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ABSTRACT

Interactive Task Learning (ITL) is an approach to designing robots that can learn tasks on the fly

from human instruction and demonstration in a shared environment. ITL approaches until now

have focused on extending a robot’s capabilities so that it can efficiently learn a wide variety of task

components as a part of hierarchical tasks from an expert human instructor. However, the typical

instructor is likely to be a non-expert who does not have a good mental model of the robot’s physical

and mental capabilities and is therefore likely to face challenges during the teaching process. Our

hypothesis is that we need to focus on building better robot learners that actively interact to make

the teaching process more accessible and efficient for the non-expert teacher.

Towards this goal, we conducted a human participant think-aloud study (N=14) where we asked

participants to teach a multi-step hierarchical task of baking a pizza to an ITL robot in a simulated

environment. We built a templated instruction interface, which participants could use to provide

two types of action and two types of goal instructions to the robot. In this dissertation, we present

a qualitative analysis of the data collected from this study. We identify the different types of

knowledge that non-expert teachers leveraged during instruction, namely knowledge about the task,

environment, interface, and robot. Participants had access to this knowledge as a result of their prior

experiences as well as through interaction with the robot using the interface and the environment.

We also present our characterization of different aspects of the teaching processes used by non-

expert teachers. We observed that participants developed complex strategies to teach the task to the

robot. They actively evaluated the robot’s task progress and became effective at teaching the task.

However, we found that participants encountered challenges during the teaching process, which

included difficulty in providing desired instructions and encountering failure situations. Participants

also found the knowledge about the task, environment, interface, and robot to be insufficient at
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times, which led them to have incomplete and incorrect mental models. However, participants

were motivated to continue teaching even after encountering these challenges and 13 out of 14

participants successfully finished teaching the task to the robot.

To address challenges faced by non-expert teachers, we propose extensions to existing robot

interaction approaches that would allow the robot to use its knowledge of the various aspects of the

task and itself to help the instructor teach better. To enable the non-expert instructor to provide their

desired instructions, we propose extensions to the instruction interface to allow for more complex

instructions and accommodate free-form instructions when necessary. To improve the instructor’s

mental models, we propose that the robot can leverage its access to various sources of knowledge

to provide relevant updates and knowledge to the instructor. To determine how the robot can help

the non-expert instructor recover from these failures, we recommend the need for more research to

understand more about the different failures that can occur during teaching and to conduct studies

to evaluate how non-experts can effectively resolve them. In the end, we emphasize the value of

iterative development in this dissertation towards creating robots that can successfully interact with

non-experts in the real world.
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CHAPTER 1

Introduction

We envision a future where robots will operate alongside humans in dynamic environments such

as homes, offices, hospitals, and warehouses. These can take the form of performing high-effort

tasks in warehouses or assisting older populations at their homes doing everyday chores. To truly

contribute effectively across these domains, the robots need to be able to perform tasks more diverse

than can be planned for at design time. An attractive solution is to enable people to teach robots

new tasks and relevant information about their environments on the fly.

Interactive Task Learning (ITL) [31] is a research approach that contributes to this solution

through the design of agents and robots that can learn complete task definitions and associated

knowledge through natural interaction with a human instructor. ITL approaches until now have

focused on extending a robot’s capabilities so that it can efficiently learn a wide variety of task com-

ponents from a human instructor and also leverage its knowledge to improve its task performance.

This focus on learning and performance relies on the assumption that the instructor is an expert

who has a good mental model of the learner robot, i.e., the instructor has a good understanding of

what the learner robot’s physical capabilities, what it knows and does not know, how it processes

information, how new instructions will interact with previous instructions, and whether it can apply

its knowledge to do tasks in the environment and how it proceeds to do so.

This knowledge is vital because, without reasonable estimates of a learner robot’s capabilities,

it is challenging for a human teacher to teach efficiently and effectively. ITL relies on the fact that

people interactively teach each other, and they can leverage that skill to teach robots as well. People
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are successful at teaching other people because they leverage their common ground [13, 27] to

determine the learner’s knowledge and capabilities and teach accordingly. However, in the case of

human-robot teaching interactions, people do not share similar common ground with the robot to

leverage during instruction unless the instructor is an expert with specialized knowledge about the

robot. In fact, if the instructor (irrespective of being an expert or not) has never interacted with this

robot before, they are likely to possess incomplete or incorrect assumptions about what the robot

knows, can do, or cannot do. This will likely result in challenges that an instructor will face while

teaching the robot, such as encountering failures due to imperfect and inefficient instructions.

Prior work has examined methods such as robot transparency (What can the robot see right

now?), providing explanations (I don’t know what a block is), asking for help (Can you tell me

what a block is?) to improve individual task performance (how can the robot successfully build a

tower?). While that work has demonstrated that such mechanisms improve a person’s mental model

of the robot, it has been limited to the scope of the robot learning individual actions or performing

known tasks. There is little work on what, when, and how the robot should communicate to improve

human-robot teaching interaction, particularly for multi-step, hierarchical tasks.

My hypothesis is that we need to focus on building better robot learners that actively interact

in a way to make the teaching process more accessible and efficient for the non-expert teacher. A

learner must understand what the teacher intends with each instruction and respond appropriately

while absorbing new information as it is presented. As a first step to understanding the properties

of such interaction, we need to identify the current gaps that make the teaching process difficult for

a non-expert. Toward this goal, this dissertation attempts to answer the following questions:

• How do non-experts teach multi-step hierarchical tasks to an ITL robot?: We need to

understand the various aspects of a teaching process as it relates to a multi-step hierarchical

task. This includes how non-experts intend to teach the task, how they decompose it into

individual instructions, and their resultant success or failure at teaching the task.

• Do instruction templates contribute to efficient and effective teaching?: While the robot has

a language-comprehension system that can understand complex language instructions, it is
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stilted. Through prior pilot studies, we learned that non-experts find it difficult to create

robot-understandable instructions from scratch. This is because the robot cannot engage in

human-like flexible interaction. It is imperative to understand if instruction templates can

serve as an intermediate solution to overcome the problem of mismatched language skills

while still enabling successful teaching interactions.

• What are some salient problems people face that can be solved by extensions to the robot’s

interaction capabilities?: Given the complex nature of the robot’s learning system and

the non-expert’s lack of a mental model of the robot, people are likely to face problems

while instructing the robot. If we can determine what these problems are, we can build

corresponding interaction mechanisms in the robot to alleviate these issues, making it a

better learner.

Therefore, in this dissertation, we conducted a think-aloud study (N=14) where non-expert

teachers directly interacted with an ITL robot to teach it a hierarchical, multi-step baking task

through situated interaction using predefined instruction templates. We studied this problem using

an existing robotic agent Rosie, an ITL robot implemented in the Soar cognitive architecture and

set up in a simulated kitchen environment. Rosie can learn over 60 games and puzzles [25], mobile

delivery, navigation, and procedural tasks [39] and various procedural kitchen-specific tasks [42]

using a combination of situated natural language commands and demonstration.

This situated interaction study setup provides rich sources of information to study the teaching

process since it includes the environment where the teaching interaction is situated, the robot

responses within the context of the teaching process, and the interface using which the teacher

interacts with the robot. We propose methods using the analysis from this study to build robots that

help humans build mental models of robots and are easier and more natural to teach.

1.1 Research Contributions

This dissertation makes the following research contributions:
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• We describe a qualitative analysis of a think-aloud study where we identified and characterized

different aspects of non-experts directly teaching a hierarchical task to a robot.

– We provide a detailed breakdown of how participants use the instruction interface and

the simulated environment as a part of the interaction.

– We describe the participants’ interpretations of a complex learning robot regarding its

knowledge, capabilities, and learning process through its verbal responses and actions

in the environment.

• We identify relevant failure situations that are specific to a multi-step hierarchical teaching

process by non-experts.

• We provide computational insights, potential extensions to existing approaches, and scope

for research to address these failure situations.

One of the key contributions of this dissertation is that this research was executed using direct

interaction with an existing ITL system. Wizard-of-Oz techniques enable researchers to determine

ideal robot implementations that satisfy non-expert needs, but we cannot develop robots that can

function in the actual world until we investigate the features of direct interaction. While this was an

initial exploration, this study sets this research up to pursue iterative design. By proposing potential

implementations for the robot, future implementations can be effectively compared with the results

of our current study. We propose that more robotic systems must engage in iterative processes to

contribute to the goal of building robotic systems that can operate in the real world.

1.2 Road map

Chapter 2 provides a background on the research approach of Interactive Task Learning, specifically

highlighting the desiderata that are relevant to the goals of this dissertation.

Chapter 3 reviews literature related to our research and prior work that has been done to improve

human-robot interaction.

4



Chapter 4 gives an overview of Rosie, the ITL robot used in this thesis. Additionally, it defines

the problem of teaching a multi-step hierarchical task to an ITL robot and describes the knowledge

and expertise required to teach such a task.

Chapter 5 provides a description of the simulated environment where Rosie was embodied as a

mobile robot. It also provides a description of the templated instruction interface that was developed

for this dissertation.

Chapter 6 introduces the research questions and then describes the design and method used to

study how non-experts teach a baking task to a robot. We then describe the participant recruitment

process and present participant demographic and task background information.

In Chapter 7, we first provide the findings from the qualitative analysis performed using the

multidimensional data collected from the study with 14 participants. We organize the findings

using the different types of knowledge used or required by the participants. We then provide a

quantitative analysis by analyzing the command breakdowns in the task, as well as the failures

encountered during the task.

In Chapter 8, we situate the findings from Chapter 7 using our proposed research questions. We

then provide an interaction design proposal in Chapter 9, where we propose extensions to robot

interaction mechanisms that can contribute to an efficient and effective non-expert teaching process.

Chapter 10 restates the contributions of this dissertation and provides a summary of the proposed

extensions from Chapter 9.
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CHAPTER 2

Interactive Task Learning

Interactive Task Learning [31] is a research approach that focuses on designing agents that can

learn complete task definitions and associated knowledge through natural interaction with a human

instructor. Interactive Task Learning describes three axes of desiderata, namely, (a) Dynamic

Scalability to new tasks, (b) Task Performance, and (c) Ease of Interaction. Many efforts toward

building ITL agents aim to satisfy these desiderata using different approaches. These approaches

can be described in terms of dimensions of natural interaction (language, non-verbal modalities),

types of task knowledge learned (concepts, actions, procedures), as well as the operative domains

(virtual environments, mobile phones, robot simulators).

Dynamic Scalability to new tasks refers to building agents that show diversity in task learning.

This diversity can take the form of learning different aspects of a task, learning different types of

knowledge, learning from different types of instructions, or learning from and applying its learned

knowledge to different situations and environments. Towards this goal, we have seen progress in

general task learning in agents that can learn different types of tasks and concepts and generalize

across multiple examples (e.g., agents built on DIARC [50], Rosie [25, 39, 40] and Aileen [41]),

as well as agents whose learning is domain-general (e.g., DIARC [50], Pumice [33] and Rosie).

The axis of Task Performance focuses on how the agent uses its learned knowledge to perform

tasks efficiently and effectively. Rosie leverages the Soar cognitive architecture to reason about its

situation on the fly. It also compiles deliberate processing to save time and processing effort for

similar tasks it may encounter in the future. Other ITL agents have focused only on learning to
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successfully ground language in the environment through explicit or implicit learning [10, 34, 57],

to eventually support task learning.

Ease of Interaction, as the name suggests, refers to the ease with which the human can interact

with the agent. Interactive Task Learning, by definition, requires that there is a teacher present to

teach the learner. We can define teaching as a specialized form of interaction where the teacher

interacts with the learner with the specific intention of communicating knowledge to the learner and

the goal that the student learn that specific knowledge. Therefore, this axis supports the overarching

goal of ITL to enable non-expert human teachers to interact with these intelligent agents naturally.

Despite this goal, most prior work in ITL has focused on enabling dynamic scalability and efficient

task performance in ITL agents by building and extending their learning abilities. There is only

limited work that focuses on enabling Ease of Interaction. In this thesis, our emphasis is not on

Performance and Dynamic Scalability; instead, we focus on Ease of Interaction.

To enable Ease of Interaction, the following desiderata need to be achieved - Efficient Task

Learning, Effective Interaction, Accessible Interaction, and Efficient Interaction.

• Efficient Task Learning corresponds to an agent being efficient in terms of time to process

instructions while minimizing its interactions (such as asking questions) by maximizing the

knowledge it can retrieve from these instructions. This requires the agent to be reactive and

speedy in processing new information along with its existing knowledge and not take an

inordinate amount of time to respond to the instructor.

• Effective Interaction corresponds to an agent’s ability to extract useful meaning from instruc-

tion irrespective of the modality through which it is provided and be robust to instruction

errors. In addition, the agent should interact so that the instructor can identify the intention

and content of the interaction based on the current context. However, research in natural

language has not progressed to the point where ITL agents can adeptly engage in flexible

interactions with humans. Additionally, agents do not share adequate common ground with

humans to recover quickly from failures, unlike those observed in typical human interactions.
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• An agent capable of Accessible Interaction should enable an untrained instructor to teach in

a natural and unconstrained manner. This means that communication with the agent should

support multiple natural modalities and not require extensive knowledge of the internal

working and knowledge of the system.

• Lastly, Efficient Interaction is focused on minimizing the information that the instructor needs

to communicate, both in terms of concepts related to a task as well as quantitative measures

such as the number of words and turns required to communicate this information.

Both Accessible Interaction and Efficient Interaction require that an agent can provide information

about its task knowledge and be capable of explaining its reasoning and performance if necessary.

This would enable the instructor to leverage this information to skip instructions for the aspects of

the task that the agent already knows and focus on aspects it does not. However, given the limited

flexibility and specialized knowledge required to interact with typical learning agents, it is currently

a steep learning curve for untrained instructors to teach ITL agents.

The agent we use in this thesis, Rosie, is currently set up for Efficient Task Learning from

instruction and demonstration, given the prior work’s focus on learning. However, the instructor

is expected to have extensive knowledge about the robot or, at the very least, have been trained to

interact with Rosie. As a result, interactions are less efficient and more difficult for instructors who

are not robot experts. This exhibits the previous lack of focus on Efficient and Effective Interaction.

Therefore, in this thesis, our goal is to study the teaching processes employed by non-experts to

determine the barriers to Ease of Interaction in Rosie and ITL in general and propose interaction

mechanisms that will contribute to efficient and effective teaching interactions in the future.
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CHAPTER 3

Related Work

In this chapter, we first describe the closest prior work that has studied human teaching interactions,

where humans provide inputs of various granularities to different kinds of learning systems. While

this dissertation focuses on human-robot teaching interactions, there has been considerable work

in related fields to understand how ease of interaction can be achieved in human-agent interactions.

Therefore, we describe the related work comprising human interaction with tutorial-based systems,

AI agents, and other robotic systems. Lastly, we describe what we can learn from research on

explainability to enable efficient and effective human-AI interactions and describe work in this

space that has leveraged explainability towards this goal.

3.1 Instruction of Intelligent Systems

Interactive Machine Learning (IML) or Interactive Machine Teaching (IMT) are interchangeably

used to describe human-in-the-loop systems that allow the human to provide relevant information

to influence the building of a machine learning model to do future tasks. The teacher’s role can

vary depending on the granularity or type of information provided (labels, reinforcement signals,

user interaction), as well as the relative expertise of the teacher (non-expert, data scientist, subject-

matter expert, ML practitioner). Prior work has studied how people teach in IML/IMT settings

and confirms that people are motivated to provide explicit instructions to teach agents. Krening

and Feigh [28] studied people’s interaction experiences using critique or action advice to train the

same reinforcement learning agent. Participants preferred giving action instructions because they
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could immediately observe the results of their advice, thus getting confirmation that the agent was

incorporating their input. Similar to our study, Sultanum et al. [53] conducted a formative study

to understand how people would teach a hypothetical computational learner. Even within a simple

task of detecting a visual concept, people engaged in an iterative teaching workflow that combined

providing and refining knowledge over time. While their study focused on the processes people

undertook to teach a single concept, our study focuses on the teaching workflow process for a

multi-step hierarchical task.

Prior work has also specifically studied how non-expert teachers teach tasks to a robot. Kaochar

et al. [22] study natural instruction methods through examples, demonstrations, and reinforcement

signals. Their task included teaching a procedure to the robot, and they observed that participants

often taught procedures as a set of consecutive actions repeatedly in different locations but did

not explicitly define the set as an individual procedure in advance of providing the actions. In

human-robot interactions in a collaborative task setting, comparisons between human-human and

human-robot interactions show that people provide more physical action instructions and less belief

update instructions while interacting with a robot [36]. Consistent with these findings, in our study,

participants often referred to the higher-level task they were teaching but either forgot to define it

first or used consecutive primitive actions to instruct the robot to do the task rather than organize

it in advance as a part of the higher-level task. Participants also provided action instructions more

often than goal descriptions.

In our prior work [47], we analyzed situated teaching interactions to create an explicit teaching

action taxonomy and proposed a theory-based dialogue system to support the taxonomy and teaching

by non-experts. While this work allowed participants to use language flexibly to analyze their

teaching interactions, our current work extends this by studying participants’ teaching in a more

structured setting while focusing on their process of planning and updating their model of the robot

and the task itself through the think-aloud analysis. While all of these studies yield important

insights that we observe in our study as well, these prior interactions occurred in Wizard-of-Oz

settings whereas, in our study, non-expert participants interacted and provided instructions to the
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robot directly in a simulated environment.

Researchers have also studied strategies typically employed by teachers in a human-robot setting.

These include studying how people teach robots singular concepts (e.g., graspability [23]), providing

feedback [26], or providing reinforcement signals [58]. Thomaz and Breazeal [58] find that the

person is able to provide appropriate guidance toward the next steps when the robot communicates

specific aspects of its internal state. Our work differs from these efforts by focusing on end-to-end

teaching of procedures using actions and goals. Dalvi et al. [14] present a teachable reasoning

system whose erroneous model beliefs can be corrected by teachers through a question-answering

type of interaction. However, it requires the teacher to both already understand the various reasoning

mistakes the model can make, as well as learn the specific actions required to correct its knowledge

which cannot be expected of a non-expert.

3.2 Ease of Interaction in Tutorial-based Systems

The teaching process in the Rosie agent is comparable to tutorial instruction, where the teacher

provides a natural language description of procedures using general situations and abstract objects

[17]. The teaching process in Rosie can be defined as a combination of a tutorial instruction

process and situated instruction. Maclellan et al. support this proposition when describing tutorial

instruction work in learning cognitive systems [35]. They describe Rosie as a direct instruction

agent, where the direct instruction is slightly inverted since a lot of learning occurs through Rosie’s

leading questions and clarification mechanisms.

There are challenges that must be overcome when considering tutorial instruction in human-

robot settings. Gil describes that tutorial instruction can be complex because procedures involve

an abundance of interrelated information in terms of situating relevant objects in the environment,

steps, and sub-steps of the procedures, as well as conveying control structures [17]. This contrasts

with one-shot learning from demonstration or individual situated instructions, where a particular

state or a contiguous set of actions is used to illustrate the procedure. Tutorial procedures often
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involve natural language descriptions of general situation information and abstract concepts and

objects while using situated instruction and demonstration to supplement the teaching process.

TellMe [18] is one such system that learns through tutorial instruction and enables efficient

and effective instruction through agent communication. The agent aids the instructor in teaching

by reasoning over its knowledge and instructions and asking follow-up questions when necessary.

However, it does not have any situated learning. Despite the obvious challenge in this space, no

work systematically studies mechanisms a robot can employ to aid the teacher in a complex task

teaching process in a situated setting. In this thesis, we aim to address this gap by analyzing

situated teaching processes with non-experts and propose implementations that can aid the teacher

in a human-robot teaching interaction.

3.3 Enabling Accessible and Efficient Robot Interaction

One of the ways through which teaching can be made more accessible is by enabling humans to

interact with the robot through multi-modal interaction. Prior work in HRI has looked at enabling

accessible interaction by allowing people to instruct robots using multi-modal interaction strategies

such as combining language instructions with gestures [33, 58] or demonstrations [1, 11, 33, 43].

Some prior work in ITL has demonstrated efficient task learning and accessible interaction by

enabling learning from single demonstrations and supporting language input rather than having

people provide multiple demonstrations [1]. However, these methods are restricted to individual

domains and are not generalizable across different types of tasks. Pumice [33] is an exception

where the system does learn app-agnostic complex tasks and allows for multi-modal input from the

human but is restricted to a smartphone setup. In this dissertation, the instructor interacts with the

robot using language alone.

A person cannot effectively interact with a robot to successfully perform a task without a good

mental model of the robot. A person’s mental model includes task-specific expectations of the robot,

including its knowledge and understanding of the given situation, which influences their interaction
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with the robot. Using and interacting with an intelligent agent alone may not improve the person’s

mental model of the agent [29]. Therefore, the robot must be able to use knowledge cues to correct

the person’s mental model if it is inaccurate [24]. Towards this, there has been a significant amount

of research on transparency mechanisms that allow the person access to the knowledge and internal

working of the robot to correct and update their mental model. This includes the robot providing

information about itself in terms of its situational understanding and knowledge through language

[9, 45, 55, 59], gaze [6, 45, 58], gestures [6, 11, 45] and visualization [32, 45], to elicit better input

from a human collaborator. This process contributes to efficient interaction since the robot provides

information about its reasoning and performance. However, this work focuses on the robot learning

individual actions from humans or performing known tasks with a human rather than learning new

generalizable complex task configurations.

Given the common occurrence of failures in interaction with robots, being able to debug the

failure and recover from it is a crucial problem that needs to be solved. Implementing mechanisms

that allow humans to debug the robot through direct access to its underlying mechanisms [20] or

through robot explanation about its cause of failure [15] are effective in resolving and recovering

from such failures. The robot can also ask questions to recover from failures or gain better instruction

to proceed further in its task process. This can take the form of robot-initiated clarification questions

that can be used to recover from interaction failures caused by ambiguity, misunderstanding, or

non-understanding [37]. Including context-specific information in such clarification questions

has also been shown to elicit more accurate responses from a human [49]. In previous research

[48], we implemented visualization mechanisms in the Rosie agent to supplement the existing

verbal modality. We conducted a user study to determine how people use these transparency

mechanisms to identify the causes of interaction failures. We observed that access to visualization

mechanisms did not result in a significant difference in the person’s accuracy of identification of

failures compared to verbal modalities alone. Our hypothesis is that when faced with ambiguous

failures, the verbal modality provided a clear explanation that participants could use as opposed to

having to interpret the visualization. Therefore, we restrict the robot’s responses in this dissertation
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to the verbal modality alone.

3.4 Explainability in Intelligent Systems

Given the recent explosion of deep learning systems that are usually black box in nature, explainable

AI has also gained popularity since researchers are motivated to make their systems understandable

to humans. Tim Miller’s literature analysis of the nature of explanations in human conversations

provides the following findings that are relevant for explainability in AI systems [38]:

1. Explanations are contrastive: people are not as curious about why event P happened and

instead want to learn why event P happened instead of event Q.

2. People do not expect a complete description of the cause and effect of an event. Humans

select one or two explanations among many and this selection is influenced by cognitive

biases.

3. Providing probabilities and statistical relationships is not as effective as providing causes as

a part of explanations.

4. Explanations are social: they are typically presented relative to the explainer’s beliefs about

the explainee’s beliefs.

Prior work in human-robot interaction has demonstrated the usefulness of these findings in

enabling robots to provide proactive explanations. Thielstrom et al. [56] compare people’s

responses to various explanations that can be generated during a robot failure. They find that

people find contrastive explanations more helpful to determine the solution to failures. Zhang et

al. [61] find that when human interpretations of the robot’s task model are incorporated during

plan creation, plans are more explicable and predictable to humans. Prior work has also shown that

people better understand robot behavior when provided explanations describing the causal chain of

reasoning that contributed to the executed actions [7, 52].
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In this dissertation, we study the robot teaching process to identify situations where the robot can

provide relevant information about its knowledge and capabilities as well as task-related information

that the instructor can use to interact more efficiently with the robot.
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CHAPTER 4

Problem Definition

Throughout this dissertation, the terms robot and agent are used interchangeably to represent the

ITL agent, and the terms teacher and instructor are used interchangeably to represent the human

teacher.

4.1 Rosie and Cognitive Architectures

Here, we describe the ITL robot Rosie that is the basis for this dissertation in terms of its knowledge,

abilities, and internal learning mechanisms that an instructor can leverage to teach the agent various

tasks. Rosie [25, 39, 40] is an ITL robot that is implemented in the Soar cognitive architecture [30].

Rosie has been embodied in four robotic forms: a tabletop robot arm with a Kinect sensor, a mobile

robot, the Fetch robot, and Cozmo. Rosie can learn over 60 games and puzzles [25], mobile delivery,

navigation, and procedural tasks [39] and various procedural kitchen-specific tasks [42] using a

combination of situated natural language commands and demonstration. Learning a task involves

learning different aspects of the task, including goal and failure definitions, actions, concepts, state

descriptions, and task-related if-then conditions. Soar includes long-term memories encompassing

procedural, semantic, and episodic memory and short-term memory, which is working memory.

The working memory contains information relevant to the task, including the agent’s current state,

goals, and beliefs about the world. Procedural memory stores rules - knowledge required to perform

internal and external actions and respond to situations in the working memory to execute a task.

Semantic memory stores long-term declarative knowledge, including facts about the world and
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representation of tasks, including goals, failure conditions, and possible actions. When the robot

learns a task, it first builds a declarative representation of the task instructions and stores it in its

semantic memory. The robot then retrieves, interprets, and executes these instructions to perform

the requested aspect of the task. During interpretation, declarative knowledge is automatically

compiled into procedural knowledge, which allows the robot to perform the same task more

efficiently in the future without the need for interpretation.

In this thesis, we will only focus on the space of tasks that Rosie can learn in the simulated

environment embodied as a mobile robot. Currently, an instructor can interact with Rosie to:

1. Teach a new task

(a) Teach a subtask that belongs to the overall task

(b) Teach a new action

2. Extend an existing task

(a) Teach new sub-tasks within the same context or add general sub-tasks (adding more

sub-tasks to the task)

(b) Add context-specific sub-tasks

3. Give a command to execute a previously learned task

In this thesis, we assume that the robot is a perfect learner. This means that we do not focus on

improving the robot’s learning mechanisms and instead study and propose additional robot inter-

action capabilities towards improving the interaction between the robot and the teacher. Therefore,

our research focuses only on the first type of interaction, namely, teaching a new task.

4.2 Teaching an ITL robot

We first outline the multiple aspects and steps that constitute a teaching task with the Rosie robot

as follows:
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1. This teaching interaction is situated in the environment with a mobile robot.

2. The teacher and the robot always interact one-to-one in the shared environment.

3. Teaching a task involves providing and teaching different aspects of the task, such as the

task name, sub-tasks and steps, new actions, primitive actions, relevant concepts, objects,

locations, state descriptions, and if-then conditions.

4. The human determines the relevant aspects of the task they will provide as a part of the

teaching process.

5. The human also determines the order in which they will provide each aspect of the task.

6. The human leverages the robot’s existing knowledge about the world and its innate actions

(and eventually its learned knowledge from their interactions) to teach new tasks. They will

not provide new innate knowledge to the robot.

7. The human teaches this through back-and-forth interaction in a step-by-step fashion.

(a) The human provides one instruction at a time that contains limited information.

(b) The human waits for the robot’s response to the instruction or confirmation of learning

before moving to the next command.

(c) If the robot responds with a directed question, the human answers that in order to finish

that turn and successfully finish teaching that command before moving ahead.

8. The human determines that the robot has successfully learned the task.

This list contributes a framework using which we can analyze the teaching processes of non-

expert teachers and identify the specific points at which the robot can respond. For example,

the different aspects of a task provided in point 3 help determine what information is relevant.

As described in points 4-6, the human teacher is in charge of the content and mode of teaching.

However, the robot’s responses must help facilitate the teacher’s instructions and make them more
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efficient. The delineated teaching process defined in point 7 enables equally spaced intervals and

provides predetermined opportunities for the robot to provide relevant information.

4.3 Example of Expert Instruction

We now provide an example of a current teaching interaction with Rosie in a kitchen in the mobile-

world environment. This is an example of an efficient interaction that an expert teacher can pursue

because they have access to critical knowledge. The expert instructor leverages this knowledge

and their prior teaching experience to construct efficient instructions. This interaction occurs in

the mobile world domain in a simulated kitchen environment containing appliances and objects

relevant to the teaching interaction. We will use this example to later describe a) the types of critical

knowledge necessary to teach this task, and b) how the non-expert teacher’s lack of access to this

knowledge can lead to failures and inefficiencies.

4.3.1 Teaching Interaction Example

1. Teacher: Bake the pizza.

2. Rosie: What is the next goal or subtask of bake?

3. Teacher: Turn on the oven.

4. Rosie: What is the next goal or subtask of bake?

5. Teacher: Grab the pizza.

6. Rosie: What is the next goal or subtask of grab?

7. Teacher: Open the fridge.

8. Rosie: What is the next goal or subtask of grab?

9. Teacher: Pick up the pizza.
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10. Rosie: What is the next goal or subtask of grab?

11. Teacher: Put the pizza on the table.

12. Rosie: What is the next goal or subtask of grab?

13. Teacher: Close the fridge.

14. Rosie: What is the next goal or subtask of grab?

15. Teacher: You are done.

16. Rosie: What is the next goal or subtask of bake?

17. Teacher: Open the oven.

18. Rosie: What is the next goal or subtask of bake?

19. Teacher: Put the pizza in the oven.

20. Rosie: What is the next goal or subtask of bake?

21. Teacher: Close the oven.

22. Rosie: What is the next goal or subtask of bake?

23. Teacher: Wait for thirty seconds.

24. Rosie: What is the next goal or subtask of bake?

25. Teacher: The goal is that the pizza is on the counter.

26. Rosie: What is the next goal or subtask of bake?

27. Teacher: Close the oven.

28. Rosie: What is the next goal or subtask of bake?

29. Teacher: Turn off the oven.
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30. Rosie: What is the next goal or subtask of bake?

31. Teacher: You are done.

32. Rosie: I am ready for a new task.

4.3.2 Teaching Process

We now present the context for the above interaction while describing the different decisions that

an expert instructor makes towards achieving the goal of this interaction, namely, teaching Rosie to

bake the pizza. We also describe how the expert instructor leverages their knowledge of the robot

to teach the task efficiently and effectively.

The interaction begins with the teacher instructing the robot to Bake the pizza. The agent does

not know this task; therefore, it drives the interaction by requesting the instructor to either provide a

goal or describe a process for the Bake process. In this instance, the teacher describes a procedure

and provides consecutive steps for the agent to execute. For example, when the instructor asks the

robot to Turn on the oven at step 3, the agent follows the instruction and first goes to the oven and

then turns it on. The agent also learns this action as a part of the Bake task.

The agent can acquire knowledge about and learn new actions as sub-tasks of other tasks. At

step 5, the teacher instructs the agent to Grab the pizza as a part of the Bake task. Since the agent

does not know this action, it requests the goal or sub-task of the action grab. Once the teacher has

provided the agent with steps to do the grab task at step 15, the teacher says “You are done”, which

marks the end of the current teaching process and execution of the “grab" action.

The teacher can also provide goals as a part of the teaching procedure. At step 25, the teacher

provides a goal instruction as a part of the Bake task. The robot internally performs a means-end

analysis to determine the steps needed to achieve this goal. Since the robot knows that the pizza is

in the oven at this time, it will first open the oven before picking it up. It will then go to the counter

and then put the pizza on the counter, thus achieving the goal state.

At step 29, the instructor says “You are done” and is finished teaching the Bake the pizza task.
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4.3.3 Types of Robot Knowledge Relevant for Teaching

In the task teaching example, we highlighted some of the learning capabilities of the robot that the

expert instructor leverages during the instruction. We categorize this critical knowledge relevant

to the teaching process into three types described below. We provide all three types for the sake of

completeness. In this thesis, our research will focus only on methods related to the robot’s task

knowledge and not on the robot’s learning strategy or instruction capabilities.

1. Robot’s Task Knowledge: The robot’s task knowledge comprises the following:

• Knowledge about the world (objects, properties and locations of these objects, rooms,

and spatial knowledge to navigate local and extended situations)

• Primitive actions that can be used to teach more complex tasks.

• Previously learned knowledge about tasks in terms of sub-tasks, primitive actions, and

goals.

• Robot’s progress on executing a task or sub-task.

2. Robot’s Inbuilt Learning Strategy: The robot has an inbuilt strategy for processing instruc-

tions, focusing on learning efficiently through instruction (how does the robot learn?). This

learning strategy influences how the robot applies this knowledge (transfers this knowledge)

when provided with similar instructions in a different context. These strategies include:

• how it processes the knowledge present in the instruction in terms of generalization or

specificity of the applicable knowledge, and

• how it individually learns each sub-task and links each sub-task when they contribute

to an overarching task.

3. Instruction Taking Capabilities: Rosie has the following learning capabilities that it lever-

ages to drive the interaction and further its learning process.

• Rosie will ask for the goal/first step of a verb and/or task it has not encountered before.
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• For an entity (person, object, etc.) referenced in an instruction, Rosie will first try to

find it in the same location. If it can’t find the entity, it will first perform an episodic

memory retrieval cued on the last time it was in that location to retrieve the last known

position of the entity. If Rosie has never encountered the entity before, Rosie will ask

for the location of the person/object.

• Rosie can ask if it does not know a grounding for a referring expression, such as, “Who

is my relieving officer?"

• It can ask “What do I do next?", “What is the goal?” - it can further the interaction.

• It can answer questions about its knowledge and environment and knowledge application

in the environment.

4.4 Challenges for a Non-Expert Instructor

Given the overarching goal of Interactive Task Learning is to leverage people’s natural teaching

abilities, successful robot teaching should not rely on people to have expert knowledge. A typical

instructor will likely be a non-expert who does not have a good mental model [44] of the robot

i.e., they will not possess detailed knowledge of the robot’s knowledge, capabilities and learning

abilities, unlike an expert instructor.

This means that the instructor may not have the requisite knowledge to efficiently and effectively

teach a robot successfully since they cannot make the same assumptions that an expert instructor

would make. We hypothesize that not having access to the relevant information during a teaching

interaction can result in instruction-level issues that cause local failures and inefficiencies in the

teaching process at best, and inability to finish the teaching process at worst.

Therefore, our goal in this dissertation is to understand ways in which non-expert instruction

differs from expert instruction by studying how non-experts teach a task to a robot that has only been

taught by experts before. We conducted a study where non-experts teach a new task to the ITL robot

Rosie using the setup described in Section 4.2. We analyze the teaching processes and identify key
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cases where people lack knowledge through the task analyses, so that we may develop interaction

mechanisms in the robot that provide relevant information to facilitate non-expert instruction. Also,

we analyze situations where this lack of knowledge results in inefficient and failure scenarios to

propose mechanisms that will allow non-experts to effectively handle such situations.
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CHAPTER 5

Task Environment and Interface Design

To support situated teaching interaction, the robot needs to operate in a physical world so that the

instructor can use references to objects and their relationships in the world to provide instructions.

In this dissertation, we leverage an existing mobile simulated task environment that was developed

for the Rosie Robot to learn hierarchical tasks. We also developed a templated instruction interface

that an instructor can use to provide instructions that follow a predefined format. We introduce

template instructions in this dissertation specifically to make the instruction process easier for the

instructor and to avoid language comprehension errors while interacting with the robot.

5.1 Task Environment

The task environment used in this thesis is a 2.5-dimensional simulated environment based on the

April Robotics Toolkit1 and was developed for Aaron Mininger’s thesis [39] to demonstrate Rosie’s

expansive task learning abilities. This simulated environment based in the real world enables

natural teaching since it is more familiar to a non-expert participant while avoiding physical

and mechanical issues that occur with a mechanical robot. Using a simulated environment also

contributes to replicability that we can leverage when conducting iterative studies to study human

teaching behavior. The robot in this environment is capable of moving objects and going from one

location to another which contributes to easier teaching as a result of observable feedback.

1https://april.eecs.umich.edu/software/java.html
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(a) (b)

Figure 5.1: (a) Simulated environment for Rosie embodied in mobile robot (b) Partial environment
with a turned-on oven

To avoid significant development work, I extended this existing environment to create an indoor

kitchen space (Figure 5.1a) for a baking task (described in section 6.2) that is used in the study.

The black figure in the center is the simulated robot, Rosie. There are labels attached to all the

objects that Rosie could operate or handle. The list of objects includes a counter, a sink, a stove,

a water cooler with a button on it, a garbage bin, a table, an oven, a pantry, a fridge with a pizza

inside it, and a light switch. Each object has individual affordances and categories that we provide

in appendix B. However, when the oven was turned on (Figure 5.1b), the display was modified to

indicate that it was on (with a red circle denoting the turn-on light) and already at 350 degrees, as

required for the study task.

5.2 Template Interaction Interface

We introduce a template interaction interface (Figure 5.3) that an instructor can use to provide

instructions to the robot. This replaces the free-form chat interface depicted in Figure 5.2. In
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prior work [47], we observed that people use many different sentence forms to provide similar

instructions to the robot. Ideally, the robot should be able to extract the relevant information from

different types of instructions towards its learning process. While Rosie can process many types of

fairly complex instructions, it is not flexible enough to comprehend free-form instructions that do

not follow a predefined format.

Figure 5.2: Original Rosie Chat Interface. (Adapted from Mininger, 2021)

Since the focus of our research is on understanding the transfer of knowledge between the

instructor and the robot, we decided to use template instructions that are sufficient for all commands

but also restrict the instructions to be processable by the robot. Studies in linguistics have shown that

humans engage in effective dialogue through automatic alignment of their linguistic representations

[46]. In addition to Rosie directing its learning process by responding with appropriate dialogues

and questions, the templates improve robustness by contributing to the predictability of robot

linguistic interaction. The templates were designed to allow for four instruction formats - two for

actions and two for goal descriptions. The templates are as follows.

• Action: Verb + Object (e.g. Empty the garbage)

• Action: Verb + Object1 + Preposition + Object2 (e.g. Fetch the coffee from the kitchen)

• Goal: The goal is that Object + Linking-Verb + Object State (e.g. The goal is that the garbage

is empty)
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Figure 5.3: Second Action Template Interface

• Goal: The goal is that Object1 + Linking-Verb + Preposition + Object2 (e.g. The goal is that

the coffee is on the counter)

We chose these four templates since they provide adequate flexibility for the instructor to provide

the instructions required for object interactions. For each part of speech, we provided a drop-down

list of available valid words. For the list of objects and object states, we restricted the list to only

the objects in the experiment environment and their corresponding possible states.

The template interface is divided into four rows. On the first row, there are two buttons Run

and Stop to start and stop the robot. The second row comprises the text area where the instructor

can see the instruction they provided as well as the corresponding robot responses. The third row

contains the buttons to enable each of the four templates. On pressing a specific template button,

the fourth row gets updated with the corresponding entries and drop-down lists. The goal template

buttons are disabled by default. This is because the robot can process a goal instruction only after

it requests one when learning a new action using the prompt “What is the next goal or subtask of
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Action1?” at which time the goal template buttons are enabled. An example of the second type

of action template can be seen in Figure 5.3. Each part of speech has a corresponding text entry

and a drop-down list of valid values. The text entry can be used to enter values and they will be

auto-completed using only the values in the list. The remaining template information along with

the complete list of values in the drop-down list can be found in appendix B.

Two additional instructions were provided in the form of buttons, namely, “Wait for thirty

seconds” and “You are done.” We included these instructions as buttons since they did not fit the

existing templates. However, they were necessary instructions required to teach the experimental

task. These can be seen in the fifth row of the interface along with the Send button that is used to

send the selected instruction to the robot.

5.2.1 Robot Action Knowledge

In the verb drop-down list, we included primitive actions that the robot already knows (which were

displayed in capital letters) as well as teachable actions it does not know but can learn ( which

were displayed in lowercase letters). The teachable actions consisted of a limited set of verbs

(e.g., bake, heat, cook, etc.) that were related to the study task described in chapter 6. If the

instructor used a teachable action as a part of the instruction such as, “Grab the pizza,” the

robot would respond with “What is the next goal or subtask of grab?” The instructor can then

provide corresponding actions and goals using all four templates. Once the instructor determines

that they are done teaching the grab task, they can press the “You are done” button and continue

the overall teaching process if this was a sub-task or proceed to teach other tasks.

5.2.2 Robot Part of Speech Knowledge

For the remaining parts of speech, we only included words that were related to and could be used

in the simulated environment presented to the participants. For the object drop-down list, we only

included the objects that were present in the environment. For the object state drop-down list in

the first goal template, we included only the object states that applied to the objects present in the
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environment. For example, the oven and the stove could be turned on and off, and both the fridge

and the oven could be open or closed. Therefore, the object state drop-down included these four

states. Similarly, the preposition and the linking-verb drop-down list were populated only with the

values that contribute to instructions processable by the robot.

5.2.3 Robot Environment and Interaction Knowledge

To successfully interact with the robot, the instructor needs to know the following about the robot

as well as its interaction capabilities. For the study described in chapter 6, we directly provided the

participants with the following information.

1. The robot has complete knowledge of the environment.

2. The instructor cannot directly interact with any object using the mouse. Instead, the instructor

must ask the robot to perform actions to interact with objects.

3. The robot can handle only one object at a time.

4. The instructor must provide step-by-step instructions and wait for the robot to respond after

each instruction before providing the next instruction.

5. The difference between primitive actions and teachable actions as described in section 5.2.1.

5.3 Summary

In this chapter, we described the setup used for the study to enable an instructor to interact with

the ITL robot. The environment enables the instructor to observe the robot’s manipulation of the

environment and its actions and movements in response to their instructions. The templates serve

as an initial guide about the types of instructions that the robot can comprehend. In addition,

the values in the drop-down lists serve as a way for the instructor to determine the robot’s task

knowledge. The instructor can thus, leverage the values already available in these lists to form

instructions relevant to the task, rather than creating instructions from scratch.
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CHAPTER 6

Study Design

We conducted a think-aloud study [12, 19] to understand how non-experts teach new tasks to a

robot. We then conducted a qualitative analysis of the multidimensional data available of the

participants’ direct interaction with the robot with the following research questions in focus.

1. How do non-experts teach hierarchical tasks to an ITL robot?

2. Do instruction templates contribute to efficient and effective teaching?

3. What are some salient problems that non-experts face that can be solved by extensions to the

robot’s interaction capabilities?

Using this analysis in Chapter 7, we propose robot mechanisms that could potentially help

improve robot task instruction by humans in chapter 8.

6.1 Pilot Study

We conducted a pilot study to test out the environment setup using an initial template implemen-

tation and two simple pick-and-place tasks: Move the plate into the sink and Move the

ketchup into the fridge. We did not provide these commands to the participants. Instead,

we provided them an initial state and final state as depicted in Figure 6.1 so that they had to generate

appropriate commands for the robot. For the pilot study, we provided a wider array of options in

the template commands to provide more flexibility during teaching. However, participants ran into
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language-related errors that the robot could not resolve in real-time. Since our research questions

do not include language mismatch issues, we modified the template by restricting the provided

options to those that were relevant to the tasks and objects in the environment. This also led us to

provide labels for objects in the environment so that the participant’s focus could be on the teaching

process alone. The pilot study also allowed us to determine and add relevant descriptions to the

template buttons to make it easier for the participant to determine how to use each template.

(a) Initial environment state of pilot training task (b) Final environment state of pilot training task

Figure 6.1: For the pilot study, participant provided commands to the robot to get from the initial
environment state to the final environment state

With two participants, we provided a training session where they were given step-by-step

instructions on how to teach Rosie a teachable action using a goal command as described below.

1. Instructor: Pick up the plate (Primitive action)

2. Robot: I am ready for a new task.

3. Instructor: Move the plate into the sink.

4. Robot: What is the goal or next subtask of Move?

5. Instructor: The goal is that the plate is in the sink. (Robot puts the plate into the sink)

For the main study, we decided not to include this specific training session, as it actively

familiarized the participant with the robot’s learning mechanisms in advance of the actual teaching
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task. Instead, we provided text instructions in the study document to ensure that the participant was

aware of the distinction between primitive and teachable actions without the knowledge actively

disrupting the study setup. Since all participants were able to successfully provide instructions

for these two simple tasks, we decided to pursue a more complex task for the main study that we

describe in the next section.

6.2 Final Study Method

The university’s internal review board approved the study materials and protocol as Exempt.

Before each study, I, as the researcher, executed a set of steps to set up the environment to be

uniform across all participants. This included generating a random number for each participant (to

anonymize their data), recording their instruction interaction, setting up the desktop to show the

simulated environment, instruction interface, and instruction document in a preconfigured manner,

and recording the screen during the teaching process.

When the participant arrived, the researcher went over the consent form. Once verbal consent

was obtained, the participant filled out a pre-study questionnaire that asked for their demographic

information (age and gender), relevant background knowledge about teaching interactions with

people and intelligent agents, and oven use. We used the guidelines in [51] to ask about gender. We

provided non-overlapping ranges as well as the option to not disclose age information. We provided

participants with specific options to collect information about education, interaction experience

with intelligent agents, frequency of and reasons for oven use, and if they had taught oven tasks to

another person or a child. To understand the effect of prior experience with intelligent agents or

programming, we asked participants to describe their interaction with intelligent agents, if any, as

well as their background and if it involved programming, computer science, or robotics.

Once this was completed, the researcher reviewed a study instruction document with the partici-

pants. This document provided information about the robot, the instruction templates, the difference

between primitive and teachable actions, and the additional command buttons on the instruction
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interface. While the participant did not undergo a training session to provide a teachable action

instruction, the document provided information on the interaction that would ensue as a result of

providing a teachable instruction. The researcher emphasized to the participant that the study was

designed to test the robot and not the person, and therefore, any failures that they might encounter

would be a result of robot deficiency. This document was available to the participants at all times

if they wanted to reference it during the study. This study document is provided in appendix A.

The researcher then provided the participants with details about the think-aloud protocol. After

verbally describing the think-aloud protocol to the participant, the researcher asked the participant

to watch a short one-minute-long pre-recorded video1 demonstrating the think-aloud method. This

video displays a person exploring a website while they think out loud throughout the exploration

process. After this, the interviewer reiterated the salient parts of the video relevant to the experiment

and clarified any questions that the participant had about the think-aloud process.

Next, the participant began interacting with the robot through training tasks. The training

tasks were focused on familiarizing the participants with the instruction templates alone, without

emphasis on the robot’s learning mechanisms. This is because our goal was to understand if and

how non-experts can teach the robot without extensive training using the robot’s existing interaction

alone. The researcher asked participants to perform three training tasks described in the document.

To minimize “cold-start” effects, participants were asked to begin verbalizing their thoughts starting

from the training tasks. If the participant was silent for a long time, the researcher prompted them

with the question “Can you please share what you are thinking right now?” For the first two training

tasks, we provided them valid instructions for the two action templates that they could select from

the drop-down lists for each part of speech and then provided instructions to send this command to

the robot. For the third training task, we asked them to press the button with the command “Wait for

thirty seconds.” We included the third training task because it relates to the main task. However, we

did not provide any context during the training task to avoid influencing the participant during the

main task. After the training tasks were done, the interviewer encouraged participants to continue

1https://www.nngroup.com/articles/thinking-aloud-demo-video/

34



the think-aloud process for the main task while sometimes pointing out successful examples from

their think-aloud process during the training task.

For the main task, we asked the participants to teach the robot to bake a pizza. Towards this,

we provided them with the following task description - The robot must cook (350 degrees for 30

seconds) a pizza using the oven, and the cooked pizza must end up on the counter. This task was

chosen because it does not require any specialized knowledge and is easy to understand, but it also

has adequate hierarchical structure and complexity to explore natural teaching processes.

The researcher did not intervene to provide more information during the training task, except

to tell the person they could move on to the next task when the robot said, “I am ready for a new

task.” With a few participants, the researcher reminded them about information that was already

available in the study document, including the difference between primitive and teachable actions,

the relation of “you are done” to teachable actions, and that the participant was not being tested in

this experiment.

Once the task was done, the researcher asked any clarifying questions they had based on their

observation of the study to the participants. After this, the participants were asked to fill out

a Usability Metric for User Experience (UMUX) [16] Likert scale (range 1-5) to provide their

subjective assessment of the robot’s perceived usability, or in this case, instructability. After

participants provided information for payment, the researcher then answered any questions that the

participants had about the study.

6.3 Participant Recruitment

We recruited participants via our university’s participant pool portal, where potential participants

can express their interest in participating in a given research study. We recruited adult participants

over the age of 18 and located within walking or driving distance of the university location since

the study took place in person. Participants were paid $15, and the study was capped at one hour

though all participants finished the task in that time frame.

35



We recruited participants for our study until we reached data saturation resulting in a total of 14

participants (8 female, 6 male, 1 transgender (self-described)). Their age range distribution was:

18-24: 2, 25-34: 8, 35-44: 3, 45-54: 1, 55-64: 1. Table 6.1 lists participant demographics and

task-related information from our pre-study survey.

We performed a qualitative and quantitative analysis of the multidimensional data collected from

this study. We describe these analyses and our findings in the next chapter.

ID Education Interaction with
AI agents Description Background Oven Use

Frequency
Oven Use
Tasks

Instructed person to
do oven tasks? Description

P56 Doctoral Degree None N/A Computer Vision Never N/A No N/A

P92 Master’s degree Siri, Alexa Ask about weather,
play music CS, AI Once a week Roasting, Heating,

Baking, Broiling No N/A

P26 College degree Other Google Maps
for navigation No CS or robotics Daily Roasting, Heating,

Baking, Broiling No N/A

P67 Some college None N/A Music, performing arts
No CS or robotics Once a week Heating, Baking,

Broiling Yes Brief verbal
checklist

P23 College degree Siri, Alexa,
Google Now

Limited voice
based commands

Electrical Engineering
Limited programming Less Often Baking No N/A

P49 College degree Siri, Alexa,
Google Now

Asking for directions,
cooking, weather

Anthropology and Bio
No CS or robotics Daily Baking, Grilling No N/A

P31 Master’s degree Siri Providing
demonstrations on UI CS, HCI Once a week Roasting No N/A

P47 Master’s degree Siri Check weather, set
timer, play music No CS or robotics Most days Roasting, Heating,

Baking No N/A

P78 Master’s degree None N/A Teaching, pet sitting
No CS or robotics Once a week Roasting, Baking No N/A

P7 College degree Siri, Alexa,
Google Now

Check weather, set
timer, play music

Philosophy, Spanish
No CS or robotics Once a week

Roasing, Heating,
Baking, Broiling,
Grilling

Yes

Walking through
steps in
chronological
order

P59 College degree None N/A SQL Programming
No robotics Daily Roasting, Heating,

Baking, Broiling Yes
Teach kids how
to cook, kitchen
safety

P74 Doctoral degree None N/A

Engineering, some
background in

scripting languages

Once a week Roasting, Baking,
Broiling Yes Teach kids to

bake

P11 College degree Siri Ask basic questions
to be googled

Accounting
No CS or robotics Once a week Baking Yes

Set temperature,
check food when
timer goes off

P99 Master’s degree Siri, Alexa
Ask for
recommendations,
play music

Computer Scientist Once a week Roasting, Baking Yes Teach turn on
oven, oven safety

Table 6.1: Participant Demographic and Task Background Information
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CHAPTER 7

Analysis

In this chapter, we describe the analyses performed using the data collected from the study. We

first provide an overarching summary of the results from the qualitative and quantitative analyses in

Section 7.1. We then describe the inductive thematic analysis process in Section 7.2, followed by our

findings about the participant teaching process and their interpretations of the robot from Section

7.3 to Section 7.8 We first identify six types of knowledge that were available to learn and use

during the study in Section 7.3. We situate our remaining findings using these types of knowledge.

We describe how participants used this knowledge, identify instances where participants did not

have sufficient knowledge to proceed confidently through their teaching process, and describe how

they found alternative ways to continue teaching the task. We also make note of the participants’

interpretations of the robot through analysis of their teaching interaction.

We then present our quantitative findings in Section 7.9. We provide a task command analysis

in Section 7.9.1 where we characterize participant teaching processes using the various commands

provided by the participants. We also describe the various types of failures encountered by

participants in Section 7.9.2 and provide summary statistics in Table 7.2. In the end, we provide

the results from a usability survey filled out by participants at the end of the study.

7.1 Summary of Analysis

13 out of 14 participants successfully taught the task to the robot. Participants could use both

teachable and primitive actions along with goal statements to teach the robot. We observed that
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9 participants used teachable actions, and six participants used goal statements as a part of their

teaching process. The number of turns taken to teach the complete task ranged from a minimum of

29 turns to a maximum of 123 turns.

12 out of 14 participants faced some type of failure during the teaching process. Out of these 12

participants, 8 faced failures where the robot reached an irrecoverable state that required the robot

to be restarted. After the restart, the researcher reset the instruction and environment state to the

last successful state before the failure so that the participant could continue the teaching process

from where they left off. These failures included low-level task failures, where the robot could not

perform an action as well as language-related failures, such as when the robot could not understand

a command. However, all participants continued teaching the robot even after encountering these

failures.

We now summarize our findings from our qualitative data analysis. As a part of the study

setup, multiple sources of knowledge were available to the participants to use during the study.

Participants began the interaction by developing complex strategies to teach the baking task to

the robot. In order to teach the task to the robot, the participants actively gathered knowledge

about different types of knowledge through exploration and interaction and leveraged it to aid their

instruction process.

However, at times, participants did not find this knowledge sufficient for their teaching process,

which led to incorrect and incomplete mental models. Participants could not extract all the

available information from the interface and found the updates in the environment in response to

their commands insufficient. This led to participants not having adequate information to confirm

the success of the robot’s action in the environment. Overall, as a result of the lack of adequate

knowledge, participants did not have consistently reliable mental models of the robot.

Naturally, these incomplete mental models resulted in failures and inefficient scenarios that led

participants to experience learned uncertainty about the task-teaching process in terms of their

ability to teach as well as the robot’s ability to learn the task. Participants were, therefore unable to

efficiently teach the robot.
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Despite facing these issues, participants were motivated to continue teaching the robot. When

the robot ran into inefficient or failure scenarios, participants suggested ways to recover from these

situations. Additionally, when they could not find a way to provide their desired instruction, they

found alternative ways to provide similar instruction.

7.2 Qualitative Analysis Process

We transcribed audio recordings of the collected data using the rev1 transcription service in

preparation for the inductive thematic analysis [4]. We then open-coded the think-aloud data

along with the video recordings of the interaction and the memo written by the researcher during

the study for all 14 participants and generated 340 open codes. These open codes pertained to the

participant’s thinking process about the task itself, along with their interaction with the interface

(e.g., button clicks, text entries) and environment, and the interactions between the participant

and the researcher. Through iterative discussions with some of the thesis committee members,

we created inclusion/exclusion criteria for the open codes and merged individual codes. After this

process, we were left with 279 codes that we used to perform axial coding, a process where different

codes were clustered together to identify themes. We used affinity diagramming on a Miro2 board

to cluster open codes to identify categories and clustered these categories to identify themes.

7.3 Types of Knowledge Available During Teaching Process

Participants had access to different types of knowledge to teach the robot. There were some types

of knowledge that they already possessed, whereas others that they learned through exploration and

as a result of their teaching interaction. We identify and describe these types of knowledge below.

1. Task Knowledge: Participants came in with prior task knowledge that they brought to bear

during the teaching task (presented in Table 6.1). This comprised knowledge about the task,

1https://www.rev.com
2https://miro.com
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including baking or heating food items using the oven.

2. Instruction Knowledge: 6 participants had prior experience teaching baking-related tasks to

others that they could leverage to teach the task in our study. Participants with experience in-

teracting with virtual AI agents could leverage their experience to provide simple instructions

to the robot.

3. Interface Knowledge: Participants could update their knowledge of the interface by using

different parts of the interface to provide instructions to the robot. The interface was com-

prised of information about the instruction templates available to use, their enable/disable

conditions, the autocomplete text input, and the options available to be selected in these tem-

plates, as well as the extraneous commands available in the form of buttons. The interface

also contained a text area that provided a history of the interaction.

4. Environment Knowledge: Participants could update their knowledge about the task-specific

kitchen space in terms of the objects, their visible affordances, and their locations to incorpo-

rate into their teaching process. Participants also used the options available in the interface

to update their knowledge about the environment.

5. Robot Knowledge: Participants could update their mental model of the robot in terms of

its environment and task knowledge, interaction expectations, learning process, and task

progress through various sources that we describe below.

(a) Interface: Participants could use the options available to determine the different types

of instructions and input the robot could or could not process in this setup. This

included the types of actions (primitive and teachable actions) as well as the types of

values (among object and object states) available to incorporate in a command.

(b) Interface Text Area: The participant could use the robot’s varying responses in the

interface text area to determine the success or failure of their last instruction. They

could also use these responses to determine the robot’s learning process while teaching
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a larger task.

(c) Changes in The Environment: Participants could determine the robot’s ability to per-

form a particular action or achieve a goal state through visual changes in the environment

(e.g., the robot picks up an object and it appears on top of it). The robot’s movement in

response to the instruction also provided relevant information to the participant.

6. Current State Knowledge: Participants could use a combination of the previously described

knowledge sources to assess task progress and determine the current situation in the middle of

their teaching process. Participants could use a combination of the history of robot responses

in the text area along with the history of its actions and movements in the environment.

7.4 Complex strategies were developed to teach the robot

On being introduced to the actual task, the participant usually began by combining their recent

experience of using the templates in the training task and the information in the environment to

develop strategies to teach the defined task to the robot. Based on their prior real-world experiences,

they broke down the task into sub-tasks or individual commands and used the various feedback

mechanisms to contribute to their developing strategies. Some participants checked whether there

was a time limit for the task in order to incorporate that into their planning process. The researcher

informed them that the task process was not evaluated on the time taken.

7.4.1 Participants decomposed the task teaching process as a part of devel-

oping their plan

Once the main task was introduced to the participants, they compared it to the individual training

instructions and noted that the actual task is “.. a more complex task, has multiple steps, and I’m

guessing I’ll have to do it in multiple steps” (P31). Then, most of them (12 participants) organically

decomposed the task into smaller tasks. P56 planned out loud by deciding that they “can split this

41



into two subtasks. So first one is cooking a pizza using oven at a specific degree, at a specific time

period. So, and the second one is the cooked pizza must end up on the counter.” Seven participants

also listed the steps that needed to be executed to complete teaching the task.

“So I need to turn the oven on probably at some point. Need to grab the pizza from the

fridge. Put it in the oven. Wait 30 seconds and then take it out of the oven.” (P99)

“I’m just saying what I’m thinking about doing- I’m gonna need Rosie to preheat the

oven. So, I’m gonna have her go over to the oven first and turn on the oven and it says

for 30 seconds, okay, so I know how to do that. Once that’s happened, then I’m gonna

have Rosie retrieve the pizza, it looks like from the fridge. And then we’ll need to place

it in the oven. We’ll have to determine how long to wait for the pizza in the oven, maybe

another 30 seconds. And then I need Rosie to somehow get the pizza to the counter.”

(P59)

Three participants also referred to using goals in addition to actions in order to teach the task.

P31 said, “I guess I’ll start with this option here, but maybe I’ll later on change it to a goal if I can’t

get this to work.”

7.5 Different types of knowledge were used to aid instruction

Participants explored the various knowledge sources defined in Section 7.3 to gain information that

they then used to plan the next steps in their teaching process. They then continued to leverage this

knowledge to adapt their own teaching behavior over time.

7.5.1 Participants leveraged different types of knowledge to plan next steps

In addition to using their prior knowledge about the task, participants gathered knowledge through

the interface, environment, and the robot’s behavior to plan their next teaching steps.
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7.5.1.1 Participant assigned real-world task expectations to the task at hand

Participants (3 participants) who frequently used the oven tended to assume that the stove and the

oven were interchangeable. P23 began the task with “It just says cook. So I’m just then gonna

take it to the stove.” This is particularly telling since the stove and the oven were in two different

locations. P74 first planned to start by “...turning on the stove, I guess...” but on observing the

environment closely, realized that “... the stove and the oven are not in the same place. I didn’t

notice that.”

Six participants planned to “preheat the oven so the pizza can be baked” (P7) and “figure out

how to get it to the right temperature” (P47) since the task required the oven to be set at a predefined

temperature. P92 also expected to “wait for it if it is preheating.” Even though in our task, the

pizza was in the fridge, P78 expected to “go get the pizza out of the freezer.”

7.5.1.2 Participants used knowledge from the interface to plan next steps

Participants had to use the template interface provided to them to instruct the robot. Naturally, they

(5 participants) first decided to scroll through the drop-down lists to see the options available to

them. P92 said, “I’m just gonna look through the possible commands just to familiarize myself with

the different options,” and scrolled through the action drop-down list. Eleven participants also read

through the action list with the explicit intention of finding an existing relevant option to teach the

task. P49 said, “Okay, so the pizza is in the oven. I closed it and now I got to...I’m just looking at

the choices now to see if anything helps.”

Additionally, two participants took advantage of the template structure and the drop-down list

options to determine their teaching plan. For example, as a part of their planning process, P49

attempted to create a command by entering values in different templates but not sending them

immediately.

“And then, I’m gonna put pizza.” (P49 selects options on the first action template)

“Does that make sense? Put pizza?”

“No, I have to use this one maybe,” (P49 switches from the first to the second action
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template)

“Wait, let’s see. Put pizza in oven.” (P49 selects options on the second action template)

Participants (7 participants) sometimes already knew what action they wanted to do and scrolled

through the drop-down list or used the auto-complete function on the text area to look for their

desired option. While doing the training task Approach the lightswitch, P23 searched for

both the verb and the object using auto-complete (“let me try searching here”) and on finding it

successfully, said, “Okay, this seems good enough.”

Three participants also used the auto-complete feature to look for their desired option when they

unintentionally skipped over the desired option on the list, or the desired option did not exist on

the list. P92 said, “I guess the first thing, do I need to preheat the oven?” and scrolled through

the action list. When they could not find it, they switched to entering values in the text area to

auto-complete - “Let’s search.” On not finding it, “No, it does not look like that (exists).”

7.5.1.3 Participants used robot behavior and responses to plan next steps

Participants actively observed and incorporated the robot’s actions, movements, and verbal re-

sponses into their planning process.

The study instructions asked participants to provide one instruction at a time and wait for the

robot’s response before providing the next instruction. P67 began selecting the instruction “So I

will have it put down...” and then realized that “Oh, it’s not ready for me yet” since the robot was

still doing the previous action and had not responded indicating it was ready for the next instruction.

On being instructed on a new unknown teachable action, the robot responded with “What is the

next goal or subtask?” to learn the different aspects of the teachable action. 8 participants planned

in response to this request from the robot. P11 decided to use the instruction Bring the pizza

to the oven to which the robot responded “What is the next goal or subtask of bring?” P11 said,

“So I think this is where I want to tell the robot I want the pizza in the oven and that’s the goal of

bringing it to the oven.”

8 participants waited to visually confirm that the previous instruction was successfully executed
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before planning the next instruction. P92 instructed the robot to Put the pizza in the oven.

Once it performed it successfully, P92 observed that - “Oh, it’s in there. Okay.” and then proceeded

to plan the next steps - “So I should probably close the open door.”

Four participants used the previous instruction log to decide their next steps. P49 read through

their previous instructions (“Okay, fetch the pizza, cook the pizza. Approach the ... pizza”) and

determined that they “.. did turn on the oven” and decided their next instruction based on that.

Participant P7 also kept track of prior robot movements to decide what specific instruction to

provide next. P7 said, “Assuming I don’t need to move just because I haven’t moved, moved between

the oven and the table at this point. So we’ll just go straight to picking up the pizza.”

7.5.1.4 Participant used current state information to plan next steps

Participants often used the current state of the robot and the environment, as well as the stage of

the task and last interaction, to inform their next steps.

As a part of this, they would note the current stage - “Okay, let’s see, we already cooked the

pizza” (P23) - and then interpret the current situation to decide the next steps. For example, P74

decided to “Put the pizza on, or onto, the counter.” as a part of the required task, and having done

it, determined that “we probably ought to go back and close the oven and turn it off.”

Seven participants used information available in the environment alone to determine their next

steps. P67 said, “And I’m just now noticing the fridge door is still open, so we better head over

responsibly” and proceeded to provide the commands Approach the fridge and Close the

fridge. Two participants accounted for both the locations of objects and the proximity of the robot

to varying objects to plan their steps. P47 noted the location of the pizza and used it to determine

their next instruction - “Okay, so I see that the pizza is in the fridge, so I think first I will tell the

robot to approach the fridge.” While P11 was teaching the task Heat the pizza, they decided

that they could “go back to turn on the oven since the robot’s there.”

At the end, six participants assessed the current state after teaching the task successfully to

determine that they were done teaching the task.
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“So it seems that it is done. It is reheated for 30 seconds and on the counter.” (P92)

7.5.2 Participants updated their knowledge as a part of the teaching process

As the participants continued to provide consecutive instructions, we observed that they actively

interacted with the robot to update their knowledge through exploration of the interface and obser-

vation of the robot and the environment.

7.5.2.1 Participants explored the interface to update their mental model of the interface

While the training session provided the participants with an initial experience of using the interface,

participants used the teaching process to explore it further to use it better over time.

Among the four templates available, the action templates were always activated, whereas the

goal templates were only activated when a new task was being taught. P56 noted that - “So I’m not

allowed to use the third fourth template here. Just one, two.”

When four participants clicked on the second action template, they noted its difference while

comparing it to the first action template. P11 noted that “this is different. It’s more complicated.”

As a part of their exploration, two participants also noted different properties of the options

available across the different drop-down lists. P23 noted “it’s alphabetically sorted” while referring

to the order of options, and P74 noted that there is no ambiguity between the available prepositions.

Four participants also made observations about the values present in the list, such as P26 noting

that “I guess there’s no preheat and there’s no, like, timer for it.” P92 discovered that they could

type in values to be auto-completed and said, “.. can type here. I got that.”

7.5.2.2 Participants used the interface to update their mental model of the task process

Once participants got familiar with the interface through natural exploration, participants leveraged

the various aspects of the interface to update their understanding of the task teaching process.

P47 noted that there was a similarity across the two training tasks, referring to the similarity in the

process of selecting options for the two commands. Two participants also sought confirmation from
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the researcher about potential interface capabilities. P31 asked “but these are the only available

options. I can’t add something new, right? Or can I type something new?”

Two participants explicitly reasoned about which template would be better suited to the command

that they wished to provide. P47 wanted to “tell the robot to approach the fridge” and said the

following while deciding on using the first template for their desired command - “I need to go back

to the first part because it is just Approach the fridge.”

Participant P47 also used the provided template options to determine the robot’s knowledge.

P47 decided their next step would be to turn on the oven because they determined that “it does

know how to turn on the oven.”

7.5.2.3 Participants reasoned about differences in available actions

Participants made observations about the various actions available to instruct the robot as a part of

their planning process. P99 noted the interchangeability of some of the actions (“Bring carry, clean,

clear, cook, deliver, empty, fetch. Oh, some of these are kind of the same thing.”). 2 participants

reasoned about the differences in the roles of different actions to determine the appropriate action

to teach.

“Am I heating it or baking it? I don’t know if it has previously been cooked or has the

cheese been melted at one point or is it loosely on top of the pizza? I guess I will say

bake.” (P92)

As a part of the teaching process, one participant also compared the visual feedback from

different actions. P31 said the following while comparing the results of the two training tasks.

“things like approach the light switch is pretty easy for me to tell if it was right. But

for the button, I can’t tell yet.” (P31)

While providing instructions, six participants referred to and reasoned about the information

provided about the differences between primitive and teachable actions. P47 reasons about this

difference while scrolling through the available actions - “..there is bake, cook, but those are things
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that we need to teach the robot to do” referring to the fact that teachable actions were in lowercase

letters to distinguish them from the capitalized primitive actions.

P92 also actively compared the teaching process between primitive and teachable actions.

“So I’m probably quicker at, like, going through the tasks or the verbs that it already

knows as opposed to figuring out, okay, which verb should I, or like, kind of action

should I teach it how to do.” (P92)

7.5.3 Participants became effective at teaching using learned knowledge

The process of updating their knowledge as a part of the teaching process enabled the participants

to leverage this knowledge to engage in more effective teaching.

7.5.3.1 Participants effectively translated their teaching plan into action

Through the various exploration steps, participants were able to use the gained knowledge to

translate their teaching plan into corresponding instructions for the robot.

P11 could effectively translate their training session experience to the actual teaching task. P11

referred to the third training task to use the Wait for thirty seconds command to set the time

to bake during the actual task: “ah okay this is probably when the wait 30 seconds, that’s how I

should do the time.” We also observed this ease when participant P67 used the task prompt to

identify the first sub-task. P67 wished to approach the refrigerator first since the pizza was stored

there.

“so the goal is to get the pizza on the counter, after cooking it in the oven at 350 degrees

for 30 seconds. So with that in mind, I think it would make the most sense to start with

approaching the refrigerator first.” (P67)

Three participants also intended to use the time when the robot was executing their previous

instruction to prepare the next instruction to send on the interface. For example, after P7 had sent

the instruction Wait for thirty seconds, P7 planned to “prep the next task of “remove pizza
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from oven.”” As the robot successfully executed the participant instructions, they began to expect

the robot to successfully do specific tasks and nine participants directly moved on to the next task

as planned before. For example, once P49 had given the instruction Approach the oven, they

said, “And now I think I’m gonna turn on the oven next” and directly proceeded to provide the

instruction Turn on the oven.

At times, however, five participants also quickly acknowledged the success of the robot before

moving on to the next task:

“Okay, yep. He’s got the pizza. And we then close the fridge.” (P74)

Since some of the participants naturally broke down the task into two halves, three participants

acknowledged the end of the first half of the task, which is that they cooked the pizza, and then

moved on to the second half of the task. Once the pizza had cooked in the oven for thirty seconds,

P56 referred back to the document to read aloud part of the task description (“and the cooked pizza

must end up on the counter”) and then decided the next step was to “pick up again the pizza from

the oven.”

7.5.3.2 Participants changed their teaching plan on the fly

The effectiveness of the teaching process came through, especially when participants changed their

plan on the fly. Participants were able to use the current state and robot behavior to influence their

plan change and then execute the new plan through updated instructions.

Six participants easily switched from one template to another depending on whether they wanted

to provide a specific command or a simple command as a part of their plan. After turning on the

oven using the Turn on the oven command, P23 switched to the second action template and

said, “okay now I’m doing a complex state again” about it and then proceeded to provide the

command Cook pizza in the oven.

At times, eleven participants started entering values and on planning out loud and determining

a different plan, switched to a different template to provide their new desired instruction. P74

said, “try turning on the stove, I guess.” when the second action template was active. They began
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selecting the values on there but then switched to the first template since it was better suited to that

specific command: “And this would be the first kind.”

Participants also displayed familiarity with the different types of action instructions and intention

to teach the robot when two participants changed from teaching a primitive action to a teachable

action. P99 provided primitive actions to retrieve the pizza from the fridge and temporarily put it

on the counter when they had the following realization about primitive actions: “Well hold on. So

I’m doing all this stuff but I could also teach it to do this stuff. These are all subactions.” P99 then

proceeded to teach it a new action with the instruction Cook the pizza in the oven.

Participants typically had a plan going into the task. However, at times, due to the current state

of the task teaching process, including the environment state, five participants changed their order

of actions in anticipation of the next part of the plan. For example, P47 instructed the robot to pick

up the pizza. Once the robot had the pizza, P47 realized that the robot might not be able to operate

the oven while holding the pizza. So they described their thoughts related to their change of plan:

“Okay, so I will put the pizza on the counter, even though it is not cooked yet. Because

I may need to go open the oven or heat up the oven or something.”

7.5.4 Participants actively evaluated the robot’s task progress

Evaluating a student’s progress is a common part of the teaching process. It is through this evaluation

that the teacher can decide whether the student is learning successfully, thus providing feedback

about their own teaching process. In our study, we observed participants providing instructions

and then evaluating the robot’s actions and responses to the instruction as a part of the overarching

teaching process.

7.5.4.1 Participants used robot actions and responses to evaluate progress

All the participants evaluated the robot’s progress with respect to the provided instruction using

visual confirmation of the robot’s movement or action or the combination of the two. In response

to P59’s instruction Approach the lightswitch, the robot proceeded to move towards the
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lightswitch. P59 responded to this movement: “And I can see the robot, yeah, doing the task.”

After P78 provided the instruction Pick up the pizza from the fridge, the robot moved

towards the fridge and opened it, and the pizza that was inside the fridge appeared on top of the

robot. When this happened, P78 acknowledged this success by saying “Alright. Good job.”

The robot has built-in responses to various instructions as described in chapter 5. Six participants

used these responses to evaluate the robot’s progress. P67 provided the instruction Approach the

fridge and once the robot did this action, it responded, “I am ready for a new task.” P67 used

this response to judge the robot’s success and to move on to the next task: “All right, with the robot

being ready for the next task, I think it would be helpful to open the fridge.”

Three participants sometimes had uncertainty about portions of the task, which was resolved in

response to the robot’s action. For example, P31 wanted to set the oven temperature to 350 degrees

but was unable to find options to be able to do that: “I have to figure out where I can, how I can

get this to a 350 degrees.” However, once they sent the command Turn on the oven, the oven

displayed 350 on top as shown in Figure 5.1b. Therefore, their doubt was resolved as a result of

this action.

“oh great. Okay, so I guess by default the, so it shows 350 there, so I guess that’s the

default temperature.” (P31)

7.5.4.2 Participants judged robot actions and responses

As a part of their evaluation process, eight participants paid attention to various aspects of the

robot’s actions and verbal responses and acknowledged them as they occurred. P49 planned to

provide the command Open the oven and acknowledged it with “Okay.” once the oven was

opened successfully. Two participants also acknowledged when the robot moved in response

to a command. When the robot started moving in response to P7’s command Approach the

lightswitch, P7 commented: “Robot is going in the right direction of the light switch.” P7 also

sounded positive in response to the robot’s action success. P7 provided the command Pick up

the pizza and once the pizza appeared on top of the robot, said: “Great, picked it up.” One
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participant also noted when the robot responded with “I am ready for a new task” in order to move

on to the next section.

7.5.4.3 Participants noted robot failure and non-responses

As a part of their evaluation process, participants also noted when the robot failed at performing a

task or if the action or movement did not visibly occur.

Sometimes as a result of an unexplainable failure in the robot, the robot did not perform the

action or respond accordingly, and three participants noted that. P67 planned to send the instruction

Turn off the oven (“So with that in mind, I’m going to turn off the oven.”), and when the robot

did not do anything, P67 commented “Well, at least attempt to.”

For specific failures, the robot would provide some explanation of what failure occurred. When

P56’s attempt to Put down the pizza in the oven, failed, the robot responded with “The

put-down task failed.” P56 noted this response: “Failed. Okay.”

On being provided the command Press the button on the watercooler, one can see the

robot moving towards the watercooler; however, there is no explicit display of the button being

pressed. P7 noted this discrepancy: “You see, the button doesn’t do anything.”

Participant P7 also noted when the robot did not move in response to a command. P7 provided

the command Approach the table after providing the command Approach the oven. Since

the table and the oven were right next to each other, the robot did not move in response to the second

command, and P7 acknowledged this (“Did not move”).

7.6 Insufficient knowledge resulted in incorrect and incomplete

mental models

Participants actively explored the various knowledge sources to gain information and then leveraged

that knowledge to aid their teaching process. However, the information available was not always

sufficient leading to incomplete mental models, which led to inefficiencies and failures when
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interacting with the robot. Insufficient explanation when the robot failed also led to participants

incorrectly updating their mental model about the task and the robot.

7.6.1 Participants did not have sufficient knowledge of how the interface

works

We designed this template interface and updated it based on participant feedback in a pilot study.

However, conducting this study gave us some more feedback on ways how a) we could have provided

better instructions to participants and, b) this interface could have been designed better to be more

intuitive and understandable to participants.

7.6.1.1 Participants did not have a sufficient model of the available instructions

As described before in Section 5.2, the actions in the drop-down list had been divided into primitive

and teachable actions, where the primitive actions were capitalized to distinguish them from

the teachable actions that were provided in lowercase letters. However, the values in the lists

corresponding to other parts of speech did not have any such distinction and were all presented in

lowercase. P31 had to confirm if the capitalization difference was restricted to actions alone.

“I see the objects and prepositions and things and they’re all lowercase, so I guess I’m

wondering, does it know how to deal with those, because they’re not in caps.”

P92 did not realize that the text area where the commands and the robot responses appeared

could be scrolled up to see the previous interaction. P92 was also concerned that the two button

commands (You are done and Wait for thirty seconds) were indistinguishable and there

might be an effect on the other button command on sending the first one.

“So I’m thinking, do I go ahead and press you are done? Is that gonna mess with the

30 seconds? Is that like a separate instruction?”

Multiple participants (P11, P31, P47, P74) were unsure as to why they would use the Wait for

thirty secondswhen having to use it during the training task (“I guess I am curious why there is
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a waiting for 30 seconds option? - P47). Unfortunately, we could not provide explicit information

about this command since it would have interfered with the study conditions.

7.6.1.2 The interface did not provide sufficient indication of selections

While the value that the participants clicked on the drop-down list was populated in the attached

text box, the option was not clearly selected or highlighted in the drop-down list leading to a lack

of certainty about its selection in the first place. Five participants had to self-correct or confirm

multiple times that their desired option was, in fact, selected.

This was true of the template selection as well. While the selected template was updated on the

interface depending on the button pressed, there was no additional confirmation as to what template

the participant was actually using. Leaving the button to be displayed as pressed or highlighted

would have given additional feedback to confirm this selection.

7.6.1.3 Participants faced difficulties due to idiosyncratic interface features

The lack of sufficient feedback from the interface about the option selected led to six participants

unintentionally sending the wrong option. Participant P7 unintentionally sent Open the pizza

when they intended to send Pick up the pizza because the two verbs were situated next to each

other on the list.

Due to limitations in the Rosie system, the Wait for thirty seconds did not always appear

on the interface after it was sent. Also, due to the way in which the Wait for thirty seconds

command was set up, it was not possible to interact with the interface (for example, to set up the

next command) while the command was running. This is because the system was literally paused

for that duration. Participants (P7, P56, P74, P78) encountered this issue.

The text inputs were set up to be cleared whenever the template was changed. Participants

P31 and P99 encountered this problem while partially entering a command on one template and

switching to another to deliberate about the command. However, when they returned to the original

template, their partially selected options were no longer present.
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7.6.1.4 Participants were unclear about the goal activation conditions

Participants were not actively provided information about the goal templates even though they were

told that they could provide a goal in response to a robot’s request. This was decided because we

wanted the participants to figure out the learning process of the robot through interaction. The goal

templates would only activate when a teachable action was provided since the robot could only

process a goal instruction as a part of that learning process.

Multiple participants (P31, P47, P56, P92) tried clicking the goal template buttons when they

had not yet provided a teachable action instruction. They encountered its inactive state; therefore,

the goal templates did not update on the interface.

“And I can’t use either of these goal options right now, so that’s interesting. Okay.”

(P31)

This also meant that some participants (P23, P26) discovered the goal templates by chance when

they were exploring the interface after providing a teachable action instruction.

“Oh, I see. Now there’s like a third template. I didn’t see the third or four templates.”

(P26)

However, this lack of information also led to P26 assigning the wrong reason for the goal

template activation. P26 wrongly assumed that the goal templates were activated in response to the

primitive command Approach when it was in response to the teachable action Heat that they had

provided before.

“I know there’s a clue because every time, like I approach you know, in the third and

fourth template, I’m like, it doesn’t come up with when it’s somewhere else. So I know

that. I know that the robot has given me a hint that it’s here. That it’s in one of these

like two, the last two templates.”
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7.6.2 Participants did not get sufficient updates from the environment

While participants interacted with the robot, they had to keep track of the environment to observe

the effects of the instruction provided to the robot. Participants were sometimes unsure about the

changes in the environment, leading to uncertainty about the success of the instruction.

7.6.2.1 Participants made incorrect assumptions about the environment

Participants (P11, P23, P26, P74) were unsure about and sometimes even possessed wrong assump-

tions about the environment. P74 noted their confusion about the indicator on the oven that turned

red when it was on: “And there’s a red dot on it. I’m not sure what that means.”

Both participants P74 and P78 made the assumption that the oven will automatically preheat to

350 degrees on seeing the number on top of the oven.

“Okay. It’s on 350. Now, I don’t know if it has the preheat or not, but I’m assuming it

does.” (P78)

Because the researcher had mislabeled the water cooler just as a “cooler” in the environment,

P26 spent a little time looking for the water cooler as a part of the training task. The researcher

modified the label after this encounter for the remaining 12 participants since it did not modify the

conditions of the actual task.

7.6.2.2 Participants were uncertain about object states and locations because of insufficient

evidence

Participants (P11, P47, P92) displayed uncertainty about object states and their corresponding

locations. P92 wondered about the state of the pizza (“Okay, I’m not entirely certain. Is that

soft?”) P47 was unsure if the fridge was really open even after providing the command Open the

fridge.

“Um, okay. What is this? Oh, so does this mean the fridge is open? Okay, I think the

red circle is the pizza”
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P92 was unsure about the location of the pizza: (“I’m assuming that means pizza’s in the fridge but

I guess I will find out eventually when I have to open it.”).

Participants (P7, P59, P99) felt the need to rely on their assumption that the oven will stay at

350 or preheat to 350 (“I’m gonna guess it’s just at 350 to begin” - P7).

Once participants provided the instructions to finish baking the pizza, the pizza object in the

environment did not display any changes corresponding to its cooked state. Therefore, participants

(P26, P47, P49, P56) were unsure how else to check if the pizza was adequately cooked or heated.

“One thing that I couldn’t check the pizza is actually cooked. I didn’t check it. But I

don’t know how can I check that one?” (P56)

Eventually, participants (P7, P23, P26) just decided to move on to the next subtask of moving

the pizza to the counter without being able to explicitly check its state.

“And then we’ll just put the presumably cooked pizza on the counter.” (P7)

7.6.2.3 Participants wanted the ability to confirm environment changes

When the robot performed the command Press the button on the watercooler, P31 was

unsure about the action’s success without observing the changes in the environment.

“I’m not sure how to know if it really pressed the button. I’m not sure. I don’t like see

a way, some feedback for that.”

After placing the pizza in the oven, but before turning on the oven, P11 tried to get from the

researcher ways to confirm the status of the oven: “And then I’m not sure if the oven actually turned

on. Is there a way I can tell if the oven is on?”

Observing the red circle in the fridge with the label pizza was not sufficient for P92 to know the

state of the pizza. They decided to scroll through the object drop-down list, and on finding “pizza”

on the list were able to confirm that pizza was already made.

“So the pizza’s already made. I don’t have to make the pizza. I just have to put it in the

oven to reheat it. Okay, that makes sense.”
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Participants P26 and P99 wanted to explicitly confirm the locations of objects. P99 provided

the command Open the fridge to confirm that the pizza is, in fact, inside the fridge.

“I want it to open the fridge assuming the pizza’s in the fridge.”

(After the fridge is opened)

“Ha, ha ha. I see it.”

Participants P59 and P74 wanted to explicitly confirm that the robot knew the updates that

occurred in the environment after specific commands were provided.

“still trying to figure out whether the oven’s preheated or not. I don’t see any actions

in the list that give me- that seem to give me an option to ask Rosie to check for me.”

(P59)

“Okay, and it looks like it’s already set for 350, that I can see, but I don’t know how

the robot knows that it is.” (P74)

7.6.3 Participants did not have sufficient information to confirm robot action

success

Participants did not get sufficient information from the environment, the robot, or a combination of

both sources to adequately confirm the success of the robot’s action.

7.6.3.1 Participants were unsure about object states after robot actions

As described before, in response to the command Press the button on the watercooler,

it was not clear from the environment that the robot actually pressed the button. Both participants

P7 and P92 were not sure of the robot’s success at doing the Press action. Participant P7 waited

for a long time in anticipation of visual feedback from the robot (“You see, the button doesn’t do

anything.). Participant P92 decided to rely on the robot’s response “I am ready for a new task”

alone to assume action success and continue teaching.
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P26 turned on the oven and saw the 350 degrees, but were still unsure as to whether the oven

was heating.

P47 was not sure that the oven would stay at 350 degrees and said, “I will keep an eye on if the

oven temperature changes because it is at the temperature I need right now.”

Two participants were also worried after placing the pizza in the oven that the pizza may get

burned in the process.

“Okay, well I’m just gonna say wait for 30 seconds. And as I’m waiting, I’m gonna

hope that the pizza doesn’t become charred and inedible. (P67)

7.6.3.2 Participants find robot’s response insufficient to determine task success

While the robot’s response “I am ready for a new task” usually indicated the success of the previous

action, it was not always sufficient to determine task success. This was partially because the training

tasks were set up for success so “I am ready for a new task” was an indicator of success, but this

was not true of all possible tasks.

Participant P67 once reasoned incorrectly about the meaning of the response. While reading

the training tasks, P67 assumed that the robot’s response “I am ready for a new task” meant that

the robot waited for 30 seconds even when they did not provide the command.

Participants (P7, P11, P31, P59, P92) also decided to trust the robot’s response as a marker of

task completion without sufficient proof from other sources.

“I will wait for it to say that. Okay. It says, "I’m ready for a new task," so I think I can

now open.” (P31)

7.6.3.3 Participants required additional signals of robot action completion

Participants (P11, P23, P31, P56) were unsure that the robot actually succeeded in its action. After

providing the command Approach the lightswitch, P23 did not register that the action was

already completed and said, “Okay, so I’m now simply, I’m now looking at the visual and waiting
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for the robot to perform the action.” P56 was unsure that the robot had in fact completed this action

because they thought “there is a little bit gap here” referring to the environment.

Participants P7 and P92 resigned to not getting external verification of the fact that the robot did

in fact wait for 30 seconds in response to the command.

“I guess I’m trusting that it knows how to count for 30 seconds. Okay, yeah, I didn’t

see a counter.” (P92)

7.6.3.4 Participants wanted the ability to confirm robot actions

Participants P7 and P59 expressed the need for a way to additionally verify the state of objects or

the task once the robot had performed the action.

“still trying to figure out whether the oven’s preheated or not. I don’t see any actions

in the list that give me that seem to give me an option to ask Rosie to check for me.”

(P59)

Participants P7 and P31 were additionally motivated to confirm the correctness and completion

of the action through visual feedback.

“Really, is there any way to confirm that the button was pressed?” (P7)

Since P56 required additional signals of robot action completion for the training actionApproach

the lightswitch, they assumed the need to confirm this through other actions and began to find

options for that before the researcher intervened and said that they could move on since it was still

the training session.

During the actual task, P56 was motivated to conduct unit-test-like actions to test the success of

the robot’s action and explained why they are choosing to perform these tests.

“Find the, find the pizza from fridge.

This, how can I check whether the robot have or not pizza actually, so, hmm. Let’s test

that if the robot actually can put and put down and retrieve that one again. So, I don’t

know, let me put down this one.
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Put down the pizza.” (P56)

7.6.4 Participants did not have consistently reliable mental models of the

robot

As a result of different media or their experiences with other intelligent agents, participants came

in with prior assumptions about the robot’s capabilities. As they interacted with the robot, they

evaluated the robot using their pre-existing mental models and based on its actions updated their

mental model. At times, this update was additive but some updates also surprised the participants.

When the robot failed, participants seemed to require more information than was available to them.

7.6.4.1 Participants had prior or task-dependent expectations of robot

Nine participants had expectations about the Wait for thirty seconds command.

“I’m thinking that,by telling the robot to wait for 30 seconds, most people would expect

to find that the robot would just remain stationary. And, in doing so, the next course of

action would be seeing if the robot is ready for a new task.” (P67)

Two participants also anticipated robot movement and action in response to specific commands.

After providing the Approach the lightswitch command, P26 described that “Okay, I thought

it was gonna physically push it or something.” P74 expected the robot to do the action successfully

even before it actually did the action (“We want to tell it to approach the light switch... And then

the robot does it”).

Three participants assigned ideal expectations to responses from the robot when it runs into

issues.

“In my head, at least I’m assuming it’s processing in an ideal world, what to get back

to me on, where I would like a robot like this to help me out would be used to [sic]

because the instructions are fairly clear, right?” (P23)
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Participants (P11, P78, P92) also expected the robot to already know how to do several actions

that would be considered typical in everyday life. For example, P78 began to provide a teachable

action command Carry the pizza to the oven only to then realize the robot does not know

how to do it: “Oh, it doesn’t know carry yet. Okay. I forgot the lowercase ones they don’t know.”

P11 also has expectations about typical oven tasks that the robot does differently.

“the oven is still open so I think I’ll have to tell it to close the oven when that’s something

I might expect...I include opening and closing the oven as part of that task.” (P11)

Ten participants mistakenly assumed that the robot has to be explicitly instructed to approach an

object before interacting with it and added that as an action before performing a few of the tasks.

Our conjecture is that this was because the first training action referred to the Approach action

leading participants to believe this, even though in the second training action, the robot does the

action with the water-cooler without needing to be instructed to approach it.

“I noticed it’s set up that it has to approach the light switch first. It’s not just like turn

on the light switch or turn it off.”

7.6.4.2 Participants reasoned about robot actions and movements

Participants (P31, P59) used instructions to explore the robot’s capabilities.

“so I’m gonna say approach. Okay. Actually I’m gonna try something just for my

learning, but I wanna, I’m gonna say something like put the pizza into the oven.. I’m

not sure if that will work yet. I’m guessing that it won’t be able to do that if the robot’s

not already over at the oven, but let me try.” (P31)

Participants (P11, P26, P31, P49, P59) also used the robot’s actions and responses to specific

commands to reason about its behavior in and knowledge of the environment to update their model

of the robot. P59 notes that the robot automatically knows to approach the referred object when

having to interact with it, rather than being first asked to approach it first.
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“I’m aware from this task that I don’t have to tell it to approach the water cooler. And

just telling it to press the button it knew to go over there already, so I’m gonna keep

that in mind. So, earlier I saw Rosie just moved straight from the light switch to the

water cooler with the task. So, I’m going to go to the first choice here and have Rosie

turn on the oven.” (P59)

P78, in addition, reasoned about its knowledge to change from a general instruction (Fetch the

pizza) to provide a more specific instruction (Pick up the pizza from the fridge).

“Fetch pizza. Now, is it gonna know where the pizza is? Let me try that and see...Pick

up pizza from the ..We’ll go with fridge.”

P7 was able to derive confidence in the robot’s ability based on its action. When the robot moved

in response to the command Approach the lightswitch, P7 said: “Robot is going in the right

direction of the light switch. That’s promising.”

The teaching process also included participants (P11, P26, P31, P49, P67) reasoning about the

robot’s learning process throughout the task.

“..if I have to just say turn the oven on or something,.... Then it, I don’t know, will it

then ask me for how, what temperature to set it to? I wonder if that’s something the

agent is gonna ask me.” (P31)

7.6.4.3 Robot actions did not meet participant expectations

The robot’s actions and responses did not always match the pre-existing expectations of participants.

Having interacted with intelligent agents like Siri and Alexa in the past, P49 was surprised by

the text-only response of the robot: “But I’m not hear...It didn’t say I’m ready for a new task. Oh,

it doesn’t talk back....Oh, I’m like waiting for it.”

Given this mismatch in expectations, four participants sometimes felt the need to confirm the

success of the robot’s action or movement with the researcher. Once the robot did the movement
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in response to Approach the lightswitch, P56 was unsure and asked the following to the

researcher.

“Shall we say that it’s succeeded in approach? I mean, there is a little bit gap here”

Since participants could not see the button being actively pressed as a part of the task Press

the button on the watercooler, three participants wished to confirm the success with the

researcher.

“So for something like a button, how do I know if it pressed it or not?” (P31)

Twelve participants noted that the oven was directly set to 350 degrees when they turned on the

oven and six participants were surprised to see it.

“Oh, I see now. It’s just magically 350 degrees. I wish that were the case in real life.”

(P92)

The robot was set up such that it could automatically open a receptacle to pick up something

inside it, however, it expected an explicit open instruction when it had to put something inside the

receptacle. P56 was naturally intrigued by this discrepancy.

“Oh, now I see I should open the fridge first but somehow we pick, picked up the pizza,

right? [laughs] I guess it combines like opening the fridge and picking up the fridge

[sic] at once with the instruction.” (P56)

7.6.4.4 Participants did not trust the robot’s ability to keep time

For the actual task, baking the pizza for 30 seconds was one of the requirements. In anticipation,

we provided the command Wait for thirty seconds. However, four participants expressed

uncertainty about the robot’s ability to wait for precisely thirty seconds.

P56 comments: “So wait for 30 seconds. I hope that time doesn’t exceed in the robot space

anyway.”
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P7 on being prompted to think out loud after providing the Wait for thirty seconds

command, wished to have confirmed that the robot actually waits for 30 seconds: “Yeah, I’m

honestly right now just thinking that I was waiting for 30 seconds, but I did not look at the timer at

the top of the screen to confirm if that’s 30 seconds.”

P92 was unsure but hoped that the robot “knows how to count for 30 seconds.”

7.6.4.5 Participants were unsure about the physical properties of the robot

Participants expressed uncertainty when it came to asking the robot to do actions that would require

the robot to possess specific physical properties.

This included P47’s uncertainty about the height of the robot to be able to Put the pizza on

the counter.

“Hopefully the robot is tall enough” (P47)

Participants (P7, P59, P67) were unsure if the robot would be able to do other tasks while holding

the pizza.

“I so don’t know how many like arms the robot has. So I’m trying to open the oven

with the pizza being held.” (P7)

“What if I just said, "Approach the oven." And let’s see if it still, if it carries it. All

right, it’s taking it. Don’t drop that pizza.” (P78)

Four participants were unsure that the robot had access to the updates or knowledge in the

environment. After P74 gave the command Turn on the oven, the oven updated to 350 degrees

on top. However, P74 said: “Okay, and it looks like it’s already set for 350, that I can see, but I

don’t know how the robot knows that it is.”

Participants (P26, P92) also assigned capabilities to the robot when it was inactive. When the

robot failed and did not provide a response to a command, P92 assumed the following: “Okay, I

suppose maybe it’s internally waiting for 30 seconds and it will tell me.”
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7.6.4.6 Participants were mistaken or unsure about the reason for the robot’s failure

The discrepancy between the participant’s mental model of the robot and the robot’s actual model

was especially evident when the robot failed.

When the robot ran into a failure state when it either did not understand the command or was

unable to do a task because of unsatisfied preconditions, three participants were not sure why the

robot failed.

The robot was unable to understand the goal statement The goal is that the oven is on

and responded with “I don’t understand” when being given the command.

“You know I provide desired state, the goal is that the oven is on, which is a fairly all

right desired state. It keeps saying, I don’t understand.” (P23)

For the primitive action put-down, when an object needed to be placed in a closed receptacle,

the robot could not perform the put-down action unless the receptacle was opened first. So when

participants (P31, P56, P59, P92) gave the command “Put/Put down the pizza in the oven,” the robot

failed and responded with “The put-down task failed.” The robot responded with this message

irrespective of whether the verb phrase Put or Put down was used since internally it processes

them similarly. However, this led to obvious confusion from the participants’ perspective.

“Okay, so robot says, "The put-down task failed." Okay, so I guess this put word

actually doesn’t mean, wait, what? That’s weird. I said put, not put-down.... I’m not

sure why it failed.” (P31)

Without sufficient information, participants at times attributed the failure to incorrect reasons.

P67 provided the goal The goal is that the oven is on as a part of the larger task Bake

the pizza in the oven. The robot failed because it didn’t understand the goal but P67 assumed

failure at the task level rather than the goal statement: “Doesn’t understand, okay. Okay, well, let’s

try this again. Um, so bake wasn’t it.”

When the robot failed to do the put-down task because the closed oven was not opened first, P78

assumed wrongly that the robot failed because they missed the incorrect intermediate step.
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“Oh, it failed. Oh, take the pizza to the oven. Maybe I should do that first.”

7.7 Incomplete and incorrect mental models led to uncertainty,

mistrust, and failures

When participants did not have adequate information to confirm their knowledge of the robot or

the progress of the task, it led to uncertainty about the task teaching process and the robot’s ability

to do the task. This lack of information also made it harder for participants to quickly recover from

failures. This led to participants facing issues that made it difficult for them to efficiently teach the

robot.

7.7.1 Participants displayed learned uncertainty about the task

Some participants encountered multiple issues while trying to teach the task to the robot. This

led to a lack of confidence in their own teaching process where they began to anticipate failures

and were uncertain about their process and also did not trust in the robot’s ability to learn the task

successfully.

7.7.1.1 Participants displayed uncertainty about task aspects

Despite the task description provided, two participants displayed uncertainty about task aspects not

explicitly defined in the task description.

“Realize I did not close the oven door. I don’t know if that’s important” (P7)

“I left the fridge open, but I don’t think I like I’m not sure if it’s important that Rosie

learns to close the fridge. I’m gonna assume not.” (P99)

Participants (P26, P59, P92) continued to express uncertainty about preheating the oven even

after encountering an alternative to preheat, or observing that the oven was at 350 degrees.
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“I am looking at the actions just to make sure- still trying to figure out whether the

oven’s preheated or not. I don’t see any actions in the list that give me-that seem to

give me an option to ask Rosie to check for me.” (P59)

Participants P11 and P56 were unsure about being done with teaching the task without a clear

marker of the pizza being cooked.

“I’m not sure, the pizza didn’t change. So I don’t know if that means it didn’t actually

cook while it was in the oven or if I can assume since the oven was on at that temperature

and I waited 30 seconds that it cooked - it would be my remaining question.” (P11)

7.7.1.2 Participants were not confident in their teaching

There were different aspects of the task where participants did not sound confident in their ability

to teach successfully.

P92 sounded intimidated by the task description in comparison to the training task: “So I need

to figure out what is, where everything is in the room and go?” P49 expressed uncertainty at being

able to find the desired option on the drop-down list: “Okay, I think it’s asking me to click approach,

if I find it.”

Three participants apologized or laughed awkwardly in response to smaller issues they ran into

while teaching the task.

However, when they did run into failures more often, some participants (P26, P49) felt like it

was their fault that they could not teach the task properly.

“Man, I feel like I’m failing. I feel like there might be no answer to this. Oh my gosh,

tell me what I did wrong.” (P49)

7.7.1.3 Participants wait a long time before providing the next instruction or thinking out

loud

Participant uncertainty also came through in the amount of time they waited before providing the

next instruction or thinking out loud. Usually, this is when the researcher prompted them to describe
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what they are thinking out loud.

This was sometimes a result of not seeing expected updates in the environment (“You see, the

button doesn’t do anything” - P7) or quietly planning tasks (“So I’m trying to open the oven with

the pizza being held” - P7).

Two participants also waited quietly while the robot performed the tasks. P74 indicated their

hesitance about the think-aloud process: “the thinking out loud is a little bit unnatural for me, but

I will try.”

7.7.1.4 Participants required additional reference to teach task

Two participants were unsure or did not remember the last commands that were sent.

“And now I think I need to start the oven? Or did I already start it? Wait, did I already?

Did I turn on the oven? I’m forgetting.” - P49

Participants (P23, P47, P49, P78, P99) also had to refer back to the document either to verify

how to use the interface or how to teach a teachable action:

“Let me... I’m scrolling back because I don’t remember what needs to be done after I

have the statement in place” (P23)

7.7.1.5 Participants sought clarification from researcher

Even though the researcher had informed the participants that they are unable to answer most

questions from the participant except for the information that was already provided, participants

still needed to seek clarification during the teaching process.

Participants (P26, P49, P74, P78, P99) asked clarification questions regarding the robot teaching

process. P74 wanted to confirm that the teachable actions could be used and that “they are not

pre-programmed.”

Having done the individual commands in the training tasks, P26 and P74 inquired whether the

actual task needed to be done using one command as well: “do I have to do everything in just one

swipe? Or can I give multiple commands?” (P26).
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Three participants were also unsure and tried to confirm with the researcher whether they had

provided all the commands required to finish teaching the task.

“Oh no, what happens if I’m stuck? I really wanna figure this out though... I’m close,

right?” (P49)

7.7.2 Participants were unable to efficiently teach the robot

At the beginning of the study, participants were provided only a minimal description of the robot’s

learning process. This was because we wanted to explicitly study whether participants are able to

learn about the robot’s learning process through interaction. While participants displayed some

success in adapting their interaction to teach better, the combination of inadequate training and

inadequate knowledge about the robot’s learning process resulted in participants being unable to

teach the task in an efficient manner.

7.7.2.1 Participants did not display adequate knowledge of robot instruction

Participants P49 and P78 were unsure how to provide instructions to successfully teach a teachable

task. In response to a request for a goal or sub-task for the task Carry, P78 is unsure how to proceed

and whether they ought to repeat their instruction.

“Maybe? Is that okay to do the one I tried before? Maybe not. Maybe. Okay, got it.

Let’s see” (P78)

The robot engaged in a strict back-and-forth interaction where the teacher is expected to wait for

the robot’s response before providing the next command. However, in the flow of teaching the

task, participants (P26, P78) sent two consecutive commands without waiting for a robot response

before the first one.

While teaching a new task, it was not clear to P99 how to indicate the end of teaching that task.

They had begun teaching the task heat and had finished providing the actions that they considered

a part of heat:
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“I guess, in general, I’m thinking at what point do I tell it the sub-task is done? Like

I’m done teaching heat.”

This usually led the participant to start providing instructions for a new task without ending the

previous one. P11 intended to teach the task bake and then the sub-tasks heat, empty under the

task bake. This would have looked like the following:

1. Bake the pizza

2. Heat the pizza

3. Teach subtasks of Heat

4. You are done

5. Empty the oven

6. Teach subtasks of Empty

7. You are done

However, they missed providing the command You are done which led to the robot learning

Empty as a sub-task of Heat rather than Bake.

In general, participants did not have a good grasp on when and how to provide the command

You are done despite being provided information about it. This led to participants (P7, P23, P59,

P67) incorrectly providing it to end a primitive action (“I see the robot move to the light switch

there. Okay, I’m gonna say that’s done. ” - P67) or to end the complete task (“Click You are

done?” - P7).

7.7.2.2 Participants misinterpreted the robot learning process

Because of their lack of familiarity with teaching this robot, participants were often unaware and

thus ascribed incorrect learning mechanisms to the robot or taught it in a way that could not be

processed by the robot.
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Participant P49 wanted to teach the overarching task of cooking the pizza and provided the

instruction Cook the pizza in the oven which referred to the preparation involved as well.

However, they reused the verb Cook to refer to the act of the pizza cooking inside a hot oven. As

much as another human may understand the multiple uses of the word “cook,” the robot did not

know how to process this command.

The robot is set up to request a goal or sub-task as a part of a new task learning process until the

teacher gives the command You are done to end the teaching of that particular task. However,

participants ascribed various incorrect reasons for this request from the robot. Participants (P23,

P49, P67) mistakenly assumed it was a bug on the part of the robot.

“I think it’s stuck in some sort of weird loop with me wherein anything I do it just keeps

asking for the next goal or sub task, but I feel my request, it’s fairly clear.” (P23)

P49 also interpreted this request as a reason to provide a more specific command Turn on the

oven for the pizza despite the oven already being on.

Seven participants repeated or rephrased instructions even though the action was already executed

in hopes of a different response from the robot. When the task Put the pizza in the oven

failed due to the oven being closed, P59 decided to repeat the command: “I’m not sure if I had this

is what I had clicked the first time or not, so I’m gonna try it a second time”.

Participant P67 assumed that the robot’s continuous requests for goals meant that it did not know

them yet and decided to post-hoc teach them after the actions were already done. For example,

P67 had already provided individual instructions to bake the pizza in the oven but since the robot

continued to request a goal or sub-task, they provided the action but in a goal format: “Oh, so it’s

still interested in the goal of bake. Okay. I guess it’s, wants to learn. The goal is that the pizza,

huh, the goal is that the pizza is in the oven.”

7.7.2.3 Participants were unsure that the robot would execute tasks successfully

Participants (P7, P47, P49) were unsure if individual actions would work and said that they would

“try” teaching the next action.
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“ I will see-I am going to try “pick up the pizza,” and see if that works.” (P47)

Participants (P7, P26, P49, P92) were also unsure if the robot would be able to do a new task.

“Cook the pizza and see if that works. Okay, “cook the pizza in the oven.” Maybe it’ll

cook with start. But maybe start oven? I don’t know if it’s gonna work.” (P49)

P92 had already turned on the oven and put the pizza inside and was concerned that the process

of cooking may exceed the prescribed time description: “So it says for 30 seconds, so hopefully it’s

not already cooking.”

P92 was also unsure about what the result would be once they provided an action instruction:

“Put the pizza in the oven. Is that going to work?”

P56 was unsure about the phrasing of their instruction to put the pizza on the counter until they

saw the robot do it successfully: “So I’m not sure. Put down using template two and put down the

pizza on the counter, I guess this one.”

Participants (P7, P26, P49, P92) were unsure if the task instructions would work properly and

yet decided to use the robot’s response as a way to move forward. P49 uses the robot’s request for

a goal or sub-task to try to provide instruction.

“Maybe it’ll cook with start. But maybe start oven? I don’t know if it’s gonna work

cause it’s not a [primitive action]”

7.7.2.4 Participants experience difficulty with task

Some participants were stuck being unable to teach the task as desired and expressed uncertainty

and frustration about the process.

P49 planned as they went along and oftentimes were unsure what to do next: “Okay, turn on.

Now, I don’t know what to do. Okay, let’s see. I don’t know what I’m looking [for].”

Some participants (P11, P23, P26, P49) had a difficult time translating their desired plan into

robot instructions even after trying multiple times. P26 assumed they had to explicitly increase the
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heat of the oven to 350 degrees and attempted to provide such an instruction multiple times in vain

despite seeing the update on the oven in the environment.

“I’m just trying to determine, like how to actually handle the robot. Like turn up the,

like the amount of like, what’s it called, the degrees to actually 350. But it just can’t.”

P23 was frustrated with the teaching process because they were unable to set the time command

using the drop-down options, and somehow did not choose to use the command Wait for thirty

seconds.

“So at this point, either I would give up in an real world or..But now I’m stuck in

a waiting loop after trying to just set it time. Because I’ve spent longer on giving

instructions to set for 30 than the actual time it would’ve taken to cook the entire thing,

right?

After encountering multiple failures, P26 and P49 felt like this was a teaching process with no

answer. P26 asked the researcher “Is there a trick question?” with regards to the task.

Even though some participants managed to teach it in a shorter way, due to their multiple failures,

P26 found this teaching more effortful than doing the task at home: “When I do this at home, I

never really notice how much work it actually takes.”

7.7.2.5 Participants were unable to teach the task as desired

Some participants were unable to teach the task as they originally desired or planned.

Participants often discovered that they could not provide any other command while the

robot waited in response to Wait for thirty seconds. P47 provided the Wait for thirty

seconds after putting the pizza in the oven but realized that the oven was not closed. However,

since there was no way to provide a new command while the robot was waiting, they had to resign

to waiting without closing the oven door even though it was not ideal: “Oops, I didn’t close the

oven. (laughs) I will just let it...I’ll keep waiting.” P7 also resigned to waiting without providing

the next action.
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P23 spent a long time during the task trying to look for or generate the 30-second option as a

part of the drop-down list. P23 did not consider using the Wait for thirty seconds command.

Having spent a lot more than 30 seconds time trying to figure out the options, P23 resigned to

turning off the oven without providing it their desired time-related command.

“I just turned off the oven. I’m assuming it’s cooked by now.”

P92 and P31 encountered the put-down task failure multiple times when they tried to put the

pizza into the closed oven and tried different actions in response before eventually figuring out the

need to open the oven first. P92 commented on the long sidetrack before they could finally move

on to the next part of the task: “Okay, now I can finally fetch pizza from table.”

One participant also faced difficulty in clearly separating different parts of the task. As a part

of teaching the higher-level task Bake, P47 had already asked the robot to pick up the pizza when

they realized that they had to open the oven. P47 determined that the robot could not open the oven

while holding the pizza so they needed to place the pizza somewhere else. They noted that this

action is not ideally part of the bigger task.

“So I will have it put down...Oh, it keeps asking me sub-task of bake. This technically

isn’t part of baking, but I will put down the pizza on the table.”

7.7.2.6 Participants felt limited by instruction options in the UI

One of the interesting things that emerged as a response to having an inadequate mental model

of the robot’s learning process is that participants expressed the need for capabilities beyond the

current possible robot instruction.

P26 described their desire to provide compound statements.

“Cause there are no compounds, so there’s not pick up pizza, and then...Which isn’t

like, it’s not bad. I don’t want it to be confused if it gets confusing.”

Given that the task specification included both the temperature and time component, seven
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participants often looked for 350 degrees and 30 seconds in the drop-down list but these options

were not available.

“Okay, the more complicated ones don’t seem to have numbers preset for the tempera-

ture. So I want to tell it how long and how hot to bake it for as guess I’m getting stuck

in that these other options I have to be able to command don’t have a temperature or

time (P11)

Three participants explored both goal templates to determine if there was a way to provide their

desired goal even though it was not supported. P23 wanted to provide the instruction The goal

is that the pizza is cooked, but “cooked” was not available as an object state since this

assumes that the robot already knows how to cook a pizza. On not finding it, P23 was visibly

frustrated: “I believe my goal is to, pizza is cooked, right? doesn’t make sense, right?”

Participants (P26, P31) also wanted to provide action instructions that had a sentence structure

that was not supported by the template. The interface was set up to give a popup error if any of

the fields were empty when the command was sent. P31 wanted to provide the first type of action

using the second template but encountered the error and specified the need for this ability.

“This is a small piece of feedback. I wanted to say approach the fridge and not have

the rest here.”

Participant P26 wanted to provide a command that would allow the heat to slowly increase to

350 degrees in the oven. Even though they observed the 350 degrees on the oven, they believed

that the oven was not at that temperature yet. However, this command was not supported.

“Right now, looking for, some way to raise the heat. I can’t find anything for now.

There’s no command for it. There isn’t even like, there’s command for turning up the

heat or setting the heat to like certain temperature.” (P26)
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7.8 Failure situations led to attempts at recovery

When faced with inefficient and failure scenarios as a result of incorrect and incomplete mental

models, participants were motivated to recover from these scenarios. At times, they proposed

suggestions for capabilities that would help them recover or found alternative means to continue

the teaching process. This shows that participants desired to continue teaching the task despite

encountering these scenarios.

7.8.1 Participants experienced inefficient or failure scenarios and intended

to fix them

As has been detailed in the previous sections, participants encountered various inefficient or failure

scenarios while interacting with the robot. They noted these failures, considered alternative plans

in hindsight, but also suggested ways in which this task could have been set up to be taught easier

than the current situation.

7.8.1.1 Participant actions led to inefficient or failure scenarios

Twelve participants executed actions that resulted in them encountering various inefficient and

failure scenarios with respect to the robot. All the failure and inefficient scenarios have been

detailed in Section 7.9.2. The issues that participants faced while interacting with the interface

have been detailed in Section 7.6.1.

7.8.1.2 Participants realized potential issues after they had provided instructions

Participants P7 and P47 realized that they did not close the oven door only after providing the

instruction to the robot to wait for 30 seconds (“Oops, I didn’t close the oven.” - P47). P47 decided

to close the oven after the wait command and then asked the robot to wait for another 30 seconds.

P26 sent the Wait for thirty seconds command but immediately determined that “That

wasn’t right” because they were not sure if the oven was already heating at the right temperature.
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P99 was not sure the robot could open the oven while holding the pizza, so they decided to put

the pizza on the counter in the meantime. However, when they began to teach a new action Heat

within the task of Cook, P99 noted that “these are not really in order.”

P49 provided the command Cook the pizza in the oven in response to the robot’s request

for a goal or subtask, but immediately noted that “Maybe that’s too specific.”

While waiting for the robot to restart because of an unexpected failure, P56 realized that ‘Oh,

now I see I should open the fridge first, but somehow we picked up the pizza, right?” since they had

provided the Pick up command without asking the robot to open the fridge first.

7.8.1.3 Participants considered post-hoc alternative plan

At different points in time, participants (P26, P74, P92, P99) described their desire and their

consequent alternative plan on how they could have taught different parts of the task more efficiently.

“Oh my gosh, I put the pizza all the way on the counter on the other side and I could

have put it on the table right next to the oven.” (P99)

While considering an alternative efficient plan, P92 expected the robot to already know how

to do a teachable action fetch, when, in fact, it needed to be taught. P92 provided consecutive

instructions Open the fridge and Pick up the pizza and then realized that they could have

instead used the command Fetch the pizza from the fridge so that it was more efficient.

However, given that the robot did not know the action Fetch, they would have had to teach it

irrespective.

“So, I see now how I could have done that with fewer things like fetched the pizza from

the fridge.”

P31 analyzed their teaching process and noted that they did not teach any new actions: “I didn’t

teach it anything new. I just used the existing actions, so I’m not sure if I did what you wanted.”

For the eight participants who faced a robot failure that required a restart, the researcher asked

the participants to describe if the interruption had any effect on their task-teaching process at the
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end. Participants P67 and P92 said that the interruption itself did not have any effect but decided

to describe their alternative plan in retrospect on being asked that question.

“I realize in retrospect that the instructions I gave it, when I said it to bake the oven,

I should have gone from turn on the oven, instead of to bake the pizza, to just turn on

oven, wait for 30 seconds, just keep it simple.” (P67)

7.8.1.4 Participants provided ideas about how to make the task easier to teach

When participants encountered issues while teaching the robot, they suggested ways in which the

teaching process could have been made easier for them.

Participants (P23, P31, P49) suggested potential updates in the interface and the environment

that would have helped them in their teaching process. P31 said the following in response to the

“The put-down task failed” message on the interface.

“I think I should be checking up here more to make sure that it worked or not, ’cause

I think an alert that would’ve said failed might have helped me see it quicker then,

’cause I’m not looking up here as much.”

When P23 and P26 encountered robot failures, they suggested unavailable alternative ways using

which they could have recovered from the failure.

“I would try finding somewhere to override the statements and be able to do it with a

more complex structure. Or try finding a help in terms of the menus of how do I give

it full instructions.” - P23

When P56 could not be certain that the pizza had been cooked, they suggested tests that they

could do to determine that: “Hmmmm maybe controlling the waiting time like I waited there 30

seconds ...but maybe we can test like applying various kinds of time periods during the oven and

checking whether the color might be changed.”
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7.8.2 Participants found alternative ways to instruct when they could not

execute desired instruction

Most participants created a teaching plan once the task was introduced to them. However, some

of the parts of the plan could not be realized because the desired options were not present or the

instruction form was not supported. Participants switched strategies and found alternative ways to

still execute their plan.

7.8.2.1 Participants changed their plan on encountering limitations or unexpected responses

Participants typically switched templates to access a specific instruction type, but two participants

also switched templates when they could not find their desired option in the currently selected one.

When P23 could not find a time-related option in the drop-down list, they decided to provide a

command from a different template.

“but again I can’t figure out here in this list the time variable. So I’m still like prepare

the pizza for, it keeps saying invalid input. So I’ll do, prepare the pizza maybe let’s see

if it gives me something.” (P23)

Two participants also changed their teaching plan in response to the robot not moving in response

to an instruction. P7 wanted to repeat the command Approach the table in anticipation of

picking up the pizza that’s on it. However since the robot did not move before in response to the

command, they decide to skip to the next action. P7 said, “Assuming I don’t need to move just

because I haven’t moved, moved between the oven and the table at this point. So we’ll just go

straight to picking up the pizza.”

Nine participants also changed their planned teaching process in response to the robot failing

to do the previous instruction. They looked for and sent an alternative instruction to replace the

instruction that failed. P78 encountered the error “The put-down task failed” because the oven was

closed when they tried to put the pizza in the oven.
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“Oh, it failed. Lemme try another one. Oh, take the pizza to the oven. Maybe I should

do that first.”

7.8.2.2 Participants used alternative actions or goals to teach the desired task

As a part of their changed plan, when six participants could not teach their desired task, they found

alternative action or goal options to teach the same task.

Participant P11 wanted to set the temperature so decided to change the task from Bake to Heat.

“So I want to tell it how long and how hot to bake it for....Okay I wanna go back to

teaching it to heat, I guess instead of bake.So heat the pizza. So that’s essentially what

baking is heating it.”

P92 wanted to preheat the oven and on scrolling through the options, they encountered the action

Turn on and decided to use that instead.

“Okay wait, I see now it says turn on but does it turn on and preheat instantly? I don’t

know. Okay, now I’m going to turn the oven on.”

On encountering a request for goal or sub-task from the robot about the task Bake, P23 provided

a teachable action Cook that is interchangeable with the original action and provided the instruction

Cook the pizza in the oven.

“What is the next goal of bake? What is the goal is to cook the pizza for me.”

7.8.2.3 Participants used alternative options when they could not find their desired option

Participants planned the commands that they wanted to provide in advance but the options were not

always available. In response, they looked for alternative options in the drop-down list to provide

a different command for the same intention.

Multiple participants (P11, P23, P26, P31, P78, P92) changed their plan when the desired option

was not found among the different drop-down lists across the templates. They would typically scroll

through the different lists available to find a suitable option.
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“as guess I’m getting stuck in that these other options I have to be able to command

don’t have a temperature or time, well I guess, okay, I can teach it heat. (P11)

While looking for an alternative, four participants scrolled through the list with the intention of

finding one that is the closest to their desired command. When P49 could not find the options to pro-

vide the command Cook the pizza for 350 degrees, they provided an alternative command

Cook the pizza in the oven instead.

When participants P11 and P92 could not find a 30 second option in the drop-down lists, they

deferred to using the button command Wait for thirty seconds.

7.8.2.4 Participants engaged in creative actions in response to unavailable options

On not finding their desired option in the drop-down lists, participants P11 and P23 expected that

teaching specific actions would update the drop-down list with new action-relevant options.

“Okay, the more complicated ones don’t seem to have numbers preset for the tem-

perature. So I wonder if I need to teach it bake and that will allow me to set the

temperature.” (P11)

On not finding the option to enter 350 degrees, P23 decided to send an incomplete command

and encountered empty input errors as a result of that: “So I’m still like prepare the pizza for, it

keeps saying invalid input.”

Both P26 and P31 asked if they could enter their own commands and tried to type them in

response to not finding their desired options (“I can’t add something new, right? Or can I type

something new?” - P31). The interface however did not allow entry of new values not in the list.

7.8.2.5 Participants were immersed in the teaching process

The previous set of examples shows that the participants were immersed enough in the teaching

process that they were willing to find alternative ways through which they could successfully teach

the task.
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Nine participants identified with or personified the robot while teaching it the task and waiting for

it to perform in response to the instructions. They assigned gendered pronouns to it and sometimes

even human emotions when it failed or did not do the task successfully.

“Well, let’s try turning off the oven and hope it doesn’t hold that grudge against me.”

(P67) “It’s probably confused ’cause my instructions (laughs) are really... (P49)

Even when faced with a situation where the robot had to be restarted, all the participants were

willing to continue teaching the robot after the restart. This was also evident when they were stuck

in the teaching process and unsure how to proceed. P99 expressed regret that they missed out an

opportunity to teach it a new teachable task rather than just providing a primitive action.

“Oh man, I could have taught it Heat the oven, which would’ve been turn on the oven.”

P26 intended to teach it task aspects outside of those explicitly specified in the task description:

“I know this isn’t like, well, realistic, but I should probably close the fridge.” Participant P7 also

took time to verify the correct input before sending instructions.

We also observed P67 matching the language used across the interface and task instructions

while thinking out loud.

7.9 Quantitative Analysis

We characterized the actual teaching interactions that took place between the participants and the

robot. We identify the various types of commands provided, as well as provide a quantitative

description of the failures encountered during the task.

7.9.1 Task Command Analysis

13 out of 14 participants successfully taught the task to the robot. P49 almost finished teaching

the task, but after the robot performed a set of unexplainable actions in response to the command

Approach the counter, P49 was no longer certain about how to proceed with the task.
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Participant Completed
Task?

Teachable
Actions

Teachable
Action List

Primitive
Actions

Goal
Commands

Wait for
30 seconds Why was it used? You are

done
Was it used
correctly?

Total
Commands

P7 Yes 0 N/A 16 0 1 cook for 30 1 No (end full task) 18

P11 Yes 4 Bake, Bring,
Empty, Heat 6 3 1 cook for 30 0 N/A 14

P23 Yes 9 Bake, Cook(6),
Deliver, Prepare 25 2 0 N/A 1 No (end full task) 37

P26 Yes 7 Bake, Heat(5),
Start 48 2 3 cook for 30 2 No (misclick,

end full task) 62

P31 Yes 0 N/A 15 0 1 cook for 30 0 N/A 16

P47 Yes 1 Bake 20 0 2
cook for 30 in
open oven then
closed oven

1 Yes 24

P49 No 8 Bake, Cook(4)
Fetch(2), Start 16 0 0 N/A 1 No (end full task) 25

P56 Yes 0 N/A 17 0 1 cook for 30 1 No (end full task) 19

P59 Yes 0 N/A 12 0 2 turn on oven for 30
cook for 30 1 No (end full task) 15

P67 Yes 2 Bake(2) 21 10 1 cook for 30 0 N/A 34
P74 Yes 0 N/A 14 0 1 cook for 30 0 N/A 15
P78 Yes 4 Carry(4) 17 1 1 cook for 30 0 N/A 23

P92 Yes 4 Bake, Fetch,
Heat(2) 27 0 1 cook for 30 2 Yes 34

P99 Yes 2 Cook, Heat 17 0 1 cook for 30 0 N/A 20

Table 7.1: Breakdown of commands provided by participants for the task during the study

We provide a breakdown of the type of commands that participants provided as a part of the task

in Table 7.1. 9 out of 14 participants used teachable actions as a part of their teaching process. The

number of commands provided by these participants is on average higher than participants who did

not provide teachable action instructions. However, the advantage of teaching teachable actions is

likely to show through when multiple higher-level tasks are taught that leverage previously taught

teachable actions, as has been shown by evaluation of communication in James Kirk’s thesis [25].

In this study, since only one task was required, participants who used only primitive actions engaged

in shorter interactions. However, P11 was an exception since they used 4 teachable actions, and yet

used the least number of commands to successfully teach the task. Only 5 participants used goal

commands as a part of their teaching interaction.

All participants that used the Wait for 30 seconds command used it to cook the pizza for the

prescribed amount of time. P23 had taken a significant amount of time trying to find the option 30

seconds in the template and eventually determined that since more than thirty seconds had passed

as they figured the commands out, the pizza ought to have been cooked by then. Out of the 8

participants who used the You are done command, only 2 participants (P47 and P92) used the

command appropriately to end the process of teaching a teachable action. The other participants
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used You are done to indicate the end of the complete task rather than a specific teachable action.

This clearly shows that this command needs to be modified to be more natural to use appropriately

by the human teacher.

Participant
Total
Number
of Turns

Unknown
Word

Sub-task
Failed

Rosie didn’t
understand
command

Unknown
Failure

Instructor
Invalid
Command

Researcher
Fault

Number
of Task
Failures

Number of
Failures that
led to
Restart

P7 36 0 0 0 0 1 0 1 1
P11 29 0 0 0 0 1 0 1 0
P23 73 1 0 2 1 0 0 4 2
P26 123 1 0 2 0 2 1 6 4
P31 37 0 3 0 0 0 0 3 0
P47 48 0 0 0 0 0 0 0 0
P49 51 0 0 1 5 0 0 6 2
P56 39 0 1 0 0 1 0 2 1
P59 32 0 2 0 0 0 0 2 0
P67 69 0 0 5 1 0 0 6 1
P74 31 0 0 1 0 0 0 1 0
P78 47 0 1 0 2 0 0 3 2
P92 71 1 2 0 0 0 1 4 2
P99 41 0 0 0 0 0 0 0 0

Table 7.2: Breakdown of task-level failures encountered by participants during the study

7.9.2 List of Robot Failures and Unexpected Behaviors

In this subsection, we provide a list of robot failures and unexpected robot behaviors that occurred

across participant interactions that confused participants and indicates a need for a better explanation

for these behaviors.

A portion of the unexpected behaviors occurred while providing primitive actions. This was a

result of how the low-level preconditions were defined for the pick-up and put-down actions.

The participants were informed that the robot could handle only one object at a time. Therefore,

participants expected that the robot could not do any other task while holding an object, such as a

pizza. However, when provided an Open command, the robot was able to open the receptacle while

holding the pizza.

When participants (P11, P23, P56) provided the command Pick up the pizza while the

pizza was still in the fridge and the fridge was closed, the robot automatically opened the fridge to
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pick up the pizza without needing to be instructed to do so. When the pizza was on the floor, P23

provided the command Put down the pizza into the oven. The robot automatically picked

up the pizza to put it inside the oven.

Participant P49 encountered unexpected robot actions in response to valid action commands.

P49 was teaching the task Cook the pizza and had provided a set of commands that contributed

to the task. However, the robot seemed to have reached an unresponsive state and displayed incorrect

behavior when P49 provided the command Approach the counter. Instead of moving towards

the counter, it performed other unrelated actions including going to the oven and picking up the

pizza. One hypothesis for this behavior is that it was performing the partially taught task as a result

of being stuck in its learning process.

We now describe a list of failures that participants encountered as a part of the teaching process.

1. Unknown Word: Some of the verbs in the list were not part of the robot’s vocabulary.

When participants (P23, P26, P92) encountered this error, the robot would respond with

“unknown-word” and reach an unresponsive state. Therefore, the robot had to be restarted

in response to this failure. Participants P26 and P92 encountered this failure as a result of

using the command bake. The researcher added this to the vocabulary after this error was

encountered by these two participants since it was relevant to the task.

2. Sub-task failed: When participants tried to put the pizza in a closed oven, the task failed

since the robot needs to be explicitly instructed to open the oven first. The robot responded

with “The put-down task failed” since it could not do this action successfully.

3. Rosie did not understand the command: In response to specific commands such as The

goal is that the oven is on or Start the oven, Rosie responded with “I don’t

understand” since it could not process the sentence successfully.

4. Invalid Command: When the participants provided an invalid command such as Open the

pizza, the robot simulator provided the reason for failure on the command line; however,
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it resulted in the robot going into an unresponsive state. This required a restart of the robot

agent.

5. Unknown failure: There were a few times that the robot reached an unresponsive state or

shut down the interface without any reasonable explanation.

6. Researcher fault: After restarting the robot, the researcher used a combination of commands

and direct manipulation of objects to restore the agent to its previous successful state before

the failure that required the restart. However, while doing this for participants P26 and P92,

the researcher entered two commands consecutively without waiting for a robot response.

This resulted in the robot going into an unresponsive state, requiring another restart of the

robot.

7.9.3 Task Failure Analysis

We provide a breakdown of the various task-level failures encountered by the participants in Table

7.2. 12 out of 14 participants encountered at least one task failure during the teaching process.

We described the types of failures presented in the table in the previous Section 7.9.2. Among the

multiple types of failures, unknown-word failures and invalid command failures always resulted in

the robot reaching an irreversible state and thus required a restart of the robot. P26 faced the largest

number of task failures that required a robot restart, and this is also reflected in the fact that they

had the maximum number of turns to finish teaching the task successfully. P67 tried repeating the

same goal command multiple times even when the robot responded that it did not understand the

command, leading to a larger number of task failures. P31 encountered the same “put-down task

failed” error three times before determining the actual reason for the failure and providing the “Open

the oven” instruction before putting the pizza in the oven. The various failures encountered by

the participants led the robot developers to discover edge cases that we had not encountered before,

leading to a better understanding of the robot’s capabilities and limitations.
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Figure 7.1: Participant responses to the UMUX Likert scale questionnaire

7.10 Usability Metric for User Experience Results

We asked participants to fill out a 4-question UMUX Likert scale questionnaire whose results

are provided in Figure 7.1. We observe that at least two-thirds of the participants agreed with the

positive statements (1 and 3), and disagreed with the negative statements (2 and 4). The participants

who did not fall under this category were participants such as P23, P26, and P49 who encountered

multiple task-level failures with the robot, which indicates the need for improvement in the system

which we identify and propose in Section 9.3.

7.11 Limitations

While the analyses in this dissertation provide us an extensive understanding of a non-expert situated

teaching process, it is only an initial exploration into the process.
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While Rosie is capable of understanding many more complex instructions, the templates we

provided were limited to 4 types of instructions for initial exploration. The instruction in this

study was restricted to verbal modality alone due to the restrictions in the robot. Allowing the

participants to engage in other multimodal inputs such as gestures would have enabled more natural

human-robot interaction.

Given that this study was set in a simulated environment, while our results can be extended to

the real world, we are likely to get different insights when conducting this study in a real-world

kitchen environment.

There were 8 participants where the robot failed, and we had to restart the robot teaching process.

However, the researcher reset the robot and the corresponding environment to the last successful

state before the failure using a combination of previously used commands and manually modifying

the environment. For participants who encountered this restart, at the end of the task, the researcher

asked them to describe if and how the interruption affected their task teaching process.

For the first two participants, the researcher had unintentionally missed adding “bake” to the

robot’s vocabulary. Given the necessity of “bake” to the task, the researcher added it to the robot’s

vocabulary for the remaining 12 participants. The researcher had also unintentionally mislabeled

the water cooler just as a “cooler” in the environment. The researcher modified the label after this

encounter for the remaining 12 participants since it did not modify the conditions of the actual task.
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CHAPTER 8

Discussion

In this chapter, we situate and organize our findings using our previously identified research

questions which are as follows;

1. How do non-experts teach hierarchical tasks to an ITL robot?

2. Do instruction templates contribute to efficient and effective teaching?

3. What are some salient problems that non-experts face that can be solved by extensions to the

robot’s interaction capabilities?

In the following sections, we summarize our findings from Chapter 7 to answer each of the

above research questions. We then use the findings that answer the question about salient problems

faced by participants to propose suggestions for robot interaction mechanism design that can help

improve the human-robot teaching process in Chapter 9.

8.1 How Do Non-Experts Teach Tasks?

Complex Strategies: Participants naturally developed complex strategies to teach the robot a

defined multi-step hierarchical task. They decomposed the task into individual parts as a part of

their teaching process (Section 7.4).

Used Multiple Sources of Knowledge: Participants leveraged their real-world knowledge as

well as used the different types of knowledge (interface, environment, robot) available for the task
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to aid their teaching process (Section 7.5). Participants also actively updated their knowledge from

different sources as a part of their teaching process (Section 7.5.2). Participants reasoned about

the robot’s actions, movements, and responses that contributed to their mental model of the robot

(Section 7.6.4.2).

Engaged in Effective Teaching over Time: As they explored the teaching setup throughout

the task, participants were able to effectively translate their teaching plan into corresponding

instructions for the robot (Section 7.5.3.1). Participants were able to modify their teaching steps

on the fly using the knowledge available to them either by changing the overall plan, or by easily

switching between templates to provide a different set of instructions (Section 7.5.3.2).

Evaluated Robot Behavior: Participants actively evaluated the robot’s progress through a

combination of its actions and responses (Section 7.5.4). Participants also noted when the robot

failed or did not respond as expected.

Task Completion: No incentives were provided to participants to complete the task or to

complete the task efficiently (in terms of time or number of interactions). Yet, we observed that

participants were motivated to continue teaching the task, even when faced with failures and robot

restarts (Section 7.8.2).

Instruction Efficiency: Participants displayed an inclination to teach efficiently. While a few

participants explicitly mentioned this inclination (Section 7.8.1.3), it was also evident in how

participants ordered their instructions (e.g., providing an instruction based on the proximity of the

robot to the referred object).

8.2 Are Instruction Templates Effective?

Instruction templates did contribute to efficient and effective teaching. 13 out of 14 participants

were able to teach the complete task successfully, directly providing instructions to the robot.

Effective Template Use: While we do not have direct evidence from this study, our prior study

[47] has shown that people use multiple types of sentence forms while teaching a task. The robot
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cannot successfully parse these sentence forms and they would lead to comprehension failures.

The templates enabled participants to effectively translate their desired plan into valid instructions,

without the necessity to additionally determine the robot’s language comprehension ability. This is

because the template instructions already followed a valid format, and there were predefined options

available for the participants to choose from, rather than having to determine these from scratch.

The predefined options for each part of speech also avoided typographical errors in addition to

serving as an additional source of information about the robot. Participants confirmed the object

names and states of the objects (e.g., pizza) using the lists available. Participants actively leveraged

this template format and the available predefined options to determine their teaching plan (Section

7.5.1.2).

Desire to Provide Complex Instruction: Due to the limited nature of templates, some par-

ticipants could not find the options to provide their desired instruction. For example, multiple

participants looked for a preheat action among actions and “30 seconds” under the noun list that did

not exist. Participants also wanted to provide instructions with compound sentences or sentence

structures not supported by the current templates (Section 7.7.2.6). However, they found alternative

ways (section 7.8.2) to provide the same instruction, but only after some significant effort.

8.3 Salient Problems Faced during the Teaching Process

In the process of teaching, participants encountered difficulties through their process of interaction

with the robot. Some of these were a result of the participant’s incomplete mental model of the

robot that was not updated properly as a result of insufficient updates from the environment and

the robot. This led to participants displaying a lack of confidence in their ability to teach and the

robot’s ability to learn. This lack of confidence was exacerbated when the robot ran into failure or

inefficient situations, resulting in incorrect updates to the participant’s mental model of the robot

in terms of its knowledge and capabilities.
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8.3.1 Issues with the Interface

We summarize the difficulties people faced while using the interface described in section 7.6.1.

Interface Shortcomings: Some of these issues were due to the inherent design of the interface.

When participants selected an option in the drop-down box, it did not have sufficient visual indicators

to mark its selection requiring the participant to confirm the selection multiple times. Since the

options were close together, this lack of visual indicator also led to two participants sending an

unintended command due to wrong selection. When participants selected partial options on a

template and switched to another template briefly before coming back to the original one, the

selections were no longer available. Even though participants were told to wait for the robot’s

response before providing the next instruction, two participants provided consecutive commands

without waiting for the robot’s response. Multiple participants were curious about why they would

use the Wait for thirty seconds command when doing it as a part of the training task.

Lack of Interface Knowledge: While the templates changed when the corresponding template

buttons were pressed, there was no way to tell which template was currently active since the buttons

did not stay pressed, providing no indicator to the participant. It was not clear to participants under

what conditions the goal templates would be activated, since by default they were inactive. This

lack of knowledge led participants to make the wrong assumptions about what triggered the goal

template activation (Section 7.6.1.4). Some participants were also unaware or discovered later that

the text area in the interface could be used to track the interaction that had taken place.

8.3.2 Insufficient Environment Update

Insufficient Visual Indicator: Participants did not get sufficient visual updates from the environ-

ment to confirm specific events (Section 7.6.2). When the robot had to press the button on the

water cooler as a part of the training task, there was no visual indicator of the button being pressed.

Similarly, once the participants had finished providing the instructions to cook the pizza, there was

no visual change to the pizza object to indicate that it was successfully cooked.

Desire to Confirm Environment Changes: In addition to visual indicators, participants wanted
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the ability to explicitly confirm that these changes took place in the environment (Section 7.6.2.3)

after the robot had performed the action. When the oven displayed 350 on top when turned on,

the 350 display alone was not sufficient for participants to know that the oven was already at 350

degrees. Participants were unsure if the oven would stay at 350 or if it had a preheat function that

would automatically preheat it to 350 degrees. Participants also wanted a way to confirm the states

and locations of objects with the robot (e.g., a ready-made pizza is in the fridge).

8.3.3 Insufficient Task Update

Participants explicitly wanted ways to confirm the success and completion of an action by the robot,

but these ways did not exist.

Insufficient Robot Response: Participants found the robot’s response “I am ready for a new

task” after it had completed the previous action insufficient. After the robot performed the Wait

for 30 seconds command, it said, “I am ready for a new task” but some participants were unsure

it actually waited for 30 seconds. Given the lack of any other information, participants resigned to

using this response as a way to move forward (Section 7.7.2.3).

The ambiguity inherent in the response also led to confusion and mistaken assumptions for the

participant (Sections 7.6.3.2, 7.6.3.4).

Uncertainty about Task Aspects: Participants at times were unsure about which commands

they provided last (Section 7.7.1.4). Participants were also unsure about what aspects of the task

were crucial for Rosie to learn (e.g., is closing the fridge door part of the bake task?). Even

after providing instructions and observing visual feedback or receiving a response from the robot,

participants were still unsure whether specific aspects of the task were executed properly (Section

7.7.1.1).

Need for Robot Action Confirmation: Sometimes, despite having visual indicators for the

action in the environment (Section 7.6.3.3), participants wanted additional ways to confirm that an

action had been done. Participants wanted to confirm the robot’s action when it acted in a way that

differed from their expectations (Section 7.6.4.3). Participants also wanted a way to ensure that the
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robot could do the action before instructing it to do that action (Section 7.6.3.4).

8.3.4 Incomplete and Incorrect Mental Models of the Robot

Participants displayed incomplete and incorrect mental models of various aspects of the robot and

their interaction with it. We describe them in detail below.

Lack of Knowledge about Robot’s Physical Capabilities: We found participants were unsure

about the physical properties of the robot (e.g., the number of arms of the robot) and the corre-

sponding capabilities of the robot (e.g., can the robot open the oven while holding the pizza?).

While some of this can be attributed to the robot in the simulated environment, even in real life,

participants are not likely to be familiar with the physical properties and abilities of the robot and

would require explicit information about the robot.

Unmet Robot Task Knowledge Expectations: Participants expected the robot to already know

how to do several actions that would be considered typical in everyday life (e.g., Carry the pizza to

the oven). However, these actions were teachable actions that the robot was yet to learn. Participants

also expected the robot to have common-sense knowledge about task expectations, such as opening

the oven to do something that should always be followed by closing the oven. Rosie needed to be

explicitly instructed to close the oven.

Insufficient Proof of Internal Actions: While participants got explicit proof of their command’s

success when the robot manipulated objects in the environment, this was not true when there were

visual changes in the environment that the robot needed to be aware of (e.g., oven displayed 350

when it was turned on) or when the robot performed internal actions such as “waiting for thirty

seconds.” These situations often left participants unsure about the robot’s action success, and they

wanted ways to explicitly confirm the success.

Incomplete/Inaccurate model of Robot Learning Process: Multiple participants did not

understand the robot’s repeated requests for a goal or sub-task as a part of the teaching process.

Instead, they assumed it was because the robot did not know the goal yet (even though it had

already learned one in a previous instruction) or assumed it was a failure response. Participants
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also repeated the same instruction even after the instruction was completed in hopes of a different

response from the robot. (Section 7.7.2.2).

Incomplete/Inaccurate Model of Robot Instruction: While the robot can learn complex task

representations, not all participants leveraged this capability. While people using primitive actions

can be partially explained by the need for efficiency to do this one task, almost a third of the

participants did not teach any new actions.

Participants required additional reference to the study document to figure out how to teach a

teachable task (Section 7.7.1.4) or sought clarification about it from the researcher (Section 7.7.1.5).

It was not clear to participants when and how to end a teachable task teaching process. This often

led participants to provide instructions for a new task without explicitly ending the previous one.

Even though the command You are done was meant to be used to end the teaching of a teachable

task, all participants but one who used it, used it to end the complete baking task (Section 7.7.2.1).

8.3.5 Failures Encountered during the Teaching Process

As a result of insufficient information about the task and incomplete and incorrect mental models

of the robot, participants encountered failure scenarios during the teaching process. The lack of

clarity about the reason for failures also contributed to participants incorrectly updating their mental

models of the robot. This contributed to some participants finding the teaching task difficult and

also led to mistrust in the robot’s ability to do the task.

Encountered Failures: As a part of their teaching process due to either unexpected robot

behavior or as a result of their incomplete or incorrect mental models, participants encountered

inefficient or failure scenarios as detailed in section 7.9.2. Sometimes, participants realized how

their instructions were imperfect only after providing the instruction (Section 7.8.1.2).

Unclear Reason for Failure: When participants ran into failure situations with the robot,

the robot often provided some response, but the reason for the failure was still not clear to the

participant (Section 7.6.4.6). This often led participants to make mistaken assumptions about the

robot’s knowledge or learning mechanisms. Additionally, when some of these failures occurred in
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the middle of a multi-step task, the source of the failure was not clear to the participants. These

mistaken assumptions unless corrected immediately will only hinder the interaction process from

there on.

Difficulty in Teaching Task: The incomplete and inaccurate models of the robot’s instruction

and learning process led participants to have a difficult time teaching the robot. Some of the

participants faced this because they could not find the desired options in the drop-down list or the

templates to translate their plan into appropriate instructions (Section 7.7.2.5). They attempted

to provide commands multiple times but would encounter the robot behaving in an unexplainable

manner, or running into a failure situation. This led them to express frustration and uncertainty

about the process (Section 7.7.2.4).

Mistrust in Robot’s Ability: The combination of the robot encountering failures and not getting

sufficient updates on performing an action led participants to mistrust the robot’s ability to learn or

perform a new task (Section 7.7.2.3).

We address these problems in the next chapter and propose interaction implementation that can

help humans be more competent and feel more confident in a hierarchical task-teaching process.
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CHAPTER 9

Interaction Design Proposal

In Section 8.3, we saw that participants faced multiple problems while instructing the robot to

perform the baking task. Participants were sometimes unable to provide their desired instruction.

Participants did not always get sufficient information from various sources of knowledge, leading

to incomplete and incorrect mental models of the robot. Participants also encountered failure

scenarios where the robot did not perform the expected task.

In this chapter, we address those problems and propose interaction mechanisms that can help

resolve these issues during a teaching interaction. This proposal aims to leverage the fact that

the robot has access to its own instruction, knowledge, capabilities, and task progress, including

success and failure. Therefore, using these interaction mechanisms, the robot can help improve the

teaching process for the non-expert instructor.

In Section 9.1, we describe interface changes that can be made to improve the instruction

experience for the instructor. Additionally, we describe how the robot interaction can be extended

to handle more complex instructions. In Section 9.2, we describe how the robot can provide

information about its environment, task, instruction, and learning process, as well as its knowledge

and capabilities, to the instructor to help them build better mental models of the robot. In Section

9.3, we discuss primitive-level and hierarchical-task-level failures in detail and then describe the

implications of such failures and their recovery on the overarching teaching process. In these

three sections, for problems that cannot be sufficiently addressed by interaction mechanisms, we

recommend research directions that can be pursued to understand these problems at a greater depth.
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9.1 Helping the Instructor Interact Better

While templates allow for a successful teaching process, we identified interface shortcomings that

ought to be fixed for the future. For option selections in the drop-down list and the template button

selection on the interface, the selection must be highlighted or actively appear pressed to provide

clear evidence of selection to the instructor. To prevent the instructor from sending the wrong

command due to incorrect selection, there needs to be a text area that displays the instruction to the

instructor as they select the options so that they can confirm their instruction before sending it. To

ensure that participants wait for the robot’s response before sending the next command, the “send”

button could be disabled until the robot’s response has been received.

We also observed that participants had the desire to provide more complex instructions. The

language that Rosie can comprehend is structured and follows a predefined format but it is also

a lot more extensive than the four instruction templates provided in our interface. Future work

can include iterative studies to find the best way to extend the templates to support more complex

instructions.

While templates provide a useful structure that allows participants to provide effective instruc-

tions, in cases where people find templates insufficient and find it difficult to teach the task, we

could build in an option to provide free-form instructions. Given Rosie’s current language compre-

hension abilities, we can leverage current large language models (LLMs) to convert natural human

instruction into a Rosie-understandable structured format. If the provided instruction cannot be

directly converted into a corresponding valid instruction, Rosie can use the content in the original

instruction to suggest a similar yet Rosie-understandable instruction to the human teacher. For

example, let us assume that a participant wants to provide the command Heat the oven up to

350 degrees. Rosie is not set up to understand this specific command. However, Rosie can

understand the command Heat the oven, so one could use an LLM to extract this structure from

the provided command. To help the participant continue the teaching process, Rosie can use its

semantic memory to find commands related to the “oven” and “heat” to then provide a suitable valid

command such as Turn on the oven. While there has been some promising work looking into
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how LLMs can be used to translate natural language instructions to structured planning language

for AI planners [60], initial results indicate the need for expert involvement to account for situations

where the LLMs are not successful. Therefore, more research is required to understand how one

can leverage LLMs for non-expert instruction of robotic systems.

9.2 Helping the Instructor Build Better Mental Models

While participants were successful at teaching the task, they were still a) uncertain about environ-

ment changes and the task progress and, b) demonstrated a lack of knowledge about the robot in

terms of its task knowledge, physical capabilities, instruction, and learning process as described in

section 8.3. However, the robot has access to its own knowledge while also possessing knowledge

about the environment and the task that it is currently learning. Therefore, in this section, we

describe how the robot can help the instructor build a better mental model of the task, environment,

and robot by providing relevant information.

9.2.1 Provide Environment Information

We observed the need for more visual indicators for two events in our study, namely, the button

being pressed and the pizza being cooked. If we use the same tasks in future studies, we could

extend the simulated environment to provide an explicit change in the display of the button using

both form and color. Similarly, we can make changes to the pizza object so that its color is changed

appropriately after being in a hot oven. While these examples are particular to our study, these

observations clearly indicate that participants look for visual indicators in response to actions.

In addition to visual indicators, the robot could also include this information as a part of its

task-completion response. In our study, when the oven visual is updated to show the temperature

to be 350 after being turned on, the robot could say: “The oven is now at 350 degrees. I am ready

for a new task.” However, providing such information for every environment update can become

excessive, especially in a complex environment with multiple people and entities. Therefore, it
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would be pertinent to study what changes are relevant based on task context and the interaction up

until that point, as well as the instructor’s knowledge.

Participants also wanted to explicitly confirm the changes that took place in the environment.

Since the robot has access to knowledge about the environment and its own processes, it should

be able to answer questions about updates to the environment (e.g., what is the temperature of the

oven?). Multiple participants looked for a “preheat” function or assumed the oven was preheating

when it was turned on, even though the oven in our study did not have a preheat capability. If there

are appliance-like objects in the environment that have more complex functions, the robot could

have access to this information and be capable of answering questions about these functions.

9.2.2 Provide Task-Related Information

When participants were uncertain about different task aspects and found the robot’s response

insufficient, they felt the need to confirm the robot’s actions. Therefore, Rosie could use its

current state knowledge and episodic memory to answer questions about its previous actions. Rosie

can also proactively provide this information to the instructor. For example, if the instructor has

taught a few actions as a part of a larger task and is uncertain about the task aspects, Rosie can

summarize what it has learned up until now to help the instructor visualize the task taught until

that point.

Our study also shows that it would be useful for the robot to provide explicit information when

it performs any internal action or computation. To enable this, the robot must possess an internal

taxonomy differentiating between internal and external actions and proactively provide information

about internal actions since the instructor does not have access to that information otherwise.

Besides those observed in our study, these can extend to scenarios where the robot creates an

internal plan to determine how to do a particular multi-step task. While the instructor will have

the opportunity to observe the actions in real time, knowing the robot’s plan in advance can help

bolster the instructor’s confidence in the robot’s ability to do the task.
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9.2.3 Provide Instruction and Learning Process-Related Information

We intentionally provided a simple training session that did not involve teaching the robot a new task

since we wanted to study how much participants could grasp the robot’s learning process through

interaction alone. Through our findings, we discovered that this was insufficient since participants

still displayed an incomplete and incorrect mental model of the robot instruction and learning

process. Participants clearly require more help to truly leverage the complex learning capabilities

of the robot.

One way to achieve this would be to provide a more intensive training session that allows

the participant to explore the various learning abilities of the robot. We could then study the

effectiveness of such a training session and the participants’ willingness to leverage the robot’s

learning process by conducting a study. This study would ask participants to instruct the robot to

do similar tasks consecutively. For example, the first task would be to heat a pizza in the oven

for 30 seconds, whereas the second task would be to heat bread in the oven for a minute. Given

the importance of efficiency to human teachers, doing this study will also allow us to evaluate the

interaction using the number of turns taken to teach the two different tasks.

However, initial training alone will not be sufficient since we observed that participants needed

additional reference (Section 7.7.1.4) during the task to remind themselves of the robot’s learning

process. This is where we can take advantage of Rosie’s knowledge of its learning mechanisms.

Mohseni et al. [43] study the role of task-grouping suggestions provided by a robot on the teaching

process of non-experts when teaching a hierarchical tire rotation task. They find that people expend

lesser teaching effort and achieve higher teaching efficiency when the robot provides task-specific

suggestions in comparison to when it provides no suggestions. In a similar vein, we need to

build scaffolding in Rosie’s interaction model that allows it to provide relevant information and

teaching-specific suggestions during the teaching process. For example, if the instructor is providing

instructions to teach a new task Empty within the higher-level task Heat, Rosie could explicitly

tell the instructor, “I am currently learning the task Empty under the task Heat.” Rosie could also

remind the instructor that they can use the command You are done to end the teaching of the
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current task.

9.2.4 Provide Robot Knowledge and Capability Information

As described in chapter 3, there has been significant prior work studying how to make robots more

transparent to humans. Through our study, we identified specific situations where people displayed

lack of knowledge about the robot’s physical capabilities and had unmet task expectations

of the robot. Given people’s lack of familiarity with robots, it would benefit the instructor if

Rosie could use its interaction capabilities to describe its knowledge of the environment and the

affordances available to it.

This could take the form of Rosie describing the objects it can see when it enters a new room

and occasionally giving examples of how it can manipulate different objects at different times (e.g.,

I can open and close the fridge).

Rosie is also capable of answering questions about its task and environment knowledge. This

capability could be extended to encourage the participants to ask questions when they want to

compare their expectations of Rosie’s knowledge of a task to its actual task knowledge.

To do this effectively, we would have to conduct studies where participants interact with the

robot long-term to understand what information is relevant at what times and how often it must be

provided until the instructor can be confident about the robot’s knowledge and trust in its ability

to do a task.

The robot can provide even more relevant knowledge to contribute to the instructor’s mental

model if it possesses a mental model of the instructor. This can include modeling the instructor’s

mental states [3, 5], uncertainty [55], and even the instructor’s mental model of the robot [8]. We

could leverage existing mental modeling techniques [54], especially from those that have modeled

human cognition and behavior [21].
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9.3 Helping the Instructor Recover from Robot Failure and

Inefficient Scenarios

As described in Table 7.2, participants faced multiple types of failures in their teaching process.

Participants had a few suggestions on what would have helped them when faced with a failure

(Section 7.8.1.4). This included an alert popup letting the instructor know that the robot had failed,

and also having access to a help menu to get help in providing instructions.

We observed both primitive command-level failures and task-level failures. Failures at different

levels of the task structure naturally require different types of responses at different granularities

depending on the expertise of the human interacting with the robot.

9.3.1 Primitive Command-Level Failures

Given our focus on non-experts, the low-level failures present an interesting problem. Five partici-

pants encountered the “The put-down task failed” message as a result of the robot being unable to

execute the put or put down task. The put-down task is defined as follows:

put-down(a, in(b)) if grabbed(a) ˆ receptacle(b) ˆ openable(b) ˆ is-open(b)

So, Rosie can put down an object a in object b only if object a has been grabbed by the robot and

object b is a receptacle that can be opened and is currently open. In our study, all participants

encountered this failure because the oven was not open when they tried to put the pizza inside

the oven. But the robot’s message was insufficient as the participants were still unclear about

the reason for failure. For this particular command failure in Rosie, since this command has a

precondition that was not satisfied, one solution would be to describe the unsatisfied precondition

to the participant as a way of explanation that the participant can use to instruct accordingly. Das

et al. [15] show that providing context-based-history explanations for internal failures (failures not

observable in the environment) significantly improves the human’s ability to identify a solution to

resolve that failure compared to no explanation.
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But the solution is not as simple if the robot encounters lower-level primitive command failures

that do not have such preconditions. For example, if Rosie is asked to approach an object, it has

to go to the location of the object and then face the object. If Rosie encounters an internal error

that interferes with its ability to face the object, this is low-level information that is only available

by explicitly debugging the robot. We cannot expect the non-expert to have debugging skills.

Therefore, one problem to be studied here is if we can train non-experts to provide alternative

commands to recover from a low-level failure without having to directly debug the system.

9.3.2 Higher Level Task Failures and Inefficiencies

To understand the types of failures that can occur with a hierarchical task teaching process, let us

use the following example.

1. Bake the pizza

2. Heat the pizza

3. Teach subtasks of Heat

4. You are done (End Heat Task)

5. Empty the oven

6. Teach subtasks of Empty

7. You are done (End Empty Task)

8. You are done (End Bake Task)

In this case, an overarching Bake Task is being taught to the robot. Heat and Empty are being

taught as sub-tasks of the larger task Bake. There are two kinds of scenarios that can occur in this

teaching scenario that can derail the teaching process.

One situation is if the instructor provides an instruction that they did not intend to add to the

task. For example, in the study, participants would pick up the pizza only to realize the oven is
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not open. They would then have to place the pizza on the table to open the oven, which is ideally

not a part of the Heat task. One participant opened the pantry by mistake when they intended to

open the oven. Participants also noticed that they taught the task in the wrong order. While Rosie

performs a retrospective analysis to eliminate actions that are not relevant to the overarching goals

of the task (here, eliminating the action of placing the pizza on the table or opening the pantry)

from its final task representation, this is the kind of internal processing information that may not

be necessary or even useful to a non-expert early in their interaction.

In a simple blocks world, Appelgren and Lascarides [2] implement mechanisms in a robot to

incorporate an instructor’s corrective feedback (e.g., “No, put red blocks on blue blocks”) when it

performs an action (e.g., putting a blue block on a red block) that violates a predefined set of rules

and to reverse its action. In our situation, while this type of approach can be useful if the instructor

recognizes their mistake immediately, relying on it alone assumes that the instructor is aware of all

aspects of the task beforehand. This is not realistic since, in our study, we observed some of the

participants planning as they went along during their instruction of the robot.

Another solution would be to extend the interface to allow the instructor to access the learned

actions as a part of the task and manually edit it for the future. While this would require participants

to learn a new interface, it would also provide them confidence that these mistakes are reversible

and can be fixed once the task is learned.

But the above solutions may not work as effectively if the instructor runs into a failure that

puts the robot in an irrecoverable state or if the action is not reversible (e.g., the pizza is already

heated). In Rosie, this can occur if the instructor mistakenly provides an invalid command (e.g.,

Open the pizza) or if some action randomly results in the robot reaching an irrecoverable state. If

such a failure is encountered in the middle of the instructor providing a set of instructions to teach

a task, Currently, Rosie would need to be restarted, and the instructor would have to repeat all the

instructions. An intermediate solution can be for the robot to store the instructions for the partially

taught task as it goes along so that it can be recovered after the restart. But given the scope of

failures that one can encounter with a real robot, these types of solutions are not sufficient.
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While we look towards interacting with real-time learning systems, these failures are inevitable.

Given that people interact with each other using situated dialogue while teaching real-time tasks,

it would be useful to explore what we can learn from humans about recovering from failures. This

would begin with providing explanations that are more human-like in nature as described in section

3.4. More studies need to be conducted with real robots to identify the different types of failures that

can occur and evaluate how to resolve and recover from these failures. This can only be done if we

adopt an iterative research process where we develop and extend robots and study their interaction

with non-expert teachers as a part of the development process.
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CHAPTER 10

Conclusion

In this dissertation, we conducted a think-aloud study with 14 non-expert participants to analyze

how non-experts teach multi-step hierarchical tasks to an Interactive Task Learning robot. Through

qualitative and quantitative analysis of this study, we highlight the inherent complexity of teaching

such a task. We also describe in detail participant interpretations of a complex learning robot

in terms of its knowledge and capabilities and its corresponding effect on participant teaching

processes. While 13 out of 14 participants successfully taught the task, they faced many chal-

lenges during the teaching process. These challenges are to be expected since interacting with a

sophisticated robotic system such as Rosie will always involve a learning curve. To address and

resolve these challenges, this chapter summarizes the opportunities and potential implementations

for future robot interaction development discussed in Chapter 9 that will enable non-experts to

interact efficiently and effectively with such a robot.

While the simple templates provided for initial exploration were effective for teaching this task,

we observed the need for extensions to these templates to support more complex instructions.

To consider instructions that may not be supported by templates, we propose using technologies

like large language models to convert free-form instructions that instructors provide to robot-

understandable language, thus enabling effective interaction.

In addition, we must build robots that can leverage their knowledge about their environment,

task knowledge, learning process, task execution, and capabilities to provide relevant knowledge

to the instructor. The robot must proactively provide information about its internal and external
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task execution and corresponding environmental changes. To aid the instructor in their teaching

process, the robot must actively provide knowledge of its learning process, including providing

potential instruction suggestions. This would help the instructor build a better mental model of

the robot’s learning and, as a result, leverage its learning capabilities to teach more efficiently and

effectively over time. The robot must also be capable of answering clarification questions regarding

these types of knowledge. This process can be improved by personalizing the interaction with each

instructor if the robot has a mental model of the instructor that it updates based on its interaction

with them over time.

Lastly, we must develop robots that can help instructors recover from inefficiencies and failures

that occur during teaching interactions. More research is required to determine the best way to

help non-experts recover from low-level system failures that typically require debugging skills, and

are therefore not accessible to non-experts. We also find that there are challenges involved when

a robot fails and reaches an irrecoverable state during the process of being taught a multi-step

hierarchical task. We find that existing research is not sufficient and more studies need to be

conducted to understand the scope of failures that can occur in a hierarchical task teaching process

and to understand how non-expert instructors can recover from such failures in real time.

We found that even when faced with failure scenarios from which they could not always recover,

people were motivated to go on training the robot. This gives us hope that improving robot

interaction to address these failures can lead to more promising outcomes that can be compared

to the findings of our study. We emphasize the value of iterative development in this dissertation

in order to create robots that can interact with non-experts in the real world. We must continue

to study and understand how humans interact with robots to realize our imagined future in which

robots work alongside humans.
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APPENDIX A

Study Instructions

You will provide instructions to the robot agent Rosie operating in a simulated environment (shown

below) so that it can learn and perform the task successfully. You will be given a task description

before the study.

Figure A.1: Simulated Environment
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A.1 Instructions about The Robot

1. You will interact directly with the robot agent. However, the interviewer may have to

(a) intervene from time to time to correct typographical errors in the instruction,

(b) modify instructions that cannot be processed by the robot or,

(c) restart the agent when it fails to proceed with a task.

2. We are testing the robot, not you!

3. You can zoom in and out of the environment using the scroll button.

4. Here is what you need to know about the robot agent and the interaction with it.

(a) The robot has complete knowledge about the environment.

(b) You cannot directly interact with any object using the mouse. Instead, you must ask the

robot to perform actions to interact with objects.

(c) The robot can handle only one object at a time.

(d) Please wait for the robot to respond after each instruction.

(e) Please provide step-by-step instructions

5. The instructions you provide will follow the providing templates (See application)

(a) Action: Verb + Object (Empty the garbage)

(b) Action: Verb + Object1 + Preposition + Object2 (Fetch the coffee from the kitchen)

(c) Goal: The goal is that Object + linking-verb + Object State (The goal is that the garbage

is empty)

(d) Goal: The goal is that Object1 + linking-verb + Preposition + Object2 (The goal is that

the coffee is on the counter)

6. Robot’s existing knowledge (See application)
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(a) The robot has actions it already knows (in capital letters) and actions/tasks that you can

teach it (in lowercase letters)

(b) When you teach a new action/task “action-x,” the robot responds “What is the next goal

or subtask of action-x?”

(c) Once you are done teaching an action/task, press the “You are done” button (on the

bottom left) to continue with the overall task.

Figure A.2: You are done command

7. Think-aloud study -

(a) You will now watch a demo video of what think-aloud looks like https://www.

nngroup.com/articles/thinking-aloud-demo-video/

(b) Please narrate your thought process as you perform the teaching task.

(c) During the study, the interviewer will refrain from commenting so as to not interrupt

the interaction.

(d) Remember, we are testing the robot, not you! So the customer (or the participant)

is always right!

8. You can come back and refer to this document during the study.

9. If you have any questions or you are unsure what to do next, you can ask the interviewer.

10. Interviewer: Run Rosie and start screen recording and audio recording
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A.2 Training Tasks

You will first undergo a training session in order to familiarize yourself with the robot instruction

interface. Please start thinking out aloud from this point on.

A.2.1 Training Task 1

1. Press the action template 1 button to access the first action template (Figure A.3

Figure A.3: Action Template 1

2. Provide the following instruction: Approach the lightswitch

3. Press “Send” Button.

4. Once the robot completes this action successfully, it will respond “I am ready for a new task.”

A.2.2 Training Task 2

1. Press the action template 2 button to access the second action template (Figure A.4

2. Provide the following instruction: Press the button on the watercooler.

3. Press “Send” Button.
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Figure A.4: Action Template 2

4. Once the robot completes this action successfully, it will respond “I am ready for a new task.”

A.2.3 Training Task 3

1. Press the button “Wait for thirty seconds”

Figure A.5: Wait for thirty seconds command

2. Once the robot completes this action successfully, it will respond “I am ready for a new task.”

You will now move on to the actual study.
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A.3 Main Experiment

1. For the main experiment, you will provide instructions to the robot for the following task:

The robot must cook (350 degrees for 30 seconds) a pizza using the oven and the cooked

pizza must end up on the counter.

2. Provide instructions using the template interface provided to interact with the robot agent.

3. Once you are done teaching the task, please tell the interviewer that you have completed.

4. You can come back and refer to this document during the study.

5. Any questions?
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APPENDIX B

Additional Environment and Template Information

In this appendix, we present supplementary information about the objects in the environment in

terms of their categories and affordances. We then present the views of the first action template

and thet goal templates described in chapter 5. Additionally, we present the lists of different parts

of speech used to populate the drop-down lists in individual templates.

B.1 Categories and Affordances of Objects

The following is a list of the categories and affordances of the objects in the study environment.

• Button - Category: Object; Affordances: Pressable

• Counter - Category: Furniture, Object, Surface

• Fridge - Category: Appliance, Object, Receptacle; Affordances: Openable

• Garbage - Category: Furniture, Object, Receptacle; Affordances: Always-Open

• Lightswitch - Category: Object; Affordances: Activatable

• Oven - Category: Appliance, Object, Receptacle, Surface; Affordances: Activatable, Open-

able

• Pantry - Category: Furniture, Object, Receptacle; Affordances: Openable
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• Pizza - Category: Food, Object; Affordances: Grabbable

• Sink - Category: Drain, Furniture, Object, Receptacle; Affordances: Always-Open

• Stove - Category: Appliance, Object, Receptacle, Surface; Affordances: Activatable, Open-

able

• Table - Category: Furniture, Object, Surface

• Watercooler - Category: Appliance, Dispenser, Object, Receptacle; Affordances: Always-

Open

B.2 Action and Goal Templates

Figure B.1: First Action Template Interface
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Figure B.2: First Goal Template Interface

Figure B.3: Second Goal Template Interface
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B.3 List of Parts of Speech

We also present the lists of different parts of speech including actions, linking verbs, nouns, object

states, and prepositions that were provided as a part of the action and goal templates.

Prepositions Object
States

Linking
Verbs Nouns

from on are button
for off are not counter
in open contains fridge
into closed is garbage
on empty is not lightswitch
onto oven
to pantry

pizza
sink
stove
table
watercooler

Table B.1: Lists of parts of speech (besides actions) provided in instruction templates
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Primitive
Actions

Teachable
Actions

Approach Bake
Close Bring
Find Carry
Give Clean
Open Clear
Pick Up Cook
Pour Deliver
Press Empty
Put Fetch
Put Down Get
Scan Heat
Turn Off Grab
Turn On Keep

Make
Move
Prepare
Refrigerate
Shut
Start
Store
Take

Table B.2: List of primitive and teachable actions provided as a part of action templates
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