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Abstract 

The study of wave propagation is a mature field of research with numerous avenues of 

theoretical, numerical, and experimental investigation. A prominent application is remote 

sensing, where recorded acoustic or electromagnetic waves are analyzed to elucidate information 

about their source or the environment with which they have interacted. The success of remote 

sensing tasks is often limited by the coherence of the recorded field, and the coherence of the 

recorded field is generally reduced by random fluctuations in the propagating medium. 

 In this thesis, the recovery of coherence in wave propagation through random media is 

studied. Coherence recovery is facilitated by the frequency-difference autoproduct, a quadratic 

product of complex fields at nearby frequencies, which synthetically estimates field content at 

the difference frequency of the two constituent fields. By downshifting to sufficiently low 

difference frequencies, the effects of random media, which typically scale with frequency, are 

mitigated or entirely removed. Here, the capability of the frequency-difference autoproduct to 

recover coherence is primarily assessed in underwater acoustic scattering from the sea surface. 

Theoretical predictions, numerical simulations, and laboratory experiments demonstrate the 

frequency-difference autoproduct restores coherent reflection even when the constituent 

scattered fields are nearly completely incoherent. Acoustic measurements collected in the Pacific 

Ocean and Atlantic Ocean further verify the conclusion. Analytical development of this concept 

revealed autoproduct-based recovery depends strongly on the autocorrelation function, or power 

spectrum by Fourier transform, of the randomly rough surface. A simple inversion strategy, 
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designed to exploit this dependence for the measurements collected at sea, identified minor 

adjustments to the nominal surface characteristics within experimental uncertainty and in 

agreement with a previous study of the Pacific Ocean dataset. Comparisons of frequency-

difference autoproduct, frequency-sum autoproduct, and genuine acoustic field spatial coherence, 

determined from ocean recordings, conclude this portion of the thesis. Notably, autoproduct 

spatial coherence exists outside the recorded signal bandwidth, and the coherence lengths of the 

autoproducts were generally greater than that of the constituent acoustic field for the bottom-

reflected sound analyzed here. 

 The second objective of the thesis research focuses on extensions to standard autoproduct 

theory. Higher-order autoproducts are discussed first, and the cubic frequency-difference 

autoproduct, capable of mimicking frequency content within the recorded signal bandwidth, 

receives primary consideration. Mathematical analyses of the governing field equations and 

examination of the cubic frequency-difference autoproduct’s properties in simple propagation 

environments highlights the similarities with the quadratic autoproduct. Serendipitously, noise 

suppression is inherent in the bandwidth-averaging step of the cubic frequency-difference 

autoproduct construction. Using acoustic recordings and ambient ocean noise measurements, 

cubic autoproduct-based direction of arrival estimation is shown to outperform conventional 

methods in noisy environments. The other extension considered here is the electromagnetic 

frequency-difference autoproduct. Constructed as an outer product of the electric field vector 

with itself at nearby frequencies, the dyadic autoproduct quantity is explored theoretically, 

numerically, and experimentally. The frequency-shifting concept is maintained in 

electromagnetics, as confirmed by numerical computation of autoproducts generated from 

scattering of a TM-polarized plane wave by perfectly conducting infinite cylinders. Active target 
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localization experiments conducted in forested areas on campus demonstrate remote sensing 

problems associated with array sparsity and random scattering may be mitigated by the 

electromagnetic frequency-difference autoproduct, as they are for remote sensing with the 

acoustic frequency-difference autoproduct. 
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Chapter 1  

Introduction 

This thesis covers several phenomena in wave propagation and array signal processing. The 

purpose of this chapter is to review autoproducts, rough surface scattering, and spatial coherence. 

The reviews of rough surface scattering and spatial coherence are amalgamations of introductory 

material in Chapters 2 – 4 and 5, respectively, but are detailed here for convenience. Overall 

thesis objectives and individual chapter contributions are summarized as well. 

1.1 Background 

To motivate the physical intuition of coherence recovery, the literature concerning the 

autoproduct is reviewed first, followed by rough surface scattering and spatial coherence, 

electromagnetic propagation, and remote sensing. 

1.1.1 Autoproduct Review 

Consider a recorded acoustic signal with a nontrivial bandwidth. Conventional methods typically 

analyze the signal within this recorded bandwidth. However, recent research has shown that such 

a bandwidth restriction is not an inherent constraint. In fact, information outside of this 

bandwidth may be revealed through quadratic products of the recorded field at different 

frequencies, with and without complex conjugation of the lower frequency field (Dowling, 

2018). The frequency-difference autoproduct, formed with complex conjugation of the lower-

frequency field, probes field information at the frequency defined by the difference of the two 

constituent field frequencies. The frequency-sum autoproduct, formed without complex 
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conjugation of the lower-frequency field, probes field information at the frequency defined by 

the sum of the two constituent field frequencies. When averaged through the recorded signal 

bandwidth, with respect to the difference or sum frequency, these mathematical constructs may 

mimic genuine acoustic fields at the difference and sum frequencies, which lie outside of the 

recorded field’s bandwidth (Lipa et al., 2018; Worthmann and Dowling, 2017).  

 Mathematically, the autoproducts may be constructed from any recorded field. In the 

following, 𝑃(𝒓,ω) defines the complex frequency-domain pressure field measured at position 𝒓 

and angular frequency 𝜔 = 2𝜋𝑓 within the bandwidth of the source spectrum, 𝑆(𝜔). The 

frequency difference autoproduct, 𝐴𝑃∆, and frequency-sum autoproduct, 𝐴𝑃Σ, are defined as 

𝐴𝑃∆(𝒓, 𝜔, Δω) ≡ 𝑃(𝒓, 𝜔+)𝑃
∗(𝒓,𝜔−) , (1.1a) 

𝐴𝑃Σ(𝒓,𝜔, Δω) ≡ 𝑃(𝒓,𝜔+)𝑃(𝒓,𝜔−) , (1.1b) 

where the asterisk indicates complex conjugation and 𝜔± ≡ 𝜔 ± Δ𝜔 2⁄  represent a pair of 

frequencies within the signal bandwidth with difference frequency Δ𝜔 = 𝜔+ −𝜔− and sum 

frequency Σ𝜔 = 𝜔+ +𝜔− = 2𝜔. Equations (1.1a) and (1.1b) may be averaged through the 

recorded field’s bandwidth, Ω𝐿 ≤  𝜔 ≤  Ω𝐻, by 

〈𝐴𝑃∆(𝒓, Δω)〉𝐵𝑊 =
1

Ω𝐵𝑊
Δ ∫

𝐴𝑃∆(𝒓, 𝜔, Δω)

𝑆(𝜔+) 𝑆∗(𝜔−)
𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
, (1.2a) 

〈𝐴𝑃Σ(𝒓, Δω)〉𝐵𝑊 =
1

Ω𝐵𝑊
Σ ∫

𝐴𝑃Σ(𝒓,𝜔, Δω)

𝑆(𝜔+)𝑆(𝜔−)
𝑑(Δ𝜔)

Ω𝐵𝑊
Σ

0

. (1.2b) 

where Ω𝐶 = (Ω𝐿 + Ω𝐻)/2 is the in-band center frequency. The signal bandwidth available to 

average 𝐴𝑃Δ,𝑞 and 𝐴𝑃Σ,𝑞 is given by Ω𝐵𝑊
Δ = Ω𝐻 −Ω𝐿 − Δ𝜔 and Ω𝐵𝑊

𝛴 = min[2Ω𝐻 − 𝛴𝜔, 𝛴𝜔 −

2Ω𝐿], respectively. The division in the integrand of Eq. (2) removes dependence on the source 

spectrum. Hence, the bandwidth-averaged autoproducts, 〈𝐴𝑃Δ(𝒓, Δω)〉𝐵𝑊 and 〈𝐴𝑃Σ(𝒓, Δω)〉𝐵𝑊, 



 3 

are determined exclusively by the acoustic propagation characteristics of the medium. The 

bandwidth-averaging in Eq. (1.2) also suppresses quadratic cross terms, which vary with 

constituent field frequency, in multipath environments, thereby enhancing mimicry of the 

genuine difference or sum frequency acoustic field (Lipa et al., 2018; Worthmann and Dowling, 

2017). 

 Autoproduct mimicry of a genuine acoustic field in free space is illustrated in Fig. 1.1. 

The acoustic field in free space is given by, 

𝑃(𝒓,ω) =
𝑒𝑖𝑘𝑟

𝑟
, (1.3) 

where 𝑘 = 𝜔/𝑐, 𝑐 = 1480 m/s is the sound speed in water, and 𝑟 is the distance from the source. 

Acoustic fields, determined from Eq. (1.3), at 40 kHz, 50 kHz, and 10 kHz are shown in Fig. 

1.1(a), Fig. 1.1(b), and Fig. 1.1(c), respectively. The frequency-difference autoproduct at 10 kHz, 

computed from applying Eq. (1.1a) to the constituent fields in Fig. 1.1(a) and Fig. 1.1(b), is 

shown in Fig. 1.1(d). All panels show the real component on height and range axes (with respect 

to the source location) and are normalized to unity maximum amplitude. Additionally, the 

wavelength is indicated in the bottom right corner of each panel.  

The frequency-difference autoproduct exhibits excellent mimicry of the genuine acoustic 

field at 10 kHz. The minor amplitude discrepancies between the genuine field in Fig. 1.1(c) and 

the frequency-difference autoproduct in Fig. 1.1(d), evident by the lighter hue of the 

autoproducts at large ranges, are attributed to the spherical spreading loss of autoproducts as 

1/𝑟2 rather than 1/𝑟. Meanwhile, the phase, indicated by the red-to-blue variation, is a perfect 

match between panels. The frequency-difference autoproduct synthetically estimated 10 kHz 

acoustic field content from 40 kHz and 50 kHz recorded fields in the same environment, and it is 

this idea of synthetically shifting the frequency content that motivates much of the autoproduct  
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Figure 1.1: Autoproduct mimicry of acoustic fields in free space. The real part of the acoustic 

field at 40 kHz, 50 kHz, and 10 kHz is shown in (a), (b), and (c), respectively. The real part of 

the frequency-difference autoproduct at 10 kHz, constructed from panels (a) and (b) using Eq. 

(1.1a) is shown in (d). The frequency-difference autoproduct, generated entirely from higher 

frequency fields, provides good mimicry of the phase of the genuine acoustic field at 10 kHz. 

 

work. Frequency-sum autoproducts, investigated much less frequently in this thesis, operate in a 

similar fashion to manufacture higher frequency content. 

Prior work suggests that mimicry of below-band and above-band fields can be exploited 

for a variety of remote sensing tasks. Beamforming, a well-known array spatial filtering 

operation used to identify unknown source location or direction (Jensen et al., 2011; Van Veen 
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and Buckley, 1988), utilizing the frequency-sum autoproduct was successful for mildly 

inhomogeneous environments (Abadi et al., 2013) and at ultrasound frequencies in cavitation 

imaging (Abadi et al., 2018). The effectively higher frequency content offered by the frequency-

sum autoproduct provided information with finer resolution than traditional methods, but may be 

hindered more strongly by spatially-separated sources or multipath propagation. Conversely, the 

frequency-difference autoproduct provides poorer resolution than the source signal but increases 

robustness (Dowling, 2018). Frequency-difference beamforming has been successfully 

implemented with broadband sparse-array recordings (Abadi et al., 2012), in laboratory and 

ocean environments (Douglass et al., 2017), and in the presence of strong, random scattering 

(Douglass and Dowling, 2019). Matched field processing (Bucker, 1976), another common 

source localization scheme, has also been explored with the autoproduct. Frequency-difference 

matched field processing has effectively localized remote sources in the shallow ocean 

(Worthmann et al., 2015, 2017) and at source-receiver ranges of hundreds of kilometers (Geroski 

et al., 2023; Geroski and Dowling, 2019, 2021). Extensions to coherent processing (Yuan et al., 

2023), compressive sensing (Lee et al., 2023), and adaptive methods (Park et al., 2022; Wang et 

al., 2022; Xie et al., 2020; Yang et al., 2021) also exist. The larger literature for frequency-

difference methods results directly from its improved robustness. Many of the issues hindering 

array-signal processing algorithms (array sparseness, environmental mismatch, random 

fluctuations) can be minimized by the low difference frequency field information available from 

the frequency-difference autoproduct. 

 The ability proffered by the frequency-difference autoproduct to effectively minimize 

random fluctuations provides the motivation for much of this thesis. Douglass and Dowling 

(2019) demonstrate the ability of the frequency-difference autoproduct to reliably provide 
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beamformed output in an environment with strong, randomly located, spherical scatterers by 

shifting the signal processing to a lower, below-the-signal-band frequency where the effects of 

scattering are not as strong. The same principle is utilized in Chapters 2 – 4 for random rough 

surface scattering. By selecting a sufficiently-low difference frequency, the apparent roughness 

of a random surface is reduced, and coherent surface reflection may be recovered. 

 Many of the aforementioned autoproduct studies investigate measured (or simulated) 

autoproduct cross-spectral density matrices, rather than the autoproduct fields, themselves. 

Experimental autoproduct pseudofield quantities have been studied in a Lloyd’s mirror 

environment (Lipa et al., 2018; Worthmann and Dowling, 2017) and in a refracting ocean 

(Geroski et al., 2021). Another thrust of this research, therefore, is to extend the pseudofield 

analysis to include measurements of autoproducts constructed from constituent fields scattered 

by a randomly rough surface.  

 The effect of diffraction on the autoproduct has been studied for shadow zones 

(Worthmann and Dowling, 2020a) and refracting environments (Worthmann and Dowling, 

2020b). Caustics (ray path crossing points due to refraction) significantly hinder autoproduct 

mimicry of out-of-band fields, but this can be rectified with ad hoc phase corrections (Geroski 

and Dowling, 2019). Although caustics can be an important ocean acoustic propagation 

consideration, especially at long ranges, analytically addressing the effects of both a refracting 

ocean sound speed profile and rough surface scattering is outside of the scope of the thesis. 

 The autoproduct shares features with other signal processing concepts (Dowling, 2018). 

The quadratic product of two complex field amplitudes is similar to the spatial coherence 

function (Dahl, 2004). Additionally, single Fourier transforms of the frequency-difference 

autoproduct yield the Wigner-Ville transform and the ambiguity function (Cohen, 1989). When 
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bandwidth-averaged, the frequency-difference autoproduct is a source-spectrum-normalized 

frequency-domain autocorrelation function. The parametric array (Westervelt, 1963) introduces a 

frequency shift through a physical nonlinearity in the acoustic propagation, rather than quadratic 

products of the recorded linear acoustic field. In electromagnetics, ∆𝑘 radar (Popstefanija et al., 

1993; Weissman, 1973) is a two-frequency correlation function that often ignores phase in favor 

of amplitude. The construction of the frequency-difference autoproduct differs from ∆𝑘 radar 

and the electromagnetic frequency correlation function (Sarabandi et al., 1999) in that it does not 

require an ensemble average nor a normalization.  

 Although there is no inherent restriction to fluid-borne acoustic waves (Dowling, 2018), 

the autoproduct has rarely been implemented outside of acoustics. Currently, the only 

autoproduct studies to not use acoustic fields are seismic wave backprojection of earthquakes 

(Neo et al., 2022) and preliminary electromagnetic simulations in random media (Geroski, 2021). 

Chapter 6 and Chapter 7 of this thesis cover extensions to standard autoproduct theory not 

previously reported in the literature. 

1.1.2 Rough Surface Scattering 

The scattering of waves from randomly rough surfaces is relevant in both electromagnetics and 

acoustics. This topic has been studied extensively and review material exists as textbooks (Bass 

and Fuks, 1979; Beckmann and Spizzichino, 1963; Oglivy, 1991), survey papers (Darmon et al., 

2020; Elfouhaily and Guérin, 2004; Fortuin, 1970), and chapters of textbooks (Brekhovskikh and 

Lysanov, 1991; Medwin and Clay, 1998). Rough surface scattering is particularly pertinent in 

ocean acoustics, where a randomly rough ocean surface and ocean bottom reflect and scatter 

sound waves. Here, incoherent scattering of acoustic energy into non-specular directions 

increases transmission loss and reverberation, both of which reduce the effectiveness of sonar 
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systems (Urick, 1983). The resulting coherent (specular) surface reflection loss increases with 

surface roughness (relative to acoustic wavelength) and reduces the effectiveness of acoustic 

signal processing algorithms and remote sensing tasks. 

 Acoustic scattering from a rough surface is generally analyzed via one of the following 

three approaches: perturbation theory (Harper and Labianca, 1975), Kirchhoff approximation 

(Eckart, 1953), or the small slope approximation (Thorsos and Broschat, 1995). The former two 

methods may intuitively be considered appropriate for scattering from small and large surface 

roughness, respectively. These models are generally not in agreement for surfaces with 

roughness applicable to both (Thorsos and Jackson, 1989). The small slope approximation was 

developed as a general scattering solution that reduces to perturbation theory and the Kirchhoff 

approximation in the appropriate limits. An extensive list of applications of all three methods is 

noted in the recent review paper (Darmon et al., 2020). In the present thesis research, the 

Kirchhoff approximation was favored over these other scattering formulations due to its validity 

in the specular direction, validity for large surface roughness, and convenient analytical form. 

 The utility and limitations of the Kirchhoff (tangent plane) approximation have been 

studied for decades (Eckart, 1953). In (Meecham, 1956), the Kirchhoff approximation is found to 

be valid for small slopes and large minimum radius of curvature with respect to the incident 

wavelength. A quantitative statement of this criterion is derived in (Lynch, 1970). Small grazing 

angles lead to shadowing and multiple scattering, which can be accounted for [e.g., (Lynch and 

Wagner, 1970)], but generally limit the applicability of the Kirchhoff approximation. For 

scattering from a Gaussian roughness spectrum, the ratio of correlation length to incident 

wavelength is the most important factor governing the Kirchhoff approximation’s validity 

(Thorsos, 1988). The Kirchhoff approximation has also been applied to scattering from a 
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Pierson-Moskowitz sea surface (Thorsos, 1990), dynamic rough surfaces (Dowling and Jackson, 

1993), and sinusoidal surface waves (Richards et al., 2018).  

 In the Kirchhoff approximation, the mean acoustic field reflected from an ensemble of 

randomly rough surfaces loses coherence with the incident field as 𝑘ℎcos𝜃 increases (Medwin 

and Clay, 1998), where 𝑘 is the incident field wavenumber, ℎ is the root-mean-square roughness 

height, and 𝜃 is the incidence angle. Thus, for fixed rough-surface properties and incidence 

angle, a reflected field at lower wavenumber should retain more coherence. Hence, a tractable 

problem is identifying if the frequency-difference autoproduct, a synthetic estimate of field 

information at a lower frequency, can regain coherence from randomly rough-surface-scattered 

constituent fields that have lost coherence. Coherence across surface realizations is inherently a 

single-receiver quantity, but spatial coherence is also an important concern for array signal 

processing techniques. 

1.1.3 Spatial Coherence 

As acoustic environments become more variable and complex, the acoustic field’s coherence 

between spatially-separated receivers commonly decreases. Predicting field coherence between 

two points in space is a difficult task, as it is a function of the locations of the two points, the 

signal frequency, and the characteristics of the environment between the sound source and the 

two points. Plus, coherence measurements may be degraded when noise is present. In general, 

coherence increases with decreasing receiver separation and decreasing frequency, as well as 

with decreased environmental complexity (Urick, 1983), although coherence in the presence of 

certain environmental characteristics has been shown to exhibit unintuitive behavior (Heaney, 

2011). 
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 Limited coherence length can be problematic for array signal processing in the ocean, 

especially for towed horizontal arrays or deep ocean vertical arrays, where the array aperture can 

easily exceed the field’s coherence length at the frequencies of interest. Coherence length is 

directly related to the array gain (Carey, 1998; Carey and Moseley, 1991) and thus has important 

implications in beamforming (Cox, 1973; Morgan and Smith, 1990) and matched field 

processing applications (Baggeroer et al., 1993). When an array is nominally shorter than the 

field’s coherence length, all of its elements should contribute positively to the achievable array 

gain; conversely, adding array elements that extend the array’s aperture beyond the coherence 

length generally does not provide significant improvement and can potentially reduce the 

performance of array signal processing techniques. In particular, prior work has shown that for 

shallow water environments, spatial coherence length is a primary factor in predicting 

performance (Rolt and Abbot, 1997). For a known finite coherence, the theoretical limitations of 

conventional beamforming methods with a linear array are understood and readily calculated 

(Cox, 1973; Morgan and Smith, 1990). Coherence length has been studied in a variety of 

simulation and experimental geometries and scenarios, including with both vertical and 

horizontal arrays (Wan et al., 2009), in the presence of internal waves (Duda et al., 2012; Finette 

and Oba, 2003; Lunkov and Petnikov, 2014), with varying channel depth (Carey, 1998), in the 

presence of multipath propagation (Carey and Moseley, 1991), and at long ranges (Andrew et al., 

2005; Gorodetskaya et al., 1999), to understand the influence of various ocean environmental 

characteristics. The coherence of acoustic waves scattered from the ocean surface (Dahl, 2004, 

2010; Dowling and Jackson, 1993) and floor sediment (Berkson, 1980; Brown et al., 2018) has 

also been investigated. 
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 In spite of the extensive literature, a shared characteristic of all existing work on spatial 

coherence is the limitation to in-band signal frequencies, a typical constraint of conventional 

signal processing methods. And, despite the importance of coherence in array signal processing 

applications, the spatial coherence of autoproducts has yet to be directly examined, outside of 

initial work in (Douglass, 2019) that developed into Chapter 5 of the current thesis. The 

autoproducts provide a means for processing signals at frequencies below and above the signal 

bandwidth; thus, the coherence of the autoproducts relative to that of genuine in-band fields is 

critical for understanding their performance for various applications. The primary contribution of 

this component of thesis research, therefore, is to report the horizontal spatial coherence 

properties of autoproducts computed from ocean measurements and compare them to those of 

genuine acoustic fields in the same environment. 

1.2 Thesis Overview 

This thesis contains two major components. The first thesis objective, covered in Chapters 2 – 5, 

is to thoroughly investigate autoproduct coherence in underwater acoustic random rough surface 

scattering. Three chapters examine coherent reflection of signals scattered from the ocean 

surface. A study of the spatial coherence of bottom-reflected sound in the ocean closes the work 

completed for this objective. The second research objective, covered in Chapters 6 & 7, is to 

formulate extensions to standard autoproduct theory and investigate their potential utility for 

robust remote sensing. 

 

Chronological development of this thesis is not mirrored directly in the chapter presentation. The 

chapter order, outlined below, was favored to provide a logical intellectual development of the 

coherence work, prior to shifting focus to other autoproduct constructs. Additionally, Chapters 2 
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– 6 are near reproductions of journal articles or in-preparation manuscripts, and only minor 

formatting adjustments have been made. Consequently, content overlap between chapters exists, 

particularly of introductory material, generic figures, and autoproduct equations, but the aim of 

each section is sufficiently distinct to merit its own chapter. The contributions are summarized 

below. 

 

Chapter 2 introduces the frequency-difference autoproduct constructed from rough surface 

scattered acoustic fields. Theoretical, numerical, and laboratory experiments support the premise 

of coherence recovery possible by the frequency-difference autoproduct. The work has been 

published in the Journal of the Acoustical Society of America (Joslyn and Dowling, 2022). 

 

Chapter 3 tests the analytic formula derived in Chapter 2. Frequency-difference autoproducts 

determined from measurements collected at sea of high-frequency acoustic fields scattered by a 

significantly rough ocean surface match theoretical predictions. This contribution is expected to 

be submitted to the Journal of the Acoustical Society of America in the coming months. 

 

Chapter 4 expands the theoretical analysis of Chapters 2 & 3 to account for scattering from sea 

surfaces possessing a non-analytic power spectrum. Theoretical predictions agree well with data 

collected in the ocean, and an autoproduct-based approach to environmental characterization of 

surface statistics is presented. This contribution is expected to be submitted to the Journal of the 

Acoustical Society of America in the coming months. 
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Chapter 5 presents measurements of spatial coherence and coherence length for the acoustic 

field, frequency-difference autoproduct, and frequency sum autoproduct from seafloor-reflected 

sound recorded in the ocean. The work initially began in (Douglass, 2019) and has been 

published in MDPI Acoustics (Joslyn et al., 2022). 

 

Chapter 6 introduces the concept of higher-order autoproducts. The work primarily focuses on 

the frequency-difference autoproduct and its serendipitous noise suppression attributes. 

Successful direction of arrival estimation of noisy ocean recordings underscores the potential of 

the cubic frequency-difference autoproduct to reduce noise in array signal processing tasks. This 

contribution is expected to be submitted to the Journal of the Acoustical Society of America in 

the coming months. 

 

Chapter 7 introduces the electromagnetic frequency-difference autoproduct. Theoretical 

formulation and numerical modeling precede discussion of the active target localization 

experiment. Experimental measurements were obtained in collaboration with undergraduate 

students Sonia Gutt and Adam Singer, and the formative concepts for this contribution were 

developed in (Geroski, 2021). 

 

Chapter 8 summarizes the seven main conclusions drawn from this thesis and proposes several 

areas of future research based on the findings presented herein. 
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Chapter 2  

Recovery of Coherent Reflection from Rough-Surface Scattered Acoustic Fields via the 

Frequency-Difference Autoproduct   

 

The acoustic field reflected from a random rough surface loses coherence with the incident field 

in the Kirchhoff approximation as 𝑘ℎcos𝜃 increases, where 𝑘 is the incident field wavenumber, 

ℎ is the root-mean-square roughness height, and 𝜃 is the incidence angle. Thus, for fixed rough-

surface properties and incidence angle, a reflected field at lower wavenumber should retain more 

coherence. Recent results suggest that the frequency-difference autoproduct formed from 

complex acoustic field amplitudes at two nearby frequencies can recover acoustic information at 

the difference of those frequencies even when the difference frequency is below the recorded 

field’s bandwidth. Herein analytical, computational, and experimental results are presented for 

the extent to which the frequency-difference autoproduct recovers coherence from randomly 

rough-surface-scattered constituent fields that have lost coherence. The analytical results, 

developed from the Kirchhoff approximation and formal ensemble averaging over randomly 

rough surfaces with Gaussian height distributions and Gaussian correlation functions, indicate 

that the coherence of the rough-surface-reflected frequency-difference autoproduct depends on 

the surface correlation length and ∆𝑘ℎcos𝜃, where ∆𝑘 is the difference of the autoproduct’s 

constituent field wavenumbers. These results compare favorably with Monte-Carlo simulations 

of rough surface scattering, and with laboratory experiments involving long surface correlation 

lengths where 1 ≤ 𝑘ℎcos𝜃 ≤ 3. The following chapter is a near reproduction of a journal article 
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(Joslyn and Dowling, 2022). For clarity, formulas and figures repeated elsewhere in this thesis 

are maintained in this section. 

2.1 Introduction 

The scattering of waves from randomly rough surfaces is relevant in both electromagnetics and 

acoustics. This topic has been studied extensively and review material exists as textbooks (Bass 

and Fuks, 1979; Beckmann and Spizzichino, 1963; Oglivy, 1991), survey papers (Elfouhaily and 

Guérin, 2004; Fortuin, 1970), and chapters of textbooks (Brekhovskikh and Lysanov, 1991; 

Medwin and Clay, 1998). Rough surface scattering is particularly pertinent in ocean acoustics, 

where a randomly rough ocean surface and ocean bottom reflect and scatter sound waves. Here, 

incoherent scattering of acoustic energy into non-specular directions increases transmission loss 

and reverberation, both of which reduce the effectiveness of sonar systems (Urick, 1983). The 

resulting coherent (specular) surface reflection loss increases with surface roughness (relative to 

acoustic wavelength) and reduces the effectiveness of acoustic signal processing algorithms and 

remote sensing tasks. 

 This paper presents theoretical, numerical, and experimental investigations into the 

recovery of reflected-field coherence that is possible from the frequency-difference autoproduct 

(Worthmann and Dowling, 2017) when incident acoustic waves, with wavenumber 𝑘, are 

reflected and scattered from a two-dimensional, randomly-rough pressure-release surface (the 

three-dimensional scattering problem) with root-mean-square (rms) roughness ℎ and correlation 

length 𝐿. The isotropic random rough surfaces considered here are described by Gaussian height 

distributions and Gaussian correlation functions. The Gaussian correlation function, though 

limited in applicability to realistic rough surfaces, simplifies theoretical analysis (Thorsos, 1988) 

and is therefore considered here. The theoretical and simulation results are obtained using the 



 16 

Kirchhoff approximation (Eckart, 1953; Medwin and Clay, 1998) for point-source-to-receiver 

geometries that emphasize specular reflection at incidence angle 𝜃 measured from the surface 

normal. The experiments were conducted in a laboratory water tank for 1 ≤ 𝑘ℎcos𝜃 ≤ 3 under 

long surface correlation length conditions (𝑘𝐿 ≫ 1). Interestingly, the results from all three 

approaches agree well and indicate that the coherent reflection coefficient for the frequency-

difference autoproduct may be close to one even when the coherent reflection coefficients of its 

constituent fields are much less than one. 

 The Kirchhoff approximation is commonly understood to be accurate in the specular 

direction at large grazing angles. Small grazing angles lead to shadowing and multiple scattering, 

which can be accounted for [e.g., (Lynch and Wagner, 1970)], but are outside of the scope of this 

paper. Other prominent scattering methods include perturbation theory (Harper and Labianca, 

1975) and the small slope approximation (Thorsos and Broschat, 1995). The Kirchhoff 

approximation was favored over these other scattering formulations due to its convenient 

analytical form and its validity for large 𝑘ℎ in the specular direction. The utility and limitations 

of the Kirchhoff (tangent plane) approximation have been studied for decades (Eckart, 1953). In 

(Meecham, 1956), the Kirchhoff approximation is found to be valid for small slopes and large 

minimum radius of curvature with respect to the incident wavelength. A quantitative statement of 

this criterion is derived in (Lynch, 1970). For scattering from a Gaussian roughness spectrum, 

the ratio of correlation length to incident wavelength is the most important factor governing the 

Kirchhoff approximation’s validity (Thorsos, 1988). The Kirchhoff approximation has also been 

applied to scattering from a Pierson-Moskowitz sea surface (Thorsos, 1990), dynamic rough 

surfaces (Dowling and Jackson, 1993), and sinusoidal surface waves (Richards et al., 2018).  
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A shared focus of these prior studies is consideration of scattering within the acoustic 

field’s bandwidth. However, recent research has shown that such a limitation is not an inherent 

constraint (Dowling, 2018). The frequency-difference autoproduct, formed from a quadratic 

product of complex field amplitudes at two different frequencies within the incident field’s 

bandwidth, mimics a genuine field at the (possibly below-band) difference frequency, subject to 

modified boundary conditions (Lipa et al., 2018; Worthmann and Dowling, 2017).  

 The frequency-difference autoproduct shares features with other scattered-field 

constructs. In particular, the derivation provided in Sec. II is similar to the derivations of the 

rough surface frequency correlation function in (Bozma and Kuc, 1991), (McDaniel, 1992), and 

(Gulin, 1975). However, different Fresnel approximations and beam functions distinguish the 

work described here from the former, and different surface correlation functions distinguish the 

work described here from the latter two. Additionally, the formulation provided here utilizes 

attributes unique to the frequency-difference autoproduct construction. For additional discussion 

of the relationship between the autoproduct and other quadratic fields, see (Worthmann and 

Dowling, 2017) or (Dowling, 2018).  

 Prior work suggests that the frequency-difference autoproduct can be successfully 

exploited for beamforming (Abadi et al., 2012; Douglass et al., 2017; Douglass and Dowling, 

2019) and source localization (Geroski and Dowling, 2019; Worthmann et al., 2015) when 

conventional methods fail. In particular, (Douglass and Dowling, 2019) demonstrate the ability 

of the frequency-difference autoproduct to reliably provide beamformed output in an 

environment with strong, randomly located, spherical scatterers by shifting the signal processing 

to a lower, below-the-signal-band frequency where the effects of scattering are not as strong. The 
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same principle is utilized in this paper. By selecting a sufficiently low difference frequency, the 

apparent roughness of a random surface is reduced, and coherent reflection may be recovered.  

The aforementioned autoproduct studies investigate measured (or simulated) autoproduct cross-

spectral density matrices, rather than the autoproduct fields, themselves. Autoproduct fields have 

been studied in a Lloyd’s mirror environment (Lipa et al., 2018; Worthmann and Dowling, 2017) 

and in a refracting ocean (Geroski et al., 2021). This paper extends autoproduct field analysis to 

include scattering from a randomly rough surface. 

 The primary purpose of this paper is to report on the recovery of coherent reflection from 

a randomly rough surface using the frequency-difference autoproduct. A secondary motivation is 

predicting and measuring the frequency-difference autoproduct fields themselves, in rough-

surface scattering environments. To accomplish both aims, analytical results for the frequency-

difference autoproduct are developed for diverging spherical waves incident on a randomly 

rough pressure-release surface with Gaussian height distribution and Gaussian correlation 

function. The scattering of the constituent acoustic fields in the signal bandwidth is simplified by 

the Kirchhoff approximation. Numerical evaluations of the Helmholtz-Kirchhoff integral are 

shown to support the theoretical derivations. Results from an experiment using a laboratory 

water tank provide verification of the long correlation length limit of the analytical and 

computational predictions of the frequency-difference autoproduct. 

 The remainder of this paper is organized as follows. Section 2.2 presents the 

mathematical background for the frequency-difference autoproduct with rough surface scattering 

and provides formal results for the ensemble-averaged rough-surface-scattered frequency-

difference autoproduct. Section 2.3 describes the simulation environment and shows 

comparisons of theoretical and numerical results. Section 2.4 describes the experimental setup 
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and provides comparisons of measured to theoretical results. Section 2.5 provides a summary 

and three conclusions drawn from this work. 

2.2 Theoretical Fields 

This section presents the mathematical formulation for the frequency-difference autoproduct and 

its extension to fields scattered from randomly rough surfaces. The definition of the frequency-

difference autoproduct and comparison metrics precede a brief overview of the Helmholtz-

Kirchhoff-Fresnel integral formulation. Then, the rough surface frequency-difference 

autoproduct is derived and discussed.  

2.2.1 Frequency-Difference Autoproduct and Comparison Metrics 

In the following, 𝑃(𝑹𝟐, 𝜔) defines the complex frequency-domain surface-reflected pressure 

field at position 𝑹𝟐 and angular frequency 𝜔 from an omnidirectional point source at 𝑹𝟏 with 

source spectrum 𝑆(𝜔). To form the frequency-difference autoproduct, 𝐴�̃�∆, two frequencies 

within the bandwidth of 𝑆(𝜔) are required: 

𝐴�̃�∆(𝑹𝟐, 𝜔, Δω) ≡ 𝑃(𝑹𝟐, 𝜔+)𝑃
∗(𝑹2, 𝜔−) , (2.1) 

where the asterisk indicates complex conjugation, Δ𝜔 = 𝜔+ − 𝜔− is the (user-selectable) 

difference frequency, and 𝜔± ≡ 𝜔 ± Δ𝜔 2⁄  represent a pair of frequencies separated by the 

desired difference frequency. For a broadcast source with nonzero bandwidth, Ω𝐿 ≤  𝜔 ≤  Ω𝐻, 

Eq. (2.1) may be bandwidth-averaged by 

〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊 =
1

Ω𝐵𝑊
Δ ∫

𝐴�̃�∆(𝑹𝟐, 𝜔, Δω)

𝑆(𝜔+) 𝑆∗(𝜔−)
𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
, (2.2) 

where Ω𝐵𝑊
Δ = Ω𝐻 − Ω𝐿 − Δ𝜔 is the signal bandwidth available for averaging and Ω𝐶 =

(Ω𝐿 +Ω𝐻)/2 is the center frequency of the signal bandwidth. The division in the integrand of 
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Eq. (2.2) removes dependence on the source spectrum. Hence, the bandwidth-averaged 

autoproduct, 〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊, is determined exclusively by the acoustic propagation 

characteristics of the medium. The bandwidth-averaging in Eq. (2.2) also suppresses quadratic 

cross terms, which vary with constituent field frequency, in multipath environments (Lipa et al., 

2018; Worthmann and Dowling, 2017). Although it is possible to select ∆𝜔 ≥ Ω𝐿 for a 

sufficiently wideband signal, Δ𝜔 will be referred to as a below-band frequency in this paper for 

simplicity. 

 To facilitate comparisons between theoretical, simulated, and experimental autoproduct 

fields, as well as genuine acoustic fields, a normalized complex spatial cross-correlation 

coefficient is employed as a figure of merit. The definition implemented here matches that used 

by (Lipa et al., 2018) and (Geroski et al., 2021). For a field, 𝜓, discretely sampled by 𝐾 receivers 

(at locations 𝒓𝒌) and a theoretical field, Ψ, the spatial cross-correlation coefficient 𝜒 is defined as 

𝜒(𝜔) =
∑ 𝜓(𝒓𝒌, 𝜔)Ψ

∗(𝒓𝒌,𝜔)
𝐾
𝑘=1

[∑ |𝜓(𝒓𝒌, 𝜔)|
2𝐾

𝑘=1 ]1 2⁄ [∑ |Ψ(𝒓𝒌, 𝜔)|
2𝐾

𝑘=1 ]1 2⁄
 . (2.3) 

This definition leads to a complex number residing within the unit circle on the complex plane 

and indicates the match of the normalized magnitude and phase of 𝜓 and Ψ. Similar to other 

complex correlations [for instance spatial coherence, see(Dahl, 2004)], values of |𝜒| near 0 

indicate a poor match between fields while values of |𝜒| near 1 indicate very similar fields. 

Additionally, a nonzero phase of 𝜒 represents a consistent phase difference between 𝜓 and Ψ. 

When non-normalized magnitudes are of interest, the root-mean-square-error (RMSE) is 

determined from: 

RMSE(𝜔) = √
1

𝐾
∑|𝜓(𝒓𝒌, 𝜔) − Ψ(𝒓𝒌,𝜔)|

2

𝐾

𝑘=1

. (2.4) 
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To quantitatively compare reflected-field coherence between autoproducts and genuine acoustic 

fields, the coherent reflection coefficient ℛ𝑐𝑜ℎ  [see e.g.,(Medwin and Clay, 1998)] was 

predicted, computed, and measured. The definition of ℛ𝑐𝑜ℎ  is given by 

ℛ𝑐𝑜ℎ =
〈𝜓𝑟𝑜𝑢𝑔ℎ〉

𝜓𝑓𝑙𝑎𝑡
, (2.5) 

where 〈 〉 indicates an ensemble average over surface realizations, 𝜓 is either an acoustic field or 

the frequency-difference autoproduct, and the subscripts rough and flat denote rough-surface-

scattered and flat-surface-reflected fields, respectively. Values of |ℛ𝑐𝑜ℎ| near 0 indicate a lack of 

coherence across surface realizations while values of |ℛ𝑐𝑜ℎ| near 1 indicate significant coherence 

across surface realizations. The phase of ℛ𝑐𝑜ℎ  represents phase shifts that occur during reflection 

from a rough interface, but do not affect overall coherence.  

2.2.2 Helmholtz-Kirchhoff-Fresnel Integral 

To construct the rough-surface frequency-difference autoproduct, an accurate scattered pressure 

field is necessary. For the analytical results, the Helmholtz-Kirchhoff-Fresnel (HKF) integral is 

utilized to determine this scattered field. A terse overview of the HKF integral derivation found 

in (Medwin and Clay, 1998) is provided to introduce the equations necessary for the frequency-

difference autoproduct and to highlight important features for the numerical simulations 

described in Sec. III. 

 The rough surface scattering environment is shown in Fig. 2.1. The randomly rough 

interface 𝑧 = (𝑥, 𝑦) divides two homogeneous media, and the mean level of (𝑥, 𝑦) (𝑧 = 0) 

defines the 𝑥-𝑦 plane. The plane of incidence, with source-receiver axis aligned with x, defines 

the 𝑥-𝑧 plane and the angle of incidence is 𝜃. The origin of the Cartesian coordinate system is at 

the specular point for flat-surface reflection between the omnidirectional source at 𝑹𝟏 and the 
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receiver at 𝑹𝟐. In all analyses, the direct path spherical wave response at the receiver is set aside 

to focus on the surface-scattered field. 

 

Figure 2.1: Scattering geometry and variables. The Cartesian coordinate system is centered on 

the specular point for flat-surface reflection between source and receiver, and the mean level of 

the rough surface determines the 𝑧 = 0 plane. The source is located at 𝑹𝟏 and the receiver at 𝑹𝟐. 

 

 The integral solution for the scattered field at the receiver in a medium with constant 

sound speed c is given by the Helmholtz-Kirchhoff integral [e.g., (Medwin and Clay, 1998)], 

𝑃(𝑹𝟐, 𝜔) =  
1

4𝜋
∫ [𝑃

𝜕

𝜕𝑛
(
𝑒𝑖𝑘𝑟

𝑟
) −

𝑒𝑖𝑘𝑟

𝑟

𝜕𝑃

𝜕𝑛
]𝑑𝑆,

𝑆

(2.6) 

where 𝑆 is the two-dimensional rough surface described by 𝑧 = (𝑥, 𝑦), 𝑛 is the surface normal 

into the half-space that contains the source, and 𝑟 is the distance from a surface point to the 

receiver. To evaluate the integrand, the Kirchhoff approximation modifies the boundary 

conditions on the surface:  

𝑃 =  Γ𝑃𝑖𝑛𝑐, (2.7a) 
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𝜕𝑃

𝜕𝑛
= −Γ

∂𝑃𝑖𝑛𝑐
∂n

, (2.7b) 

for incident wave, 𝑃𝑖𝑛𝑐, and reflection coefficient Γ. Equations (2.7a) and (2.7b) are exact for 

reflection from a flat surface. The validity of this approximation therefore depends on the local 

radius of curvature (Lynch, 1970; Meecham, 1956) but is generally accurate near the specular 

direction (Thorsos, 1988, 1990). 

 The incident wave 𝑃𝑖𝑛𝑐 is radiation from an omnidirectional point source with source 

strength 𝑆(𝜔): 

𝑃𝑖𝑛𝑐(𝜔) =  𝑆(𝜔)
𝑒𝑖𝑘𝑟𝑠

𝑟𝑠
, (2.8) 

where 𝑟𝑠 is the distance from the source to a point on the surface. Substitution of Eqs. (2.7) and 

(2.8) into Eq. (2.6) and assumption of a constant reflection coefficient yields 

𝑃(𝑹𝟐, 𝜔) =
𝑆(𝜔)Γ

4𝜋
∫
𝜕

𝜕𝑛
(
𝑒𝑖𝑘(𝑟+𝑟𝑠)

𝑟𝑟𝑠
)𝑑𝑆.

𝑆

(2.9) 

Equation (2.9) is the Helmholtz-Kirchhoff integral with the Kirchhoff approximation, and it can 

be numerically evaluated (see Chapter 2.3). Further analytical manipulation requires expansion 

of the geometrical terms as well as evaluation of the normal derivative. An overview of this 

algebraic effort can be found in (Medwin and Clay, 1998). Utilization of the Fresnel 

approximations and assumption of small surface slopes results in the HKF integral (Medwin and 

Clay, 1998): 

𝑃(𝑹𝟐, 𝜔) =  −
𝑖𝑆(𝜔)Γωcos 𝜃

2𝜋𝑐𝑅1𝑅2
𝑒𝑖
𝜔
𝑐
(𝑅1+𝑅2) ∫ ∫ 𝑒

𝑖𝜔
𝑐𝑅(𝑥

′2cos2𝜃+𝑦′
2
)+2𝑖

𝜔
𝑐 cos𝜃(𝑥

′,𝑦′)

∞

−∞

𝑑𝑥′𝑑𝑦′,

∞

−∞

(2.10) 

where 𝑅 = 2𝑅1𝑅2/(𝑅1 + 𝑅2) and 𝑥′ and 𝑦′ are the integration variables in the 𝑥 and 𝑦 

directions, respectively. 
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 The expected value of the scattered field broadcast from a unit strength, omnidirectional 

point source is found by ensemble averaging Eq. (2.10) over surface realizations. For a zero-

mean surface with Gaussian roughness profile and 〈2〉 ≡ ℎ2, the ensemble average yields 

(Medwin and Clay, 1998) 

〈𝑃(𝑹𝟐, 𝜔)〉 = Γ
𝑒𝑖𝑘(𝑅1+𝑅2)

𝑅1 + 𝑅2
𝑒−2(𝑘ℎcos𝜃)2 , (2.11) 

for wavenumber 𝑘 = 𝜔/𝑐. Equation (2.11) is the conventional Kirchhoff-approximated coherent 

field reflected from a random rough surface with a Gaussian height distribution. Substitution of 

Eq. (2.11) into Eq. (2.5) yields the in-band coherent reflection coefficient, which is exponentially 

diminishing as the square of 𝑘ℎcos𝜃, 

ℛ𝑐𝑜ℎ = 𝑒−2(𝑘ℎcos𝜃)
2
. (2.12) 

2.2.3 Rough Surface Frequency-Difference Autoproduct 

Inserting the HKF integral from Eq. (2.10) into Eqs. (2.1) and (2.2) yields the bandwidth-

averaged autoproduct of the rough-surface reflected field: 

〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊 =
|Γ|2 cos2 𝜃

Ω𝐵𝑊
Δ 4𝜋2𝑐2𝑅1

2𝑅2
2 𝑒

𝑖
Δ𝜔
𝑐
(𝑅1+𝑅2)∫ 𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2
Ω𝐵𝑊
Δ

𝜔+ 𝜔− (2.13) 

× ∫ ∫ ∫ ∫ 𝑒
𝑖
𝑐𝑅cos2𝜃[𝜔+𝑥

′2−𝜔−𝑥
′′2]

∞

−∞

∞

−∞

∞

−∞

𝑒
𝑖
𝑐𝑅[𝜔+𝑦

′2−𝜔−𝑦
′′2]𝑒

2𝑖 cos𝜃
𝑐 [𝜔+(𝑥

′,𝑦′)−𝜔−(𝑥
′′,𝑦′′)]𝑑𝑥′𝑑𝑦′𝑑𝑥′′𝑑𝑦′′.

∞

−∞

 

This is the general frequency-difference autoproduct for scattering from any randomly rough 

surface, 𝑧 = (𝑥, 𝑦), subject to the Kirchhoff and Fresnel approximations. The quadruple integral 

over 𝑥′, 𝑦′, 𝑥′′, and 𝑦′′ represents a double surface integration in the orthogonal spatial directions 

𝑥 and 𝑦. Importantly, the bandwidth-averaging integral removes dependence on the source 

spectrum, leaving only features of the acoustic environment.  
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 The expected value of the bandwidth-averaged frequency-difference autoproduct is found 

by surface-realization ensemble averaging of Eq. (2.13), the effect of which is isolated to the last 

exponential in the integrand. The expected value of the final exponential is the two-dimensional 

characteristic function of the random variable . For a zero-mean normally-distributed variable, 

the two-dimensional characteristic function (Papoulis, 1984) is 

〈𝑒
2𝑖 cos𝜃

𝑐 [𝜔+(𝑥
′,𝑦′)−𝜔−(𝑥

′′,𝑦′′)]〉 = 𝑒−
1
2𝑣

2(𝜔+
2+𝜔−

2)𝑒𝑣
2𝜔+𝜔−Φ, (2.14) 

where 𝑣 = 2(ℎ/𝑐)cos𝜃, 〈 〉 indicates an ensemble average over surface realizations, and Φ is the 

spatial correlation function of the rough surface. The surface correlation function is assumed 

Gaussian with isotropic correlation length 𝐿: 

Φ = exp [− 
𝛼𝑥
2 + 𝛼𝑦

2

𝐿2
 ] , (2.15) 

where 𝛼𝑥 and 𝛼𝑦 are the difference coordinates in the x and y directions (Bozma and Kuc, 1991). 

Here the relevant sum and difference spatial coordinate transformations are defined by 

𝛼𝑥 = 𝑥
′ − 𝑥′′, (2.16𝑎) 

𝛼𝑦 = 𝑦
′ − 𝑦′′, (2.16𝑏) 

𝛽𝑥 = 𝑥
′ + 𝑥′′, (2.16𝑐) 

𝛽𝑦 = 𝑦′ + 𝑦′′, (2.16𝑑) 

𝑑𝛼𝑥𝑑𝛽𝑥 = 2𝑑𝑥
′𝑑𝑥′′, (2.16𝑒) 

and 

𝑑𝛼𝑦𝑑𝛽𝑦 = 2𝑑𝑦
′𝑑𝑦′′. (2.16𝑓) 

Additionally, the factors preceding the first integration in Eq. (2.13) are identified for clarity in 

subsequent calculations as  

𝛾 =
|Γ|2 cos2 𝜃

4𝜋2𝑐2𝑅1
2𝑅2

2 𝑒
𝑖
Δ𝜔
𝑐
(𝑅1+𝑅2). 
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Substitution of Eqs. (2.14-2.16) into Eq. (2.13) and utilization of 𝜔± = 𝜔 ± Δ𝜔 2⁄  produces, 

after some manipulation,  

〈〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊〉 =
𝛾

4Ω𝐵𝑊
Δ ∫ 𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− 𝑒

−
1
2𝑣

2(𝜔+
2+𝜔−

2) (2.17) 

× ∫ 𝑑𝛼𝑥 ∫ 𝑑𝛼𝑦

∞

−∞

∞

−∞

exp{𝑣2𝜔+𝜔−Φ} exp {
𝑖Δ𝜔cos2𝜃

4𝑐𝑅
𝛼𝑥
2} exp {

𝑖Δ𝜔

4𝑐𝑅
𝛼𝑦
2} 

× ∫ 𝑑𝛽𝑥 exp {
𝑖cos2𝜃

𝑐𝑅
[𝛼𝑥𝛽𝑥𝜔 +

𝛽𝑥
2Δ𝜔

4
]}

∞

−∞

∫ 𝑑𝛽𝑦 exp{
𝑖

𝑐𝑅
[𝛼𝑦𝛽𝑦𝜔 +

𝛽𝑦
2Δ𝜔

4
]} .

∞

−∞

 

 The final two spatial integrands are Gaussian functions in 𝛽𝑥 and 𝛽𝑦. Evaluation of the 

sum coordinate Gaussian integrals in Eq. (2.17) leads to 

〈〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊〉 =
𝑖𝛾𝜋𝑐𝑅

Ω𝐵𝑊
Δ (∆𝜔)cos𝜃

∫ 𝑑𝜔
Ω𝐶+

1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− 𝑒

−
1
2𝑣

2(𝜔+
2+𝜔−

2) (2.18) 

× ∫ 𝑑𝛼𝑥 ∫ 𝑑𝛼𝑦

∞

−∞

∞

−∞

exp{𝑣2𝜔+𝜔−Φ} exp{
−𝑖𝛼𝑥

2𝜔+𝜔−cos2𝜃

𝑐𝑅Δ𝜔
} exp {

−𝑖𝛼𝑦
2𝜔+𝜔−
𝑐𝑅Δ𝜔

}. 

Further evaluation of Eq. (2.18) requires asymptotic approximation of the remaining spatial 

integrand. A Taylor expansion of the correlation function about the origin of the difference 

coordinates was implemented following (Bozma and Kuc, 1991):   

Φ = exp [− 
𝛼𝑥
2 + 𝛼𝑦

2

𝐿2
 ] ≈ 1 − 

𝛼𝑥
2

𝐿2
 −  

𝛼𝑦
2

𝐿2
. 

Minimal asymptotic error is expected from this approximation as the correlation function appears 

only in an exponential, indicating that the major effects of scattering are contained near the 

specular point.  

 Substitution of the correlation function approximation results in standard Gaussian 

integrals in 𝛼𝑥 and 𝛼𝑦. Interestingly, evaluation of the remaining spatial integrals eliminates 
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dependence on 𝜔+ and 𝜔−, leaving a trivial integration over angular frequency. However, the 

bandwidth-average is still an important step as averaging through the signal bandwidth improves 

robustness of the frequency-difference autoproduct. Replacement of 𝛾 and some algebraic effort 

yields an analytic result for the ensemble-averaged frequency-difference autoproduct scattered 

from a randomly-rough surface with Gaussian height distribution and Gaussian correlation 

function: 

〈〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊〉 = |Γ|
2
𝑒𝑖∆𝑘(𝑅1+𝑅2)

(𝑅1 + 𝑅2)
2
𝑒−2(Δ𝑘ℎcos𝜃)

2
(2.19)

× [(1 − 𝑖∆𝑘ℎ2
4𝑅

𝐿2
)(1 − 𝑖∆𝑘ℎ2

4𝑅cos2𝜃

𝐿2
)]

−1 2⁄

,

 

where ∆𝑘 = ∆𝜔/𝑐. This result is analogous to Eq. (2.11) for the in-band field.  

 Aside from a modified boundary condition, |Γ|2, and an extra factor of 1/(𝑅1 + 𝑅2), the 

terms preceding the square brackets in Eq. (2.19) are reminiscent of the equivalent in-band field, 

Eq. (2.11), if it were evaluated at the difference frequency, ∆𝜔. These two features limit the 

autoproduct’s exact mimicry of a genuine acoustic field at the difference frequency. They are 

inherent to the autoproduct’s construction and are well-documented elsewhere (Worthmann and 

Dowling, 2017). Nevertheless, in Eq. (2.19), the Rayleigh roughness parameter in the 

exponential is dependent on Δ𝑘ℎ. Thus, the apparent surface roughness may then become 

negligible for a sufficiently low difference frequency. As a result, ℛ𝑐𝑜ℎ , as given by Eqs. (2.5) 

and (2.19), 

ℛ𝑐𝑜ℎ = 𝑒−2(Δ𝑘ℎ𝑐𝑜𝑠𝜃)
2
[(1 − 𝑖∆𝑘ℎ2

4𝑅

𝐿2
) (1 − 𝑖∆𝑘ℎ2

4𝑅cos2𝜃

𝐿2
)]

−1 2⁄

, (2.20) 

is governed by Δ𝑘ℎ and may approach 1, regardless of the 𝑘ℎ values of the constituent acoustic 

fields. 
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 The terms in [ ]-brackets in Eqs. (2.19) and (2.20) are unique to the frequency-difference 

autoproduct and can also limit the recovery of coherent reflection. The form of these bracketed 

terms is such that nonzero imaginary components in each parenthesis leads to a reduction 

in ℛ𝑐𝑜ℎ. Hence, the parameter combination, 4𝑅∆𝑘ℎ2/𝐿2, is identified as the frequency-

difference roughness parameter. For large values of the frequency-difference roughness 

parameter, coherent reflection will decrease. Conversely, for a given surface, the frequency-

difference roughness parameter can be minimized, and coherent reflection restored, through 

judicious selection of the difference frequency. 

 The capability of the frequency-difference autoproduct to recover coherent reflection is 

predicted to depend exponentially on the Rayleigh roughness parameter and as an inverse 

square-root of a factored polynomial involving the frequency-difference roughness parameter. 

These findings were investigated numerically and experimentally by using underwater acoustic 

waves ensonifying a randomly rough, isotropic, pressure-release surface where |Γ|2 = 1. 

However, this restriction is not general. The techniques outlined above are valid for acoustically 

hard boundaries, boundaries with near spatially-constant Γ, anisotropic surfaces, and any 

homogeneous acoustic medium. 

 

2.3 Numerical Simulations 

This section presents results of a numerical investigation into coherence recovery using 

simulated frequency-difference autoproducts. A description of the simulation strategy, including 

the numerical Helmholtz-Kirchhoff integral and random surface generation, precedes 

presentation of the simulated results. 
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2.3.1 Simulation Implementation 

The specular plane of the simulated rough surface scattering environment is shown schematically 

in Figure 2.2. The omnidirectional source defines the origin of the 𝑥-coordinate and is located 

0.20 m below the randomly rough, pressure-release surface . The receivers are located 0.33 m 

in range from the source and sample 80 depths between 0.25-0.4 m, corresponding to 1.9 mm 

resolution. The sound speed, c, is 1480 m/s and the surface is interrogated with a signal pulse 

having bandwidth 40-110 kHz. The source spectrum is set to unity to simulate the Green’s 

function. This simulation setup matches the geometry and experimental parameters of the water 

tank experiments described in Chapter 2.4. 

 

Figure 2.2: Specular plane schematic of nominal simulation and experimental geometry. The 

omnidirectional source at depth 0.20 m broadcasts to receiving locations at range 0.33 m. The 

receiving locations probe depths [0.25-0.4 m] with a spatial sampling interval of 1.9 mm 

(simulation) and 5 mm (experiment). 
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To simulate the rough surface scattering, the Kirchhoff-approximated Helmholtz-

Kirchhoff integral in Eq. (2.9) is discretized. The Fresnel and small surface slope approximations 

utilized in the theoretical derivation to obtain Eq. (2.10) are therefore not utilized in the 

numerical evaluations. Using differential geometry identities for the normal derivative, 𝜕/𝜕𝑛 =

 𝑛 ∙ ∇, and the surface, 𝑑𝑆 = (
𝑥
2 +  

𝑦
2 + 1)

1/2
𝑑𝑥𝑑𝑦 where 

𝑥
 and 

𝑦
 are the partial spatial 

derivatives of the rough surface , along with a directional sense of the impinging and diverging 

waves, the discrete Kirchhoff-approximated Helmholtz-Kirchhoff integral is 

𝑃(𝒙, 𝜔) =  
 Γ

4𝜋
∫ ∫

𝑒𝑖𝑘(𝑟+𝑟𝑠)

𝑟𝑟𝑠
[(𝑖𝑘 −

1

𝑟𝑠
) 𝑟�̂� ∙ 𝑛 − (𝑖𝑘 −

1

𝑟
) �̂� ∙ 𝑛] (

𝑥
2 +  

𝑦
2 + 1)

1
2
𝑑𝑥𝑑𝑦

𝑌𝑋

, (2.21) 

where 𝒙 is a generic field location in the coordinate system displayed in Fig. 2.2, hats denote unit 

vectors, and 𝑋 and 𝑌 define the area of the rough surface projected onto the 𝑥-𝑦 plane. The 

geometrical unit vectors, 𝑟�̂� and �̂�, describe the directions from the source to an arbitrary (𝑥,𝑦)-

point on the surface and from that (𝑥,𝑦) surface point to the receiver, respectively. Numerical 

evaluation of Eq. (2.21) is implemented via trapezoidal integration on a 1.25 m × 1.25 m surface 

patch sampled every 1.3 mm, corresponding to ~𝜆/15 surface sampling with respect to the 

signal center frequency, 75 kHz. 

 In the limit of zero roughness, Eq. (2.21) should reduce to the Green’s function given by 

the method of images: 

𝐺(𝒙, 𝜔) =  
𝑃(𝒙,𝜔)

𝑆(𝜔)
 = Γ

𝑒𝑖𝑘(𝑅1+𝑅2)

𝑅1 + 𝑅2
. (2.22) 

Figure 2.3 provides an overview of this flat surface comparison. Theoretical fields are shown by 

the black curves and simulated fields by red dots in panels (a) and (b). Figure 2.3a) shows the 

real part of the pressure field evaluated at the center frequency, 75 kHz, along the receiving 
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depth locations. The complex cross-correlation coefficient, averaged through the signal 

bandwidth, confirms the excellent match; to five decimal places, 𝜒 = 1 + 0𝑖. Figure 2.3b) 

indicates slight magnitude discrepancies between theoretical and simulated fields not revealed by 

the cross-correlation coefficient. The RMSE between theoretical and simulated fields across the 

depth locations, as a percentage of the average theoretical receiver amplitude, is displayed by 

frequency in Fig. 2.3c). The RMSE is less than 1.5% across the signal bandwidth. Hence, the 

current numerical implementation accurately predicts phase and, within a few percent, amplitude 

of the in-band field. 

 

Figure 2.3: Zero roughness assessment of the numerical simulations. Panels (a) and (b) show the 

real part and amplitude of the received pressure vs. depth at 75 kHz. Theoretical Green’s 

functions are shown in black and simulated fields are shown as red dots. Panel (c) displays the 

RMSE percentage between simulated and theoretical fields by frequency. 
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 Randomly rough surfaces with Gaussian height distributions and Gaussian correlation 

functions were generated with open-source software in MATLAB (Bergström, 2012). Analysis 

was conducted on two statistically unique surfaces: (i) ℎ = 8 mm and 𝐿 = 20 mm (short 

correlation length) and (ii) ℎ = 8 mm and 𝐿 = 45 mm (long correlation length). The surface 

parameters were selected to reasonably satisfy and easily exceed, respectively, the validity 

requirements of the Kirchhoff approximation. Each surface type was generated 300 times. Slight 

statistical variation exists between the intended ℎ and 𝐿 and the values determined directly from 

the generated surfaces. Throughout this paper, surfaces are referred to by the intended statistical 

ℎ and 𝐿 values while calculations implement the actual post-surface-generation ℎ and 𝐿 values.  

A summary of the short correlation length surfaces is presented in Figs. 2.4a)-c), while the longer 

correlation length surfaces are shown in Figs. 2.4d)-f). The colormap (Auton, 2021) in figure 

panels 2.4a)-b) and 2.4c)-d) displays significantly negative (positive) surface height deviations in 

blue (red). Probability density functions (PDFs) of height deviation (with respect to 𝑧 = 0) are 

shown in Figs. 2.4c) and 2.4f) and indicate the statistical variability. In each panel, the height 

deviation PDF of all 300 surface realizations is shown as a solid black curve while the 300 height 

deviation PDFs of individual surface realizations are shown in semitransparent red curves. 

Herein, the surfaces are distinguished by their relative correlation lengths. At each of the 80 

receiver depth locations, the 600 randomly rough surfaces are integrated according to Eq. (2.21) 

for the 71 integer-kHz frequencies in the signal bandwidth, resulting in greater than 3.4 million 

simulated 𝑃(𝒙,𝜔)’s.  

 To quantify statistical uncertainty, an additional 1200 surfaces (of each type) were 

integrated in the same manner. From this pool, ensembles of 300 surfaces were randomly 
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selected 500 times. The 95th percentile of the ensuing variation for both in-band and autoproduct 

results is indicated by error bars in Figs. 2.5 and 2.6. 

 

Figure 2.4: Overview of the randomly rough surfaces implemented in simulation. A sample 

realization with Gaussian height distribution, Gaussian correlation function, 𝑘ℎ = 2.55 and 

ℎ/𝐿 = 0.40 is shown in (a). The 𝑥- and 𝑦- axes are shown in center-frequency wavelength units, 

and the vertical deviation in units of rms height. A projection of (a) is shown in (b). PDFs of the 

height deviations are shown in (c). Each transparent red line indicates one surface realization and 

the black line is the PDF of all surfaces. Panels (d), (e), and (f) show equivalent information for a 

surface with 𝑘ℎ = 2.55 and ℎ/𝐿 = 0.18. For all panels, the incident wavelength is for the 

signal’s center frequency, 75 kHz. 

 

2.3.2 Results 

Simulated frequency-difference autoproducts were computed from the numerical 𝑃(𝒙, 𝜔)’s and 

Eqs. (2.1) and (2.2) for both the shorter and longer correlation length surfaces. The theoretical 
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frequency-difference autoproducts were calculated from Eq. (2.19), with appropriate 

substitutions of ℎ and 𝐿.  

 Figure 2.5 shows the real part of the theoretical and simulated frequency-difference 

autoproducts for the shorter [Figs. 2.5a) and 2.5b)] and longer [Figs. 2.5c) and 2.5d)] correlation 

length surfaces evaluated at two difference frequencies. In each plot, the theoretical autoproducts 

from Eq. (2.19) are shown by a solid black curve, simulated autoproducts from the numerical 

evaluation of Eq. (2.21) are shown by a dashed red line, and the horizontal axis is the receiver 

depth. The vertical axis limits are ±1 for panels (a) and (b) and ±2.75 for panels (c) and (d). The 

difference frequency and the cross-correlation coefficient between theoretical and simulated 

fields are shown in the bottom left of each panel.  

 The four plots in Fig. 2.5 verify the theory derived in Chapter 2.2 for two statistically 

unique surface ensembles. The cross-correlation coefficients, 𝜒𝑠ℎ𝑜𝑟𝑡𝑒𝑟  = 0.998+0.061i and 

𝜒𝑙𝑜𝑛𝑔𝑒𝑟  = 0.999-0.047i, indicate nearly perfect matching for ∆𝑓 = 5 kHz autoproduct fields for 

both surface types. At ∆𝑓 =15 kHz, the real part of the cross-correlation coefficients for both 

surface types are greater than 0.96, but there is a non-negligible phase indicated by the imaginary 

component of 𝜒. The cross-correlation phase increases with increasing difference frequency and 

can be attributed to the finite surface integration area and finite extent of ensemble averaging. 
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Figure 2.5: Simulated field plots of the real part of the frequency-difference autoproduct. 

Theoretical autoproducts are shown by the black curves and simulations by the dashed red lines. 

The plots all share the same x-axis (receiver depth) limits. The top (bottom) two panels display 

the fields scattered from the shorter (longer) correlation length surface shown in Fig. 4. The 

difference frequency and cross-correlation between theory and simulation is shown in each 

panel. Error bars every 0.04 m indicate the 95% confidence interval of the simulations. 

 

 From the ensemble-averaged acoustic and autoproduct fields, the coherent reflection 

coefficient may be calculated according to Eqs. (2.5), (2.12), and (2.20). Herein, the difference 

frequency bandwidth considered consisted of integer-kHz-values from 1-60 kHz. Although 60-

70 kHz difference frequencies are available from the signal bandwidth, these difference 

frequencies were not investigated due to minimal bandwidth-averaging in Eq. (2.2). A systematic 

analysis of the significance of bandwidth averaging in rough surface scattering is outside of the 
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scope of this paper but is studied for a uniform half-space in (Lipa et al., 2018). On |ℛ𝑐𝑜ℎ| plots, 

the limiting behavior for ∆𝑓 = 0 Hz is indicated as well. 

 The effect of the frequency-difference autoproduct on the recovery of coherent reflection 

is displayed in Fig. 2.6 for variable frequency and difference frequency. For sufficiently low 

difference frequencies, the coherent reflection coefficient can be arbitrarily close to 1. In each 

panel, the red (blue) dashed lines denote simulated out-of-band (in-band) frequencies and 

theoretical curves for out-of-band (in-band) frequencies are shown in black (green) solid lines. 

The theoretical in-band |ℛ𝑐𝑜ℎ|’s are equivalent in panels (a) and (b) because the coherent 

acoustic field is independent of surface correlation length. The bumps at simulated in-band 

frequencies are due to imperfect statistical convergence to zero of a randomly-varying complex 

quantity. As the number of surfaces included in an ensemble average tends towards infinity, 

these discrepancies disappear. 

 The autoproduct field, however, includes a complicated dependence on the surface’s 

correlation length through the frequency-difference roughness parameter. This effect is 

demonstrated by the concavity difference between panels (a) and (b) at the below-band 

frequencies. The shorter correlation length surface, with the larger frequency-difference 

roughness parameter, recovers coherent reflection only at significantly lower difference 

frequencies. For the longer correlation length surface, greater than 93% coherent reflection is 

recovered at 3 kHz whereas only 50% is recovered at this frequency for the short correlation 

length surface. Hence, the recovery of coherent information is limited by both Δ𝑘ℎ and the 

correlation length, through the frequency-difference roughness parameter. The effect of 

correlation length may also be interpreted by the different vertical scales in Figs. 2.5a)-b) and 

2.5c)-d).  
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Figure 2.6: Simulated and theoretical coherent reflection coefficients, ℛ𝑐𝑜ℎ , for in-band (IB) and 

out-of-band frequencies for (a) the shorter correlation and (b) the longer correlation length 

surfaces. In both panels, red (blue) dashed lines denote simulated out-of-band (in-band) 

frequencies. The theoretical curves for out-of-band (in-band) frequencies are displayed as black 

(green) solid curves. Error bars every 10 kHz indicate the 95% confidence interval of the 

simulations. 

 

2.4 Experiment 

This section discusses the results of a laboratory experiment probing the long correlation length 

limit of the theoretical autoproduct result, Eq. (2.19). This experiment was designed solely to test 
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the theoretical [Eqs. (2.19) and (2.20)] and simulation predictions; it is not directly relevant to 

any particular sea-surface or sea-floor scattering scenario. To compare experimental autoproduct 

fields to corresponding theoretical and simulated fields, the acoustic environment and 

experimental parameters must be sufficiently well-known. These details are presented next. 

2.4.1 Experimental Design 

Acoustic fields were generated and measured in a 1.20-m-diameter cylindrical water tank filled 

to an approximate depth of 0.90 m. An omnidirectional source, ITC-1042 (Gavial International 

Transducer Corporation - Santa Barbara, CA), broadcast a nominally 50-μs Gaussian-enveloped 

sinusoidal signal with center frequency 70 kHz from a fixed location. An omnidirectional 

receiver, Reson TC4013 (Teledyne Marine, Reson - Slangerup, Denmark), recorded acoustic 

pressure waveforms at a variable depth. The source depth, receiver range, and receiver depth 

limits match the simulations in Chapter 2.3 (see Fig. 2.2). Sampling of the pressure field, 

however, is coarser in experiment and occurs in 5 mm increments. By time-gating non-surface 

reflected arrivals, the cylindrical tank imitates a uniform half-space. Furthermore, the requisite 

temporal separation between the direct-path, surface-reflected, and tank-wall reflected signals 

was only possible over a finite range of receiver depths, 0.25 m to 0.40 m. For the given source 

depth (20 cm), these receiver depths correspond to specular incidence angles of 29° ≤ 𝜃 ≤ 36°. 

 Experimentally fabricating a surface with Gaussian statistics and sufficient roughness to 

scatter the underwater acoustic waves at frequencies of interest is a challenging task. Hence, a 

normal distribution of uniform height offsets to the tank water level (i.e. flat surfaces of different 

heights) was implemented to approximate an ensemble of rough surfaces with Gaussian 

correlation functions in the limit 𝐿 → ∞, even though each individual surface realization was not 

rough. Accurately sampling a normally distributed variable using an experimentally feasible 
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number of realizations was accomplished with an approach that shares features with Latin 

hypercube sampling [see e.g., (Helton and Davis, 2003)] while incorporating repeatability. For a 

specified rms surface height ℎ and surface ensemble number 𝑁, the cumulative distribution 

function (CDF) for a normal distribution with standard deviation ℎ was divided into 𝑁 intervals. 

Then, 𝑁 CDF values were selected to bisect the 𝑁 intervals. Finally, the 𝑁 height offsets were 

determined from the inverse distribution function for the probability values selected from the 

CDF. In this experiment, ℎ = 8 mm and 𝑁 = 13. The experimental height offset selections, 

superimposed as red crosses on a Gaussian distribution, are shown in Fig. 2.7a). The uniform 

height offsets were implemented by adding or extracting an appropriate volume of water from 

the tank. The 31 depth points were sampled for each surface realization using a sub-mm-

resolution digital height gauge, the ME-HG-PRO-500 (Allendale Group Ltd, Machine-DRO – 

Hoddesdon, England). A total of 403 time domain pressure fields were recorded. A photograph 

of the experimental setup is shown in Fig. 2.7b). 

 

Figure 2.7: Long correlation length experiment design. Panel (a) shows the selected height 

offsets (red ×’s) on the underlying Gaussian PDF. The horizontal axis is reported in units of ℎ. 

Panel (b) shows a photograph of the experimental setup at an oblique angle to the specular plane. 

The broadcast (receiving) transducer is shown in the foreground (background). Non-surface-

reflected arrivals are time-gated from recorded signals. 
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2.4.2 Source Waveform and Environmental Characterization 

To compute the bandwidth-averaged autoproducts defined by Eq. (2.2), the source waveform 

must be known and a signal bandwidth must be defined. Information may be obtained from the 

intended broadcast waveform, but imperfections in the frequency responses of the transducer 

pair altered the nominal waveform. Further, the noticeable distortion was directional. To mitigate 

unintended source waveform dependence, an experimental source waveform was determined for 

each receiver location. 

 Field recordings for a nominal surface height deviation of 0 m were measured for each 

depth location. To characterize the experimental waveform, a 175 μs interval, centered on the 

expected reflected-path arrival was isolated in the time domain. These recordings were then 

scaled by a factor proportional to the reflected path length, 𝑅1 + 𝑅2, to remove spherical 

spreading loss and shifted in time to maximize temporal cross-correlation with the intended 

source waveform. The outlined strategy and corresponding results for source waveform 

measurement was similar to previous studies using the ITC-1042 and Reson TC-4013 in a 

laboratory setting (Lipa et al., 2018). 

 The time- and frequency-domain source waveforms are displayed in Fig. 2.8. Recorded 

waveforms, shown as semitransparent red curves, are scaled to contain the same signal energy as 

the 50-μs-duration nominal waveforms, indicated by the dotted black curves. The experimental 

waveforms exhibit temporal spreading to approximately 75 μs. In the frequency domain, the 

spectral peak of 70 kHz was maintained, but the distribution of spectral energy was shifted to 

higher frequencies. The experimentally determined bandwidth, containing 99% of the signal 

energy, was Ω𝐿/2𝜋 = 40 kHz and Ω𝐻/2𝜋 = 110 kHz. Thus, the signal’s center frequency shifted 

to 75 kHz, consistent with the resonant frequency of the ITC-1042 (79 kHz). A noticeable dip 
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near 90 kHz in Figure 2.8b) was attributed to imperfect transducer directionality. Moreover, the 

discrepancy in the frequency response of the semitransparent red curves near 65 kHz and 90 kHz 

provides the rationale for incorporating dependence on receiver location. Herein, analysis 

utilized the experimentally characterized source waveform to obtain Green’s functions from 

pressure recordings. 

 

Figure 2.8: Measured source waveforms vs. time (a) and vs. frequency (b). In each panel, the 

black dotted curve is the nominal source waveform, while the semitransparent red curves are the 

measured source-broadcast waveforms, scaled to remove spherical spreading loss and temporally 

shifted to maximize cross correlation with the nominal source waveform. The red and black 

curves are scaled to contain the same signal energy. 

 

 The corresponding theoretical and simulated fields required values of four environmental 

parameters: source depth, receiver depth, source-receiver range, and sound speed. While the 

nominal values, schematically shown in Fig. 2.2, may be used, errors of less than 1% can 

significantly alter the predicted field values for the given signal bandwidth. Thus, to counteract 
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experimental uncertainty, the four experimental parameters were optimized in post-processing to 

maximize in-band theoretical-to-measured field correlation. 

 This parameter characterization produced optimized offsets to the nominal measured 

values. In the experiment, dimensions were measured according to the geometric center of the 

transducers. The optimized offsets then mitigate both experimental uncertainty and 

geometrical/acoustical center transducer discrepancy. Additionally, the sound speed offset 

improved the accuracy of the experimental sound speed, 1490.8m/s, obtained from the 

temperature of the fresh water (Kinsler et al., 2000). The nonlinear parameter optimization was 

performed in MATLAB by maximizing the real part of the complex cross-correlation between 

theoretical and measured in-band reflected-path Green’s functions across the signal bandwidth. 

For a further discussion of the parameter optimization strategy, see (Lipa et al., 2018). 

 Prior to optimization, the magnitude of the cross-correlation coefficient averaged across 

the signal bandwidth, 𝜒𝑈𝑛𝑜𝑝𝑡 = 0.64 + 0.72𝑖, indicated a strong match in theoretical and 

experimental fields. However, the presence of significant cross-correlation phase indicated a 

uniform phase offset between measured and theoretical reflected-field Green’s functions. After 

optimization, the averaged cross-correlation coefficient, 𝜒𝑂𝑝𝑡 = 0.99 + 0.00𝑖, revealed a near 

perfect match in normalized magnitude and phase. The optimized offsets (1.1 mm source depth 

increase, 1.1 mm receiver depth increase, 1.56 mm range increase, and 0.44 mm/s sound speed 

decrease) were well within experimental uncertainties. Herein, optimized environmental 

parameters were utilized in all computations of theoretical and simulated autoproducts. 

2.4.3 Long Correlation Length Results 

The theory described in Chapter 2.2 was tested both experimentally and numerically in the limit 

of long correlation lengths. The in-band Green’s functions were determined from measured data 
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as 𝑃(𝒙,𝜔)/𝑆(𝜔). The simulated in-band Green’s functions were calculated for each surface 

realization from the reflected-path Green’s function of Eq. (2.22), rather than integrating Eq. 

(2.21). The theoretical frequency-difference autoproducts were computed from Eq. (2.19), with 

𝐿 → ∞. 

 Figure 2.9 shows the real part of the theoretical, simulated, and measured frequency-

difference autoproducts vs. depth for four difference frequencies. The theoretical autoproducts 

are shown by solid black curves, simulated autoproducts by a dashed green line, and measured 

autoproducts by red ×’s. In each plot, the horizontal-axis is the receiver depth (nominally 0.25-

0.4 m) and the vertical-axis limits are set to accommodate the amplitude of a flat-surface 

reflected autoproduct. Error bars, reported at each depth as twice the RMSE between measured 

autoproducts and theoretical flat-surface reflected autoproducts for each surface offset, are 

visually insignificant for the difference frequencies and vertical-axis scale provided in panels (a) 

and (b). In Fig. 2.9 c) and d), the maximum error across the receiving locations is indicated by a 

single error-bar at the top right. 

The four panels of Fig. 2.9 cover the range of available difference frequencies for the 

signal bandwidth and exhibit excellent matching of theory, experiment, and simulation. The real 

part of the cross-correlation coefficient, Re[𝜒], is greater than 0.99 for difference frequencies less 

than 27 kHz and is greater than 0.95 for difference frequencies less than 36 kHz. At high 

difference frequencies, the larger apparent surface roughness causes incoherent scattering, 

leading to a significant reduction in autoproduct amplitude. For instance, in Fig. 2.9d), the 

|Re[𝐴𝑃]| < 0.12, which is only a few percent of the flat-surface reflected amplitude. Thus, noise 

likely contaminates the match indicated by 𝜒 in this case. 
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Figure 2.9: Field plots of the real part of the frequency-difference autoproduct. Theoretical 

autoproducts are shown by the black curves, simulations by the dashed green lines, and 

experimental results by the red ×’s. The plots all share the same horizontal (receiver depth) and 

vertical (autoproduct units) axis limits. In (a) and (b), error bars are omitted due to visual 

insignificance, and in (c) and (d), the maximum error across the depth points is displayed at the 

top right. The difference frequencies and cross-correlations between theory and experiment are 

shown at the bottom left of each panel. 

 

 The coherence recovery possible with the frequency-difference autoproduct is displayed 

in Fig. 2.10 which shows the coherent reflection coefficient computed according to Eqs. (2.5), 

(2.12), and (2.20) for frequency-difference autoproducts and in-band acoustic fields plotted 

against the difference frequency or signal frequency. The measured coherent reflection 

coefficient from frequency-difference autoproducts (in-band acoustic fields) is indicated by red 

(blue) ×’s (♢’s) while green (orange) dashed lines denote simulated coherent reflection 

coefficients. For 𝐿 →  ∞, the coherent reflection coefficient in Eqs. (2.12) and (2.20) are 

identical for a single frequency. Hence, the theoretical coherent reflection coefficients are given  
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Figure 2.10: The coherent reflection coefficient from Eqs. (2.5), (2.12), and (2.20) for in-band 

(IB) and out-of-band frequencies: (a) 𝑁 = 13 and (b) 𝑁 = 150. In both panels, red (blue) ×’s 

(♢’s) and green (orange) dashed lines denote out-of-band (in-band) measured and simulated data, 

respectively. The theoretical prediction is displayed in black for all frequencies. Experimental 

error bars are indicated every 10 kHz when visually significant and are offset to the right of the 

data for low difference frequencies. 

 

at all frequencies by a solid black curve. Excellent matching is exhibited between theoretical, 

simulated, and measured coherent reflection coefficients. Interestingly, the signal bandwidth is 

large enough to accommodate ∆𝜔 ≥ Ω𝐿. In this region (40 to 60 kHz), the coherent reflection 
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coefficients from in-band fields and frequency-difference autoproducts overlap as expected. The 

measured coherent reflection coefficients are reported for odd- (even-) integer kHz out-of-band 

(in-band) frequencies. Further, error bars are displayed every fifth data point by propagating the 

real and imaginary RMSE between measured and theoretical fields (Taylor, 1997). For the lower 

frequencies in Fig. 2.10 a) and b), error bars are presented to the right of the data or are omitted 

when visually insignificant. 

 In Fig. 2.10a), the coherent reflection coefficient is generated from a single receiving 

depth (nominally 0.345 m) from the 𝑁 = 13 experiments described above. The measured 

coherence recovery is evident for sufficiently low difference frequencies. Greater than 90% 

coherent reflection is found for difference frequencies less than 10 kHz and greater than 50% 

coherent reflection is expected for difference frequencies of 21 kHz or less. By contrast, the 

measured coherent reflection at in-band frequencies is consistently less than 10%. Similar 

features appear in equivalent plots of the other 30 depth points. The appearance of a coherent 

reflection coefficient slightly greater than unity at very low difference frequencies is a result of 

imperfect transducer reproducibility and a consequence of the experimental optimization strategy 

emphasizing normalized magnitude and phase matching via cross-correlation. The maxima of 

|ℛ𝑐𝑜ℎ| near 65 kHz and 90 kHz in Fig. 2.10a) are explained by interference patterns inherent in 

the experimental geometry and are an artifact of the choice of 𝑁 = 13.  

 To explicitly address the latter experimental limitation, an 𝑁 = 150 coherent reflection 

coefficient experiment was conducted for a single receiving depth location (nominally 0.25 m). 

Measured data were acquired through a nearly identical procedure to that described for the 𝑁 = 

13 experiment, and the results are shown in Fig. 2.10b). The general trends remain, and the 

recovery of coherent reflection by the frequency-difference autoproduct is accentuated. By 
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increasing the ensemble from 𝑁 = 13 to 𝑁 = 150, the prominence of the interference peaks at 

frequencies above 50 kHz are minimized and the in-band coherent reflection coefficient, 

averaged across the signal bandwidth, is reduced from 5.3% to 2.4%. Conversely, the coherent 

reflection coefficient computed from the frequency-difference autoproduct may become 

arbitrarily close to 1, for sufficiently low difference frequency even though the in-band field has 

lost coherence. 

2.5 Conclusion 

The frequency-difference autoproduct has been studied in a variety of environments including a 

uniform half-space (Lipa et al., 2018) and a refracting ocean environment (Geroski et al., 2021). 

The purpose of this study was to identify the behavior of the frequency-difference autoproduct 

after its constituent fields have reflected and scattered from a random rough surface. To 

investigate the interface scattering physics, the Kirchhoff approximation was utilized for both 

analysis and simulations. In addition, laboratory experiments relevant to the long-surface 

correlation-length limit were conducted and compared to the theoretical and simulation results. 

The theoretically-derived, numerically-simulated, and experimentally-measured results were all 

found to be in good agreement. The simulation ensembles of surfaces exhibiting two different 

correlation lengths when combined with the experiments test the theory at three different 

correlation lengths. In all cases, pressure-release surfaces with in-band 𝑘ℎcos𝜃 from 1 to 3 are 

used. Excellent correlation is found between theoretical, simulated, and measured genuine and 

autoproduct fields, and coherent reflection of the autoproduct is successfully recovered at 

sufficiently low frequencies. 

 The research presented here supports three conclusions. First, rough-surface-scattered 

frequency-difference autoproduct fields can be analytically derived, numerically simulated, and 
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experimentally measured (in the long surface-correlation length limit) for random rough surfaces 

with Gaussian height distributions and Gaussian correlation functions. The convergence of 

theoretical, simulated, and measured autoproducts was quantified here through a complex spatial 

cross-correlation coefficient which was found to approach unity in the circumstances of interest. 

 Second, and most important to the potential applications of this work, the frequency-

difference autoproduct may provide a coherent reflection coefficient that approaches unity even 

when its constituent in-band complex fields provide coherent reflection coefficients that 

approach zero. The coherent acoustic field scattered from a rough surface exponentially 

diminishes as the square of 𝑘ℎcos𝜃. The frequency-difference autoproduct mitigates this 

detrimental effect by altering the dependence from 𝑘ℎcos𝜃 to ∆𝑘ℎcos𝜃 with a user-selectable 

∆𝑘 = ∆𝑓/𝑐. Thus, the recovery of coherent reflection afforded by the frequency-difference 

autoproduct is controlled by the chosen difference frequency, ∆𝑓, the signal reception geometry, 

and the extent of surface roughness. In practice, this may lead to a trade-off for signal processing 

algorithms between the robustness of the autoproduct and the loss of resolution at lower 

(difference) frequencies [see (Dowling, 2018), or (Douglass and Dowling, 2019)]. Additional 

considerations may occur in seeking practical applications of the rough-surface scattered 

frequency-difference autoproduct. For instance, source-receiver motion, a small ensemble of 

realizations, non-Gaussian roughness spectrum, or incomplete knowledge of the source 

waveform limit the direct applicability of the results as discussed here. However, difficulties 

associated with low SNR may, in fact, be suppressed by bandwidth- and ensemble-averaging. 

Regardless, the coherence recovery afforded by the altered dependence from 𝑘ℎcos𝜃 to ∆𝑘ℎcos𝜃 

remains a potential feature provided by the frequency-difference autoproduct to increase the 

robustness of remote sensing tasks. 
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 Third, the autoproduct’s recovery of coherent reflection does not exclusively depend on 

∆𝑘ℎcos𝜃. As a result of the quadratic nature of the autoproduct construction, the rough surface’s 

correlation length and other geometrical parameters also affect the autoproduct’s coherent 

reflection. The combination of variables – the frequency-difference roughness parameter – is 

controlled by the difference frequency multiplied by the ratio of surface rms roughness height to 

correlation length. The autoproduct’s recovery of coherent reflection is predicted to be more 

successful for longer surface correlation lengths. Interestingly, the presence of the frequency-

difference roughness parameter may allow environmental inversion for both surface rms height 

and correlation length from a remotely-measured ensemble-averaged autoproduct field. Inversion 

for surface correlation length is not a possibility provided by an equivalent ensemble-averaged 

genuine acoustic field.  
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Chapter 3  

Coherence of the Frequency-Difference Autoproduct in High Frequency Acoustic Sea 

Surface Scattering 

 

High frequency acoustic interactions with the sea surface pose a challenging modeling problem, 

given the large roughness parameter for even modest waveheights. The coherent reflection 

coefficient, determined from an ensemble average, is studied for high frequency (30, 40 kHz) 

sound scattered from 50 independent realizations of a rough sea surface (root-mean-square 

height of 0.5 m). Using R/P FLIP, data was collected in deep waters off the coast of California in 

January 1992. The measurements were made from a single hydrophone, depth 66 m, 576 m in 

range from the source, depth 147 m. Owing to the large roughness parameter, 𝜒 > 20, the 

recorded field was incoherent at the broadcast frequencies. Using the frequency-difference 

autoproduct, a quadratic product of complex fields at nearby frequencies, coherent reflection is 

recovered, albeit at lower effective frequency. An analytic formula for frequency-difference 

autoproduct coherent reflection coefficients, utilizing the Kirchhoff approximation and a 

Gaussian surface autocorrelation function, compares favorably with measurements. Better 

agreement with measurements is found by minor adjustments to the surface conditions, obtained 

from a curve-fitting procedure. Surface adjustments identified here from a single receiver match 

those determined from horizontal spatial coherence estimates made from the full eight element 

receiving array. The following chapter is a near reproduction of an in-progress manuscript. For 

clarity, formulas and figures repeated elsewhere in this thesis are maintained in this section. 
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3.1 Introduction 

Reviews of rough surface scattering abound (Brekhovskikh and Lysanov, 1991; Darmon et al., 

2020; Elfouhaily and Guérin, 2004; Medwin and Clay, 1998; Oglivy, 1991). Studies of rough 

surface scattering are germane to underwater acoustics, where the ocean surface incoherently 

scatters acoustic waves and limits sonar system performance through increased transmission loss 

and reverberation (Urick, 1983). The sea-surface-reflected path influences acoustic 

communications (Dowling and Jackson, 1993; Rawat et al., 2020) and is common in both 

shallow and deep water propagation (Dahl, 1996). Scattering effects typically scale with 

frequency, resulting in a challenging underwater transmission channel for high frequency 

acoustic energy.  

One of the detrimental impacts of sea surface scattering is the loss of signal coherence. A 

common notion, valid in the Kirchhoff approximation (Eckart, 1953; Medwin and Clay, 1998), is 

that coherence exponentially diminishes as the Rayleigh roughness parameter χ = 𝑘ℎ cos 𝜃 

increases, where 𝑘 is the acoustic wavenumber, ℎ is the root-mean-square (rms) roughness of the 

surface, and 𝜃 is the incidence angle measured from the surface normal. Large values of the 

roughness parameter, indicative of significant incoherent scattering, are therefore more likely to 

occur in high frequency propagation. The coherence of the acoustic field in rough surface 

scattering scenarios is often quantified using the coherent reflection coefficient (Jones et al., 

2009; Olson, 2023; Olson and Jackson, 2020; Thorsos, 1990; Williams et al., 2004). Prior studies 

demonstrated the capability of the frequency-difference autoproduct (Dowling, 2018; 

Worthmann and Dowling, 2017), a lower frequency pseudofield constructed from higher 

frequency acoustic fields, to recover coherent reflection from rough-surface-scattered acoustic 

fields in idealistic environments (Joslyn and Dowling, 2022) and in the ocean (Joslyn et al., 
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2023). In both studies, coherent reflection was restored for genuine acoustic scattering of 1 <

𝑘ℎ cos 𝜃 < 4 by downshifting the frequencies to Δ𝑓, the difference frequency between 

constituent acoustic fields, such that Δ𝑘ℎ cos 𝜃 was negligible. 

The primary purpose of this paper is to extend the regime of rough-surface-scattered 

frequency-difference autoproduct coherence recovery to higher frequencies and longer ranges. 

Theoretical and numerical results are compared to high frequency field data recorded by a single 

hydrophone off the coast of California on R/P FLIP in January 1992 (Dahl, 1996). In this 

experiment, narrowband pulses, 30 kHz and 40 kHz, were scattered by 50 independent 

realizations of the rough sea surface, ℎ = 0.5 m, resulting in an exceedingly large roughness 

parameter (χ > 20). The measured frequency-difference autoproduct coherent reflection 

coefficient approaches unity for sufficiently-low difference frequencies, even though the 

constituent fields themselves are incoherent. An analytic formula describing autoproduct-based 

coherence recovery, derived in (Joslyn and Dowling, 2022) using the Kirchhoff approximation 

and Gaussian surface autocorrelation function, compares favorably with experimental data. 

Monte Carlo sea surface scattering simulations, evaluated with the same assumptions, agree with 

measured data and quantify the expected variation of a 50-ping ensemble.  

The secondary consideration of this work concerns surface characterization from 

remotely-measured acoustic fields at a single receiver. A numerical strategy, akin to one used to 

provide minor modifications of surface conditions in the Shallow Water ’06 experiment (Joslyn 

et al., 2023), was designed to identify the autocorrelation length that optimized agreement 

between theoretical and measured autoproduct coherent reflection coefficients. The autoproduct-

based correction to surface autocorrelation length using a single receiver is nearly identical to the 

adjustment previously made using horizontal spatial coherence estimates from eight receivers 



 53 

(Dahl, 1996). As a result, a potential parallel in rough surface scattering is discussed between the 

analytic form of the frequency-difference autoproduct and the spatial coherence of the acoustic 

field in the geometrical optics limit [see, e.g., (McDaniel, 2004), (Oglivy, 1991), or (Thorsos, 

1988)].  

The FLIP experiment was conducted in deep waters of the Pacific Ocean (depth ~4000 

m). Horizontal spatial coherence measurements were first reported in (Dahl, 1996) and modeled 

using the Kirchhoff approximation. Later, analytic scaling relations for spatial coherence were 

examined (Dahl, 2004), and the time spreading of the surface-scattered signals has also been 

investigated (Dahl, 2001). Additionally, investigations of bubble backscattering(Dahl, 2003; 

Dahl and Plant, 1997) and bubble cloud evolution (Dahl and Jessup, 1995) during the experiment 

exist, but bubbles do not impact the forward scattered data analyzed here (Dahl, 1996).  

Frequency-difference autoproduct studies employing field data principally address 

problems in remote sensing, by way of beamforming (Abadi et al., 2012; Douglass et al., 2017) 

and matched field processing (Geroski et al., 2023; Geroski and Dowling, 2019, 2021; 

Worthmann et al., 2017; Yuan et al., 2023). The success of the autoproduct in these cases is 

attributed to the greater robustness to mismatch at the difference frequencies than at the 

broadcast frequencies (Worthmann et al., 2015). This intuition is illustrated for beamforming 

through randomly-located scatterers in (Douglass and Dowling, 2019), where the deleterious 

effects of scattering were minimized at the difference frequency. Some work with field data 

explores the surrogate fields themselves, through cross correlations of measured autoproducts to 

predicted fields (Geroski et al., 2021), analysis of spatial coherence in bottom-reflected sound 

(Joslyn et al., 2022), and coherent reflection in mid-frequency sea-surface scattering (Joslyn et 

al., 2023). The current work constitutes further effort to explore the coherence of the 
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autoproduct, which is a key aspect of its success in array signal processing (Geroski and 

Dowling, 2019). 

The remainder of this paper is organized into four sections. Section 3.2 summarizes the 

theoretical background and simulation details for rough-surface-scattered frequency-difference 

autoproducts. Section 3.3 highlights important features of the FLIP experiment. Section 3.4 

presents the coherent reflection coefficients determined from theory, simulation, and 

measurements. Section 3.5 discusses the four conclusions drawn from this work.  

3.2 Theory and Simulation 

Given the previous works in the area (Joslyn et al., 2023; Joslyn and Dowling, 2022), only 

minimal context is provided here. Essential autoproduct formulas and coherence metrics are 

detailed, followed by a brief summary of the numerical Monte Carlo strategy. 

3.2.1 Frequency-Difference Autoproduct and Coherent Reflection Coefficient 

For a complex acoustic field 𝑃(𝑹𝟐, 𝜔) at spatial location 𝑹𝟐 and angular frequency 𝜔, with 

bandwidth Ω𝐿 ≤ 𝜔 ≤ Ω𝐻, the bandwidth-averaged frequency-difference autoproduct is defined 

as 

〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊 =
1

Ω𝐻 − Ω𝐿 − Δ𝜔
∫ 𝑃(𝑹𝟐, 𝜔+)𝑃

∗(𝑹2, 𝜔−)𝑑𝜔
Ω𝐻−Δω/2

Ω𝐿+Δω/2

. (3.1) 

Here, the difference frequency Δ𝜔 denotes the separation between the constituent field 

frequencies 𝜔± = 𝜔 ± Δ𝜔/2. The user-chosen difference frequency can, in general, exist below 

the recorded signal bandwidth, and the nonlinear pseudofield defined by Eq. (3.1) may mimic 

genuine acoustic fields at the out-of-band frequency (Lipa et al., 2018; Worthmann and Dowling, 

2017). The 〈 〉𝐵𝑊 indicates autoproduct samples throughout the bandwidth have been averaged.  
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Scattered field coherence was determined by the coherent reflection coefficient (Medwin 

and Clay, 1998), 

|ℛ𝑐𝑜ℎ| = |
〈𝜓𝑟𝑜𝑢𝑔ℎ〉

𝜓𝑓𝑙𝑎𝑡
| , (3.2𝑎) 

where 〈 〉 is an ensemble average over independent surface realizations and 𝜓 is either the 

frequency-difference autoproduct or acoustic field. The emphasis of this work is assessment of 

the overall coherence, not phase, of high-frequency scattered fields and the frequency-difference 

autoproducts constructed from them. Thus, only magnitudes are reported, with values near 1 (0) 

indicative of coherent (incoherent) reflection. For measurements of the coherent reflection 

coefficient, the imperfectly-known source waveform is removed by  

|ℛ𝑐𝑜ℎ(𝑓)| = |
〈𝑃𝑟𝑜𝑢𝑔ℎ(𝑓)〉

〈|𝑃𝑟𝑜𝑢𝑔ℎ(𝑓)|〉
| , (3.2𝑏) 

for the acoustic field at frequency 𝑓 and 

|ℛ𝑐𝑜ℎ(Δ𝑓)| = ⟨|
⟨𝑃(𝑟, 𝜔+)𝑃

∗(𝑟, 𝜔−)⟩

√⟨𝑃(𝑟,𝜔+)𝑃∗(𝑟, 𝜔+)⟩⟨𝑃(𝑟, 𝜔−)𝑃∗(𝑟, 𝜔−)⟩
|⟩

𝐵𝑊

. (3.2𝑐) 

for the autoproduct at difference frequency Δ𝑓. Eqs. (3.2b) and (3.2c) were used to quantify 

reflected field coherence from an unknown source waveform in the Shallow Water ’06 

experiment (Joslyn et al., 2023). A similar normalization strategy was implemented to estimate 

the horizontal spatial coherence of the FLIP data (Dahl, 1996). 

Predictions of the coherent reflection coefficient are determined by analytic derivation. A 

common theoretical diagram of rough surface scattering is shown in Fig. 3.1. The mean value of 

the rough surface (𝑥, 𝑦) sets the 𝑥-𝑦 plane and the specular point defines the origin. The 

incidence angle, 𝜃, is measured with respect to the surface normal in the 𝑥-𝑧 plane. Using the 
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Kirchhoff and Fresnel approximations, the scattered field received at 𝑹𝟐 from an omnidirectional 

source at 𝑹𝟏 is given by (Joslyn and Dowling, 2022; Medwin and Clay, 1998), 

𝑃(𝑹𝟐, 𝜔) =  −
𝑖Γω cos 𝜃

2𝜋𝑐𝑅1𝑅2
𝑒𝑖
𝜔
𝑐
(𝑅1+𝑅2) ∫ ∫ 𝑒

𝑖𝜔
𝑐𝑅(𝑥

′2cos2𝜃+𝑦′
2
)+2𝑖

𝜔
𝑐 cos 𝜃(𝑥

′,𝑦′)

∞

−∞

𝑑𝑥′𝑑𝑦′,

∞

−∞

(3.3) 

where 𝑅 = 2𝑅1𝑅2/(𝑅1 + 𝑅2), 𝑐 is the sound speed, Γ is the reflection coefficient (-1 for ocean-

air interface), and integration is performed over the 𝑥-𝑦 plane. Substituting Eq. (3.3) into Eqs. 

(3.1) and (3.2a) yields the coherent reflection coefficient for the frequency-difference 

autoproduct formed from rough-surface-scattered acoustic fields (Joslyn and Dowling, 2022): 

ℛ𝑐𝑜ℎ = 𝑒
−2(Δ𝑘ℎcos 𝜃)2 [(1 − 𝑖∆𝑘ℎ2

4𝑅

𝐿2
)(1 − 𝑖∆𝑘ℎ2

4𝑅cos2𝜃

𝐿2
)]

−1 2⁄

, (3.4) 

where Δ𝑘 = Δ𝜔/𝑐 is the difference wavenumber, ℎ is the rms roughness, and 𝐿 is the (isotropic) 

surface correlation length. 

In the derivation of Eq. (3.4), the surface height distribution and surface autocorrelation 

function were assumed Gaussian. The combination of high signal frequency and large surface 

roughness permitted replacement of the surface autocorrelation by the first two terms of its series 

expansion, equivalent to the geometric optics limit (McDaniel, 2004). Notably, Eq. (3.4) is 

independent of constituent field frequency, reminiscent of the frequency independence of the 

scattering cross section in the geometric optics limit (Dahl, 1996; Thorsos, 1988). The use of Eq. 

(3.4) for the field data examined herein is justified by the large surface roughness parameters in 

the FLIP experiment (χ > 20). Furthermore, the geometric optics limit of the Kirchhoff 

approximation satisfactorily modeled the spatial coherence of the FLIP measurements (Dahl, 

1996), rationalizing the modeling assumptions. 
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Figure 3.1: Reproduction of Fig. 1 from (Joslyn and Dowling, 2022) showing a typical scattering 

scenario from the rough surface . The relevant features for Eqs. (3) and (4) are the source to 

specular point distance 𝑅1, the specular point to receiver distance 𝑅2, and the angle of incidence 

𝜃. 

 

3.2.2 Monte Carlo Simulation 

Stochastic treatment of the sea surface scattering was used to identify appropriate error bars. 

Following the Monte Carlo approach to quantify uncertainty of coherent reflection coefficients 

owing to a finite ensemble (Joslyn et al., 2023; Joslyn and Dowling, 2022), random surfaces with 

Gaussian roughness profile and roughness spectrum were generated using open-source software 

(Bergström, 2012). The rms height and autocorrelation length were chosen to match the FLIP 

experiment (surface conditions discussed in the next section). Ensembles of 50 independent 

surfaces were randomly selected 100 times from a pool of 1600 surface realizations (800 for 

each narrowband pulse in the experiment) and integrated following Eq. (3.3). Coherent reflection 

coefficients were then computed from Eqs. 3.2(b) and 3.2(c), and the 95th percentile of variation 

determined the error bars. 
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All numerical evaluations of Eq. (3.3) were conducted on a discretized, rectangular patch. 

The finite patch was 380 m by 120 m [selected to exceed the patch size of the prior ocean 

scattering autoproduct study (Joslyn et al., 2023)], with minor dimension orthogonal to the 

specular plane. The surface was sampled every 2.5 cm and the source spectrum set to unity. 

Trapezoidal integration was selected to perform numerical integration. 

The efficacy of the numerical implementation was tested in the zero roughness limit. The 

well-known theoretical result for flat surface reflection, given by the method of images, was 

compared to evaluation of Eq. (3.3) with  = 0. For the geometry and frequencies of the FLIP 

experiment, the complex cross correlation of simulated-to-theoretical results was ~1 and 

amplitude variations were 1% or less at all frequencies and difference frequencies. Thus, the 

numerical error bars are expected to satisfactorily provide nominal uncertainty estimates 

associated with limited-member ensembles. 

3.3 FLIP Experiment Overview 

Data collected from R/P FLIP was utilized to investigate autoproduct coherence recovery in high 

frequency sea surface scattering. Important details of the experiment are outlined in this section, 

including time and frequency domain representations of the recordings. Additional expedition 

information can be found elsewhere (Dahl, 1996; Dahl and Jessup, 1995). 

3.3.1 Experiment Description 

Measurements were obtained from the research platform FLIP off the southern coast of 

California in the Pacific Ocean (32 °N, 125 °W) during January 1992. The depth was ~4000 m, 

and the sound speed profile from a conductivity-temperature-depth unit resulted in negligible 

refraction-based adjustments to the nominal incidence angle. Thus, following previous work 
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(Dahl, 1996), the sound speed is set to 𝑐 = 1500 m/s for computations. Bubbles, also 

investigated while at sea (Dahl, 2003; Dahl and Jessup, 1995; Dahl and Plant, 1997), did not 

influence the forward scattered data analyzed here, allowing for direct assessment of the surface 

scattering. The surface rms height was ℎ = 0.5 m, owing to a large swell component, and the 

root-mean-square slope, determined from wind speed, was 𝑠𝐿 = 0.119. By the equivalence of the 

mean-square slope, 𝑠𝐿
2, and the Laplacian of the surface autocovariance function evaluated at 

zero lag (Apel, 1994), the surface autocorrelation length was 𝐿 = 8.40 m, consistent with the 

geometric optics limit. 

The specular plane geometry is shown schematically in Fig. 3.2. The range between the 

acoustic source, depth 147 m, and receiver, depth 66 m, was 576 m, setting the incidence angle 

𝜃 = 69.7°. The source was deployed from a spar buoy tethered to FLIP, and the receiver 

analyzed was one channel of an eight element horizontal array attached the hull of the FLIP. The 

source and receiver are both ITC 1032 (Gavial International Transducer Corporation – Santa 

Barbara, CA) omnidirectional hydrophones. 

 

Figure 3.2: Specular plane diagram for field data collected in January 1992 off the coast of 

California. The omnidirectional source, depth 147 m, and omnidirectional receiver, depth 66 m, 

are separated by range 576 m.   
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The measurements studied herein, labeled as Set 3 in (Dahl, 1996), were one of five 

experimental runs. Each run used a different propagation geometry through range and source 

depth adjustments. The largest roughness parameter was obtained in Set 3, leading to its 

selection here. Further, the other sets had minor problems, including the potential for bubble 

scattering and attenuation (Set 1), temporal overlap between direct and reflected paths (Set 2), 

surface slicks (Set 4), and unexpectedly high spatial coherence estimates (Set 5). These issues 

did not preclude their spatial coherence analysis, but they do engender some hesitation for the 

frequency-difference autoproduct. Although the other sets could be investigated, for brevity only 

Set 3 was considered, and given the focus on coherent reflection recovery in large roughness 

parameter acoustic scattering, Set 3 is the natural choice. 

3.3.2 Time and Frequency Domain Measurements 

Narrowband signals with center frequencies of 30 kHz and 40 kHz were alternately broadcast 

from the source. In each case, the transmitted signal was a continuous wave pulse, approximately 

12 ms in duration. The received signals were heterodyned to 5 kHz and sampled at 20 kHz, with 

the appropriate center frequencies recovered in post-processing. Interestingly, this is the first 

study in which autoproducts were constructed from heterodyned signals.  

Signal transmission was repeated 50 times, resulting in 50 independent sea surface 

interactions for both the 30 and 40 kHz signals. Jitter was removed by aligning the direct path 

arrivals (Dahl, 2010; Joslyn et al., 2023). The time domain signals are shown in Fig. 3.3 with the 

direct path and surface-scattered path prominently apparent. The horizontal axis is reported in 

milliseconds relative to the direct path arrival and the vertical axis indicated ping number. The 

direct path is consistent in amplitude and temporal duration while the surface-scattered path 
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exhibits amplitude variation and time spreading expected of rough-surface-scattered signals. For 

coherence analysis, the surface-scattered path was isolated through time-gating. 

 

Figure 3.3: Time domain recordings of the direct and surface-scattered path for 50 pings of 

narrowband pulses with (a) 30 kHz and (b) 40 kHz center frequencies. The surface-scattered 

arrivals demonstrate significant amplitude variation and temporal broadening. The horizontal 

axis denotes time relative to the direct path arrival (~12 ms), and the ping numbers do not 

correlate between panels as pulses were alternately broadcast. 

 

In Fig. 3.4, the average direct path amplitude, determined from an incoherent average of 

the direct path recordings at each frequency, is displayed for both center frequencies. Plotted 

against the recorded frequency (i.e. incorporating the apparent shift in frequency from the 

heterodyne), the normalized strength of the 30 kHz and 40 kHz pulses are shown in red and blue, 

respectively. Spectral components within approximately 100 Hz of the center frequency were 

selected for further analysis and are marked with crosses on Fig. 3.4. As the direct path is 

suggestive of the intended source waveform, maintaining more bins would introduce frequencies 

with trivial broadcast energy and maintaining fewer bins would result in an impractical 

difference frequency bandwidth. Thus, for the nominal frequency resolution (13 Hz), the 

autoproduct difference frequencies were 13 ≤ Δ𝑓 ≤ 107 Hz. The difference frequency range is 

shown schematically above Fig. 3.4. 
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Figure 3.4: Approximate source waveform broadcast during the experiment. The average 

amplitude of the direct path, normalized to unity, is shown for 30 kHz (40 kHz) in red (blue). 

The apparent reduction in frequency from the heterodyne in data acquisition was removed in 

post-processing of the signals. Crosses superimposed on the pulses indicate the frequencies 

maintained in analysis, and the difference frequency range available from these frequencies is 

indicated above the main plot. 

 

3.4 Coherent Reflection Coefficient in the FLIP Experiment 

3.4.1 Recovery of Coherence 

Theoretical autoproduct-based coherence recovery, described by Eq. (3.4), was assessed 

numerically and experimentally for high frequency acoustic sea surface scattering using the FLIP 

data. Although the narrowband signal limited measured difference frequencies, Eq. (3.4) was 

evaluated at difference frequencies of 10 Hz – 10 kHz, removing this restriction for the theory 
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curve. Using the strategy prescribed in Chapter 3.2.2, error bars were calculated for the 

experimental frequencies and difference frequencies. Measured coherent reflection coefficients 

were determined from the experimental recordings and Eqs. (3.2b) and (3.2c). For both the 

Monte Carlo simulations and the measured data, 30 kHz and 40 kHz pulses were processed 

separately, given their independent interactions with the sea surface. 

Coherent reflection coefficients for the frequency-difference autoproduct and acoustic 

field are plotted against difference frequency and acoustic frequency on a logarithmic horizontal 

axis in Fig. 3.5. The measured 30 kHz acoustic coherent reflection coefficients are marked by red 

♢’s, and the autoproduct coherent reflection coefficients generated from these acoustic fields are 

indicated by red asterisks. Equivalent markers for the 40 kHz measurements are shown in blue 

♢’s and blue circles. The theoretical results from Eq. (3.4) are given by the black curve. Error 

bars encompassing the expected variation at the signal frequencies are noted by one error bar of 

the corresponding color. Difference frequency variation is captured by one error bar per 

difference frequency and attached to the theoretical curve. 

Figure 3.5 shows the considerable recovery of coherent reflection afforded by the 

frequency-difference autoproduct for high-frequency-scattered acoustic fields in the FLIP 

experiment. Good agreement exists between theoretical, numerical, and experimental results. 

The measured acoustic field is incoherent, with an average coherent reflection coefficient value 

of 0.09 (0.11) for the 30 kHz (40 kHz) narrowband pulses. By contrast, the frequency-difference 

autoproducts generated from these fields register coherent reflection coefficients greater than 

0.71 in all cases and exceed 90% recovery of coherent reflection for Δ𝑓 ≤ 53 Hz. The theory 

curve from Eq. (3.4) matches the measured autoproduct coherence well, particularly accounting 

for the finite ensemble error bars. Additionally, the theory curve indicates that for the FLIP 



 64 

scattering environment more than 50% coherent reflection should be expected for difference 

frequencies up to 210 Hz. 

Some discrepancy exists between the nominal theory curve and the measured autoproduct 

coherent reflection coefficients. The measurements tend to overestimate the expected coherent 

reflection coefficient. A minor surface correlation length modification, described in the next 

section, improves the agreement between theory and measurements and is shown in green. (Dahl, 

1996) identified a similar adjustment to optimize the match between theoretical and measured 

spatial coherence in the FLIP data. Evaluation of Eq. (3.4) using that adjustment is indicated by 

orange dashes. 

 

Figure 3.5: Coherent reflection recovery in the FLIP experiment using the frequency-difference 

autoproduct. Solid curves indicate theory while individual markers in red and blue denote 

measurements originating from 30 kHz and 40 kHz pings, respectively. The coherence of the 

measured autoproduct (left) is significantly greater than the coherence of the constituent high 

frequency fields (right). Error bars encompassing the 95th percentile of variation in Monte Carlo 

simulations are shown in the corresponding color. Theory curves using adjustments to the 

nominal correlation length from a numerical optimizer (green) and from spatial coherence 

analysis in (Dahl, 1996) (orange) show excellent agreement. 
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3.4.2 Inference of Surface Statistics 

Predictions of autoproduct-based coherent reflection recovery using Eq. (3.4) require knowledge 

of the geometric environment and properties of the randomly-rough surface. In the FLIP 

experiment, the mean-square slope of the sea surface was estimated from recorded wind speed 

by the empirical formula (Phillips, 1977): 

𝑠𝐿
2 = 0.0046 ln(2.1𝑈2) , (3.5) 

where 𝑈 is the wind speed (m/s) measured 10 m above the surface. Appendix A of (Dahl, 1996) 

provides additional details and comparisons to estimates of 𝑠𝐿 from in-situ waveheight spectra 

measurements taken during the research expedition. As noted in Chapter 3.3.1, the mean-square 

slope is related to the isotropic surface autocorrelation function, Φ(𝜌), by 

𝑠𝐿
2 = −∇2ℎ2Φ|𝜌=0 =

4ℎ2

𝐿2
, (3.6) 

where the final equality is consistent with the geometrical optics limit.  

Equations (3.4) – (3.6) define the relationship between autoproduct-based coherence 

recovery in high-frequency scattered acoustic fields and the environmental conditions (wind, 

mean-square slope, and autocorrelation length). A nonlinear curve-fitting scheme in MATLAB 

identified the autocorrelation length adjustment necessary to optimize the match between 

measured autoproducts and the theory given in Eq. (3.4). Reported adjustments are the average 

of the modifications obtained individually for the 30 kHz and 40 kHz data. Extensions to root-

mean-square slope and wind speed by Eq. (3.5) and (3.6) are shown in Table 3.1. 

The inferred environmental parameters are within the expected uncertainties of the FLIP 

experiment, especially given at sea wind speed measurement variability for the time (±2 m/s) 

(Apel, 1994). The autocorrelation length was increased by ~0.6 m, resulting in a wind speed 

decrease of 0.6 m/s. (Dahl, 1996) used a similar fitting strategy to maximize the match between  
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Table 3.1: Comparison of environmental characteristics nominally reported, inferred from 

autoproduct measurements, and identified from spatial coherence measurements in (Dahl, 1996). 

 Autocorrelation Length (m) Mean-Square Slope Wind Speed (m/s) 

Nominal 8.40 0.119 3.2 

Inferred 9.03 0.111 2.6 

(Dahl, 1996) 9.09 0.110 2.6 

 

modeled and measured estimates of spatial coherence across the 8 element receiving array used 

in the FLIP experiment. Within rounding, those adjustments are identical to those identified here 

and are reproduced in the final row of Table 3.1. The surface autocorrelation functions, 

determined from an assumed Gaussian form, are shown in Fig. 3.6. The nominal (black), inferred 

(green), and (Dahl, 1996) (orange) autocorrelation functions are plotted against lag to 15 m. The 

inset panel focuses on the lag extent appropriately modeled under the geometric optics limit. 

Equation (3.4) was evaluated for the surface modifications identified here and in (Dahl, 

1996) and plotted in green and orange, respectively, in Fig. 3.5. The optimized theoretical curves 

are a great match to the measured data and to each other. The excellent agreement between the 

adjustments inferred from a single receiver here and those obtained by spatial coherence across 8 

receivers is notable. Theoretical modeling was related only insofar as the Kirchhoff 

approximation and the geometrical optics limit were employed, suggestive of a parallel between 

the first moment of the quadratic field construct (autoproduct coherent reflection) and the second 

moment of the conventional field (acoustic spatial coherence).  
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Figure 3.6: Comparison of sea surface autocorrelation functions with the inset figure zoomed in 

on the region significantly contributing to autoproduct coherence recovery in the geometric 

optics limit. The inferred corrections to rms height and autocorrelation length agree with those 

found in (Dahl, 1996). Note, the Gaussian form is not generated from a measured sea surface 

spectrum, but is a suitable assumption for the conditions reported during the experiment. 

 

Given the error bars’ coverage of the measured autoproducts in Fig. 3.5, surface 

corrections may be unnecessary for the present data. However, the surface adjustments identified 

previously (Dahl, 1996) were not strictly necessary either, given the size of spatial coherence 

error bars for a 50 ping ensemble. Importantly, the strategy outlined in this subsection details 

how Eq. (3.4) may be employed to extract environmental information from measured frequency-

difference autoproducts, particularly if a larger ensemble is used. 

3.5 Conclusion 

Coherent reflection recovery using the frequency-difference autoproduct has been explored for 

moderately rough surfaces in both laboratory (Joslyn and Dowling, 2022) and ocean 

measurements (Joslyn et al., 2023). The major aim of this paper was to extend autoproduct-based 
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coherence recovery to high frequency acoustic scattering from very rough surfaces. For this 

purpose, sea-surface-scattered acoustic signals, where the roughness parameter 𝜒 = 𝑘ℎ cos 𝜃 > 

20, collected from the R/P FLIP in the Pacific Ocean in 1992 were analyzed. The measured 

coherent reflection coefficients were incoherent across the 50 ping experiment at the broadcast 

frequencies, but > 71% coherent reflection was recovered for all autoproduct difference 

frequencies. Furthermore, autoproduct coherent reflection coefficients approached unity at the 

lowest available difference frequencies. Theoretical autoproduct coherent reflection coefficients, 

derived from the Kirchhoff approximation and a Gaussian form of the surface autocorrelation 

function, matched the measured data within the error bars determined from Monte Carlo 

simulations of a 50 ping ensemble. A numerical curve-fitting routine was provided to improve 

the match between theory and measurements. 

The work here supports the following four conclusions. First, the frequency-difference 

autoproduct is capable of restoring reflected-field coherence in high frequency ocean-surface-

scattered acoustic fields that are entirely incoherent. Greater recovery was reported at lower 

difference frequencies, where Δ𝑓 was 𝑂(𝑓/1000). Thus, supporting contentions noted 

elsewhere (Douglass and Dowling, 2019; Dowling, 2018; Joslyn and Dowling, 2022), selection 

of the appropriate difference frequency in practice may require trade-offs between robustness 

and resolution. Second, autoproduct-based coherence recovery is possible at long ranges in the 

deep ocean. The prior sea-surface-scattering study (Joslyn et al., 2023) considered 14 – 20 kHz 

signals traversing 200 m range in a shallow channel. The extended range, greater depths, and 

higher frequencies used here result in a propagation distance of over ten thousand acoustic 

wavelengths, up to 8x further than the previous experiment. Third, a simple analytic formula 

(Joslyn and Dowling, 2022) can satisfactorily predict the recovery of coherent reflection offered 
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by the frequency-difference autoproduct in scattering characterized by large roughness 

parameters. Finally, optimization of the match between theoretical and measured autoproducts 

can provide estimates of environmental parameters. Surface characterization in this fashion 

identified values nearly identical to those made previously (Dahl, 1996) from comparing 

horizontal spatial coherence measurements to modeling based on the geometric optics limit. 

While it may be expected that equivalent approximations yield equivalent results, it is 

unexpected that corrections obtained from eight channels of a horizontal array are replicated with 

analysis from a single hydrophone.    

Although the conclusions are positive, the predictability aspect of this study is limited by 

the assumption of a Gaussian autocorrelation function. The analytic formula, by way of the 

geometric optics limit in the derivation, naturally limits analysis to high frequency acoustic 

fields. However, given the motivation of the frequency-difference autoproduct to operate on high 

frequency fields, this may not be too restrictive in practice. Additionally, in light of other works 

considering the autocorrelation of natural surfaces to be effectively Gaussian at small lags 

(Darawankul and Johnson, 2007; Fung and Moore, 1966), as well as the analytic troubles of the 

exponential autocorrelation function (Oglivy, 1991), the applicability of the autoproduct formula 

may extend further than initially expected. In these cases, nevertheless, its utility for accurate 

inversion would need to be reassessed. Regardless of analytic predictability, the coherence of the 

frequency-difference autoproduct in rough surface scattering may be of appreciable importance 

in remote sensing tasks and array signal processing, where performance relies on consistent 

phase structure. 
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Chapter 4  

Coherent Reflection Recovery in Scattering from the Ocean Surface Using the Frequency-

Difference Autoproduct 

 

Measurements and modeling of coherence of the frequency-difference autoproduct constructed 

from sea-surface-scattered acoustic fields are presented here. The frequency-difference 

autoproduct, a quadratic product of acoustic fields at nearby frequencies, mimics a genuine field 

at the difference frequency. In rough surface scattering, the lower effective frequency minimizes 

the apparent surface roughness, restoring coherent reflection. The recovery of coherent reflection 

in sea surface scattering via the frequency-difference autoproduct is examined for data collected 

off the coast of New Jersey during Shallow Water ’06. An acoustic source, depth 40 m, and 

receiver, depth 24.3 m and range 200 m, interrogated 160 independent realizations of the ocean 

surface. The rms surface height ℎ was 0.167 m and broadcast frequencies of 14 – 20 kHz are 

used, setting 2.5 ≤ 𝑘ℎ cos 𝜃 ≤ 3.7 for acoustic wavenumber 𝑘 and incidence angle 𝜃. Measured 

autoproducts, constructed from incoherent constituent fields, show significant coherent reflection 

at sufficiently low difference frequencies. Theoretical results, using the Kirchhoff approximation 

and a non-analytic surface autocorrelation function, agree with experimental findings. The match 

is improved using a numerical strategy, exploiting the relationship between autoproduct-based 

coherence recovery, the autocorrelation function, and the surface spectrum. Error bars computed 

from Monte Carlo scattering simulations support the assertions made herein. The following 
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chapter is a near reproduction of an in-progress manuscript. For clarity, formulas and figures 

repeated elsewhere in this thesis are maintained in this section. 

4.1 Introduction 

Field coherence is important in array signal processing as increased coherence typically 

improves the success of remote sensing tasks. Random rough surface scattering, a common 

means of coherence loss, has an extensive literature, with review articles (Darmon et al., 2020; 

Elfouhaily and Guérin, 2004; Fortuin, 1970) and textbooks (Bass and Fuks, 1979; Beckmann and 

Spizzichino, 1963; Brekhovskikh and Lysanov, 1991; Medwin and Clay, 1998; Oglivy, 1991) 

spanning both acoustics and electromagnetics. In underwater acoustics, the rough ocean surface 

is a primary mechanism for the random scattering of sound waves as forward scattering from the 

sea surface represents a prominent channel for shallow and deep water propagation (Dahl, 1996) 

and is important in underwater communications (Dowling and Jackson, 1993). The incoherent 

scattering of sound waves from the sea surface reduces both acoustic coherence (Gorodetskaya et 

al., 1999) and sonar system effectiveness (Urick, 1983) and the effects generally scale with the 

ratio of surface roughness to acoustic wavelength.  

In this paper, theoretical and simulated recovery of reflected-field coherence afforded by 

the frequency-difference autoproduct (Worthmann and Dowling, 2017) is compared to ocean 

measurements collected off the coast of New Jersey during Shallow Water ’06 (Tang et al., 

2007). A previous study (Joslyn and Dowling, 2022) investigated the capability of the frequency-

difference autoproduct to restore coherence in acoustic waves, with wavenumber 𝑘 and incidence 

angle from surface normal 𝜃, scattered from two-dimensional (3-D scattering problem) pressure-

release isotropic surfaces described by Gaussian height distributions, root mean square (rms) 

roughness ℎ, and Gaussian autocorrelation functions, correlation length 𝐿. The work here 
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generalizes the analytical results to arbitrary surface autocorrelation functions and compares the 

modeled autoproduct coherent reflection coefficient to field data. The measured acoustic signals 

were scattered from a surface exhibiting both wind- and swell-wave systems for 2.5 ≤

𝑘ℎ cos 𝜃 ≤ 3.7. Coherence recovery agrees well between all three methods and demonstrates the 

coherent reflection coefficient for the frequency-difference autoproduct may approach unity for 

sufficiently low difference frequencies, even when significant incoherent scattering exists at the 

broadcast acoustic frequencies. Furthermore, the nonlinearity of the frequency-difference 

autoproduct imparts a strong dependence on the surface autocorrelation function, thereby 

providing a means for acoustic identification of lateral and vertical statistics of a rough surface. 

The analytic relationship between autoproduct-based coherence recovery, surface autocorrelation 

function, and surface power spectrum is introduced and discussed. Through a curve-fitting 

optimization strategy, this relationship is used to infer characteristics about the experimental 

environment and the parameter estimates are found to be in agreement with experimental 

uncertainty.  

This work primarily analyzes data collected off the coast of New Jersey as part of the 

Shallow Water ’06 experiment (Tang et al., 2007). The sea surface forward scattering experiment 

considered here consists of 160 measurements, recorded along a vertical array, of the sound 

reflected from the sea surface during a 6.5 hour period in August 2006. In studies of the spatial 

coherence of these measurements (Dahl, 2010; Dahl et al., 2013; Welton, 2015), refraction 

strongly influenced coherence results. Although full accounting of ray theory produced modeling 

results in agreement with measured data (Dahl, 2010; Dahl et al., 2013), appropriate adjustment 

of the specular incidence angle provided a suitable correction as well (Welton, 2015). The small 

slope approximation (Dahl, 2010; Dahl et al., 2013) and the Kirchhoff approximation (Welton, 
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2015) have both been used to model the surface scattering and the Kirchhoff approximation is 

found to be satisfactory here. The Kirchhoff approximation (Eckart, 1953; Medwin and Clay, 

1998) is a common modeling choice and has been compared to other field data as well (Dahl, 

1996). 

Surface roughness is typically defined with respect to the incident acoustic wavelength by 

the Rayleigh roughness parameter, 𝜒 = 𝑘ℎ cos 𝜃, with values greater than one suggestive of 

significant scattering. The large surface roughness parameter studied here (> 2.5) indicates 

significant incoherent scattering across the 160 independent realizations of the rough surface. 

The nominal surface spectrum (Dahl et al., 2013) was estimated by a combination of buoy-

measured (low surface wavenumbers) and modeled (Plant, 2002) (high surface wavenumbers) 

spectrums. Minor modifications to the modeled region of the surface spectrum produced better 

agreement between theoretical and measured coherent reflection coefficients. Other studies 

employing the Kirchhoff approximation in ocean surface scattering (Dahl, 1996) and seafloor 

scattering (Berkson, 1980; Clay, 1966) have used the coherence of acoustic measurements to 

refine surface statistics. Unlike the previous works, however, the autoproduct-based strategy 

outlined herein allows for estimation of both vertical and lateral statistics from the recordings of 

only a single receiver. 

In other studies of forward scattering from the ocean surface, coherence is interrogated 

within the broadcast bandwidth. Recent results suggest information at frequencies below the 

bandwidth may be synthetically estimated using the frequency-difference autoproduct (Dowling, 

2018; Worthmann and Dowling, 2017). The physical implications of this unconventional claim 

have been investigated in a variety of environments (Geroski et al., 2021; Joslyn and Dowling, 

2022; Lipa et al., 2018; Worthmann and Dowling, 2020b, 2020a), and the benefits for passive 
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remote sensing applications have been explored, including beamforming (Abadi et al., 2012; 

Douglass et al., 2017; Douglass and Dowling, 2019), matched field processing (Geroski et al., 

2023; Geroski and Dowling, 2019, 2021; Worthmann et al., 2015; Yuan et al., 2023), and 

adaptive methods (Park et al., 2022; Wang et al., 2022; Worthmann et al., 2017; Xie et al., 2020; 

Yang et al., 2021). The positive remote sensing results can be attributed to the autoproduct’s 

robustness against detrimental propagation effects that typically scale with frequency, such as 

seafloor scattering (Joslyn et al., 2022). Moreover, in the presence of strong, discrete scatterers 

randomly located in the acoustic propagation path, the autoproduct provides more reliable 

beamformed outputs, albeit at reduced resolution, by downshifting analysis to frequencies where 

the effects of scattering are not as strong (Douglass and Dowling, 2019). Analytic, numerical, 

and laboratory results extended this notion to regain coherent reflection from acoustic waves 

incoherently scattered randomly rough isotropic surfaces with Gaussian autocorrelation functions 

(Joslyn and Dowling, 2022). The main purpose of this study is to demonstrate the recovery of 

coherent reflection afforded by the frequency-difference autoproduct for acoustic scattering from 

realistic ocean surfaces with non-Gaussian autocorrelation functions. A secondary consideration 

of this work is prediction of the recovered coherence. Predictions are made from theoretical 

analysis and Monte Carlo simulations and compared to the measured data. 

Section 4.2 details the mathematical formulation of autoproducts and rough surface 

scattering. Section 4.3 reviews relevant details of the Shallow Water ’06 experiment and the 

highlights important sea surface conditions. Section 4.4 presents the modeling results and 

compares to ocean measurements. Section 4.5 summarizes the work and presents four 

conclusions. 
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4.2 Theory 

This section reviews the previous formulation of the rough-surface-scattered frequency-

difference autoproduct (Joslyn and Dowling, 2022) and presents the generalization to arbitrary 

surfaces. The frequency-difference autoproduct definition and the measure of coherence is 

presented prior to discussion of the relationship between coherence recovery, surface 

autocorrelation function, and surface spectra. 

4.2.1 Autoproduct and Coherence Definitions 

The frequency-difference autoproduct is a nonlinear acoustic pseudofield capable of mimicking 

genuine out-of-band acoustic fields (Dowling, 2018; Lipa et al., 2018; Worthmann and Dowling, 

2017). Given a complex acoustic field, 𝑃(𝑹𝟐, 𝜔), defined by the spatial coordinate 𝑹𝟐 and 

angular frequency 𝜔 from an omnidirectional source with strength 𝑆(𝜔) at 𝑹𝟏, a sample of the 

autoproduct, 𝐴𝑃∆, is formed by multiplying the recorded signal at two different frequencies 

within the signal bandwidth: 

𝐴𝑃∆(𝑹𝟐, 𝜔, Δω) ≡ 𝑃(𝑹𝟐, 𝜔+)𝑃
∗(𝑹2, 𝜔−) , (4.1) 

where the difference frequency, Δ𝜔, indicates the separation between the two frequencies 𝜔± =

𝜔 ± Δ𝜔/2. For a signal with some bandwidth, Ω𝐿 ≤ 𝜔 ≤ Ω𝐻, there may be several 𝜔± 

satisfying the desired Δ𝜔. As shown in (Worthmann and Dowling, 2017) and discussed in other 

autoproduct studies (Dowling, 2018; Geroski et al., 2023; Geroski and Worthmann, 2021; Lipa 

et al., 2018), multipath cross terms arising from the quadratic product in Eq. (4.1) may be 

suppressed by a bandwidth average: 

〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊 =
1

Ω𝐵𝑊
Δ ∫

𝐴𝑃∆(𝑹𝟐, 𝜔, Δω)

𝑆(𝜔+) 𝑆∗(𝜔−)
𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
. (4.2) 
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Here, the bandwidth available for averaging is given by Ω𝐵𝑊
Δ = Ω𝐻 −Ω𝐿 − Δ𝜔 and the 

center frequency is Ω𝐶 = (Ω𝐿 + Ω𝐻)/2. The assumed source spectrum knowledge in Eq. (4.2) 

provides a challenge to constructing bandwidth-averaged autoproducts for passive remote 

sensing, where source information may not be available. Previous studies avoid this limitation by 

averaging autoproduct cross-spectral density matrices (Geroski et al., 2023; Geroski and 

Dowling, 2021; Geroski and Worthmann, 2021; Worthmann et al., 2017) or even averaging Eq. 

(4.1) directly (Joslyn et al., 2022). Although the frequency-difference autoproduct formed from 

fields scattered by a surface exhibiting Gaussian vertical and lateral statistics is independent of 

constituent field frequency (Joslyn and Dowling, 2022), and the work here does not consider 

multipath propagation, bandwidth averages are included for completeness.   

As in (Joslyn and Dowling, 2022), the reflected-field coherence was assessed by the 

coherent reflection coefficient ℛ𝑐𝑜ℎ  (Medwin and Clay, 1998): 

ℛ𝑐𝑜ℎ =
〈𝜓𝑟𝑜𝑢𝑔ℎ〉

𝜓𝑓𝑙𝑎𝑡
. (4.3𝑎) 

Here, 𝜓 is the acoustic field or the frequency-difference autoproduct and 〈 〉 represents an 

ensemble average over realizations of the rough surface. The source spectrum used in data 

collection is imperfectly known, so a normalization, akin to that used for spatial coherence, is 

implemented for the acoustic field coherence at frequency 𝑓, 

ℛ𝑐𝑜ℎ(𝑓) =
〈𝑃𝑟𝑜𝑢𝑔ℎ(𝑓)〉

〈|𝑃𝑟𝑜𝑢𝑔ℎ(𝑓)|〉
, (4.3𝑏) 

and for the bandwidth-averaged autoproduct at difference frequency Δ𝑓, 

ℛ𝑐𝑜ℎ(Δ𝑓) = ⟨|
⟨𝑃(𝑟, 𝜔+)𝑃

∗(𝑟, 𝜔−)⟩

√⟨𝑃(𝑟, 𝜔+)𝑃
∗(𝑟, 𝜔+)⟩⟨𝑃(𝑟, 𝜔−)𝑃

∗(𝑟, 𝜔−)⟩
|⟩

𝐵𝑊

. (4.3𝑐) 
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  For omnidirectional sources and formal ensemble averages, the amplitude of Eqs. (4.3a) 

– (4.3c) are equivalent, due to the energy conservation inherent in the Kirchhoff approximation 

(Dahl, 1996; McDonald, 1974; Thorsos, 1984). The source-dependent phase of 𝑅𝑐𝑜ℎ is not 

removed, but overall phase does not impact coherence (Joslyn and Dowling, 2022) and is not 

reported here. Perfectly coherent reflection is defined by |ℛ𝑐𝑜ℎ| = 1 and totally incoherent 

scattering is given by |ℛ𝑐𝑜ℎ| = 0. 

4.2.2 Rough Surface Scattering 

Generalization of rough-surface-scattered frequency-difference autoproducts to surfaces 

exhibiting non-Gaussian autocorrelation functions requires similar mathematical machinery to 

that shown in (Joslyn and Dowling, 2022). Given the existence of other works detailing 

preliminary analytic steps (Joslyn and Dowling, 2022; Medwin and Clay, 1998), only a terse 

overview of those are provided here. 

Relevant rough surface scattering features are shown in Fig. 4.1. The origin of the 

Cartesian coordinate system is centered on the specular point between the omnidirectional source 

at 𝑹𝟏 and omnidirectional receiver at 𝑹𝟐. Two homogeneous media are divided by the arbitrary 

rough surface (𝑥, 𝑦), and the mean value of the interface determines the 𝑥-𝑦 plane. The 𝑥-𝑧 

plane defines the plane of incidence, and the angle of incidence 𝜃 is measured from the surface 

normal. 

The starting equation is Eq. (10) from (Joslyn and Dowling, 2022) for a unit strength, 

omnidirectional point source: 

𝑃(𝑹𝟐, 𝜔) =  −
𝑖Γω cos 𝜃

2𝜋𝑐𝑅1𝑅2
𝑒𝑖
𝜔
𝑐
(𝑅1+𝑅2) ∫ ∫ 𝑒

𝑖𝜔
𝑐𝑅(𝑥

′2cos2𝜃+𝑦′
2
)+2𝑖

𝜔
𝑐 cos 𝜃(𝑥

′,𝑦′)

∞

−∞

𝑑𝑥′𝑑𝑦′.

∞

−∞

(4.4) 

Here, the integration variables, 𝑥′ and 𝑦′, are in the 𝑥 and 𝑦 directions, Γ is the reflection 
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Figure 4.1: Mathematical features of a generic rough surface scattering environment. The 

specular point between the source at 𝑹𝟏 and receiver at 𝑹𝟐 defines the origin of the Cartesian 

coordinate system. The mean level of the arbitrary rough surface  defines the 𝑥-𝑦 plane and the 

angle of incidence 𝜃 is measured from the surface normal. 

 

coefficient, and 𝑅 = 2𝑅1𝑅2/(𝑅1 + 𝑅2). Also known as the Helmholtz-Kirchhoff-Fresnel integral 

(Medwin and Clay, 1998), Eq. (4.4) calculates the approximate pressure field at 𝑹𝟐 reflected 

from an arbitrary rough surface. For a Gaussian distribution of surface heights, the in-band 

coherent reflection coefficient, found by a formal ensemble average of Eq. (4.4), exponentially 

decreases as the square of the roughness parameter, 

ℛ𝑐𝑜ℎ = 𝑒
−2(𝑘ℎ cos𝜃)2 . (4.5) 

The frequency-difference autoproduct at 𝑹𝟐 reflected from an arbitrary rough surface is 

found by evaluating Eqs. (4.1) and (4.2) with the constituent pressure fields defined by Eq. (4.4), 

〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊 =
|Γ|2 cos2 𝜃

Ω𝐵𝑊
Δ 4𝜋2𝑐2𝑅1

2𝑅2
2 𝑒

𝑖
Δ𝜔
𝑐
(𝑅1+𝑅2)∫ 𝑑𝜔

Ω𝐶+
1
2
Ω𝐵𝑊
Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− (4.6) 

× ∫ ∫ ∫ ∫ 𝑒
𝑖
𝑐𝑅cos2𝜃[𝜔+𝑥

′2−𝜔−𝑥
′′2]

∞

−∞

∞

−∞

∞

−∞

𝑒
𝑖
𝑐𝑅[𝜔+𝑦

′2−𝜔−𝑦
′′2]

∞

−∞

 

× 𝑒
2𝑖 cos𝜃

𝑐 [𝜔+(𝑥
′,𝑦′)−𝜔−(𝑥

′′,𝑦′′)]𝑑𝑥′𝑑𝑦′𝑑𝑥′′𝑑𝑦′′, 
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where the quadruple spatial integral indicates a double surface integration. Unlike the acoustic 

field, the formal ensemble average of the frequency-difference autoproduct requires more 

mathematical details. The steps are shown in Eqs. (14) and (16) – (18) of the previous work 

(Joslyn and Dowling, 2022) and result in the ensemble-averaged frequency-difference 

autoproduct scattered from a rough surface with Gaussian roughness and arbitrary 

autocorrelation function, Φ(𝛼𝑥, 𝛼𝑦): 

〈〈𝐴𝑃∆(𝑹𝟐, Δω)〉𝐵𝑊〉 =
|Γ|2𝑒𝑖

𝛥𝜔
𝑐
(𝑅1+𝑅2)

(𝑅1 + 𝑅2)

𝑖 cos 𝜃

2𝜋𝑐𝑅1𝑅2Ω𝐵𝑊
𝛥 (∆𝜔)

(4.7) 

×∫ 𝑑𝜔
Ω𝐶+

1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− 𝑒

−
1
2𝑣

2(𝜔+
2+𝜔−

2)
 

× ∫ 𝑑𝛼𝑥 ∫ 𝑑𝛼𝑦

∞

−∞

∞

−∞

exp{𝑣2𝜔+𝜔−Φ(𝛼𝑥, 𝛼𝑦)} exp{
−𝑖𝛼𝑥

2𝜔+𝜔−cos2𝜃

𝑐𝑅Δ𝜔
} exp {

−𝑖𝛼𝑦
2𝜔+𝜔−
𝑐𝑅Δ𝜔

}. 

Here, 𝜈 = 2(ℎ/𝑐) cos 𝜃 and the spatial integration is performed over the difference 

coordinates, 𝛼𝑥 and 𝛼𝑦, in the 𝑥 and 𝑦 directions, respectively. The first fraction in the 

coefficient preceding the integration is the flat-surface-reflected autoproduct. Hence, inserting 

Eq. (4.7) into Eq. (4.3a) removes the first coefficient, yielding the frequency-difference 

autoproduct coherent reflection coefficient, 

ℛ𝑐𝑜ℎ =
𝑖 cos 𝜃

2𝜋𝑐𝑅1𝑅2Ω𝐵𝑊
𝛥 (∆𝜔)

∫ 𝑑𝜔
Ω𝐶+

1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− 𝑒

−
1
2𝑣

2(𝜔+
2+𝜔−

2) (4.8) 

× ∫ 𝑑𝛼𝑥 ∫ 𝑑𝛼𝑦

∞

−∞

∞

−∞

exp{𝑣2𝜔+𝜔−Φ(𝛼𝑥, 𝛼𝑦)} exp{
−𝑖𝛼𝑥

2𝜔+𝜔−cos2𝜃

𝑐𝑅Δ𝜔
} exp {

−𝑖𝛼𝑦
2𝜔+𝜔−
𝑐𝑅Δ𝜔

}. 

While not immediately insightful, numerical evaluation of Eq. (4.8) determines the 

coherent reflection coefficient of the frequency-difference autoproduct scattered from a rough 
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surface with arbitrary rms height and autocorrelation function. Comparisons of Eq. (4.5) at the 

broadcast frequencies and Eq. (4.8) at the user-selectable difference frequency demonstrate the 

coherent reflection recovery available. 

For surfaces exhibiting no discernable directionality, an isotropic version of Eq. (4.8) is 

possible. The Cartesian difference coordinate system, defined by 𝛼𝑥 and 𝛼𝑦, is converted to polar 

coordinates using the standard transformation, namely 𝛼𝑥 = 𝜌 cos 𝜙, 𝛼𝑦 = 𝜌 sin𝜙, and 

𝑑𝑎𝑥𝑑𝛼𝑦 = 𝜌𝑑𝜌𝑑𝜙: 

ℛ𝑐𝑜ℎ =
𝑖 cos 𝜃

2𝜋𝑐𝑅1𝑅2Ω𝐵𝑊
Δ (∆𝜔)

∫ 𝑑𝜔
Ω𝐶+

1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− 𝑒−

1
2𝑣

2(𝜔+
2+𝜔−

2) (4.9) 

× ∫ 𝑑𝜌 𝜌 exp{𝑣2𝜔+𝜔−Φ(𝜌)}

∞

−∞

∫ 𝑑𝜙 exp {
−𝑖𝜔+𝜔−𝜌

2

𝑐𝑅𝛥𝜔
(cos2𝜙cos2𝜃 + sin

2𝜙)}

2𝜋

0

, 

where the autocorrelation function depends only on the radial coordinate, Φ(𝜌). The 

corresponding angular integration is a known definite integral (Wolfram Research, 2022) and 

yields the isotropic coherent reflection coefficient for the frequency-difference autoproduct,  

ℛ𝑐𝑜ℎ =
𝑖 cos 𝜃

𝑐𝑅1𝑅2Ω𝐵𝑊
Δ (∆𝜔)

∫ 𝑑𝜔
Ω𝐶+

1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2Ω𝐵𝑊

Δ
𝜔+ 𝜔− 𝑒−

1
2𝑣

2(𝜔+
2+𝜔−

2) (4.10) 

× ∫ 𝑑𝜌 𝜌 exp{𝑣2𝜔+𝜔−Φ(𝜌)}

∞

−∞

 exp {
−𝑖𝜔+𝜔−𝜌

2

2𝑐𝑅Δ𝜔
(1 + cos2𝜃)} 𝐽0 (

−𝜔+𝜔−𝜌
2

2(∆𝜔)𝑐𝑅
(−1 + cos2𝜃)) , 

where 𝐽0 is the Bessel function of the first kind. As the spatial integration is the computationally 

limiting step, owing to the highly oscillatory nature of the difference coordinate integrands in 

both Eq. (4.8) and Eq. (4.10), the additional analytic effort provided simpler numerical 

implementation. The form of Eq. (4.10) is reminiscent of other Kirchhoff-approximated 
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expressions of intensity (Dahl, 1996; Oglivy, 1991), as expected, given the nonlinear nature of 

both. 

4.2.3 Sea Surface Spatial Spectra 

The autocorrelation function is related to the surface power spectrum by Fourier transform. 

Using notation similar to previous authors (Darawankul and Johnson, 2007; Olson, 2021), the 

forward and inverse transforms are defined as 

ℎ2Φ(𝛼𝑥, 𝛼𝑦) = ℱ{𝑊(𝐾𝑥 , 𝐾𝑦)} = ∫ ∫ [𝑊(𝐾𝑥 , 𝐾𝑦)𝑒
−𝑖𝐾𝑥𝛼𝑥𝑒−𝑖𝐾𝑦𝛼𝑦]𝑑𝐾𝑥𝑑𝐾𝑦

∞

−∞

∞

−∞

, (4.11𝑎) 

𝑊(𝐾𝑥, 𝐾𝑦) = ℱ
−1{ℎ2Φ(𝛼𝑥 , 𝛼𝑦)} =

ℎ2

(2𝜋)2
∫ ∫ [𝑊(𝐾𝑥, 𝐾𝑦)𝑒

𝑖𝐾𝑥𝛼𝑥𝑒𝑖𝐾𝑦𝛼𝑦]𝑑𝛼𝑥𝑑𝛼𝑦

∞

−∞

∞

−∞

, (4.11𝑏) 

where 𝑊(𝐾𝑥, 𝐾𝑦) is the surface power spectrum, 𝐾𝑥 and 𝐾𝑦 are the Cartesian surface 

wavenumbers, and ℱ is the Fourier transform operator. The isotropic versions of Eq. (4.11) for 

radial wavenumber 𝐾𝜌 = √𝐾𝑥2 +𝐾𝑦2 are then given by 

ℎ2Φ(𝜌) = ℱ{𝑊(𝐾𝜌)} = 2𝜋∫ 𝐾𝜌𝐽0(𝐾𝜌𝜌)𝑊(𝐾𝜌)𝑑𝐾𝜌

∞

0

, (4.12𝑎) 

𝑊(𝐾𝜌) = ℱ
−1{ℎ2Φ(𝜌)} =

ℎ2

2𝜋
∫ 𝜌𝐽0(𝐾𝜌𝜌)Φ(𝜌)𝑑𝜌
∞

0

. (4.12𝑏) 

Substitution of Eq. (4.11) or (4.12) into Eq. (4.8) or (4.10), respectively, reveals 

autoproduct-based coherence recovery depends directly on the surface power spectrum. The 

dependence is unexpectedly strong, for the autocorrelation function (power spectrum) appears in 

the exponential governing integrand magnitude in Eq. (4.8) and (4.10). Hence, maximizing the 

match between modeled and experimental coherent reflection coefficients may provide an 

effective means of remote acoustic identification of precise surface characteristics.  
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The power spectrum is the symmetric component of the more commonly reported spatial 

roughness description of the sea surface, the directional wave spectrum (Chapman, 1980). Thus, 

the sea surface autocorrelation function may be more appropriately estimated from  

ℎ2Φ(𝛼𝑥, 𝛼𝑦) = Re[ℱ{𝐹(𝐾𝑥 , 𝐾𝑦)}] = ∫ ∫ [𝐹(𝐾𝑥, 𝐾𝑦) cos(𝐾𝑥𝛼𝑥 +𝐾𝑦𝛼𝑦)]𝑑𝐾𝑥𝑑𝐾𝑦

∞

−∞

∞

−∞

, (4.13𝑎) 

where 𝐹(𝐾𝑥, 𝐾𝑦) is the directional wave spectrum and Re[ ] denotes the real part of the quantity 

in brackets. Often, it is convenient for directional wave spectra to be expressed in polar 

wavenumber coordinates. In this case, the directionally-averaged wavenumber 𝐹(𝐾𝜌) is utilized, 

and defined (Dahl, 1999) with normalization as follows: 

ℎ2Φ(𝜌) = ∫ 𝐾𝜌𝐽0(𝐾𝜌𝜌)𝐹(𝐾𝜌)𝑑𝐾𝜌

∞

0

. (4.13𝑏) 

 The anisotropic and isotropic forms of Eq. (4.13) may be inserted into Eq. (4.8) or Eq. 

(4.10), respectively, to calculate coherent reflection coefficients from the directional wave 

spectrum. The relationship between surface spectra and autoproduct-based coherence recovery 

was investigated numerically and experimentally for ocean surface acoustic scattering. 

Additionally, the relationship was inverted to estimate surface characteristics from the acoustic 

recordings. While sea surface scattering of 2.5 ≤ 𝑘ℎ cos 𝜃 ≤ 3.7 was studied here, the strategy is 

valid in other scattering regimes and propagation geometries, as long as the Kirchhoff and 

Fresnel approximations are satisfied. 

4.3 Ocean Measurements 

To address the general applicability of coherence recovery offered by the frequency-difference 

autoproduct, a subset of data collected during Shallow Water ’06 was analyzed. This section 

reviews relevant details of the experiment, including acoustic measurements and the ocean 
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surface spectrum. Additional information detailing data acquisition and the nominal 

environmental characteristics can be found in previous studies of the experiment (Dahl, 2010; 

Dahl et al., 2013). 

4.3.1 Experiment Design 

The acoustic measurements used here were collected from the research vessel R/V Knorr 100 km 

off the coast of New Jersey on 10 August 2006, 0830-1530 UTC. The experiment, designed to 

assess sea surface scattering, employed omnidirectional source and omnidirectional receivers in 

water channel depth of 80 m, which allowed isolation of the sea-surface reflected path through 

time-gating of the acoustic records. A schematic of the specular plane is shown in Fig. 4.2(a). A 

moored array receiving system (MORAY) was located at 39.0245°N, 73.0377°W, and defined 

the central position of the experiment. A 1.4 m vertical line array, consisting of four ITC-1042 

(Gavial International Transducer Corporation – Santa Barbara, CA) hydrophones, was centered 

at 25 m depth. Only the shallowest receiver, depth of 24.3 m, is maintained here as processing of 

the other receivers produced analogous results and did not significantly adjust the geometry. At 

200 m in range, the source, ITC-1007 (Gavial International Transducer Corporation – Santa 

Barbara, CA), was located 40 m below the stern of the R/V Knorr. By repositioning the R/V 

Knorr, measurements were conducted for four source-receiver bearing angles, separated by 90°. 

At each station, time domain recordings of acoustic scattering from 40 independent realizations 

of the ocean surface were collected, yielding a total of 160 recordings during the 6.5 hour 

experiment.  

A conductivity-depth-temperature profile was made from the R/V Knorr during the experiment 

at 1107 UTC. The downward-refracting sound speed profile is shown in Fig. 4.2(b). The sound 

speed reaches a maximum of 1530 m/s near the surface and decreases to a minimum of 1485 m/s 
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at approximately 35 m depth. The depths of the source and receiver result in significant 

downward refraction in the surface-reflected path which increased the spatial coherence (Dahl, 

2010). The incidence angle, 𝜃 = 74.8°, increased by 2.6° from the incidence angle computed in 

an isospeed environment for the same geometry. 

 

 

Figure 4.2: (a) Schematic of the SW06 specular plane geometry, including the surface-reflected 

path with (solid line) and without (dotted line) refraction. The omnidirectional receiver is 

positioned at depth 24.3 m and range 200 m from the omnidirectional source at depth of 40 m. 

(b) The nominal sound speed profile measured by a conductivity-depth-temperature (CTD) cast 

from the R/V Knorr during the experiment. 

 

Transmitted signals were recorded at 50 kHz sample rate. The broadcast signal, a 3 ms 

continuous wave pulse, consisted of superimposed narrowband center frequencies of 4 – 20 kHz 

(every 2 kHz) transmitted simultaneously. In post-processing, the signals were time aligned to 

remove jitter, as was necessary in previous work (Dahl, 2010). Signals were time-gated to isolate 

the surface-reflected path from the earlier and later arrivals. 

A representation of the source spectral content is shown in Fig. 4.3. The approximate 

source spectrum was computed by isolating the direct path recording, incoherently averaging the 
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magnitude, and normalizing the largest bin to unit amplitude. The frequencies studied here are 

indicated by red crosses. To ensure significant incoherent scattering from the sea surface, the 

roughness parameter was set to exceed 2.5, limiting analysis to center frequencies between 14 – 

20 kHz. Spectral components within 200 Hz of each center frequency were also maintained, 

resulting in a complicated acoustic bandwidth non-uniformly sampling the frequency space. 

Consequently, two types of autoproduct difference frequencies are considered. Intrapulse 

autoproducts are constructed from spectral components of the same pulse while interpulse 

autoproducts are constructed from spectral components of pulses with different center 

frequencies. A graphical representation of intrapulse and interpulse autoproduct generation is 

superimposed on Fig. 4.3 in green and blue, respectively. Based on the nominal spectral 

resolution (7 Hz), the intrapulse difference frequency range was 7 ≤ Δ𝑓𝑖𝑛𝑡𝑟𝑎 ≤ 400 Hz and the 

interpulse difference frequencies were contained near Δ𝑓𝑖𝑛𝑡𝑒𝑟~ 2, 4, 6 kHz. Although the  

 

Figure 4.3: The transmitted signal broadcast during the SW06 experiment, approximated by the 

average magnitude of the direct path. Narrowband pulses were simultaneously broadcast with 

center frequencies between 4 – 20 kHz (every 2 kHz). Indicated by red crosses, the analyzed 

spectral components were selected to ensure strong surface scattering. The disjoint bandwidth 

offered the construction of intrapulse and interpulse autoproduct difference frequencies. The 

intrapulse (interpulse) autoproduct construction is schematically indicated in green (blue). 
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selected bandwidth around each narrowband pulse was arbitrary, 400 Hz was found to be 

suitable for autoproduct construction, and systematically investigating the tradeoffs of larger or 

smaller intrapulse bandwidth was irrelevant to studies of coherent reflection. 

4.3.2 Sea Surface Conditions 

Examination of realistic ocean surfaces is the major feature of this study. Importantly, bubbles 

negligibly influenced scattering and attenuation for the data studied here (Dahl, 2010; Dahl et al., 

2008), permitting an assessment of scattering exclusively from the rough surface. The rough 

surface was modeled by the surface autocorrelation function and by stochastic generation of 

random surface realizations. Each method required environmental information collected during 

the experiment. 

Directional wave measurements of the sea surface were made from two buoys in the area. 

A 0.9 m diameter TRIAXYS directional wave buoy was positioned 800 m from the MORAY 

and the Air-Sea Interaction Spar (ASIS) buoy was deployed 1.5 km from the MORAY. The wind 

speed, as recorded from the ASIS buoy, was 5.5 m/s (±1 m/s) at 10 m above the sea surface. The 

measured rms wave height was ℎ = 0.167 m, varying by less than ±10% during the collection 

period. Both buoy systems indicated the presence of swell and wind wave systems from the 

south (175°) and southwest (225°), respectively. The direction of the wave systems, with respect 

to the four transmit locations, are shown schematically in Fig. 4.4(a). Listed bearing angles 

indicate the compass heading direction of the source from the MORAY. Herein, rotated 2-D 

plots are used, where the 𝑥- (𝑦-) component of the Cartesian coordinate system for scattering is 

aligned with 30° (300°). Following previous works (Dahl, 2010; Dahl et al., 2013), the 

directional wave spectrum of the TRIAXYS buoy is primarily used here and recorded 𝐾𝜌 < 1.45. 

To highlight both the wind wave (northwest) and swell wave (southwest) fields, the normalized 
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logarithm of the spectrum, log10{𝐹(𝐾𝑥, 𝐾𝑦) /max[𝐹(𝐾𝑥, 𝐾𝑦)]}, computed from the buoy data is 

shown in Fig. 4(b). This spectra is supplemented to higher wavenumbers not sensed by the buoy 

through a wind-wave model (Plant, 2002) based on wind speed and direction. Wavenumber 

information of 𝐾𝜌 ≤ 12.4 is maintained, and additional details are provided in (Dahl et al., 2013). 

The autocorrelation function was computed from the directional wave spectrum using Eq. 

(4.13) and is shown in Fig. 4.4(c). Modeling sea surfaces described by non-analytic 

autocorrelation functions is an essential feature of this study. The autocorrelation function 

directly enters into numerical evaluation of the coherent reflection coefficient through Eq. (4.8). 

Notably, the wavelength associated with the spectral peak of the wind field (13.5 m) is evident 

along the northwest-southeast direction. The swell wave system contributes at larger lags 

unimportant to the modeling here.  

Finally, from the directional wave spectra, random realizations of the rough surface may 

be generated [see Eq. (4) of (Dahl et al., 2013)] using the following formula: 

(𝑥, 𝑦) = ∑∑𝐴𝑖𝑗 cos(𝐾𝑥
𝑖𝑥 + 𝐾𝑦

𝑗
𝑦 + β)

𝑁

𝑗=1

𝑁

𝑖=1

, (4.14) 

where 𝑁 is the number of wavenumber samples, β is a random phase distributed between 0-2𝜋, 

𝐴𝑖𝑗 = 𝜂√𝐹(𝐾𝑥
𝑖 , 𝐾𝑦

𝑗
), 𝜂 is a Gaussian random variable with mean one and variance 0.04, and the 

desired value of ℎ is enforced through an overall surface height normalization. Direct numerical 

evaluation of Eq. (4.14) is expensive for the scale and resolution necessary here and is sped up 

through the FFT2 function in MATLAB. The directional wave spectrum, recorded in polar 

coordinates, was interpolated on a Cartesian grid to appropriately utilize the 2-D fast Fourier 

transform for the desired size and resolution of the rough surface. A representative surface 

realization using this strategy is shown in Fig. 4.4(d). The wind wave effects at small spatial 
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scales and the swell wave from the southwest are both evident in the generated rough surface. 

For this resolution and spatial extent, direct numerical evaluation took approximately 2.8 h, 

while the FFT-based approach took 0.36 s. Because the Monte Carlo simulations use many rough 

surface realizations, this speed increase was necessary. 

 

Figure 4.4: Overview of sea surface conditions important to the modeling efforts. The Cartesian 

coordinate system for modeling is shown aligned with 30° (𝑥) and 300° (𝑦). The other 

propagation angles were assessed by rotating the coordinate system. (a) Source (R/V Knorr) and 

receiver (MORAY) locations sampled four different propagation angles during the experiment. 

(b) The normalized spectrum (log scale) according to the TRIAXYS buoy measurements 

indicates swell (|𝐾𝜌|~0.06) and wind wave (|𝐾𝜌|~0.45) fields. The autocorrelation function (c) 

and a random rough surface realization (d), both computed from the directional wave spectrum, 

show the influence of wind waves originating from 225°. Both panels are representative; finer 

resolution and shorter spatial extent were implemented in the scattering calculations. 
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4.4 Recovery of Coherent Reflection 

This section directly assesses the capability and predictability of autoproduct-based coherence 

recovery using the SW06 measurements discussed in the previous section. To suitably simulate 

the ocean surface scattering, appropriate numerical choices are made. Modeling details are 

shown next. 

4.4.1 Numerical Modeling 

Computational evaluations of the coherent reflection coefficient were determined for the 

geometry specified in Fig. 4.2(a) using two different approaches. The first, herein referred to as 

theory, required the autocorrelation function of the sea surface for direct numerical integration of 

Eq. (4.8). The second method, referred to as Monte Carlo simulation, simulates acoustic 

scattering by evaluating Eq. (4.4) and Eq. (4.3b)-(4.3c) with independent sea surface realizations 

generated from the directional wave spectrum. Primary emphasis was placed on the theoretical 

results while Monte Carlo simulations were used to determine error bars associated with limited-

member ensemble averages. 

In both strategies, the source spectrum was set to unity and the sound speed, 𝑐 =1498 

m/s, was the average of the measured profile shown in Fig 4.2(b). Owing to the symmetry of the 

scattering formulations, there is no numerical difference between bearings separated by 180°. 

Hence, results for bearing 30°/210° were calculated and the 120°/300° results were computed by 

rotating the sea surface representation by 90°. For theoretical curves, the sea surface 

autocorrelation function was discretized on a 4.5 m × 4.5 m rectangular patch sampled every 

~0.5 mm. Large autocorrelation lags do not significantly contribute to the integral in Eq. (4.8), 

due to the rapidly oscillating and exponentially diminishing integrand. This asymptotic notion 

was used previously to justify the Taylor expansion replacement of the Gaussian autocorrelation 
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function (Joslyn and Dowling, 2022). For the Monte Carlo simulations, 300 m × 300 m surfaces 

with 2.5 cm resolution were stochastically produced according to the generation strategy 

prescribed for Eq. (4.14).  A pool of 640 surfaces (320 in each major direction) was created. 

Computational load was reduced by performing integrations on a 300 m × 90 m patch of each 

rough surface, aligning the shorter dimension with the 𝑦-direction. Error bars are computed by 

randomly selecting 40-, 80-, or 160-surfaces from the pool 100 times and capturing the 95th 

percentile of the variation in ensemble averages. All integrals were numerically computed by 

trapezoidal integration. 

Minor adjustments to the acoustic bandwidth shown in Fig. 4.3 were made in numerical 

implementation. The frequencies for Monte Carlo simulations matched the experiment but 

employed only every fourth experimental spectral bin for computational ease, setting the 

frequency resolution to ~27 Hz. For the theoretical results, frequencies between 13.8 kHz – 20.2 

kHz (every 5 Hz) were utilized. A continuous bandwidth was selected, rather than a pulsed 

bandwidth, to assess autoproduct coherence recovery for all difference frequencies less than 6 

kHz. Hence, the experimental restriction of intrapulse and interpulse difference frequencies was 

removed. Evaluation was expedited by limiting the bandwidth-averaging step to autoproduct 

samples spaced by 1 kHz. 

For zero roughness, i.e. ℎ,  = 0, both methods ought to reduce to the method of images. 

The simulation results agreed well with Green’s function for reflection, recording a cross 

correlation of ~1. Although the simulated coherent reflection coefficient amplitude exhibited 

some variation from the expected value of 1, due to evaluation of Fresnel integrals on a finite 

domain, the discrepancy did not extend to autoproducts, where the bandwidth-averaging tended 

to smooth these numerical errors. Further, these errors are negligible for the Monte Carlo 
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simulations as the ensemble average will also act to smooth the numerical errors. The theoretical 

approach, which evaluates autoproducts directly, registered correlation value of 0.97+0.1𝑖 with 

flat-surface-reflected autoproducts. Interestingly, the lack of rough surface effects is a hindrance 

to numerical accuracy as a specific autocorrelation function acts as an exponential taper on the 

amplitude of the integrand in Eq. (4.8). Hence, both strategies sufficiently predict the coherent 

reflection coefficient for the purposes here. 

The theoretical derivations assumed an isospeed medium. In addition to setting a uniform 

sound speed, geometrical adjustments to the nominal geometry were required to account for 

refraction. Using BELLHOP (Porter and Bucker, 1987), corrections based on the sound speed 

profile in Fig. 4.2(b) were implemented. Importantly, the specular incidence angle was increased 

from 72.2° to 74.8°. The SW06 sound speed profile was shown to significantly increase spatial 

coherence predictions, due to the compression of vertical arrival angles (Dahl, 2010). Theoretical 

autoproduct coherent reflection coefficients computed with the SW06 sound speed profile (red) 

is compared to the isospeed results (black) in Fig. 4.5. Only the 30°/210° direction is shown, but 

the other direction is equivalent. 

Refraction impacts coherent reflection by altering the surface roughness parameter, χ =

𝑘ℎ cos 𝜃. The influence of the adjusted specular incidence angle on the frequency-difference 

autoproduct is modest and similar to that expected for the conventional coherent reflection 

coefficient given in Eq. (4.5). Notably, the influence of refraction on the coherent reflection 

coefficient is less pronounced than the effect on vertical spatial coherence in the same 

environment. This is attributed to the difference in coherence metrics. Refraction-based 

compression of vertical arrival angles acts to increase the spatial correlation of vertically-spaced 

receivers. The coherent reflection coefficient, a single receiver metric, does not inherit this  
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Figure 4.5: Modeled influence of the SW06 profile on the autoproduct coherent reflection 

coefficient using Eq. (8). The effect is mild, with more prominent effects limited to higher 

difference frequencies. Shown here is 𝑥 axis aligned with 30°/210°. 

 

additional coherence improvement mechanism. Error bars determined from 80-surface 

ensembles for Δ𝑓 = 100 Hz, 400 Hz, and 2 kHz are reported on the left side of the figure to 

reduce visual clutter on the theoretical curves. Although refraction mildly increases the 

autoproduct coherent reflection coefficient, the adjustment is not experimentally realizable in 

light of the limited surface ensemble number in SW06. However, for completeness, refraction is 

accounted for herein using the BELLHOP corrections. 

4.4.2 Directional Dependence 

The SW06 sea surface conditions (see Fig. 4.4) exhibited a strong dependence on direction. For 

spatial coherence estimates in previous studies, directionality manifested only in the lower 

broadcast frequencies. Spatial coherence of the higher frequency pulses used here were 

independent of direction, due to the isotropy of the surface autocorrelation function at small lags 

(Dahl, 2010; Dahl et al., 2013). Thus, it is of interest to assess the directionality of the 
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autoproduct, a synthetic estimate of lower frequency field content from higher frequency 

constituent fields. 

The coherent reflection coefficients determined from different source-receiver directions 

are plotted in Fig. 4.6 against difference frequency or acoustic frequency. In all coherence 

recovery plots, a representative subset of frequencies was selected to reduce visual clutter of the 

measured conventional and autoproduct coherent reflection coefficients. The measured coherent 

reflection coefficients are shown in orange (30°), green (300°), purple (210°), and red (120°), 

and theory/simulation results are shown in black (30°/210°) and blue (120°/300°). Plotted against 

a logarithmic frequency axis, the autoproduct results occupy the region Δ𝑓 ≤ 6 kHz and 

conventional results extend to 𝑓 ≥ 14 kHz. The gap between Δ𝑓 = 400 and Δ𝑓 = 2 kHz is due 

to the inability to construct difference frequencies from the recorded signal within this range. 

Autoproduct error bars are reported on the left side of the panel for coherent reflection 

coefficients determined from 40-member ensembles for Δ𝑓 = 100 Hz, 200 Hz, 350 Hz, and 2 

kHz. Equivalent error bars for conventional reflection coefficients capturing variation at the 

broadcast frequencies are indicated on the right side of the panel. 

The recovery of coherence afforded by the frequency-difference autoproduct is evident in 

Fig. 4.6. The constituent acoustic field coherence is generally below 30%, with some samples 

significantly lower. However, at sufficiently low difference frequencies, the coherent reflection 

coefficient approaches unity, regardless of direction. In particular, the average acoustic field 

coherence for bearing angle 300° is 12%. Using Eqs. (4.1) – (4.3), greater than 90% of coherent 

reflection is recovered for autoproduct difference frequencies less than 200 Hz. Results are 

analogous in the other directions. Additionally, the measured data generally matches the shape of 

the theoretical curves, albeit uniformly increased at the intrapulse difference frequencies. This  
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Figure 4.6: Directional dependence of measured and modeled coherent reflection coefficients. 

No statistical significance exists between directions for the measured difference frequencies. 

Error bars encapsulating 95% of the variation in 40-realization Monte Carlo simulations are 

shown for autoproducts (acoustic fields) at Δ𝑓 = 100 Hz, 200 Hz, 350 Hz, and 2 kHz (𝑓 = 14 – 

20 kHz) on the left (right) side of the figure. 

 

discrepancy can be accounted for by minor alterations to the modeled sea surface spectrum and 

is studied further in Chapter 4.4.4. 

The theoretical curves do offer some evidence of directional dependence. The 

autoproducts recover greater coherence in 120°/300° direction, owing to the slightly elongated 

surface autocorrelation function peak in this direction (shown as the 𝑦 direction in Fig. 4.4). 

However, this effect is most prominent at difference frequencies not accessible from the signal 

bandwidth used in the experiment. Further, for most difference frequencies, the variation 

expected from a 40-surface ensemble was larger than the discrepancy between directions. Hence, 

the experimental restrictions of disjoint bandwidth and limited independent samples inhibit 

discernment of autoproduct directional dependence.  
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4.4.3 Coherent Reflection Coefficient 

Herein, all directions are processed simultaneously to reduce uncertainty associated with a 

limited-number ensemble. Previous surface scattering work with the 14 – 20 kHz data also 

averaged across bearing angle (Dahl, 2010). The theoretical autoproduct curves were adjusted by 

averaging the coherent reflection coefficient from each direction prior to reporting its magnitude. 

The Monte Carlo simulations were expanded to ensembles of 160 surface realizations, drawn 

from the entire pool of surfaces. The measured coherent reflection coefficients were analyzed as 

one experiment with 160 independent samples.  

The measured and modeled coherent reflection coefficients for the SW06 experiment are 

shown in Fig. 4.7 on a logarithmic frequency axis. The measured autoproduct (conventional) 

coherent reflection coefficients are shown by red (green) ×’s and the black curve denotes the 

theoretical autoproduct. Autoproduct error bars generated from Monte Carlo simulations are 

shown in black for Δ𝑓 = 80 Hz, 150 Hz, 300 Hz, 2 kHz, 4 kHz, and 6 kHz. Uncertainty in Monte 

Carlo simulations of the conventional field frequencies are indicated on the right side of the 

figure.   

Figure 4.7 demonstrates the significant coherence recovery possible via the frequency-

difference autoproduct. The coherence of interpulse autoproducts generally increase with 

decreasing difference frequency, and the intrapulse autoproducts exhibit excellent coherence. For 

the autoproducts here, constructed from constituent fields with an average coherent reflection 

coefficient of 0.06, greater than 95% coherence is recovered at Δ𝑓 < 125 Hz. Error bars 

associated with statistical uncertainty of a 160-surface ensemble are reduced from the 40-

member size in Fig. 4.6, emphasizing the importance of the directional average.  
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Figure 4.7: Measured and modeled coherent reflection coefficients averaged across all four 

propagation angles. Measurements are denoted by red (autoproduct) and green (conventional) 

×’s and the nominal theoretical autoproduct prediction is shown in black. Error bars, based on 

uncertainty associated with 160-ping ensemble averages, accompany the conventional 

measurements and autoproduct theory. The dotted blue curve represents a best-fit theoretical 

autoproduct based on an adjusted sea surface wave spectrum. 

 

Although coherence recovery is illustrated in Fig. 4.7, the measured data does not agree 

with the theoretical predictions, particularly at the intrapulse difference frequencies. In fact, 

modeled autoproducts uniformly underestimate the coherent reflection measured at the intrapulse 

difference frequencies. Reasonable corrections to surface statistics, outlined in the following 

subsection, remove this discrepancy and are demonstrated by the blue dashed line. 

4.4.4 Surface Characterization 

The theoretical autoproduct coherent reflection coefficient depends on the directional sea surface 

spectrum. The directional sea spectrum was determined through a combination of measured and 

modeled data, each with some level of uncertainty. The former through rms height uncertainty 
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(±10%) and the latter through uncertainty in wind speed (± 1 m/s) and the wind peak 

wavenumber. A numerical optimizer was used to identify the sea surface spectrum adjustments, 

within the uncertainty of the experiment, necessary to produce agreement between measured and 

theoretical autoproducts. Given the lack of directional dependence in the experiment and the 

computational load required by the optimizer, the isotropic form of the autoproduct coherent 

reflection coefficient was used. Evaluation of Eqs. (4.10) and (4.13b) required estimates of the 

directionally-averaged wave spectrum, 𝐹(𝐾𝜌). 

The directionally-averaged wave spectrum implemented uses the buoy data shown in Fig. 

4.4(b) supplemented by a modeled spectrum at higher wavenumbers. The D-spectrum (Plant, 

2002) was multiplied by a Gaussian roll-off function. This adjustment is commonly employed to 

band-limit the exponential autocorrelation function in the radar community (Darawankul and 

Johnson, 2007; Li and Johnson, 2017). Hence, the modeled region abides by the following 

equation: 

𝐹(𝐾𝜌) = 𝐷(𝐾𝜌, 𝐾𝑝𝑒𝑎𝑘 , 𝑈) exp [−(
𝐾

𝐾𝑟𝑜𝑙𝑙−𝑜𝑓𝑓
)

2

] , (4.15) 

where 𝐷(𝐾𝜌 , 𝐾𝑝𝑒𝑎𝑘 , 𝑈) represents the (directionally-averaged) D-spectrum dependent on radial 

wavenumber, the wind peak wavenumber, and the wind speed, respectively. Spectrum-specific 

details are shown in (Plant, 2002). The wavenumber scale governing the roll-off function is 

𝐾𝑟𝑜𝑙𝑙−𝑜𝑓𝑓. Using a nonlinear curve-fitting routine in MATLAB, adjustments to ℎ, 𝐾𝑝𝑒𝑎𝑘, 𝑈, and 

𝐾𝑟𝑜𝑙𝑙−𝑜𝑓𝑓 were identified that maximize agreement between Eq. (4.10) and the measured 

autoproducts. Due to the relative statistical certainty of the intrapulse autoproducts, indicated by 

the small error bars in Fig. 4.7, the implementation was designed to optimize the match for Δ𝑓 ≤ 

400. 
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Results of the numerical optimization are shown in Table 4.1. The inferred parameters 

are within the uncertainties of the SW06 experiment, with the largest difference suggesting a 

reduction of the wind speed by ~0.5 m/s. The theoretical autoproduct coherent reflection 

coefficient was recomputed using the inferred directionally-averaged spectrum and 

superimposed in blue dashes on Fig. 4.7. The discrepancy between measured intrapulse 

autoproducts and the nominal theoretical predictions is removed and excellent agreement 

between measured and theoretical autoproducts from the inferred spectrum is shown.  

Nominal (red) and inferred (blue) directionally-averaged wave spectra are shown in Fig. 

4.8(a). The inferred spectrum differs only slightly from the nominal values until the roll-off 

function dominates near 𝐾𝜌~10. The other directional wave buoy near the experimental site, 

ASIS, also measured surface spectral content. Data from the ASIS buoy, digitized (Rohatgi, 

2022) from Fig. 6 in (Dahl, 2010), is shown in black and is lower than the other two spectra, 

supporting the inferred adjustments. 

 

Table 4.1: Comparison of nominal and inferred environmental parameters. Autoproduct-based 

environmental characterization, computed by optimizing the match between theoretical and 

measured autoproduct coherent reflection coefficients, provides reasonable corrections within the 

uncertainty of the experiment. 

 

Rms 

roughness (m) 

Wind Speed 

(m/s) 

Wind Peak 

Wavenumber (rad/m) 

Roll-off 

Wavenumber (rad/m) 

Nominal 0.167 5.5 0.466 N/Aa 

Inferred 0.161 4.95 0.456 5.06 

a Nominal spectrum does not include a roll-off parameter.  
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Figure 4.8: Effect of inferred parameter adjustments on isotropic representations of the SW06 sea 

surface. (a) Comparison of nominal and inferred directionally-averaged sea surface spectra. Data 

from the ASIS buoy, not used in analysis, is superimposed as well. (b) Nominal and inferred 

autocorrelation functions shown to 15 m lag. The inset figure shows the major effect of the 

inferred spectrum, increasing the correlation at small lag values. 

 

Figure 4.8(b) shows the autocorrelation functions computed from Eq. (4.13b) using the 

nominal and inferred spectra. Plotted against lags up to 15 m, little discrepancy exists between 

the two curves. The root-mean-square percentage error was less than 1%. Inset in the panel is a 

zoomed-in view of the autocorrelation peak, out to 2 m lag. At small lags, the effect of the 

Gaussian roll-off function is evident in the curvature of the inferred autocorrelation function. 

This small increase in the autocorrelation function drives the difference in coherence recovery 

between nominal and inferred curves in Fig. 4.7. Hence, the autoproduct may only serve to refine 

estimates of the autocorrelation function at small lags (or, equivalently, the spectrum at higher 

wavenumbers). Although other surface wave spectrum models and more sophisticated 

optimization strategies exist, the current implementation was favored due to its simplicity. This 

subsection was developed to show how the remotely measured frequency-difference autoproduct 
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may assist environmental characterization efforts, not to exhaustively assess sea surface models 

and numerical optimizers. 

4.5 Conclusion 

The frequency-difference autoproduct constructed from rough-surface-scattered acoustic fields 

has been shown to recover coherent reflection in simulation and laboratory experiments for 

surfaces possessing Gaussian autocorrelation functions (Joslyn and Dowling, 2022). The goal of 

this work, therefore, was to examine the potential for autoproduct-based coherence recovery in 

acoustic scattering from realistic sea surfaces. Analytic and simulation results using the 

Kirchhoff approximation were generalized to account for arbitrary surface autocorrelation 

functions, and measured data collected during the SW06 experiment was compared to numerical 

predictions. In particular, the work here considered a pulsed signal, consisting of simultaneous 

high frequency narrowband transmissions, scattered from 160 independent realizations of the 

rough sea surface with 2.5 ≤ 𝑘ℎ cos 𝜃 ≤ 3.7. Coherent reflection is recovered in theory, 

simulations, and measured data. Moreover, with suitable corrections to the nominal sea surface 

wave spectrum, the recovery is in agreement between all methods. An autoproduct-based 

numerical strategy was presented to identify these minor sea surface spectrum adjustments. 

The research here supports two minor and two major conclusions. The two minor 

conclusions concern attributes specific to the SW06 experiment. Refraction, shown previously to 

strongly influence vertical spatial coherence for the SW06 data (Dahl, 2010; Dahl et al., 2013), 

only modestly impacts the coherence recovery expected from frequency-difference autoproducts 

and can be accounted for with modifications to incidence angle and geometrical distances 

(𝑅1, 𝑅2). Source-receiver bearing angle mildly influences theoretical autoproducts, exhibiting 

greater coherence in the 120°/300° direction than the in the 30°/210° direction. However, within 
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the variation expected from a 40-surface ensemble and the difference frequencies accessible 

from the transmitted signal, the discrepancy is not statistically significant. 

The first major conclusion is that the frequency-difference autoproduct recovers coherent 

reflection in scattering from realistic sea surfaces. The significant recovery of coherence possible 

is evident in theory, simulation, and experiment. For the intrapulse difference frequencies studied 

here, the measured coherent reflection coefficient for autoproducts approached unity, even 

though the constituent acoustic fields were entirely incoherent. This effect is attributed to the 

frequency downshifting nature of the autoproduct, which causes the surface roughness, 

conventionally dependent on 𝑘ℎ cos 𝜃, to appear dependent on Δ𝑘ℎ cos 𝜃. Further, the expected 

variation in limited number ensembles, determined from Monte Carlo simulations, decreases as 

coherence increases, thereby eliminating the possibility of statistical fortuity in the measured 

data. 

The second major conclusion concerns predictability of rough-surface-scattered 

autoproducts. Previous work noted the dependence of coherent reflection recovery on the surface 

autocorrelation function (Joslyn and Dowling, 2022). This notion is underscored as it appears 

that coherence recovery is strongly dependent on the autocorrelation function at small lag values, 

with greater coherent reflection expected from surfaces with larger autocorrelation values. In 

light of the Weiner-Khinchin theorem, autoproducts are then strongly influenced by the high 

wavenumber region of the sea surface spectrum, which is typically modeled and not measured 

in-situ through buoys. Hence, measured autoproducts may be inverted to estimate the sea surface 

spectrum from acoustic recordings at a single receiver. A nonlinear curve-fitting routine in 

MATLAB showed the feasibility of this strategy, identifying spectrum adjustments within 
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uncertainties noted in SW06. Theoretical autoproduct curves computed with the inferred sea 

surface spectrum showed excellent agreement with measured data. 

Although the discontinuous bandwidth of the transmitted signal limited analysis to very 

small or large difference frequencies, this was a limitation of the SW06 experiment, not a general 

restriction. Experiments utilizing broadband transmissions are expected to create equivalent 

coherence recovery plots (Fig. 4.6 and Fig. 4.7) without the gaps in difference frequency. 

Additionally, the phase of the coherent reflection coefficient was not investigated here. While 

phase shifts are unimportant to overall coherence, optimizing the match in amplitude and phase 

between measured and theoretical autoproducts may enhance single receiver optimization 

strategies designed to fine-tune estimates of the sea surface spectrum. 
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Chapter 5  

Spatial Coherence Comparisons between the Acoustic Field and Its Frequency-Difference 

and Frequency-Sum Autoproducts in the Ocean 

 

The frequency-difference and frequency-sum autoproducts, quadratic products of complex 

acoustic field amplitudes at two frequencies, may mimic genuine acoustic fields at the difference 

and sum frequencies of the constituent fields, respectively. Autoproducts have proven useful in 

extending the useable frequency range for acoustic remote sensing to frequencies outside a 

recorded field’s bandwidth. In array signal processing applications, the spatial coherence of the 

field often sets performance limits. This chapter presents results for the spatial coherence of the 

genuine field, the frequency-difference autoproduct, and the frequency-sum autoproduct as 

determined from data collected during the Cascadia Open-Access Seismic Transects (COAST 

2012) experiment. In this experiment, an airgun array providing a 10 to 200 Hz signal was 

repeatedly fired off the coast of Washington state and the resulting acoustic fields were recorded 

by a nominally 8-km-long, 636-element towed horizontal array. Based on hundreds of airgun 

firings from a primarily shore-parallel transect, both autoproducts were found to extend field 

coherence to frequencies outside the genuine field’s bandwidth and to produce longer coherence 

lengths than genuine fields, in most cases. When used for matched field processing, the same 

data illustrate the benefits of the autoproducts’ extended coherence. The following chapter is a 

near reproduction of a journal article (Joslyn et al., 2022). For clarity, formulas and figures 

repeated elsewhere in this thesis are maintained in this section. 
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5.1 Introduction 

Array signal processing techniques are used in a wide variety of underwater acoustic 

applications, including both active and passive remote sensing. Coherence between separated 

receivers is commonly needed for success in such applications with increased coherence leading 

to better outcomes. In general, the coherence between two points in space depends on the 

locations of the two points, the signal frequency, and the characteristics of the environment 

between the sound source and the two points. Coherence commonly increases with decreasing 

receiver separation and decreasing frequency, as well as with decreased environmental 

variability and complexity (Urick, 1983), although coherence in the presence of certain 

environmental characteristics has been shown to exhibit unintuitive behavior (Heaney, 2011). In 

addition, coherence measurements may be degraded when noise is present. 

 The distance over which a field exhibits coherence is known as the coherence length. 

Limited coherence length can be problematic for acoustic array signal processing in the ocean, 

especially for long arrays, when the array aperture exceeds the field’s coherence length at the 

frequencies of interest. Coherence length is directly related to array gain (Carey, 1998; Carey and 

Moseley, 1991) and thus has important implications in beamforming (Cox, 1973; Morgan and 

Smith, 1990) and matched field processing applications (Baggeroer et al., 1993). When an array 

is nominally shorter than the field’s coherence length, all of its elements should contribute 

positively to the achievable array gain; conversely, adding array elements that extend the array’s 

aperture beyond the coherence length generally does not provide performance improvements and 

can potentially reduce the performance of array signal processing techniques. In particular, prior 

work has shown that for shallow water environments, spatial coherence length is a primary factor 

in predicting array performance (Rolt and Abbot, 1997). For a known finite coherence length, the 
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theoretical limitations of conventional beamforming methods with a linear array are understood 

and readily calculated (Cox, 1973; Morgan and Smith, 1990). Coherence length has been studied 

in a variety of simulation and experimental geometries and scenarios, including with both 

vertical and horizontal arrays (Wan et al., 2009), in the presence of internal waves (Duda et al., 

2012; Finette and Oba, 2003; Lunkov and Petnikov, 2014), with varying channel depth (Carey, 

1998), in the presence of multipath propagation (Carey and Moseley, 1991), and at long ranges 

(Andrew et al., 2005; Gorodetskaya et al., 1999), to understand the influence of various ocean 

environmental characteristics. The coherence of acoustic waves scattered from the ocean surface 

(Dahl, 2004, 2010; Dowling and Jackson, 1993) and floor sediment (Berkson, 1980; Brown et 

al., 2018) has also been investigated. 

 A shared characteristic of all existing work on coherence is the limitation to in-band 

signal frequencies, a typical feature of conventional signal processing methods. Interestingly, 

recent work has considered surrogate fields, the frequency-difference and frequency-sum 

autoproducts, as possible replacements for genuine acoustic fields at frequencies not broadcast 

by the source (Lipa et al., 2018; Worthmann and Dowling, 2017). Use of the autoproducts has 

been successful for beamforming (Abadi et al., 2012, 2013, 2018; Douglass et al., 2017) and 

matched field processing (Geroski and Dowling, 2019; Worthmann et al., 2015, 2017) at 

frequencies outside the broadcast signal’s bandwidth. However, the coherence of autoproducts 

has yet to be directly examined, despite its importance in signal processing applications. Thus, 

the primary purpose of this paper is to report the spatial coherence properties of autoproducts 

computed from bottom-reflected acoustic recordings made during the Cascadia Open-Access 

Seismic Transects (COAST) experiment (Holbrook et al., 2012), conducted off the coast of 

Washington state on a varying bathymetry in July 2012. In particular, this chapter presents 
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results of spatial coherence and coherence lengths, as a function of frequency, for the frequency-

difference and frequency-sum autoproducts and compares them to those of the genuine acoustic 

field – from which they are derived – in the same environment. 

The autoproducts provide a means for processing signals at frequencies below and above 

the signal recording’s bandwidth; thus, the coherence of the autoproducts relative to that of 

genuine in-band fields is critical for understanding their performance for various applications. In 

addition to signal processing at frequencies unavailable in the genuine field, information at in-

band frequencies that is masked by low SNR, or other undesired features, can potentially be 

recovered by utilizing the autoproducts. 

 The remainder of this chapter is divided into three sections. Section 5.2 details the 

mathematical formulations for coherence, coherence length, and autoproducts; and overviews the 

COAST 2012 experiment and the specific data used for this study. Section 5.3 presents the 

coherence and matched field processing results for the genuine field, and for the frequency-

difference and -sum autoproducts. The final section discusses this effort and presents the 

conclusions drawn from it. 

5.2 Materials and Methods 

The mathematical formulas for coherence, autoproducts, and matched field processing (MFP) 

used herein are described first, followed by an overview of the COAST 2012 experiment and the 

dataset used. 
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5.2.1 Coherence and Coherence Length 

In general, for 𝑄 independent field samples recorded at locations 𝒓𝑚 and 𝒓𝑛, the complex 

coherence, Γ, of the field at angular frequency 𝜔 between these locations can be estimated from 

an ensemble-average (indicated by 〈, 〉-brackets) of a product of normalized field amplitudes: 

Γ(𝒓𝒎, 𝒓𝒏, 𝜔) =
⟨𝑃𝑞(𝒓𝒎, 𝜔)𝑃𝑞

∗(𝒓𝒏, 𝜔)⟩𝑄

√⟨|𝑃𝑞(𝒓𝒎, 𝜔)|
2
⟩
𝑄
⟨|𝑃𝑞(𝒓𝒏, 𝜔)|

2
⟩
𝑄

, (5.1)
 

where the asterisk indicates complex conjugation, 𝒓𝒎 is the location of the reference receiver, 𝒓𝒏 

is the receiver a distance Δ𝑟 = |𝒓𝒏 − 𝒓𝒎| away from the reference receiver, and 𝑃𝑞(𝒓𝒋, 𝜔) is the 

𝑞𝑡ℎ field sample at angular frequency 𝜔 from the receiver located at 𝒓𝒋 (Carter et al., 1973). The 

normalization in Eq. (5.1) ensures that the coherence value is bounded by the unit circle in the 

complex plane. The variance in phase of 𝑃𝑞(𝒓𝒎, 𝜔)𝑃𝑞
∗(𝒓𝒏, 𝜔) for 1 ≤ 𝑞 ≤ 𝑄 controls the 

coherence magnitude. Magnitudes of Γ(𝒓𝒎, 𝒓𝒏, 𝜔) near one indicate highly coherent fields while 

magnitudes near zero indicate poor coherence.  

 In this investigation, equally-spaced sample locations in the horizontal direction pointing 

away from a known-location source are of interest, so Δ𝒓 = 𝑅�̂�𝒓 = 𝑗𝑑�̂�𝒓, where 𝑗 (≥ 0) is the 

sample location index relative to the reference receiver, 𝑑 is the separation between neighboring 

receivers, �̂�𝒓 is the horizontal range unit vector pointing away from the source, and 𝑅 = 𝑗𝑑 is the 

total horizontal separation between any two receiver locations. The assumption of spatial 

homogeneity across the receiving array admits the following simplification to Eq. (5.1): 

Γ(∆𝒓,𝜔) = Γ(𝒓𝒎, 𝒓𝒏, 𝜔), (5.2) 
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where the spatial dependence is modified to receiver separation only. Approximate spatial 

homogeneity justification for a different ocean experiment is provided in (Andrew et al., 2005). 

Here, a further simplification is permitted as the coherence phase is not of interest. Thus, 

𝛾(𝑅, 𝜔) = |Γ(∆𝒓,𝜔)|, (5.3) 

defines the genuine acoustic field coherence function. The highest possible value of 𝛾(𝑅, 𝜔) is 

unity (perfect coherence between field samples separated by 𝑅), while the minimum magnitude 

of 𝛾(𝑅, 𝜔) is zero (complete lack of coherence between field samples separated by 𝑅). 

 The coherence length is the distance over which a predetermined level of coherence is 

maintained, though the exact mathematical definition of coherence length varies between 

scientific areas, applications, and authors. For the present purposes, the coherence length is 

determined from the decay of 𝛾(𝑅, 𝜔) with increasing receiver-separation distance 𝑅. The 

normalization in Eq. (5.1) requires 𝛾(0, 𝜔) = 1, and 𝛾(𝑅, 𝜔) typically decreases monotonically 

with increasing 𝑅. Thus, the coherence length, 𝐿(𝜔), may then be defined as the receiver 

separation where 𝛾(𝑅, 𝜔) falls below a specified threshold. No strict rules exist for this threshold 

value, but 𝑒−1 (≈ 0.368) is a common choice (Carey, 1998; Duda et al., 2012) and is used here as 

well. 

5.2.2 Autoproducts 

In prior work, coherence lengths have been determined from analysis, simulated data, and 

experimental measurements in a variety of acoustic environments and with a variety of signals. 

However, all such results consider only in-band signal frequencies. Recent work (Worthmann 

and Dowling, 2017) has shown that the frequency-difference and frequency-sum autoproducts 

constructed from nonzero-bandwidth acoustic field recordings may mimic genuine acoustic 

fields at (user-selectable) frequencies below and above, respectively, the recorded signal’s 
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bandwidth. Further, the autoproducts can be used to obtain unique results in acoustic remote 

sensing (Dowling, 2018). The frequency-difference autoproduct, 𝐴𝑃Δ,𝑞, and frequency-sum 

autoproduct, 𝐴𝑃Σ,𝑞, are defined from two frequencies of the 𝑞𝑡ℎ acoustic recording at the 𝑗𝑡ℎ 

element of a receiving array as 

𝐴𝑃𝛥,𝑞(𝒓𝒋, 𝜔, 𝛥𝜔) = 𝑃𝑞(𝒓𝒋, 𝜔+)𝑃𝑞
∗(𝒓𝒋, 𝜔−), (5.4𝑎) 

𝐴𝑃𝛴,𝑞(𝒓𝒋, 𝜔, 𝛥𝜔) = 𝑃𝑞(𝒓𝒋, 𝜔+)𝑃𝑞(𝒓𝒋, 𝜔−), (5.4𝑏) 

where 𝜔± ≡ 𝜔 ± Δ𝜔 2⁄  denote the pair of recorded acoustic frequencies. Prior work has shown 

that 𝐴𝑃Δ,𝑞 and 𝐴𝑃Σ,𝑞 may mimic genuine acoustic fields at the difference, Δ𝜔, and sum, Σ𝜔 =

2𝜔, frequencies (Worthmann and Dowling, 2017). Equations (5.4a) and (5.4b) may be averaged 

through the recorded field’s bandwidth, Ω𝐿 ≤  𝜔 ≤  Ω𝐻, to determine the bandwidth-averaged 

autoproducts: 

⟨𝐴𝑃Δ,𝑞(𝒓𝒋, ∆𝜔)⟩𝐵𝑊
=

1

Ω𝐵𝑊
Δ ∫ 𝐴𝑃𝛥,𝑞(𝒓𝒋, 𝜔, 𝛥𝜔) 𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2
Ω𝐵𝑊
Δ

, (5.5𝑎) 

⟨𝐴𝑃𝛴,𝑞(𝒓𝑗 , 𝛴𝜔)⟩𝐵𝑊
=

1

Ω𝐵𝑊
𝛴 ∫ 𝐴𝑃𝛴,𝑞(𝒓𝒋, 𝜔, 𝛥𝜔) 𝑑(𝛥𝜔)

Ω𝐵𝑊
𝛴

0

, (5.5𝑏) 

where Ω𝐶 = (Ω𝐿 + Ω𝐻)/2 is the in-band center frequency. The signal bandwidths available to 

average 𝐴𝑃Δ,𝑞 and 𝐴𝑃Σ,𝑞 are given by Ω𝐵𝑊
Δ = Ω𝐻 − Ω𝐿 − Δ𝜔 and Ω𝐵𝑊

𝛴 = min[2Ω𝐻 − 𝛴𝜔, 𝛴𝜔 −

2Ω𝐿], respectively. The bandwidth averaging of Eq. (5.5) is advantageous in multipath 

environments because it suppresses cross terms incurred from the quadratic construction of the 

autoproducts, and enhances their mimicry of genuine difference- or sum-frequency acoustic 

fields (Lipa et al., 2018; Worthmann and Dowling, 2017). The implementation here differs 

slightly from bandwidth averages in previous work. Due to imperfect knowledge of the source 
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spectrum, autoproduct samples are averaged directly in Eq. (5.5), without explicit removal of the 

source spectrum. 

 The coherence definitions of the frequency-difference and frequency-sum autoproducts 

follow directly from Eqs. (5.1) - (5.3) with the bandwidth-averaged autoproducts replacing the 

genuine acoustic field: 

𝛾∆(𝑅, ∆𝜔) =

|⟨⟨𝐴𝑃∆,𝑞(𝒓𝑚 , ∆𝜔)⟩𝐵𝑊 [⟨𝐴𝑃∆,𝑞
(𝒓𝑛, ∆𝜔)⟩𝐵𝑊]

∗
⟩
𝑄
|

√⟨|⟨𝐴𝑃∆,𝑞(𝒓𝑚 , ∆𝜔)⟩𝐵𝑊
|
2
⟩
𝑄
⟨|⟨𝐴𝑃∆,𝑞(𝒓𝑛 , ∆𝜔)⟩𝐵𝑊

|
2
⟩
𝑄

, (5.6𝑎) 

𝛾𝛴  (𝑅, 𝛴𝜔) =

|⟨⟨𝐴𝑃𝛴,𝑞(𝒓𝑚 , 𝛴𝜔)⟩𝐵𝑊 [⟨𝐴𝑃𝛴,𝑞
(𝒓𝑛, 𝛴𝜔)⟩𝐵𝑊]

∗
⟩
𝑄
|

√⟨|⟨𝐴𝑃𝛴,𝑞(𝒓𝑚 , 𝛴𝜔)⟩𝐵𝑊|
2
⟩
𝑄
⟨|⟨𝐴𝑃𝛴,𝑞(𝒓𝑛, 𝛴𝜔)⟩𝐵𝑊|

2
⟩
𝑄

. (5.6𝑏) 

Coherence lengths, 𝐿∆(∆𝜔) and 𝐿Σ(𝜔), for 𝐴𝑃Δ and 𝐴𝑃Σ, respectively, were then determined 

from the spatial decay of 𝛾Δ(𝑅, Δ𝜔) and 𝛾Σ(𝑅, Σ𝜔) in an equivalent manner to the calculation of 

𝐿(𝜔) from 𝛾(𝑅, 𝜔). 

 Uncertainty estimates for the 𝛾’s and 𝐿’s are included to facilitate quantitative 

comparisons between acoustic field coherence and autoproduct coherence. The 95% confidence 

interval (Bendat and Piersol, 1980) for the coherence random error, 휀𝛾, reported here is: 

[(1 − 2휀𝛾)𝛾, (1 + 2휀𝛾)𝛾], (5.7𝑎) 

휀𝛾 =
(1 − 𝛾2)

𝛾√2𝑄
. (5.7𝑏) 

These approximate error bounds rely exclusively on the number of field samples, 𝑄, and the 

mean coherence value, 𝛾. As such, Eq. (5.7) is used to generate error estimates for the genuine 

acoustic field coherence calculated from Eq. (5.3), and the frequency-difference and frequency-
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sum autoproduct coherence calculated from Eq. (5.6a) and (5.6b). The error estimates of Eq. 

(5.7) have been used previously in ocean acoustic coherence studies (Dahl, 2004, 2010) and are 

expected to be a good approximation of the true variance for a large ensemble, 𝑄 (Carter et al., 

1973). More exact confidence bound formulations exist (Carter, 1987; Carter et al., 1973) as well 

as iterative algorithms for confidence bound generation (Wang and Tang, 2004; Zoubir, 2005). 

However, Eq. (5.7) was used in favor of these alternatives because of its relative simplicity and 

the sufficiently large ensemble number, 𝑄, provided by the COAST 2012 experiment. 

5.2.3 Matched Field Processing 

A field’s coherence length has significant implications in array signal processing, and this is 

examined herein for the specific case of matched field processing (MFP) of the in-band field and 

its autoproducts. Previous work has considered the autoproducts for out-of-band MFP and has 

shown that they may provide improvements over conventional MFP when signal processing at 

in-band frequencies is problematic (Geroski and Dowling, 2019; Worthmann et al., 2015, 2017). 

Specifically, frequency-difference methods can suppress the negative impacts of array 

sparseness, random scattering, and wavefront mismatch, while frequency-sum methods can 

enhance resolution. 

MFP is a common scheme to identify an unknown source location, in both range and 

direction, from a measured field. Computed replica fields (aka replicas), based on a modeled 

acoustic propagation environment, are generated for many potential source locations. The 

location of the source is then selected such that the replica field exhibits the highest correlation 

with the measured field at the recording locations. The first development of MFP in underwater 

acoustics can be found in Bucker (Bucker, 1976) and an overview of MFP is available in Jensen 

(Jensen et al., 2011). 
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The MFP strategy implemented is the Bartlett processor, which is a frequency domain spatial 

correlation between the measured field and computed replicas. Mathematically, 

𝐵𝑞(𝒙,𝜔) = |∑𝑃𝑞(𝒓𝒋, 𝜔)𝑤𝑗
∗(𝒙,𝜔)

𝑁𝐿

𝑗

|

2

, (5.8) 

where 𝑁𝐿 is the number of array elements informed by the coherence length of the field, 𝒙 is the 

search coordinate, and 𝑤𝑗(𝒙, 𝜔) is the weight vector based on the modeled propagation between 

𝒙 and the receiving location 𝒓𝒋. The replicas here implement image theory for the surface and 

bottom reflections, which has been used recently in underwater shallow target localization using 

MFP (Hotkani et al., 2021). When plotted as a function of the search coordinate 𝒙, 𝐵𝑞 is 

normalized by its maximum value and presented as a decibel value: 

10log10{𝐵𝑞(𝒓,𝜔) max[𝐵𝑞(𝒓,𝜔)]⁄ }.  

The out-of-band MFP formulation is identical to Eq. (5.8) with 𝑃𝑞(𝒓𝒋, 𝜔) replaced by 

⟨𝐴𝑃Δ,𝑞(𝒓𝒋, ∆𝜔)⟩𝐵𝑊
 or ⟨𝐴𝑃𝛴,𝑞(𝒓𝑗 , 𝛴𝜔)⟩𝐵𝑊

: 

𝐵𝑞(𝒙, Δ𝜔) = |∑⟨𝐴𝑃Δ,𝑞(𝒓𝒋, ∆𝜔)⟩𝐵𝑊
𝑤𝑗
∗(𝒙, Δ𝜔)

𝑁𝐿

𝑗

|

2

, (5.9𝑎) 

𝐵𝑞(𝒙, Σ𝜔) = |∑⟨𝐴𝑃𝛴,𝑞(𝒓𝑗 , 𝛴𝜔)⟩𝐵𝑊
𝑤𝑗
∗(𝒙, Σ𝜔)

𝑁𝐿

𝑗

|

2

, (5.9𝑏) 

with the weight vector evaluated at the difference or sum frequency, as appropriate.  

5.2.4 COAST 2012 Experiment 

The Cascadia Open-Access Seismic Transects (COAST) experiment (Holbrook et al., 2012) was 

conducted off the coast of Washington state in July 2012. The goal of this experiment was to 
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collect two-dimensional seismic reflection profiles and other geophysical data. In this 

experiment, the R/V Marcus G. Langseth towed an approximately 8-km-long streamer at 9 m 

depth that contained a receiver array with 𝑁 = 636 hydrophone channels spaced 𝑑 =12.5 m 

apart. To minimize contributions from purely-horizontal-traveling energy, the recorded acoustic 

signal of each channel was an average of 14 hydrophones located along the horizontal array 

(Diebold et al., 2010). Herein, receiving groups are referred to as elements or individual 

hydrophones for simplicity. A further discussion of receiver subtleties exists in (Abadi and 

Freneau, 2019) or (Diebold et al., 2010). The output of the receiver nearest to the source 

exhibited behavior (low amplitude) inconsistent with neighboring receivers, and thus was 

removed from the data analysis so that 𝑁 = 635 for the purposes of this manuscript. 

 An array of 36 airguns, towed 240 m behind the ship at either 9 m (used here) or 15 m 

depth (Tolstoy et al., 2009), was used as a single directional acoustic source with a total volume 

of 6600 cubic inches. The wideband impulsive signal was preferentially broadcast toward the 

ocean floor and the bandwidth spanned from below 10 Hz to above 200 Hz. The ship towed the 

airgun and receiving arrays at 4.5 knots along 11 separate transects, during which the airgun 

array was fired approximately every 50 m while the receiving array recorded for 16.384 s with a 

500 Hz sampling rate. The timing of the source broadcasts and receiving array recording window 

provided ample time to record direct-path and multiple-reflected-path sounds at both the closest 

and furthest receivers. For the present study, the direct path is time-gated out and replaced with 

zeros in the time domain to emphasize reflected-path coherence. Further, no corrections for ship 

motion during the data recording interval were made in the data processing.  

 Figure 5.1(a) shows the layout of the experiment, with solid bold lines indicating each of 

the 11 transects. For the current study, data from the primarily shore-parallel transect number 10 
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(indicated in Fig. 5.1(a) by a white arrow) was used since the depth variation along this track was 

the smallest of the 11 available and the number of usable signal samples was far greater than the 

other primarily shore-parallel transect, number 11. Figure 5.1(b) shows the bathymetry of 

transect 10, which was traversed from north to south. To ensure array curvature and significantly 

distinct bathymetry did not influence the results, the first 200 and the last 483 airgun signal 

pulses along this track were not used in the analysis. The airgun was powered down for an 

additional 172 pulses due to marine life in the area. Hence, of the total 1684 airgun pulses on this 

transect, 𝑄 = 829 pulses were utilized here in this study. These data were collected on July 22, 

2012 between 01:30:30 and 07:57:23 Greenwich Mean Time (GMT). The ship location, shown 

in Fig. 5.1(b), traversed 50 km from the first (10 km) to the last (60 km) analyzed signal pulses. 

The average water depth along the analyzed portion of the transect is slightly more than 1.9 km 

and varies by less than 200 m. 

The airgun array was designed so that acoustic energy was primarily directed towards the 

ocean floor. Figure 5.2 shows a range-depth schematic with the nominal horizontal and vertical 

dimensions, corresponding to the experimental data used here. The bottom reflected (solid line) 

and bottom-surface reflected (dashed line) propagation paths to a single receiver are shown. 

These two paths convey most of the signal energy from the airgun array to the receivers. 

Although the nominal bathymetric depth is known along the transect, the actual reflection of 

bottom-reflected sound may include contributions from below the bathymetric depth. Reflection 

strength and phase is dependent on the geoacoustic properties of the ocean bottom and may 

contribute to coherence loss in the recorded sound along with the noted variations in bathymetry.  
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Figure 5.1: (a) Layout of the COAST experiment from (Holbrook et al., 2012), conducted off the 

coast of Washington state in July, 2012. Each line represents the ship’s path while towing an ~8 

km streamer with 636 receivers spaced 12.5 m and a source array of 36 airguns at 4.5 knots. The 

white arrow indicates the beginning of the analyzed transect. Data were collected by coordinated 

firing of the airgun array approximately every 50 m and recording for 16.384 s. (b) The 

bathymetry of transect 10 is shown here as a function of the ship location with blue indicating 

the ship location for the analyzed signal pulses. 

 

As the receiving array is towed along transect 10, additional reductions in measured coherence 

arise from the varying bathymetry, ocean floor and surface roughness, and other propagation 

fluctuations along these paths. 
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Figure 5.2: The approximate layout of COAST 2012 transect 10. The solid circle indicates the 

airgun array. The solid squares indicate receivers. The first bottom reflection (solid line) and 

bottom-surface reflection (dashed line) account for most of the signal energy recorded by each 

receiver of the array. 

 

 Figure 5.3(a) shows a waterfall plot of the receiver array output for one signal pulse taken 

at 06:36:16 GMT (only every 10th recorded waveform is shown for clarity), when the depth at 

the ship was roughly 1906 m. Here, receiver number 1 is closest to the airgun array and receiver 

number 635 is furthest from it. The strong signal arriving at the various receivers between 2.5 

and 6.0 seconds is the first bottom reflection. A second bottom reflection and a faint third 

reflection are also evident in the recordings. The direct path is visible in the measurements of the 

nearest 50 receivers as a small-amplitude pulse arriving before the prominent reflections. Due to 

the absence of significant direct path energy further along the array, a half-second time-gate is 

applied herein to remove the expected direct path arrival at all receivers. Spectrograms for 

receivers 1 and 635 of the field sample in Fig. 5.3(a) are shown with a 256 ms Hamming window 

and 128 ms window overlap in Fig. 5.3(b) and Fig. 5.3(c), respectively. In the  
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Figure 5.3: (a) Waterfall plot showing the time-series output of every 10th receiver for the ping 

recorded at 06:36:16 GMT on July 22, 2012. Spectrogram outputs with time-gated direct path, 

256 ms Hamming window and 128 ms window overlap for the receivers closest to (b) and 

furthest from (c) the source. 

 

spectrogram for the closest receiver, the first reflected path is visible (uneven red vertical stripe) 

near 2.5 s, followed by several bottom reflections with a time spacing of 2.5-3 s. For the farthest 

receiver, two bottom reflections are clearly apparent, with a possible third path indicated as well. 

In both spectrograms, the vertical blue bars are the result of the time-gated direct path. 

  The spectrograms demonstrate that substantial signal energy exists across most of the 

available frequency range, with noise being more prominent at lower frequencies. Additional 

dips in signal amplitude are apparent in Fig. 5.3(b) around 80 and 160 Hz. Spectrograms from 

other positions along the array are similar, and show the variations expected with increasing 

source-to-receiver range and variations in water column depth. 

 The dips in signal amplitude around 80 Hz and 160 Hz in Fig. 5.3(b) are predictable 

based on the experimental geometry and receiving array depth below the pressure-release ocean 

surface. Upward-propagating sea-floor reflected sound destructively interferes with downward-

propagating sea-surface reflected sound in these frequency ranges, and this phenomenon causes 

variation in SNR across the frequencies of interest for this experiment. Figure 5.4 shows the  
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Figure 5.4: Signal-to-Noise Ratio (SNR) from (10) for the closest receiver (a) and halfway along 

the receiving array (b) for 829 signal pulses. SNR, plotted against both receiver number and 

frequency is shown in panel (c). The dips in SNR, particularly for the nearest receiver, occur at 

the frequencies predicted for destructive interference of upward- and downward-propagating 

sounds at the depth of the receiver array. 

 

measured SNR for the nearest receiver to the source [Fig. 5.4(a)] and at a location halfway along 

the receiving array [Fig. 5.4(b)] as a function of frequency. In Fig. 5.4(c), the SNR is indicated 

for all frequencies and receiving locations. The SNR was calculated for each receiver at each 

frequency, 𝜔 = 2𝜋𝑓, as the average recorded signal variance, ⟨|𝑃𝑞(𝒓𝑗 , 𝜔)|
2
⟩
𝑄

, divided by the 

average noise variance, ⟨|𝑁𝑞(𝒓𝑗 , 𝜔)|
2
⟩
𝑄

, for the 829 airgun pulses: 

SNR(𝒓𝑗 , 𝜔) = 10 log10(

⟨|𝑃𝑞(𝒓𝑗 , 𝜔)|
2
⟩
𝑄

⟨|𝑁𝑞(𝒓𝑗 , 𝜔)|
2
⟩
𝑄

− 1) . (5.10) 

The ‘−1’ within the logarithm ensures that SNR(𝒓𝑗 , 𝜔) tends to the appropriate limit 

when the recorded complex field amplitudes, 𝑃𝑞(𝒓𝑗 , 𝜔), which contain signal and noise, become 

increasingly dominated by noise. Additionally, each value in Fig. 5.4 was averaged over multiple 

frequency samples with a 1 Hz sliding window to increase smoothness. To evaluate Eq. (5.10), 
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the complex field amplitudes, 𝑃𝑞(𝒓𝑗 , 𝜔), were determined from a 1.5 s time segment within each 

recording that started at the beginning of the first bottom reflection’s arrival, while the noise-

only amplitudes, 𝑁𝑞(𝒓𝑗 , 𝜔), were determined from a 1.5 s time segment at the end of each 

recording when no signal was apparent.  

 The dips in SNR seen in Fig. 5.4, particularly for the closest receiver, occur at the 

frequencies expected to produce destructive interference between bottom-reflected upward-

propagating sound and bottom-surface-reflected downward-propagating sound for the COAST 

2012 experimental geometry. A reduction in coherence length is expected at these SNR dips as 

well. In addition, the SNR drops below 0 dB for frequencies below roughly 5 Hz. Thus, at the 

lowest frequencies considered here, the genuine field’s coherence is obscured by noise. A 

notable comparison between Fig. 5.4(a) and Fig. 5.4(b) is the prominence of the first major dip. 

For the further receiver, this SNR dip occurs at a frequency that is approximately 35 Hz higher 

than that for the close receiver and is much less prominent. This SNR-dip frequency variation 

arises from propagation angle variations in the experimental geometry that occur as receiver 

range increases. Additionally, in Fig. 5.4(c), the following receivers have been removed for poor 

SNR: 47, 53, 75, 188, 287, 415, 495, 539, 544, 606, and 626, resulting in 𝑁 = 624 herein. This 

noise contamination was discussed in the cruise report, with most of these specific receivers 

identified as problematic for a different transect (Holbrook et al., 2012). 

5.3 Results 

5.3.1 Coherence 

The coherence was calculated from the frequency domain data of COAST 2012 transect 10 as 

described in Chapter 5.2. Given that the results for in-band, frequency-difference, and frequency-
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sum coherence all come from exactly the same data and that comparisons are the primary topic 

of this manuscript, no geometrical or environmental corrections based on the known 

experimental parameters were made to improve or alter any of the measured coherences. 

Furthermore, no signal-spectrum adjustments or frequency-dependent sea-floor reflection 

coefficient corrections were made to the data or the replicas. In all cases, the nearest receiver was 

used as the reference receiver. Additional reference receivers and reference receiver coherence 

averaging was not included, but similar results are expected if other reference receivers are 

chosen. Based on the sampling rate and time record duration, each signal pulse nominally 

provides 0.061 Hz frequency resolution. Herein, unless otherwise noted, the closest resolved 

frequency to the specified integer frequency was considered. 

 For simplicity and consistency, the signal bandwidth limits were defined as Ω𝐿 2𝜋⁄  = 10 

Hz and Ω𝐻 2𝜋⁄  = 200 Hz for all the results provided here. Thus, the bandwidth-averaged 

frequency-difference autoproduct calculated from Eqs. (5.4a) and (5.5a) can probe difference 

frequencies from 0-190 Hz. Analogously, the frequency-sum autoproduct can achieve sum 

frequencies from 20-400 Hz. These three bandwidths overlap for 20-190 Hz, where coherences 

can be directly compared.  

 Figure 5.5 shows the three possible coherence curves for 60 Hz [Fig. 5.5(a)], 80 Hz [Fig. 

5.5(b)], and 120 Hz [Fig. 5(c)]. The in-band coherence from Eq. (5.3) is shown in black, 

frequency-difference coherence from Eq. (5.6a) in red, and frequency-sum coherence from Eq. 

(5.6b) in blue. The confidence bounds from Eq. (5.7) are shown as semitransparent regions of the 

same color surrounding each coherence curve. The horizontal axis for all panels is the scaled 

receiver spacing 𝑅 𝜆⁄ , with limits of 0 and 40 wavelengths. Wavelengths were computed from 

the given frequency and a reference sound speed (1480 m/s) determined from the average of the  
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Figure 5.5: Coherence vs. distance (normalized by wavelength) comparison for frequencies 

obtainable by all three fields. The genuine in-band field is shown in black, the frequency-

difference autoproduct is shown in red, and the frequency-sum autoproduct is shown in blue. The 

horizontal dotted black line is the exp[−1] threshold value for coherence length. Confidence 

intervals estimated from Eq. (5.7) are indicated as semitransparent regions and the frequency 

used is displayed in the upper right of each panel. 

 

sound speed profiles recorded during the transect. The vertical axes are bounded from 0 to 1 and 

the horizontal dotted black line indicates the 𝑒−1 coherence length threshold. Figures 5.5(b) and 
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5.5(c) correspond to frequencies expected to exhibit destructive interference for the acoustic field 

and the autoproduct, respectively. 

 The three panels in Fig. 5.5 indicate that more coherence may be available from the 

autoproduct when the genuine field and both autoproducts can all be obtained at the same 

frequency. At 60 Hz, displayed in Fig. 5.5(a), the frequency-difference and frequency-sum 

autoproduct coherence exceeds the genuine field coherence by more than the estimated 

uncertainty. At 80 Hz, displayed in Fig. 5.5(b), the destructive interference pattern discussed in 

Chapter 5.2 significantly decreases the in-band field’s coherence, but for the frequency-

difference (frequency-sum) autoproduct, significant coherence is maintained for a horizontal 

receiver separation of nearly 20𝜆 (25𝜆). This occurs because the quadratic character of the 

autoproducts causes them to respond to the ocean surface’s pressure release boundary as if it 

were a hard boundary [see (Worthmann and Dowling, 2017)]. As a result, destructive 

interference occurs for autoproducts at 120 Hz, which is shown in Fig. 5.5(c). Interestingly, the 

effect of the destructive interference on the autoproducts’ coherence is not as significant and can 

be attributed to the benefits of the bandwidth-averaging in Eq. (5.5). Within uncertainties, all 

three fields exhibit similar coherences at this frequency. 

 Either the frequency-difference or the frequency-sum autoproduct shares bandwidth with 

the genuine acoustic field in two other regions. Difference frequencies from 10-19 Hz and sum 

frequencies from 191-200 Hz overlap with the signal bandwidth. Figure 5.6 compares the 

genuine acoustic coherence to autoproduct coherence for 19 Hz [Fig. 5.6(a)] and 191 Hz [Fig. 

5.6(b)]. Again, the coherence determined from the genuine acoustic field is shown in black, the 

frequency-difference autoproduct in red, and the frequency-sum autoproduct in blue. The 

confidence bounds are again indicated as semitransparent regions. For 19 Hz, the curves shown  
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Figure 5.6: Coherence vs. distance (normalized by wavelength) comparison for frequencies 

within the signal bandwidth and obtainable by either the frequency-difference or frequency-sum 

autoproduct. Results for the genuine in-band field are shown in black, results for the frequency-

difference autoproduct are shown in red, and results for the frequency-sum autoproduct are 

shown in blue. The horizontal dotted black line is the exp[−1] threshold value for coherence 

length. Confidence intervals determined from Eq. (5.7) are indicated as semitransparent regions 

and the frequency is displayed in the upper right of each panel. 

 

in Fig. 5.6(a) indicate that the frequency-difference autoproduct provides a significantly greater 

coherence for 𝑅 = 5𝜆 to 35𝜆. For the 191 Hz curves shown in Fig. 5.6(b), the frequency-sum 

autoproduct coherence and the acoustic field coherence are nearly identical. This is similar to the 

results shown in Fig. 5.5(c), as 191 Hz is expected to exhibit destructive interference for the 

frequency-sum autoproduct. 

 Finally, the autoproduct constructions allow for coherence calculation at frequencies both 

below and above the recorded signal bandwidth. For the data used here, the frequencies available 

to the frequency-difference (frequency-sum) autoproduct but unavailable to the in-band field are 
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1-9 Hz (201-400 Hz). Notably, the frequency-sum autoproduct provides coherence results above 

the signal bandwidth and above the Nyquist frequency limit (250 Hz) dictated by the 

experimental sampling rate. Coherence curves for two such frequencies, 1 Hz and 315 Hz, are 

shown in Fig. 5.7(a) and Fig. 5.7(b). The vertical axes are bounded from 0 to 1. The wavelength-

scaled receiver-spacing horizontal axis in Fig. 5.7(a) spans the entire 8 km receiving array while 

the horizontal axis of Fig. 5.7(b) is limited to 40𝜆. Hence, for sufficiently low difference 

frequencies, the frequency-difference autoproduct is coherent along the entire receiving array, 

even if the constituent fields were not coherent themselves. Additionally, the frequency-sum 

autoproduct is coherent across a significant number of wavelengths, even at sum frequencies 

exceeding the Nyquist limit for the genuine acoustic field. 

 

Figure 5.7: Coherence vs. distance (normalized by wavelength) comparison for frequencies 

obtainable only by the frequency-difference or frequency-sum autoproduct. The frequency-

difference autoproduct is shown in red in (a) and the frequency-sum autoproduct is shown in 

blue in (b). The horizontal dotted black line is the exp[−1] threshold value for coherence length. 

Confidence intervals using Eq. (5.7) are indicated as semitransparent regions and the frequency 

used is displayed in the upper right of each panel. 
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5.3.2 Coherence Length 

As described in Chapter 5.2, in-band, frequency-difference, and frequency-sum coherence 

lengths, 𝐿(𝜔), 𝐿Δ(Δ𝜔), and 𝐿Σ(Σ𝜔), were determined from identifying the 𝑒−1 length from the 

measured coherences, 𝛾(𝑅,𝜔), 𝛾Δ(𝑅, Δ𝜔), and 𝛾Σ(𝑅, Σ𝜔), respectively. Although the 

experiment provides 0.061 Hz frequency resolution, coherence lengths as functions of cyclic 

frequency (𝑓) are reported here in 1 Hz increments. This was accomplished by averaging the 

coherence lengths for all resolved frequencies that round to the same integer-Hz frequency value. 

The upper and lower confidence-interval bounds of Eq. (5.7) (shown in Fig. 5.5, Fig. 5.6, and 

Fig. 5.7), were processed analogously to the mean coherences to provide confidence bounds on 

the coherence lengths at each resolved frequency. These upper and lower confidence bounds 

were then combined to produce an average bound for integer-Hz-averaged coherence lengths 

(Taylor, 1997). 

 Complete results for the three coherence lengths (divided by the nominal wavelength) are 

plotted vs. frequency in logarithmic coordinates in Fig. 5.8. Here, black dots indicate 𝐿(𝑓), red 

dots indicate 𝐿Δ(Δ𝑓), blue dots indicate 𝐿Σ(Σ𝑓), and the dashed black line represents the 

receiving array length. The error bars, shown between 5 Hz and 20 Hz for the three coherence 

lengths, represent the 95th percentile of the integer-Hz confidence-interval bounds. 

 For the in-band frequency range (10 to 200 Hz), both autoproduct coherence lengths 

generally exceed that of the in-band field and are less suppressed at the coherence dips seen at 

frequencies corresponding to destructive interference at the array depth. When averaged through 

their respective frequency ranges (provided in parentheses), the frequency-difference 

autoproduct’s coherence length is 16.7 wavelengths (1 Hz ≤ ∆𝑓 ≤ 190 Hz), the genuine field’s 

coherence length is 12.0 wavelengths (10 Hz ≤ 𝑓 ≤ 200 Hz), and the frequency-sum  
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Figure 5.8: Coherence length (normalized by wavelength) vs. frequency comparison for the 

genuine and autoproduct fields on logarithmic axes. Genuine acoustic-field coherence lengths are 

indicated by black dots for 𝑓 = 10-200 Hz while frequency-difference (-sum) coherence lengths 

are displayed in red (blue) for ∆𝑓 = 1-190 Hz (Σ𝑓 = 20-400 Hz). The receiving array length is 

indicated by a dashed black line and nominal error bars representing the 95th percentile for each 

data type are indicated between 5 and 20 Hz. 

 

autoproduct’s coherence length is 17.6 wavelengths (20 Hz ≤ Σ𝑓 ≤ 400 Hz). In the below-band 

(1 Hz ≤ ∆𝑓 ≤ 10 Hz) and above-band (200 Hz ≤ Σ𝑓 ≤ 400 Hz) frequency ranges, where the in-

band coherence is either based on noise or cannot be calculated, the autoproducts provide 

coherence lengths of 5 to 18 wavelengths. Taken together, these results strongly suggest that the 

autoproducts might enhance coherent array signal processing when they can be calculated at in-

band frequencies, and that they can extend coherent array signal processing to out-of-band 

frequencies. As a final note, at the lowest difference frequency, 1 Hz, the coherence length is 
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compromised by the finite length (8 km) of the COAST 2012 array as the coherence does not dip 

below the 𝑒−1 threshold. 

As mentioned previously, the coherence length dips seen in the various curves on Fig. 5.8 

are caused by destructive interference of upward- and downward-traveling sound at the depth of 

the receiving array. However, the frequencies of these dips differ between the genuine field and 

the autoproducts because of the modified boundary condition arising from the autoproducts’ 

construction (Worthmann and Dowling, 2017). In addition, the depth of these coherence length 

dips is reduced for the autoproducts because they benefit from the bandwidth-averaging specified 

in Eq. (5.5) that does not appear in Eq. (5.1). A related phenomenon causes the coherence 

lengths from the lowest sum frequencies, near 20 Hz, to be reduced due to the minimal frequency 

averaging available from Eq. (5.5b) in that sum frequency range. 

 For comparative purposes, an overview of coherence length results from several 

experiments is provided in Table 5.1. This summary highlights the variability in the 

environments, experiments, and geometries in which coherence length has been studied. As a 

result of this variation, measured coherence lengths differ substantially across these studies, from 

less than 10 wavelengths, to over 400. All of these results utilize sub-1 kHz signals and some 

utilize frequencies or frequency ranges that overlap with the frequency range considered in this 

study. Both shallow and deep ocean results are provided, typically using horizontal line arrays 

(HLAs). Several notable differences exist between these experiments and the COAST 2012 

experiment inhibiting a direct comparison. First, the horizontal distance between the source and 

the receiving elements is generally much shorter in the COAST 2012 experiment, ranging from 

277 m to over 8 km, while in the experiments summarized in Table 5.1, much larger ranges were 

often investigated. Second, no experiments summarized in this table were designed such that a  
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Table 5.1: Summary of coherence lengths from a collection of other studies. 

Reference 𝐿/𝜆 

Frequency 

(Hz) 

Source-receiver 

range(s) (km) 

Water column 

depth 

Notes 

(Duda et 

al., 2012) 

7-25 100 19 80 m 21 day time scale 

7-40 200 19 80 m < 3 hour averaging 

10-15 224 30 80 m 

Studied internal 

waves 

10-15 400 30 80 m HLA – 465 m 

(Carey, 

1998)* 

94-450 400 137-963 Deep Ocean 

Up to 1200 m sensor 

separation 

60-127 323; 337 300-800 Deep Ocean 

Moving array, 640 m 

aperture 

31-234 300-600 500 1.6-4 km 

Collection of deep 

ocean basin results 

10-54 200-800 4-100 65-1000 m 

Collection of shallow 

water experiments 

COAST 

2012 

2-18 10-200 0.3-8 1900 m 8 km aperture 

5-30 1-190 (Δ𝑓) 0.3-8 1900 m 

12.5 m element 

spacing 

8-30 20-400 (Σ𝑓) 0.3-8 1900 m 6 hour time scale 

     

* This reference contained a summary of results from many experiments. 
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near-surface source was broadcasting sound towards the ocean floor to measure the reflected 

path, which is expected to have significant impact on coherence length results. Third, the 

COAST 2012 experiment utilized a towed array, meaning the physical location of each snapshot 

was different, which is only true for one of the referenced results in Table 5.1. Interestingly, even 

though these experiments differ substantially from COAST 2012, many of these studies provide 

coherence lengths of the same order as those obtained here, with the experimental and 

environmental differences likely accounting for much of the coherence length differences. 

5.3.3 Extension to Matched Field Processing 

MFP is a well-known array signal processing technique for remote unknown source localization 

that is beneficially impacted by increased coherence length. Thus, it was chosen to illustrate the 

extended coherence afforded by the autoproducts. The results provided in the prior subsections 

suggest that the autoproducts typically provide longer coherence lengths than in-band fields 

while also providing useful coherence at above- and below-band frequencies. Therefore, the 

autoproducts may also provide a way to improve signal processing outcomes at low-coherence 

and low-SNR frequencies within and outside the signal bandwidth. However, the COAST 2012 

experiment was not designed as a spatial coherence or source localization experiment; thus, some 

adjustments to the standard MFP implementation are needed. Nevertheless, the results presented 

here illustrate the benefits of the greater coherence possible with the autoproducts, particularly 

outside of the ordinary field’s bandwidth. 

To properly implement MFP within the COAST 2012 experimental scenario, the replica 

weight vector specified in Eq. (5.8) and Eq. (5.9) must account for the bottom-reflected and 

bottom-surface-reflected arrivals as well as the endfire location of the source with respect to the 

nominally-straight and horizontal array. The weight vector used herein took the following form: 
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𝑤𝑗(𝒙,𝜔) =
𝑒−

𝑖𝜔𝑅𝑏,𝑗
𝑐

𝑅𝑏,𝑗
±
𝑒−

𝑖𝜔𝑅𝑠,𝑗
𝑐

𝑅𝑠,𝑗
, (5.11) 

where 𝒙 is the search coordinate in range from the endfire array, 𝑅𝑏,𝑗 is the bottom-reflected 

distance at receiver 𝒓𝒋 from a source at 𝒙, 𝑅𝑠,𝑗 is the bottom-surface-reflected distance at receiver 

𝒓𝒋 from a source at 𝒙, and the negative (positive) surface reflection coefficient is chosen for in-

band (out-of-band) MFP. Here, the reflected path distances are calculated by using the depth of 

the ocean at the location of the tow vessel which may not be the ocean depth where the acoustic 

reflection occurs, so Eq. (5.11) introduces some mismatch. The 1/𝑅𝑏,𝑗 and 1/𝑅𝑠,𝑗 amplitude 

factor specified in Eq. (5.11) could have been changed to 1/𝑅𝑏,𝑗
2  and 1/𝑅𝑠,𝑗

2  when correlating 

with the autoproducts to compensate for their quadratic nature, but this change was not made for 

simplicity.  

The final adjustment made to the standard MFP processor is a coherent average over 5 

pings. Hence, 〈𝑃𝑞(𝒓𝒋, 𝜔)〉Five−Pings replaces 𝑃𝑞(𝒓𝒋, 𝜔) in Eq. (5.8) and the reflected path 

distances in Eq. (5.11) are calculated from the average depth at tow vessel for the five pings. 

Equation (5.9) is adjusted identically for the frequency-difference and frequency-sum 

autoproducts. Although coherent ping-averaging is uncommon, its implementation here directly 

reflects the coherence formulation defined in Chapter 5.2. 

The MFP plots for single frequencies utilize an illustrative set of 5 pings sampled 

throughout the duration of the transect: 271, 777, 872, 1065, 1183. The first set of results are for 

the in-band frequency of 80 Hz. At this frequency, 3 receivers reside within the coherence length 

of the genuine field. Meanwhile, 29 and 37 receivers reside within coherence lengths of the 

frequency-difference and frequency-sum autoproduct coherence lengths, respectively. MFP 

results are shown in Fig. 5.9(a) for the genuine field in black, the frequency-difference  
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Figure 5.9: Matched-field processing results at 80 Hz for all three fields at the depth of the 

source along the line of the array. The genuine in-band field is shown in black, the frequency-

difference autoproduct is shown in red, and the frequency-sum autoproduct is shown in blue. The 

vertical dashed black line indicates the true source range. (a) MFP calculations include receivers 

informed by each field’s coherence length; (b) MFP calculations include receivers informed by 

the maximum coherence length. 

 

autoproduct in red, and the frequency-sum autoproduct in blue. The plotted curves show the 

MFP output vs. search range (distance) at the depth of the source along the line of the array. The 

vertical dashed black line indicates the true source range. The results directly reflect the 

improved coherence of the autoproducts. Both the frequency-difference and frequency-sum 

approaches exhibit good source range estimation, whereas the 3-receiver-MFP approach of the 

in-band field is unable to confidently localize the source. Meanwhile, in Fig. 5.9(b), the number 

of receivers included in the calculation for each field is 37. As expected, increasing the number 

of receivers significantly beyond the genuine field’s coherence length results in spurious peaks 

while the autoproduct-based results are largely unchanged. 

The second set of MFP results are for frequencies below and above the signal bandwidth. 

Figure 5.10 shows frequency-difference MFP at 5 Hz and frequency-sum MFP at 315 Hz for the  
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Figure 5.10: Matched-field processing results as in Fig. 5.9 for frequencies outside of the signal 

bandwidth. The vertical dashed black line indicates the true source range. The frequency-

difference autoproduct at 5 Hz is shown in red, while the frequency-sum autoproduct at 315 Hz 

is shown in blue. 

 

same set of pings. Both approaches exhibit good source range estimation, even though neither 

frequency was in the original broadcast signal’s bandwidth. Further, the difference in the widths 

of the main lobes of each approach supports the unconventional claim that the frequency-

difference and frequency-sum autoproducts are coherent at below and above band frequencies, 

respectively. 

In-band, frequency-difference, and frequency-sum source range estimates were 

determined at each frequency by identifying the maximum MFP output across the search 

coordinates. Although there is 0.061 Hz frequency resolution in the experiment, only the closest 

resolved frequency to each integer frequency is considered for simplicity. This calculation was 

conducted for 100 randomly selected 5-ping-ensembles. Source range estimates within 100 m of 

the true target are deemed successful and the success fraction across the 100 trials is recorded in 

Fig. 5.11. Here, black dots indicate the in-band success fraction, red dots indicate the frequency-  
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Figure 5.11: Source range estimation success fraction (across 100 trials) vs. frequency 

comparison for the genuine and autoproduct fields on logarithmic horizontal axes. Genuine 

acoustic field success fractions are indicated by black dots for 𝑓 = 10-200 Hz while frequency-

difference (-sum) coherence lengths are displayed in red (blue) for ∆𝑓 = 1-190 Hz (Σ𝑓 = 20-400 

Hz). 

 

difference success fraction, and blue dots indicate the frequency-sum success fraction. In all 

cases, the MFP calculations include receivers informed by the maximum coherence length across 

the three methods.   

The complete results support the coherence length findings shown in Fig. 5.8. For the 

frequencies obtainable by all three methods (20 to 190 Hz), frequency-difference and in-band 

field approaches perform similarly, and frequency-sum outperforms them both. Within this 

frequency range, the frequency-difference autoproduct’s average success fraction was 0.76, the 

genuine field’s average success fraction was 0.74, and the frequency-sum autoproduct’s average 
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success fraction was 0.84. Further, successful source range localization can be obtained at 

frequencies both below and above the signal bandwidth. 

There exist a few unexpectedly low success fractions for the autoproducts in Fig. 5.11. 

The poor localization at 1 Hz is directly attributed to the large main lobe widths that results from 

processing at very low frequencies. Additionally, the destructive interference of upward- and 

downward-traveling sound at the depth of the receiving array is reflected in the dips of the 

various curves in Fig. 5.11, matching the coherence length dips in Fig. 5.8. Interestingly, a few 

blue and red dots with low success fraction occur at 80 and 160 Hz, frequencies of constructive 

interference for autoproducts. Since the autoproducts are coherent at these frequencies, poor 

localization success suggests that MFP processor could be improved by adjusting the weight 

vectors for autoproduct processing. Systematically altering the weight vectors is outside of the 

scope of the paper, but replica field adjustments have recently been done to improve 

performance in long range ocean source localization using autoproducts (Geroski and Dowling, 

2019, 2021). 

5.4 Discussion 

Prior work has shown that autoproduct-based methods can be effective for mitigating array-

signal-processing problems associated with array sparseness, unknown random scattering, and 

wavefront mismatch (Dowling, 2018). Given that such improvements require coherent fields, the 

goals of this investigation were to determine and compare the spatial coherences of the acoustic 

field, its frequency-difference autoproduct, and its frequency-sum autoproduct from ocean 

recordings collected on a north-to-south transect during the COAST 2012 experiment. In 

particular, this investigation considered 829 airgun pulses recorded by 624 receivers (nearly) 

uniformly spaced along an 8-km-long horizontal array towed at a depth of 9 m where the ocean 
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depth was approximately 1.9 km. Variations in water depth, surface reflections, and acoustic 

propagation along the 50-km-long tow path led to coherence loss between the first and any 

subsequent receiver along the array. The nominal frequency range of the airgun signals was 10 

Hz to 200 Hz. Nevertheless, coherence results were obtained for frequencies from 1 Hz to 400 

Hz, including a substantial range (20 to 190 Hz) where all three types of coherence and 

coherence lengths could be determined. The claims of coherence were then illustrated with a 

simple matched field processing approach to source range estimation. 

 The work presented here supports five conclusions. First, the frequency-difference 

autoproduct has substantial coherence at frequencies below the signal band, where signal energy 

is insignificant and noise dominates the recorded field. In the current investigation, the 

frequency-difference autoproduct provided coherence lengths of 5.4 to 30 difference frequency 

wavelengths, Δ𝜆, for 1 Hz ≤ ∆𝑓 ≤ 190 Hz. Second, the frequency-sum autoproduct is similarly 

coherent at frequencies above the signal band and above the Nyquist frequency set by the 

sampling rate. In the current investigation, the frequency-sum autoproduct provided coherence 

lengths of 7.8 to 30 sum frequency wavelengths, Σ𝜆, for 20 Hz ≤ Σ𝑓 ≤ 400 Hz. Third, 

destructive interference from surface reflections at the 9 m depth of the receiving array in the 

COAST 2012 experiment reduced coherence lengths for all three fields at predictable 

frequencies, but more modest coherence suppression occurred for the autoproducts. Fourth, the 

autoproducts maintain coherence at frequencies where the genuine field suffers from destructive 

interference and reduced coherence length. This happens because the quadratic nature of the 

autoproducts rectifies the ocean surface reflection coefficient so that the ocean surface appears as 

a rigid boundary, and this alters the autoproducts’ interference pattern at the COAST 2012 

receiver depth. However, to successfully localize in these interference patterns, an alternate 
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replica field scheme may be required in matched field applications. Fifth, and perhaps most 

important, the coherence lengths of the autoproducts are generally greater than that of the 

corresponding genuine acoustic field from which they are derived and can support coherent array 

signal processing. In this investigation, the frequency-averaged coherence lengths were 12.0, 

16.7, and 17.6 wavelengths for the genuine field, frequency-difference autoproduct, and 

frequency-sum autoproduct, respectively. The increased coherence lengths possible with the 

autoproducts are believed to result from utilizing the full signal bandwidth for frequency 

averaging to produce each autoproduct sample prior to determining coherence.  
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Chapter 6  

Cubic Extensions to Autoproduct Theory and the Utility of Cubic Frequency-Difference in 

Noisy Direction of Arrival Estimation 

 

Autoproducts are quadratic products of acoustic fields that can mimic genuine fields at 

frequencies outside the recorded bandwidth. While the applications of autoproduct-based signal 

processing are substantial, the nonlinear construction of the autoproduct has been limited to 

quadratic order. This paper presents the cubic extension to autoproduct theory and emphasizes 

the cubic frequency-difference autoproduct, which mimics field content at frequencies within the 

recorded bandwidth. Field equations, originating from the inhomogeneous Helmholtz equation, 

and analytical results in single- and two-path environments justify the pseudofield interpretation 

and underscore the similarities to the quadratic autoproduct. For nonzero signal bandwidth, many 

frequency triplets satisfy the cubic autoproduct relationship. The serendipitous noise suppression 

therefore inherent in the bandwidth average is shown to facilitate significant phase structure 

recovery in free space simulations corrupted by Gaussian noise. Cubic autoproduct-based 

direction of arrival estimation in noisy environments is investigated using acoustic recordings 

and in situ noise measurements collected in the ocean. The cubic autoproduct results are 

generally more accurate, maintaining 60% success rate across the 160 snapshots until the signal-

to-noise ratio (SNR) was -14 dB, while conventional processing crossed the 60% threshold at 

SNR of -9 dB. Similar improvements in peak-to-sidelobe ratio are discussed as well. The 
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following chapter is a near reproduction of an in-progress manuscript. For clarity, formulas and 

figures repeated elsewhere in this thesis are maintained in this section. 

6.1 Introduction 

There exists an increasing body of work on the frequency-difference and frequency-sum 

autoproducts (Dowling, 2018; Worthmann and Dowling, 2017), quadratic products of complex 

field amplitudes satisfying approximate Helmholtz wave mechanics at the difference and sum 

frequencies of the constituent fields. Some studies consider the autoproducts themselves, 

examining spatial cross correlations with genuine fields (Geroski et al., 2021; Lipa et al., 2018; 

Worthmann and Dowling, 2020b, 2020a) or exploring the coherence (Joslyn et al., 2022; Joslyn 

and Dowling, 2022), but most investigations focus on improved array signal processing 

performance in beamforming (Abadi et al., 2012; Douglass et al., 2017; Douglass and Dowling, 

2019) and matched field processing (Geroski et al., 2023; Geroski and Dowling, 2019, 2021; 

Worthmann et al., 2017). Although the frequency-sum autoproduct provides increased resolution 

in remote sensing applications (Abadi et al., 2018), the robustness to mismatch offered by the 

frequency-difference autoproduct (Worthmann et al., 2015) has thus far been favored in sonar 

signal processing. Regardless of frequency-difference or frequency-sum, the emphasis of most 

studies is the quadratic autoproduct in acoustics. Some initial works (Dowling, 2018; 

Worthmann and Dowling, 2017) in the area, however, posited other autoproduct-based 

constructions, and while the domain has been expanded recently to include seismic waves (Neo 

et al., 2022) and electromagnetic simulations (Geroski, 2021), higher-order autoproducts are yet 

to be examined, apart from a preliminary investigation of fourth-order frequency-sum 

beamforming in underwater acoustics (Abadi et al., 2013). 
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This chapter presents the mathematical formulation of cubic autoproducts and 

investigates the remote sensing benefits of the cubic frequency-difference autoproduct in low 

signal-to-noise ratio (SNR) environments. Unlike previous autoproduct constructions, the cubic 

frequency-difference autoproduct synthetically estimates field content at frequencies within the 

bandwidth of the constituent field. Discussion of cubic frequency-sum and higher-order 

autoproducts accompanies the analytical development of the cubic frequency-difference 

autoproduct, including derivations of the governing field equations and genuine acoustic field 

mimicry in simple environments. Owing to the many different combinations of constituent field 

frequencies satisfying the cubic frequency-difference autoproduct relationship, the bandwidth-

averaging step may provide an unconventional approach to reducing noise. This fortuitous noise 

suppression mechanism was explored both numerically and experimentally. In simulation, free 

space fields were contaminated with Gaussian noise, and in experiment, in situ noise 

measurements were added to the ocean acoustic recordings. Results from both simulation and 

experiment support the ability of the cubic frequency-difference autoproduct to significantly 

suppress noise. 

Remote sensing performance of the cubic frequency-difference autoproduct is primarily 

assessed with ocean measurements from the Shallow Water ’06 (Tang et al., 2007) experiment in 

the Atlantic Ocean. Obtained off the coast of New Jersey along a vertical line array in August 

2006, the data studied here has been examined in several previous works. The spatial coherence 

of high frequency surface scattering was the subject of several of these studies (Dahl, 2010; Dahl 

et al., 2013; Welton, 2015), as well as bubble-based attenuation in moderate to high frequencies 

(Dahl et al., 2008) and the frequency-difference autoproduct in rough surface scattering (Joslyn 

et al., 2023). Although the experiment was designed to target surface-scattering physics, not 
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remote sensing capabilities, the temporal separation between propagation paths and the 160 

snapshots allowed for an effective beamforming scenario. Single snapshot direction of arrival 

finding of the direct path was computed by both conventional and cubic autoproduct-based 

plane-wave beamforming for SNR between –25 to 10 dB. Independent measurements of in situ 

noise were made after each broadcast pulse, allowing for manual adjustment of the ambient 

ocean noise power. While potentially important in remote sensing applications and available in 

the time domain recordings, multipath effects and surface/bottom scattering are not considered 

here for brevity. 

The benefit of quadratic autoproduct-based processing is attributed to the manufacturing 

of out-of-band information from a band-limited signal when lower or higher frequencies may 

offer advantageous information. Interestingly, the cubic frequency-difference autoproduct 

generates cubic difference frequencies within the original bandwidth. Use of this synthetically-

constructed pseudofield then may appear entirely academic. However, as shown here, the 

bandwidth average suppresses noise, thereby improving remote sensing outcomes. Additionally, 

the information provided by the cubic autoproduct, just like its quadratic counterpart, is 

complementary to the original recordings. No additional data acquisition effort is required, as the 

construction of the cubic frequency-difference autoproduct occurs in the post-recording signal 

processing, using only a digital Fourier transform and multiplication. 

Third-order moments of a recorded field are not especially common, particularly in 

underwater acoustics where the second (intensity) and fourth (scintillation index) moments 

command more attention [see, for instance, the recent work done in the Beaufort Sea 

(Kucukosmanoglu et al., 2022)]. The triple autocorrelation function and the bispectrum, by 

Fourier transform (Lohmann and Wirnitzer, 1984), are the most notable cubic products of a 
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recorded field. Since the bispectrum of a Gaussian process is zero, it has been employed for 

signal detection in underwater acoustics (Morelia, 1994; Richardson and Hodgkiss, 1994). The 

bispectrum can also be used to identify phase coupling between frequency components. 

Bispectrum detectors have been implemented in underwater acoustics (Richardson and 

Hodgkiss, 1994), ocean wave analysis (Hasselmann et al., 1963), and astronomical turbulence 

studies of the interstellar medium (O’Brien et al., 2022). Just as the quadratic autoproducts are 

reminiscent of other second-order signal processing methods (Dowling, 2018; Geroski and 

Worthmann, 2021; Worthmann and Dowling, 2017), the cubic frequency-difference autoproduct 

does share some features with the bispectrum, particularly the triplet frequency dependence. 

Importantly, though, the cubic autoproduct was developed as a logical extension of the quadratic 

autoproduct, not as a generalization and reinterpretation of a third-order correlation function. 

Further, similar to its quadratic counterpart, and unlike better-known third-order moments, the 

cubic frequency-difference autoproduct does not require an ensemble average, utilizes a unique 

bandwidth average of frequency triplets, and may under appropriate circumstances mimic a 

genuine acoustic field at the cubic autoproduct difference frequency. 

The remainder of this chapter is organized as follows. Section 6.2 details the 

mathematical formulations of cubic autoproducts, including their governing field equations and 

analytical results in a uniform half-space. Section 6.3 presents an explicit formula to compute the 

number of cubic autoproduct samples within a discretized signal bandwidth and discusses the 

impact on noise suppression in a free space environment. Section 6.4 investigates the unexpected 

remote sensing benefits offered by the cubic frequency-difference autoproduct with noisy 

recordings obtained in the ocean during Shallow Water ‘06. Section 6.5 summarizes the work 

and provides three conclusions. 
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6.2 Cubic Autoproduct Theory 

6.2.1 Definition and Field Equation 

The natural starting point for frequency domain analysis is the inhomogeneous Helmholtz 

equation with a single point source. The Fourier transform of the signal is 𝑆(𝜔) and 𝑐 is the 

sound speed of the isospeed medium: 

(∇2 +
𝜔2

𝑐2
)𝑃(𝒓,  𝜔) = −𝑆(𝜔)𝛿(𝒓 − 𝒓𝒔), (6.1) 

where 𝑃(𝒓, 𝜔) defines the complex pressure field at angular frequency 𝜔 and spatial coordinate 

𝒓. The source location is at 𝒓𝒔 and the bandwidth of the source spectrum is Ω𝐿 ≤ 𝜔 ≤ Ω𝐻.  

The cubic frequency-difference autoproduct is generated from a cubic product of 

complex pressure field amplitudes, with one conjugated field factor: 

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔) = 𝑃(𝒓,𝜔1)𝑃(𝒓, 𝜔2)𝑃
∗(𝒓,𝜔3) = 𝑃1𝑃2𝑃3

∗, (6.2) 

where the cubic difference frequency, Δ𝜔 = 𝜔1 + 𝜔2 − 𝜔3, ranges from max[0,2Ω𝐿 −Ω𝐻] ≤

Δ𝜔 ≤ 2Ω𝐻 − Ω𝐿. The constituent field frequencies lie within the signal bandwidth and are 

defined by the triplet 𝜔1 = 𝜔 − Δ𝜔1/2, 𝜔2 = 𝜔 + Δ𝜔1/2, and 𝜔3 = 2𝜔 − Δ𝜔. The final 

equality is Eq. (6.2) denotes a notation for clarity where subscripts indicate frequency 

components. The cubic difference frequency range encompasses the entire signal bandwidth and 

thus, the cubic frequency-difference autoproduct may be processed for remote sensing tasks at 

the broadcast frequencies. Such is the most interesting consequence of the cubic frequency-

difference autoproduct, and the cubic difference frequency range is set to Ω𝐿 ≤ Δ𝜔 ≤ Ω𝐻 herein. 

Note, if Δ𝜔 = 0, such that the triplet is defined by 𝜔3 = 𝜔1 + 𝜔2, Eq. (6.2) defines a single 

sample of the bispectrum at 𝜔1 and 𝜔2, which is then used in an ensemble average to estimate 

the bispectrum (Richardson and Hodgkiss, 1994). 
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The field equation governing the cubic frequency-difference autoproduct may be formed 

from Eqs. (6.1) and (6.2). Begin with Eq. (6.1) evaluated at 𝜔1, 𝜔2, and 𝜔3 with a complex 

conjugation, cross-multiply by the 𝑃-fields from the other two equations and add all three 

equations together: 

𝑃2𝑃3
∗𝛻2𝑃1 + 𝑃1𝑃3

∗∇2𝑃2 + 𝑃1𝑃2𝛻
2𝑃3

∗ + (
𝜔1
2 +𝜔2

2 +𝜔3
2

𝑐2
)𝑃1𝑃2𝑃3

∗ (6.3) 

= −(𝑃2𝑃3
∗𝑆1 + 𝑃1𝑃3

∗𝑆2 + 𝑃1𝑃2𝑆3
∗)𝛿(𝒓 − 𝒓𝒔). 

From the vector calculus identity, ∇2(𝑃1𝑃2𝑃3
∗) = 𝑃2𝑃3

∗∇2𝑃1 + 𝑃1𝑃3
∗∇2𝑃2 + 𝑃1𝑃2∇

2𝑃3
∗ +

2[𝑃1(∇𝑃2 ∙ ∇𝑃3
∗) + 𝑃2(∇𝑃1 ∙ ∇𝑃3

∗) + 𝑃3
∗(∇𝑃1 ∙ ∇𝑃2)], and setting Δ𝑘 = Δ𝜔/𝑐, Δ𝑘1 = Δ𝜔1/𝑐, and 

𝑘 = 𝜔/𝑐, rearrangement of terms in Eq. (6.3) yields the field equation for the cubic frequency-

difference autoproduct: 

(∇2 + (Δ𝑘)2)(𝑃1𝑃2𝑃3
∗) = −(𝑃2𝑃3

∗𝑆1 + 𝑃1𝑃3
∗𝑆2 + 𝑃1𝑃2𝑆3

∗)𝛿(𝒓 − 𝒓𝒔) (6.4) 

+2[𝑃1(∇𝑃2 ∙ ∇𝑃3
∗) + 𝑃2(∇𝑃1 ∙ 𝛻𝑃3

∗) + 𝑃3
∗(∇𝑃1 ∙ ∇𝑃2) + (2𝑘Δ𝑘 − 3𝑘

2 −
(Δ𝑘1)

2

4
)𝑃1𝑃2𝑃3

∗ ]. 

Hence, the cubic frequency-difference autoproduct, 𝐴𝑃𝐼𝐼𝐼(𝒓, 𝜔1, 𝜔2, Δ𝜔) = 𝑃1𝑃2𝑃3
∗ 

abides by an inhomogeneous Helmholtz equation when the terms in the square brackets are 0. 

The linear Helmholtz operator at the cubic difference frequency acts on the cubic frequency-

difference autoproduct on the left side of Eq. (6.4) and on the right side is a source term and a 

cross term in square brackets, where the relative amplitude of the cross term will control the 

autoproduct mimicry of the genuine acoustic field at the difference frequency. A field equation 

analogous to Eq. (6.4) was derived previously for the quadratic autoproducts (Worthmann and 

Dowling, 2017). Continuing the analogue with that work (Worthmann and Dowling, 2017), it is 

illustrative to consider the field equation for the two simplest propagating waves: plane and 

spherical. 
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For a plane wave complex pressure field given by 𝑃 = 𝐴 exp[𝑖𝑘�̂� ∙ 𝒓], where �̂� is the unit 

vector in the propagation direction, the bracketed term on the right side of Eq. (6.4) can be found 

simply. Using ∇𝑃 = 𝑖𝑘�̂�𝑃,  

𝑃1(∇𝑃2 ∙ ∇𝑃3
∗) + 𝑃2(∇𝑃1 ∙ ∇𝑃3

∗) + 𝑃3
∗(∇𝑃1 ∙ ∇𝑃2) = (−2𝑘Δ𝑘 + 3𝑘

2 +
(Δ𝑘1)

2

4
)𝑃1𝑃2𝑃3

∗, (6.5) 

and the bracketed term in Eq. (6.4) is identically 0. Thus, in scenarios where the received 

pressure field is adequately modeled by a plane wave, the cubic frequency-difference 

autoproduct is a solution to the Helmholtz equation at the cubic difference frequency, 

(∇2 + (Δ𝑘)2)(𝑃1𝑃2𝑃3
∗) = 0. (6.6) 

Finally, consider the spherical waves emanating from a point source: 𝑃 =

(𝐴/𝑟) exp[𝑖𝑘𝑟]. Evaluation of Eq. (6.4) for the point source response (𝑟 ≠ 0) yields 

(∇2 + (Δ𝑘)2)(𝑃1𝑃2𝑃3
∗) = (Δ𝑘)2 (

6

(Δ𝑘𝑟)2
−
4𝑖

Δ𝑘𝑟
) (𝑃1𝑃2𝑃3

∗). (6.7) 

When Δ𝑘𝑟 ≫ 1, the contributions of the right-hand side of Eq. (6.4) become negligible, and the 

cubic frequency-difference autoproduct ought to mimic a genuine acoustic field. This is not 

unexpected given the similarity of spherical waves and plane waves at large distances. Eqs. (6.6) 

and (6.7) are analogous to the results derived for the quadratic autoproduct (Worthmann and 

Dowling, 2017). 

These analytic findings are also demonstrated by directly applying Eq. (6.2) to plane 

waves: 

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔) = 𝑃1𝑃2𝑃3
∗ = 𝐴1𝐴2𝐴3

∗  exp[𝑖Δ𝑘�̂� ∙ 𝒓], (6.8𝑎) 

and spherical waves: 

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔) = 𝑃1𝑃2𝑃3
∗ = (

𝐴1𝐴2𝐴3
∗

𝑟3
) exp[𝑖Δ𝑘𝑟]. (6.8𝑏) 
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It is clear that Eq. (6.8a) is an exact solution to the Helmholtz equation at the cubic difference 

frequency, and that the non-vanishing right side of Eq. (6.7) comes from the 1/𝑟3 amplitude in 

Eq. (6.8b). The amplitude dependence on the cubic power of the radial coordinate is expected 

from the nonlinear construction of the cubic frequency-difference autoproduct. The limitations 

associated with the 1/𝑟2 amplitude dependence of quadratic autoproducts are well-understood 

(Lipa et al., 2018; Worthmann and Dowling, 2017) and are amplified for the cubic autoproduct. 

6.2.2 Bandwidth Average 

For a source with nonzero signal bandwidth, multiple frequency triplets may satisfy 𝜔1 +𝜔2 −

𝜔3 = Δ𝜔. To accommodate all such combinations, the cubic frequency-difference autoproduct 

sample defined in Eq. (6.2) must be averaged through the signal bandwidth by the following 

double integration: 

⟨𝐴𝑃𝐼𝐼𝐼(𝒓, Δ𝜔)⟩𝐵𝑊 =
1

𝛽𝐻
Δ − 𝛽𝐿

Δ∫ 𝑑(𝜔)
𝛽𝐻
Δ

𝛽𝐿
Δ

[
1

𝛼𝐵𝑊
Δ ∫

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔)

𝑆(𝜔1)𝑆(𝜔2)𝑆∗(𝜔3)
𝑑(Δ𝜔1)

𝛼𝐵𝑊
Δ

0

] . (6.9) 

Here, the inner limit of integration 𝛼𝐵𝑊
Δ = min[2𝜔 − 2Ω𝐿 ,  2Ω𝐻 − 2𝜔] and the outer 

limits of integration are 𝛽𝐿
Δ = max[Ω𝐿 ,  (Ω𝐿 + Δ𝜔)/2] and 𝛽𝐻

Δ = min[Ω𝐻 ,  (Ω𝐻 + Δ𝜔)/2]. For 

the cubic difference frequency range studied here, Ω𝐿 ≤ Δ𝜔 ≤ Ω𝐻, 𝛽𝐿,𝐻
Δ  take the second values 

of their argument. The dependence on source characteristics is removed by the divisor in the 

integrand, which is of some consequence in passive remote sensing applications where the 

source spectrum may not be known a priori. Bandwidth-averaging of quadratic autoproducts 

requires a single integration and suppresses cross terms in multipath environments, thereby 

improving autoproduct mimicry of genuine fields (Lipa et al., 2018; Worthmann and Dowling, 

2017). Further, even without multipath, the bandwidth average increases robustness of the 
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autoproduct (Joslyn et al., 2023). Similar benefits are expected here for the cubic frequency-

difference autoproduct.  

The double integration defined in Eq. (6.9) is a combination of quadratic-type bandwidth-

averaging integrals. The inner integration averages all pairs 𝜔1 +𝜔2 = 2ω, like a frequency-

sum bandwidth average, for the 𝜔3 defined by the outer integral, like a frequency-difference 

bandwidth average. The selection of appropriate frequency triplets is shown schematically in Fig. 

6.1(a), with blue and red showing the inner and outer integration steps, respectively. In Fig. 

6.1(b), the number of frequency triplets available to average is illustrated for an arbitrary signal 

bandwidth (see Chapter 6.3). The horizontal axis encompasses all available cubic difference 

frequencies, while the shaded region highlights cubic difference frequencies that lie within the 

original bandwidth. 

Hence, Eqs. (6.2) and (6.9) define the cubic extension to the frequency-difference 

autoproduct. The cubic frequency-difference autoproduct mimics a genuine acoustic field at the 

 

Figure 6.1: Representation of the bandwidth-averaging step of the cubic frequency-difference 

autoproduct. (a) On the frequency axis in black, the inner (blue) and outer (red) integrations of 

Eq. (6.9) are shown schematically by arrows of the corresponding color. By increasing the 

separation between 𝜔1 and 𝜔2 or by an overall shift on 𝜔3, all frequency triplets appropriately 

summing to the cubic difference frequency are averaged. (b) The relative number of frequency 

triplets for an arbitrary bandwidth. All possible cubic difference frequencies are shown by the 

solid black curve and the shaded gray region highlights cubic difference frequencies within the 

signal bandwidth. Red dashes indicate computation of triplets using Eq. (6.14) from the 

analytical approach of Chapter 6.3. 
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cubic difference frequency, which lies within the broadcast bandwidth, but the mimicry is 

limited by the field equation derived in Eq. (6.4). Additionally, the large number of triplets 

available to bandwidth average may provide remote sensing benefits unique to the cubic 

frequency-difference autoproduct and will be investigated in Chapter 6.3 and Chapter 6.4. 

6.2.3 Cubic Frequency-Difference Autoproduct in a Lloyd’s Mirror Environment 

The simplest multipath environment to assess the cubic frequency-difference autoproduct is the 

uniform half-space with a constant reflection coefficient at the surface. Lloyd’s mirror was used 

previously to quantify quadratic autoproduct mimicry of genuine acoustic fields, and thus is a 

good comparison for the work here (Lipa et al., 2018). The theoretical Green’s function is 

𝐺(𝒓, 𝜔) =
𝑃(𝒓, 𝜔)

𝑆(𝜔)
=
𝑒𝑖𝜔𝜏1

𝑟1
−
𝑒𝑖𝜔𝜏2

𝑟2
, (6.10) 

where 𝑟1,2 are the direct and reflected path distances and 𝜏1,2 = 𝑟1,2/𝑐. The constant reflection 

coefficient of –1 for the water-air interface is the coefficient of the second term.  

Using Eqs. (6.2) and (6.10), a single cubic frequency-difference autoproduct sample is 

formed: 

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔) =
𝑒𝑖Δ𝜔𝜏1

𝑟1
3 −

𝑒𝑖Δ𝜔𝜏2

𝑟2
3

(6.11) 

−
1

𝑟1
2𝑟2

[𝑒−2𝑖𝜔Δ𝜏𝑒𝑖Δ𝜔𝜏2 + 2𝑒𝑖𝜔Δ𝜏𝑒𝑖Δ𝜔𝜏1 cos (
Δ𝜔1Δτ

2
)] 

+
1

𝑟1𝑟2
2 [𝑒

2𝑖𝜔Δ𝜏𝑒𝑖Δ𝜔𝜏1 + 2𝑒−𝑖𝜔Δ𝜏𝑒𝑖Δ𝜔𝜏2 cos (
Δ𝜔1Δτ

2
)] , 

where Δ𝜏 = 𝜏2 − 𝜏1. The cubic autoproduct sample in Eq. (6.11) exhibits two notable features. 

First is the presence of both self and cross terms. The first two terms are the self terms which, 

aside from a modified power in the denominator, match the Green’s function in Eq. (6.10) at the 
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cubic difference frequency. Hence, the self terms should correlate well with a genuine acoustic 

field. Second, an altered reflection coefficient, i.e. |ℛ|2, is a common consideration of the 

quadratic frequency-difference autoproduct. For the cubic version, the modified reflection 

coefficient is ℛ|ℛ|2, which in the case of Lloyd’s mirror is equivalent to the genuine reflection 

coefficient of –1.  

The cross terms in the square brackets of Eq. (6.11) limit the mimicry of a genuine 

acoustic field, but can be mitigated through a bandwidth average of cubic autoproduct samples. 

To suppress the cross-term impact, substitute Eq. (6.11) into Eq. (6.9). After some effort, for 

Ω𝐿 ≤ Δ𝜔 ≤ Ω𝐻: 

⟨𝐴𝑃𝐼𝐼𝐼(𝒓, Δ𝜔)⟩𝐵𝑊 =
𝑒𝑖Δ𝜔𝜏1

𝑟1
3 −

𝑒𝑖Δ𝜔𝜏2

𝑟2
3 +

1

(𝛽𝐻
Δ − 𝛽𝐿

Δ)Δ𝜏
[
𝛾1
𝑟1
2𝑟2

+
𝛾2
𝑟1𝑟2

2] . (6.12) 

Here, 𝛾1 and 𝛾2 are the cross terms contributions, each consisting of 8 terms, 6 of which 

asymptotically tend to zero for a large signal bandwidth. Explicit enumeration of 𝛾1 and 𝛾2 are 

provided in the Appendix, as well as a brief summary of the algebraic derivation of Eq. (6.12). 

The coefficient of the square bracket indicates a large signal bandwidth, by (𝛽𝐻
Δ − 𝛽𝐿

Δ), or a large 

difference in arrival times, by Δ𝜏, minimizes the cross-term contributions. Significant bandwidth 

size and temporal separation of arrivals were necessary for the quadratic autoproduct to mimic a 

genuine acoustic field (Lipa et al., 2018), but given the third-order nature of the nonlinearity 

here, the cross terms are more consequential for the cubic autoproduct. However, given a 

sufficiently large signal bandwidth, Eq. (6.12) may correlate well with Eq. (6.10) evaluated at the 

difference frequency. 

To visualize and quantitatively assess the cubic frequency-difference autoproduct, Eq. 

(6.12) was compared to Eq. (6.10). The geometry, schematically detailed in Fig. 6.2(a), was 

selected to nominally reflect the Lloyd’s mirror laboratory study (Lipa et al., 2018) of quadratic 
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autoproducts. The source was located 20 cm below the pressure-release surface and the 

receivers, at range 50 cm, sampled 40 cm in depth, with 1 mm spacing. The frequency bandwidth 

was bounded by Ω𝐿 = 40 kHz and Ω𝐻 = 110 kHz, and the cubic difference frequency was Δ𝜔 = 

75 kHz. To assess a different propagation scenario and to test the suppression of cross terms 

from bandwidth-averaging, an additional geometry and a larger signal bandwidth were 

investigated as well. The altered geometry, with increased source and receiver depths and greater 

receiver range, is indicated in blue in Fig. 6.2(a), and the expanded signal bandwidth set Ω𝐿 = 20 

kHz and Ω𝐻 = 250 kHz. 

 

 

Figure 6.2: Comparisons of theoretical cubic frequency-difference autoproducts and genuine 

acoustic fields at the cubic difference frequency. Genuine acoustic field Green’s functions are 

shown in black, the theoretical bandwidth-averaged autoproduct is shown in red, and discrete 

evaluation of cubic autoproducts are marked in blue. (a) The geometry for panels (b) and (c) is 

shown in black, and the geometry for panel (d) is shown in blue. The bandwidth for panels (b) 

and (d) is 40 – 110 kHz and panel (c) uses 20 – 250 kHz bandwidth. All field plots are 

normalized and computed for 75 kHz.  



 150 

Panels (b) – (d) of Fig. 6.2 compare bandwidth-averaged cubic autoproducts from Eq. 

(6.12) to Green’s functions of the acoustic field from Eq. (6.10), both at 75 kHz. Panel (b) was 

created from the nominal geometry and signal bandwidth, panel (c) utilized a larger signal 

bandwidth with the original geometry, and panel (d) used the original signal bandwidth with the 

altered geometry. In Fig. 6.2(b) – (d), the real component of genuine acoustic fields, computed 

from Eq. (6.10) at 𝑓 = 75 kHz, are shown with a solid black curve and the real component of 

theoretical bandwidth-averaged cubic frequency-difference autoproducts, computed from Eq. 

(6.12) at Δ𝑓 = 75 kHz, are shown in red. Blue diamonds, providing a direct assessment of the 

analytic derivation of Eq. (6.12) from Eqs. (6.9) and (6.11), denote simulated cubic frequency-

difference autoproducts generated from discrete evaluation of Eqs. (6.2), (6.9), and (6.10). 

Discrete evaluation of Eq. (6.10) was computed every 1 kHz and sampled every 1 cm in depth. A 

normalization strategy, as outlined in (Lipa et al., 2018) was implemented to facilitate 

comparison between fields with different units. 

The excellent agreement exhibited between the black and red curves in Fig. 6.2(b) – (d) 

verifies the mimicry of genuine acoustic fields possible from the cubic frequency-difference 

autoproduct. Furthermore, the discrepancies between the curves are well-explained from the 

aforementioned autoproduct considerations. In panel (b), the most glaring difference occurs near 

the surface, where arrival times between the two paths are very close, and while some 

discrepancies persist in panel (c), the larger signal bandwidth resolves much of the difference. 

Finally, in panel (d), the greater depths and longer ranges alleviated Δ𝜏 and 1/𝑟3 concerns, 

respectively, leading to a good match of fields. 

The mimicry of genuine acoustic fields can be explicitly quantified by a spatial cross 

correlation, 𝜒 [for instance, see (Lipa et al., 2018)]. Values of the spatial cross correlation 
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coefficient near 1 (0) represent well-correlated (poorly-correlated) fields and the imaginary 

component captures any phase shifts between fields. The spatial cross correlations between 

theoretical cubic frequency-difference autoproducts and genuine acoustic fields were 0.91 (b), 

0.97 (c), and 0.99 (d), with negligible imaginary components in each case. The increased cross 

correlation value between Fig. 6.2(b) and Fig. 6.2(c) underscores the importance of a large signal 

bandwidth for genuine acoustic field mimicry, and the nearly perfect cross correlation in Fig. 

6.2(d) highlights the mimicry possible in judicious propagation scenarios. In all cases, the spatial 

cross correlation between theoretical and simulated cubic autoproducts was 𝜒 = 1 + 0𝑖 to three 

decimal places, confirming the accuracy of the analytical derivation of Eq. (6.12). 

The presence of reflecting boundaries and multipath arrivals limit quadratic autoproduct-

based mimicry of genuine acoustic fields, and while the same concerns exist for the cubic 

construction, mimicry is still possible through bandwidth-averaging. Although accounting for 

more complicated multipath is clearly possible, it is not pursued here, and given the complexity 

of the uniform half-space results, theoretical treatment of more complicated environments may 

be prohibitive. Regardless of tractability, the analytical form of Eq. (6.12), indicating a large 

signal bandwidth or significant arrival time difference enhances acoustic field mimicry, and the 

practical utility of the quadratic autoproduct, whose field mimicry depends on the same two 

features, suggests that the cubic frequency-difference autoproduct may provide remote sensing 

benefits in scenarios beyond the single-path environments considered herein. 

6.2.4 Other Autoproduct Constructs 

Although potential remote sensing benefits of the cubic frequency-difference autoproduct are the 

primary focus herein, other extensions to conventional autoproduct theory are readily available. 
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Two other third-order autoproducts can be constructed, corresponding to differing numbers of 

conjugated field factors, and higher-than-cubic order autoproducts can also be formed. 

Another type of cubic frequency-difference autoproduct, utilizing two conjugated field 

factors, exists but is of little practical utility. The synthetically-generated frequency content 

ranges between (0,max[0,Ω𝐻 − 2Ω𝐿]), which may be trivial in many narrow-bandwidth 

practical scenarios. Furthermore, the quadratic frequency-difference autoproduct will always 

superset the same difference frequencies, and owing to its merely second-order nonlinearity, will 

likely be more advantageous in signal processing tasks. 

The cubic frequency-sum autoproduct is constructed from Eq. (6.2) with no conjugated 

constituent fields. The generated sum frequencies, Σ𝜔, range from 3Ω𝐿 ≤ Σ𝜔 ≤ 3Ω𝐻, which 

may be of interest in array signal processing, owing to the higher resolution offered at higher 

frequencies. Equivalent results to those derived in Chapter 6.2.1 and Chapter 6.2.2 for a cubic 

frequency-sum autoproduct are provided here. The cubic frequency-sum autoproduct sample is 

defined as 

𝐴𝑃𝐼𝐼𝐼Σ(𝒓, 𝜔𝐼, 𝜔𝐼𝐼, Σ𝜔) = 𝑃𝐼𝑃𝐼𝐼𝑃𝐼𝐼𝐼, (6.13𝑎) 

where 𝜔𝐼 = 𝜔 − Δ𝜔2 − Δω3, 𝜔𝐼𝐼 = 𝜔 + Δ𝜔2, 𝜔𝐼𝐼𝐼 = 𝜔 + Δω3, and Σ𝜔 = 3𝜔, and numeral 

subscripts were used to differentiate from the cubic frequency-difference autoproduct 

development. The cubic frequency-sum bandwidth average is, therefore, 

⟨𝐴𝑃𝐼𝐼𝐼Σ(𝒓, Σ𝜔)⟩𝐵𝑊 =
1

𝛽𝐻
Σ∫ 𝑑(Δ𝜔3)

𝛽𝐻
Σ

0

[
1

𝛼𝐻
Σ − 𝛼𝐿

Σ∫
𝐴𝑃𝐼𝐼𝐼Σ(𝒓, 𝜔𝐼, 𝜔𝐼𝐼, Σ𝜔)

𝑆(𝜔𝐼)𝑆(𝜔𝐼𝐼)𝑆(𝜔𝐼𝐼𝐼)
𝑑(Δ𝜔2)

𝛼𝐻
Σ

𝛼𝐿
Σ

] , (6.13𝑏) 

where 𝛼𝐿
Σ = −Δω3/2, 𝛼𝐻

Σ = min[Δ𝜔3, Σ𝜔/3 − Ω𝐿 − Δ𝜔3], and 𝛽𝐻
Σ = min[Ω𝐻 −

Σ𝜔/3,2(Σ𝜔/3 − Ω𝐿)].  
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The field equation governing the cubic frequency-sum autoproduct, derived equivalently 

to Eq. (6.4), is 

(∇2 + (Σ𝑘)2)[𝑃𝐼𝑃𝐼𝐼𝑃𝐼𝐼𝐼] = −(𝑃𝐼𝐼𝑃𝐼𝐼𝐼𝑆𝐼 + 𝑃𝐼𝑃𝐼𝐼𝐼𝑆𝐼𝐼 + 𝑃𝐼𝑃𝐼𝐼𝑆𝐼𝐼𝐼)𝛿(𝒓 − 𝒓𝒔) (6.13𝑐) 

+2[𝑃𝐼(∇𝑃𝐼𝐼 ∙ ∇𝑃𝐼𝐼𝐼) + 𝑃𝐼𝐼(∇𝑃𝐼 ∙ ∇𝑃𝐼𝐼𝐼) + 𝑃𝐼𝐼𝐼(∇𝑃𝐼 ∙ ∇𝑃𝐼𝐼)

+ (3𝑘2 − Δ𝑘2Δ𝑘3 − (Δ𝑘2)
2 − (Δ𝑘3)

2)𝑃𝐼𝑃𝐼𝐼𝑃𝐼𝐼𝐼], 

where Σ𝑘 = Σ𝜔/𝑐, Δ𝑘2,3 = Δ𝜔2,3/𝑐. Hence, like the cubic frequency-difference autoproduct, the 

cubic frequency-sum autoproduct is an exact solution of a Helmholtz equation at the sum 

frequency, Σ𝜔, when the quantity in square brackets is zero. Under assumption of plane wave 

pressure fields, this happens identically as 

𝑃𝐼(∇𝑃𝐼𝐼 ∙ ∇𝑃𝐼𝐼𝐼) + 𝑃𝐼𝐼(∇𝑃𝐼 ∙ ∇𝑃𝐼𝐼𝐼) + 𝑃𝐼𝐼𝐼(∇𝑃𝐼 ∙ ∇𝑃𝐼𝐼) (6.13𝑑) 

= −(3𝑘2 − Δ𝑘2Δ𝑘3 − [Δ𝑘2]
2 − [Δ𝑘3]

2)𝑃𝐼𝑃𝐼𝐼𝑃𝐼𝐼𝐼. 

For a spherical wave response, Eq. (6.13c) reduces to: 

(∇2 + (Σ𝑘)2)(𝑃𝐼𝑃𝐼𝐼𝑃𝐼𝐼𝐼) = (Σ𝑘)
2 {

6

(Σ𝑘𝑟)2
−
4𝑖

Σ𝑘𝑟
} (𝑃𝐼𝑃𝐼𝐼𝑃𝐼𝐼𝐼). (6.13𝑒) 

which matches Eq. (6.7) for the sum frequency. When Σ𝑘𝑟 ≫ 1, the contributions of the right-

hand side of Eq. (6.13e) are minimized, and the cubic frequency-sum autoproduct should 

correlate well with a genuine acoustic field at the cubic sum frequency. The matching of 

frequency-sum and frequency-difference field equations for spherical wave pressure fields was 

found for quadratic autoproducts as well (Worthmann and Dowling, 2017). 

Higher-order autoproducts (i.e. quartic or greater) are clearly possible, but analytic 

prescription of their formulation is rather cumbersome, and as a result, provides little benefit. 

Given the abundance of programming languages with functions that rapidly identify all desired 

combinations of a set, investigation of quartic-or-higher autoproducts should be pursued 

numerically. However, some guiding intuition is available. The 𝑁-th order frequency-sum 
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autoproduct samples will target sum frequencies between 𝑁Ω𝐿 and 𝑁Ω𝐻, as noted for fourth 

order (Abadi et al., 2013). Interestingly, 𝑁 − 1 versions of 𝑁-th order frequency-difference 

autoproducts are possible, depending on the number of conjugated field factors. As noted for the 

cubic frequency-difference autoproduct with two conjugations, though, higher-than-cubic-order 

frequency-difference autoproducts may not find much use in practice, as their difference 

frequency range overlaps, or entirely subsets, lower-order frequency-difference autoproduct 

ranges. Finally, the negative impacts of cross terms associated with the quadratic autoproduct 

(Geroski and Worthmann, 2021; Lipa et al., 2018; Worthmann and Dowling, 2017) are 

exacerbated for higher-order autoproducts and may entirely restrict the utility of nonlinear 

constructions beyond the cubic order studied here. 

Further examination of higher-order autoproducts is beyond the scope of this work. 

Herein, the potential remote sensing benefits of the cubic frequency-difference autoproduct with 

a single conjugated factor are investigated. For compactness, cubic autoproduct and cubic 

difference frequency are used in lieu of the full terminology: cubic frequency-difference 

autoproduct with one conjugation and its associated difference frequency. 

6.3 Noise Suppression 

The previous section largely considered the mathematical apparatus and pseudofield nature of 

the cubic autoproduct. To illustrate the potential utility of the cubic frequency-difference 

autoproduct, the capability of the cubic bandwidth average to reduce noise is examined. 

Simulations in free space follow analytic development. 
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6.3.1 Discrete Bandwidth Average 

In practice, acoustic recordings are sampled discretely. Hence, consider a discretized signal 

bandwidth of 𝑁 bins between 𝑓𝐿 and 𝑓𝐻, setting the frequency resolution 𝛿𝑓 = (𝑓𝐻 − 𝑓𝐿)/(𝑁 −

1). For a non-trivial bandwidth, many Fourier bins may exist such that 𝜔1 + 𝜔2 −𝜔3 = Δ𝜔. 

The number of triplets satisfying this constraint for a given cubic difference frequency Δ𝜔, 

𝜂(Δ𝜔), is determined from: 

𝜂(Δ𝜔) = ∑ Min [𝜎, 𝑁 − 𝜎 + 1 − rem(
Σ𝑓 − 2𝑓𝐿
𝛿𝑓

, 2)] ,

𝑓𝐻+𝛥𝑓

𝛴𝑓=𝑓𝐿+𝛥𝑓;
𝛴𝑓 is multiple of 𝛿𝑓

  (6.14𝑎) 

where 

𝜎 = floor (1 +
Σ𝑓 − 2𝑓𝐿
2𝛿𝑓

) . (6.14𝑏) 

Here, Min[𝑥, 𝑦] takes the minimum of the two arguments, floor(𝑥) rounds 𝑥 down, and 

rem(𝑥, 𝑦) is the remainder from division of 𝑥 by 𝑦. The summand in Eq. (6.14a) computes the 

number of combinations of 𝑓1 + 𝑓2 = Σ𝑓, corresponding to the inner integration in Eq. (6.9). In 

Fig. 6.1(b), evaluation of Eq. (6.14) is superimposed with red dashes.  

The influence of the recorded field’s bandwidth on the number of independent cubic 

frequency-difference autoproduct samples is evident in Eq. (6.14). Without loss of generality, 

consider the frequency limits of the previous section, 𝑓𝐿 = 40 kHz and 𝑓𝐻 = 110 kHz, with 

varying frequency resolution. Computations of Eq. (6.14) with these limits is shown in Fig. 6.3 

against increasing number of spectral bins, 𝑁. To maintain the target difference frequency, Δ𝑓 = 

75 kHz, specific values of 𝑁 were necessary and are marked by circles.  
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Figure 6.3: Number of cubic autoproduct samples available from a discretized signal bandwidth. 

The logarithmic horizontal axis indicates the number of frequency bins comprising the signal 

bandwidth while the logarithmic vertical axis indicates the number of frequency triplets that 

satisfy the cubic autoproduct relationship. Computed from Eq. (6.14), the signal bandwidth limits 

were 40 – 110 kHz and the cubic difference frequency was 75 kHz. Circle markers represent 

specific values of 𝑁 such that the cubic difference frequency was obtainable. 

 

  Figure 6.3 demonstrates the significant number of cubic autoproduct samples available 

from a discretized signal bandwidth. The horizontal and vertical axes are both logarithmic, 

leading to the inference 𝜂 ∝ 𝑁2. In fact, for the data in Fig. 6.3, a nonlinear power law curve-

fitting routine in MATLAB found the best fit was 𝜂 = 0.38𝑁2. The cubic frequency-difference 

bandwidth average, specified by Eq. (6.9), may therefore provide an unexpected means for 

suppressing noise by averaging (potentially) many cubic autoproduct samples, each containing 

noise components. 

Consider a recorded pressure field 𝑃(𝒓, 𝜔) = 𝑠(𝒓, 𝜔) + 𝑛(𝒓, 𝜔), where 𝑠(𝒓, 𝜔) is the 

signal at location 𝒓 and frequency 𝜔 and 𝑛(𝒓, 𝜔) is the noise. The coherent average of Γ 

snapshots reduces the noise amplitude by 1/√Γ. A similar principle underlies the cubic 
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bandwidth average, and since 𝜂 ∝ 𝑁2, a natural expectation is noise reduction of 1/𝑁. Each 

cubic autoproduct sample, however, does not independently sample the noise field, so 1/𝑁 noise 

suppression is an overestimate. Regardless, increasing the temporal recording duration, i.e. 

increasing 𝑁, can enhance cubic autoproduct-based noise suppression in practice. 

6.3.2 Free Space 

To provide evidence of noise suppression, simulations were conducted in a free space 

environment with Gaussian noise. The spectral content ranged from 𝑓𝐿 = 40 kHz and 𝑓𝐻 = 110 

kHz, and 𝑁 = 281 bins, setting the frequency resolution to 250 Hz. Free space acoustic fields 

were computed for ranges 1.95 to 2.05 m from the source and 0.15 to 0.25 m in depth below the 

source, corresponding to the direct path response nominally aligned with the secondary geometry 

in Fig. 6.2(a). The real part of the genuine acoustic field at 75 kHz is shown in Fig. 6.4(a). 

Noise was added to all computed free space fields such that the SNR was –10 dB. The 

SNR calculation used here includes an average across space and frequency: 

SNR = 10 log10 (
〈|𝑃(𝒓, 𝜔)|2〉𝒓,𝜔
〈|𝑛(𝒓, 𝜔)|2〉𝒓,𝜔

) , (6.15) 

where 〈 〉𝒓,𝜔 indicates the average. Gaussian white noise was enforced by adding random phasors 

with uniform phase distributions and Rayleigh-distributed amplitude. In Fig. 6.4(b), the noisy 

acoustic field at 75 kHz is shown. The strong noise content corrupts the phase and amplitude 

structure of the acoustic signal. Consequently, the spatial cross correlation of panel (b) to the 

noise-free field in panel (a) was poor: 𝜒 = 0.30. Gaussian noise does not impart any overall 

phase structure into the field, so the lack of a significant imaginary component of the spatial 

cross correlation was expected. 
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Figure 6.4: Noise suppression from the cubic frequency-difference autoproduct in free space 

propagation. Panels (a)–(c) show the normalized real part of the complex field at 75 kHz on 

depth and range axes. The color scale ranges from +1 (red) to -1 (blue). (a) The genuine acoustic 

field in free space at 75 kHz. (b) Acoustic field at 75 kHz with noise added to -10 dB SNR. (c) 

The bandwidth-averaged cubic autoproduct at 75 kHz computed from 40 – 110 kHz (250 Hz 

resolution) constituent fields, each with -10 dB SNR. Spatial cross correlation to panel (a) 

increases from 0.30 in (b) to 0.88 in (c). (d) Real part of the spatial cross correlations between 

bandwidth-averaged cubic autoproducts, generated from -10 dB SNR fields, and free space fields 

at 75 kHz vs. increasing number of bins within the 40 – 110 kHz bandwidth. The red circle 

indicates the correlation of panel (c) to panel (a). 

 

The bandwidth-averaged cubic frequency-difference autoproduct at 75 kHz, computed 

from Eq. (6.2) and Eq. (6.9) with constituent field SNR of –10 dB, is shown in Fig. 6.4(c). The 

phase structure of the noise-free acoustic field, shown in Fig 6.4(a), is nearly entirely recovered, 

which is impressive given that the constituent fields, as shown in Fig. 6.4(b), lack predictable 



 159 

phase structure. The phase variation, demonstrated by red-to-blue changes in the colormap, is not 

as sharp as the genuine field shown in panel (a), indicative of noise that was not totally 

suppressed by the bandwidth average. The visual inferences are quantitatively supported by the 

high value of the spatial cross correlation coefficient between panel (c) and panel (a): 𝜒 = 0.88. 

The effectiveness of cubic autoproduct-based noise suppression is further demonstrated 

in Fig. 6.4(d). The logarithmic horizontal axis indicates the number of bins within 𝑓𝐿 = 40 kHz 

and 𝑓𝐻 = 110 kHz used to construct the bandwidth-averaged cubic autoproduct. The vertical axis 

displays the real part of the spatial cross correlation between bandwidth-averaged cubic 

autoproducts, generated from -10 dB SNR fields, and free space fields at 75 kHz. Cross 

correlations were computed across the range and depth axes used in panels (a)–(c). The same 

values of 𝑁 from Fig. 6.3 were used to generate Fig. 6.4(d), and the red circle denotes the 

correlation of panel (c), 𝑁 = 281 bins, to panel (a). Overall, panel (d) provides confirmation of 

the relationship between the number of bins and the success of cubic autoproduct-based noise 

reduction. As evidenced by the correlation to a noiseless field, increasing the number of bins, 

thereby generating more cubic autoproduct samples, allows for enhanced noise suppression 

through the bandwidth average. In fact, for the largest value of 𝑁 considered here (1001 bins), 

the cross correlation of the bandwidth-averaged cubic autoproduct with the genuine free space 

acoustic field was 0.97, reflective of the nearly entirely suppressed noise field. 

In Fig. 6.4, normalization (Lipa et al., 2018) was implemented to compare genuine fields 

and autoproducts, and the colomaps (Auton, 2021) were normalized to a maximum value of one. 

In the two orthogonal directions of field plots, 1 mm spatial resolution was used. The noise 

suppression shown in this section may prove beneficial in remote sensing where noise can reduce 

array signal processing performance. However, the Gaussian noise was uncorrelated in both 
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space and frequency, which may be unrealistic in practical applications. An example with 

ambient ocean noise measurements is presented next.   

6.4 Direction of Arrival Finding in Noisy Ocean Recordings 

To investigate the utility of the noise suppression afforded from the cubic frequency-difference 

autoproduct, remote sensing performance with ocean measurements was assessed. Relevant 

experimental details, including acoustic measurements and ambient noise recordings, precede 

analysis of cubic autoproduct-based beamforming results. Additional details of the Shallow 

Water ’06 experiment studied here is found in previous works (Dahl, 2010; Dahl et al., 2013). 

6.4.1 SW06 Experimental Description 

Measurements made from the research vessel R/V Knorr were collected on 10 August 2006, 

0830-1530 UTC. The experimental geometry is nominally shown in Fig. 6.5(a). A 1.4 m 

nonuniform vertical line array was stationed at 39.0245° N, 73.0377° W, approximately 100 km 

off the coast of New Jersey. Four omnidirectional ITC-1042 hydrophones (Gavial International 

Transducer Corporation – Santa Barbara, CA) with inter-element spacing of 0.2, 0.3, and 0.9 m 

constituted the receiving array, which was located 200 m in range from the acoustic source. The 

omnidirectional source, an ITC-1007, was located 40 m in depth below the stern of the R/V 

Knorr. A downward-refracting sound speed profile, shown to impact the spatial coherence of 

surface-reflected sound (Dahl, 2010; Dahl et al., 2013), was measured during the data collection. 

However, along the direct path, refraction effects are negligible (less than 1°) and were ignored 

in favor of an isospeed environment, where 𝑐 = 1498 m/s was determined from the average of 

the sound speed profile. Hence, the direct path angle of arrival, as measured from the broadside 

of the array, was 𝜃′ = −4.3°.  
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Figure 6.5: Overview of the relevant SW06 experimental details. (a) Schematic indicating 

omnidirectional source and four-element vertical receiving array of omnidirectional 

hydrophones. The angle of arrival, with respect to the broadside of the array was −4.3°. (b) 

Broadcast frequency content, approximated by the incoherent average of the direct path recorded 

at the shallowest receiver. The red ×’s denote spectral components within the signal bandwidth. 

By construction, the red crosses also represent the cubic difference frequency bandwidth. 

 

During the 6.5-hour data collection, 160 signal broadcasts were recorded at 50 kHz 

sampling rate. Continuous wave pulses with center frequencies of 4 and 6 kHz were transmitted 

simultaneously. Higher frequency pulses were superimposed as well, but not selected for 

analysis due to their poor direct path phase consistency throughout the 160 snapshots. The water 

channel, 80 m depth, provided prominent secondary arrivals from surface- and bottom-reflected 

sound, but multipath and scattering effects are not considered here. The 3 ms signal afforded 

sufficient temporal separation for isolation of the direct path, and, like other studies with this 

dataset (Dahl, 2010; Joslyn et al., 2023), the signals were time-aligned to remove jitter.  

Four different source-receiver bearing angles, separated by 90°, were sampled from the 

160 signal transmissions. Due to the surface anisotropy, directional effects were important in the 

surface-reflected path (Dahl et al., 2013), but are unimportant here for two reasons. First, phase 

variation during the experiment is minimal for the lower frequencies analyzed here. The direct 

transmission coefficient, determined from the amplitude of the normalized coherent average 
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across pings, exceeded 0.80 for all analyzed frequencies. Second, the direction of arrival 

estimation strategy considered in the next section does not exploit ping-to-ping coherence. 

Instead, single snapshot performance is compared between conventional and cubic autoproduct 

approaches. 

A proxy for the imperfectly-known source spectrum is shown in Fig. 6.5(b). The 

incoherent average of the direct path amplitude, normalized to a maximum bin amplitude of 

unity, was determined from the shallowest receiver. The nominal frequency resolution was 𝛿𝑓 = 

7 Hz, and spectral components within 200 Hz of the peak of each pulse, marked by red ×’s, were 

maintained, in agreement with previous autoproduct work using this experiment (Joslyn et al., 

2023). Because the cubic autoproduct mimics genuine fields within the signal bandwidth, the red 

crosses indicate the cubic difference frequency bandwidth as well. Since the signal bandwidth 

was disjoint, Eq. (6.14) is not directly applicable, but a significant noise suppression was still 

expected for each cubic difference frequency as 𝑁 = 122 spectral bins were within the signal 

bandwidth.  

Transmissions for other experiments were alternately broadcast with the multi-frequency 

pulse. In particular, a 16 kHz narrowband pulse was transmitted and is used here to artificially 

adjust the experimental SNR in post-processing. At the lower frequencies of interest, 

measurements of the 16 kHz transmission were effectively a recording of in situ ocean noise. 

The remote sensing results from this dataset therefore directly assess the performance 

capabilities of the cubic autoproduct in the presence of ambient ocean noise.  

Designed as a surface scattering experiment, relatively little noise exists in the recorded 

data. The nominal SNR, computed from Eq. (6.15), where 𝑃(𝒓, 𝜔) is the direct path signal and 

𝑛(𝒓, 𝜔) is the in situ ocean noise recording, was SNR0 = 31 dB. For the SW06 measurements, 
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an additional average in Eq. (6.15) over the 160 snapshots was performed to concisely report a 

single SNR metric. To increase noise in the measurements, noise was added to the acoustic 

recordings:  

𝑃′(𝒓,𝜔) = 𝑃(𝒓,𝜔) + 𝛼𝑛(𝒓, 𝜔). (6.16𝑎) 

The SNR of the added-noise acoustic fields is therefore 

SNR(𝛼) = 10 log10 (
〈|𝑃(𝒓,𝜔)|2〉𝒓,𝜔,𝑄
𝛼2〈|𝑛(𝒓,𝜔)|2〉𝒓,𝜔,𝑄

) = SNR0 − 10 log10(𝛼
2) , (6.16𝑏) 

where the additional average over 𝑄 =160 snapshots is specified. The noise-enhancement 

strategy of Eq. (6.16) is used to assess cubic autoproduct-based direction of arrival finding in the 

presence of varying levels of noise. 

6.4.2 Direction of Arrival Results 

Direction-of-arrival estimation is a common remote sensing task, and plane-wave beamforming 

is a spatial filtering process often used to provide an estimate [see, for instance, (Jensen et al., 

2011)]. The simplest implementation is the linear Bartlett processor, computed by 

𝐵𝑐𝑜𝑛𝑣(𝜔, 𝜃) = |∑𝑃(𝒓𝒌, 𝜔)

𝐾

𝑘=1

𝑤∗(𝒓𝒌, 𝜔)|

2

, (6.17) 

where 𝜃 is the steering angle, 𝐾 is the number of receivers and the weighting vector is given by 

𝑤(𝒓𝒌, 𝜔) = exp (𝑖𝜔�̂�𝒔 ∙ 𝒓𝒌/𝑐). (6.18) 

Here, �̂�𝒔 is the unit vector in the search direction specified by 𝜃. For the vertical line array shown 

in Fig. 6.5(a), �̂�𝒔 ∙ 𝒓𝒌 = 𝑑𝑘 sin 𝜃 where 𝑑𝑘 is the depth from the shallowest receiver (𝑑1 = 0). 

Equation (6.17) may be incoherently averaged through the signal bandwidth to produce one 

beamformed output from the recorded signal: 

𝐵𝑐𝑜𝑛𝑣(𝜃) = 〈𝐵𝑐𝑜𝑛𝑣(𝜔, 𝜃)〉𝜔 . (6.19) 
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Quadratic frequency-difference beamforming can be performed by replacing the acoustic 

field in the summand of Eq. (6.17) by the autoproduct and incoherently averaging through both 

the signal bandwidth and the difference frequency bandwidth (Abadi et al., 2012; Douglass et al., 

2017). Cubic autoproduct-based beamforming is formulated in a similar manner, but the 

bandwidth-averaged cubic autoproduct replaces the acoustic field in the Bartlett processor, rather 

than conducting the bandwidth average incoherently, as was done for the quadratic form. 

Notably, this decision requires knowledge of the source spectrum in order to compute the 

bandwidth average in Eq. (6.9). For the imperfectly-known source waveform of the SW06 

experiment, cubic autoproduct samples were bandwidth-averaged without removal of the source 

waveform. This approach, which assumes source phase linearity, has been used in a previous 

quadratic autoproduct study with array signal processing of ocean measurements (Joslyn et al., 

2022). The cubic autoproduct counterparts of Eqs. (6.17) – (6.19) are: 

𝐵𝐼𝐼𝐼(Δ𝜔, 𝜃) = |∑⟨𝐴𝑃𝐼𝐼𝐼(𝒓𝒌, Δ𝜔)⟩𝐵𝑊

𝐾

𝑘=1

𝑤∗(𝒓𝒌, Δ𝜔)|

2

, (6.20) 

𝑤(𝒓𝒌, Δ𝜔) = exp(𝑖Δ𝜔�̂�𝒔 ∙ 𝒓𝒌/𝑐) , (6.21) 

𝐵𝐼𝐼𝐼(𝜃) = 〈𝐵𝐼𝐼𝐼(Δ𝜔, 𝜃)〉Δ𝜔 . (6.22) 

Equations (6.19) and (6.22) are typically normalized by their maximum value and shown 

on a decibel scale. The cubic autoproduct beamformer produces outputs at the same frequencies 

as conventional acoustic beamforming. Hence, similar resolution may be achieved, unlike the 

quadratic frequency-difference autoproduct which sacrifices resolution in favor of robustness 

(Dowling, 2018). 

Conventional (blue), computed from Eq. (6.19), and cubic autoproduct (red), computed 

from Eq. (6.22), beamformed outputs of a single representative SW06 snapshot are shown in Fig.  
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Figure 6.6: Comparisons of SW06 beamformed outputs in the presence of increasing noise. 

Beamforming using conventional and cubic autoproduct processing are shown in blue and red, 

respectively. The true angle of arrival is denoted by the dashed black line. In (a), no noise was 

added to the measured signal. Noise was added to an SNR of –5 in (b), –12.5 in (c), and –25 in 

(d). The dynamic range shown covered 10 dB and the same signal snapshot was used in all 

panels. 

 

6.6 with increasing amounts of added noise. In all plots, the target search vector, 𝜃 swept 

between −90° and 90° in 0.01° step size, the true angle is noted by the vertical dashed black line, 

and the vertical axis covers 10 dB. Panel (a) shows beamformed outputs of the recorded acoustic 

field with no added noise. Both approaches perform well, adequately identifying the direction of 

arrival and exhibiting peak-to-sidelobe ratios greater than 3.5 dB. In panels (b) – (c), 

beamforming computations were performed on enhanced-noise measurements with SNR values, 

according to Eq. (6.16), of -5 dB, -12.5 dB, and -25 dB. At SNR = -5, both approaches 
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successfully determined the direction of arrival, but the peak-to-sidelobe ratio was greater for the 

cubic autoproduct (2.8 dB) than for conventional processing (1.5 dB). For SNR = -12.5 dB, 

conventional beamforming incorrectly localizes the direction of arrival and several sidelobes are 

prominent. Meanwhile, the cubic autoproduct beamformed output correctly indicates the true 

direction of arrival and the peak-to-sidelobe ratio is 1.6 dB. At SNR = -25 dB, neither approach 

performs successfully, due to the significant noise power. The improved single-snapshot 

performance in direction-of-arrival estimation and peak-to-sidelobe ratio may be further assessed 

by computing average results across all 160 SW06 acoustic recordings. 

Figure 6.7 compares success fractions and average peak-to-sidelobe ratios from the 160 

acoustic measurements obtained during the SW06 experiment with added in situ noise. Success 

fraction, determined by the percentage of direction of arrival estimates within ±3° of the true 

angle 𝜃′ = −4.3°, was computed for SNR values between –25 dB and 10 dB in half-dB steps. 

Average peak-to-sidelobe ratio, determined from the mean difference between the largest and 

second largest peaks in beamformed outputs, was computed for the same SNR values. In both 

panels, conventional beamforming results are marked by blue crosses and red circles indicate 

cubic autoproduct results. 

Overall accuracy improvement offered by the cubic autoproduct is demonstrated in Fig. 

6.7(a). The curves from both approaches follow a similar form, but the cubic autoproduct 

maintains accuracy in the presence of significantly more noise. Direction of arrival estimates 

from cubic autoproduct processing maintain 60% success until SNR = -14 dB, while the 

equivalent threshold for conventional processing was maintained until SNR = -9 dB. The 

maximum success increase offered by the cubic autoproduct occurred at SNR = -13 dB. At this  
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Figure 6.7: Success fraction (a) and average peak-to-sidelobe ratio (b) vs. SNR from the 160 

SW06 experimental snapshots. Results from conventional beamforming are shown by blue ×’s 

and results from cubic autoproduct beamforming are marked with red circles. The power of 

measured ambient noise added to the acoustic recordings prior to beamforming corresponded to 

SNR values between –25 and 10 dB, in half–dB steps. 

 

noise level, conventional success fraction was 0.26 and cubic autoproduct success fraction was 

0.69, reflecting a 43% success increase. 

Increased robustness, quantified by the average peak-to-sidelobe ratio, is illustrated in 

Fig. 6.7(b). The separation, and therefore performance improvement, between conventional and 

cubic autoproduct curves is similar to those shown in Fig. 6.7(a). Here, an average cubic 

autoproduct peak-to-sidelobe ratio of 2 dB was maintained until SNR = -8.5 dB. The noise level 

for the corresponding average conventional peak-to-sidelobe ratio was SNR = 0 dB. 

Additionally, the maximum average peak-to-sidelobe ratio increase afforded by the cubic 

autoproduct was 1.3 dB when SNR = -8.5 dB. For SNR = -8.5 dB, conventional peak-to-sidelobe 

ratio was 0.7 dB, while the cubic autoproduct peak-to-sidelobe ratio was 2.0 dB.  
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Together, Fig. 6.6 and Fig. 6.7 support the claims made in Sec. III that the cubic 

autoproduct may be a promising method for remote sensing in noisy environments. The 

improved performance, attributed to the noise suppression inherent in Eq. (6.9), encompassed 

both direction of arrival estimation accuracy and peak-to-sidelobe ratio. Additionally, the added 

noise was not artificially manufactured. Instead, the noise was recorded in the propagation 

environment, representing realistic ambient ocean noise. The complicated signal bandwidth, an 

artifact of the experiment, contained 122 spectral bins, which is directly related to the noise 

suppression possible from the cubic autoproduct. For a signal bandwidth with more (less) bins, 

the curves in Fig. 6.7 are expected to exhibit greater (less) separation between the two 

approaches. 

6.5 Conclusion 

Quadratic products of the recorded field, termed autoproducts, have been explored for over a 

decade with the remote sensing benefits owing to the autoproducts’ mimicry of genuine acoustic 

fields outside the recorded signal bandwidth. The primary purpose of this paper was to extend 

autoproduct theory to a cubic product of the recorded fields, of which the cubic frequency-

difference autoproduct may be considered a pseudofield for the broadcast frequencies. 

Mathematical analysis justifying the pseudofield interpretation is provided, including the 

governing field equations and results in a Lloyd’s mirror environment. The secondary goal of 

this work was to identify practical utility of the cubic frequency-difference autoproduct. Due to 

the large number of cubic frequency-difference autoproduct samples within the signal bandwidth 

of a digitized recording, cubic autoproduct processing can provide an unexpected avenue for 

remote sensing in noise environments. Direction of arrival estimates of noisy signal recordings 
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measured during Shallow Water ’06 highlight the improved performance offered by the cubic 

autoproduct.  

Three conclusions are drawn from this research effort. First, cubic extensions to 

autoproduct theory are possible and generally follow the same intuition built for quadratic 

autoproducts. Under appropriate circumstances, the field equations governing cubic autoproducts 

resemble the Helmholtz equation, with a modified source term, evaluated at the cubic 

autoproduct frequency. In the simplest multipath environment, Lloyd’s mirror, bandwidth-

averaged cubic frequency-difference autoproduct mimicry of a genuine acoustic field is only 

possible for a sufficiently-large signal bandwidth and/or sufficiently-large temporal differences 

in path arrivals, both of which also limit quadratic autoproduct mimicry in the same environment 

(Lipa et al., 2018). Second, the bandwidth-averaging step of the cubic autoproduct may offer 

serendipitous noise suppression. The number of cubic autoproduct samples entering into the 

bandwidth average was determined explicitly and found to be approximately proportional to the 

square of the number of spectral bins within the signal bandwidth. Simulations in a free space 

environment with Gaussian noise support the unconventional noise suppression capabilities. 

Third, in the presence of significant ambient ocean noise, remote sensing may be more accurate 

with the cubic autoproduct than with the genuine acoustic field. Across 160 recordings of both 

signal and in situ noise in the SW06 experiment, direction of arrival estimates using the cubic 

autoproduct were more robust against low SNR than processing with the conventional field. 

Although the experimental results are positive, some practical aspects require attention. 

Multipath cross terms, correlated noise, and the signal spectrum each could limit the utility of the 

cubic autoproduct processing presented here. The latter two, correlated noise and signal 

spectrum, were components of the SW06 experiment as ambient ocean noise was recorded and 
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the source waveform was not explicitly removed. Given the successful performance here, these 

two considerations may not be too restrictive in sonar signal processing applications. Cross 

terms, arising in multipath environments for all autoproduct constructions, are naturally more 

insidious for cubic autoproducts than their quadratic counterparts due to the higher-order 

nonlinearity. The analytic result for the cubic autoproduct in a Lloyd’s mirror environment, 

however, suggests that sufficient bandwidth averaging may alleviate this concern as well. 

Regardless, the bandwidth average offered by the cubic autoproduct is a unique means of 

suppressing incoherent noise at a single receiver while retaining remote sensing resolution, 

thereby improving array signal processing outcomes. Interestingly, since the cubic frequency-

difference autoproduct is a pseudofield constructed from recordings at a single receiver, common 

considerations, including array gain (Cox et al., 1987), and more advanced techniques, such as 

compressive sensing (Lee et al., 2023) or other adaptive methods (Park et al., 2022; Worthmann 

et al., 2017), may be used in concert with the cubic autoproduct to further enhance remote 

sensing capabilities. 
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Chapter 7  

Target Localization in Forested Environments Using the Electromagnetic Frequency-

Difference Autoproduct 

 

Forests provide a complicated channel for electromagnetic wave propagation. Absorption and 

scattering from foliage, branches, and tree trunks result in signal attenuation and coherence loss 

as propagation distance increases through the random medium. Consequently, remote sensing in 

forested environments remains a challenging and salient task. This chapter introduces the 

electromagnetic frequency-difference autoproduct, the outer product of the electric field vector 

with itself at nearby frequencies, and describes its capacity to improve target localization in 

random scattering media. The electromagnetic frequency-difference autoproduct, a 

generalization of the scalar frequency-difference autoproduct in underwater acoustics, is a dyadic 

quantity that synthetically estimates electric field content at the difference frequency of the two 

constituent electric fields. Properties of the pseudofield are numerically examined for plane 

waves and perfectly conducting cylinders. Experiments are conducted in dense wooded areas on 

the University of Michigan campus using TDSR P440 Ultra Wideband radio transceivers and 

BroadSpec linearly polarized antennas. The 3-5 GHz frequency content is recorded along a linear 

receiving array in vv-polarization (TM) configuration. Beamforming demonstrates the 

advantages of autoproduct-based active target localization of a metallic reflector at 12 m 

transmitter-to-target distance. While the lower effective frequency reduces resolution of signal 

processing algorithms, robustness against scattering is increased. 
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7.1 Introduction 

Recent research in acoustics suggests that a quadratic product of complex fields at nearby 

frequencies, termed the frequency-difference autoproduct, may resemble a genuine field at the 

difference frequency between the two constituent fields (Dowling, 2018; Worthmann and 

Dowling, 2017). The autoproduct, a pseudofield quantity, has been investigated in a variety of 

remote sensing applications, including beamforming (Abadi et al., 2012; Douglass et al., 2017; 

Douglass and Dowling, 2019) and matched field processing (Geroski et al., 2023; Geroski and 

Dowling, 2019; Worthmann et al., 2015, 2017; Yuan et al., 2023). In the aforementioned studies, 

the success of autoproduct-based processing is attributed to the mimicry of a genuine lower 

frequency field, where array signal processing is more robust. The genuine field mimicry has 

been investigated in a uniform half-space (Lipa et al., 2018), in scattering from a rough surface 

(Joslyn and Dowling, 2022), and in the presence of diffraction (Worthmann and Dowling, 2020b, 

2020a). Although not strictly limited to acoustic analysis, the autoproduct has seldom been 

utilized in other fields. Backprojection of earthquakes using seismic waves (Neo et al., 2022) and 

preliminary electromagnetic simulations in random media (Geroski, 2021) are the only non-

acoustic autoproduct works. 

This chapter presents theoretical, numerical, and experimental investigations of the 

electromagnetic frequency-difference autoproduct, a dyadic pseudofield quantity. Mathematical 

formulations accompany examination of the frequency-difference autoproduct constructed from 

electric fields scattered by a perfectly conducting infinite cylinder. The ability of the frequency-

difference autoproduct to provide useful remote sensing results was determined by target 

localization in a forested environment. Results from both the modeling and target localization 

experiments highlight the capability of the frequency-difference autoproduct to mimic a genuine 
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electric field at the difference frequency. In all cases, only a single element of the autoproduct 

dyadic is studied, the 𝑣𝑣-polarization. 

Generally, the effects of random media scale with frequency [see, for instance, (Ishimaru, 

1978)]. Hence, the synthetic estimation of lower frequency field content offered by the 

frequency-difference autoproduct allows for array signal processing at difference frequencies 

where the effects of the random media are minimized. The random media selected here for target 

localization experiments was forested areas on the University of Michigan campus. Due to the 

relevance for both defense and civilian applications, electromagnetic propagation through 

forested areas is an active area research [see the review articles in (Meng et al., 2009) and (Meng 

and Lee, 2010)]. Significant work considers propagation modeling, encompassing physics-based 

statistical models (Wang and Sarabandi, 2007), empirical and site-specific models (Zhang et al., 

2019), and using a 3-D digital map with Foldy-Lax multiple scattering theory (Chee et al., 2014), 

among many others. Remote sensing tasks, such as target detection (Zhao et al., 2018) and 

localization (Ziadé et al., 2008), are common in this environment as well. 

Constructed from recorded fields, the frequency-difference autoproduct requires 

significant bandwidth in the transmitted signal. To provide sufficient bandwidth, the PulsON 440 

Ultra Wideband Radio (TDSR - Petersburg, TN) was obtained. The P440 (or earlier iterations) 

has been used in myriad of applications from target detection in forested environments (Zhai and 

Jiang, 2013, 2014) to tomographic imaging (Beck et al., 2016) to localization (Mu and Song, 

2019) and thus is an excellent module for the target localization experiments conducted here. 

Broadspec linearly polarized antennas were used to isolate desired polarization. 

The notion of a dual-field quantity is not unique to autoproduct theory. In 

electromagnetics, Δ𝑘 or two-frequency radar (Popstefanija et al., 1993; Weissman, 1973), 
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interferometric synthetic aperture radar (Sarabandi and Member, 1997) and the frequency 

correlation function (Sarabandi et al., 1999) share features with the frequency-difference 

autoproduct. However, the frequency-difference autoproduct differs from these related concepts 

in that the pseudofield does not require an ensemble average, retains phase information, and has 

field properties associated with a genuine field at the difference frequency. Importantly, the 

frequency-difference autoproduct was developed independently to solve problems associated 

with passive remote sensing in underwater acoustics, not as an extension or generalization of 

other dual-field formulations. 

The remainder of this chapter is organized as follows. Section 7.2 introduces the 

frequency-difference autoproduct concept, including mathematical formulations and results in 

simple modeling environments. Section 7.3 provides experimental details of the target 

localization scenario, and Section 7.4 investigates the corresponding beamforming results. 

Section 7.5 summarizes the study and discusses three conclusions. 

7.2 Theory and Modeling 

7.2.1 Frequency-Difference Autoproduct 

The frequency-difference autoproduct may be constructed from any time domain recording using 

a digital Fourier transform and multiplication. No specific experimental design or preprocessing 

is necessary. Much of the mathematical apparatus defined in this subsection was first formulated 

in (Geroski, 2021). 

Here, the complex (frequency domain) electric field vector, �⃗� (𝑥 , 𝜔), at spatial location 𝑥  

is defined as, 
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�⃗� (𝑥 ,𝜔) = [
0
𝐸ℎ
𝐸𝑣

] (7.1) 

where 𝜔 is the angular frequency. In this generic form, the horizontal and vertical transverse 

components, 𝐸ℎ and 𝐸𝑣 respectively, are defined based on the propagation scenario, and the zero 

element indicates the lack of a compressional component in the direction of propagation.  

The frequency-difference autoproduct is formed by an outer product of electric field 

vectors at two different frequencies with one conjugation: 

𝐴𝑃̿̿ ̿̿ (𝑥 , 𝜔, Δ𝜔) = �⃗� ∗,𝑇(𝑥 ,𝜔−)�⃗� (𝑥 ,𝜔+) = [

0 0 0
0 𝐴𝑃ℎℎ 𝐴𝑃ℎ𝑣
0 𝐴𝑃𝑣ℎ 𝐴𝑃𝑣𝑣

] , (7.2) 

where the asterisk indicates complex conjugation, 𝑇 represents the vector transpose operation, 

Δ𝜔 is the difference frequency between constituent fields, and 𝜔± ≡ 𝜔 ± Δ𝜔 2⁄ . The premise of 

Eq. (7.2), extending the claims made for the scalar wavefield (Dowling, 2018; Worthmann and 

Dowling, 2017), is that the frequency-difference autoproduct is a pseudofield for the genuine 

electromagnetic field at the difference frequency Δ𝜔. Synthetic estimation of lower frequency 

field content from higher frequencies may be useful in remote sensing applications where the 

recorded field is corrupted by random media effects (scattering, jitter, lack of coherence) 

unlikely to significantly impact lower frequency propagation. Notably, the formulation in the 

rightmost equality of Eq. (7.2) resembles a scattering matrix [see, for instance, (Huynen, 1965; 

Singh et al., 2019)], which represent incident and scattered polarizations at the same frequency. 

The matrix in Eq. (7.2), however, indicates a dyadic product of measured polarizations at 

different frequencies. 
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To improve the mimicry of a genuine electric field, an additional mathematical step is 

conducted on the frequency-difference autoproduct. For a transmitter with nontrivial signal 

bandwidth, Ω𝐿 ≤  𝜔 ≤  Ω𝐻, Eq. (7.2) equally-spaced frequency pairs are averaged by 

⟨𝐴𝑃̿̿ ̿̿ (𝑥 ,  Δ𝜔)⟩
𝐵𝑊

=
1

Ω𝐵𝑊
Δ ∫ 𝐴𝑃̿̿ ̿̿ (𝑥 , 𝜔, Δ𝜔)𝑑𝜔

Ω𝐶+
1
2Ω𝐵𝑊

Δ

Ω𝐶−
1
2
Ω𝐵𝑊
Δ

= [

0 0 0
0 ⟨𝐴𝑃ℎℎ⟩𝐵𝑊 ⟨𝐴𝑃ℎ𝑣⟩𝐵𝑊
0 ⟨𝐴𝑃𝑣ℎ⟩𝐵𝑊 ⟨𝐴𝑃𝑣𝑣⟩𝐵𝑊

] , (7.3) 

where Ω𝐶 = (Ω𝐿 + Ω𝐻)/2 is the transmission center frequency and Ω𝐵𝑊
Δ = Ω𝐻 − Ω𝐿 − Δ𝜔. The 

bandwidth average is an important step as it increases robustness of the autoproduct estimate 

(Joslyn and Dowling, 2022). Furthermore, the bandwidth average suppresses multipath cross 

terms inherited from the quadratic autoproduct construction that are not present in the genuine 

difference frequency field (Geroski et al., 2023; Geroski and Worthmann, 2021; Lipa et al., 

2018; Worthmann and Dowling, 2017). In passive remote sensing, the unknown source spectrum 

limits the applicability of Eq. (7.3) as shown and bandwidth-averaging cross-spectral density 

matrices is more prudent (Geroski et al., 2023; Geroski and Dowling, 2021; Geroski and 

Worthmann, 2021; Worthmann et al., 2017). However, in active remote sensing, the source 

spectrum may be removed prior to Eqs. (7.2) and (7.3). Removal of the transmitted waveform 

did not significantly alter the experimental results studied here, so Eqs. (7.2) and (7.3) are used 

as shown, like in (Joslyn et al., 2022).  

  The rest of this study is restricted to the 𝑣𝑣-polarized element in the bottom right of the 

matrix shown in Eq. (7.3), ⟨𝐴𝑃𝑣𝑣⟩𝐵𝑊. Extensions to other nonzero elements of Eq. (7.3) are 

clearly possible, but outside the scope of this chapter. In (Geroski, 2021), both co-polarized 

elements were reported for numerical simulations of bistatic propagation through random 

scattering media. There, both co-polarized autoproducts mitigated the effects of randomly-

located scattering metallic cylinders, but the horizontally-polarized autoproduct, ⟨𝐴𝑃ℎℎ⟩𝐵𝑊, was 
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more robust than the vertically-polarized autoproduct, ⟨𝐴𝑃𝑣𝑣⟩𝐵𝑊, when the cylinder axis was in 

the vertical direction. Thus, results for ⟨𝐴𝑃ℎℎ⟩𝐵𝑊, equivalent to those presented here for 

⟨𝐴𝑃𝑣𝑣⟩𝐵𝑊, are expected to further mitigate the impacts of scattering. 

7.2.2 Plane Wave 

To assess the frequency-difference autoproduct, consider the simplest electric field: a plane 

wave. The plane wave convention used here is 

�⃗� (𝑥 ,𝜔) = �̂� exp[𝑖𝑘𝑥] , (7.4) 

where 𝑘 = 𝜔/𝑐 is the wavenumber, 𝑐 is the speed of light, and the amplitude is set to unity. The 

𝑥-coordinate corresponds to the propagation direction and the electric field oscillates in the 𝑧-

direction.  

Matching the transmitted experimental frequencies (see Chapter 6.3), Fig. 7.1(a) and Fig. 

7.2(b) show the real component of Eq. (7.4) evaluated at 3 and 4 GHz, respectively. In Fig. 

7.3(c), the real part of the electric field at a lower frequency, 1 GHz, is plotted. The real 

component of the frequency-difference autoproduct at 1 GHz, constructed from applying Eq. 

(7.3) to the constituent electric fields in panels (a) and (b), is shown in panel (d). The horizontal 

axis of each panel is aligned with the propagation direction and covers 30 cm in extent, and the 

red-to-blue color scale applies to the entire figure. 

Figure 7.1 illustrates the mimicry offered by the frequency-difference autoproduct. 

Generated from 3 GHz and 4 GHz fields in the same environment, the frequency-difference 

autoproduct synthetically estimates field content at the difference frequency of 1 GHz. The plots 

in Fig. 7.1(c) and Fig. 7.1(d) are identical, as shown by substituting Eq. (7.4) into Eq. (7.2) (with 

𝑧-direction corresponding the vertical transverse component),  

⟨𝐴𝑃𝑣𝑣⟩𝐵𝑊 = exp[𝑖Δ𝑘𝑥] , (7.5) 
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Figure 7.1: Frequency-difference autoproduct mimicry of a genuine lower-frequency electric 

field for plane waves. In panels (a), (b), and (c), the real component of the electric field is shown 

at 4 GHz, 3 GHz, and 1 GHz, respectively. The real part of the frequency-difference autoproduct 

at 1 GHz, determined from Eq. (7.2) with panels (a) and (b) as constituent fields, is shown in 

panel (d). Constructed from higher frequency content, the frequency-difference autoproduct (d) 

perfectly mimics the genuine electric field at the difference frequency (c) when plane waves 

sufficiently describe the field. The horizontal axes covers 30 cm in the propagation direction and 

the red-to-blue colorbar applies to all panels. 

 

where Δ𝑘 = Δ𝜔/𝑐 is the difference wavenumber. Although the match between the frequency-

difference autoproduct and the genuine electric field at the difference frequency is perfect for 

plane waves, the autoproduct should not be considered a genuine field that propagates through 

the environment. Rather, the frequency-difference autoproduct is a pseudofield, capable of 
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mimicking lower frequency content, and in the simplifying limit of plane wave propagation, the 

mimicry is perfect (Worthmann and Dowling, 2017). 

7.2.3 Single Perfectly Conducting Infinite Cylinder 

While many investigations consider the combined effects of canopy and tree trunks (Lin et al., 

1999; Sarabandi and Lin, 2000; Zhang et al., 2019), the experimental work here specifically 

assessed autoproduct remote sensing performance for electromagnetic propagation through tree 

trunks. Hence, a simple modeling strategy was designed to build autoproduct intuition using 

perfectly conducting infinite cylinders ensonified by an incident plane wave.  

The scattering of a plane wave from a perfectly conducting infinite cylinder is 

analytically tractable and the solution, determined by matching coefficients of a Bessel function 

expansion, is well known. Following (Jin, 2010), the scattered field for a TM-polarized (electric 

field aligned with cylinder axis) plane wave incident on a cylinder of radius 𝑎 centered at the 

origin is given by  

𝐸𝑧
𝑠𝑐 = − ∑ 𝑗−𝑛

𝐽𝑛(𝑘𝑎)

𝐻𝑛
(2)(𝑘𝑎)

𝐻𝑛
(2)(𝑘𝜌)𝑒𝑗𝑛𝜙

∞

𝑛=−∞

(7.6) 

where 𝐽𝑛 is the Bessel function of the first kind, 𝐻𝑛
(2)

 is the Hankel function of the second kind, 𝜌 

is the radial spatial coordinate, and 𝜙 is the angular spatial coordinate. Summation limits of ±50 

were sufficient for the numerical implementation here. Thus, the total field is given by 

𝐸𝑧
𝑡𝑜𝑡 = 𝐸𝑧

𝑖𝑛𝑐 + 𝐸𝑧
𝑠𝑐 = 𝑒−𝑗𝑘𝑥 − ∑ 𝑗−𝑛

𝐽𝑛(𝑘𝑎)

𝐻𝑛
(2)(𝑘𝑎)

𝐻𝑛
(2)(𝑘𝜌)𝑒𝑗𝑛𝜙

50

𝑛=−50

. (7.7) 

 In Fig. 7.2, genuine electric fields scattered by perfectly conducting infinite cylinder and 

the frequency-difference autoproduct constructed from the scattered fields are compared. 
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Horizontal and vertical axes cover 1.5 m in the plane orthogonal to the cylinder axis, and the 

cylinder, radius 7.5 cm, is indicated by the white circle at the origin. Each panel with 2 mm  

 

 

Figure 7.2: Scattering by a perfectly conducting infinite cylinder for a TM-polarized incident 

plane wave. The real part of the total electric field is shown at (a) 4 GHz and (b) 500 MHz. (c) 

The real part of the frequency-difference autoproduct at 500 MHz, constructed from constituent 

fields between 3 GHz and 5 GHz, mimics the genuine difference frequency field in (b) and, 

outside of the shadow zone, retains much of the phase structure of a plane wave at the difference 

frequency. The white circle denotes the cylinder of radius 7.5 cm (the wavelength at 4 GHz) and 

the horizontal and vertical axes cover ±0.75 m. 

 

resolution and the color scale extends from -2 to +2 (corresponding to total constructive 

interference of the incident and scattered waves). 

Evaluation of Eq. (7.7) at 4 GHz and 500 MHz is shown in panels (a) and (b), 

respectively. The effects of scattering are less noticeable for 500 MHz, evidenced by the lack of 

a prominent shadow zone behind the cylinder in (b), but not entirely removed as the phase 

variation does not uniformly vary from red-to-blue like the incident plane wave. Equation (7.7) 

was evaluated for 3 – 5 GHz (every 50 MHz), and the frequency-difference autoproduct was 

computed by inserting these constituent fields into Eq. (7.2) and Eq. (7.3). The frequency-

difference autoproduct at 500 MHz is shown in panel (c).  
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Several interesting autoproduct features, not present in Fig. 7.1, emerge in Fig. 7.2. The 

mimicry of the genuine difference frequency field [panel (b)] offered by the frequency-difference 

autoproduct [panel (c)] is not perfect. A significant shadow zone behind the cylinder, owing to 

the shadow zones of the constituent fields, exists for the frequency-difference autoproduct that 

does not appear so prominently in the genuine electric field at the difference frequency. Related, 

areas of constructive (and destructive) interference between the constituent incident and scattered 

fields persist through the autoproduct construction and manifest as brightly- (dimly-) colored 

regions around the shadow zone. Minor parabolic ripples in the field, centered on the cylinder, 

exist for the autoproduct, but not for the genuine field. These high frequency variations are 

artifacts of the autoproduct construction and are suppressed (become more prominent) by 

increasing (decreasing) the number of frequency pairs within the bandwidth average. Lastly, 

outside of the shadow zone, the effects of scattering are much more minimal for the autoproduct. 

The phase structure of the autoproduct, indicated by the red-to-blue color variation, is nearly 

identical to a plane wave at the difference frequency. Generally, these findings match those 

found for the acoustic frequency-difference autoproduct for Mie scattering from a sphere 

(Worthmann and Dowling, 2020a), which is not particularly surprising given the similarity of 

these two wave propagation scenarios. 

Although the mimicry of panel (b) by panel (c) is not perfect, it is compelling and 

indicates the potential advantages of autoproduct-based array signal processing. Synthetically 

estimated from higher frequency field content, like that shown in panel (a), the frequency-

difference autoproduct may provide an avenue for successful remote sensing when scattering 

effects corrupt the signal and lower frequencies were not transmitted. Additionally, the nearly 
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complete removal of scattering effects outside of the shadow zone may lead to more robust 

remote sensing performance, even if the genuine difference frequency field was accessible. 

7.2.4 Multiple Perfectly Conducting Infinite Cylinders 

To further assess the utility of the frequency-difference autoproduct, multiple perfectly 

conducting infinite cylinders were placed in the propagation medium. The single scattering 

approximation was implemented to model the scattering,  

𝐸𝑧
𝑡𝑜𝑡 = 𝐸𝑧

𝑖𝑛𝑐 +∑𝐸𝑧
𝑠𝑐

𝑄

𝑞=1

, (7.8) 

where Q is the number of scatterers. The individual contributions to the summation are 

determined from Eq. (7.6), with an appropriate phase offset to account for the location of the 

cylinder. The results of this section were computed similarly to those of the single perfect 

conducting infinite cylinder. To accommodate multiple cylinders, the horizontal and vertical 

extent was expanded to ±1.25 m, cylinder radius was reduced to 5 cm, and the grid was 

computed at 4 mm resolution. 

 In Fig. 7.3, genuine electric fields are compared to the frequency-difference autoproduct 

for scattering of a TM-polarized incident wave by five perfectly conducting infinite cylinders, 

subject to the single scattering approximation. The total electric fields at 4 GHz and 500 MHz, 

determined from Eq. (7.6) and Eq. (7.8), are shown in panel (a) and panel (b), respectively, and 

the frequency-difference autoproduct at 500 MHz is shown in panel (c). As in the previous 

section, the bandwidth-averaged frequency-difference autoproduct was computed by inserting 3 

– 5 GHz (every 50 MHz) constituent fields, computed from Eq. (7.6) and Eq. (7.8), into Eq. (7.2) 

and Eq. (7.3). The frequency-difference autoproduct at 500 MHz is shown in panel (c).  
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Figure 7.3 further demonstrates the conclusions obtained from analysis of the single 

scatterer. Originating in the higher frequency constituent fields, a pronounced shadow zone is 

maintained by the frequency-difference autoproduct. Moreover, shadow zones appear behind  

 

 

Figure 7.3: Scattering of a TM-polarized plane wave by five perfectly conducting infinite 

cylinders. The cylinders, each of radius 5 cm and denoted by the white circles, were placed 

throughout the medium, and the single scattering approximation was used to model the field. As 

in Fig. 7.2, the real part of the total electric field at 4 GHz and 500 MHz is shown in (a) and (b), 

respectively. The real part of the frequency-difference autoproduct at 500 MHz, computed from 

constituent 3 – 5 GHz fields, is shown in (c). The horizontal and vertical axes cover ±1.25 m. 

 

each individual cylinder. In the genuine difference frequency field, these shadow zones do not 

exist. For the autoproduct, both the minor parabolic ripples emanating from cylinder centers, 

suppressible by additional bandwidth averaging, and the regions of constructive/destructive 

interference surrounding the shadow zone persist to the multiple scatterer scenario of this 

section. Outside of these features, however, the frequency-difference autoproduct resembles a 

plane wave at the difference frequency, unlike the genuine field in Fig. 7.3(b). Hence, even with 

multiple scatterers, the frequency difference autoproduct shown in Fig. 7.3(c) may provide more 
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useful remote sensing outputs than conventional processing of its constituent fields, i.e. the field 

shown in Fig. 7.3(a). 

The frequencies and difference frequencies assessed in this section were selected to 

mimic the nominal experimental values. However, some modifications were made to avoid the 

aesthetic challenges of presenting field plots of drastically different frequencies on equal axes. 

As described in the next section, experimental difference frequencies were lower than those used 

in this section, effectively increasing the autoproduct’s ability to minimize scattering impacts. 

Although more complicated modeling strategies could be pursued with commercial software or 

more advanced analytical forms [for instance, the scattering of a plane wave from a dielectric 

cylinder (Jin, 2010)], single scattering approximation for perfectly conducting cylinders provided 

sufficient intuition to design the target localization experiment. 

7.3 Experiment 

To assess the remote sensing capabilities of the frequency-difference autoproduct, a target 

localization experiment was designed and performed on the University of Michigan campus. 

Equipment and design details are provided prior to discussion of the random propagation 

medium. 

7.3.1 Equipment and Design 

A key feature of the frequency-difference autoproduct is the bandwidth-averaging step defined in 

Eq. (7.3). Thus, unlike many radar schemes, a large transmitted (and receiver) bandwidth was 

desirable. The TDSR P440 Ultra Wideband radio transceivers [see (Petroff, 2012) or (Petroff, 

2014) for an overview] were used with BroadSpec linearly polarized antennas to isolate the 

desired vertical polarization of the transmitter and receiver. The P440 modules were mounted to 
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tripods as was done in previous work using the P440 (Edgar et al., 2012; Mu and Song, 2019). 

An overview of the experiment is provided in Fig. 7.4. 

The default waveform of the P440 system was used. Sampled every 61 ps (16.38 GHz 

sample rate), a laboratory recording of the waveform, away from reflective surfaces, is shown in 

Fig. 7.4(a). A secondary peak, occurring here near 2 ns, can be seen in other studies (Mu and 

Song, 2019; Petroff, 2014) and may be due to the tripod or the battery (Petroff, 2014). The 

frequency content of this pulse, by Fourier transform of Fig. 7.4(a), is shown by the black curve  

 

 

Figure 7.4: Overview of the target localization experiment. The default PulsON 440 waveform as 

recorded in laboratory environment in the time (a) and frequency (b) domain. The red crosses in 

panel (b) indicate the frequencies selected to constitute the signal bandwidth. A schematic of the 

localization experiment is shown in (c). For the same target location, the receiving array was 

designed as both a 1 m aperture array with 5 cm channel spacing and a 11 m aperture array with 

1.8 m channel spacing. The smaller array design is shown in panel (d) with the target reflector in 

the background. The park shown in (d) functions as the no-scatterer environment. 
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in Fig. 7.4(b). To ensure sufficient transmitted energy within the signal bandwidth, frequencies 

between 3.6 GHz and 4.3 GHz (nominal frequency resolution of 5.5 MHz) were maintained in 

processing and are denoted by red ×’s on Fig. 7.4(b). Hence, autoproduct difference frequencies 

only exist below 700 MHz. In practice, difference frequency selection must balance robustness 

and resolution concerns (Dowling, 2018), but quantitatively assessing that tradeoff is beyond the 

scope of the work. The difference frequency bandwidths used are presented in Chapters 7.4.1 

and 7.5.1. 

The experimental geometry is diagrammed in Fig. 7.4(c). The target, a 74.5 cm × 121.5 

cm aluminum plate shown in the background of Fig. 7.4(d), was located 12.2 m (40 ft) in range 

and 3 m (10 ft) in cross range from the center of the receiving array. Due to naturally-occurring 

obstructions in the forested environment (rocks, branches, trees), minor adjustments to the stated 

geometry were occasionally necessary. These modifications are not listed but were accounted for 

in the data processing. Two different receiving array designs were implemented. The first 

configuration, nominally well-designed for the transmitted frequencies, was a 1 m array aperture 

with 5 cm channel spacing. This 21-element array is used in Chapter 7.4 for direction-of-arrival 

finding. The second design, extremely sparse for the transmitted frequencies, was an 11 m array 

aperture with 1.8 m channel spacing. This 7-element array is implemented in Chapter 7.5 for 

localization in both direction and range. Importantly, only a single transmitter-receiver pair was 

used. For both designs, the full array was synthetically created by moving the receiver to the 

appropriate spatial location and combining all recordings. 

A picture of data collection is shown in Fig. 7.4(d). In the foreground, the transmitting 

and receiving antennas were located on a wooden plank marked with the spatial locations for the 

small-aperture array configuration. For the sparse array, transmitter and receiver were mounted 
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directly to the tripod. The location, a park on the University of Michigan campus, was a 

relatively quiescent environment free of scatterers used to assess remote sensing performance of 

the frequency-difference autoproduct no scatterers are present. 

7.3.2 Forested Environment 

The utility of the frequency-difference autoproduct is robustness against random media effects 

that corrupt remote sensing performance. By shifting analysis to lower frequencies, these 

negative effects may be minimized. Thus, the experiment reviewed in Fig. 7.4 was also 

conducted in randomly-scattering environments. Three different locations in forested areas on 

the University of Michigan campus, shown in Fig. 7.5, were selected to provide varying levels of 

scattering. 

The three areas shown in Fig. 7.5 are herein described as “light forest” and “dense 

forest.” The light forest, shown in panel (a), is characterized by skinny tree trunks and relatively 

clean line-of-sight to the target reflector and was used only for the small-aperture array design. 

 

Figure 7.5: Random forested environments used in the target localization experiments. A lightly 

scattering forest, indicated by skinny tree trunks and clean line-of-sight to the target, is shown in 

(a). A dense forest, indicated by thick tree trunks significantly corrupting line-of-sight to the 

target, is shown for the small-aperture array design in (b) and the sparse array design in (d). 
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The dense forest is characterized by thick tree trunks and poor line-of-sight to the target. Both 

the small-aperture and sparse array designs recorded in the dense forest and the locations are 

shown in panel (b) and panel (c), respectively. Notably, no effort was made to understand the 

electrical properties of the random medium. While such an endeavor would likely improve 

results, this step was avoided to investigate autoproduct-based remote sensing performance when 

very little is known about the propagation environment. 

Figure 7.6 compares sparse array time domain recordings in the park and in the dense 

forest. On the same horizontal time axis, the waterfall plots show the time domain recording of 

each receiver. The receiver axis is aligned with the diagram in Fig. 7.4(c). In panel (a), the park 

recordings show clean target reflections. In panel (b), the dense forest recordings include 

scattered arrivals throughout the time record and corruption of the target reflection envelope, as 

expected for the stronger scattering environment. 

 

Figure 7.6: Comparison of sparse array time domain recordings in the (a) park and (b) the dense 

forest. In both panels, the horizontal axis is time (in ns) from signal transmission and the receiver 

number increases along the vertical axis. The target reflection is prominent and clean for all park 

recordings, while the dense forest recordings exhibit both scattered arrivals and corruption of the 

target reflection envelope. 



 189 

7.4 Direction of Arrival Finding 

The first set of target localization results utilize the small-aperture array configuration discussed 

in Chapter 7.3 to estimate direction of arrival from the recorded signals. Prior to presentation of 

the results, conventional and autoproduct-based planewave beamforming is discussed. 

7.4.1 Plane-Wave Beamforming 

Beamforming is a ubiquitous task in remote sensing [see, for instance, (Van Veen and Buckley, 

1988)]. Here, a broadband frequency domain plane-wave beamformer is used to estimate 

direction of arrival from recorded signals: 

𝐵𝐶𝑜𝑛𝑣.(𝜃) = ⟨|∑𝐸𝑣(𝑟�⃗⃗� ,𝜔)𝑤𝑗
∗(𝑟�⃗⃗� ,𝜔)

21

𝑗=1

|

2

⟩

𝑓=3.6−4.3 GHz

, (7.9) 

where 𝜃 is the steering angle with respect to array broadside, 𝑟�⃗⃗�  is the receiver spatial location, 

and the summation is taken over the 21-element receiving array. The angular brackets indicate an 

incoherent average through the signal bandwidth. The weight vector is the phase delay associated 

with the steering angle, 

𝑤𝑗(𝑟�⃗⃗� ,𝜔)=(
𝑖𝜔𝑑𝑗 sin𝜃

𝑐
) , (7.10) 

where 𝑑𝑗 is the distance from receiver 1 (𝑑𝑗 = 0). 

 Beamforming with the frequency-difference autoproduct is performed by replacing the 

genuine electric field with the bandwidth-averaged frequency-difference autoproduct of Eq. (7.3) 

and summing over difference frequencies:  

𝐵𝐴𝑃(𝜃) = ⟨|∑⟨𝐴𝑃𝑣𝑣(𝑟�⃗⃗� ,Δ𝜔)⟩𝐵𝑊𝑤𝑗
∗(𝑟�⃗⃗� , Δ𝜔)

21

𝑗=1

|

2

⟩

Δ𝑓=105−325 MHz

, (7.11) 
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where the weight vector is evaluated at the difference frequency. The difference frequency 

bandwidth, 105 MHz ≤ Δ𝑓 ≤ 325 MHz, was chosen to be significantly lower than the 

transmitted frequency content, but not so low in frequency that the results would be 

uninteresting, given the array size. In several underwater acoustics studies (Abadi et al., 2012; 

Douglass et al., 2017; Douglass and Dowling, 2019), the bandwidth average is performed 

incoherently, rather than inside the summation, to remove dependence on the source waveform. 

This is motivated by the emphasis on passive remote sensing in acoustics and is unnecessary 

here. 

7.4.2 Results 

In all beamforming plots, Eqs. (7.9) and (7.11) were evaluated for -90°≤ 𝜃 ≤ 90°, in step size of 

0.01°. Additionally, the beamformed outputs are reported in dB, normalized to the largest value. 

The true angle of arrival was approximately 14°.  

The plane wave beamforming results for recordings in the park, light forest, and dense 

forest are shown in Fig. 7.7(a), Fig. 7.7(b), and Fig. 7.7(c), respectively. Dynamic range is 

reported on the vertical axis and the horizontal axis indicates the steering angle of the 

beamformer. The conventional (frequency-difference autoproduct) curve is shown in red (blue), 

and the true angle is denoted by the black vertical dashed line. In panel (a), both beamforming 

approaches accurately identify the direction of arrival and generally perform as expected. The 

autoproduct, owing to its effectively lower frequency content, exhibits a much larger lobe shape 

than the conventional method using the recorded electric field. The mild scattering effects of the 

light forest are illustrated in panel (b). Although both approaches identify the correct direction of 

arrival, dynamic range of the conventional approach is significantly reduced compared to the 

park results. Interestingly, the autoproduct curve is mostly unaltered from panel (a) to panel (b),  
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Figure 7.7: Direction of arrival estimation comparison between conventional (red) and 

autoproduct-based (blue) approaches in varying levels of scattering. Results from recordings 

collected in a scatterer-free park (a), light forest (b), and dense forest (c). Panels (a) and (b) share 

the same vertical limits, while vertical extent in panel (c) is much smaller. In all plots, the true 

angle is indicated by the vertical dashed line. 

 

underscoring the autoproduct’s ability to minimize the impacts of scattering. In panel (c), the 

scattering of the dense forest, shown in Fig. 7.5(b), completely corrupts the conventional plane 

wave beamforming strategy. Several local maxima exist within and the global peak incorrectly 

determines the direction of arrival by nearly 40°. Meanwhile, the frequency-difference 

autoproduct approach, computed from the same time domain recordings, currently identifies 

(4.4° error) the direction of arrival within its main lobe. The effects of scattering are not entirely 

removed, however, as the dynamic range of the autoproduct curve is reduced in panel (c) 

compared to panels (a) and (b). 

Figure 7.7 demonstrates the robustness to scattering offered by the frequency-difference 

autoproduct. To further assess the lower-frequency field mimicry of the autoproduct, simulated 

free space fields at the difference frequencies, determined only from spherical spreading 

emanating from the target location, were computed. Conventional plane-wave beamforming on 

the simulated difference frequency data is shown in blue in Fig. 7.8. The autoproduct curves  
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Figure 7.8: Direction of arrival estimation from simulated data of spherical spreading at the 

transmitted frequencies (red) and the difference frequencies (blue). The central lobe and overall 

dynamic range of the transmitted and difference frequencies generally match the conventional 

and autoproduct-based beamforming of experimental data in Fig. 7.7, respectively. 

 

shown in Fig. 7.7, particularly in panels (a) and (b), match the beamformed outputs from 

conventional processing at the lower frequencies in free space. Hence, the autoproduct appears to 

be robust to scatterers in the propagation path and mimic lower frequency field content, as 

expected from the modeling in Chapter 7.2. Conventional plane-wave beamforming of simulated 

free space fields at the transmitted frequencies is shown in red in Fig. 7.8 as well and generally 

agrees with the experimental park result in Fig. 7.7(a). 

7.5 Sparse Array Target Localization 

The second set of target localization results implement the sparse array design introduced in 

Chapter 7.3 to estimate target location from the recorded signals. Prior to presentation of the 

results, conventional and autoproduct-based spherical wave beamforming is discussed. 
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7.5.1 Spherical Wave Beamforming 

Spherical wave beamforming may be used when the array aperture is large enough to 

accommodate wavefront curvature. The implementation is similar to Eq. (7.9), 

𝐵𝐶𝑜𝑛𝑣.(𝑟𝑠⃗⃗ ) = ⟨|∑𝐸𝑣(𝑟�⃗⃗� ,𝜔)𝑤𝑗
∗(𝑟�⃗⃗� ,𝜔)

7

𝑗=1

|

2

⟩

𝑓=3.6−4.3 GHz

, (7.12) 

where 𝑟𝑠⃗⃗  is the search grid of potential target locations, and the summation is taken over the 7-

element sparse receiving array. The weight vector for spherical wave beamforming is the 

spherical spreading phase associated with the search location, 𝑟𝑠⃗⃗ , 

𝑤𝑗(𝑟𝑠⃗⃗ , 𝜔) = exp (
𝑖𝜔|𝑟𝑠⃗⃗ − 𝑟�⃗⃗� |

𝑐
) . (7.13) 

Again, the autoproduct-based beamforming approach substitutes the genuine electric field 

with the bandwidth-averaged frequency-difference autoproduct and sums over difference 

frequencies: 

𝐵𝐴𝑃(𝑟𝑠⃗⃗ ) = ⟨|∑⟨𝐴𝑃𝑣𝑣(𝑟�⃗⃗� , Δ𝜔)⟩𝐵𝑊𝑤𝑗
∗(𝑟�⃗⃗� , Δ𝜔)

7

𝑗=1

|

2

⟩

Δ𝑓=85−260 MHz

, (7.14) 

where difference frequency bandwidth, 85 MHz ≤ Δ𝑓 ≤ 260 MHz, is indicated. 

7.5.2 Results 

In all spherical wave beamforming plots, Eqs. (7.12) and (7.14) were evaluated on a 30 m × 30 

m grid with 5 cm resolution. As with the plane-wave beamforming results, outputs are reported 

in dB, normalized to the maximum value. In each plot, the true target location is indicated by a 

white circle and the beamformed estimate is shown by a sideways, black-outlined triangle. 



 194 

Sparse receiving array locations are marked by black-outlined triangles along the left of each 

plot. 

Spherical wave beamforming outputs for recordings made in the park are shown in Fig. 9. 

The red-to-blue colormap covers 15 dB of dynamic range, and conventional and autoproduct-

based outputs are shown in (a) and (b), respectively. Both approaches correctly determine the 

target location, and although the conventional approach identifies a slightly closer position, 

significant sidelobes populate the beamformed output due to the sparseness of the receiving array 

at the transmitted frequencies. For autoproduct beamforming, side lobes are entirely removed, 

owing to the effectively lower frequency content processed. As a result, the frequency-difference 

autoproduct may be an unconventional means of overcoming array sparsity. The claim of 

(effectively) lower frequency field content is further supported by examining Fig. 7.9(c). 

Conventional spherical wave beamforming of free space simulations at the difference  

 

 

Figure 7.9: Comparisons of sparse array target localization in the park. Spherical wave 

beamforming outputs are shown with 15 dB dynamic range on range (horizontal) and cross range 

(vertical) axes, each 30 m extent. Conventional processing of the transmitted frequencies is 

shown in (a) and processing of the frequency-difference autoproduct is shown in (b). In (c), 

conventional processing of simulated free space fields at the difference frequencies are shown. 

The true target location is indicated by the white circle and the beamformed estimate is shown by 

the sideways triangle. Triangles on the left of the figure denote the receiving array. 
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frequencies, akin to the computations to produce Fig. 7.8, are shown in panel (c). Again, the lobe 

shapes and sizes correlate excellently with panel (b), autoproduct-based beamforming of higher 

frequency recorded signals. 

In Fig. 7.10, the conventional (a) and frequency-difference autoproduct (b) spherical 

wave beamforming outputs are shown for recordings made in the dense forest. The random 

scattering caused by the dense forest, evident in the time domain recordings of Fig. 7.6(b), 

persists through the beamforming calculations. Both approaches incorrectly localize the target, 

but the autoproduct-based error (1.7 m) is a near miss and may be sufficient for some 

applications. Additionally, the autoproduct beamformed output is characterized by one major 

lobe, providing robustness in the estimated location. The shape of the lobe, although with 

reduced dynamic range, generally matches the plots shown in Fig. 7.9(b) and Fig. 7.9(c), 

indicative of mitigation of scattering effects. Meanwhile, many spurious peaks exist for the  

 

 

Figure 7.10: Comparisons of sparse array target localization for recordings in dense forest. 

Spherical wave beamforming outputs are shown with 10 dB dynamic range on range (horizontal) 

and cross range (vertical) axes, each 30 m extent. Conventional processing of the transmitted 

frequencies is shown in (a) and processing of the frequency-difference autoproduct is shown in 

(b). The true target location is indicated by the white circle and the beamformed estimate is 

shown by the sideways triangle. Triangles on the left of the figure denote the receiving array. 
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conventional processing approach, and the error (3 m) associated with the estimate is greater. 

In wave propagation through random media, noise and timing jitter are common 

considerations. To assess autoproduct performance in the presence of these concerns, random 

noise and time delays were added in post-processing to the recorded signals shown in Fig. 7.6(b). 

Gaussian noise was added to the signal to reduce the signal-to-noise ratio (SNR) from ~20 dB to 

~3 dB. Here, the approximate SNR was determined from a single receiver by isolating 10 ns near 

the target reflection and 10 ns near the end of the time record (where only noise exists). The SNR 

was then reported as one number by averaging across the signal bandwidth (in the frequency 

domain). Timing jitter was added by inserting random time delays to recorded signals with 

standard deviation of 0.4 ns. A 0.4 ns timing delay corresponds to spatial offset of 12 cm along 

the entire path length, well within experimental errors of transmitter, receiver, and target 

position. Computed from the same noisy, time-delayed signals, the conventional and frequency-

difference autoproduct beamformed outputs are compared in Fig. 7.11. 

Figure 7.11 demonstrates the benefit of the robust processing offered from the lower 

frequencies accessed by the frequency-difference autoproduct. Processing of the genuine electric 

field in panel (a) is nearly entirely useless. Poor localization (4 m error) is accompanied by a 

complete lack of dynamic range. On the other hand, a prominent main lobe exists in the 

autoproduct-based beamformed output of panel (b). Although the localization accuracy is not 

perfect (2 m error), the autoproduct approach suppresses spurious peaks and maintains 6 dB of 

dynamic range. 

Finally, for some propagation scenarios, the random media may vary in time and/or the 

scatterers may not be stationary. In these cases, averaging the beamformed outputs from 

individual snapshots may improve localization performance. The sparse array target localizations  
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Figure 7.11: Comparisons of sparse array target localization for recordings in dense forest with 

added noise and timing jitter. Gaussian noise was added in the time domain to reduce the signal-

to-noise ratio by 16.5 dB and the recorded signals were randomly time delayed with standard 

deviation of 0.4 ns. Spherical wave beamforming outputs are shown with 6 dB dynamic range on 

range (horizontal) and cross range (vertical) axes, each 30 m extent. Conventional processing of 

the transmitted frequencies is shown in (a) and processing of the frequency-difference 

autoproduct is shown in (b). The true target location is indicated by the white circle and the 

beamformed estimate is shown by the sideways triangle. Triangles on the left of the figure 

denote the receiving array. 

 

 

Figure 7.12: Average beamforming outputs for four target localization experiments in the park 

and in the dense forest. Conventional processing of the transmitted frequencies is shown in (a) 

and processing of the frequency-difference autoproduct is shown in (b). The true target location 

is indicated by the white circle and the beamformed estimate is shown by the sideways triangle. 

Triangles on the left of the figure denote the receiving array. 
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were conducted twice in both the park and the dense forest to imitate this scenario. Results from 

incoherently averaging the four beamformed outputs, two in the park and two in the forest, are 

shown in Fig. 7.12. When averaged, the highly varying conventional beamformed outputs 

significantly reduce the dynamic range of panel (a) and lead to a false localization result (6.8 m 

error). Meanwhile, the individual frequency-difference beamforming outputs contain a single 

lobe near the target location, see Figs. 7.9(b) and 7.10(b). Thus, averaging produces one central 

lobe, exhibiting 10 dB of dynamic range, with an accurate localization estimate (1.2 m). 

7.6 Conclusion 

The frequency-difference autoproduct is a pseudofield that synthetically estimates lower 

frequency field content through a quadratic product of higher frequency complex field 

amplitudes (Dowling, 2018). Generally investigated in acoustic propagation in ocean 

environments (Abadi et al., 2012; Douglass et al., 2017; Geroski et al., 2023; Joslyn et al., 2022; 

Worthmann et al., 2015), the frequency-difference concept has recently been used in seismic 

wave backprojection (Neo et al., 2022) and numerically-studied for electromagnetics (Geroski, 

2021). The purpose of this work was to establish the electromagnetic frequency-difference 

autoproduct, a dyadic quantity constructed from the outer product of the electric field vector with 

itself at different frequencies, and explore its potential to enhance conventional electromagnetic 

remote sensing capabilities. Lower frequency field mimicry, critical to the success of 

autoproduct-based array signal processing, is assessed for plane wave propagation and scattering 

of plane wave by perfectly conducting infinite cylinders. Target localization experiments were 

conducted with and without scatterers in the propagation path, and the scattering strength of the 

randomly-located scatterers was varied by performing experiments in both lightly and densely 

forested areas on the University of Michigan campus. In simulations and experiments, only the 
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vertically-polarized element of the electric field, and therefore only the vertically-vertically 

polarized element of the dyadic autoproduct quantity, was considered. 

Three conclusions are supported by the work presented here. First, the electromagnetic 

frequency-difference autoproduct is a measurable pseudofield quantity, capable of synthesizing 

lower frequency field content from higher recorded frequencies. The mimicry offered by the 

frequency-difference autoproduct is perfect for plane waves, but exhibits some caveats in more 

complicated environments. In particular, the frequency-difference autoproduct constructed from 

TM-polarized waves scattered from perfectly conducting infinite cylinders shares some features 

with the genuine electric field at the difference frequency, but mimicry is limited in the shadow 

zones, as expected from a scattering study of the acoustic autoproduct (Worthmann and 

Dowling, 2020a). 

Second, the frequency-difference autoproduct provides a unique means of dealing with 

sparse arrays. Array configurations, sparse at the transmitted frequencies, may no longer be 

sparse for sufficiently low difference frequencies. As shown herein, by downshifting the 

recorded frequencies, prominent sidelobes in conventional spherical wave beamforming 

ambiguity surfaces were entirely removed in corresponding plots using frequency-difference 

autoproduct processing. 

The third conclusion is that the frequency-difference autoproduct provides robust remote 

sensing performance in the presence of random scattering. By mimicking lower frequency field 

content where the impacts of scattering are less severe, the frequency-difference autoproduct 

minimizes the deleterious scattering effects and may be used in array signal processing tasks, 

even when the constituent fields contain significant scattering. Both direction of arrival and 

localization estimates, computed by beamforming signals recorded in forests with randomly-
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located tree trunks of varying size, were improved from estimates obtained by conventional 

processing of the electric field. Moreover, random noise and timing jitter appear to be mitigated 

by the frequency-difference autoproduct as well, but further study is required.  

Overall, the results presented here are positive. The electromagnetic frequency-difference 

autoproduct appears to be a genuine, meaningful quantity capable of enhancing array signal 

processing methodologies. Furthermore, the findings obtained here generally agree with acoustic 

autoproduct theory. Although this study was limited to the 𝑣𝑣-element of the autoproduct dyadic, 

the conclusions should apply to the ℎℎ-element as well. 
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Chapter 8  

Conclusions and Future Work 

 

8.1 Conclusions 

Broadly, this thesis covers two main objectives: recovery of coherence facilitated by the 

autoproduct and extensions to standard autoproduct theory. The thesis supports seven major 

conclusions related to these objectives. The listed conclusions require synthesis of contributions 

from several chapters or generalize beyond the work of any individual chapter. Chapter-

dependent conclusions may be found in the final sections of Chapter 2 – 7. 

 

1. Autoproduct coherence exists, and it is a theoretically-predictable and experimentally-

measurable quantity. The increased coherence offered by the autoproduct underlies all 

previous remote sensing studies [i.e. (Douglass and Dowling, 2019; Geroski and 

Dowling, 2019; Worthmann et al., 2015)], yet, outside of (Douglass, 2019), actual 

measures of the coherence had not been reported. This thesis contains the first published 

work on autoproduct coherence itself (in Chapter 5), rather than its impact on array signal 

processing. Further, the theoretical development of autoproduct coherence, by way of the 

coherent reflection coefficient in Chapters 2 – 4, is unique to this thesis. 
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2. Recovery of coherent reflection in acoustic signals scattered from a randomly rough 

surface is possible by the frequency-difference autoproduct. Quantified by the coherent 

reflection coefficient, the first moment of the scattered field, much of Chapters 2 – 4 

examine this concept. Important for array signal processing applications, the coherent 

reflection coefficient of the frequency-difference autoproduct can approach unity (ideal 

coherence) even when the coherent reflection coefficient of the constituent scattered 

fields is near zero (total incoherence).  Coherent reflection recovery is shown for 

measurements collected in a laboratory water tank, the Pacific Ocean, and the Atlantic 

Oceans in Fig 2.10, Fig. 3.5, and Fig 4.7, respectively.  

 

3. Recovery of coherent reflection is predictable from analytic equations. Equation (4.8) 

details a (numerically evaluated) formula relating an arbitrary surface autocorrelation 

function to the frequency-difference autoproduct coherent reflection coefficient. Under 

the assumption of a Gaussian surface autocorrelation function, an analytic formula, 

indicated in Eq. (2.20) and Eq. (3.4) may be derived, as shown in Chapter 2.2.3. 

Discussed in Chapter 4.2.3, the Fourier pair relationship between autocorrelation and 

power spectrum admits dependence of autoproduct formulas on the surface-height-

fluctuation power spectrum. Theoretical predictions accompany the measurements of 

coherent reflection coefficients in Fig 2.10, Fig. 3.5, and Fig 4.7. 

 

4. The predictability of autoproduct-based coherent reflection recovery provides a 

mechanism for environmental inversion from surface-scattered acoustic signals recorded 

by a single receiver. Provided a representation of the surface fluctuations (autocorrelation 
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or power spectrum) exists, refinements to the nominal surface characteristics may be 

made. Chapter 3 and Chapter 4 explore this possibility for an ocean surface well-

described by a Gaussian autocorrelation function and an ocean surface possessing a non-

analytic power spectrum, respectively. In both chapters, minor modifications within 

noted experimental uncertainties produced better agreement between theoretical and 

measured autoproducts. Interestingly, the adjustments found in Chapter 3 match those 

determined 25 years ago from analysis of spatial coherence with multiple receivers in the 

same environment (Dahl, 1996). 

 

5. Extensions to the standard quadratic autoproduct used in acoustics are possible and 

follow the intuition built from quadratic autoproduct theory. Chapter 6 investigates 

higher-order autoproducts in underwater acoustics, with the primary focus on the cubic 

frequency-difference autoproduct. The cubic frequency-difference autoproduct is 

formulated and the governing field equation shows similarities to the quadratic 

autoproduct field equation determined in (Worthmann and Dowling, 2017). In Chapter 7, 

the electromagnetic frequency-difference autoproduct, initially studied in (Geroski, 

2021), is investigated numerically and experimentally. The dyadic autoproduct quantity, 

formed from an outer product of the recorded electric field vector, is formulated and the 

numerically-evaluated autoproduct in scattering from a perfectly conducting infinite 

cylinder shares features with the acoustic autoproduct in Mie scattering from a sphere 

(Worthmann and Dowling, 2020a).  
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6. The bandwidth-averaged cubic frequency-difference autoproduct provides an 

unconventional means of noise suppression within the signal bandwidth. The large 

number of cubic autoproduct samples possible, detailed in Eq. (6.14) and discussed in 

Chapter 6.3, reduce the impact of noise when averaged together. As the cubic frequency-

difference autoproduct is a pseudofield representation of frequencies within the signal 

bandwidth (see field comparisons in a uniform half-space in Chapter 6.2.3), the cubic 

frequency-difference autoproduct may be used in array signal processing to reduce noise 

and maintain resolution. Using acoustic measurements collected in the Atlantic Ocean (of 

both signal and ambient noise), the cubic frequency-difference autoproduct was able to 

determine the direction of arrival, even when the noise power corrupted direction of 

arrival estimates computed from the recorded field. Comparisons of conventional and 

cubic autoproduct-based processing for direction of arrival estimation are shown in Fig. 

6.6 and Fig. 6.7. 

 

7. The electromagnetic frequency-difference autoproduct may be employed to mitigate two 

common problems in array signal processing: array sparsity and random scattering. At 

sufficiently-low difference frequencies, any array configuration is no longer sparse and 

the effects of random scattering are less prominent. Active localization of a metallic 

target (located approximately 12.2 m from the transmitting and receiving antennas) 

positioned in a randomly-scattering forested area supported these claims. Direction of 

arrival estimates, computed from recordings made by a small aperture array, are shown in 

Fig. 7.7. Spherical wave beamforming plots, computed from recordings made by a sparse 

array, are shown in Figs. 7.9 – 7.12.  
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8.2 Future Work 

This thesis provides the groundwork for several further investigations. In particular, many 

remote sensing avenues are possible given the formal establishment of the cubic frequency-

difference autoproduct and the electromagnetic frequency-difference autoproduct. Additionally, 

the work on rough surface scattering has natural extensions. A few possibilities are outlined 

below. 

 

Frequency-difference autoproducts constructed from acoustic fields scattered by a randomly-

varying ocean surface were investigated thoroughly in Chapters 2 – 4. Extensions to surfaces 

defined by power spectra not explored here, for instance the popular Pierson-Moskowitz 

spectrum (Thorsos, 1990), are clearly possible. For signal processing tasks reliant on surface 

reflection, autoproduct formulas for additional power spectra may lead to improved outcomes. 

Also, given the ability to perform surface inversion (see Chapters 3 and 4), additional power 

spectra may provide better environmental characterization. For Pierson-Moskowitz, the 

autocorrelation function shown in (Yang et al., 2020) may be a good place to start.  

 

Given the existence of Eq. (4.8), which numerically predicts the frequency-difference 

autoproduct coherent reflection coefficient for scattering from a surface with arbitrary 

autocorrelation function, perhaps the more fruitful avenue of research in this area concerns 

scattering from the seafloor. Unlike the sea surface, a constant reflection coefficient (of –1) 

cannot be assumed as sound incident on the ocean floor is both transmitted and reflected. 

Furthermore, the seafloor is not time-varying, so the ensemble average utilized in derivations of 

coherent reflection coefficients cannot be directly applied. However, obtaining recordings of 
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sound scattered from different bottom locations and averaging may be equivalent (Clay, 1966). 

Seafloor scattering is a popular area of current research (Brown et al., 2018; Olson, 2023; Olson 

and Jackson, 2020), and autoproduct studies could proceed with theory, simulation, or 

experiment. 

 

Several directions exist for future research using the cubic frequency-difference autoproduct. 

Multipath arrivals can cause issues for quadratic autoproducts, due to the proliferation of cross 

terms, and this problem is amplified for the cubic autoproduct, as shown in Chapter 6.2.3. Thus, 

assessing the performance of cubic autoproduct-based array signal processing algorithms, i.e. 

matched field processing, in multipath environments is a critical next step. Experimental 

geometries with longer ranges, propagation through more complicated environments, or the 

presence of a genuine noise source, rather than artificially inflating the ambient noise as in 

Chapter 6, are potential future directions as well. 

 

Similarly, the establishment of the electromagnetic frequency-difference autoproduct opens 

many exciting areas of research. For the experiment discussed in Chapter 7, selection of an 

omnidirectional target reflector, i.e. a curved metallic surface, ensonifies more scatterers in the 

propagation path, thereby increasing the random scattering strength. Assessment of the three 

other nonzero elements of the frequency-difference autoproduct dyadic represents the most 

interesting future research. Simulations conducted in (Geroski, 2021) demonstrated the ℎℎ-

polarized element was more robust to vertical scatterers than the 𝑣𝑣-polarized element. Hence, a 

target localization experiment, equivalent that of Chapter 7, using horizontally-polarized electric 

fields may provide even more compelling autoproduct remote sensing performance. The cross-
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polarized elements have no analogue to acoustics (a scalar wave field), and thus would provide 

an entirely new avenue of autoproduct-based research.  

 

As a final possibility, the work of Chapters 2 – 4 and Chapter 7 provide the basis for studying the 

frequency-difference autoproduct constructed from rough-surface-scattered constituent electric 

fields. In electromagnetics, scattering matrices are dyadic quantities themselves, so the 

mathematics may become tedious. However, the recovery of coherent reflection at sufficiently-

low difference frequencies is likely to persist to electromagnetics, which may be of interest to 

practitioners in the area. 
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Appendix  

Bandwidth-Averaged Cubic Frequency-Difference Autoproduct in a Two-Path 

Environment 

 

This appendix provides auxiliary information for the analytical derivation of Chapter 

6.2.3: Cubic Frequency-Difference Autoproduct in Lloyd’s Mirror Environment. Lloyd’s mirror, 

a uniform half-space with a constant reflection coefficient at the surface, is the simplest 

multipath environment to assess the bandwidth-averaged cubic frequency-difference and was 

used in a previous study of quadratic autoproducts (Lipa et al., 2018). In this environment, the 

bandwidth-averaged cubic frequency-difference autoproduct is a lengthy combination of self-

path terms and cross-path terms. Much of this clutter was removed in Eq. (6.12) through use of 

𝛾1 and 𝛾2. An overview of the derivation producing Eq. (6.12) accompanies enumeration of these 

variables. 

The theoretical Green’s function for Lloyd’s mirror is 

𝐺(𝒓, 𝜔) =
𝑃(𝒓, 𝜔)

𝑆(𝜔)
=
𝑒𝑖𝜔𝜏1

𝑟1
−
𝑒𝑖𝜔𝜏2

𝑟2
, (A1) 

where 𝑟1,2 are the direct and reflected path distances, 𝜏1,2 = 𝑟1,2/𝑐, and the reflection coefficient 

of –1 for the water-air interface is the coefficient of the second term. The cubic frequency-

difference autoproduct [Eq. (6.2)], 𝐴𝑃𝐼𝐼𝐼(𝒓, 𝜔1, 𝜔2, Δ𝜔) = 𝑃(𝒓, 𝜔1)𝑃(𝒓, 𝜔2)𝑃
∗(𝒓,𝜔3), may be 

bandwidth averaged as shown in Eq. (6.9) and reproduced here, 
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⟨𝐴𝑃𝐼𝐼𝐼(𝒓, Δ𝜔)⟩𝐵𝑊 =
1

𝛽𝐻
Δ − 𝛽𝐿

Δ∫ 𝑑(𝜔)
𝛽𝐻
Δ

𝛽𝐿
Δ

[
1

𝛼𝐵𝑊
Δ ∫

𝐴𝑃𝐼𝐼𝐼(𝒓, 𝜔1, 𝜔2, Δ𝜔)

𝑆(𝜔1)𝑆(𝜔2)𝑆∗(𝜔3)
𝑑(Δ𝜔1)

𝛼𝐵𝑊
Δ

0

] . (A2) 

Analytical evaluation of Eq. (A2) requires careful consideration of the limits of integration. The 

selection of the inner limit, 𝛼𝐵𝑊
Δ = min[2𝜔 − 2Ω𝐿 ,  2Ω𝐻 − 2𝜔], depends on the outer 

integration variable, 𝜔, and may take on either value of the argument. In fact, for Ω𝐿 ≤ Δ𝜔 ≤

Ω𝐻, the emphasis of this work, analytical evaluation of Eq. (A2) requires breaking the integral 

into two parts, 

⟨𝐴𝑃𝐼𝐼𝐼(𝒓, Δ𝜔)⟩𝐵𝑊 =
1

𝛽𝐻
Δ − 𝛽𝐿

Δ

{
 
 

 
 ∫ 𝑑(𝜔)

Ω𝐶

𝛽𝐿
Δ

[
1

𝛼𝐵𝑊
Δ ∫

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔)

𝑆(𝜔1)𝑆(𝜔2)𝑆∗(𝜔3)
𝑑(Δ𝜔1)

𝛼𝐵𝑊
Δ

0

]

+∫ 𝑑(𝜔)
𝛽𝐻
Δ

Ω𝐶

[
1

𝛼𝐵𝑊
Δ ∫

𝐴𝑃𝐼𝐼𝐼(𝒓, 𝜔1, 𝜔2, Δ𝜔)

𝑆(𝜔1)𝑆(𝜔2)𝑆∗(𝜔3)
𝑑(Δ𝜔1)

𝛼𝐵𝑊
Δ

0

]
}
 
 

 
 

, (A3) 

where the first integral sets 𝛼𝐵𝑊
Δ = 2𝜔 − 2Ω𝐿 and the second integral sets 𝛼𝐵𝑊

Δ = 2Ω𝐻 − 2𝜔. 

Since Δ𝜔 resides within the signal bandwidth, 𝛽𝐿
Δ = (Ω𝐿 + Δ𝜔)/2 and 𝛽𝐻

Δ = (Ω𝐻 + Δ𝜔)/2. 

Substitution of Eq. (6.11) (a cubic autoproduct sample in Lloyd’s mirror environment) 

into the first integration term of Eq. (A3) yields a double integration of the six terms constituting 

a single cubic autoproduct sample. While the inner integration is rather mundane, the outer 

integral requires an integration by parts and integral tabulations (i.e. Mathematica). Hence, 

∫ 𝑑(𝜔)
Ω𝐶

𝛽𝐿
Δ

[
1

𝛼𝐵𝑊
Δ ∫

𝐴𝑃𝐼𝐼𝐼(𝒓,𝜔1, 𝜔2, Δ𝜔)

𝑆(𝜔1)𝑆(𝜔2)𝑆∗(𝜔3)
𝑑(Δ𝜔1)

𝛼𝐵𝑊
Δ

0

] = (Ω𝐶 − 𝛽𝐿
Δ) {

𝑒𝑖Δ𝜔𝜏1

𝑟1
3 −

𝑒𝑖Δ𝜔𝜏2

𝑟2
3 } (A4) 

+
1

Δτ
{
𝑖𝑒𝑖Δ𝜔𝜏2

2𝑟1
2𝑟2

(𝑒−2𝑖𝛽𝐿
ΔΔ𝜏 − 𝑒−2𝑖Ω𝐶Δ𝜏) +

𝑖𝑒𝑖Δ𝜔𝜏1

2𝑟1𝑟2
2 (𝑒

2𝑖𝛽𝐿
ΔΔ𝜏 − 𝑒2𝑖Ω𝐶Δ𝜏)} 

−
2𝑒𝑖Δ𝜔𝜏1

𝑟1
2𝑟2Δ𝜏

[−
𝑖𝑒𝑖Ω𝐿Δ𝜏

2
(−Ei[2𝑖(𝛽𝐿

Δ −Ω𝐿)Δτ] + Ei[2𝑖(Ω𝐶 − Ω𝐿)Δτ] + ln [
𝛽𝐿
Δ − Ω𝐿
Ω𝐶 − Ω𝐿

])] 

+
2𝑒𝑖Δ𝜔𝜏2

𝑟1𝑟2
2Δ𝜏

[ 
𝑖𝑒−𝑖Ω𝐿Δ𝜏

2
(−Ei[−2𝑖(𝛽𝐿

Δ − Ω𝐿)Δ𝜏] + Ei[−2𝑖(Ω𝐶 − Ω𝐿)Δ𝜏] + ln [
𝛽𝐿
Δ − Ω𝐿
Ω𝐶 − Ω𝐿

])], 
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where Ei(𝑥) is the exponential integral function of argument 𝑥 and ln(𝑥) is the natural logarithm 

of argument 𝑥. Evaluation of the second integration term in Eq. (A3) proceeds similarly. 

However, the difference in sign of 𝜔 in the upper limit of the inner integral produces a slightly 

different result: 

∫ 𝑑(𝜔)
𝛽𝐻
Δ

Ω𝐶

[
1

𝛼𝐵𝑊
Δ ∫

𝐴𝑃𝐼𝐼𝐼(𝒓, 𝜔1, 𝜔2, Δ𝜔)

𝑆(𝜔1)𝑆(𝜔2)𝑆∗(𝜔3)
𝑑(Δ𝜔1)

𝛼𝐵𝑊
Δ

0

] = (𝛽𝐻
Δ − Ω𝐶) {

𝑒𝑖Δ𝜔𝜏1

𝑟1
3 −

𝑒𝑖Δ𝜔𝜏2

𝑟2
3 } (A5) 

+
1

Δτ
{
𝑖𝑒𝑖Δ𝜔𝜏2

2𝑟1
2𝑟2

(𝑒−2𝑖Ω𝐶Δ𝜏 − 𝑒−2𝑖𝛽𝐻
ΔΔ𝜏) +

𝑖𝑒𝑖Δ𝜔2𝜏1

2𝑟1𝑟2
2 (𝑒2𝑖Ω𝐶Δ𝜏 − 𝑒2𝑖𝛽𝐻

ΔΔ𝜏)} 

−
2𝑒𝑖Δ𝜔𝜏1

𝑟1
2𝑟2Δ𝜏

[
𝑖𝑒𝑖Ω𝐻Δ𝜏

2
(Ei[2𝑖(Ω𝐶 − Ω𝐻)Δ𝜏] − Ei[2𝑖(𝛽𝐻

Δ − Ω𝐻)Δ𝜏] + ln [
Ω𝐻 − 𝛽𝐻

Δ

Ω𝐻 − Ω𝐶
])] 

+
2𝑒𝑖Δ𝜔𝜏2

𝑟1𝑟2
2Δ𝜏

[−
𝑖𝑒−𝑖Ω𝐻Δ𝜏

2
(Ei[−2𝑖(Ω𝐶 −Ω𝐻)Δ𝜏] − Ei[−2𝑖(𝛽𝐻

Δ − Ω𝐻)Δ𝜏] + ln [
Ω𝐻 − 𝛽𝐻

Δ

Ω𝐻 − Ω𝐶
])]. 

Insertion of Eq. (A4) and Eq. (A5) into Eq. (A3) produces, after grouping of like terms 

and simplification, the bandwidth-averaged cubic frequency-difference autoproduct in a Lloyd’s 

mirror environment for Ω𝐿 ≤ Δ𝜔 ≤ Ω𝐻: 

⟨𝐴𝑃𝐼𝐼𝐼(𝒓, Δ𝜔)⟩𝐵𝑊 =
𝑒𝑖Δ𝜔𝜏1

𝑟1
3 −

𝑒𝑖Δ𝜔𝜏2

𝑟2
3 +

1

(𝛽𝐻
Δ − 𝛽𝐿

Δ)Δ𝜏
[
𝛾1
𝑟1
2𝑟2

+
𝛾2
𝑟1𝑟2

2] (A6) 

where 𝛾1 and 𝛾2 are determined from terms with a 1/𝑟1
2𝑟2 and a 1/𝑟1𝑟2

2 coefficient, respectively. 

Thus, 

𝛾1 =
𝑖𝑒𝑖Δ𝜔𝜏2

2
(𝑒−2𝑖𝛽𝐿

ΔΔ𝜏 − 𝑒−2𝑖𝛽𝐻
ΔΔ𝜏) (A7) 

−𝑒𝑖Δ𝜔𝜏1 {𝑖𝑒𝑖Ω𝐻Δ𝜏 (Ei[2𝑖(Ω𝐶 −Ω𝐻)Δ𝜏] − Ei[2𝑖(𝛽𝐻
Δ −Ω𝐻)Δ𝜏] + ln [

Ω𝐻 − 𝛽𝐻
Δ

Ω𝐻 −Ω𝐶
]) 

− 𝑖𝑒𝑖Ω𝐿Δ𝜏 (−Ei[2𝑖(𝛽𝐿
Δ −Ω𝐿)Δτ] + Ei[2𝑖(Ω𝐶 − Ω𝐿)Δτ] + ln [

𝛽𝐿
Δ − Ω𝐿
Ω𝐶 − Ω𝐿

])} 

and 
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𝛾2 =
𝑖𝑒𝑖Δ𝜔𝜏1

2
(𝑒2𝑖𝛽𝐿

ΔΔ𝜏 − 𝑒2𝑖𝛽𝐻
ΔΔ𝜏) (A8) 

+𝑒𝑖Δ𝜔𝜏2 { 𝑖𝑒−𝑖Ω𝐿Δ𝜏 (−Ei[−2𝑖(𝛽𝐿
Δ − Ω𝐿)Δ𝜏] + Ei[−2𝑖(Ω𝐶 − Ω𝐿)Δ𝜏] + ln [

𝛽𝐿
Δ −Ω𝐿
Ω𝐶 − Ω𝐿

])

− 𝑖𝑒−𝑖Ω𝐻Δ𝜏 (Ei[−2𝑖(Ω𝐶 −Ω𝐻)Δ𝜏] − Ei[−2𝑖(𝛽𝐻
Δ − Ω𝐻)Δ𝜏] + ln [

Ω𝐻 − 𝛽𝐻
Δ

Ω𝐻 − Ω𝐶
])} 

The symmetry between 𝛾1 and 𝛾2 is expected due to their encapsulation of cross terms 

arising from one reflected-path field factor and two reflected-path field factors, respectively. 

Interestingly, of the 8 terms captured by 𝛾1,2, 6 of these terms, shown in curly braces, 

asymptotically tend to 0 with increasing bandwidth. As the bandwidth increases, the 

combinations of Ei terms approach 0 and the argument of the logarithmic terms approaches 

unity. The remaining two terms feature no suppression mechanisms. However, as noted in 

Chapter 6.2.3, all eight terms are preceded by 1/(𝛽𝐻
𝛥 − 𝛽𝐿

𝛥)Δ𝜏 factor in the full formula in Eq. 

(A6), corresponding to additional cross term suppression for large bandwidths or large arrival 

time differences. 

Analytical formulas for Δ𝜔 < Ω𝐿 and Δ𝜔 > Ω𝐻 are obtainable by direct evaluation of 

Eq. (A2) with appropriate selection of the limits, [𝛼𝐵𝑊
Δ = 2𝜔 − 2Ω𝐿; 𝛽𝐿

Δ = Ω𝐿; 𝛽𝐻
Δ =

(Ω𝐻 + Δ𝜔)/2] and [𝛼𝐵𝑊
Δ = 2Ω𝐻 − 2𝜔 ; 𝛽𝐿

Δ = (Ω𝐿 + Δ𝜔)/2 ; 𝛽𝐻
Δ = Ω𝐻], respectively. Due to 

the focus of the cubic frequency-difference autoproduct on mimicking frequency content within 

Ω𝐿 ≤ Δ𝜔 ≤ Ω𝐻, those forms were not pursued here. 
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