allowed for removal of the least sensitive variables (Gunduz, 

2021). The final set comprises inventory turnover ratio, fixed asset turnover, size, financial 

leverage, dividend yield, and volume.  These variables are similar to those used by Bolton and 

Kacperczyk (2021) using firm-level assessment of carbon emissions impact on share price 

return, and by Zhang (2022) to explain the impact of carbon intensity on country GDP. In 

addition to financial confounders, there are dummy variables for disclosure year and GICS 

industry sector classification. 
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Table 3.1. Mean firm-year water intensities classified by industry. 

Sector 
  WIPS (n = 302)   WIPE (n = 350)   WIPPE (n = 344) 

  High WI Low WI  High WI Low WI  High WI Low WI 

Communication Services   0.245 0.085  1.635 -  0.842 0.074 

Consumer Discretionary   0.700 0.020  5.501 0.173  2.278 0.177 

Consumer Staples   0.972 -  7.311 0.378  4.048 - 

Energy   2.541 0.005  29.322 0.014  2.530 0.045 

Financials   - 0.024  - 0.051  0.764 0.236 

Health Care   0.367 0.024  3.485 0.248  1.363 0.176 

Industrials   0.208 0.060  1.700 0.439  1.022 0.334 

Information Technology   0.363 0.040  2.287 0.216  1.616 0.209 

Materials   7.738 -  50.742 -  13.398 - 

Real Estate   0.324 -  2.078 -  - 0.153 

Utilities   94.497 -  466.044 -  56.029 0.252 

 

Financial performance metrics selected as outcome variables include share price return, 

volatility, return on equity (ROE), cash flow growth, alpha and Tobin’s Q. These indicators have 

been widely used to assess the financial performance of firms based on environmental risk or 

natural resource efficiency. For example, Cohen (1995) studied the relationship between 

pollution and share price return and volatility to demonstrate that the environmental leader 

portfolio equaled or exceeded that of the environmental laggards for S&P 500 companies during 

the period 1987-1990. Konar and Cohen (2001) found a positive relationship between 

environmental performance and Tobin’s Q. Nagy et al. (2016) analyzed the impact of ESG 

ratings performance on alpha as an indicator, relative to unrated firms.  
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Table 3.2.  Descriptive statistics   

 

3.3 Statistical Methods 

The propensity score matching (PSM) method was applied to estimate the causal 

relationship between water intensity indicators and market performance metrics. This method has 

seen recent applications in finance research (e.g. Wang ,2022; Leong ,2021; Nazarova, 2022; 

Nekhili et al, 2021; Reber et al, 2022; Darnall et al, 2022; Mu et al, 2023) and has several 

advantages over Ordinary Least Square (OLS) regression, including elimination or reduction of 

endogeneity effects and improved randomization of variables to test the treatment effect (e.g. Mu 

et al., 2006; Varvara et al., 2022; Kim and Park). In this work, the PSM method provides the 

average treatment effect on the treated (ATT) population to inform how water use intensity affect 

Variables N Mean Std. Dev. Min Median Max 

LOG_WIPS 681 -0.806 2.825 -9.938 -1.352 7.669 

LOG_WIPE 621 1.198 2.816 -8.184 0.835 10.068 

LOG_WIPPE 675 0.252 2.216 -8.188 -0.045 7.524 

Volume 1475 2.88E+08 5.54E+08 3.41E+04 1.52E+08 9.19E+09 

Financial Leverage 1489 6.760 49.176 1.108 2.885 1813.000 

Inventory Turnover Ratio 1024 24.469 126.045 0.463 5.717 2214.000 

Dividend Yield 1198 2.369 1.443 0.020 2.148 14.257 

Size 1480 10.164 1.008 7.820 9.972 13.902 

Fixed Asset Turnover Ratio 1357 8.267 12.944 0.148 5.280 145.808 

Share Price Return Rate 1460 0.153 0.293 -0.576 0.144 1.484 

Volatility 1450 24.879 7.911 10.851 23.374 72.403 

Cash Flow Growth 1494 59.654 1126.480 -289.965 8.478 41800.000 

Return On Equity (ROE) 1486 27.405 60.404 -71.709 16.394 1048.622 

Alpha 1426 -1.314 61.248 -372.048 -4.475 727.485 

Tobin's Q 1482 2.663 2.137 0.806 1.980 23.563 

Communication Services 1515 0.051 0.221 0 0 1 

Consumer Discretionary 1515 0.121 0.326 0 0 1 

Consumer Staples 1515 0.063 0.244 0 0 1 

Energy 1515 0.050 0.217 0 0 1 

Financials 1515 0.129 0.335 0 0 1 

Health Care 1515 0.125 0.331 0 0 1 

Industrials 1515 0.145 0.352 0 0 1 

Information Technology 1515 0.145 0.352 0 0 1 

Materials 1515 0.055 0.229 0 0 1 

Real Estate 1515 0.061 0.240 0 0 1 

Year_2017 1515 0.333 0.472 0 0 1 

Year_2018 1515 0.333 0.472 0 0 1 

Year_2019 1515 0.333 0.472 0 0 1 
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financial market performance metrics when both the treatment group and the control group are 

considered. Multiple propensity score matching algorithms were used to address the self-

selection problem and to demonstrate robustness (Smith and Todd, 2005). 

3.4  Empirical Results 

The logit regression (LR) results are shown in Table 3.3. The baseline results of positive 

values and significance of fixed asset turnover for all water intensity metrics indicate that firms 

with higher turnover ratios are more likely to exhibit better water use performance relative to 

their sales. From a water intensity per EBIT (WIPE) perspective, the size indicates that larger 

firms perform better. Dividend yield and financial leverage coefficients are negative for WIPE 

and WIPS, respectively, indicating lower profitability and debt for firms with elevated water 

intensities relative to operating margins and sales. These effects are not consistent across all 

sectors and years. 

The estimated propensity scores were then used in the matching algorithms to quantify 

the impact of the treatment effects of firms exhibiting low water use intensity compared to the 

control group.  Empirical analysis of the impact of low water intensity on financial market 

performance metrics using the three sets of water intensity indicators on six market metrics show 

that impacts on ROE, Tobin’s Q and alpha are significant (Table 3.4). Lower water intensities 

relative to sales have a negative effect on ROE, while those standardized to operating profit 

positively impact ROE. Positive and significant ATT results on ROE suggest a significant 

beneficial effect the more efficient a company is with using water as an input for profit 

generation. The effect is reversed with respect to sales (WIPS), which indicates that industry 

sectors whose production and revenue generation relies heavily on water resources, such as 

energy, utilities and industrials, are negatively impacted by lower water use.   
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Table 3.3. Logistic estimates of propensity scores for water intensities 

  WIPS WIPE WIPPE 

Volume 3.89E-10   -6.64E-11   3.13E-10 * 

Financial Leverage -0.146 * -0.015   -0.069   

Inventory Turnover -0.002   -0.002   -0.001   

Dividend Yield 0.102   -0.187 * 0.006   

Size 0.065   0.483 *** 0.010   

Fix Asset Turnover Ratio 0.281 *** 0.039 *** 0.025 ** 

Communication Services 0.325       1.836 * 

Consumer Discretionary -0.373   -0.631   0.679   

Consumer Staples     -2.743 ***     

Energy -0.098   -1.439 ** 0.683   

Financials         3.019 * 

Health Care 0.220   -0.310   0.577   

Industrials -0.920 * -1.540 *** -0.889   

Information Technology         0.478   

Materials             

Year_2017 -0.740 *     -0.776 ** 

Year_2018 -0.507       -0.597 * 

Year_2019             

              

LR chi2(12) 117.920   87.720   37.440   

Prob > chi2 0   0   0.001   

Log likelihood -129.098   -162.723   -166.645   

Pseudo R2 0.314   0.212   0.101   

Observations 302   350   344   

Note: Constant terms are included but not reported. Robust standard errors in parenthesis. “***”, “**” and “*” refer 

to two-tailed significance at the 1%, 5% and 10% level, respectively. 

 

While no prior research on the relationship between water intensity and ROE is available, 

a positive relationship between environmental performance or ESG improvement and ROE has 

been shown (Buallay, 2019; Alareeni and Hamdan, 2020; Nguyen et al., 2022). Alareeni et 

al.(2020) showed that environmental and CSR disclosure are negatively correlated with both 

ROA and ROE. While negative correlations with profitability have been interpreted as the result 

of higher financial costs and lower operational and financial performance associated with 

environmental strategy implementation, the positive ATE of WIPE on ROE indicates that more 
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efficient water use benefits firm profitability. While no significant share price return benefit has 

been seen yet in response to lower water intensities, the ROE benefit serves as interpretive 

guidance for future estimates of share price growth rate and that of the firm’s dividends. 

 

Table 3.4. Summary of PSM analyses on the impact of water intensity on financial performance 

 

Notes: For the nearest neighbor matching, using the caliper=0.025 and for 3-nearest neighbor matching, using 

caliper=0.02 for three indicators for comparison. The Epanechinikov kernel bandwidth uses 0.02 and 0.025 for 

kernel matching. The t-statistics are reported in parentheses. “***”, “**” and “*” refer to two-tailed significance at 

the 1%, 5% and 10% level, respectively. 

 

The impact of WIPS and WIPE on Tobin’s Q are positive and significant in most 

matching algorithms, indicating that lower water intensity and operational efficiency results in 

higher firm valuations. Pan and Qiu (2022) showed that climate-induced floods impacted firm 

performance particularly based on ROA and Tobin’s Q metrics for firms with more tangible 

asset investment (PP&E). Positive effects on firm valuation have been reported for ESG 

performance and certification (Wong et al., 2021, Konar and Cohen, 2001). Nguyen et al. (2022) 

found that the magnitude of the influence of the ESG practice on Tobin’s Q is significantly 

    

Stock Price 

Return 
Volatility 

Cash Flow 

Growth 
ROE Alpha 

Tobin's 

Q 

WIPS 

Nearest 

Neighbor 

N(1) 2.335% 1.033 4.648 -10.068* 5.917 0.442* 

N(3) -0.131% 0.807 5.707 -10.086* 6.768 0.393* 

                

Kernel 
EPAN(0.02) 0.987% 0.571 6.342 -9.282* 6.199 0.443 

Normal 2.241% 1.006 2.989 -8.938* 9.809 0.556* 

                  

WIPE 

Nearest 

Neighbor 

N(1) 1.479% 0.432 -7.177 22.817** 4.305 0.574** 

N(3) 2.290% 1.366 -5.122 15.247* 4.319 0.374 

                

Kernel 
EPAN(0.02) 1.095% 0.594 -7.344 13.512 6.558 0.380 

EPAN(0.025) 3.349% 0.511 -8.359 14.282 5.22 0.401* 

                  

WIPP 

Nearest 

Neighbor 

N(1) 3.568% 1.477 9.964 -1.281 15.859*** 0.229 

N(3) 2.211% 0.406 4.101 2.935 11.463* 0.389 

                

Kernel 

EPAN(0.02) -0.394% 1.221 1.946 -3.348 9.376* 0.223 

EPAN(0.025) -1.302% 0.753 2.589 3.211 9.15 0.292 

Normal -2.026% 1.089 2.298 1.136 9.599* 0.252 
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higher than that of paired ESG-ROA and ESG-ROE effects. Alareeni and Hamdan (2020) 

showed that environmental and CSR disclosures are positively related to Tobin’s Q, which may 

infer that good water resource governance benefits firm value. 

The water intensity normalized by fixed asset investment (WIPPE) only exhibits 

significantly positive effects on the firm’s alpha returns, based on most matching algorithms. 

Since alpha is a risk factor, the positive effect of water efficiency on excess returns may indicate 

that the markets price in the lower risk of assets becoming less productive, and returns less 

volatile, under water resource constraints. Similar results were observed by Arnold et al. (2020) 

for firms with high fixed asset investments such as energy utilities. Kazdin et al. (2021) showed 

that companies with low carbon emission intensities have high excess alpha returns, which may 

reflect more efficient operations. Madhavan et al. (2021) discovered positive correlations 

between alphas and factor ESG scores. The results are robust given their significance across 

multiple matching methods. Fixed effect regression of matching groups (data not shown) 

indicated similar significance of paired relationships. 

3.5  Cross-Sector Pairs in Matching Treatment Effects 

A general assumption in sustainability accounting, by using production metrics such as 

water footprints as a water stress measure, is that water security, dependency and operational 

risks can be classified by industry sector or subsector (CDP, 2016; Ceres, 2015; SASB, 2015; 

Wang et al., 2021).The assumption of intra-sector performance as a benchmark was tested using 

the proposed water intensity indicators. By analyzing the nearest neighbor matching pairs, the 

treated-untreated matching pairs for the three water intensity indicators were analyzed by sector 

distribution (exemplified for WIPS in Figure 3.1). When corrected for financial fundamentals 

and sector biases, water intensity factor matching does not strictly follow NAICS production 
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classifications.  Information technology, health care and consumer discretionary firms dominate 

matching pairs for all water intensity effects, with approximately one third of companies 

matching within sector. The paired companies in the control group are in multiple industry 

sectors. Since PSM compares companies based on water intensity metrics but matches them 

based on similarities in their (financially-focused) propensity scores, cross-sectoral panel 

comparisons are less biased than sector-based sampling. For example, Amgen Inc (Health Care) 

and Hanesbrands (Consumer Discretionary) are a treated-untreated WIPS match because of 

similar financials. On the other hand, Microchip Technology Inc and HP Enterprises are a WIPS 

match within the IT industry.  These results have implications for sustainability accounting and 

indexing strategies based on water risk exposures (Larson et al., 2012; Adriaens et al., 2014). 

According to Zhang (2022), employing cross-sectional stock return regression analysis, 

significant cross-country, cross-firm, and cross-time impacts of carbon risk pricing were 

observed. 
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Figure 3.1: Paired industry sector composition for propensity score matching analysis of water Intensity per Sales 

(WIPS), after correction for confounding financial variables. 

 

3.6  Conclusion  

This paper sought to test the hypothesis that water use intensity is priced in the market 

through share price returns, similar to what has been observed with carbon intensity metrics.  No 

discounts or penalties were observed.  However, while water intensity indicators based on sales 

and operating margin impacted ROE and Tobin’s Q, the indicator based on investment in fixed 

assets only had significant impact on alpha. The positive impact on ROE may portend future 

share price behaviors in response to water intensity management. Further, it posits that industry 

sector classification is not a useful benchmark for financial water intensity performance, given 
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differences in fundamentals. While these findings may have been impacted by data distribution 

bias resulting from the pooled binary treatments of limited disclosures, the size of the dataset is 

similar to other studies (Zheng et al., 2022). Future work should explore the use of machine 

learning to impute water intensity metrics from financial fundamentals for non-disclosing firms 

to enable analysis on expanded datasets. 
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Chapter 4 Machine Learning to Predict Corporate Water Efficiencies from Financial 

Accounting Metrics  

4.1 Introduction 

Climate change is an economically disruptive force for companies (CDP, 2016; Daniel & 

Sojamo, 2012; Christ et al., 2017; Burritt et al., 2016). From the analysis of the largest 500 

global companies, it was reported that the potential financial implications from climate change-

related impacts were nearly a trillion dollars (Ceres, 2019). Water scarcity and the uncertainty 

related to availability are key issues driving the need for investment in climate resilience. To 

address the needs of a growing world population of $9.7 billion, water demands are expected to 

increase by 55% by 2050, straining industrial operations, affecting supply chain risks, resulting 

in increasing commodity price volatility, and decreasing supply reliability. The World Bank 

approximated that water scarcity could potentially lead to regions losing up to 6% of their GDP. 

Based on the natural resource-based view of the firm, the natural environment is a critical 

commodity input for sustained operational performance of firms, as water constraints limit the 

capacity to maintain a competitive advantage (Hart et al. , 1995; Hart & Dowell, 2011; Christ & 

Burritt, 2015). Businesses are currently grappling with significant financial implications 

stemming from the competition for water resources and the resultant degradation of ecosystems. 

These risks are at multiple scales, with impacts from the corporate level to industry and sector 

scale, impacting systemic risk. An increasing cohort of investors is acknowledging the 

materiality of climate-related financial risks within their investment portfolios and is seeking 

information to effectively evaluate and quantify these risks. (Moody’s, 2019; WEF, 2020). 

Despite the growing awareness of natural resources scarcity and the importance of 

sustainable environmental management, many companies do not disclose the impacts of climate-
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related water risk or their risk management strategies, thus impairing the opportunity to hedge or 

mitigate these risks during climate transitioning (Larson et al., 2012; Sokolov et al. , 2021; 

Kotsantonis et al. 2019).  To understand the exposure of companies to climate water risks, 

analysts rely on raw data from voluntary environmental, social and governance (ESG) risk 

disclosures, sustainability reports, and compliance reports under the task force on climate related 

financial disclosures (TCFD). Since the majority of corporate directors (Pinney et al., 2019) still 

do not believe that disclosures on sustainable governance and operations are important in helping 

investors make informed decisions on climate risk exposures, the incorporation of external data 

sources for additional validation is necessary. From a public policy perspective, the lack of 

standardization of water risk reporting, combined with the data gaps leads to incomplete 

assessments, biases, and potential greenwashing of risks (Kotsantonis et al. 2019).  At the same 

time, financial policy increasingly requires more stringent due diligence on financial risk 

exposures to climate change and its impacts, including water-related risks.  

This data gap in support of the fiduciary duties of corporate and investment managers 

presents new opportunities for innovative data fusion and imputation approaches to link financial 

and physical risks from water through machine learning models (Tian et al., 2023a; 2023b). The 

monitoring of highly granular and temporal data will be necessary for water risk pricing, 

disclosure requirements, and design of risk management strategies (WWF, 2022). Economically 

speaking, water-related natural disasters remain the leading cause of loss of life and property 

(UN, 2021), and are the primary risk in insurance portfolios (Marchal et al., 2023). Climate water 

risk information, especially financially-material water data disclosures, call for standardized 

frameworks, expanded data coverage, and improved data quality to enhance assessment and 

decision-making. Current approaches to water risk reporting and ratings are guided by various 
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frameworks such as the Global Reporting Initiative (GRI), the Sustainable Accounting Standards 

Board (SASB), the Task Force on Climate-Related Financial Disclosures (TCFD), and CDP’s 

Water Disclosure Initiative. However, these frameworks are limited both in terms of 

appropriately capturing water risk exposure and corporate response to mitigate this risk. 

Moreover, these assessments often lean towards semi-quantitative approaches and, with the 

exception of the CDP Global Water Reports, frequently do not establish a direct connection 

between physical water risk and the financial risks within corporate operations. 

The impact of climate water risk is a more complex issue than carbon, mainly because 

water is local and risk exposures manifest themselves in the context of supply chains, logistics, 

floods and as an input in manufacturing operations (Larson et al., 2012; Tian et al., 2023b).  

Water availability fluctuates daily, while groundwater and climate patterns undergo changes over 

decades. Water withdrawals or contamination at specific sites have far-reaching impacts across 

vast watersheds and global product footprints. These variations, compounded by supply chain 

complexities and climate signals, could prompt resilience investments, or worsen scarcity. (Davis 

et al., 2021;  Lawrence et al., 2020; Josset et al., 2021). These attributes exhibit substantial 

variation between industrial sectors and across types of water risks, underscoring their site-

specific nature (Alcamo et al., 2000; WWF, 2022). Moreover, existing disclosure methods lack 

financial depth, leading to water data that holds limited significance beyond the realm of 

physical risks (Josset and Larrauri, 2021). This raises many challenges from a corporate water 

risk management and economic policy perspective, as financial risk exposures transcend 

sustainability imperatives, a recognized issue among ESG scholars. For investors, this leads to an 

inability to accurately evaluate risk and return implications of investments, and for corporate risk 
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managers, the lack of quantitative knowledge impacts decisions on risk transfer, internal risk 

management and climate transitioning costs (Ortas et al., 2019; Zhou et al. 2021).  

Corporate water intensities have been used as financial proxies for climate transition risk 

(e.g. Tian et al., 2021; 2023a), as they relate water intensities in an operational and financial 

asset risk context. This information is generally not disclosed in financial or sustainability 

accounting reports and is difficult for investors or regulators to assess, and for risk managers to 

address, as required by the Task Force for Climate-Related Financial Disclosures (e.g. Busco et 

al., 2020; Demaria & Rigot, 2021). While water intensities have not been used in financial 

reporting, a corollary exists with carbon intensities which have been used in regression models to 

assess impacts on corporate efficiency, profitability and valuation (Andersson et al., 2016; 

Cheema-Fox et al., 2023; Harris et al. , 2015; Hao et al., 2018; Heaps et al., 2014; Matsumura et 

al., 2014; Gurvich et al., 2022; Alex et al., 2022;  Shameek et al., 2001).  However, the 

development of econometric models to predict carbon- or water-based financial indicators from 

corporate fundamentals has not been attempted, despite the need to link climate change with the 

financial system that is impacted by carbon and water risks  (Monasterolo et al. , 2020).   

Machine learning methods have been used to develop quantitative relationships for a 

wide range of financial applications in the context of climate finance (Rolnick et al., 2022; 

Kumar et al., 2022). The basic premise of machine learning in sustainable finance is to employ 

datasets reflecting accounting or risk and return values to train relationships between variables of 

interest to develop models that can be used to impute or predict outcome variables where limited 

data disclosure is available. For example, Nguyen et al. (2021) use machine learning to improve 

the prediction of corporate carbon emissions for risk analyses by investors. Established 

calculation methods such as environmental input-output (I/O) models, process analysis or hybrid 
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approaches require intensive data up to the level of emission sources, activities, raw materials, 

and emission factors, most of which are not publicly available (Wiedmann et al. , 2009). 

Additionally, the (un)reliability of self-reported emissions, especially in the absence of 

independent audits, is a complex issue, heightened by firms' strong motives to avoid 

environmental controversies (OECD, 2020).   

Although there’s rising demand from investors and regulators, research on estimating 

corporate carbon emissions or water use methodologies is still in its early stages. So far, financial 

data providers such as MSCI ESG Metrics or Thomson Reuters ESG provide estimated data for 

non-disclosure firms. Traditional estimation models often rely on extrapolation from historical 

data, production records, or peer companies. Subsequently, researchers have adopted advanced 

regression techniques, such as Ordinary Least Squares (OLS) or Gamma Generalized Linear 

Model (GLM), for empirical analysis (CDP, 2016; Goldhammer et al., 2017; Griffin et al. 2017). 

Empirical models typically utilize either manually collected predictors like industry and location-

specific revenue (e.g., CDP) or focus on specific index-based sample universes (e.g. S&P 500 

US firms; Griffin et al., 2017), or to a specific industry (EU chemical, engineering and industrial 

firms; Goldhammer et al., 2017).  

Due to these limitations, the need for more flexible and robust models that can predict 

corporate carbon emissions and water risk exposures on a broader coverage of firms remains 

elusive, restricting disclosures to investors and corporations for management decision-making 

(Sun & Scanlon, 2019). Machine learning applications and deep learning have allowed for 

uncovering trends between physical risk exposures and corporate financial fundamentals. Since 

financial data are reported on a quarterly basis, while water use data are scarcer, ML models 

open the opportunity to predict water risk from financial performance metrics. Because research 
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has shown that ESG data and financial metrics are positively correlated (Sharma et al. , 2022), 

the identification of corporate financial variables that affect ESG scores has become an attractive 

area of research (Giesy et al., 2019; D’Amato et al., 2021).  In corporate financial accounting, 

balance sheet and income statement data have been used as predictors of carbon emissions and 

ESG performance. For example, CDP estimated corporate carbon emissions from financial 

accounting metrics, by using a linear regression model. Chen et al. (2020) suggested a machine 

learning method to measure a company's ESG risk premium and alpha, integrating ESG and 

corporate financial data. The results showed that alternative datasets capture ESG premiums 

better than traditional financial indicators, even when considering that ESG metrics are variable 

across data vendors (Henriksson et al., 2019).   

Given these knowledge gaps, and the lack of corporate water disclosures, this chapter 

explores whether ubiquitously available financial accounting metrics can be used as the basis for 

econometric models to predict water intensity indicators of growth companies across eleven 

industry sectors listed on the S&P 500 index. The hypothesis is that, since water intensity is an 

efficiency measure of how much water a company uses relative to sales (revenue), to operating 

income (EBIT; earnings before interest and taxes), and to fixed asset investment (PP&E; plant, 

property, and equipment), it may be possible to predict these indicators from corporate 

fundamentals. These metrics provide insight in how efficiently a company is able to generate 

revenue or profit from its water use, how water intensive a physical asset or plant is, or whether a 

production facility is at risk of becoming stranded due to insufficient water resources for 

production.  The use of linear regression, Lasso, Random Forest, and Adaptive boosting models 

was used to predict water intensity indicators by training models on financial and water data 

from disclosing companies for 2,550 company years (2017-2021) in 11 sectors of the economy. 
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Since only approximately 20% of S&P500 index companies disclose water use information, 

financial factor models were developed using this training set, using water intensity indicators as 

the dependent variable. A final 3- or 6-factor model was developed for the three different water 

intensity metrics, resulting in predictive capacity (R2) of 0.67-0.75.  Financial metrics were 

derived from the Barra model, a multi-factor model that measures the overall risk of a public 

company relative to the broad market (Dunn et al. , 2018, Giese et al. , 2019). These factors 

include inventory turnover ratio (ITR), financial leverage, net fixed asset turnover (FAT), price-

to-book ratio (PBR), and size. This study expands on the literature on water risk disclosures by 

linking physical measures to financial indicators in support of regulatory requirements under 

TCFD, and to allow for corporate decision-making within and across sectors. The RF factor 

models proposed here provide new perspectives on the measurement of water risk impacts on 

financial performance.  

The remainder of this paper is organized as follows. Section 2 lays out the data and 

methodology. Section 3 presents the estimation results. The final section carries the main 

findings, the conclusion, and the limitations of this paper. 

4.2 Data and Feature Selection 

We quantified the water intensity indicators disclosed by companies listed on the S&P 

500 index relative to a range of financial accounting fundamentals (sales, operating profit, and 

net fixed asset investment).  The rationale for these three metrics is that if companies are to 

reduce their water use in operations, financial water use efficiencies indicate the dependency of 

the company and its facilities on water to generate sales, manage their costs and deliver returns 

on investments in fixed assets. The water uses and indicators, as well as financial accounting 

data were exported from the Bloomberg Terminal environmental and financial dataset, using a 5-



 39 

year time horizon between 2017 and 2021. The corporations on the index comprise eleven 

industry sectors (Global Industry Classification System) as shown in Table 4.1, which also 

includes the distribution of companies disclosing water intensity metrics to investors.   

 

Table 4.1.  Distribution of water-disclosing vs non-disclosing companies across industry sectors 

Sector Disclosure Non-Disclosure TOT_CompanyYear 

Communication Services 42 88 130 

Consumer Discretionary 133 172 305 

Consumer Staples 94 66 160 

Energy 65 60 125 

Financials 82 243 325 

Health Care 180 135 315 

Industrials 132 233 365 

Information Technology 179 186 365 

Materials 104 36 140 

Real Estate 116 39 155 

Utilities 73 67 140 

 

It notes that firms with water disclosure data are represented in a wide range of industries. 

In Table 4.1, it presents the distribution of firms in our sample with respect to the Global 

Industry Classification (GIC) with the highest and the lowest water disclosure ratio. Real Estate 

and Materials are the most represented industries, with each one having more than 70% firms in 

S&P 500 index disclosing their water use. Financial, Communication Services, and Industrial 

sectors have the lowest reporting ratio. The ranking is similar when we rank industries with 

respect to the recent frequency of disclosure. Health Care and Information Technology sectors 

comprise the most disclosing industries, while the least disclosing industry is Communication 

Services. In general, the disclosing rate increases annually, indicating the increasing response 

from the public listed companies to climate risks and investor demands. For industry annual 
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disclosure rate, Materials and Real Estate sectors lead, while the laggards are comprised in the 

Finance, Communication Services and Industrials sectors. 

 

 

Figure 4.1: Distribution of water-disclosing companies across industry sectors by year 

 

4.2.1 Feature Selection 

Financial metrics (features) that are widely available across publicly listed firms since 

they need to be disclosed under financial regulation by the SEC. These features are used in the 

Barra Risk Factor model to forecast performance risk based on the firm’s microeconomic 

characteristics, and were incorporated in our models (Lu et al. , 2018; Bender et al. , 2010; 

Nielsen et al. , 2010). The Barra model includes 38 fundamental factors, including accounting 

and financial statement variables, in addition to market valuation metrics. Based on Giesy et al. 

(2019), who used financial factors to predict the impact of ESG ratings on corporate financial 

performance, a subset of the Barra factors was selected from three subgroups of descriptors: 

corporate efficiency metrics; metrics capturing corporate profitability; and factors indicative of 

financial strength and market performance (Table 4.2).  Examples of the first category include 
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inventory turnover rate, fixed asset turnover rate, cash flow growth, sales growth and price-to-

book ratio. Examples of the second group include earnings-per-share (EPS) growth, operating 

return on invested capital (ROIC), and EBIT (operating profit). Finally, illustrative features of 

the third group comprise financial leverage (corporate debt), volume, momentum, size, and beta 

(market volatility). For further description, please see table legend. 

 

Table 4.2  Descriptive statistics for the variables used in the analysis including the number of observations, mean, 

standard deviations, and minimum and maximum values. 

 

Variable Observations Mean Std.Dev. Median 

                            Financial Fundamental Variables  

Inventory Turnover 1617 14.314 30.306 5.408 

Financial Leverage 2429 7.304 46.019 2.954 

PE 2409 35.651 86.799 22.136 

EPS Growth, % 2464 6.898 2153.721 13.412 

Cash Flow Growth, % 2273 49.082 915.793 8.039 

Sales Growth, % 1836 8.516 20.656 6.150 

Operating Margin, % 2490 12.529 27.185 11.559 

Volatility 1661 31.157 13.149 27.655 

Fixed asset turnover 2254 7.446 11.712 4.642 

Price-to-book ratio 2361 10.453 48.156 3.567 

Beta 2382 1.236 2.935 1.125 

Momentum 2439 -0.615 15.262 -1.217 

Volume 2440 317.40E6 622.26E6 161.68E6 

Operating ROIC, % 2488 14.308 16.289 10.841 

EBIT, $M 2312 3217.428 7714.135 1286.500 

Size, $M 1633 10.293 1.086 10.106 

Water Intensity Variables 

LOG_WIPE 1084 0.996 2.943 0.581 

LOG_WIPS 1200 -0.950 2.887 -1.466 

LOG_WIPPE 1191 -0.039 2.396 -0.338 

Note:  Size is the natural logarithm of market capitalization;  Beta (β) is a measure of the volatility (or systematic 

risk) of a security compared to the market as a whole (usually the S&P 500) calculated over a one-year period; 

Volatility is the annual stock return volatility calculated over the one-year period; ROIC, return on invested capital; 

EBIT, Earnings before interest and taxes, a profitability metric; Momentum is the empirically observed tendency for 

share prices to rise or fall; EPS, earnings per share; PE, price to earnings ratio, a metric that indicates future growth 

potential of the company. 
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To understand the relationships between the predictive features described here and the 

target outcome variables (water intensity indicators), the initial examination is the feature 

correlation matrix to develop an initial understanding of the Pearson correlation coefficients 

between features (financial indicators) and target water intensity indicators. Multicollinearity 

between features exposes the model to excess noise that may negatively affect model predictions. 

Tree-based models, which are rule-based, are relatively resistant to the noise introduced through 

predictive feature multicollinearity (Friedman & Popescu 2008). As such, most features are kept 

throughout each model to understand which are most successful at predicting the water intensity 

indicators. The summary statistics for the variables selected after correlation analysis of the 

original Barra Risk Metrics are shown in Table 4.2. 
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Since multicollinearity can introduce bias in linearized models, resulting in overfitting or 

increased prediction errors, recursive feature elimination (RFE) was applied to arrive at selected. 

features that represent both financially relevant metrics, for each of the models and water 

intensity indicators. Recursive feature elimination does not make prior assumptions about the 

most relevant features but rather fits the model to all the features recursively and eliminates the 

least predictive feature after repeatedly removing the least significant metrics until the 

desired number of features is obtained. This technique is useful to eliminate interdependencies 

and collinearity that may exist between the model features and to reduce noise within the data 

(Pedregosa et al., 2011). The model was applied initially to the training data with all features 

fitting to the three water intensity indicators. As shown in Figure 4.2, the RFE technique 

indicated that three features (independent metrics) were sufficient to design our regression 

models for each water intensity per sale indicator. 

              

WIPS     WIPE                                 WIPPE 

Figure 4.2: REF Selection with accuracy of cross validation score analysis (RF Model) 

4.3   Regression Models 

To predict the water intensity metrics (WIPE, WIPS, WIPPE) from corporate financial 

fundamental factors, multiple quantitative regression and machine learning models were 



 45 

constructed. These include advanced machine learning models, Random Forest, AdaBoost, 

LASSO, and regression models such as OLS and GLM models. Ordinary Least Squares (OLS) 

Regression is commonly used to analyze financial data and estimate the relationship between 

features and targets by minimizing the sum of squares between the observed and predicted 

values. Generalized Linear Models (GLM), as applied by CDP for carbon emissions prediction 

from financial data, use a multi-variable Gamma-Generalized Linear Model (Gamma-GLM) 

using revenue and production activity information (CDP, 2020). The aim of the machine learning 

model is to be able to produce predictions using widely reported financial features as well as 

industry-based classifications (Serafeim et al. , 2022).   

Ensemble methods represent a class of non-parametric machine learning algorithms 

formulated to make predictions through the concerted contributions of multiple estimators. 

Among these methods, tree-based ensemble techniques exhibit notable qualities, including 

resistance to overfitting, immunity to the multicollinearity phenomenon among input features, 

and robust performance in the presence of noisy datasets, even in scenarios where outliers are 

prominent. Notably, in contrast to linear models, tree-based ensemble regressors require minimal 

data preprocessing and exhibit insensitivity to the effects of scaling and normalization. The 

subsequent models employ decision tree (CART) base estimators to construct adaptable models 

characterized by diminished bias and variance (Maclin & Optiz 1999). The Random Forest 

algorithm is a parallel ensemble learning meta-estimator primarily designed to mitigate model 

bias through the utilization of bagging (Breiman et al. 2001). Within ensemble algorithms, 

Random Forest employs bagging techniques to construct a randomized forest of decision tree 

estimators by selecting random subsets from the original training set with replacement. These 

individual estimators' predictions are then aggregated to produce a final prediction. These 
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methods effectively mitigate variance and overfitting associated with decision trees by 

introducing randomness during construction and subsequently forming an ensemble through 

prediction averaging. The Adaptive Boosting algorithm (AdaBoost) functions as a sequential 

ensemble learning meta-estimator with the principal objective of mitigating model bias through 

the application of boosting techniques (Freund & Schapire,1996). Boosting accomplishes the 

reduction of training errors by amalgamating a sequence of weak base learners, thereby forming 

a more potent predictor that strives to minimize the sum of squared error residuals in its 

predictions. Least Absolute Shrinkage and Selection Operator (LASSO), a regression analysis 

technique, enhances both prediction accuracy and the interpretability of statistical models 

through variable selection and regularization. 

The models are trained on a set of companies comprising 75% of the total sample 

universe considered in this study (Table 4.1). All predicted metrics are assessed based on a 

holdout test set comprised of 25% of the total samples not previously seen by the model. The 

model performance was evaluated on three metrics: R2 (Regression Score), MAPE (Mean 

Absolute Percentage Error) and  MSE (Mean Squared Error). The R2 regression score function 

represents the proportion of variance in the target or dependent variable, that can be attributed to 

the independent variables, or input features, in the model. It provides a measure of the goodness 

of fit between the data and the model and serves as a measure of how well-unseen test samples 

are likely to be predicted by the model, through the proportion of explained variance. The mean 

absolute percentage error (MAPE) calculates a measure of prediction accuracy as a ratio of 

relative error between the ground truth value and the predicted value (Pedregosa et al., 2011). 

The difference is divided by the corresponding ground truth value and this ratio is summed for 
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every predicted sample. The Mean Squared Error (MSE) represents a risk function, aligned with 

the anticipated value of the squared error loss. 

After recursive feature elimination, feature importance was tested as a measure used to 

calculate the relative predictive performance score of each input feature in a model for each 

target. The score is indicative of the predictive strength of an input feature. Features with a 

higher feature importance have a larger impact on the model predictions relative to the other 

input features.  

 

4.4 Results and Discussion 

4.4.1 Feature Selection for Regression /ML models 

To highlight features that drive model performance, Table 4.4 shows the important 

features that were selected using RFE by applying the different algorithms (OLS, GLM, Random 

Forest, etc.) in our analysis. As the results show, the OLS and GLM models exhibit limited 

efficacy in reducing factors during the analysis process, given the larger number of factors 

included. Conversely, the LASSO model demonstrates effective factor reduction, albeit with 

relatively weaker overall performance. Notably, the tree-based models consistently outperform 

other approaches in terms of both feature reduction and prediction accuracy. Specifically, the 

random forest model emerges as the optimal choice, minimizing the number of prediction factors 

required. The impact is dependent on the water intensity indicator (dependent variable) that was 

selected. For example, for water intensity per sales (WIPS), the model comprises three key 

variables: inventory turnover, fixed asset turnover, and financial leverage. The WIPE-based 

reduced factor model incorporates these variables alongside additional metrics, namely price-to-

book ratio, return on invested capital (ROIC), and size. Lastly, the WIPPE model encompasses 
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the inventory turnover, fixed asset turnover, financial leverage, along with price-to-book ratio, 

volume, and size, for a comprehensive evaluation of water index performance prediction. 
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Table 4.4. Feature selection variables resulting from RFE for five regression/ML models. 

 

OLS GLM LASSO RF ADA

INVENT_TURN INVENT_TURN INVENT_TURN INVENT_TURN INVENT_TURN

FNCL_LVRG FNCL_LVRG FNCL_LVRG FNCL_LVRG FNCL_LVRG

PE PE PE NET_FIX_ASSET_TURN PE

EPS_GROWTH SALES_GROWTH SALES_GROWTH EPS_GROWTH

CASH_FLOW_GROWTH PROFIT_MARGIN PROFIT_MARGIN CASH_FLOW_GROWTH

SALES_GROWTH VOLATILITY_360D VOLATILITY_360D SALES_GROWTH

PROFIT_MARGIN NET_FIX_ASSET_TURN NET_FIX_ASSET_TURN PROFIT_MARGIN

VOLATILITY_360D PX_TO_BOOK_RATIO PX_TO_BOOK_RATIO VOLATILITY_360D

NET_FIX_ASSET_TURN OVERRIDE_RAW_BETA OVERRIDE_RAW_BETA NET_FIX_ASSET_TURN

PX_TO_BOOK_RATIO REL_SHR_MOMENTUM REL_SHR_MOMENTUM PX_TO_BOOK_RATIO

OVERRIDE_RAW_BETA OPERATING_ROIC Size OVERRIDE_RAW_BETA

REL_SHR_MOMENTUM Size PX_VOLUME

PX_VOLUME Size

OPERATING_ROIC

Size

OLS GLM LASSO RF ADA

INVENT_TURN INVENT_TURN INVENT_TURN INVENT_TURN INVENT_TURN

FNCL_LVRG FNCL_LVRG PE FNCL_LVRG FNCL_LVRG

PE PE EPS_GROWTH NET_FIX_ASSET_TURN NET_FIX_ASSET_TURN

EPS_GROWTH SALES_GROWTH CASH_FLOW_GROWTH PX_TO_BOOK_RATIO EPS_GROWTH

CASH_FLOW_GROWTH PROFIT_MARGIN SALES_GROWTH PX_VOLUME PX_TO_BOOK_RATIO

SALES_GROWTH VOLATILITY_360D PROFIT_MARGIN Size PX_VOLUME

PROFIT_MARGIN NET_FIX_ASSET_TURN VOLATILITY_360D

VOLATILITY_360D PX_TO_BOOK_RATIO NET_FIX_ASSET_TURN

NET_FIX_ASSET_TURN OVERRIDE_RAW_BETA PX_TO_BOOK_RATIO

PX_TO_BOOK_RATIO REL_SHR_MOMENTUM OVERRIDE_RAW_BETA

OVERRIDE_RAW_BETA OPERATING_ROIC REL_SHR_MOMENTUM

REL_SHR_MOMENTUM Size PX_VOLUME

PX_VOLUME OPERATING_ROIC

OPERATING_ROIC Size

Size

OLS GLM LASSO RF ADA

INVENT_TURN INVENT_TURN INVENT_TURN INVENT_TURN INVENT_TURN

FNCL_LVRG FNCL_LVRG NET_FIX_ASSET_TURN FNCL_LVRG FNCL_LVRG

PE PE PX_TO_BOOK_RATIO NET_FIX_ASSET_TURN PE

EPS_GROWTH SALES_GROWTH Size PX_TO_BOOK_RATIO EPS_GROWTH

CASH_FLOW_GROWTH PROFIT_MARGIN OPERATING_ROIC CASH_FLOW_GROWTH

SALES_GROWTH VOLATILITY_360D Size PROFIT_MARGIN

PROFIT_MARGIN NET_FIX_ASSET_TURN NET_FIX_ASSET_TURN

VOLATILITY_360D PX_TO_BOOK_RATIO PX_TO_BOOK_RATIO

NET_FIX_ASSET_TURN OVERRIDE_RAW_BETA OVERRIDE_RAW_BETA

PX_TO_BOOK_RATIO REL_SHR_MOMENTUM PX_VOLUME

OVERRIDE_RAW_BETA PX_VOLUME OPERATING_ROIC

REL_SHR_MOMENTUM OPERATING_ROIC Size

PX_VOLUME Size

OPERATING_ROIC

Size

WIPS

WIPPE

WIPE
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4.4.2  Regression Results 

The prediction metrics for tree-based ensemble methods models alongside general 

models are shown in Table 4.5, based on the financial features selected in Table 4.2. The visual 

representation of the models for each water intensity indicator are shown in Figure 4.3. Tree-

based models include Random Forest and Adaptive Boosting (AdaBoost) algorithms. To 

compare these models, we report general model statistics for linear regression estimators using 

ordinary least squares model, gamma general linear model and LASSO model with alpha is 0.1. 

 

Table 4.5 Comparison of prediction performance of water intensity indicators from financial features. 

   OLS GLM LASSO RF ADA 

WIPPE 

R2 0.342 0.256 0.302 0.660 0.522 

MAPE 8.607 10.077 8.221 8.581 14.651 

MSE 3.685 4.188 3.902 1.914 2.697 

WIPE 

R2 0.577 0.467 0.575 0.744 0.663 

MAPE 2.352 2.393 1.931 1.372 2.906 

MSE 3.639 4.662 3.848 2.201 1.810 

WIPS 

R2 0.600 0.446 0.555 0.752 0.693 

MAPE 1.396 1.063 1.469 0.901 1.278 

MSE 3.679 5.121 3.935 2.281 2.846 

Note: The R2 measures the regression score; MAPE standards for the mean absolute percentage error and MSE is 

the mean squared error of prediction performance. 

 

The results show that across all water intensity indicators, the average predictive capacity 

of all water intensity indicators is the highest when the Random Forest and AdaBoost models are 

used. In addition, the margin of prediction error (the maximum and minimum relative errors), 

and the average relative error of full samples are superior to the other models. The predicted 

accuracy of the RF model based on the suite of financial features from Table 4-5 results is 66.0% 

for WIPPE, 74.4% for WIPE and 75.2% for WIPS, indicating that corporate efficiency and 

profitability factors better predict water intensities based on revenue (sales) and operating 
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income than those based on investments in fixed assets. The R2 of the ordinary linear regression 

method could be argued to be second best. The R2 of GLM models are much lower than that of 

OLS regression, with values of 0.256 for WIPPE, 0.467 for WIPE, and 0.446 for WIPS. The 

LASSO model demonstrates the lowest performance in terms of R2 and error analysis among all 

the models. The MSE is 2.266 (WIPS), 2.208 (WIPE) and 1.920 (WIPPE) respectively. The 

lower MSE indicates that the model's predictions are closer to the actual water intensity values 

on average, suggesting better performance and accuracy. In this context, the MAPE values of 

0.909 (WIPS), 1.384 (WIPE), and 8.583 (WIPPE) suggest that, on average, the models' 

predictions differ from the actual values by approximately 0.909%, 1.384%, and 8.538% 

respectively. 
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Figure 4.3: Factor Model Performance of Water Intensity Prediction 

 

4.4.3 Feature Contribution to Random Forest Model Prediction 

Since the Random Forest model showed the best results overall in its capacity to predict 

water intensity indicators, their feature contribution was assessed. The result of the variable 
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importance measures is shown in Fig. 4.4 in the order of importance score. Fixed asset turnover 

ratio, inventory turnover and financial leverage stand out as the most important predictive 

features for all water intensity indicators. The fixed asset turnover ratio (dimensionless) reveals 

how efficient a company is at generating sales from its existing fixed assets, namely its property, 

plants, and equipment. This includes for example production, manufacturing or energy 

generating facilities. A higher ratio indicates more sales relative to its assets; however, it also 

indicates higher water intensity behaviors.   

Up to 37.5% of water intensity can be explained by this financial accounting factor, based 

on the random forest model. The inventory turnover ratio represents the rate at which inventory 

stock is sold, or used, and replaced, whereby a higher ratio indicates strong sales. Not 

surprisingly because water is an input (direct or indirect) in inventory production, higher ratios 

result in higher water intensities. Nearly 20% of water intensity is explained by inventory 

turnover ratios. Last, financial leverage refers to the ratio of short- and long-term debt the 

company takes on to invest in plants and other fixed assets, relative to the company’s net worth 

(equity or assets minus liabilities). Increase in the debt-to-equity ratio portends more investment 

in assets and production capacity, resulting in a positive relation between this ratio and water 

intensity. Up to 26% of corporate water intensity can be explained by this ratio. In addition, the 

feature analysis indicates that other financial metrics such as size, price-to-book, trading volume, 

and ROIC are significant contributors to predicting selected water intensity indicators.   
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Figure 4.4: Random Forest Factor Model Feature Importance  

 

4.4.4 Factor Model Prediction Performance 

The predicted water intensities cannot be independently verified because the majority of 

companies do not disclose their water risk (Table 4.1). Hence, the predicted outputs from the 

Random Forest model for non-disclosing companies were compared to disclosed water 

intensities available from the Bloomberg Terminal and organized by industry sector (Figure 4.5).   

When comparing predictive trend values relative to known sector disclosures, random 

forest predicted correctly for companies in industries with the highest water intensity values, 

namely Materials, Utilities and Energy sectors. While the model has weak performance in the 

following sectors. For WIPS, the Random Forest (RF) simulation replicates the underlying trend 
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observed in actual performance, with the exception of communication services, which exhibit an 

opposite direction. Foe WIPPE, Weak predictions manifest in the consumer discretionary, 

healthcare, and industrials sectors. For WIPE, RF demonstrates weak performance in the 

communication services, healthcare, industrials, and information technology sectors, while it 

performs well in the remaining sectors.   

  

Figure 4.5: Summary of Factor Model Prediction Performance. Top-WIPS; Mid- WIPPE ; Bottom- WIPE. The error 

bar stands for the standard error deviation of factor model prediction.   
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4.5 Discussion and Conclusions 

Current limitations within reported corporate water data include inconsistent and partial 

reporting of water risk metrics (WWF, 2022). Moreover, most firms lack the resources and 

ability to measure water risk, given lack of data, control over decisions made by their suppliers 

or customers, and difficulty in calculating the financial implications of water risks and 

inefficiencies (Josset et al., 2021). Hence, water risk measurements and disclosures are 

completed mostly by large and resource-rich firms. The primary objective of the machine 

learning approach outlined in this paper is two-fold: (1) how can financially benchmarked water 

use intensities be correlated to financial accounting metrics, and (2) which statistical tools are 

best suited to estimate water intensities for non-disclosing companies, based on available data 

from disclosing companies. It showed that machine learning and regression models can be a 

promising approach to close the data gap on estimates of corporate water intensities.  

Financial risks associated with water tend to be linked to short or long-term opportunity 

costs that have not generally been disclosed in corporate accounting and thus this information is 

difficult for investors to evaluate. This paper explores the development of econometric models to 

predict water intensity metrics from financial accounting data, following multi-correlation and  

recursive feature elimination (RFE) to keep the indicators that are most predictive. Since water 

intensities are financial metrics, accounting and market data can be used as independent 

variables. Linear regression, Lasso, Random Forest, and Adaptive boosting models were used to 

predict the metrics based on data from disclosing companies for 2,550 company years (2017-

2021) in eleven sectors of the economy. A final 3- or 6-factor random forest model for the three 

different water intensity metrics resulted in R2 values of 0.67-0.75. Financial indicators common 

across the models include inventory turnover ratio, financial leverage, net fixed asset turnover, 
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price-to-book ratio, and size, indicating that production-oriented companies with higher 

inventory turnover are more water intensive across all indicators. A statistical comparison of RF 

estimated water intensities for non-disclosing companies across all industry sectors with those 

that disclose water use indicates reasonable estimates for asset-intensive sectors such as Energy, 

Materials and Utilities, with more mixed results in the other sectors.   

Several issues limit the applicability of this approach. While water and accounting data 

can be easily accessed from public reports or financial databases, they are aggregated, and the 

regression/ML models do not take into account regional water risk exposures and availability for 

production. Most of the companies considered and listed on the S&P500 index are global and 

operate facilities in a wide range of climate regimes. Hence, a regionally weighted approach 

should be considered to inform the impact of water risk on production, supply chains and other 

operations. Hence, the external validation of the predictions for non-disclosing firms derived 

from the machine learning models may be limited if some companies have physical water 

restriction and production features that materially differ from those in the dataset on which the 

models are trained. Despite these limitations, the application of machine learning models to build 

out a complete water intensity data set is a cost-effective method to help construct first 

approximations of water use intensities for benchmarking and index construction. It allows 

companies, and the public agencies that lack the resources to conduct detailed assessment of 

corporate water needs to set financial risk targets for efficiency improvement and risk 

management strategies. In addition, a machine learning approach can enable impact and ESG 

investors that need data on a very large number of companies for portfolio construction and 

benchmarking purposes, to evaluate operational improvements and assess natural resource 

constraints of their holdings.  



 59 

Chapter 5  Long-Term Imputation and Assessment of Corporate Water Efficiency Impact 

on Market Metrics  

 

5.1 Background 

Climate change is an economically disruptive force for companies (CDP, 2016; Daniel & 

Sojamo, 2012; Christ et al., 2017; Burritt et al., 2016). From the analysis of the largest 500 

global companies, estimates suggest that the potential financial implications from climate 

change-related impacts reached nearly a trillion dollars (Ceres, 2019). While researchers widely 

agree that climate change imposes significant economic costs (e.g., Stern, 2007; R.S.J., 2009; 

Burke et al., 2015; Dietz et al., 2016; Diaz et al. 2017), the impact of climate change on the 

financial markets has received scant attention up to this point. Especially, the impact of water 

scarcity and the uncertainty related to its availability are key issues driving the need for corporate 

investment in climate resilience to remain competitive. 

Investors are increasingly tracking information related to water risk exposure of listed 

firms and engage with companies to understand the risk management strategies employed to 

mitigate these risks. These exposures are typically associated directly or indirectly with 

businesses operational risks and therefore with the financial position of financial stakeholders, as 

financial materiality is the underpinning for risk transfer or strategic investment decisions 

(Coulson and Dixon 1995). Direct water resource impacts result from their use as essential raw 

materials for business production and operational processes and represent a geography-

dependent instability risk factor for business operations, impacting various stages of the supply 

chain. Water-dependent sectors which rely on a water or commodity supply chain (e.g. the food 

industry) may have high exposure to various operational and production risks due to unstable 
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water resource conditions (e.g. drought, floods) in different geographic regions their suppliers 

operate in (e.g. the agriculture sector). In the latter case, stakeholders might face financial risks 

and challenges because of the unpredictable changes in water resources resulting in uncertain 

cash flows, profitability and earnings, which in turn affect market performance. 

Despite the abundance of studies focusing on linking market-based performance to 

broad-based environmental performance (Dixon-Fowler et al.,2013; Chapple et al., 2013), in-

depth studies are required to understand climate water risk impacts on water resources and the 

intensity of their use. Because climate change is a critical concern for multinational companies, it 

contributes to the dearth of research on the impact of water on firm value in a global context. 

This work investigates how water use intensity affects market metrics such as firm value, stock 

price and return on equity (ROE). Based on a sample of the S&P 500 listed corporations, our 

results show that market metrics are responding to water use intensity, particularly when 

standardized to balance sheet metrics. These results relate to institutional theory which teaches 

how changes in societal values, technology improvements, and legislation influence decisions 

about “green” sustainable activities and environmental management (Greve and Argote, 2015).  

Scholars advocate for markets and states as effective institutional mechanisms to address 

externalities linked to collective goods like water, forests, and fisheries. Market forces are 

instrumental in driving the adoption of environmental measures in business practices, leveraging 

pricing signals for the most efficient resource utilization. The corollary with our results is that 

firms with higher water consumption face social pressure and are likely subject to stricter climate 

regulations, and thus higher cost or compliance. Further evidence shows a significant positive 

effect of water use efficiency relative to high water dependency industries, suggesting that 

investors are more concerned about environmental issues in high water intensity industries such 
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as industrials, consumer staples and utilities. Additionally, while water performance positively 

relates to a company’s return on assets (ROA) and return on equity (ROE), negative impacts are 

seen on Tobin’s Q, a proxy metric for long-term corporate valuation. These results indicate that 

less efficient water use (high intensity) drives increased production, but negatively affects the 

future value of the company given the uncertainty of water availability on a forward basis. 

This study makes several contributions to the literature on water performance and firm 

value. First, it focuses on the relationship between climate change effects, especially water risks, 

and firm financial outcomes (Blanco et al., 2020; Kabir et al., 2021; Lee and Min, 2015; 

Matsumura et al., 2014; Tian and Adriaens, 2023). We draw on extant literature to explore the 

value relevance of environmental risks and examine the effect of water performance on 

investors’ perceptions of firm valuation. Second, we build on literature research of the effect of 

water intensity on the firm value and financial performance.  

The remainder of this chapter is organized as follows. Section 5.3 presents literature and 

the development of hypotheses. Section 5.4 presents the sample and methodology followed in 

the study, with results and discussion covered in Section 5.5. Section 5.6 presents the 

conclusions. 

5.2 Literature and Hypotheses 

The correlation between a firm's water management practices and its financial 

performance can be elucidated through instrumental stakeholder theory, as proposed by Jones in 

1995. This theory advocates that for sustained long-term success, firms must prioritize the 

interests of their stakeholders. Applications of the theory have shown that the two most 

commonly used measures for measuring the effect of corporate sustainability on financial 

performance are accounting and market measures. Gentry and Shen (2010) assert that the most 
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prevalent accounting measures employed by firms to gauge financial performance encompass 

return on equity, return on assets, return on sales, and market-based measures like market return 

and Tobin’s Q. Previous research with market measures for corporate financial performance 

indicates diversity of results in the corporate sustainability-financial performance relationship 

such as asymmetry and trade-offs (Grewatsch and Kleindienst, 2015).  

Accounting measures serve as indicators of historical data, while short-term financial 

performance measures based on market data, such as ROE and ROA, are seen as reflections of a 

company's performance in the distant future (Hoskisson et al., 1994). Stakeholders encompass 

any group or individual who can influence or is influenced by the attainment of an organization's 

objectives (Freeman, 1984). Neglecting the concerns of stakeholders can impede a firm's 

progress towards its objectives. This is because adverse reactions from stakeholders are prone to 

escalate costs (Berman et al., 1999; Jensen, 2001). 

The rise of climate regulations and the evolving preferences of environmentally aware 

stakeholders have elevated water intensity as a significant risk for firms in the shift towards a 

low-water economy. The strategic response, or lack thereof, by companies to these factors can 

have profound effects on their performance, subsequently influencing market metrics and 

financial outcomes. As an extension of this theory, the theory of the ‘natural resource-based view 

of the firm’ argues that the natural environment is a critical commodity input for sustained 

operational performance of firms, as water constraints limit the capacity to maintain a 

competitive advantage (Hart et al., 1995; Hart & Dowell, 2011; Christ & Burritt, 2015). 

Numerous studies have delved into the impact of corporate environmental performance 

on either accounting-based profitability measures or market performance. However, these 

inquiries produce mixed and diverse results (e.g., Lewandowski, 2017; Misani et al., 2015; Iwata 
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et al., 2011). Drawing upon nearly four decades of empirical data (Günther et al., 2012), the 

analysis unveils a positive yet subtle connection between corporate environmental performance 

and financial performance, a finding consistent with Russo and Minto's research in 2012. While 

numerous environmental studies concentrate on carbon risk, the connection between water 

management practices and financial performance remains an underexplored research domain. 

Numerous studies have examined the impact of carbon emissions on corporate operating 

performance. Hart et al. (1996) and Fujii et al. (2013) demonstrate the positive effect of carbon 

efficiency on ROA, while Iwata et al. (2011) reach analogous conclusions for return on 

investments (ROI) and ROA. This research underscores that emissions reduction enhances 

efficiency in production systems, offering a competitive edge. Several studies have examined the 

return on equity shareholders' ratio (ROE). For example, Gallego-Álvarez et al. (2015) and Batae 

et al. (2021) find a decrease in ROE linked to emissions. Conversely, some studies yield limited 

evidence that carbon emissions have a significant impact on corporate operational costs 

(Brouwers et al., 2018; Busch and Hoffmann, 2011) and financial performance (Iwata and 

Okada, 2011). 

Certain scholars have emphasized the divergence between the short-term (accounting) 

and long-term (market) consequences of carbon risk on financial performance. Lewandowski 

(2017) notes an immediate enhancement in a firm's return on sales (ROS) attributable to 

improved corporate carbon performance, although this improvement is accompanied by a decline 

in the firm's Tobin's Q, a proxy for long term value. In contrast, Delmas et al. (2015) found that 

enhanced corporate environmental performance is associated with a reduction in short-term 

financial performance, measured by return on assets (ROA), while yielding superior long-term 

market performance, as indicated by Tobin's Q. Numerous studies have explored the share price 
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performance response to corporate carbon emissions, revealing that equity investors tend to 

penalize companies with substantial carbon emissions. (Clarkson et al., 2015; Griffin et al., 2017; 

Matsumura et al., 2014; Kim et al., 2015). It identifies a negative correlation between greenhouse 

gas (GHG) emission levels and Tobin's Q (proxy for future value) (Lee et al. 2015; Hassan et al., 

2018; Choi et al., 2021). Similarly, regression analysis uncovered a negative association between 

environmental disclosures and the operational and financial performance of US S&P 500 

companies (Chiong et al. 2010, Smith et al. 2007, Karagozoglu et al., 2000; Majumdar et al., 

2001; Saleh et al., 2011). 

Hsu et al. (2023) conducted a study examining the impact of environmental pollution on 

stock returns across various firms and determined that highly polluting companies face greater 

exposure to environmental regulation risk, resulting in higher average returns. Hong et al. (2019) 

reveals an inadequate pricing of rising drought risk due to climate change in stock markets, with 

Cheng (2023) observing a negative correlation between drought and share price returns. In 

summary, existing literature suggests that stock markets tend to reward companies better 

equipped for stringent regulations and changing consumer preferences (Busch and 

Lewandowski, 2018; Delmas et al., 2015; Iwata and Okada, 2011). Based on the extant literature, 

we state the following two research hypotheses for this work: 

H1 Accounting-based profitability ratios are positively affected by lower corporate water 

intensity. 

H2 Capital markets metrics are positively impacted by efficient corporate water use. 
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5.3 Data and Methods 

Our primary corporate dataset covers the 2013–2022 period and is drawn from the 

Bloomberg dataset for US equities. The Bloomberg terminal also provides corporate water 

intensity metrics, aside from corporate fundamentals, and market performance indicators. Using 

log-transformation and scale to build the financial and water data for analysis. The ultimate 

universe of data comprised 3,421 unique companies out of a universe of 3,481 available equities. 

Hence, our data covers nearly the entire universe of companies with available water data, listed 

in the S&P 500 index. 

5.3.1 Data on corporate water consumption 

Firm-level water consumption and efficiency (benchmarked to operational financial 

metrics) data are assembled by several main providers: Global Reporting Initiative (GRI), 

Carbon Disclosure Project (CDP) Water Initiative, the Sustainable Accounting Standards Board 

(SASB), ratings companies such as Sustainalytics and TruCost, and more recently compliance 

disclosures for the Task Force for Climate Related Financial Disclosures (TCFD), specifically 

the Climate Disclosures Standards Board (CDSB) application guidance for water-related 

disclosures. The accessible data from ESG (Environmental, Social and Governance) providers 

covers themes such as water use intensity, water stress, toxic effluents/emissions/water quality, 

and then broader issues such as community conflict, human rights, monitoring, reporting. 

However, ESG data tends to explore only one linear dimension of water risk exposure and lacks 

standardized temporal and spatial scales. In addition, counter to the corporate use of carbon as a 

proxy for climate risks, water risk mitigation addresses only a limited scope of value chain 

impacts. Given that more and more companies disclose their physical water information in their 

annual or sustainability reports, and most large corporations report more granular water risks to 
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CDP, there is an opportunity to capture water risk exposure, corporate risk response, and 

assessment of financial materiality. This opportunity addresses the need to enhance the 

transparency of financial risk exposures from water to investors and other stakeholders. 

Because of the lack of standardization, we structured all water-related data in three 

groups of indicators: water consumption (volume), water use growth (year-on-year ratio) and 

water use efficiency (or intensity). Water intensity metrics are water use standardized to a 

financial unit, like sales, EBIT (earnings before interest and taxes, a profit margin), and PP&E 

(property, plant and equipment, the collective investment of the company in fixed assets). The 

Bloomberg database reports all water data and metrics. The description and correlation of the 

water variables is in Table 5.1 and Table 5.2. 

 

Table 5.1 Description of water variables 

Index  Definition  Method 

Water 

Intensity 

WIPS  Water Intensity per Sales  Total water use/ Sales 

WIPE  Water Intensity per EBIT  Total water use/ EBIT 

WIPPE  Water Intensity per PP&E  Total water use/ PP&E 

Water use 

Growth 
WATER_GR  

Annual growth ratio of Water 

Use 
 

[Water use (t) - Water use (t-1)] over Total 

water use(t-1) 

Water 

Volume 
WC  Total Water Use(Consumption)  Total water use 

  

Table 5.2 Correlation analysis of water risk metrics 

Water Indicator(WIs) WIPS WIPE WIPPE WATER_GR WC 

Water Intensity 

WIPS 1.000 0.502 0.492 -0.005 0.927 

WIPE 0.502 1.000 0.879 0.045 0.418 

WIPPE 0.492 0.879 1.000 0.042 0.414 

Water Growth WATER_GR -0.005 0.045 0.042 1.000 0.001 

Water Volume WC 0.927 0.418 0.414 0.001 1.000 

 

All three groups of water are positively correlated. While the coefficients are relatively 

high for some indicators, total water growth is poorly correlated to any other metric, indicating 
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that year-on-year changes in water use are not indicative of water intensity or total volume. For 

our analysis, the water intensity data were transformed to log-scale and normalized to normal 

distribution prior to linear regression. The summary statistics of the water indicators are shown 

in Table 5.3. 

 

Table 5.3 Summary statistics for the variables (panel A: Water indicators; panel B: Financial indicators) used for 

regression analysis. The sample period is 2013–2022. Panel A reports the water variables. WIPE, WIPPE and WIPS 

are in the log scale. Panel B reports the cross-sectional return variables and the market performance variables. 

Variable Firm# (n) Mean Std Median 

Panel A  Water Variables 

LOG_WIPE(103m3/$M) 2488 1.31 2.89 0.96 

LOG_WIPPE(103m3/$M) 2792 0.26 2.31 -0.06 

LOG_WIPS(103m3/$M) 2924 6.29 2.87 5.89 

WATER_GR 2637 0.42 15.58 0 

LOG_WC(103m3) 2819 8.70 2.88 8.37 

          

Panel B  Financial Variables 

INVENT_TURN 4367 20.89 110.63 5.69 

FIX_ASSET_TURN 5913 7.71 12.06 4.77 

FNCL_LVRG 6398 8.68 128.69 2.89 

VOLATILITY, % 6245 31.48 18.75 26.62 

VOLUME 6310 317,943,900 757,519,100 155,361,600 

PX_TO_BOOK 6252 10.20 63.46 3.23 

SIZE, $M 6346 9.85 1.24 9.77 

SALES_GROWTH, % 6509 8.82 40.14 5.32 

EPS_GROWTH,% 6437 30.92 2117.55 10.67 

ROE,% 6385 21.02 55.03 14.37 

BETA 6116 1.15 3.68 1.06 

RD, $M 5611 656.48 2,676.30 12.00 

PPE,$M 6448 9,312.64 20,352.17 2,431.67 

ROA,% 6490 5.90 8.70 5.21 

STOCK_RETURN 6346 0.13 1.12 0.11 

TOBIN_Q, % 6383 2.43 2.03 1.79 

 

The average firm in our sample universe consumes 867,267.6 103m3 of water over 10 

years. The water intensity of a company is expressed as volume of water equivalent divided by 

the company’s revenues, EBIT and investment in fixed assets (PP&E) in million US dollar units. 
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The average log water intensity per sales in our sample equals 6.29 103m3/$ MM, while the log 

water intensity per EBIT and per PP&E are 0.31 103m3/$million and 0.26 103m3/$ MM, 

respectively.  

The autocorrelation coefficients for the different measures of water indicators are 

presented in Table 5.4. Autocorrelation assesses the correlation between the same variable in 

successive time intervals, providing insights into recurring patterns. This analysis is a valuable 

tool for technical analysis in capital markets. The AR(1) measures with the 1 year-lag windows 

for series data. Water intensity for all three categories is highly persistent, with an 

autocorrelation coefficient of 0.987 for WIPPE, 0.977 for WIPE, and 0.994 for WIPS. 

Interestingly, the year-to-year growth in water consumption shows weak on persistent.  

Table 5.4 Time series of Autocorrelation of water indicators estimated using the AR(1) model for various measures 

of water.  

 

  

WC 

103m3/$M, 

YEART+1 

WATER_GR 

YEART+1 

WIPPE 

103m3/$M, 

YEART+1 

WIPE 

103m3/$M,  

YEAR T+1 

WIPS 

103m3/$M 

,YEART+1 

WC, 103,m3/$M,YEART 0.991 ***                 

WATER_GR,YEART     0.000               

WIPPE, 103m3/$M,YEART         0.987 ***         

WIPE, 103m3/$M,YEART             0.977 ***     

WIPS, 103m3/$M,YEART                 0.994 *** 

Constant 0.081 *** 0.433   -0.552 *** -0.028 * 0.002   

Year F.E. YES   YES   YES   YES   YES   

Observations 2428   2243   2403   2031   2525   

R-Squared 0.980   0.000   0.959   0.943   0.981   

Note. All regressions include year fixed effects. We cluster standard errors at year dimensions.  ***1% significance;  

**5% significance;  *10% significance. 

 

The firms in the high growth S&P 500 sample universe represent a wide range of 

industries (Appendix A), based on the six-digit Global Industry Classification (GIC 6). The Oil 

& gas, Insurance, REITs (Real Estate Investment Trusts) and Semiconductor sectors are the most 

represented industries, with each represented by more than 25 firms in the index. In Table 5.5, 
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we provide a list of industries with the highest and the lowest intensity of water consumption. 

Electric utilities, Power and Renewable, and Metals & Mining exhibit the highest total water 

consumption, while Media, Construction & Engineering and Professional Services present the 

lowest consumption volumes. The ranking is somewhat different when we classify industries 

with respect to their water intensities, given that intensities are normalized to sales, operating 

profits and fixed income investments. For those indicators, Independent Power and Renewable, 

Water Utilities and Electric Utilities are the most intensive industries when normalized to sales, 

while Media, Construction & Engineering, and Insurance have the lowest values. In turn, 

Electric Utilities, Metals & Mining and Independent Power and Renewable are the three most 

EBIT-intensive industries. Media, Banks, and Capital Markets sectors are the three least EBIT-

intensive industries. Water intensity per PPE shows that the most water-intensive sectors are 

Metals & Mining, Independent Power and Renewable and Electric Utilities, while the least 

water-intensive GICS sectors are Media, Passenger Airlines and Wireless Telecommunication 

Services. 

5.3.2  Variables in cross-sectional return regressions 

Empirical analysis of market metrics employs an annual measure of returns as a 

dependent variable. In our cross-sectional return regressions, the dependent variable is the annual 

share price return of an individual company on S&P 500. Control variables are based on previous 

research on the impact of carbon and ESG (Khan et al. 2019; Gibson et al., 2021; Bolton et al., 

2021), defined as follows: SIZE is the natural logarithm of firm market capitalization (price 

times shares outstanding) at the end of year; FNCL_LVRG is the book leverage of the company; 

ROE is the firm’s earnings performance, given by the ratio of firm net yearly income divided by 

the value of its equity; PPE is the natural logarithm, of the firm’s property, plant, and equipment; 



 70 

BETA is the market beta, calculated over the one year period using daily data; VOLAT is the 

standard deviation of re-turns based on the past 12 months of monthly returns; SALESGR is the 

dollar change in annual firm revenues normalized by last month’s market capitalization; EPSGR 

is the dollar change in annual earnings per share, normalized by the firm’s equity price. The 

summary statistics of these variables are in Panel A of Table 5.3. 

5.3.3  Variables in cross-sectional performance regressions 

The study evaluated how the efficiency of water use influences firm performance based 

on three dimensions, including the firm’s operational, financial and market performance, using 

ROA, ROE and Tobin’s Q, respectively. Return on assets (ROA) is a financial ratio that signifies 

a company's profitability in relation to its total assets, providing insight into how efficiently the 

company utilizes its assets to generate a profit. Return on equity (ROE) is a measure of a 

company's net income divided by its shareholders' equity, serving as an indicator of a 

corporation's profitability and the efficiency with which it generates profits. Tobin’s q is a ratio 

between the market value of a firm relative to its replacement value and has been extensively 

used as a proxy for the future operating performance of a firm. These dimensions were employed 

as dependent variables to evaluate the optimal regression model for assessing the relationship 

between the study variables. Because we are exploring the impact of water use and water 

intensity on form performance, this effect needs to be net of key firm performance metrics such 

as firm size (SIZE), financial leverage (FNCL_LVRG), inventory and fixed asset turnovers 

(INVENT_TURN; FIX_ASSET_TURN) and asset growth as control variables. The choice of 

these control variables is supported by studies indicating the significance of firm size, financial 

leverage, asset turnover, and asset growth as essential factors when assessing the impact of ESG 

scores on firm performance (Andersen et al., 2011; Han et al., 2016b; Margoliset al., 2009; 
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Pasquini-Descompset al., 2014a; Hamdan et al., 2017; Hamdan, 2018). The summary statistics of 

these variables is in Panel B of Table 5.3. 

 

Table 5.5 Water intensity by industry. Panel A reports the top 10 of GIC 6 industries in terms of average water 

consumption (Total water use/consumption(WC), WIPS, WIPE, WIPPE). Panel B reports on the bottom 10 GIC6 

industries in terms of average water consumption (Total water use, WIPS, WIPE, WIPPE). The sample period is 

2013–2022 See text and Appendix A for explanation of GIC codes. 

 

Panel A: Largest Water Intensity Sectors (avg.) 

GIC6  WC(103m3)   GIC6 

 WIPPE 

(103m3/$M)   GIC6 

WIPE 

(103m3/$M)   GIC6 

WIPS 

(103m3/$M) 

551010 7,258,880.064   151040 867.254   551010 2,667.049   551050 477,766.879 

551050 5,663,355.000   551050 251.985   151040 2,542.951   551040 372,855.602 

151040 5,621,904.421   551010 168.014   551050 2,322.941   551010 354,997.103 

551030 1,730,278.573   151020 122.652   551040 1,118.701   151040 273,046.709 

551040 1,314,998.000   551040 74.433   551030 994.423   551030 151,001.573 

151020 788,070.000   551030 51.680   151020 803.988   151020 141,938.331 

151010 270,106.670   151010 28.177   203040 193.226   151010 20,984.639 

253010 108,771.910   253010 14.702   151010 183.544   551020 10,535.188 

151030 106,791.750   151030 9.667   151030 74.807   251030 6,150.672 

203040 68,987.010   201060 9.261   253010 31.398   151030 5800.507 

Panel B: Lowest Water Intensity Sectors (avg.) 

GIC6  WC(103m3)   GIC6 

 WIPPE 

(103m3/$M)   GIC6 

WIPE 

(103m3/$M)   GIC6 

WIPS 

(103m3/$M) 

502010 5.344   502010 0.001   502010 0.001   502010 0.168 

201030 16.982   203020 0.016   401010 0.007   201030 1.200 

202020 18.678   501020 0.022   402030 0.014   403010 1.991 

403010 41.181   202010 0.023   402020 0.017   402020 5.538 

402030 89.235   201030 0.028   201030 0.041   202020 5.644 

255010 95.847   501010 0.036   202020 0.047   255010 5.888 

255030 126.957   403010 0.039   402010 0.066   402030 6.733 

402020 141.389   402020 0.041   452010 0.098   255030 11.317 

402010 172.919   255030 0.048   255010 0.101   402010 13.061 

202010 308.531   402030 0.051   502030 0.108   203020 13.957 

 

 

 

5.4 Results 

Our analysis begins by investigating the determinants of corporate water use behavior. 

Then it turns to the evaluation of the water return premium in the cross-section of stocks. The  

next step is to explore the market performance of the cross-sectional water premium with respect 
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to well-known financial fundamentals factors. Finally, we test robust with the industry groups 

and different time scales. 

5.4.1 Financial determinants of water intensity  

Given that not all companies report their water usage, the initial investigation focuses on 

comparing firms that report water-related information with those that do not, it assesses 

quantitative differences in various firm-level characteristics of both populations. The basic 

summary statistics of the two categories of firms are in Table 5.6. Our findings indicate that 

larger size and high research and development (RD) active firms tend to exhibit a higher 

propensity to disclose their water consumption data. Moreover, firms with EPS Growth ratios 

and higher fixed asset turnover are more prone to report emissions. 

Table 5.6. Financial indicators to assess differences between disclosing and non-disclosing firms 

Financial Indicators Non-Disclosing Firms Disclosing Firms 

INVENT_TURN 17.388 24.437 

FIX_ASSET_TURN 9.328 5.575 

FNCL_LVRG 7.091 10.712 

VOLATILITY,% 31.474 31.499 

VOLUME 250,988,109.656 403,511,854.631 

PX_TO_BOOK 10.946 9.262 

SALES_GROWTH, % 9.729 7.627 

ROE, % 18.891 23.751 

RD, $M 332.252 1,074.490 

BETA 1.085 1.239 

PPE, $M 6,449.588 13,061.689 

EPS_GROWTH, % 59.471 -6.119 

SIZE, $M 9.566 10.222 

 

Next, it measures the differences in water consumptions levels, year- by-year changes, 

and water intensities across firms using a regression framework (Table 5.7). The dependent 

variables are levels, changes, and intensities of sales, EBIT, and PP&E. Since there is no 

financial theory that can guide us on what financial accounting metrics influence the level of 
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water consumption, we selected firm-level variables that are included in the Barra Risk Factor 

Analysis Model as well as literature on the relationship between financial indicators and carbon 

emissions (Bolton et al. 2021). The Barra Risk Factor Analysis, a multi-factor model by Barra 

Inc., assesses overall security risk relative to the market, incorporating over 40 data metrics, 

including earnings growth, share turnover, and senior debt rating. Following the same metrics 

filtration approach proposed in Bolton et al. (2021), the following indicators were selected: 

Company size (log market capitalization; SIZE), return on equity (ROE), inventory turnover 

(INVNT_TURN), net fixed asset turnover (NET_FIX_ASSET_TURN), financial leverage 

(FNCL_LVRG), investment in fixed assets (PPE), investment in research and development 

(RD), sales growth (SALESGR), and earnings-per-share growth (EPSGR). To consider the 

potential concentration of firm-level water risk indicators across firms and over time, standard 

errors will be clustered at the firm and year levels. Standard errors in all panel regressions 

become significantly smaller when using specifications that cluster at the firm, industry, time, or 

industry levels and time series.  

The level of consumption and water intensity indicators are notably linked to highly 

leveraged firms with high volume and significant tangible assets, reflecting the needs of growth-

focused and production-intensive companies (Table 5.7). Water usage exhibits negative 

associations with inventory turnover, price-to-book ratio, and research and development (RD), 

while water growth rate is positively related to inventory turnover. All three water intensity 

categories display significant negative associations with inventory turnover, fixed asset turnover, 

and price-to-book ratio. Intriguingly, all water indicators show negative correlations with the 

company's size factor, suggesting that the larger the size of the company, the better water use is 

managed. 
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Table 5.7 Financial determinants of water intensity indicators 

Variables 
Water Use   Water Intensity 

LOG_WC 

(103m3) 
WATER_GR  LOG_WIPE 

(103m3/$M) 
 LOG_WIPPE 

(103m3/$M) 
 LOG_WIPS 

(103m3/$M)   

INVENT_TURN -0.048 *** 0.046 *  -0.035 ** -0.056 *** -0.065 *** 

FIX_ASSET_TURN -0.015  -0.059   -0.206 *** -0.110 *** -0.427 *** 

FNCL_LVRG 0.094 *** 0.016  0.109 *** 0.059 ** 0.078 *** 

VOLATILITY,% 0.006  -0.031   0.031   -0.016   0.029  

VOLUME 0.046 *** -0.018   0.021   0.187 *** 0.035 ** 

PX_TO_BOOK -0.060 *** -0.012  -0.087 *** -0.036   -0.038 * 

SALES_GROWTH, 

% 0.027 ** 0.022  -0.075 *** -0.075 *** 0.044 *** 

ROE, % 0.017  0.013   -0.018   0.015   0.007   

RD, $M -0.077 *** -0.027   -0.032 ** 0.042   -0.077 *** 

EPS_GROWTH, % -0.006   -0.001   -0.003   -0.006   -0.006   

BETA 0.003   0.000   -0.002   0.023   0.005   

PPE, $M 0.543 *** 0.065   0.272 *** 0.049   0.082 *** 

SIZE,$M -0.054 ** -0.068   -0.194 *** -0.155 *** -0.054 ** 

                      

Year/Industry  F.E. Yes   Yes   Yes   Yes   Yes   

Observations 2056   1910   1889   1485   2123   

R-Squared 0.509   0.008   0.490   0.132   0.505   

 

5.4.2 Evidence from cross-sectional corporate market metrics 

For all categories of consumption and water intensity, the analysis relates the level of 

water consumption, the year-to-year growth rate in consumption, and the companies’ water 

intensity to their corresponding stock returns in the cross-section.  

It first estimates the following cross-sectional regression model using pooled ordinary 

least squares (OLS) regression: 

𝑅𝐸𝑇 = 𝑎0 + 𝑎1𝐿𝑂𝐺(𝑊𝐴𝑇𝐸𝑅) + 𝑎2𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜖        (1) 

where RET measures the stock return of a company and WATER is a generic term alternately 

referring to the water indicators. The control vector encompasses various firm-specific variables 

selected from Table 5.3, known to predict returns, such as SIZE, INVNT_TURN, 
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NET_FIX_ASSET_TURN, FNCL_LVRG, PPE, RD, SALESGR, and EPSGR. Year and 

industry fixed effects are included to control for individual-specific attributes that remain 

constant over time, ensuring a robust analysis. The coefficient of interest is 𝑎1. 

The results are present in Table 5.8. Column 1-2 shows the results for total water 

consumption (WC); column 3-4 for water growth (WATER_GR, and column 5 to 10 for water 

intensity indicators. The columns are further differentiated by the use of fixed effects by year or 

industry. For all categories of water risk indicators, except for water use growth, it shows a 

positive but weak effect on firms’ stock returns. For example, one unit increase in total water use 

leads to a 2.6% increase in stock returns. These relationships are very similar across all 

indicators. Since water use and intensity metrics tend to cluster significantly within specific 

industries (e.g. Tian and Adriaens, 2023), a question of interest is whether the firm-specific 

differences can be attributed to industry-specific effects. To examine this possibility, we 

additionally include industry-fixed effects using the GICS industry classification specified 

earlier. The results presented in the table indicate that industry effects do significantly impact the 

cross-sectional dispersion of returns due to water use or intensities.
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Table 5.8. Impact of water indicators on share price returns of S&P500 companies between 2013-2022 (n=1,485-2,125). 

Variables (1)   (2)   (3)   (4)   (5)   (6)   (7)   (8)   (9)   (10)   

LOG_WC , 103m3 0.026   0.039                                   

WATER_GR         -0.024   -0.023                           

LOG_WIPPE, 103m3/$M                 0.022 ** 0.027                   

LOG_WIPE, 103m3/$M                         0.036   0.022           
LOG_WIPS, 103m3/$M                                 0.056 ** 0.025 

  

INVENT_TURN 0.034   0.033   0.009   0.027   0.024   0.017   -0.002   0.000   0.025   0.036   

FIX_ASSET_TURN -0.071 ** 0.027 ** -0.090 ** -0.033   -0.053 ** -0.043   -0.072 ** -0.037   -0.073 ** -0.040   

FNCL_LVRG -0.028   -0.022   -0.050 * -0.070 ** -0.045   -0.037   -0.055 ** -0.060 ** -0.059 ** -0.071 ** 

VOLATILITY, % 0.160 ** 0.119 *** 0.156 *** 0.192 *** 0.118 *** 0.073 * 0.150 *** 0.144 *** 0.120 *** 0.143 *** 

VOLUME -0.072 ** -0.098   -0.038   -0.040   -0.105 ** -0.124 ** -0.033   -0.030   -0.040   -0.043   

PX_TO_BOOK 0.133 *** 0.132 *** 0.109 *** 0.127 *** 0.159 *** 0.158 *** 0.125 *** 0.136 *** 0.117 *** 0.133 *** 

SALES_GROWTH, % 0.324   -0.039 *** 0.177 *** 0.167 *** 0.126 *** 0.121 *** 0.154 *** 0.149 *** 0.193 *** -0.047 * 

ROE, % 0.007 *** 0.331   0.079 *** 0.075 *** -0.028   -0.038   0.020   0.019   0.060 ** 0.189 *** 

RD, $M -0.038   -0.007   -0.064 ** -0.074 ** -0.028   -0.070 ** -0.055 ** -0.088 *** -0.039 * 0.057 ** 

EPS_GROWTH, % 0.037 * 0.035 ** 0.040 ** 0.039 * 0.010   0.009   0.009   0.008   0.037 * 0.036 * 

BETA -0.030 * -0.036   0.015   0.125   -0.014   -0.022   0.013   0.007   0.018   0.017   

PPE, $M -0.176 *** -0.175 *** -0.178 *** -0.188 *** -0.116 ** -0.120 *** -0.167 *** -0.162 *** -0.179 *** -0.173 *** 

SIZE, $M 0.302 *** 0.297 *** 0.264 *** 0.286 *** 0.238 *** 0.241 *** 0.246 *** 0.253 *** 0.250 *** 0.258 *** 

                                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   No   Yes   No   Yes   

Observations 1543   1543   1,910   1910   1485   1,485   1,889   1,889   2,125   2,125   

R-Squared 0.098   0.270   0.090   0.245   0.067   0.246   0.072   0.235   0.106   0.244   

Notes.  The sample period is 2013–2022. The dependent variable is RET. All variables are defined in Table 1. We report the results of the pooled regression with 

standard errors clustered at the firm and year level (in parentheses). All regressions include year fixed effects and industry-fixed effects. The table reports the 

results for the natural logarithm of total firm-level water use, the percentage change in total water use and the results for water intensity. ∗∗∗ 1% significance; ∗∗ 

5% significance; ∗10% significance. 
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Water use and stock price exhibit a positive weak correlation. Then, we next estimate the 

same cross-sectional regression model but replace the level of total water use (LOG WC) with 

the year-to-year growth in water consumption (WATER_GR). The results are reported in Table 

5.9, column 3-4. We find a negative and weak effect of the growth in water use on stock returns. 

Finally, the cross-sectional regression model for water intensities is reported (Table 5.9, column 

5 to 10). The results are positive and significant between WIPPE and WIPS and share price 

returns. This indicates that greater investment in fixed assets such as production facilities, and 

the resulting lower efficiency of water use, increase share price return. 

Overall, these results reveal that there is a significant water risk premium with respect to 

the level of water intensity, showing that curbing water use, or improving water use efficiencies 

are not rewarded in the market, since increased water use and increased water intensity result in 

higher returns. An alternative interpretation of results where price returns lag relative to water 

intensity metrics is that investors do not immediately absorb new information about water data at 

the firm level (Kacperczyk et al., 2016). This is similar to the observation by Hart and Ahuja 

(1996), who saw a lagging response from investors to emissions data. In that case, water 

intensity will be gradually reflected over time in returns. An additional consideration is that 

investors obtain information about water information from multiple sources that are not all 

available at the same time. For example, a lot of firms disclose their water use first to NGOs such 

as CDP, whose results are then merged into and combined with other sources in the Bloomberg 

Terminal.  

5.4.3 Imputation of Water Intensity Impact on Share Price Return 

The lack of water disclosure by companies listed on US indexes such as S&P500 limits 

the power of statistical analysis for long-term impact on stock prices. In all, approximately 20% 
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of the companies have disclosure information. The water intensity was imputed based on their 

financial fundamentals using the reduced factor models developed in Chapter 4. The factor 

models for water intensity imputation are:  

WIPS: INVENT_TURN, FIX_ASSET_TURN and FNCL_LVRN 

WIPPE:INVENT_TURN, FIX_ASSET_TURN, FNCL_LVRN, PX_TO_BOOK, VOLUME and 

SIZE  

WIPE: INVENT_TURN, FIX_ASSET_TURN, FNCL_LVRN, PX_TO_BOOK, ROIC and SIZE  

This imputation process followed a two-stage approach. First, we impute missing values 

for the listed financial fundamentals for companies not disclosing all metrics. Following 

literature on the topic of financial metric imputation, the K-nearest neighbor algorithm was 

applied (Imandoust et al., 2013; Yu et al., 2022; Cheng et al. 2019). Second, the water intensities 

for all companies between 2013-2022. were imputed using the random forest (RF) factor models 

developed in Chapter 4. The results from the cross-sectional regression model for imputed water 

intensities are shown in Table 5.9. 

When considering all companies on the S&P500 index over a decade, there is a 

statistically significant effect of water intensity on returns for the three categories of water 

intensity, whether we control for industry or not. The WIPPE has a significantly negative effect 

related to the stock price. The effect is also economically significant: a unit increase in WIPPE 

(water intensity relative to fixed asset investment) leads to a 4.8% decrease in stock returns, or 

5.8% if we take out the industry concerns. Hence, investor’s view water intensities in high 

capital asset companies as a risk to corporate returns. On the other hand, for WIPE and WIPS, 

two metrics related to sales and profitability, we find a positive and statistically significant effect 

on firms’ stock returns. A unit increase in WIPE leads to a 3.0% increase in stock returns, and a 
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unit increase in WIPS increases stock returns by 2.4% annualized. The result has little 

differences with industries control or not. In other words, because water is an input in economic 

production, sales and profit generation, more intensive use of water results in higher returns. 

 

Table 5.9 Impact of Imputed Water Intensity on Share Price Returns between 2013-2022 (n = 7,200 company-years)  

Variables (1)   (2)   (3)   (4)   (5)   (6)   

LOG_WIPPE*, 103m3/$M -0.048 *** -0.058 ***                 

LOG_WIPE*, 103m3/$M         0.030 *** 0.031 ***         

LOG_WIPS*, 103m3/$M                 0.024 *** 0.030 *** 

INVENT_TURN -0.047 *** -0.035 *** -0.042 *** -0.045 *** -0.042 *** -0.043 *** 

FIX_ASSET_TURN -0.055 *** -0.019   -0.027   -0.009   -0.034 * -0.009   

FNCL_LVRG -0.008   -0.034 *** -0.029 ** -0.057 *** -0.016   -0.044 *** 

VOLATILITY, % -0.007   0.021   0.013   0.031 * 0.013   0.032 * 

VOLUME -0.041 *** -0.043 *** -0.054 *** -0.053 *** -0.055 *** -0.054 ** 

PX_TO_BOOK 0.253 *** 0.271 *** 0.252 *** 0.276 *** 0.240 *** 0.265 *** 

SALES_GROWTH, % 0.153 *** 0.148 *** 0.154 *** 0.151 *** 0.153 *** 0.149 *** 

ROE, % -0.039 *** -0.037 *** -0.033 *** -0.032 *** -0.036 *** -0.035 *** 

RD, $M -0.060 *** -0.065 *** -0.066 *** -0.087 *** -0.065 *** -0.084 *** 

EPS_GROWTH, % 0.014   0.014   0.015   0.014   0.014   0.014   

BETA 0.042 *** 0.042 *** 0.044 *** 0.041 *** 0.044 *** 0.042 *** 

PPE, $M -0.100 *** -0.058 *** -0.146 *** -0.090 *** -0.149 *** -0.092 *** 

SIZE, $M 0.145 *** 0.134 *** 0.201 *** 0.184 *** 0.191 *** 0.174 *** 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 7200   7,200   7,200   7,200   7,200   7,200   

R-Squared 0.151   0.243   0.143   0.238   0.142   0.244   

Note: We report the results of the pooled regression with standard errors clustered at the firm and year level (in parentheses). All 

regressions include year fixed effects and industry-fixed effects. The table reports the results for the natural logarithm of water 

intensity. ∗∗∗ 1% significance; ∗∗ 5% significance; ∗10% significance. 

 

 

5.4.4 Categorization of Industries Impacted by Water Intensity Risks 

Based on water foot printing of industrial water use (Hoekstra; 2015; Ercin et al., 2014), 

it is often pointed out that only a handful of industries are most affected by water risk exposures 

such as drought or lack of access (Tian and Adriaens, 2021, 2023; Tian et al., 2023). The CDP 

reports mention Energy (43%), Consumer Staples (43%), Utilities (36%) and Materials (36%) 
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sectors as the top dependent sectors on water. It is therefore natural to wonder whether our 

results on share price impacts of water intensities are disproportionately driven by these sectors, 

and whether our cross-sectional water premium would change significantly if we split these 

industries in our analysis. In Table 5.10, it reports the results for the subset of firms, by 

separating low and high dependency groups for imputed water dataset. 

In comparing the results in Table 5.10 (Figure 5.1), it becomes evident that employing a 

comprehensive list of coefficients is an effective strategy to mitigate the influence of industry 

sectors. Notably, there is a substantial difference in the year-fixed WIPPE results between the 

High (-0.061) and Low (-0.021) sub-dependency groups. However, after adjusting for the 

industry effect, the results show a decrease to -0.060 for the low dependency group and -0.044 

for the high dependency group. This highlights the significant impact of industry sectors, 

particularly in the high dependency group, where sector sensitivity is pronounced. In contrast, 

WIPS and WIPE exhibit less sensitivity to industry sectors, but a higher level of dependency 

leads to more significant benefits in the stock market. Notably, in the low dependency sectors, 

these results reinforce the findings regarding the firm-level water premium, particularly in the 

industry-fixed regression results. These findings suggest that investors tend to categorize 

companies more broadly within water-dependent industries, resulting in returns that are less 

responsive to variations in water dependency among firms. 

Table 5.10 Regression of High and Low Water Intensity Industries with Stock Returns 

Variables 
(1)   (2)   (3)   (4)   (5)   (6)   

Low Dependency 

LOG_WIPPE*,103m3/$M -0.061 
*** 

-0.060 ***                 

LOG_WIPS*,103m3/$M         0.016   0.020 **         

LOG_WIPE*,103m3/$M                 0.032 *** 0.033 *** 

INVENT_TURN -0.021 * -0.020 ` -0.034 *** -0.036 *** -0.035 *** -0.038 *** 

FIX_ASSET_TURN -0.025   -0.022   -0.040 * -0.024   -0.024   -0.011   

FNCL_LVRG 0.001   -0.012   -0.002   -0.020   -0.014   -0.032 ** 
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VOLATILITY, % 0.001   -0.001   0.002   0.012   0.002   0.013   

VOLUME -0.055 *** -0.057 *** -0.070 *** -0.071 *** -0.071 *** -0.071 *** 

PX_TO_BOOK 0.237 *** 0.248 *** 0.217 *** 0.236 *** 0.229 *** 0.247 *** 

RD, $M -0.025 * -0.039 *** -0.043 *** -0.064 *** -0.045 *** -0.066 *** 

SALES_GROWTH, % 0.133 *** 0.135 *** 0.135 *** 0.135 *** 0.135 *** 0.134 *** 

ROE, % -0.038 *** -0.040 *** -0.038 *** -0.040 *** -0.036   -0.038 *** 

EPS_GROWTH, % 0.014   0.013   0.014   0.013   0.015   0.014   

BETA 0.007   0.006   0.005   0.004   0.006   0.004   

PPE, $M -0.117 *** -0.082 *** -0.159 *** -0.117 *** -0.155 *** -0.115 *** 

SIZE, $M 0.167 *** 0.151 *** 0.216 *** 0.201 *** 0.233 *** 0.219 *** 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 5270   5270   5270   5270   5270   5270   

R-Squared 0.136   0.260   0.127   0.251   0.129   0.252   

 

Variables 
(1)   (2)   (3)   (4)   (5)   (6)   

High Dependency 

LOG_WIPPE*,103m3/$M -0.021 
** 

-0.044 ***                 

LOG_WIPS*,103m3/$M         0.045 *** 0.034 **         

LOG_WIPE*,103m3/$M                 0.031 ** 0.019   

INVENT_TURN -0.137 *** -0.106 *** -0.092 *** -0.086 *** -0.106 *** -0.095 *** 

FIX_ASSET_TURN -0.030   0.003   0.025   0.026   0.002   0.002   

FNCL_LVRG -0.140 *** -0.150 *** -0.171 *** -0.177 *** -0.177 *** -0.182 *** 

VOLATILITY, % 0.016   0.042   0.037   0.041   0.030   0.039   

VOLUME -0.012   0.003   -0.005   0.002   -0.003   0.003   

PX_TO_BOOK 0.394 *** 0.403 *** 0.409 *** 0.414 *** 0.417 *** 0.419 *** 

RD, $M -0.141 *** -0.145 *** -0.136 *** -0.150 *** -0.143 *** -0.157 *** 

SALES_GROWTH, % 0.188 *** 0.177 *** 0.181 *** 0.176 *** 0.191 *** 0.182 *** 

ROE, % -0.007   -0.007   0.001   0.001   0.003   0.002   

EPS_GROWTH, % 0.491   0.440   0.449   0.446   0.532   0.498   

BETA 0.232 *** 0.233 *** 0.243 *** 0.243 *** 0.239 *** 0.240 *** 

PPE, $M 0.121 *** 0.113 ** 0.076   0.071   0.079 * 0.076   

SIZE, $M 0.034   0.041   0.050   0.055 * 0.051   0.056 * 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 1,840   1,840   1,840   1,840   1,840   1,840   

R-Squared 0.236   0.317   0.236   0.325   0.235   0.323   

Note. All regressions include year fixed effects and industry-fixed effects. The table reports the results for the natural logarithm 

of all water intensity indicators. The upper reports the results for low water dependency sectors (n =5,270 company-years); the 

bottom reports the results for high dependency sectors (n = 1,840 company-years); ∗∗∗ 1% significance; ∗∗ 5% significance; 

∗10% significance. 
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Figure 5.1: Water Intensity Correlation Coefficient to Stock Return in High and Low Dependency Industry (Y: Year 

fixed; Y & I:Year and Industry fixed) 

5.4.5  Temporally Dynamic Shifts in Water Risk Impacts on Share Price Returns 

It has been posited that the water premium in share price returns is affected by the 

changing investor awareness about, or actual physical (climate change) impact of, water use 

intensities. In particular, one would expect that periods with greater climate change awareness, or 

when actual physical water risks have manifested themselves, would result in a higher water 

premium (Pankratz et al. 2023; Sautner et al., 2023; Karydas et al. 2019; Freyman et al. 2015; 

Reig et al. 2013). We evaluate this hypothesis by comparing the water premium before and after 

the promulgation of TCFD (Task Force on Climate-Related Financial Disclosures) regulation in 

2017 (voluntary until 2021, when disclosure became mandatory in the UK and Europe) using the 

imputed water intensity for the decade long-term analysis based on their financial fundamentals. 

The tests offer complementary views on the role of changing investor attention, and the 

increasing physical risks of climate change.  
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The objective of TCFD, as stated by the Financial Stability Board, is to provide market 

transparency regarding climate change’s impacts. Through widespread adoption, financial risks 

and opportunities related to climate change will become an integrated component of corporate 

risk management and strategic planning processes. As corporate and investor awareness of the 

financial implications of transitioning to a lower-carbon economy and climate-related risks 

deepens, decision-useful information will increase. This enhanced understanding will lead to 

more precise pricing of risks and opportunities, promoting a more efficient allocation of capital. 

The TCFD implementation is starting to raise both the awareness of risks tied to water use and 

carbon emissions, and the prospect of regulatory interventions to increase efficiency of water 

resources. Based on this rationale, one could therefore expect that the water risk premium would 

decrease after 2017 following the initial release of TCFD proposals. While the market rewards 

(based on share price returns) higher water intensity, because it means higher sales and profits, 

the incentive is expected to become attenuated as financial regulation and awareness increases. 

We report the results in Table 5.11 (Figure 5.2). 

The temporal differences of water efficiency impact on financial return can be uncovered 

by applying the regression model on the two sub-periods: 2013–2017, and 2018–2022. The top-

line result is that the impact of time periods has resulted in an attenuation of the impact of water 

intensity on share price return. For example, the share price rewards of higher WIPS and WIPE 

which track water use for revenue and profit generation, are nearly 65% lower in 2018-2022 than 

in 2013-17. Conversely the negative impact of water intensities relative to fixed asset investment 

(WIPPE), a proxy for capital risk, on share price returns has decreased by 30%. Combined, both 

trends indicate that companies have shifted towards greater efficiency of water use, and that 

markets are rewarding lower intensity, thus confirming our hypothesis. For 2013 to 2017, there is 
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a statistically significant effect of water intensity on returns for the three categories of water 

intensity, whether control for industry or not. The WIPPE has a significant negative related to the 

stock price: a unit increase in WIPPE leads to a 6.2% decrease in stock returns, or 7.0% by 

taking out the industry bias. For WIPE and WIPS, a unit increase in WIPE leads to a 3.5% 

increase in stock returns, and a unit increase in WIPS increases stock returns by 4.2% 

annualized, which has no difference with the industry control. While for the 2018-2022 periods, 

there is significant trend with WIPPE and WIPE. The coefficient of WIPPE has changed from -

0.062 to -0.040 without industry control and the industry control has increased from -0.070 to -

0.53. The WIPE has decreased from 0.042 to 0.017. This could be seen as evidence that investors 

care more about water risk following the TCFD.  

The impact of time period on predictive parameters shows that fixed asset turnover is no 

longer a significant indicator in the later period, while ROE has become significant. Though not 

causative, since fixed asset turnover ratio reveals how efficient a company is at generating sales 

from its existing fixed assets, and the impact water risk per unit fixed assets on share price has 

decreased, it can be argued that corporate water use efficiency has increased over time, which 

follows the pattern in Appendix B. Return on equity (ROE), or the return on net assets, is often 

interpreted as future guidance on share price. Again, without implying causality, it could be 

argued that higher water use efficiency presents lower risk to sales and profit generation, and 

thus stable earnings which drive returns. However, the linear regression only measures the 

contribution of water intensity to the stock price within different time periods. For a more robust 

test for the future work, the causal inference method could be applied (as I did in Chapter 4), to 

explore the impact of a binary event (TCFD promulgation) while controlling for the confounders. 
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Table 5.11 Water intensity and stock returns: Impact of Pre- and Post-TCFD Regulation 

 

 

Variables 
(1)   (2)   (3)   (4)   (5)   (6)   

2018-2022 

LOG_WIPPE*,103m3/$M -0.040 *** -0.053 ***                 

LOG_WIPS*,103m3/$M         0.013   0.016           

LOG_WIPE*,103m3/$M                 0.017 * 0.017   

INVENT_TURN -0.052 *** -0.049 *** -0.050 *** -0.059 *** -0.150 *** -0.060 *** 

FIX_ASSET_TURN -0.011   0.035   -0.009   0.022   0.153   0.023   

FNCL_LVRG -0.038 ** -0.059 *** -0.045 ** -0.068 *** -0.216 *** -0.075 *** 

VOLATILITY, % -0.008   -0.002   0.019   0.021   -0.108   0.020   

VOLUME -0.051 ** -0.054 *** -0.063 *** -0.065 *** -0.036 *** -0.064 *** 

PX_TO_BOOK_RATIO 0.288 *** 0.309 *** 0.273 *** 0.298 *** 0.381 *** 0.304 *** 

RD, $M -0.082 *** -0.083 *** -0.091 *** -0.106 *** -0.082 *** -0.107 *** 

SALES_GROWTH, % 0.172 *** 0.165 *** 0.172 *** 0.167 *** 0.276 *** 0.169 *** 

ROE, % -0.093 *** -0.093 *** -0.084 *** -0.085 *** -0.066   -0.083 *** 

EPS_GROWTH, % -0.070   -0.086   -0.048   -0.054   5.456   -0.066   

Variables 

  

(1)   (2)   (3)   (4)   (5)   (6)   

2013-2017 

LOG_WIPPE*,103m3/$M -0.062 *** -0.070 ***                 

LOG_WIPS*,103m3/$M         0.035 *** 0.043 ***         

LOG_WIPE*,103m3/$M                 0.042 *** 0.042 *** 

INVENT_TURN -0.050 *** -0.029 ** -0.037 *** -0.033 ** -0.038 *** -0.035 ** 

FIX_ASSET_TURN -0.094 *** -0.075 *** -0.049 ** -0.037   -0.040 * -0.040 * 

FNCL_LVRG 0.026 * -0.006   0.015   -0.017   -0.003   -0.034 ** 

VOLATILITY, % -0.027   0.035 * -0.026   0.021   -0.023   0.022   

VOLUME -0.047 *** -0.055 *** -0.061 *** -0.063 *** -0.060 *** -0.062 *** 

PX_TO_BOOK_RATIO 0.223 *** 0.238 *** 0.215 *** 0.237 *** 0.233 *** 0.252 *** 

RD, $M -0.041 *** -0.059 *** -0.041 *** -0.073 *** -0.043 *** -0.076 *** 

SALES_GROWTH, % 0.124 *** 0.112 *** 0.125 *** 0.115 *** 0.125 *** 0.116 *** 

ROE, % -0.006   -0.004   -0.008   -0.006   -0.004   -0.002   

EPS_GROWTH, % 0.014   0.015 * 0.014   0.014   0.015   0.015 * 

BETA 0.305 *** 0.296 *** 0.312 *** 0.304 *** 0.309 *** 0.300 *** 

PPE, $M -0.151   -0.118 *** -0.198 *** -0.144 *** -0.193 *** -0.142 *** 

SIZE, $M 0.179 *** 0.197 *** 0.221 *** 0.224 *** 0.239 *** 0.243 *** 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 3600   3600   3600   3600   3600   3600   

R-Squared 0.202   0.282   0.191   0.272   0.193   0.274   
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BETA -0.041 *** -0.042 *** -0.040 *** -0.043 *** 0.261 *** -0.043 *** 

PPE, $M -0.040   -0.001   -0.087 *** -0.042   0.193 *** -0.042   

SIZE, $M 0.111 *** 0.093 *** 0.155 *** 0.138 *** -0.079 *** 0.143 *** 

                          

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 3555   3555   3555   3555   3555   3555   

R-Squared 0.165   0.253   0.161   0.248   0.161   0.248   

Note.  The sample period is 2013–2022. The dependent variable is RET. All variables are defined in Table 5.1. We 

report the results of the pooled regression with standard errors clustered at the firm and year level (in parentheses). 

All regressions include year fixed effects and industry-fixed effects. The table reports the results for the natural 

logarithm of water intensity. The upper panel reports the results for the year of 2013-2017 (n = 3,600 company-

years); the bottom panel reports the results for the year of 2018-2022 (n = 3,555 company-years); ∗∗∗ 1% 

significance; ∗∗ 5% significance; ∗10% significance. 
 

 

Figure 5.2: Water Intensity Correlation Coefficient with Stock Return Pre- and Post-TCFD Regulation (Y: Year 

fixed; Y & I:Year and Industry fixed) 
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5.4.6  Evidence on cross-sectional market performance 

While all previous results were focused on the impact of water intensity on share price 

return, previous work (Tian and Adriaens, 2023; El Khoury et al. 2022; Alareeni et al. 2020; 

Lewandowski, 2017) has shown ESG or carbon impact on other market metrics including ROA, 

ROE and Tobin’s Q, which reflect business efficiency and valuation metrics. These metrics are 

also discussed in stakeholder theory on how to measure the moderating effect of corporate 

sustainability attributes on the financial performance of firms. For all three categories of water, 

we relate in turn the level of companies’ consumption, the year-to-year growth in consumption, 

and the companies’ water intensity to their corresponding market performance in the cross-

section.  

It estimates the following cross-sectional regression model using pooled OLS: 

𝐹𝑃(𝑅𝑂𝐴, 𝑅𝑂𝐸, 𝑇𝑂𝐵𝐼𝑁′𝑆 𝑄) = 𝑎0 + 𝑎1𝐿𝑂𝐺(𝑊𝐴𝑇𝐸𝑅) + 𝑎2𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑠 + 𝜖        (2) 

where FP measures the financial performance of ROA, ROE and Tobin’s Q, standing for firms’ 

operational, financial and market performance and WATER is a generic term alternately 

standing for the water indicators of this study. The vector of controls includes a host of firm-

specific financial variables known to predict returns, such as SIZE, INVNT_TURN, 

FIX_ASSET_TURN, FNCL_LVRG, RD, and BETA (El Khoury et al. 2022; Alareeni et al. 

2020). To address endogeneity issues, we incorporate year and industry fixed effects. Standard 

errors are clustered at the firm and year levels. The coefficient of interest is 𝑎1. It reports the 

results in Table 5.12.  
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Table 5.12 Water Intensity Indicators and Capital Markets Performance Metrics 

TOBINQ(%) 

LOG_WC, 103m3 -0.304 *** -0.371 ***                                 

WATER_GR         0.007   -0.002                           

LOG_WIPPE, 103m3/$M                 -0.063 ** -0.100 ***                 

LOG_WIPE, 103m3/$M                         -0.249 *** -0.324 ***         

LOG_WIPS, 103m3/$M                                 -0.153 *** -0.117 *** 

INVENT_TURN -0.139 *** -0.123   -0.124 *** -0.128 *** -0.162 *** -0.159 *** -0.162 *** -0.155 *** -0.150 *** -0.120 *** 

FIX_ASSET_TURN 0.012   -0.018   0.309 *** 0.126 *** 0.104 *** 0.074 *** 0.032   0.005   0.238 *** 0.053 * 

FNCL_LVRG 0.070 *** 0.069 *** 0.086 *** 0.107 *** 0.031   0.035   0.055 *** 0.049 ** 0.081 *** 0.104 *** 

BETA -0.041 ** -0.043   -0.109 *** -0.109 *** -0.039 ** -0.046 ** -0.040 ** -0.045 ** -0.107 *** -0.106 *** 

RD, $M -0.065 ** -0.064 ** 0.051 ** -0.037   0.024   -0.048 * 0.010   -0.058 ** -0.035 * -0.071 *** 

SIZE, $M 0.386 *** 0.392 *** 0.299 *** 0.299 *** 0.271 *** 0.256 *** 0.235 *** 0.230 *** 0.314 *** 0.306 *** 

                                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   No   Yes   No   Yes   

Observations 1545   1545   1925   1925   1487   1487   1487   1487   2125   2125   

R-Squared 0.207   0.212   0.305   0.268   0.147   0.148   0.182   0.184   0.315   0.284   

 

ROA(%) 

LOG_WC,103m3 -0.009   -0.031 *                                 

WATER_GR         0.165   0.014                           

LOG_WIPPE,103m3/$M                 0.068 ** 0.040                   

LOG_WIPE,103m3/$M                         -0.150 *** -0.247 ***         

LOG_WIPS,103m3/$M 

                                

0.098 *** 0.036 

  

INVENT_TURN -0.022 ** -0.030 ** -19.042 * -0.027   -0.067 ** -0.098 *** -0.074 *** -0.100 *** -0.044 ** -0.016   

FIX_ASSET_TURN 0.028 ** 0.014   0.227 *** 0.211 *** 0.053 ** 0.057 * -0.014   -0.010   0.337 *** 0.243 *** 

FNCL_LVRG -0.015   -0.013   -0.030   -0.042 * -0.053 ** -0.032   -0.024   -0.016   -0.040 * -0.045 ** 
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ROE(%) 

LOG_WC, 103m3 -0.031 ** -0.055 ***                                 

WATER_GR         0.016                               

LOG_WIPPE, 103m3/$M             0.012   0.008  -0.009                   

LOG_WIPE, 103m3/$M                         -0.080 *** -0.126 ***         
LOG_WIPS, 103m3/$M                                 0.028   -0.020   

INVENT_TURN -0.004   -0.008   -0.070 *** -0.048 ** -0.013   -0.023   -0.015   -0.022   -0.078 *** -0.074 *** 

FIX_ASSET_TURN 0.019   0.011   0.204 *** 0.179 *** 0.036 *** 0.034 ** 0.007   0.004   0.210 *** 0.147 *** 

FNCL_LVRG 0.166 *** 0.166 *** 0.222 *** 0.208 *** 0.227 *** 0.233 *** 0.238 *** 0.239 *** 0.263 *** 0.260 *** 

BETA 0.014   0.014   0.017   0.018   0.013   0.011   0.013   0.011   0.018   0.018   

RD, $M -0.021 ** -0.019 * -0.020   -0.033   0.011   -0.016   0.005   -0.023   -0.042 * -0.038   

SIZE,$M 0.139 *** 0.146 *** 0.225 *** 0.228 *** 0.114 *** 0.115 *** 0.100 *** 0.103 *** 0.249 *** 0.243 *** 

                                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   No   Yes   No   Yes   

Observations 1586   1586   1925   1925   1514   1514   1514   1514   2125   2125   

R-Squared 0.199   0.210   0.160   0.167   0.212   0.215   0.223   0.225   0.190   0.195   

Note: Column 1-2 shows the results for total water use; column 3-4 for water change ratio, and column 5-10 for water intensity. The sample period is 2013–2022 (n = 1501-2125). 

The dependent variable is FP. All regressions include year fixed effects and industry-fixed effects. ∗∗∗ 1% significance; ∗∗ 5% significance; ∗10% significance. 

BETA 0.002   0.001   -0.001   -0.001   0.000   -0.009   0.001   -0.007   -0.003   -0.001   

RD, $M 0.001   -0.003   -0.023   -0.327   0.038   -0.038   0.022   -0.056   -0.002   -0.015   

SIZE, $M 0.112 *** 0.121 *** 0.222 *** 0.218 *** 0.179 *** 0.177 *** 0.147 *** 0.152 *** 0.209 *** 0.195 *** 

                                         

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   No   Yes   No   Yes   

Observations 1586   1586   1925   1925   1514   1514   1514   1514   2125   2125   

R-Squared 0.070   0.093   0.115   0.194   0.044   0.051   0.052   0.058   0.151   0.170   
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Contrary to the correlation between water risk indicators and share price return, the 

findings reveal a significant negative association between water consumption (WC) and ROA, 

ROE, and Tobin’s Q. Thus, the hypothesis that water use affects firm market performance across 

multiple metrics is supported. This signifies that minimizing total water usage positively 

influences the firm's operational, financial, and market performance. This result aligns with prior 

research indicating a positive relationship between carbon emission reductions and corporate 

performance in terms of market and finance metrics (Busch et al, 2020; Delmas et al, 2015; 

Lewandowski et al. 2017; Gallego-Álvarez et al. 2015; Busch et al, 2018). Van (2021) observes 

that carbon emissions reduction leads to increases in ROA, ROE, and ROS, with no discernible 

effect on Tobin’s Q and the current ratio (corporate liquidity). Similarly, Ganda (2016) found 

that, in most instances, carbon emission disclosure correlates positively with ROA (an 

accounting-based indicator) but exhibits a negative association with market value added (MVA, 

a market-based shareholder value indicator). 

From the Tobin’s Q result, reduced water consumption is linked to improved long-term 

corporate valuation, with industry-specific effects further emphasizing this relationship. Year-to-

year growth ratios exhibit weaker associations with Tobin's Q. Water intensity indicators show a 

statistically significant negative impact on Tobin's Q, which strengthens when industry factors 

are considered. On the other hand, water use has a significant negative impact on ROE and ROA 

benefits. The WIPPE and WIPS indicators show a positive relationship with ROA and ROE, 

while WIPE has the opposite trend compared to other indicators. Lower water efficiency relative 

to profitability (WIPE) results in lower returns from assets (ROA) and equity (ROE) for 

companies. While no prior research on the impact of water intensity on market metrics is 

available, there is arguably some equivalency in the carbon literature. Rokhmawati (2015) finds 
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that carbon intensity has a positive and significant effect on ROA for listed manufacturing firms 

in Indonesia. Lewandowski (2017) demonstrates that carbon emission mitigation is linearly and 

significantly positively related to return on sales (ROS) but exhibits a negative association with 

Tobin's Q. These contradictory findings show that companies have been slow to respond with 

effective action to tackle climate change beyond marginal efficiency improvements. 

In summary, the findings highlight a notable market premium concerning water intensity 

indicators. Previous regression analyses in the literature have similarly noted a negative 

association between environmental disclosure and the firm’s operational and financial 

performance. For instance, a substantial inverse relationship was identified between the level of 

environmental disclosure and ROA and ROE for US S&P 500 companies (Chiong et al. 2010, 

Smith et al. 2007, Karagozoglu et al., 2000; Majumdar et al., 2001; Saleh et al., 2011). This 

result suggests that firms with environmental disclosure practices may face higher costs, 

potentially resulting in increased product prices and a potential loss of sales in a competitive 

environment. This emphasizes a more pronounced impact of environmental disclosure on the 

firm's operational and financial performance. Furthermore, the findings indicate a positive 

relationship between environmental disclosure and firm market performance, as measured by 

Tobin’s Q. 

While Table 5.12 presented data with companies that are disclosing their water intensities 

and use (n = 1,501-2,025), the same regression analysis was performed for companies where 

financial data (K nearest neighbor algorithm) and water intensities (random forest) were imputed 

as described in Section 5.5.3. This regression analysis allows us to expand our sample universe 

to 7,110-7,200 company-years, and thus serves as a robustness test of the impact regression 

(Table 5.13). 
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Table 5.13 Imputation of Water Intensity and Financial Performance for S&P500 Companies between 2013-2022 (n 

= 7110-7200)   

 

TOBINQ (%) 

LOG_WIPPE*,103m3/$M 0.035 ** 0.016 **                 

LOG_WIPE*,103m3/$M         -0.148 *** -0.138 ***         

LOG_WIPS*,103m3/$M                 -0.014 * -0.020 ** 

INVENT_TURN 0.035 *** 0.093 *** -0.006   0.070 *** 0.028 ** 0.091 *** 

FIX_ASSET_TURN 0.282 *** 0.193 *** 0.053 *** 0.033 ** 0.248 *** 0.173 *** 

FNCL_LVRG -0.165   -0.086 *** -0.119 *** -0.062 ** -0.150 *** -0.081 *** 

BETA -0.080 ** -0.070 *** -0.081 *** -0.069 ** -0.081 *** -0.071 *** 

RD, $M 0.063   0.016   0.060 *** 0.019 * 0.072 *** 0.021 * 

SIZE, $M 0.206 *** 0.213 *** 0.120 *** 0.131 *** 0.198 *** 0.207 *** 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 7200   7110   7200   7110   7200   7110   

R-Squared 0.172   0.158   0.219   0.210   0.168   0.156   

 

ROA (%) 

LOG_WIPPE* ,103m3/$M 0.028 *** 0.019 ***                 

LOG_WIPE*, 103m3/$M         -0.074 *** -0.089 ***         

LOG_WIPS*, 103m3/$M         0.009  -0.007   

INVENT_TURN -0.007   0.023 * -0.027 ** 0.011   -0.005   0.024   

FIX_ASSET_TURN 0.256 *** 0.218 *** 0.137 *** 0.116 *** 0.257 *** 0.212 *** 

FNCL_LVRG -0.150 *** -0.141 *** -0.120 *** -0.121 *** -0.136 *** -0.133 *** 

BETA -0.017   -0.012   -0.018   -0.011   -0.017   -0.012   

RD, $M -0.073 *** -0.067 *** -0.071 *** -0.060 *** -0.063 *** -0.060 *** 

SIZE, $M 0.299 *** 0.293 *** 0.253 *** 0.238 *** 0.293 *** 0.288 *** 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 7200   7110   7200   7110   7200   7110   

R-Squared 0.162   0.167   0.172   0.176   0.159   0.164   

 

ROE(%) 

LOG_WIPPE*,103m3/$M -0.003 ** -0.011 
  

                

LOG_WIPE*,103m3/$M         0.073 *** -0.066 ***         

LOG_WIPS*,103m3/$M       
  

        
0.002   -0.005   

INVENT_TURN -0.056 *** -0.018   -0.059   -0.023 * -0.055 *** -0.020   

FIX_ASSET_TURN 0.142 *** 0.142 *** 0.061 *** 0.068 *** 0.146 *** 0.136 *** 
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FNCL_LVRG 0.175 *** 0.189 *** 0.183 *** 0.190 *** 0.173 *** 0.183 *** 

BETA -0.006   -0.004   -0.006 *** -0.003   -0.006   -0.004   

RD, $M -0.081 *** -0.075 *** -0.087 *** -0.080 *** -0.082 *** -0.079 *** 

SIZE,$M 0.276 *** 0.280 *** 0.243 *** 0.244 *** 0.276 *** 0.283 *** 

                          

Year F.E. Yes   Yes   Yes   Yes   Yes   Yes   

Industry F.E. No   Yes   No   Yes   No   Yes   

Observations 7200   7110   7200   7110   7200   7110   

R-Squared 0.120   0.121   0.129   0.130   0.120   0.121   

Note.  All regressions include year fixed effects and industry-fixed effects. The table reports the results for the 

natural logarithm of water intensity. ∗∗∗ 1% significance; ∗∗ 5% significance; ∗10% significance. 

 

 

The imputation simulation results are in Table 5.13 closely mirror the observed data 

series shown in Table 5.12. Both WIPE and WIPS have a significant negative impact on Tobin's 

Q. Notably, the WIPPE impact is showing a shift, as it is significantly positive in the imputation 

data, whereas regressions based on disclosed data show a significant negative relationship. 

Imputation is conducted in an uncertainty framework, and the WIPPE may have been impacted 

by a tail bias in the distribution. This highlights the need for future research to explore the 

WIPPE imputation method and its theoretical implications for long-term performance in Tobin's 

Q. The argument in this chapter is that more investment in real (fixed) assets results in low water 

use efficiency, and thus negatively impacts the future value of the firm (Tobin’s Q). The result in 

the imputed table that the long-term value now increases is difficult to reconcile with previous 

data. Aside from WIPPE and long-term value, both WIPE and WIPPE consistently exert a 

negative impact on ROE. Additionally, for ROA, a reduction in WIPE and an increase in WIPPE 

benefit the company, aligns with the trend observed in Table 5.13. The results imply that water 

intensity is an predictive leading indicator for future financial performance and risk mitigation 

strategies, and therefore, of considerable importance from a policy perspective.   
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5.5 Conclusions 

How climate change affects the capital markets is a fundamental question in the 

burgeoning field of climate change and finance and informs policy makers who are seeking to 

engage investors in the fight against climate change. In fact, it was this question that was 

considered by the Financial Stability Board of the Bank of England to propose TCFD. Climate 

change impacts financial stability in the capital markets, and transparency of corporate risk 

disclosures is a key enabler. This chapter sought to assess whether corporate risk disclosures 

affect market metrics and whether they are channeled through corporate accounting and their 

relationship to sustainability metrics such as corporate water use, and water intensity. The 

rationale is that corporate operations and investor perceptions or expectations of investors to be 

rewarded for climate risk, have shifted given water availability as an input to corporate 

operations, profitability and risk of capital assets to become stranded. We posited two 

hypotheses: H1 Accounting-based profitability ratios are positively affected by lower corporate 

water intensity; H2 Capital markets metrics are positively impacted by efficient corporate water 

use. 

To address this question, it undertakes a cross-sectional regression analysis with market 

returns as a dependent variable and corporate accounting as well as water intensity metrics as a 

firm characteristic, and find robust evidence that water intensity significantly and positively 

affects share price returns, and generally negatively affects ROA, ROE and Tobin’s Q. The 

added challenge in this analysis is that few companies disclose their water efficiency (intensity) 

metrics in public reports and SEC disclosures. For example, of all companies listed on the 

S&P500 index, approximately 20% of companies provide any information on their water use.  

Hence, to test these hypotheses with sufficient robustness, imputation methods need to be 
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deployed both for financial and water intensity input data that inform market metrics. This 

chapter applied K-nearest neighbor and random forest (Chapter 4) imputation algorithms to 

develop a corporate universe (approx. 7,200 company-years) to complement the disclosing 

universe (approx. 1,500 company-years).   

Whether through the production of their goods and services, or investment in fixed assets 

to scale revenue growth and profits, firms across eleven (11) industry sectors are differentially 

affected by internal policies and financial regulation (e.g. TCFD) to use water efficiently and 

reduce their impact on - and exposure to - climate change. Empirical evidence suggests that 

investors are discerning these cross-sectional differences and are pricing in water risk, based on 

the inverse relationship between water intensity indicators and market impacts.  

In high water intensity industries such as industrials, energy and commodities, there is a robust, 

persistent, and significant positive water premium at the firm level for all three categories of 

water intensity. Higher water intensities result in higher share price return. This result indicates 

that companies face penalties from investors if they move along the curve towards better water 

performance. This also implies that companies face little incentive to improve their water 

performance beyond a minimum level of water performance that brings the opportunity to 

change from a positive to a negative association and, thereby, benefit financially from a better 

water performance. The result is in line with those of Keele and DeHart (2011), who find no 

immediate financial benefits from participation in initiatives such as the United States 

Environmental Protection Agency (USEPA) Climate Leaders program. Importantly, a 

comparison of 2013-2017 and 2018-2022 (pre- and post- TCFD promulgation and 

implementation) shows that market returns are attenuated (the coefficient decreases) in recent 

years. There is no significant water premium associated with total water use.  
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By analyzing market performance analysis, our results show that the water efficiency has 

a significantly negative effect on short-term operating capacity (ROA) and positive effect on 

long-term market value (Tobin’s Q). Hence, the future (replacement) market value of companies 

is lower when companies are more water intensive, potentially indicating that constrained 

resources such as water may impact valuation. To avoid contingency bias in our results, we 

conducted a robustness analysis by incorporating companies with imputed values (n = 7,200 

company-years). The results show that while the impact of water intensity per sales and 

operating profit on Tobin’s Q are consistent and negative, the results on water intensity relative 

to fixed asset investment shifted from a negative to a positive effect. The impact of water 

intensities on ROA and ROE are robust, but the magnitude of the coefficient decreases in the 

robustness test. Importantly, our conclusions are not affected by industry selection.  

The results of the analysis have important implications for business strategy. Water performance 

has been recognized by different stakeholder groups as a financially-material business issue. 

Moreover, an increasing body of empirical research suggests that water performance has a 

significant positive effect on corporate financial performance (Tian and Adriaens, 2023), 

including cost of equity. Thus, managers need to explore adequate corporate water strategies 

(transfer risk, invest in risk, or depreciate assets) to sustain or even enhance competitiveness. 

This, however, appears to be a very complex process. The results of this chapter suggest that 

climate water risk mitigation may constitute a source of competitive advantage. While some 

companies may discover financial benefits in water performance management and opt for a 

proactive approach, others might find it more financially prudent to adopt a reactive strategy 

until business uncertainties diminish. 
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Chapter 6 Conclusions and Future Recommendations 

6.1 Machine Learning and Next Generation Analytica Tools for Water Risk Impacts and 

Valuation  

The analytical tools and techniques used in this dissertation produced novel insights to 

whether the financial markets value corporate water sustainability disclosures, to predict 

corporate water intensity indicators from financial data inputs, and how corporate water 

efficiency is related to broader market metrics. These insights inform whether water risks are 

material to corporate financial performance, which is one of the key inputs in the development of 

enterprise value-based corporate water stewardship strategies.   

While the literature has published ample work on the impact of carbon intensity and 

emissions on market metrics, water risk, a well-defined component of the Natural Resource 

Based View of the Firm, a corporate strategy and competitiveness theory, is poorly studied. This 

despite insurance companies and asset managers arguing that water risk exhibits the greatest 

direct financial impact of climate change. My work quantifies the effect of water intensity 

indicators disclosed by high growth companies listed on the S&P 500 index, representing 11 

sectors of the economy based on GICS (Global Industry Classification System). The water 

intensity indicators are normalized relative to income statement and balance sheet metrics such 

as sales (revenue), operating income (EBIT; earnings before interest and taxes), and fixed asset 

investment (PP&E; plant, property, and equipment).  The impacts was assessed vis a vis a range 

of market performance metrics, such as share price return, ROE/ROA, and Tobin’s Q. Three sets 

of advanced statistical tools were used in this work: Propensity score matching (PSM), an 

inference tool, to compare binary universes of companies; Machine learning tools such as 

Random Forest, Adaboost, and Nearest neighbor algorithms to train statistical relations for 
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imputation purposes of financial and water risk indicators; and Fixed effects regression tools to 

understand time and industry sector effects, as well as for robustness tests. 

In Chapter 3, I used propensity score matching (PSM) to compare the effect of water use 

efficiency between high (bottom 70% of distribution) and low (top-30 %) intensity companies, 

while accounting for key confounding financial metrics derived from the Barra financial model 

and industry sector, over three years. The results show that, after accounting for confounders 

such as volume traded, dividend yield, financial leverage, size, fixed asset turnover, and 

inventory turnover, there is a causal inference relationship between water use efficiency (or 

conversely, water intensity) and corporate financial performance. The impact of the treatment 

effect on financial performance was highly dependent on the selection of the water intensity 

metric, and the financial outcome variable. There is significant impact on ROA (a short-term 

operational metric), alpha (a metric indicating excess returns over the benchmark) and Tobin’s Q 

(a long-term valuation metric for the firm). The results further indicated that industry 

classification, which is based on business activity, is not a useful benchmark for comparing 

financial water efficiency performance, because two companies in the same GICS classification 

exhibit entirely different financial attributes. The limitation of the causal inference tool applied is 

its requirement for binary-treatment variables (high/low water intensity, based on a probability 

distribution). Second, the universe of companies was small, because less than 20% of S&P500 

companies disclose their water use data. 

Chapter 4 addressed one of the shortcomings by expanding the corporate universe for 

analysis through the development of imputation models of water intensity performance using 

multiple ML tools, including random forest regression, using corporate financial metrics as an 

input. The input variables are selected from the Barra Risk Factors models, a multi-factor model 
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that considers 40 financial metrics that are predictive of securities performance. The selection 

was based on using correlation tables and recursive feature elimination (RFE) to reduce the 

number of dimensions (financial factors). While five ML regression models were tested, I 

focused on the random forest model, because it required the least financial input variables and 

exhibited the best statistical performance on three metrics. After selection, the remaining six 

input variables for the RF model are volume traded, dividend yield, financial leverage, size, fixed 

asset turnover, and inventory turnover. The output variables are water intensity per sale (WIPS), 

water intensity per EBIT (WIPE), and water intensity per PP&E (WIPP). After training and 

testing the random forest regression over 5 years (2017-2021) of firm data, I was able to combine 

(disclosed and imputed) water intensities for 2,525 company-years with an R2 of 0.75, 0.74, and 

0.66 for WIPS, WIPE, and WIPP respectively. The three most significant variables to predict 

water intensity indicators are: Fixed Asset Turnover, Inventory Turnover and Financial 

Leverage. A comparison of companies with known and imputed water intensity indicators 

resulted in a mixed outcome. The most reliable predictions where imputed values were 

comparable to peers in the same sector were in the most water intensive industries, including 

utilities, consumer staples, energy, materials and real estate.  

Chapter 5 then empirically investigated the impact of water intensities on the financial 

variables that may affect the market performance of firms (FP), for up to 10 years (7,200 

company-years). It contributes to the expanding literature on empirical premium analysis for 

water risk by developing and examining a comprehensive set of return prediction factors through 

various multiple (fixed effect) regression algorithms. It finds that stocks of firms with higher 

water intensities (and changes in water consumption) earn higher returns, indicating that water 

use intensities (or access limitations) are not priced in shares. However, the future value of a 
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company (Tobin’s Q) and return on equity (ROE) are negatively impacted by water intensity, a 

signal for forward-looking share prices. In addition, we saw that the impact of corporate water 

impact before and after promulgation of TCFD, a financial regulatory requirement for companies 

to disclose their impact from climate change, attenuated the market signals, including tempering 

short term operational returns (ROA) and further increasing the coefficient of ROE and Tobin’s 

Q. This indicates that financial regulation may reward future corporate action. 

This econometric research contributes to our understanding of the financial implications 

and opportunities of corporate water stewardship and will aid risk management actions in their 

transition to a climate-induced water resource-constrained world. With insurance companies 

trying to understand water liabilities from climate change in their portfolios, and corporations 

needing to make informed water risk management decisions for Enterprise Resource Planning 

(ERP), there is a need for better data and causal relationships between water risk and quantitative 

financial implications for their operations and the capital markets. This work is of interest to the 

market, as evidenced by one of our Center’s spinouts, Equarius Risk Analytics, which is focused 

on climate water risk pricing in equities and invested by corporate strategic partners. 

6.2 Which Water Indicator Could be the Signal to Inform the Market? 

The environmental indicators pertain to the systematic measurement and reporting of the 

performance of environmental policies within the framework of sustainable development. 

Environmental indicators have played a pivotal role in heightening awareness of environmental 

issues, influencing policy decisions through performance evaluations, spurring strategic planning 

efforts to mitigate environmental pressures, and serving as catalysts for research and policy 

actions. Their overarching objective is to convey pertinent information about the environment 

and its interaction with human activities. This mode of communication is instrumental in 
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emphasizing emerging environmental challenges and shedding light on the effectiveness of 

existing policy measures. While most research and reporting activity is limited to the physical 

realm (water the liquidity risk), financial implications for corporate risk managers and asset 

managers are a lot less well studied, nor reported (water the liquidity risk). 

Pioneering work of groundbreaking efforts at the World Resources Institute (WRI) and 

the World Bank contributed to the development of environmental or "green" national accounting, 

also known as natural resource accounting. This methodology adjusts national economic 

accounts to factor in the (social) costs of pollution and the depletion of natural resources (WRI, 

1989). This urgency has been further accentuated by impending financial regulations pertaining 

to climate risk disclosures and the growing integration of sustainability metrics into decision-

making processes. For water issues, the OECD (Organization of Economic Cooperation and 

Development) and UNEP (UN Environment Program) matrices include water resource 

expenditures and water pricing, while the World bank takes water efficiency into account 

(Hammond et al. ,1995). In the study of indicator-based sustainability assessment (Juwana et 

al.,2012), Savenije and Van der Zaag (2002) emphasize the significance of the Dublin Principles 

for integrated water resource management, as articulated in the International Conference on 

Water and the Environment (ICWE) (United Nations Conference on Environment and 

Development, 1992). These principles assert that: (1) Water is an indispensable resource that 

must be used and managed judiciously; (2) The involvement of all relevant stakeholders is 

essential in the development and management of water resources; (3) The pivotal role of women 

in the provision, management, and safeguarding of water resources is recognized and 

acknowledged. The economic value of water in all its uses should be underscored and factored 

into the decision-making process. The necessity for the incorporation of water-related issues is 
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also acknowledged by Loucks and Gladwell (1999), who present water sustainability principles. 

These principles encompass the critical domains of water infrastructure, environmental quality, 

economics and finance, institutions and society, human health, and well-being, as well as 

planning and technological considerations. 

Specifically, information on the environmental impact on corporate financial 

performance is considered an Environmental Performance Indicator (EPI). The EPI represents 

both the quantification of the effectiveness and efficiency of environmental action (Neely et al., 

1995), as well as the priority and commitment of firms to quantifying their environmental issues 

(Henri, 2008). While volumetric measures of water use are relatively simple, physical data do 

not reflect their impact in terms of financial performance (Christ et al., 2017). On the other hand, 

the internal economic indicators alone should not replace physical information as the basis for 

sound decision-making, rather there should be an advanced indicator to present the value of 

water impact on corporate financial performance to support decision making (Unit, E. I.,2015; 

Caspar Snijder et al., 2017). 

Firm-level water consumption data are assembled by several main providers: GRI, CDP, 

SASB, Sustainalytics and TCFD (specifically CDSB, Climate Disclosure Sustainability Board) 

application guidance for water-related disclosures). The accessible data from these ESG data 

providers covers themes such as water use efficiency, water stress, toxic 

effluents/emissions/water quality, as well as broader issues such as community conflict, human 

rights, monitoring, reporting. While some firms incorporate climate risk in terms of emissions or 

intensity, a specific emphasis on water is uncommon. Given that more and more companies 

disclose their physical water information and most large corporations report their water risks to 
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CDP, current ESG methodologies are not configured to capture the spectrum of water risk 

exposures and corporate risk response options.  

In the face of this knowledge gap, my work contributes to the need for enhancing the 

ability of investors to understand the financial materiality of water. Because of the lack of 

standardization, we first include all related water data in the paper within three groups: water 

consumption, water use growth and water use intensity normalized to financial metrics. The first 

represents both total water consumption and total water withdrawal. The second group 

encompasses growth of the total water use and growth of the withdrawals over time. The third is 

the water intensity (or efficiency) relative to sales, EBIT, and fixed assets. The Bloomberg 

database reports all water data. The description and correlation of the water variables are in 

Table 6.1 and Table 6.2. 

 

Table 6.1 Description of water variables 

Index  Definition  Method 

Water 

Intensity 

WIPS   Water Intensity per Sales   Total water use/ Sales 

WIPE   Water Intensity per EBIT   Total water use/ EBIT 

WIPPE   Water Intensity per PPE   Total water use/ PPE 

WIPA   Water Intensity per Assets   Total water use/ ASSETS 

WW_SALES   

Water Use/Withdrawal 

Intensity per Sales   Total water use/ Total water withdraw/ Sales 

WW_EBITDA   

Water Use/Withdrawal 

Intensity per EBITDA   Total water use/ Total water withdraw/ EBITDA 

WW_ASSET   

Water Use/Withdrawal 

Intensity per Assets   Total water use/ Total water withdraw/ ASEET 

Water 

Growth WATER_GR   

Growth Rate of Total Water 

Use   

(Total water use(t)- Total water use(t -1)/ Total water 

use(t-1)  

Water 

Volume 

WATER_USE   Total Water Use   

Total amount of water used to support a company’s 

operational process. (unit: 1000 m3) 

WATER_WIT

HDRAW   Total Water Withdraw   

Water withdrawal describes the total amount of water 

withdrawn from a surface water or groundwater source. 
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Table 6.2. Correlation between water use and intensity indicators. 

The sample period is 2013-2022. The table presents the cross-correlation among water variables. The water 

variables are defined in table 6-1.  

 

How correlated are these different water variables? The cross-correlations were reported 

in Table 6.2 for water indicator selection. The levels of all three groups of water are positively 

correlated and are at times high within each group. Similarly, the level of water consumption is 

highly positive correlated with total water withdraw and water intensities. Based on the 

regression analysis and indicator perspective, for water volume group, we choose total water use 

as proxy. The total water growth is selected in the water growth group. For water intensity and 

their highly correlated relationship, water-withdraw intensity for indicator is reported in 

Bloomberg platform and most water use intensities are calculated manually with raw reported 

data. the work indicated that water use, and water intensity indicators are statistically powerful 

disclosures for water risk imputation and to understand correlation to short-term and long-term 

market metrics. 

6.3 Limitation 

Regrettably, there is a dearth of prior research on the influence of water on financial 

performance. Existing studies primarily rely on hypothesis testing without delving into the 

underlying reasons for observed correlations. Limited attention has been given to exploring 

mediating factors like innovation and operational efficiencies that could enhance corporate 

performance. Most investment studies lack clear demarcation of the diverse risk-reward 

WIPS WIPE WIPPE WIPA WW_Sales WW_EBIT WW_ASSET WATER_GR Water TOT
Water_Wit

hdrawal

WIPS 1.000 0.502 0.492 0.725 0.996 0.417 0.722 0.004 0.927 0.894

WIPE 0.502 1.000 0.879 0.321 0.502 0.410 0.320 0.045 0.418 0.412

WIPPE 0.492 0.879 1.000 0.355 0.491 0.168 0.353 0.039 0.414 0.398

WIPA 0.725 0.321 0.355 1.000 0.725 0.445 1.000 0.006 0.720 0.557

WW_Sales 0.996 0.502 0.491 0.725 1.000 0.605 0.763 0.004 0.927 0.801

WW_EBIT 0.417 0.410 0.168 0.445 0.605 1.000 0.597 0.003 0.407 0.520

WW_ASSET 0.722 0.320 0.353 1.000 0.763 0.597 1.000 0.006 0.720 0.682

Water Growth WATER_GR -0.005 0.045 0.042 0.009 -0.002 0.000 -0.001 1.000 0.001 -0.001

Water TOT 0.927 0.418 0.414 0.720 0.927 0.407 0.720 0.001 1.000 0.972

Water_Withdrawal 0.894 0.412 0.398 0.557 0.801 0.520 0.682 0.001 0.972 1.000

Index

Water Intensity

Water Volume
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outcomes associated with different water behavior integration approaches. Thematic studies are 

also scarce, although promising insights emerge from climate change research, revealing a robust 

connection between strategies reducing water intensities and improved corporate performance. 

This publication addresses these gaps, offering a more comprehensive understanding of the 

intricate relationship between water dynamics and financial outcomes. 

However, due to the limited disclosure of water information (20% of companies) and 

reliance on imputation methods, potential bias exists of the research, primarily reflecting 

practices of clean and high-reputation companies. Sensitivity analyses and transparency in 

reporting were employed to address these limitations. 

Research endeavors should enhance their precision in discerning diverse water risk 

exposures faced by companies to conduct a thorough analysis of financial performance. This 

study specifically homes in on the direct water intensity associated with production and 

operation, omitting consideration of indirect water risks originating from supply chains or firm 

services. The absence of water accounting in measuring the risk of water in these areas poses a 

notable limitation. 

Furthermore, it is imperative to recognize that water risks extend beyond direct 

operational facets, encompassing regulatory and litigation risks. These external forces 

significantly impact company performance and should not be disregarded in the broader 

evaluation of water-related financial risks. 

A crucial yet underexplored facet in the current research landscape involves identifying 

causal factors contributing to improved financial performance in companies with robust 

sustainability strategies. We advocate for expanded research into various dimensions, including 

sustainability-driven innovation, employee relations, supplier loyalty, customer demand, risk 
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mitigation, and operational efficiency. This comprehensive examination is essential for a 

nuanced understanding of the intricate factors influencing corporate success in the context of 

sustainability strategies.  

Nevertheless, intriguing challenges for future research emerge from certain limitations in 

this study. Firstly, the study's temporal scope is confined, underscoring the need for future 

investigations to construct more extensive panel data and explore the lag reaction from the 

market. Additionally, replicating the obtained results with a different environmental measure 

would bolster the robustness of the findings. Lastly, considering the variations in corporate 

governance, legal frameworks, and institutional systems based on countries' characteristics is a 

valuable avenue for further analysis in future research. 

6.4   Future Research: Uncovering Hidden Signals for Sustainable Investing Using Big 

Data 

Artificial intelligence (AI) is a groundbreaking technology that enables machines to make 

human-like decisions and improve over time. Coined by John McCarthy in 1956, AI includes 

subfields like deep learning, natural language processing, and machine learning, among others 

(Yaninen, 2017). A Bank of America study predicts significant growth in US ESG or sustainable 

investments, expanding opportunities in the stock market over the next few decades. Improved 

data quality and AI's ability to uncover hidden insights make sustainable investing more 

effective. AI outperforms traditional methods by automating tasks and enhancing analytical 

capabilities, contributing to cost-efficiency, speed, scalability, accessibility, profitability, and 

competitiveness in modern finance (Antoncic et al. 2020). Kaack et al. (2020) suggests that 

recent breakthroughs in machine learning tools have the potential to bring us closer to realizing 

the United Nations Sustainable Development Goals (UN SDGs), and Kumar et al. (2021) argue 
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that the application of cutting-edge technologies to sustainability assessment can play a pivotal 

role in facilitating the green transition. Both Al-Sartawi et al. (2021) and Avgouleas (2021) hope 

that advanced financial technology including AI, ML and blockchain can boost sustainable 

finance. Inampudi & Macpherson (2020) further posit a great potential for AI to contribute not 

just to global economic activity, but particularly to ESG investing.  

Natural Language Processing (NLP).   

Informed Environmental, Social, and Governance (ESG) investments necessitate a means 

to identify ESG-related markers in companies. The literature highlights the compelling use of 

Natural Language Processing (NLP)-based analysis to discern the alignment between 

environmental policy and scientific discourse, to validate their compliance with environmental 

sustainability objectives (Smith et al., 2021). Amel-Zadeh et al. (2021) identifies that firms 

aligned with the UN Sustainable Development Goals (SDGs) are identified based on the content 

within their sustainability disclosures. Sokolov et al.(2021) finds that the use of BERT, a large 

language model, enhances document assessment in ESG contexts, with implications for 

automated investment index construction. Pasch et al. (2022) improved ESG sentiment 

prediction by 11% by combining ESG ratings with annual report text to enhance sentence-level 

prediction. 

By leveraging artificial intelligence (AI) and sentiment analysis, firms can convert 

qualitative data from news, reports, and filings into quantitative signals for cross-company and 

industry analysis. Despite limited available ESG data, AI-equipped investors can gain a 

competitive edge by utilizing sentiment analysis to: Capture news sentiment; Assess a company's 

alignment with ESG criteria and measure compliance; Make better-informed investment 

decisions. This approach streamlines data processing, reduces manual reading efforts, and 
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provides transparent, comparable ESG data from diverse sources, ensuring investors stay 

relevant and competitive in the financial landscape. 

Machine Learning with More Diverse Datasets.  

 Increased access to climate data, despite its limited reliability, and the intricate statistical 

modeling of climate change's non-linear behavior (Alonso-Robisco et al., 2022) pose formidable 

mathematical challenges to understand climate impact on corporate activity and the economy 

(Stephenson et al., 2012). The extensive datasets may demand advanced statistical tools due to 

their increasing complexity and the growing availability of micro-level data (López de Prado, 

2019). Besides, large climate finance datasets enable flexible modeling beyond linear 

approaches. Machine learning techniques, such as decision trees and neural networks, provide 

effective tools to model and understand complex financial relationships (Varian 2014, Athey 

2018, Athey & Imbens 2019). Data-driven ML approaches accommodate large datasets without 

imposing rigid assumptions, revealing unanticipated patterns and delivering strong out-of-sample 

performance (Mullainathan & Spiess, 2017). 

Increasingly, advanced ML tools are assuming a pivotal role in climate finance literature, 

addressing physical and transition risks, as well as corporate and social responsibility aspects, 

such as ESG factors and climate data. The Conference of the Parts (COP26) conferences have 

stated that AI and ML can play a key role in important climate-related topics like prediction, 

mitigation, and adaptation (Clutton-Brock et al. 2021). Linking financial data to climate ML 

models creates a new opportunity but building on our work. Raza (2022) examines ESG score 

reliability for asset managers by using ML tools to assess the impact of financial data on ESG 

scores for non-financial public companies in the USA, UK, and Germany from 2008 to 2020. 

Plakandaras et al.(2018) leveraged ML techniques to model climate change as a geopolitical risk 
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and predict its influence on various financial assets. Rolnick et al. (2022) shows how deep 

learning can significantly impact climate investment by helping to select low carbon-emitting 

companies for portfolios and optimizing investment timing. 

The Blockchain Opportunity.   

Blockchain is a distributed, decentralized, peer-to-peer database network that allows for 

fast, secure, and transparent transactions of digital assets. It is a network of ledgers to record 

information. Each ledger then acts as a node in a network. In blockchain, the veracity of 

transactions is validated by distributed consensus. The updated transaction is stored in a block. 

Each block stores a series of transactions and is linked to the previous block of transactions 

through hashing functions. Through cryptography and complex mathematical puzzles, the 

blockchain network is virtually immutable, and has been used to track climate (carbon) data in 

support of TCFD compliance. There are new calls in the literature to utilize blockchain 

technology to solve the water distribution problems, mitigate the risk involved, and monitor the 

water management system (Dogo et al.,2019). For recordkeeping, blockchain can help to 

effectively adjust and monitor the water area, as opposed to with the currently applied techniques 

(Poberezhna,2018). Besides, the blockchain framework is well equipped to deal with information 

compromise and reporting, compliance, and audit review on water management (Chung et al., 

2023)  

6.5  Future Research: Facility-Specific Geospatial Data for Portfolio Risk Management 

UN Water advocates investigating water scarcity at the local level, particularly in river 

basins or sub-basins, aligning with the Aqueduct global water risk mapping methodology (Reig 

et al., 2013), a product developed by WRI with funding from the Bloomberg Foundation. Norges 

Bank Investment Management, a sovereign wealth fund, argues for reinsurers (risk underwriters 
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of insurance companies) use of meteorological and geographical models in water risk research 

and asset risk pricing. These models provide essential statistics for establishing risk thresholds, a 

key aspect in climate-related risk assessment. Notably, reinsurers are hesitant to disclose their 

proprietary risk models, hence, independent validation and verification is challenging.   

Climate water impact on corporations manifests itself in many forms. First, it 

encompasses physical risks tied to local water conditions, such as quality and quantity, drought 

and flood, along with associated reputational and regulatory risks. Second, it considers 

operational risk, factoring in industry-specific water dependencies, including supply chain, water 

based logistics and facility-specific geospatial risks, as highlighted by Pan et al. (2012). 

Consequently, a comprehensive corporate risk transfer strategy may not be the most effective 

approach. Instead, focusing on facility-level risk profiles for portfolio management strategies is 

recommended for greater precision and efficiency. Pan et al. (2012) and companies like dClimate 

emphasizes the need to bridge the information gap in climate risk disclosures using facility-level 

risk management, as also exemplified in documents such as "CDP - Setting Site Water Targets 

Informed By Catchment Context: A Guide For Companies." The International Water 

Stewardship Standard, developed by the Alliance for Water Stewardship (AWS), promotes the 

equitable, sustainable, and economically beneficial use of water. These standards advocate a 

stakeholder-inclusive approach, encompassing site- and catchment-based actions.  

6.6 Future Work: Corporate Risk Transfer Strategies. 

The Investor Water Hub (Prof Adriaens, Advisor), established by Ceres (an NGO), unites 

85 investors from various asset classes to explore the impact of water risk on their holdings and 

how they manage this risk through pricing and asset allocation strategies (Ceres, 2015; Ceres 

n.d.). The hub argues that due to the intricacies of water risk, encompassing quality, quantity, 
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regulations, and industry sector specificities, it is impractical to derive universally applicable 

market signals solely from corporate financial data. Thus, a portfolio-based approach has been 

proposed to assess how environmental risk events affect the market valuation of publicly traded 

companies.  

In a water-constrained world, corporations facing water scarcity and rising business costs 

for operations often employ risk transfer strategies. These strategies can be financial or 

infrastructure-focused, aiming for capital efficiency amidst uncertain future cash flows (Heal et 

al., 2005; Larson et al., 2012; Lanari et al., 2021). While financial instruments like insurance are 

commonly used to hedge uncertainties, there are limited targeted tools available to address the 

financial impact of water-related issues. Binary index insurance contracts and reinsurance, as 

well as insurance-linked securities (ILS), and captive insurance have been explored. Binary 

index insurance contracts pay out when specific water-measurable quantity thresholds are 

reached, making the choice of the measurable variable linked to market performance critical. 

However, in the face of catastrophic risks, traditional insurance can become costly and may 

surpass its solvency capacity. Indeed, insurance companies will turn to reinsurers to underwrite 

their risk exposure (Kleindorfer et al., 1999; Froot, 2007; Zhao et al., 2021). A more favorable 

option is insurance-linked securities, combining uncorrelated insurance and reinsurance with 

capital market techniques within the Alternative Risk Transfer (ART) market (Securities, I.L., 

2009; Hofmann et al., 2017). ART products can expand insurability limits, enhance risk transfer 

efficiency, increase risk transfer capacity, and reduce insurance premiums through global 

diversification. Captive insurance essentially means that the company sets aside a portion of free 

cash flow in a separate line of business, which is managed as an investment arm for the company 

to grow capital that can be used to address climate/water risks. In a sense, it is risk transfer to 
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another unit within the company, or to a fund management company where multiple companies 

have partnered in captive products. 

An alternative approach to risk transfer involves capacity sharing, a comprehensive 

global supply-chain network management strategy whereby facilities can be repurposed to 

address bottlenecks in manufacturing capacity (Huang et al., 2003; Zhao et al., 2020). Originally 

devised to address asymmetries in demand and supply relationships, this strategy is particularly 

relevant in sectors like information technology, furniture, and manufacturing. It embodies the 

concept of 'co-opetition,' where cooperation and competition coexist. The co-opetition dynamic 

fosters stronger connections between facilities, facilitating the relocation of production capacities 

and risk assets while optimizing task performance through a division of attention. By treating 

each facility as a single node in the supply-chain network and a unit in the management 

portfolio, linkages and action regulations transform the entire system into an agent-dynamic-

based (ADB) model. While capacity sharing has not been proposed as a risk management 

strategy to address climate water risks in the literature, ample discussions in business forums 

have touched upon this opportunity. 
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Appendix A: Industry representation by number of firms regarding GIC 6 industry 

classification. 

Appendix A. Industry representation by number of firms regarding GIC 6 industry classification. 

Total represents the total number of firms in our sample. The sample period is 2013–2022. 

 

GICS GICS6 Industry Name # of firm 

50-Communication 

Services(44) 

501010 Diversified Telecommunication 6 

502020 Entertainment 13 

502030 Interactive Media & Services 7 

502010 Media 17 

501020 Wireless Telecommunication Services 1 

25-Consumer 

Discretionary(86) 

251010 Automobile Components 3 

251020 Automobiles 4 

255030 Broadline Retail 7 

255010 Distributors 3 

253020 Diversified Consumer Services 2 

253010 Hotels, Restaurants & Leisure 21 

252010 Household Durables 12 

252020 Leisure Products 2 

255040 Specialty Retail 22 

252030 Textiles, Apparel & Luxury Goods 10 

30-Consumer 

Staples(51) 

302010 Beverages 12 

301010 Consumer Staples Distribution 11 

302020 Food Products 16 

303010 Household Products 5 

303020 Personal Care Products 3 

302030 Tobacco 4 

10-Energy(54) 
101010 Energy Equipment & Services 15 

101020 Oil, Gas & Consumable Fuels 39 

40-Financials(93) 

401010 Banks 21 

402030 Capital Markets 26 

402020 Consumer Finance 7 

402010 Financial Services 10 

403010 Insurance 29 

35-Health Care(89) 352010 Biotechnology 12 
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351010 Health Care Equipment & Supplies 24 

351020 Health Care Providers & Services 22 

351030 Health Care Technology 1 

352030 Life Sciences Tools & Services 12 

352020 Pharmaceuticals 18 

20-Industrials(100) 

201010 Aerospace & Defense 14 

203010 Air Freight & Logistics 4 

201020 Building Products 8 

202010 Commercial Services & Supplies 8 

201030 Construction & Engineering 2 

201040 Electrical Equipment 6 

203040 Ground Transportation 8 

201050 Industrial Conglomerates 4 

201060 Machinery 20 

203020 Passenger Airlines 6 

202020 Professional Services 17 

201070 Trading Companies & Distribution 3 

45-Information 

Technology(83) 

452010 Communications Equipment 5 

452030 Electronic Equipment, Instruments & Components 12 

451020 IT Services 11 

453010 Semiconductors & Semiconductor Equipment 27 

451030 Software 19 

452020 Technology Hardware, Storage & Peripherals 9 

15-Materials(41) 

151010 Chemicals 22 

151020 Construction Materials 2 

151030 Containers & Packaging 10 

151040 Metals & Mining 7 

60-Real Estate(40) 
601010 Equity Real Estate Investment Trusts (REITs) 39 

601020 Real Estate Management & Development 1 

55-Utilities(39) 

551010 Electric Utilities 22 

551020 Gas Utilities 2 

551050 Independent Power and Renewable 1 

551030 Multi-Utilities 13 

551040 Water Utilities 1 

 

 

 

 

 

 

 



 116 

Appendix B: Water Intensity for 2013-2022 

Appendix Figure B: Average Water Intensity for 2013-2022 
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