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Abstract 

Genome-wide association studies (GWAS) to date have identified hundreds of thousands 

of genetic variants associated with tens of thousands of complex human diseases and 

traits.  However, fully understanding the biological mechanisms of these associations remains 

challenging and requires more complete identification of causal genetic variants and their 

functional consequences in human cells and tissues. Here, we propose novel methods and 

approaches for integrative analyses of genetic and genomic sequence data to further this 

understanding. 

In the first project, we quantify the extent to which array genotyping and imputation can 

approximate deep whole genome sequencing (WGS) across a range of ancestries, reference 

panels, and genotyping arrays. Deep WGS, the gold standard technology for genetic variant 

identification and genotyping, remains very expensive for most large studies. In this chapter, we 

use WGS data from studies of individuals of African, Hispanic/Latino, and European ancestry in 

the US, and of Finnish ancestry in Finland (a population isolate) and perform genotype 

imputation using the genetic variants present on the Illumina Core, OmniExpress, MEGA, and 

Omni 2.5M arrays with the 1000G, HRC, and TOPMed imputation reference panels. We find 

that using the Omni 2.5M array and the TOPMed panel, ≥90% of biallelic single nucleotide 

variants (SNVs) are well-imputed (r2>0.8) down to minor allele frequencies (MAF) of 0.14% in 

African, 0.11% in Hispanic/Latino, 0.35% in European, and 0.85% in Finnish ancestries. We 

find that individual-level imputation quality varies widely between and within the three US 



 xvi 

populations. Imputation quality also varies across genomic regions, producing regions where 

even common (MAF>5%) variants were not consistently well-imputed across ancestries.  

In the second project, we investigate the consequences of violating the independent-

cohorts assumption of genetic colocalization methods. Colocalization analysis aims to identify 

genetic variants that are causal for multiple association signals at a single locus. Existing 

colocalization methods explicitly assume that the phenotypes are measured in independent, non-

overlapping samples. In this chapter, we present simulation analyses that demonstrate the 

consequences of applying these methods in a single cohort. We show that Type I error is well-

controlled when the ratio of shared to trait-specific error variance is low but becomes 

problematic with increased sharing. For scenarios with well-controlled Type I error, we show 

that the one-sample design is more powerful than the two-sample design due to better linkage 

disequilibrium matching. Power can be further improved in the one-sample design when shared 

non-genetic factors are measured and controlled for in the marginal association analyses.  

In the third project, we examine sex differences in gene expression and regulation in 

human skeletal muscle at the single nucleus resolution. We identify thousands of sex-biased 

genes across Type 1, 2A, and 2X muscle fibers and other, less abundant cell types. We find that 

sex-biased expression is highly concordant across the muscle fiber types and bulk muscle tissue 

and is enriched for genes in mitochondrial activity (males) and muscle regeneration (females) 

pathways. We also find that lncRNAs and miRNAs, two classes of genes with regulatory 

functions, show extensive sex-biased expression in the fiber-type and bulk data, respectively. We 

find widespread sex-biased chromatin accessibility enriched in regulatory chromatin states. 

Together, these results highlight nuclear and cytoplasmic mechanisms for sex-differential gene 

regulation in skeletal muscle. 
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Chapter 1 Introduction 

An important goal of human genetics is to identify genes that influence heritable traits 

and diseases to improve strategies for prevention and treatment.1  Genome wide association 

studies (GWAS) have identified hundreds of thousands of genetic variants associated with tens 

of thousands of human traits and diseases,2 but the vast majority of these variants lie in non-

coding regions.3 These variants are thought to regulate gene expression, but linking the genetic 

variants to genes and the biological contexts in which they influence the trait is challenging.4  

 Functional studies improve our understanding of the relationship between regulatory 

variants and genes by measuring gene expression and its regulation through related molecular 

phenotypes (e.g. DNA methylation, chromatin accessibility) in disease-relevant tissues.5–7 RNA 

sequencing (RNA-seq)8 quantifies levels of gene expression and can be performed in bulk tissue 

or at single-cell (scRNA-seq)9 or single-nucleus (snRNA-seq)10 resolution. Studies with both 

genotype and RNA-seq data on the same set of individuals can perform expression quantitative 

trait loci (eQTL) analyses to identify associations between genetic variants and gene expression 

levels.11 Similarly, studies with both genotype and ATAC-seq data quantifying chromatin 

accessibility7 can perform chromatin accessibility quantitative trait loci (caQTL) analyses to 

identify associations between genetic variants and accessible regulatory regions.12 These 

analyses provide some evidence for how regulatory variants may influence molecular 

phenotypes, but they alone do not reveal the mechanisms of most non-coding trait-associated 

genetic variants.13 
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 One line of evidence that can further implicate an eQTL gene or a gene in close 

proximity to a disease-associated regulatory variant is the identification of rare coding variation 

in that gene. Compared to common variants, rare variants represent more recent variation and are 

more likely to have large effects on disease risk, but they require larger sample sizes both to 

detect and to identify their associations.14 Deep whole genome sequencing (WGS) is the current 

gold standard for accurately capturing most genetic variants across the genome and minor allele 

frequency (MAF) spectrum, especially for rare variants.15 But despite recent improvements in 

sequencing technologies and corresponding decreases in sequencing cost and increases in 

sequencing throughput, deep WGS remains prohibitively expensive for most large studies.15,16 In 

contrast, genotype arrays assay hundreds of thousands to millions of variants, representing only a 

small fraction of genetic variation, but at a much lower cost. Variants that are not array 

genotyped can be statistically inferred by comparing sample haplotypes to an external reference 

panel of sequenced haplotypes via genotype imputation.17 Recent increases in the size, 

sequencing depth, and diversity of imputation reference panels have improved imputation 

quality,18–20 suggesting that under some conditions the less expensive arrays may capture most 

genetic variants with similar accuracy to costly WGS.20 In Chapter 2, we quantify the extent to 

which array genotyping and imputation can approximate deep WGS across a range of ancestries, 

reference panels, and genotyping arrays. 

 Another line of evidence that implicates genes in disease pathways comes from 

combining GWAS and functional analyses with genetic colocalization analysis. Colocalization 

methods integrate associations with multiple phenotypes, most often from GWAS and eQTL 

analyses, by seeking to identify variants that are causal for both associations.4,21 When 

successful, these methods provide evidence that a variant influences the GWAS trait by 
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regulating the expression of a particular gene in a particular tissue or cell type.22 Because tissue 

samples are usually more difficult to obtain than disease status, eQTL studies are often much 

smaller than GWAS, and the two types of analyses are often performed on non-overlapping 

samples.5 Many colocalization methods explicitly assume independence of eQTL and GWAS 

data.23 However, an increasing number of studies have collected multiple molecular phenotypes 

measured on the same set of samples.6,24 One key advantage of this type of study design is that 

the pattern of linkage disequilibrium is necessarily the same for both association analyses, which 

satisfies another assumption of current methods.22 However, there are no methods designed for 

colocalization analysis with single-cohort designs. In Chapter 3, we evaluate the consequences of 

violating the non-overlapping cohort assumption and provide guidelines for researchers 

conducting colocalization analysis of two phenotypes in a single cohort. 

 A complicating factor in identifying disease-related genes is that the effects of some 

genes depend on other biological or environmental variables, such as age, sex, diet, infection, or 

stress. Gene by environment interactions have been identified for a wide range of traits (some 

examples include psychiatric,25,26 cardiometabolic,27,28 and neurodegenerative29,30 diseases). 

Chromosomal sex is one such interacting variable that has profound effects on human health at 

all stages of life, from puberty31 to menopause32 to life expectancy itself.33 Throughout the 

lifespan, sex differences in disease risk have been observed for a wide range of conditions, 

including autoimmune disorders,34 cardiovascular disease35, infectious disease36, and age-related 

disorders like osteoporosis37 and dementia38, among many others. Sex-stratified GWAS have 

identified genetic variants that are associated with anthropometric measures, arthritis, and gout in 

only one sex,39 and sex is associated with expression levels of thousands of genes in tissues 

throughout the human body.40 Characterizing the pervasive effects of sex on molecular 
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phenotypes and uncovering the regulatory mechanisms that drive these differences will further 

help contextualize the impact of genetic variation on health and disease. In Chapter 4, we 

examine sex differences in gene expression at the cell-type and whole-tissue levels in human 

skeletal muscle and highlight several potential nuclear and cytoplasmic regulatory mechanisms 

for these differences.  

 Together, these chapters improve our ability to perform tests of genetic associations and 

interpret their results with the goal of improving our understanding of the biological mechanisms 

that cause variability in human disease risks and complex traits. 
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Chapter 2 Extent to Which Array Genotyping and Imputation with Large Reference 

Panels Approximates Deep Whole Genome Sequencing 

2.1 Introduction 

Deep whole genome sequencing (WGS) accurately captures most genetic variants across 

the genome and minor allele frequency (MAF) spectrum.15 Advances in sequencing 

technologies, and corresponding decreases in sequencing cost, have enabled ever larger human 

sequencing studies.20,41–43 Such studies have identified rare alleles that cause Mendelian 

diseases44–46 and contribute to risk of common diseases47 and variation in quantitative traits.41,43 

However, deep WGS remains prohibitively expensive and computationally intensive for large 

studies.15,16 

In contrast to WGS, genotype arrays assay hundreds of thousands to millions of variants, 

representing only a small fraction of genetic variation, but at a much lower cost. Variants that are 

not array genotyped can be statistically inferred by comparing sample haplotypes to an external 

reference panel of sequenced haplotypes via genotype imputation.17 Most common (MAF>5%) 

variants are present in recent reference panels and can be imputed with high accuracy from 

genotype arrays.18–20 However, low-frequency (0.5%<MAF≤5%) and rare (MAF≤0.5%) variants 

appear less often or may be absent from the reference panel, making their imputation less 

accurate or impossible.48 Therefore, using inexpensive genotype arrays and imputation in place 

of costly deep WGS can result in lower coverage and less accurate genotyping of rare genetic 

variation.  
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Reference panel, genotype array, sample ancestry, and genomic location all influence 

imputation quality.18,19,48,49 Previous studies have evaluated imputation quality with the 

multiethnic 1000 Genomes Phase 3 (1000G),18 the predominantly European Haplotype 

Reference Consortium (HRC),19 and two releases of the multiethnic Trans-Omics for Precision 

Medicine (TOPMed)20,50 panels, finding that larger, more diverse, more deeply sequenced panels 

support more accurate imputation. Likewise, denser genotype arrays are associated with higher 

imputation quality,19,48,51 although the effect of array size on imputation quality has not been 

studied with the TOPMed panels. Regional variability in imputation quality with the 1000G 

panel is associated with genomic features including repeats and GC content,49 but the degree to 

which imputation quality varies across the genome with the larger HRC or TOPMed panels is 

unknown. It is also unknown to what extent individual-level imputation quality varies within 

populations for any reference panel. 

Here, we determine the extent to which genotyping with the Illumina Core, 

OmniExpress, MEGA, and Omni 2.5M arrays followed by imputation with the 1000G, HRC, 

and TOPMed reference panels can approximate deep WGS in studies with individuals of 

African, Hispanic/Latino, non-Finnish European, and Finnish ancestries. Depending on the MAF 

of variants relevant to the research question, study ancestry, and genomic location, we found that 

array genotyping and imputation can approximate WGS. Our findings, together with our new 

RsqBrowser tool for querying imputation quality, should help guide investigator decisions 

between these two technologies. 

2.2 Methods 

2.2.1 Genetic data resources 
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2.2.1.1 Whole genome sequencing data and processing 

We used WGS data from the BioMe,52 InPSYght, METSIM,24,53 and MLOF54 studies. 

Detailed descriptions of sample collection, sequencing, and data processing for BioMe and 

MLOF are provided by the TOPMed Informatics Research Center.20 Corresponding information 

is available for the METSIM study.24 The InPSYght study is a deep whole-genome sequencing 

US-based case-control study of individuals of admixed African-European or African genetic 

ancestry. Cases have either bipolar disorder or schizophrenia. The study is composed of samples 

from the Genomic Psychiatry Cohort (GPC),55,56 Consortium on the Genetics of Schizophrenia 

(COGS),57 and from the NIMH repository from the Bipolar Genome Study (BIGS),58 Lithium 

treatment moderate dose use study (LiTMUS)59 and Systematic Treatment Enhancement 

Program for Bipolar Disorder (STEP-BD) studies,60 all obtained from the NIMH repository.  

Whole genome sequencing of the samples (mean depth 27 +-5.5 X) was performed at the Broad 

Institute. We excluded individuals with: sex mismatches (n=20), non-XX or XY sex karyotypes 

(n=17), duplicates (n=366), >5% DNA contamination (n=4), an excess of singletons (n=39), 

<25% global African ancestry as determined by ADMIXTURE61 analysis of array genotype data, 

or for whom <98% of sites were at a sequencing depth of ≥10 (n=14).  

Participants from the BioMe biobank self-reported as Hispanic/Latino and were recruited 

at the Mount Sinai Health System in New York City (N=4,677; Table 2.1). Participants in the 

MLOF study self-reported as non-Hispanic white and were recruited throughout the US 

(N=2,987). Participants in the METSIM study were recruited in Kuopio, Finland (N=3,045). 

Based on recruiting location, self-reported and genetic ancestry, we designated the population 

groups Hispanic/Latino (BioMe), African (InPSYght), Finnish (METSIM), and European 

(MLOF) ancestry for the purposes of this study. 
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In all studies, we removed participants inferred to be related at a second degree or closer 

relationship using KING62 to any other individual genotyped in TOPMed Freeze 9 (n=157,675), 

including all participants in these four studies and all individuals in the TOPMed imputation 

reference panel. This filtering yielded 3,141 participants in BioMe, 7,169 in InPSYght, 2,703 in 

METSIM, and 2,429 in MLOF. We then randomly downsampled to 2,429 individuals in each 

study (Supplementary Figure 2.1). 

 WGS variant calling for all four studies was performed jointly with TOPMed Freeze 9 

by the TOPMed Informatics Research Center (IRC) using the TOPMed Variant Calling/ 

GotCloud pipeline20,63. We analyzed biallelic SNVs, multiallelic SNVs, biallelic indels, and 

multiallelic indels separately with n-allele variants recoded and analyzed as n-1 biallelic variants 

at the same position. 

2.2.1.2 Array genotyping in METSIM 

METSIM participants were genotyped with the Illumina Human OmniExpress array. 

Variants with poor mapping of probes to GRCh37, call rate <95%, or deviations from Hardy-

Weinberg equilibrium (p<10-6) were removed.64 

2.2.2 Genotype imputation 

For each study, we subsetted WGS variants to those present on the Illumina Infinium 

Core (0.3M markers), Illumina Omni Express (0.7M), Infinium Omni 2.5M (2.4M), and Multi-

Ethnic Genotyping (MEGA; 1.8M) arrays (Supplementary Table 2.1). We refer to these WGS 

variant subsets as WGS-based arrays. For each study, we phased the selected variants with Eagle 

2.4.1 and imputed genotypes using Minimac4 on the Michigan Imputation Server (pipeline 

version 1.2.4)65 with the (1) 1000 Genomes Phase 3 (n=2,504), (2) Haplotype Reference 

Consortium (n=32,470), and (3) modified TOPMed (n=88,804) reference panels. MLOF and 
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BioMe are included in the full, publicly available TOPMed r2 (n=97,256) panel. To avoid 

overlap of participants and the presence of close relatives in the reference panel, we removed 

4,694 BioMe (4,668 Hispanic/Latino and 26 missing ethnicity) and 3,758 MLOF (2,977 non-

Hispanic white and 781 missing race/ethnicity) individuals from the full TOPMed r2 panel to 

create our modified TOPMed panel. 

2.2.3 Evaluation of imputation quality 

2.2.3.1 Observed imputation r2 

For each variant, we calculated the observed imputation r2 as the squared Pearson 

correlation coefficient between the imputed genotype dosages and the sequence-based 

genotypes. We assigned r2=0 for any variant present in the sequenced individuals but absent 

from the reference panels and so not imputed. For each variant category (biallelic SNVs, biallelic 

indels, multiallelic SNVs, and multiallelic indels) and each WGS-based array, we calculated the 

proportion of variants that were well-imputed (observed imputation r2>0.8) within study-specific 

MAF bins of size 0.00025 for MAF between 0.0002 and 0.002 and of size 0.001 for MAF > 

0.002. Each minor allele for multiallelic variants was analyzed independently of the other minor 

alleles of the same variant so that multiallelic variants had the same number of r2 measurements 

as minor alleles.  

2.2.3.2 Genotype concordance 

Separately for common, low-frequency, and rare biallelic SNVs, we calculated the 

heterozygous concordance rate between the imputed best-guess genotypes and sequenced-based 

genotypes as the proportion of heterozygous variants in WGS that were present in the reference 
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panel that were also heterozygous in the imputed data using bed-diff.66 We excluded biallelic 

SNVs that were absent from the reference panels in these calculations. 

2.2.4 Predicted variant consequences 

In each study, we used VEP67 to predict the functional consequences of biallelic SNVs. 

We partitioned variants into four classes based on the predicted impact on protein coding: high, 

moderate, low, and modifier. While variants in the high and moderate classes are likely to 

change protein behavior, variants in the low impact class are unlikely to do so. Modifier variants 

are mostly non-coding with no evidence of impacting protein coding. 

2.2.5 Fine-scale ancestry estimation 

For InPSYght, we estimated the proportion of African ancestry present in each individual 

using RFMix68 with two reference groups representing African and European ancestry from 

1000G. For BioMe, participants had previously been grouped by continental origin and into 

identity-by-descent (IBD) communities representing groups with shared recent genetic 

ancestry.52 We labeled BioMe participants as from a Caribbean population if their continental 

origin was Caribbean or if they were members of the Puerto Rican or Dominican IBD 

communities. We labeled all other BioMe participants with non-missing continental origin as 

non-Caribbean. Participants not from Puerto Rican or Dominican IBD communities and with 

missing continental origin information were not included in comparisons between Caribbean and 

non-Caribbean populations.  

We performed principal component analysis (PCA) to obtain fine-scale ancestry 

information for all four studies. We used 1000G-imputed genotypes on chromosome 1 to project 
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participants from each of the four studies onto the 938 reference samples from the Human 

Genome Diversity Project69 using the LASER server.70 

2.2.6 Effect of regional genomic features on imputation quality 

2.2.6.1 Genomic features datasets 

We downloaded GC content over 5bp intervals, the genomic positions of segmental 

duplications, the genomic positions of structural variants annotated with the Database of 

Genomic Variants, and the genomic positions of repeats identified with RepeatMasker from the 

UCSC Genome Browser database.71 Recombination rate was calculated using the HapMap 

GrCh38 genetic map72 as centimorgans per megabase.  

2.2.6.2 Relationship between genomic features and TOPMed imputation quality 

In each study, we performed LD pruning to obtain a set of near-independent biallelic 

SNVs on chromosome 20, retaining variants with pairwise r2<0.2 within a sliding 50kb window 

with a 5 variant step size with PLINK v2.0.73–75 For each retained variant, we defined five 

aggregate measures of genomic features over 10kb windows centered at the variant: mean GC 

content, number of repeats, number of structural variants, presence of ≥1 segmental duplication, 

and mean recombination rate. We defined the linear distance of the variant from the nearest 

array-genotyped variant. For each of the six genomic features, we performed a logistic regression 

to test the association between dichotomous imputation quality (observed imputation r2>0.8 vs. 

≤0.8) and the feature, adjusting for variant MAF as a categorical variable with 9 bins and breaks 

at 0, 0.0003,0.0006,0.0009, 0.001, 0.0032, 0.01, 0.032, 0.1, and 0.5. We also performed zero-one 

inflated beta regression to test the association between the continuous observed imputation r2 and 

each feature with the same MAF adjustment. Zero-one inflated beta regression models the 
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association of the genomic features with the observed imputation r2 in the open interval 0<r2<1 

(mean 𝜇 and variance 𝜎!) and the probabilities of observed imputation r2=0 (𝜈) and observed 

imputation r2=1 (𝜏) in a piecewise manner.76 In both regression models, we centered and scaled 

continuous and count predictors for comparability. 

2.2.7 Effect of real vs. WGS-based array genotypes on evaluation of imputation quality 

To determine if the WGS-based imputation results were consistent with the genotype 

array-based-results, we imputed the real OmniExpress array with each of the three reference 

panels in METSIM. For each reference panel, we compared the observed imputation r2 and 

genotype concordance metrics for the real array-based genotype imputation to WGS-based array 

genotype imputation results (from above). 

2.2.8 Effect of variant caller on evaluation of imputation quality 

Variants in TOPMed and the four study datasets were called with the TOPMed Variant 

Calling/ GotCloud pipeline.20,63 To assess the impact of variant calling tool, we recalled 

METSIM WGS variants using GATK version 3.5.77 In the comparison, we excluded variants 

from the GATK callset deviating from Hardy-Weinberg equilibrium (p<10-6), with >2% 

missingness, or with allelic imbalance <0.3 or >0.7. We also excluded variants in regions of low 

complexity, centromeres, segmental duplications, or satellite regions.78 After filtering, 21.8M 

variants remained in the subset of 2,429 individuals used for imputation analysis in METSIM. 

We then created each of the four WGS-based arrays using both METSIM callsets and evaluated 

imputation performance by comparing the imputed variants to the respective sequenced variants. 

2.2.9 Imputability tool for the Michigan Imputation Server 
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We developed RsqBrowser, a tool that allows researchers to query for the observed 

imputation r2 for variants or regions of interest. Users specify the genomic position in build 

GRCh38 and select the genotype array, imputation reference panel, and sample ancestry. 

RsqBrowser returns a table with the position and observed imputation r2 for all variants in the 

specified regions or genes. We have deployed this tool on the Michigan Imputation Server. 

2.3 Results 

2.3.1 Whole genome sequencing studies of four ancestries 

We used WGS data in four studies as gold standard genotypes. These four represent three 

major US populations: African, Hispanic/Latino, and European ancestry, and a population 

isolate: Finnish ancestry from Finland (Table 2.1).  We observed that our primary metric of 

imputation quality, the observed imputation r2, was upwardly biased in small samples for low-

frequency and rare variants (Supplementary Figure 2.1).  To avoid any biases comparing across 

datasets of different sample sizes, we randomly downsampled the African, Hispanic/Latino, and 

Finnish ancestry datasets to 2,429 individuals to match the smaller European ancestry dataset. 

After all sample- and variant-level filtering, we included in our analysis 79.3M, 68.8M, 62.2M, 

and 22.1M variants in the African, Hispanic/Latino, European, and Finnish ancestry studies, 

respectively (Table 2.1). In each study, >91% of these variants were biallelic SNVs. The others 

were multiallelic SNVs (0.3-1.6%), and biallelic (6.5-6.6%) and multiallelic indels (0.005-0.2%). 

2.3.2 Impact of reference panel on genotype imputation quality 

For each WGS study participant, we subsetted WGS genotypes to those present on the 

Illumina Core (0.3M markers), OmniExpress (0.7M), Multi-Ethnic Genotyping (MEGA) (1.8M), 

and Omni 2.5M (2.4M) arrays. We then carried out genotype imputation on these genotype array 
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subsets using the 1000G and HRC imputation reference panels, as well as a modified TOPMed 

panel. Because the Hispanic/Latino and European WGS datasets were included in the TOPMed 

panel, we restricted the TOPMed panel to a subset of 88,804 reference samples that did not 

overlap our WGS datasets for all analyses. To measure the imputation quality of each sequenced 

variant in the study, we calculated the squared Pearson correlation between sequenced genotypes 

and imputed genotype dosages (observed imputation r2). We consider array genotyping followed 

by imputation to approximate WGS for the MAF bins for which >90% of variants are well-

imputed (observed imputation r2>0.8). 

As expected, across all combinations of reference panels, ancestries, and MAF, the 

densest genotype array (Omni 2.5M) had both the highest mean observed imputation r2 and 

highest number and proportion of well-imputed variants (Figure 2.1, Supplementary Figure 2.2, 

Supplementary Table 2.2, Supplementary Table 2.3). For the Omni 2.5M array and in all 

ancestries, TOPMed-based imputation approximated WGS for variants of lower MAF compared 

to the HRC or 1000G panels. TOPMED-based panel imputation approximated WGS at lower 

MAF thresholds in African and Hispanic/Latino ancestry (0.14 and 0.11%) than in European or 

Finnish ancestry (0.35 and 0.85%) (Figure 2.1A-B, Supplementary Table 2.4). Between the 

previously available 1000G and HRC panels, imputation quality was higher with 1000G for 

African and Hispanic/Latino ancestry studies and with HRC for European and Finnish ancestry 

studies. With the Omni 2.5M array, the fold change in variant MAF for which TOPMed-based 

imputation approximated WGS compared to the next best performing panel was highest in 

African and Hispanic/Latino ancestry studies (17.0X and 21.0X, comparing to 1000G) and lower 

in European and Finnish ancestry studies (8.0X and 1.4X, comparing to HRC).  Although we 

used subsets of sequenced variants instead of actual genotyping arrays, we saw minimal 
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difference in results for the Finnish study for which we had Illumina OmniExpress array data 

(Supplementary Figure 2.3). Results for the Finnish study were also consistent using genotypes 

from a second variant caller (Supplementary Figure 2.4). These results show that with the 

TOPMed panel, it is possible for array genotyping and imputation to approximate WGS at a 

population level for common and low-frequency variants in these three US-based studies. 

2.3.3 Less influence of genotype array size with TOPMed- compared to 1000G and HRC-based 

imputation 

For all four ancestries and all three imputation reference panels, imputation quality 

increased with larger array size (Figure 2.1C). However, the difference in TOPMed imputation 

quality among the Omni 2.5M, MEGA, and OmniExpress arrays was minimal. For example, in 

the African ancestry study, TOPMed imputation approximated WGS for variants with 

MAF≥0.14% with the Omni 2.5M array, ≥0.17% with the MEGA array, and ≥0.24% with the 

OmniExpress array (Supplementary Table 2.4). This threshold was higher with the smaller Core 

array (≥0.84%). In contrast, genotype array size had a larger effect on imputation quality with the 

HRC and 1000G panels in African and Hispanic/Latino ancestry studies. For African ancestry, 

1000G imputation approximated WGS at a much lower MAF with the Omni 2.5M array (≥2.5%) 

compared to the OmniExpress array (≥14.0%). And with the HRC panel, imputation with the 

OmniExpress array could not approximate WGS at any MAF in African ancestry. 

2.3.4 Individual-level imputation accuracy varies with finer-scale ancestry 

Because imputation quality depends on the shared ancestry between reference panel and 

sample haplotypes,17 we hypothesized that imputation quality within the four WGS studies 

would vary with finer-scale ancestry. To measure individual-level imputation quality, we 
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calculated concordance rates between heterozygous sequenced and imputed genotypes separately 

for study-specific rare, low-frequency, and common biallelic SNVs in each individual. As 

expected, concordance rates varied across individuals more for rare variants than for low-

frequency and common variants (TOPMed: Figure 2.2, Supplementary Figure 2.5, 

Supplementary Figure 2.6, all panels: Supplementary Table 2.5). With the TOPMed panel, mean 

heterozygous concordance rates for rare variants were higher in individuals of African and 

Hispanic/Latino ancestry (0.93 in both) compared to individuals of European and Finnish 

ancestry (0.86 and 0.82) (Figure 2.2A). Concordance rates varied most within Hispanic/Latino 

individuals (10th-90th percentile: 0.80-0.98).  

We next stratified African and Hispanic/Latino study participants by finer-scale measures 

of ancestry. The African American population in the United States is primarily of African and 

European ancestries.79 We therefore estimated the proportion of African ancestry for each 

individual in the African ancestry study assuming two populations, which ranged from 0.26 to 

1.00 (mean 0.82). For the 2,307 individuals with an estimated African ancestry <0.95, 

individuals with higher proportions of African ancestry had higher genotype concordance rates 

with the TOPMed panel (Figure 2.2B). For instance, concordance rates for those with an 

estimated proportion between 0.86-0.95 were higher (mean 0.93) than for those between 0.26-

0.35 (mean 0.89). In contrast, concordance rates for the 122 individuals with estimated 

proportion of African ancestry >0.95 were lower (mean 0.91) than for individuals with smaller 

estimated proportions of African ancestry. 

Hispanic/Latino populations in the United States are admixed with primarily European, 

Native American, and African ancestry, with individuals of Caribbean origin usually having 

more African ancestry.80 The concordance rates for individuals from Caribbean populations were 



 17 

higher (mean 0.96) compared to those from non-Caribbean (mean 0.79) populations with the 

TOPMed panel (Figure 2.2C). 

We also estimated finer-scale ancestry in all four studies with principal component 

analysis (PCA), projecting the study individuals onto 938 reference samples from the Human 

Genome Diversity Project (HGDP).69 The first two PCs reflect clines of European (high PC2), 

African (high PC1 and low PC2), and Native American (low PC1 and low PC2) ancestries 

(Error! Reference source not found.). To see how TOPMed imputation quality varied with 

fine-scale ancestry, we divided individuals into concordance rate quintiles calculated jointly 

across all four studies. In all studies, individuals clustering closer to HGDP individuals of 

African ancestry were more likely to be in higher concordance rate quintiles, while those 

clustering closer to Native American or European populations were more likely to be in lower 

concordance rate quintiles for rare (Error! Reference source not found.D) and low-frequency 

variants (Supplementary Figure 2.5). As expected, there was little variability in common variant 

imputation quality (Supplementary Figure 2.6).  

Taken together, these results demonstrate that TOPMed imputation quality varies across 

individuals with finer-scale ancestry. Among the populations studied here, population subsets 

with large proportions of African ancestry, including Hispanic/Latino ancestry individuals of 

Caribbean origin, were on average the most accurately imputed for rare variants. However, 

individuals with the greatest proportions of African ancestry in the African study were not the 

most accurately imputed. The heterozygote concordance rates from HRC and 1000G imputation 

also varied with finer-scale ancestry for rare variants (Supplementary Table 2.5).  

2.3.5 Imputation quality varies across the genome 
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Sequence quality and genotype array density are not uniform across the genome. Because 

these factors influence imputation, we sought to quantify the regional variability in imputation 

quality. We first visualized the observed imputation r2 for common variants (MAF>5%) across 

the chromosomes. Although the vast majority (>99.6%) of common variants are well-imputed 

(observed imputation r2>0.8) in all four ancestries with the Omni 2.5M array and TOPMed 

reference panel (Supplementary Table 2.3), we identified clusters of common variants that were 

not well-imputed at the same genomic positions across ancestries and genotype arrays (Figure 

2.3A, Supplementary Figure 2.8). There are likewise regions with better-than-average imputation 

quality, including the HLA region on chromosome 6 (Supplementary Figure 2.8), that is 

characterized by high LD and dense genotype array coverage.51,81  

To assess regional variability in imputation quality, we calculated the lengths of runs of 

consecutively well-imputed variants separately for rare, low-frequency, and common biallelic 

SNVs across the genome (Figure 2.3B). We identified a large variability in the number of 

consecutively well-imputed common and low-frequency variants with the TOPMed panel (e.g. 

IQR in African ancestry is 41-750 common variants (10.4-253.2kb) and 9-287 low-frequency 

variants (2.3-84.3kb) with the Omni 2.5M array (Supplementary Table 2.6, Supplementary Table 

2.7). As expected, the lengths of consecutive well-imputed rare variants were much shorter, with 

a maximum length of 34-45 variants depending on ancestry (Supplementary Table 2.6). 

2.3.6 Local genomic features explain little variability in imputation quality 

Genomic features including high GC content and the presence of large duplications or 

repeats have been associated with regions of poor imputation quality in Europeans using the 

1000G panel.49 To test the effects of genomic features on imputation quality with the TOPMed 

panel, we performed logistic regressions in each of our four studies with the imputed quality 
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status (observed imputation r2>0.8) as the dichotomous outcome for independent variants on 

chromosome 20. In separate models, we tested the associations of distance to the nearest 

genotyped variant and the following features aggregated over a 10kb window centered at the 

variant: mean GC content, mean recombination rate, number of repeats, number of structural 

variants, and presence of ≥1 segmental duplication, adjusting for bins of MAF. We found that 

higher recombination rate, lower GC content, greater distance to genotype array variants, more 

structural variants, and the presence of segmental duplications were all associated with lower 

imputation quality (Figure 2.4A). The effect of nearby repeats was not consistent across 

ancestries or repeat class, although nearby simple repeats were associated with worse imputation 

quality in all ancestries (Supplementary Figure 2.9). However, none of the tested genomic 

features meaningfully impacted the proportion of variability in imputation quality beyond variant 

MAF (Figure 2.4B). Results were similar when modeling imputation quality as a continuous 

variable (Supplementary Figure 2.10) and were consistent across reference panels. 

2.3.7 Impact of variant predicted function and type on imputation quality 

Protein-coding variants are often of high clinical significance and easier to interpret 

compared to non-coding variants; they are also more likely to be rare and more difficult to 

impute.20,82 To determine the extent to which variants that impact protein coding are well-

imputed, we classified sequenced biallelic SNVs by predicted impact on protein coding. With the 

TOPMed panel and Omni 2.5M array, we found that 50.7-66.7% of variants predicted to have 

high or moderate impact on protein coding were well-imputed (Supplementary Table 2.8). We 

found no meaningful difference in imputation quality between the protein coding classes when 

controlling for MAF (Supplementary Figure 2.11). 
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Multiallelic SNVs and all indels have been shown to have lower imputation quality than 

bialleic SNVs with the 1000G panel,18,49 and indels are absent from the HRC panel.19 To 

quantify the effect of variant type on imputation quality, we calculated the proportion of well-

imputed indels, multiallelic SNVs, and multiallelic indels using the TOPMed panel and all four 

genotype arrays. We observed very similar MAF thresholds for which imputation could 

approximate WGS among biallelic SNVs, biallelic indels, and multialellic SNVs (Supplementary 

Figure 2.12). Multiallelic indels were less well-imputed. For example, in African ancestry, 

TOPMed imputation with the Omni 2.5M array approximated WGS at similar MAF thresholds 

for biallelic SNVs and indels and multiallelic SNVs (0.14%, 0.24%, 0.16% respectively) 

compared to 0.55% for multiallelic indels (Supplementary Table 2.9). 

2.4 Discussion 

Here, we used deep WGS from studies of African, Hispanic/Latino, European, and 

Finnish ancestry to quantify the extent to which array genotyping followed by genotype 

imputation can approximate WGS. We performed imputation using genotypes present on the 

Illumina Core, OmniExpress, MEGA, and Omni 2.5M arrays with the 1000G, HRC, and 

TOPMed reference panels. We found that with the largest array (Omni 2.5M) and largest 

reference panel (TOPMed), array genotyping followed by imputation can approximate WGS at a 

population level for variants with MAF≥0.14% in African ancestry, ≥0.11% in Hispanic/Latino 

ancestry, ≥0.35% in European ancestry, and ≥0.84% in Finnish ancestry. Particularly for the 

African and Hispanic/Latino ancestry studies, TOPMed imputation approximated WGS at much 

lower MAF than HRC or 1000G imputation, which is consistent with previous analyses showing 

improvements in these populations even with a smaller version of the TOPMed panel.50 For 

analyses primarily investigating the genetic effects of common and low-frequency variants, such 
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as single-variant GWAS, in any of the four populations, array genotyping and imputation is 

sufficient to accurately capture genetic variants and given differences in cost allows for much 

larger sample sizes than WGS. Large proportions (~44-60%) of rare variants with MAF even 

lower than the reported thresholds were also well-imputed, highlighting the potential for well-

powered rare-variant studies without WGS, although not all rare variants can be reliably 

imputed. Because we restricted the TOPMed panel to reference samples that did not overlap the 

WGS datasets, we expect that imputation quality with the full TOPMed-R2 panel to be even 

better than reported here. In particular, we would expect higher imputation quality for 

Hispanic/Latino studies as a large proportion of the Hispanic/Latino individuals in the TOPMed-

R2 panel were excluded here. 

Because genotype array size has been shown to be positively associated with imputation 

quality with the 1000G and HRC panels, we examined the impact of genotype arrays on the 

extent to which array genotyping and imputation can approximate WGS. As expected, 

imputation quality was higher when using larger arrays. However, the effect of genotype array 

choice on TOPMed imputation was much smaller than on HRC or 1000G imputation. The 

difference between the Omni 2.5M, MEGA, and OmniExpress arrays was minimal, suggesting 

that researchers imputing with the TOPMed panel in these populations may opt for the less 

expensive OmniExpress array with little loss of information. However, we did find lower 

imputation quality using the smaller Core array (~307k variants) and might expect even lower 

quality for arrays with fewer markers.  

WGS is also used for clinical purposes including diagnosis, screening, and identifying 

therapeutic targets.44 Variants predicted to alter protein function are often of high clinical 

significance.82 In the populations studied here, we found that only 50.7-66.7% of biallelic SNVs 
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with moderate or high predicted impact on protein coding were well-imputed, as might be 

expected given the generally low MAF of these variants. To quantify individual imputation 

quality in contrast to population-level imputation quality, we calculated the heterozygous 

concordance rates between sequenced biallelic SNVs and imputed best-guess genotypes. For all 

three reference panels, we found that the concordance rates for rare and low-frequency variants 

varied widely among individuals in the African, Hispanic/Latino, and European ancestry studies 

and were associated with finer-scale ancestry. Because of this variability and the large proportion 

of rare variants that are not accurately imputed with the available imputation reference panels, 

we believe that WGS cannot currently be reliably approximated in clinical settings with array 

genotyping and imputation. 

Despite large numbers of African and Hispanic/Latino haplotypes in the TOPMed 

reference panel, more than half of the TOPMed haplotypes are European. Still, we found that 

TOPMed imputation quality was highest for the African and Hispanic/Latino ancestry studies 

and for individuals with large proportions of African ancestry among the populations studied 

here. A first possible explanation is that there are proportionally more rare variants in non-

African populations that have undergone recent bottlenecks and subsequent population growth, 

as is true in the three US populations studied here (Error! Reference source not found.). In 

these populations, it can be more difficult to identify the haplotype background of the rare 

variation.18,83 A second possible explanation is that individuals with large proportions of African 

ancestry in these studies match more closely by chance with a subset of TOPMed haplotypes 

than do the individuals with large proportions of Native American or European ancestry. 

However, relatively higher imputation quality with the TOPMed panel in samples of African and 

Hispanic/Latino ancestry compared to European ancestry was previously reported in a separate 
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set of samples.20 Third, admixture could impact the accuracy of haplotype phasing of the sample 

or reference haplotypes. Taken together, these results emphasize the importance of ancestrally 

diverse reference panels like TOPMed and suggest that reference panel composition is not the 

only factor explaining ancestry differences in imputation quality. 

While nearly all common and low-frequency variants are well-imputed with the TOPMed 

panel in the populations studied, there was substantial variability by genomic region in 

imputation across the MAF spectrum. Some regions, such as the densely genotyped HLA locus, 

had higher imputation quality than what would be expected based on variant MAF alone. We 

found that lower recombination rate and higher GC content around a variant were associated 

with higher imputation quality in all four studies, but that none of these features except MAF 

explained a substantial proportion of variability in imputation quality. Given the difficulty of 

predicting hard-to-impute regions/variants, we developed RsqBrowser, a tool that allows 

researchers to query empirical imputation quality for specific variants or genomic regions of 

interest by ancestry, which is available on the Michigan Imputation Server. 

The results presented here are limited by the use of high quality but imperfect WGS as a 

gold standard. We did not consider any variants that were imputed from the reference panels but 

not detected in the WGS. We also note that the results presented here cannot necessarily be 

extended to other populations or population isolates, particularly those such as East and South 

Asian populations, that are not represented or represented in smaller numbers in the TOPMed 

panel. Furthermore, we only used WGS from one study for each population that we analyzed. 

For some ancestries, particularly population isolates, other population-specific reference panels 

may perform better than the three commonly used imputation panels analyzed here. 
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While array genotyping and imputation cannot fully replace deep WGS, we found that it 

can approximate WGS for variants down to specific MAF thresholds depending on genotype 

array and reference panel choices as well as sample ancestry. Researchers’ decision to invest in 

one technology over another will depend on these criteria, genomic location, and the MAF of 

variants relevant to their research questions. 

 

2.5 Figures and Tables 

Study Ancestry Mean 
depth 

Sample size Number of variants in 2,429 samples used in 
analyses 

Total Unrelated Bi-allelic Multi-allelic Total SNV Indel SNV Indel 
InPSYght African 27 7,717 7,169 72.6M 1.3M 5.3M 0.2M 79.3M 

BioMe Hispanic/Latino 37 4,677 3,141 63.2M 0.9M 4.5M 0.1M 68.8M 
MLOF European 39 2,987 2,429 57.3M 0.8M 4.1M 0.1M 62.2M 

METSIM Finnish 24 3,045 2,703 20.5M 0.1M 1.4M 10K 22.0M 
Table 2.1 Whole-genome sequencing (WGS) datasets 

The study name, ancestry, mean sequencing depth, sample size (total and unrelated subset), and number of variants, 
including single-nucleotide variants (SNVs) and indels, for the four WGS datasets. 
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Figure 2.1 Proportion of well-imputed (r2 > 0.8) bi-allelic SNVs by reference panel, study ancestry, and genotyping 
array  

The proportion of sequenced variants that are well-imputed (r2 > 0.8) with the TOPMed, HRC, and 1000G 
imputation reference panels. (A) Comparison across the reference panels using the Illumina Omni 2.5M array. (B) 
Comparison across the four studies using the Illumina Omni 2.5M array. (C) Comparison across four Illumina 
genotyping arrays: Omni 2.5M, MEGA, Omni Express, and Core by ancestry (columns) and imputation reference 
panels (rows). In all plots, the x axes show minor-allele frequency (MAF) calculated separately by study. Sequenced 
bi-allelic SNVs not present in reference panels were assigned r2 = 0. Bi-allelic SNVs were then aggregated by MAF 
bins of width 0.00025 MAF for MAF between 0.0002 and 0.002 and of size 0.001 MAF for MAF > 0.002; those 
plotted here correspond to singletons, doubletons, and tripletons in each study, as well as those with mean MAF 
closest to the values 0.001, 0.0032, 0.01, 0.032, 0.1, 0.32, and 0.5. 
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Figure 2.2 Heterozygous genotype concordance rates for rare variants by ancestry with TOPMed panel imputation  

Heterozygous concordance rates were calculated between sequenced and TOPMed-imputed genotypes for rare 
(MAF < 0.5%, calculated separately in each study) bi-allelic SNVs with the Omni 2.5M array. (A) Distribution of 
concordance rates in each of the four studies. Boxplots correspond to 25th, 50th, and 75th percentiles. (B) 
Distribution of concordance rates by bins of estimated proportion of African ancestry in the admixed African study. 
(C) Distribution of concordance rates in Caribbean and non-Caribbean populations in the Hispanic/Latino study.(D) 
Principal-component analysis (PCA) by genotype concordance quintile and ancestry. PCA was performed by 
projecting onto the Human Genome Diversity Project reference samples. Genotype concordance quintiles were 
calculated across all four studies and correspond to concordance rates of 0.37–0.82 (Q1), 0.82–0.86 (Q2), 0.86–0.93 
(Q3), 0.93–0.95 (Q4), and 0.95–0.99 (Q5). Points are colored by ancestry. 
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Figure 2.3 Regional variability in TOPMed reference panel imputation quality 

(A) Observed imputation r2 by genomic position (Mb) of common (MAF > 0.05) bi-allelic SNVs on chromosome 
20. Sequenced bi-allelic SNVs not present in reference panels were assigned r2 = 0. The horizontal line at r2 = 0.8 
corresponds to the threshold used to determine well-imputed variants. (B) Cumulative distribution of the number of 
consecutively well-imputed (r2 > 0.8) bi-allelic SNVs in each MAF category: common (MAF ≥ 0.05), low 
frequency (0.005 ≤ MAF < 0.05), and rare (MAF < 0.005), as calculated separately in each study. For common 
variants, European and Finnish curves appear to overlap and African and Hispanic/Latino curves appear to overlap. 
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Figure 2.4 Genomic features associated with TOPMed imputation quality of bi-allelic SNVs by ancestry 

(A) The odds ratios and corresponding unadjusted 95% confidence intervals from logistic regression models. 
Estimates are from separate models testing the associations between characteristics of regional genomic features and 
whether or not a variant is well imputed (observed imputation r2 > 0.8), adjusting for variant MAF. (B) The 
proportion of variance explained (Nagelkerke R2) for each logistic regression models with MAF only or with MAF 
and all six tested genomic features in one joint model. 
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2.7 Supplementary Material 

 

Supplementary Figure 2.1 Effect of sample size on imputation quality metrics 

Random subsets of individuals were taken from each of the WGS studies as the total sample size of unrelated 
individuals allowed (up to 7,000 for African, 3,000 for Hispanic/Latino, and 2,000 for European and Finnish). 
Imputation was performed with the Omni 2.5M array and the TOPMed imputation reference panel. A. The 
proportion of sequenced biallelic SNVs that are well-imputed (r2>0.8) by sample size. B. The mean r2 by sample 
size. In both plots, the x-axes show minor allele frequency (MAF) calculated separately by study based on the 2,429 
samples used in the main analyses. Sequenced biallelic SNVs not present in reference panels were assigned r2=0. 
Biallelic SNVs were then aggregated by MAF bins of width 0.00025 MAF for MAF between 0.0002 and 0.002 and 
of size 0.001 MAF for MAF > 0.002; those plotted here correspond to singletons, doubletons, and tripletons in each 
study, as well as those with mean MAF closest to the values 0.001, 0.0032, 0.01, 0.032, 0.1, 0.32, and 0.5. 
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Supplementary Figure 2.2 Mean observed imputation r2 of biallelic SNVs by reference panel, study ancestry, and 
genotyping array 

The mean observed imputation r2 with the TOPMed, HRC, and 1000G imputation reference panels. A. Comparison 
across the reference panels using the Illumina Omni 2.5M array. B. Comparison across the four studies using the 
Illumina Omni 2.5M array. C. Comparison across four Illumina genotyping arrays: Omni 2.5M, MEGA, Omni 
Express, and Core by ancestry (columns) and imputation reference panels (rows). In all plots, the x-axes show minor 
allele frequency (MAF) calculated separately by study. Sequenced biallelic SNVs not present in reference panels 
were assigned r2=0. Biallelic SNVs were then aggregated by MAF bins of width 0.00025 MAF for MAF between 
0.0002 and 0.002 and of size 0.001 MAF for MAF > 0.002; those plotted here correspond to singletons, doubletons, 
and tripletons in each study, as well as those with mean MAF closest to the values 0.001, 0.0032, 0.01, 0.032, 0.1, 
0.32, and 0.5. 
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Supplementary Figure 2.3 Imputation quality of biallelic SNVs by reference panel using WGS- based and real 
Illumina OmniExpress arrays 

A. The proportion of sequenced biallelic SNVs imputed from real array data (red line) or from WGS-based array 
(blue line) in the Finnish study that are well-imputed (r2>0.8) by imputation reference panel. B. The mean observed 
imputation r2 for the same variants. In all plots, the x-axes show minor allele frequency (MAF) calculated separately 
by study. Variants were aggregated by MAF bins of size 0.00025 MAF for MAF between 0.0002 and 0.002 and of 
size 0.001 MAF for MAF > 0.002; those plotted here correspond to singletons, doubletons, and tripletons in each 
study, as well as those with mean MAF closest to the values 0.001, 0.0032, 0.01, 0.316, 0.1, and 0.5. The lines 
appear entirely overlapping for the HRC and 1000G reference panels. 
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Supplementary Figure 2.4 Proportion of well-imputed (r2>0.8) biallelic SNVs by reference panel, genotyping array, 
and variant caller in Finnish study 

The proportion of sequenced biallelic SNVs called with the GotCloud pipeline (red line) or GATK pipeline (blue 
line) in the Finnish study that are well-imputed (r2>0.8) by reference panel (rows) and genotyping array (columns). 
In all plots, the x-axes show minor allele frequency (MAF) calculated separately by study. Variants were aggregated 
by MAF bins of size 0.00025 MAF for MAF between 0.0002 and 0.002 and of size 0.001 MAF for MAF > 0.002; 
those plotted here correspond to singletons, doubletons, and tripletons in each study, as well as those with mean 
MAF closest to the values 0.001, 0.0032, 0.01, 0.316, 0.1, and 0.5. 
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Supplementary Figure 2.5 Heterozygous genotype concordance rates for low-frequency variants by ancestry with 
TOPMed panel imputation 

Heterozygous concordance rates were calculated between sequenced and TOPMed imputed genotypes for low-
frequency (0.5%<MAF<5%, calculated separately in each study) biallelic SNVs with the Omni2.5M array. A. 
Distribution of concordance rates in each of the four studies. Boxplots correspond to 25th, 50th, and 75th 
percentiles. B. Distribution of concordance rates by bins of estimated proportion of African ancestry in the admixed 
African study. C. Distribution of concordance rates in Caribbean and non-Caribbean populations in the 
Hispanic/Latino study. The inset figures in panels A-C show the same distributions with a restricted y-axis. D. 
Principal component analysis (PCA) by genotype concordance quintile and ancestry. PCA was performed by 
projecting onto the Human Genome Diversity Project reference samples. Genotype concordance quintiles were 
calculated across all four studies and correspond to concordance rates of 0.903-0.964 (Q1), 0.964-0.971 (Q2), 0.971-
0.973 (Q3), 0.973-0.974 (Q4), and 0.974-0.974 (Q5). Points are colored by ancestry. 
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Supplementary Figure 2.6 Heterozygous genotype concordance rates for common variants by ancestry with 
TOPMed panel imputation.  

Heterozygous concordance rates were calculated between sequenced and TOPMed imputed genotypes for common 
(MAF>5%, calculated separately in each study) biallelic SNVs with the Omni2.5M array. A. Distribution of 
concordance rates in each of the four studies. Boxplots correspond to 25th, 50th, and 75th percentiles. B. 
Distribution of concordance rates by bins of estimated proportion of African ancestry in the admixed African study. 
C. Distribution of concordance rates in Caribbean and non-Caribbean populations in the Hispanic/Latino study. The 
inset figures in panels A-C show the same distributions with a restricted y-axis. D. Principal component analysis 
(PCA) by genotype concordance quintile and ancestry. PCA was performed by projecting onto the Human Genome 
Diversity Project reference samples. Genotype concordance quintiles were calculated across all four studies and 
correspond to concordance rates of 0.974-0.995 (Q1), 0.995-0.996 (Q2), 0.996-0.996 (Q3), 0.996-0.997 (Q4), and 
0.997-0.997 (Q5). Points are colored by ancestry.  
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Supplementary Figure 2.7 Principal component analysis of WGS samples  

PC1 and PC2 for the four WGS studies and Human Genome Diversity Project (HGDP) reference samples from 
Africa (n=129), Europe (n=156), and Native America (n=63). PCA was performed by projecting onto all HGDP 
reference samples (n=938).  
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Supplementary Figure 2.8 Regional variability in imputation quality of common variants with the TOPMed 
reference panel by genotyping array and ancestry across all chromosomes 

Observed imputation r2 by genomic position (Mb) for common (MAF>0.05) biallelic SNVs across all chromosomes 
by genotyping array (columns) and ancestry (rows). Variants above the horizontal black lines are well-imputed 
(observed imputation r2>0.08).  

 

 



 48 

 

Supplementary Figure 2.9 Repeat classes associated with TOPMed imputation quality of biallelic SNVs by ancestry  

The odds ratios and corresponding 95% confidence intervals from logistic regression models. Estimates are from 
separate models testing the associations between each repeat class and whether or not a variant is well-imputed 
(observed imputation r2>0.8) adjusting for variant MAF. Repeat classes as defined by RepeatMasker include DNA 
repeat elements (DNA), long interspersed repeated elements (LINE), low complexity repeats (LowComplex), long 
terminal repeat elements including retrotransposons (LTR), rolling circle repeats (RC), RNA repeats (RNA), 
satellite repeats, microsatellites (Simple), short interspersed repeat elements including ALUs (SINE), and repeats of 
unknown class.  
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Supplementary Figure 2.10 Genomic features associated with TOPMed imputation quality of biallelic SNVs by 
ancestry 

The odds ratios and corresponding 95% confidence intervals from zero-one inflated beta regression models testing 
the association of genomic features with the observed imputation r2 in the open interval 0<r2<1 (mean 𝜇 and 
variance-related parameter 𝜎) and the probabilities of observed imputation r2=0 (𝜈) or r2=1 (𝜏). Estimates are from 
separate models testing the associations between characteristics of regional genomic features and imputation quality 
(observed imputation r2) adjusting for variant MAF.  
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Supplementary Figure 2.11 Proportion of well-imputed (r2>0.8) biallelic SNVs by predicted functional impact and 
ancestry 

The predicted functional impact of all sequenced biallelic SNVs was determined with VEP. The x-axes show minor 
allele frequency (MAF) calculated separately by study. Biallelic SNVs were then aggregated by MAF bins of width 
0.00025 MAF for MAF between 0.0002 and 0.002 and of size 0.001 MAF for MAF > 0.002; those plotted here 
correspond to singletons, doubletons, and tripletons in each study, as well as those with mean MAF closest to the 
values 0.001, 0.0032, 0.01, 0.032, 0.1, 0.32, and 0.5.  
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Supplementary Figure 2.12 Proportion of well-imputed (r2>0.8) variants by variant type, genotyping array, and 
ancestry with the TOPMed panel 

The proportion of sequenced variants that are well-imputed by genotyping array (rows) and ancestry (columns). X-
axes show minor allele frequency (MAF) calculated separately in each study. Sequenced variants not present in 
reference panels were assigned r2=0. Variants were then aggregated by MAF bins of width 0.00025 MAF for MAF 
between 0.0002 and 0.002, bins of width 0.001 MAF for MAF between 0.002 and 0.4, and one bin of width 0.1 
MAF for MAF between 0.4 and 0.5. MAF bins plotted here correspond to singletons, doubletons, and tripletons in 
each study, as well as those with mean MAF closest to the values 0.01, 0.0032, 0.01, 0.316, 0.1, and 0.5.  
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Supplementary Figure 2.13 Distribution of MAF for biallelic SNVs by ancestry  

A. Barplots of the number of biallelic SNVs in each MAF category for each WGS dataset. B. Barplots of the 
proportion of biallelic SNVs in each MAF category for each WGS dataset.  

 

 

Array Number of 
variants African Hispanic/ 

Latino European Finnish 

Omni 2.5M 2,381,000 2,132,501 2,330,998 2,330,998 2,264,709 
MEGA 1,780,000 1,415,237 1,759,171 1,759,171 1,676,050 

OmniExpress 710,000 680,234 706,652 706,652 698,865 
Core 307,000 266,727 288,599 288,599 302,423 

Supplementary Table 2.1 Whole genome sequencing (WGS)-based genotype arrays 

The numbers of variants included on the Illumina arrays and the actual number of WGS variants in each study used 
to create the WGS-based arrays. 
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Reference 
panel Array MAF African Hispanic/ 

Latino European Finnish 
TO

PM
ed

 

Omni 2.5M 
Common 7.7M 6.3M 5.6M 5.6M 

Low frequency 8.9M 8.0M 3.4M 3.2M 
Rare 35.6M 32.4M 26.5M 4.8M 

MEGA 
Common 7.7M 6.3M 5.6M 5.6M 

Low frequency 8.9M 8.0M 3.4M 3.2M 
Rare 35.0M 32.0M 26.1M 4.7M 

OmniExpress 
Common 7.7M 6.3M 5.6M 5.6M 

Low frequency 8.8M 7.9M 3.3M 3.1M 
Rare 34.2M 31.4M 24.9M 4.4M 

Core 
Common 7.5M 6.3M 5.5M 5.5M 

Low frequency 8.2M 7.7M 2.8M 2.8M 
Rare 31.2M 29.2M 22.2M 3.7M 

H
R

C
 

Omni 2.5M 
Common 7.1M 5.9M 5.2M 5.2M 

Low frequency 6.0M 6.2M 2.9M 3.1M 
Rare 4.0M 5.1M 9.4M 3.6M 

MEGA 
Common 6.7M 5.8M 5.2M 5.2M 

Low frequency 4.9M 5.4M 2.8M 3.1M 
Rare 3.6M 4.3M 8.6M 3.6M 

OmniExpress 
Common 6.5M 5.7M 5.2M 5.2M 

Low frequency 4.1M 4.7M 2.5M 3.1M 
Rare 3.1M 3.7M 7.8M 3.4M 

Core 
Common 4.7M 5.0M 4.9M 5.2M 

Low frequency 1.9M 2.7M 1.9M 3.0M 
Rare 2.0M 2.3M 5.7M 3.1M 

10
00

G
 

Omni 2.5M 
Common 7.5M 6.2M 5.5M 5.5M 

Low frequency 7.2M 6.6M 2.4M 2.6M 
Rare 4.4M 6.5M 7.0M 1.7M 

MEGA 
Common 7.2M 6.1M 5.4M 5.5M 

Low frequency 6.1M 6.0M 2.3M 2.5M 
Rare 3.5M 5.4M 6.3M 1.6M 

OmniExpress 
Common 6.9M 6.0M 5.3M 5.4M 

Low frequency 5.3M 5.4M 2.0M 2.4M 
Rare 2.9M 4.8M 5.6M 1.4M 

Core 
Common 5.4M 5.4M 5.0M 5.2M 

Low frequency 2.6M 3.3M 1.4M 2.0M 
Rare 1.4M 2.9M 3.7M 1.1M 

Supplementary Table 2.2 Number of well-imputed biallelic single nucleotide variants (SNVs) in each whole genome 
sequencing (WGS) study by reference panel, genotype array, ancestry, and minor allele frequency (MAF) category 
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Reference 
panel Array MAF African Hispanic/ 

Latino European Finnish 
TO

PM
ed

 

Omni 2.5M 
Common 0.997 0.997 0.996 0.996 

Low frequency 0.993 0.992 0.974 0.945 
Rare 0.637 0.664 0.552 0.415 

MEGA 
Common 0.997 0.997 0.996 0.996 

Low frequency 0.992 0.992 0.967 0.939 
Rare 0.626 0.656 0.543 0.408 

OmniExpress 
Common 0.994 0.996 0.992 0.993 

Low frequency 0.984 0.985 0.927 0.913 
Rare 0.613 0.642 0.517 0.379 

Core 
Common 0.973 0.990 0.969 0.978 

Low frequency 0.922 0.954 0.800 0.830 
Rare 0.559 0.598 0.461 0.318 

H
R

C
 

Omni 2.5M 
Common 0.921 0.926 0.929 0.933 

Low frequency 0.668 0.772 0.812 0.908 
Rare 0.071 0.104 0.195 0.314 

MEGA 
Common 0.871 0.914 0.926 0.933 

Low frequency 0.546 0.679 0.784 0.907 
Rare 0.065 0.088 0.180 0.310 

OmniExpress 
Common 0.834 0.894 0.917 0.932 

Low frequency 0.463 0.591 0.701 0.901 
Rare 0.055 0.076 0.162 0.298 

Core 
Common 0.609 0.792 0.875 0.931 

Low frequency 0.208 0.338 0.539 0.886 
Rare 0.036 0.047 0.119 0.273 

10
00

G
 

Omni 2.5M 
Common 0.970 0.976 0.974 0.977 

Low frequency 0.801 0.828 0.692 0.760 
Rare 0.079 0.134 0.145 0.150 

MEGA 
Common 0.936 0.965 0.965 0.974 

Low frequency 0.679 0.752 0.658 0.745 
Rare 0.063 0.110 0.131 0.142 

OmniExpress 
Common 0.895 0.946 0.948 0.966 

Low frequency 0.590 0.667 0.559 0.697 
Rare 0.052 0.098 0.116 0.125 

Core 
Common 0.691 0.851 0.880 0.930 

Low frequency 0.286 0.409 0.401 0.590 
Rare 0.025 0.058 0.077 0.091 

Supplementary Table 2.3 Proportion of biallelic single nucleotide variants (SNVs) in each whole genome 
sequencing (WGS) study that are well-imputed (r2>0.8) by reference panel, genotype array, ancestry, and minor 
allele frequency (MAF) category 
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Reference 
panel Array African Hispanic/ 

Latino European Finnish 

TOPMed 

Omni 2.5M 0.0014 0.0011 0.0035 0.0084 
MEGA 0.0016 0.0011 0.0045 0.0095 

OmniExpress 0.0024 0.0014 0.0095 0.0126 
Core 0.0084 0.0035 0.0395 0.0275 

HRC 

Omni 2.5M 0.0485 0.0364 0.0276 0.0115 
MEGA 0.3065 0.0565 0.0346 0.0115 

OmniExpress NA 0.1055 0.0585 0.0135 
Core NA NA 0.2015 0.0154 

1000G 

Omni 2.5M 0.0245 0.0235 0.0385 0.0325 
MEGA 0.0665 0.0364 0.0455 0.0365 

OmniExpress 0.1395 0.0675 0.0705 0.0515 
Core NA 0.2225 0.1704 0.0945 

Supplementary Table 2.4 Minor allele frequency (MAF) threshold above which array genotyping and imputation 
can approximate whole genome sequencing (WGS) for biallelic single nucleotide variants (SNVs) by reference 
panel, genotype array, and ancestry 

Threshold is the smallest MAF for which >90% of biallelic SNVs are well-imputed (observed imputation r2>0.8). 
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 Array MAF 
African Hispanic/ Latino European Finnish 

All 0.25-0.5 0.5-0.75 0.75-1.0 All NC C All All 

TO
PM

ed
 

O
m

ni
 

2.
5M

 Common 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 
Low frequency 0.99 0.98 0.99 0.99 0.99 0.99 0.97 0.98 0.97 

Rare 0.93 0.89 0.93 0.93 0.93 0.79 0.96 0.86 0.82 

M
EG

A Common 0.92 0.92 0.92 0.92 0.96 0.97 0.96 0.99 1.00 
Low frequency 0.98 0.97 0.99 0.99 0.99 0.99 0.96 0.97 0.97 

Rare 0.91 0.87 0.91 0.91 0.92 0.78 0.95 0.84 0.81 

O
m

ni
 

Ex
pr

es
s Common 0.92 0.92 0.92 0.92 0.96 0.97 0.96 0.99 1.00 

Low frequency 0.98 0.97 0.99 0.99 0.99 0.99 0.96 0.97 0.97 
Rare 0.91 0.86 0.91 0.91 0.91 0.75 0.95 0.82 0.78 

C
or

e 

Common 0.98 0.97 0.98 0.98 0.97 0.97 0.96 0.98 0.99 
Low frequency 0.98 0.97 0.99 0.99 0.99 0.99 0.96 0.97 0.97 

Rare 0.86 0.80 0.86 0.86 0.88 0.68 0.92 0.76 0.71 

H
R

C
 

O
m

ni
 

2.
5M

 Common 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.99 1.00 
Low frequency 0.91 0.91 0.91 0.91 0.92 0.92 0.90 0.94 0.97 

Rare 0.70 0.73 0.72 0.69 0.70 0.67 0.71 0.70 0.82 

M
EG

A Common 0.96 0.97 0.96 0.96 0.98 0.98 0.98 0.99 1.00 
Low frequency 0.81 0.82 0.82 0.81 0.89 0.89 0.88 0.93 0.97 

Rare 0.65 0.71 0.69 0.64 0.65 0.63 0.66 0.68 0.81 

O
m

ni
 

Ex
pr

es
s Common 0.95 0.96 0.96 0.95 0.98 0.98 0.98 0.98 1.00 

Low frequency 0.83 0.85 0.84 0.83 0.84 0.85 0.82 0.90 0.97 
Rare 0.62 0.67 0.66 0.61 0.60 0.57 0.61 0.65 0.80 

C
or

e 

Common 0.89 0.92 0.90 0.89 0.95 0.95 0.95 0.97 0.99 
Low frequency 0.68 0.73 0.70 0.67 0.73 0.73 0.70 0.84 0.95 

Rare 0.50 0.58 0.55 0.49 0.51 0.47 0.51 0.55 0.77 

10
00

G
 

O
m

ni
 

2.
5M

 Common 0.98 0.98 0.98 0.98 0.99 0.99 0.99 0.97 0.99 
Low frequency 0.93 0.92 0.93 0.93 0.91 0.92 0.89 0.88 0.90 

Rare 0.73 0.69 0.71 0.73 0.73 0.66 0.75 0.62 0.71 

M
EG

A Common 0.97 0.97 0.97 0.97 0.98 0.98 0.98 0.97 0.99 
Low frequency 0.88 0.87 0.88 0.88  0.89 0.90 0.87 0.86 0.91 

Rare 0.65 0.64 0.65 0.65 0.68 0.61 0.69 0.58 0.68 

O
m

ni
 

Ex
pr

es
s  Common 0.96 0.96 0.96 0.96 0.98 0.98 0.98 0.96 0.99 

Low frequency 0.85 0.85 0.85 0.85 0.86 0.87 0.82 0.81 0.88 
Rare 0.61 0.58 0.61 0.62 0.64 0.56 0.66 0.54 0.63 

C
or

e 

Common 0.90 0.92 0.91 0.90 0.95 0.95 0.95 0.94 0.97 
Low frequency 0.70 0.72 0.71 0.70 0.74 0.75 0.69 0.69 0.78 

Rare 0.44 0.44 0.45 0.44 0.51 0.42 0.53 0.40 0.52 
Supplementary Table 2.5 Mean heterozygous concordance rates by reference panel, genotype array, ancestry, and 
MAF category 

Summary statistics are further broken down for the African ancestry study by estimated proportion of African 
ancestry (0.25-0.5, 0.5-0.75, 0.75-1.00) and for the Hispanic/Latino ancestry study by Caribbean (C) and non-
Caribbean (NC) origin. 
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Ar
ra

y 
MAF 

Number of consecutively well-imputed (r2>0.8) biallelic SNVs 
African Hispanic/ Latino European Finnish 

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th 

TO
PM

ed
 

O
m

ni
 

2.
5M

 Common 41 277 750 52 295 777 33 197 576 35 210 592 

Low frequency 9 85 287 18 66 186 4 12 41 4 11 25 

Rare 1 2 4 1 2 4 1 2 3 1 1 2 

M
EG

A  Common 21 243 715 41 276 753 16 139 473 17 157 505 

Low frequency 5 45 205 14 57 166 3 9 30 4 10 23 

Rare 1 2 4 1 2 4 1 2 3 1 1 2 

O
m

ni
 

Ex
pr

es
s 

Common 4 106 512 17 193 616 7 56 267 8 72 328 

Low frequency 3 15 98 7 30 92 2 6 16 3 7 16 

Rare 1 2 3 1 2 4 1 2 3 1 1 2 

C
or

e 

Common 1 3 20 2 17 194 2 10 46 2 11 61 

Low frequency 1 4 13 2 8 28 1 3 7 2 4 9 

Rare 1 2 3 1 2 3 1 1 2 1 1 2 

H
R

C
 

O
m

ni
 

2.
5M

 Common 2 9 28 3 13 33 4 14 35 4 15 38 

Low frequency 1 2 5 1 3 7 2 4 8 3 9 19 

Rare 1 1 1 1 1 1 1 1 1 1 1 2 

M
EG

A  Common 2 4 15 3 10 28 4 14 33 4 15 38 

Low frequency 1 2 3 1 2 5 1 3 7 3 8 18 

Rare 1 1 1 1 1 1 1 1 1 1 1 2 

O
m

ni
 

Ex
pr

es
s 

Common 1 4 12 2 8 22 3 12 29 4 15 38 

Low frequency 1 2 3 1 2 4 1 2 5 3 8 17 

Rare 1 1 1 1 1 1 1 1 1 1 1 2 

C
or

e  

Common 1 2 5 1 3 10 2 7 19 4 15 37 

Low frequency 1 1 2 1 1 3 1 2 4 3 6 15 

Rare 1 1 1 1 1 1 1 1 1 1 1 2 

10
00

G
 

O
m

ni
 

2.
5M

 Common 3 15 68 5 27 85 6 25 72 7 30 88 

Low frequency 2 4 8 2 4 9 1 2 5 1 3 6 

Rare 1 1 1 1 1 1 1 1 1 1 1 1 

M
EG

A Common 2 4 20 3 12 54 4 16 53 5 24 74 

Low frequency 1 2 5 1 3 6 1 2 4 1 3 5 

Rare 1 1 1 1 1 1 1 1 1 1 1 1 

O
m

ni
 

Ex
pr

es
s 

Common 1 4 14 2 9 37 3 13 36 4 18 55 

Low frequency 1 2 4 1 2 5 1 2 3 1 2 5 

Rare 1 1 1 1 1 1 1 1 1 1 1 1 

C
or

e  

Common 1 2 5 1 3 11 2 5 17 2 8 27 

Low frequency 1 1 2 1 2 3 1 1 3 1 2 4 

Rare 1 1 1 1 1 1 1 1 1 1 1 1 

Supplementary Table 2.6 25th, 50th, and 75th percentiles of the number of consecutive well-imputed (observed 
imputation r2>0.8) biallelic single nucleotide variants (SNVs) by reference panel, genotype array, ancestry, and 
minor allele frequency (MAF) category 
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 Ar
ra

y 
MAF 

Length in kb of consecutively well-imputed (r2>0.8) biallelic SNVs 
African Hispanic/ Latino European Finnish 

25th 50th 75th 25th 50th 75th 25th 50th 75th 25th 50th 75th 

TO
PM

ed
 

O
m

ni
 

2.
5M

 Common 10.4 84.8 253.2 15.7 109.6 315.3 11.6 80.1 256.5 12.5 87.2 267.4 

Low frequency 2.3 23.9 84.3 5.2 20.7 60.1 1.6 7.8 29.8 2.3 8.0 19.2 

Rare 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.2 

M
EG

A Common 5.1 73.3 241.6 11.4 101.3 302.2 5.3 55.7 210.5 6.3 64.9 224.4 

Low frequency 1.0 12.4 59.8 4.0 17.3 53.5 1.1 5.7 21.4 1.9 7.1 17.4 

Rare 0.0 0.0 0.1 0.0 0.0 0.2 0.0 0.0 0.1 0.0 0.0 0.2 

O
m

ni
 

Ex
pr

es
s Common 0.7 31.3 162.8 4.6 70.4 245.3 2.5 23.9 113.6 3.2 31.1 144.6 

Low frequency 0.3 3.8 27.9 1.7 9.2 29.7 0.5 3.4 11.2 1.0 4.6 12.0 

Rare 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.2 

C
or

e  

Common 0.0 0.6 5.9 0.3 6.2 73.1 0.3 4.1 21.2 0.4 5.0 28.1 

Low frequency 0.0 0.7 3.4 0.3 2.1 8.9 0.0 1.2 4.5 0.1 1.9 6.0 

Rare 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 0.0 0.0 0.1 

H
R

C
 

O
m

ni
 

2.
5M

 Common 0.2 2.3 8.5 0.6 4.0 12.3 0.8 5.0 14.9 0.8 5.3 16.2 

Low frequency 0.0 0.3 1.0 0.0 0.6 1.9 0.1 1.7 5.2 1.4 5.6 13.8 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

M
EG

A  Common 0.0 0.9 4.3 0.3 2.9 10.1 0.7 4.7 14.2 0.8 5.3 16.2 

Low frequency 0.0 0.1 0.7 0.0 0.3 1.2 0.0 1.4 4.4 1.3 5.5 13.5 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

O
m

ni
 

Ex
pr

es
s Common 0.0 0.7 3.4 0.2 2.2 8.2 0.7 4.2 12.4 0.8 5.3 16.1 

Low frequency 0.0 0.0 0.5 0.0 0.2 1.0 0.0 0.8 2.9 1.1 5.1 12.7 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1 

C
or

e  

Common 0.0 0.2 1.1 0.0 0.8 3.6 0.3 2.4 8.1 0.8 5.2 15.9 

Low frequency 0.0 0.0 0.2 0.0 0.0 0.5 0.0 0.3 1.7 0.8 4.0 10.6 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

10
00

G
 

O
m

ni
 

2.
5M

 Common 0.3 4.0 21.2 1.2 9.7 33.4 1.9 10.6 31.6 2.1 12.9 40.0 

Low frequency 0.0 0.6 2.0 0.1 0.9 2.6 0.0 0.7 2.5 0.0 1.2 3.7 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

M
EG

A  Common 0.0 1.0 6.0 0.4 4.2 20.4 0.9 6.7 23.2 1.5 9.9 33.1 

Low frequency 0.0 0.3 1.1 0.0 0.5 1.7 0.0 0.5 2.2 0.0 1.1 3.4 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

O
m

ni
 

Ex
pr

es
s  Common 0.0 0.7 4.0 0.3 3.0 14.3 0.9 5.4 16.5 1.3 8.1 25.0 

Low frequency 0.0 0.2 0.9 0.0 0.3 1.3 0.0 0.2 1.5 0.0 0.8 2.7 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

C
or

e  

Common 0.0 0.2 1.3 0.0 0.8 4.2 0.1 1.9 7.6 0.4 3.4 12.5 

Low frequency 0.0 0.0 0.4 0.0 0.0 0.6 0.0 0.0 1.0 0.0 0.3 1.9 

Rare 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 

Supplementary Table 2.7 25th, 50th, and 75th percentiles of the length in kilobases (kb) of consecutively well-
imputed (observed imputation r2>0.8) variants by reference panel, genotype array, ancestry, and minor allele 
frequency (MAF) category 
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Reference 
panel Array Impact African Hispanic/ 

Latino European Finnish 

TO
PM

ed
 

Omni 2.5M 

High 0.605 0.641 0.511 0.456 
Moderate 0.645 0.668 0.540 0.510 

Low 0.706 0.726 0.603 0.620 
Modifier 0.719 0.739 0.621 0.662 

MEGA 

High 0.551 0.593 0.443 0.387 
Moderate 0.571 0.608 0.448 0.416 

Low 0.619 0.658 0.499 0.521 
Modifier 0.648 0.683 0.532 0.584 

OmniExpress 

High 0.589 0.622 0.483 0.430 
Moderate 0.626 0.651 0.508 0.480 

Low 0.684 0.707 0.568 0.589 
Modifier 0.699 0.721 0.589 0.635 

Core 

High 0.551 0.593 0.443 0.387 
Moderate 0.571 0.608 0.448 0.416 

Low 0.619 0.658 0.499 0.521 
Modifier 0.648 0.683 0.532 0.584 

H
R

C
 

Omni 2.5M 

High 0.151 0.181 0.191 0.392 
Moderate 0.163 0.191 0.204 0.442 

Low 0.222 0.259 0.280 0.555 
Modifier 0.235 0.271 0.305 0.582 

MEGA 

High 0.173 0.210 0.229 0.420 
Moderate 0.209 0.251 0.268 0.485 

Low 0.202 0.238 0.271 0.555 
Modifier 0.210 0.246 0.290 0.579 

OmniExpress 

High 0.123 0.147 0.166 0.382 
Moderate 0.129 0.154 0.175 0.430 

Low 0.174 0.207 0.243 0.542 
Modifier 0.188 0.224 0.270 0.571 

Core 

High 0.081 0.107 0.139 0.368 
Moderate 0.074 0.099 0.133 0.406 

Low 0.099 0.135 0.189 0.518 
Modifier 0.119 0.159 0.220 0.554 

10
00

G
 

Omni 2.5M 

High 0.162 0.200 0.148 0.282 
Moderate 0.170 0.208 0.152 0.314 

Low 0.240 0.284 0.231 0.437 
Modifier 0.263 0.307 0.261 0.478 

MEGA 

High 0.187 0.233 0.208 0.351 
Moderate 0.225 0.276 0.250 0.432 

Low 0.216 0.262 0.224 0.438 
Modifier 0.232 0.277 0.246 0.469 

OmniExpress 

High 0.128 0.165 0.125 0.257 
Moderate 0.131 0.170 0.126 0.286 

Low 0.186 0.232 0.194 0.405 
Modifier 0.208 0.256 0.225 0.450 

Core 

High 0.081 0.120 0.104 0.235 
Moderate 0.071 0.110 0.089 0.238 

Low 0.103 0.152 0.142 0.346 
Modifier 0.129 0.183 0.176 0.404 

Supplementary Table 2.8 Proportion of biallelic single nucleotide variants (SNVs) in each whole genome 
sequencing (WGS) study that are well-imputed (r2>0.8) by reference panel, genotype array, ancestry, and predicted 
impact on protein coding 
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Predicted impact was estimated with VEP. 

 

Array Variant type African Hispanic/ 
Latino European Finnish 

Omni 2.5M 

Biallelic SNV 0.0014 0.0011 0.0035 0.0084 
Biallelic indel 0.0024 0.0014 0.0045 0.0115 

Multiallelic SNV 0.0016 0.0014 0.0045 0.0115 
Multiallelic indel 0.0055 0.0035 0.0075 0.0144 

MEGA 

Biallelic SNV 0.0017 0.0011 0.0045 0.0095 
Biallelic indel 0.0024 0.0014 0.0055 0.0126 

Multiallelic SNV 0.0024 0.0014 0.0055 0.0126 
Multiallelic indel 0.0065 0.0045 0.0105 0.0165 

OmniExpress 

Biallelic SNV 0.0024 0.0014 0.0095 0.0126 
Biallelic indel 0.0035 0.0019 0.0115 0.0165 

Multiallelic SNV 0.0035 0.0016 0.0115 0.0164 
Multiallelic indel 0.0074 0.0045 0.0145 0.0165 

Core 

Biallelic SNV 0.0084 0.0035 0.0395 0.0275 
Biallelic indel 0.0115 0.0045 0.0425 0.0336 

Multiallelic SNV 0.0105 0.0035 0.0405 0.0224 
Multiallelic indel 0.0185 0.0075 0.0284 0.0384 

Supplementary Table 2.9 Minor allele frequency (MAF) threshold above which array genotyping and imputation 
can approximate whole genome sequencing (WGS) with the TOPMed panel by genotype array, ancestry, and variant 
type  

Threshold is the smallest MAF for which >90% of variants are well-imputed (observed imputation r2>0.8).
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Chapter 3 Statistical Methods for Genetic Colocalization in a Single Cohort Design 

3.1 Introduction 

 Genome-wide association studies (GWAS) have successfully identified hundreds of 

thousands of genetic associations with complex traits and diseases.2 However, determining the 

molecular mechanisms underlying most GWAS associations remains challenging.4 First, linkage 

disequilibrium (LD), or the nonrandom association of alleles at different loci,84 limits our ability 

to pinpoint the causal variant(s) when they are inherited together with non-causal variants. 

Second, the vast majority of GWAS variants lie in noncoding regions of the genome.85 These 

variants are thought to influence traits through the regulation of gene expression, but it is often 

unclear which gene(s) they regulate.4 Determining the genes causally related to complex traits 

and how they are impacted by genetic variation is essential for understanding diseases pathways 

and paves the way for downstream treatment and prevention efforts.  

 Genetic colocalization analyses seek to identify genetic variants or loci that are causal for 

multiple association signals.86 The identification of genetic variants that are causally related to 

both a complex disease and an intermediate molecular phenotype (e.g. gene expression, DNA 

methylation, metabolite levels) can provide evidence for target genes or tissues to prioritize in 

follow-up studies.22 Colocalization analyses have improved our understanding of the molecular 

pathways of anthropometric traits,87 circulating biomarker levels,88 cardiometabolic 

diseases,6,89,90 and autoimmune disorders,91,92 among many others. 

 Colocalization analysis relies on the accurate estimation of LD between genetic variants. 

Existing colocalization methods implicitly assume that the patterns of LD match perfectly 
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between any datasets used in the marginal association analyses of each trait. When this 

assumption is violated, as is nearly always the case when the complex disease trait and the 

molecular phenotype are measured in separate cohorts, the power of colocalization analysis is 

diminished.23 As the cost of high-throughput methods for assaying molecular data decreases, an 

increasing number of studies have measured multiple phenotypes on the same set of individuals. 

For example, the UK Biobank has collected plasma proteomic data on tens of thousands of 

individuals for whom disease information is readily available.93 In addition, a number of smaller, 

disease-focused studies have collected multiple forms of molecular data on the same individuals. 

Examples include the METSIM Study, which has measured more than 1,300 metabolites on over 

6,000 individuals88 and the FUSION Study, which has measured single nucleus resolution 

skeletal muscle gene expression and chromatin accessibility on nearly 300 individuals (see 

Chapter 4). This one cohort, multi-phenotype design has the potential to facilitate more powerful 

colocalization analyses that further our understanding of the impact of genetic variation on many 

types of traits. 

 However, existing probabilistic tools (e.g. coloc,86 eCAVIAR,22 enloc/fastENLOC94,95) 

for colocalization also explicitly assume that the marginal association analyses are performed in 

separate cohorts with non-overlapping sets of individuals. For the corresponding analysis 

methods, this assumption appears in the estimation of the likelihood function, where GWAS and 

eQTL results (or association results of any two traits) are treated as independent.23 The effects of 

this model misspecification were found to be largely ignorable in the case of colocalization 

analysis of ten traits with HyPrColoc,96 but the extent to which these conclusions apply to the 

colocalization of other sets of traits or to scenarios with different correlation structure between 

traits has not been investigated.  
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 Here, we present simulation analyses that demonstrate the consequences of using existing 

two-sample methods in colocalization analysis of two phenotypes from a one-sample design, in 

violation of the non-overlapping cohorts assumption. We show that Type I error is well-

controlled when the ratio of trait-shared to trait-specific error variance is low but increases with 

increased sharing. For scenarios with well-controlled Type I error, we show that the one-sample 

design can be more powerful than the two-sample design due to better LD matching. Power can 

be further improved in the one-sample design when trait-shared non-genetic factors are measured 

and controlled for in the marginal association analyses. Our findings provide practical guidelines 

for researchers to appropriately perform colocalization analysis with existing tools in a single 

cohort and provide a performance benchmark for future methods that accommodate this more 

powerful design. 

3.2 Methods 

3.2.1 Data resources and processing 

3.2.1.1 METSIM whole genome sequence data 

A detailed description of sample collection, sequencing, and data processing can be found 

in Laakso et al 201753 and Yin et al 2022.24 Briefly, the METSIM Study comprises 10,197 male 

Finish participants aged 45-74 who were recruited in Kuopio, Finland. Whole genome 

sequencing (wave 1) was performed in a subset of 3,074 participants to an average depth of 23X. 

Genetic variants with missingness >2%, HWE p-value <10-6, or allele imbalance <30% were 

removed. 

3.2.2 Simulations 
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3.2.2.1 Simulation of continuous phenotype for one-sample design 

We randomly sampled 1,000 individuals from the METSIM WGS dataset. To represent 

fine-mapping of a single locus, we used genotypes of 5,000 consecutive common (minor allele 

frequency >5%) SNPs (16.9 Mb) on chromosome 20. We simulated two continuous traits, 𝑌"and 

𝑌!, which could represent gene expression and a quantitative GWAS trait. We first simulated 𝑌" 

for the 1,000 individuals as follows: 

Equation 3.1 

𝑌!" = 𝛽!𝑔!" + 𝛽#𝑔#" + 𝛽$𝑔$" + 𝑢" + 𝑒!"  

 

where 𝑔", 𝑔!, 𝑔# are the causal SNPs for 𝑌" selected randomly without replacement from the 

5,000 SNPs and  𝛽", 𝛽!, 𝛽#~𝑁(0, 𝑉 = 0.6) are the 𝑌"-specific genetic effects. The non-genetic 

error term is partitioned into the 𝑌"-specific error 𝑒"~𝑁(0,1) and confounder 𝑢~𝑁(0, 𝜙!); 𝜙! =

{0,0.5,1,2} that affects both 𝑌" and 𝑌! (Equation 3.2, Equation 3.3, Equation 3.4). Larger 𝜙! 

values represent larger non-genetic shared effects between 𝑌" and 𝑌!.  

We then simulated 𝑌! under three different colocalizations scenarios: null, pleiotropy, and 

mediator. Under the null scenario, we simulated 𝑌! as follows: 

Equation 3.2 

𝑌#" = 𝛽%𝑔%" + 𝛽&𝑔&" + 𝛽'𝑔'" + 𝑢" + 𝑒#"  

 

where 𝑔$, 𝑔%, 𝑔& are the causal SNPs for 𝑌! selected randomly without replacement from the 

4,997 SNPs that are not causal for 𝑌" , 𝛽$, 𝛽%, 𝛽&~𝑁(0,0.6) are the 𝑌!-specific genetic effects, 

and 𝑒!~𝑁(0,1) is the 𝑌!-specific error. We simulated 𝑌" and 𝑌! 750 times under the null 

scenario. Under the pleiotropy scenario, we simulated 𝑌! as follows: 

Equation 3.3 
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𝑌#" = 𝛽%𝑔$" + 𝛽&𝑔&" + 𝛽'𝑔'" + 𝑢" + 𝑒#"   

 

where 𝑔# represents a colocalized SNP that is causal for both 𝑌" and 𝑌!, 𝑔%, 𝑔& are causal SNPs 

for only 𝑌! selected randomly without replacement from the 4,997 SNPs that are not causal for 

𝑌", 𝛽$, … , 𝛽&~𝑁(0,0.6) are the 𝑌!-specific genetic effects, and 𝑒!~𝑁(0,1) is the 𝑌!-specific 

error. We simulated 𝑌" and 𝑌! 200 times under the pleiotropy scenario. Under the mediator 

scenario, we simulated 𝑌! as follows: 

 

Equation 3.4 

𝑌#" = 𝛼𝑌!" + 𝑢" + 𝑒#"  

 

where 𝛼~𝑁 =0, "
'
>, so that all 3 causal SNPs for 𝑌" are also causal for 𝑌!, and 𝑒!~𝑁(0,1) is the 

𝑌!-specific error.  We simulated 𝑌" and 𝑌! 50 times under the mediator scenario. 

3.2.2.2 Multi-SNP association analysis and fine-mapping  

We combined the 750 null, 200 pleiotropy, and 50 mediator simulations into one dataset 

to represent a true colocalization enrichment, defined as the log odds ratio quantifying the 

enrichment of eQTLs in GWAS signals, of 5.52. For each simulation, we used DAP-G97 to 

perform multi-SNP association analysis and fine-mapping separately for 𝑌" and 𝑌! using an LD 

control setting of 0.5. We considered clusters with posterior inclusion probabilities greater than 

0.95 to be causal for the trait. Clusters that did not contain a true causal variant were considered 

false positives. We calculated the false positive rate and power (number of true positive clusters 

divided by 3,000 truly causal SNPs) across all simulations separately for 𝑌" and 𝑌!. We repeated 
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the above association and fine-mapping analyses adjusting for the true simulated 𝑢 in the 

marginal association analyses of both 𝑌" and 𝑌! (known confounder adjustment). 

3.2.2.3 Probabilistic principal component analysis and adjustment 

We first performed fine-mapping with DAP-G without adjusting for covariates as above 

and extracted the estimated transcriptome-wide association study (TWAS) weights 𝑤",…,%*** (𝑌") 

and 𝑥",…,%*** (𝑌!) for all SNPs.	To remove the estimated genetic effect from 𝑌" and 𝑌!, we 

calculated pseudo-residuals as follows: 

Equation 3.5 

𝑟! = 𝑦! − 0 𝑔(𝑤(

&,***

(+!

 

Equation 3.6 

𝑟# = 𝑌# − 0 𝑔(𝑥(

&,***

(+!

 

 

We then calculated the first principal component from 𝑟" and 𝑟!. We repeated the association and 

fine-mapping procedures for both 𝑌" and 𝑌! adjusting for the principal component in each. 

3.2.2.4 Ridge regression on probabilistic principal components and adjustment 

We performed ridge regression with all genotypes as covariates and the first principal 

component calculated above as the outcome. We then performed the association and fine-

mapping procedures for 𝑌" and 𝑌! adjusting for the residuals from this ridge regression. We 

repeated the ridge regression three times using three parameter values (0.005, 0.01, and 0.05) for 

the lambda tuning parameter. We chose these tuning parameter values to maximize the amount 

of genetic information removed from 𝑌" and 𝑌!. 
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3.2.2.5 Colocalization 

We performed colocalization analysis using fastENLOC.95 We calculated Bayesian FDR 

from the cluster-level regional colocalization probability and considered clusters with FDR<5% 

to be colocalized. Clusters with FDR<5% that did not contain a variant that was causal for both 

traits in the simulation were considered false positives. We calculated the false positive rate and 

power (number of true positives divided by 350 truly colocalized SNPs) across all simulations. 

3.3 Results 

3.3.1 One-sample colocalization design 

We simulated continuous phenotypes 𝑌" and 𝑌! from real sequenced-based genotype data 

from the METSIM Study.88 Here, we will refer to 𝑌" as gene expression level and 𝑌! as a 

quantitative complex trait, but they could represent any two continuous phenotypes. In both one- 

and two-sample designs, we assume that SNP 𝐺 influences 𝑌" and 𝑌! with effect sizes 𝛽" and 𝛽!, 

respectively, and we are interested in estimating the joint causal status 𝑑 of 𝐺 on 𝑌" and γ of 𝐺	on 

𝑌! (Figure 3.1). In the two-sample design, 𝑌" and 𝑌! are measured in non-overlapping samples 

such that the non-genetic error terms 𝜖" and 𝜖! represent both environmental effects and cohort-

specific random error on 𝑌" and 𝑌!, respectively (Figure 3.1A). In the one-sample design, 

because 𝑌" and 𝑌! are measured on the same set of samples, the non-genetic error terms can be 

partitioned into a shared confounder 𝑢 and trait-specific error terms 𝑒" and 𝑒! (Figure 3.1B). To 

assess the effects of the magnitude of 𝑢 on colocalization error rates, we simulated 1,000 

independent genes on 1,000 samples assuming a one-sample design for a range of confounder 

variance magnitudes denoted 𝜙! (see Methods). In the simulations, we included genes with a 

range of shared causal SNPs from 0 (null) to 1 (pleiotropy) to 3 (mediator). These scenarios 
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represent our assumption that most genes will not have a colocalized variant (null), some genes 

will have a colocalized variant that affects both 𝑌" and 𝑌! but the gene expression level does not 

mediate the association between the colocalized variant and 𝑌! (pleiotropy), and that the gene 

expression level of a few genes mediates the association between the genetic variants and 𝑌! 

(mediator).  The correlation of the simulated phenotypes increased with higher values of 𝜙! and 

more shared causal SNPs between 𝑌" and 𝑌! (Supplementary Figure 3.1). 

3.3.2 Two-sample colocalization in one-sample design 

To evaluate the consequences of applying existing two-sample methods for colocalization 

of a one-sample design, we performed fine-mapping analysis with DAP-G97 and colocalization 

analysis with fastENLOC95 on the simulated data. The fine-mapping FDR was <0.007 for all 

values of 𝜙! and the power similarly decreased with higher values of 𝜙!, ranging from 0.701 

(eQTL, 𝜙! = 0) to 0.474 (GWAS, 𝜙! = 2) (Supplementary Table 3.2). We found that the 

colocalization enrichment parameter was accurately estimated for all tested values of the 

confounder magnitude 𝜙! (Figure 3.2). The colocalization FDR increased with higher values of 

𝜙!, such that the FDR was well-controlled at the 0.05 level only when 𝜙! < 0.5 (Figure 3.2B, 

Supplementary Table 3.1). The colocalization power decreased with higher values of 𝜙!, ranging 

from 0.520 (𝜙! = 0) to 0.266 (𝜙! = 2) (Figure 3.2C).  

3.3.3 Adjusting for true trait-shared confounder reduces Type I and Type II error rates 

To establish an upper bound for single-cohort colocalization performance, we repeated 

the fine-mapping step adjusting for the true simulated confounder 𝑢. We found that the 

colocalization enrichment parameter was accurately estimated (Figure 3.3A) and that the 

colocalization FDR was well-controlled at the 0.05 level for all values of the confounder 
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magnitude 𝜙! (Figure 3.3B, Supplementary Table 3.3). The power of the adjusted colocalization 

was higher than the standard two-sample colocalization analysis for all values of 𝜙!, and this 

improvement was greatest for large values of 𝜙!. For example, when 𝜙! = 2, the adjusted 

colocalization power was 0.440 compared to the unadjusted colocalization power 0.266. As 

expected, the adjusted fine-mapping FDR was similar to the unadjusted fine-mapping FDR but 

the adjusted fine-mapping power was higher than the unadjusted fine-mapping power because 

we were controlling for an additional associated variable in the association analysis 

(Supplementary Table 3.4). 

3.3.4 Estimating trait-shared confounder with probabilistic principal component analysis 

introduces collider bias 

Because adjusting for the true confounder 𝑢 successfully reduced colocalization Type I 

and Type II error, we attempted to estimate 𝑢 with principal probabilistic principal component 

analysis (PPCA) for scenarios in which 𝑢 was unmeasured to first remove the genetic effect and 

then estimate the proportion of remaining variance shared between the two traits. The correlation 

between the estimates from PPCA and the true simulated 𝑢 increased with higher 𝜙!; the mean 

squared Pearson correlation for 𝜙! = 0.5 was 0.48 and for 𝜙! = 2 was 0.79 (Supplementary 

Figure 3.2). Despite this high correlation, we found that performing colocalization from the 

PPCA-adjusted fine-mapping output resulted in an inflated enrichment parameter estimate 

(Figure 3.3A) and extremely high FDR, primarily due to trait-specific causal variants being 

inferred as causal variants for the other trait for which they were not causal (Figure 3.3B, 

Supplementary Table 3.5). The inflated false positive rate was also present at the fine-mapping 

stage (Supplementary Table 3.6). We hypothesize that our procedure for estimating 𝑢 introduced 

collider bias because we conditioned on 𝑌" and 𝑌!, thus creating a path from the 𝑌"-specific 
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genetic components to the 𝑌!-specific genetic components in the directed acyclic graph (Figure 

3.1B), which is supported by the high proportion of trait-specific causal variants falsely inferred 

as colocalized.  

3.3.5 Regressing SNP effects on estimated confounder offers no improvements over two-

sample methods for one-sample design 

To reduce the effects of the collider bias introduced by the PPCA procedure, we used 

ridge regression in an attempt to regress out all genetic effects from the estimated principal 

component. We considered a range of shrinkage tuning parameters lambda (0.05, 0.01, 0.005), 

all close to 0 to enable near-complete removal of the genetic-effects. We considered the residuals 

from this regression analysis as another potential estimator of 𝑢. This estimator was less 

correlated with 𝑢 than the principal component, and the degree of correlation was lower for 

smaller values of 𝜙! and lambda (Supplementary Figure 3.3). For lambda=0.01, the mean 

squared Pearson correlation for 𝜙! = 0.5 was 0.07 and for 𝜙! = 2 was 0.08. For all values of 

lambda, the colocalization enrichment parameter was well-estimated (Figure 3.3A). The 

colocalization FDR increased with larger values of lambda and was higher than the unadjusted 

colocalization FDR for all values of 𝜙! (Figure 3.3B, Supplementary Table 3.7). The 

colocalization power was similar to the unadjusted colocalization power for all values of 𝜙! 

(Figure 3.3C). The fine-mapping FDR also increased with larger values of lambda and 𝜙! and 

did not show improvement over unadjusted fine-mapping analysis (Supplementary Table 3.8). 

3.4 Discussion 

We presented simulation analyses to show the consequences of applying two-sample 

methods for colocalization in a single cohort, in violation of the non-overlapping cohorts 



 71 

assumption. We found that Type I error is well-controlled when the phenotypes do not share 

large non-genetic effects or when these effects are measured and controlled for. Although we 

were able to accurately estimate large non-genetic effects, we found that adjusting for these 

estimated confounders introduced collider bias and led to inflated fine-mapping and 

colocalization Type I error rates.  

Colocalization and fine-mapping analyses are often underpowered to detect most causal 

SNPs with modest effect sizes.98 The single-cohort design for colocalization presents an 

opportunity to improve colocalization power through perfect LD matching and the opportunity to 

account for shared non-genetic factors between traits. Many such confounders with potentially 

large effects on both molecular phenotypes and complex traits (e.g. sex, age) are commonly 

measured in genetic studies and can be adjusted for in fine-mapping and colocalization analyses 

to achieve this reduction in Type II error. 

We made several simplifying assumptions in our simulation study. First, we assumed a 

SNP heritability of 0.38-0.64 depending on the confounder variance magnitude for the eQTL 

analysis. This is higher than the heritability normally observed in cis-eQTL studies99–101 but 

enabled more powerful fine-mapping analyses to evaluate changes in colocalization accuracy by 

degree of shared confounding. We additionally assumed the same heritability for the  eQTL and 

GWAS trait in the null and pleiotropy simulations, which may be unlikely as gene expression 

levels are mechanistically closer to genetic variation and therefore are likely to be more 

heritable.99 We also assumed that all error terms followed a normal distribution centered at 0, 

which is a common assumption of linear regression. 

Here, we treated genes as independent simulations and did not allow for any non-genetic 

factors (𝑢, 𝑒", 𝑒!) to be shared across genes. If we had instead assumed that the confounder 𝑢 
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impacts many genes in addition to the complex trait, it is possible that it could be estimated and 

adjusted for more accurately in the marginal eQTL analysis. Many methods, such as PEER102 

and SVA,103 perform this type of estimation. However, because PEER factors also have the 

potential to introduce collider bias,104 future work is needed to evaluate the effects of this 

adjustment on colocalization error rates in a single-cohort design. 

Because colocalization Type I error rates are positively associated with the degree of 

shared confounding, we recommend that researchers performing colocalization with overlapping 

samples attempt to detect such confounding following the probabilistic PCA procedure we 

outlined. If PCA explains a large proportion of the variance between the TWAS-adjusted 

residuals from 𝑌" and 𝑌!, caution should be used in applying two-sample colocalization methods. 

Conversely, if there is little shared non-genetic variance or if confounding variables have been 

measured and adjusted for, two-sample methods for colocalization can be accurately applied in a 

single-sample design. 
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3.5 Tables and Figures 

 

Figure 3.1 Directed acyclic graphs of colocalization in a two-sample and one-sample design 

In both scenarios, we are interested in estimating the causal status of SNP 𝐺 on the gene expression/𝑌! (𝑑) and 
GWAS trait/𝑌# (𝛾). When 𝑑 = 1, 𝛽!, the additive SNP effect on 𝑌!, is nonzero. Similarly, when 𝛾 = 1, the additive 
SNP effect on 𝑌# is nonzero. 𝑌! and 𝑌# are also affected by non-genetic error terms 𝜖! and 𝜖#. In the two-sample 
design (A), the degree of overlap between 𝜖! and 𝜖# is unknowable. In the single-sample design (B), 𝜖! and 𝜖# can 
be partitioned into a shared non-genetic confounder (𝑢) and trait-specific error terms 𝑒! and 𝑒#.   
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Figure 3.2 Two-sample colocalization in a single-cohort design 

Colocalization results from fastENLOC applied to simulated data over a range of confounder (non-genetic error 
term shared across both traits) variance magnitudes 𝜙#. We used a Bayesian FDR<5% threshold calculated on the 
regional colocalization probabilities (RCP) to determine significant clusters of variants across 1,000 simulations. We 
considered variants in significant clusters to be colocalized. A) The fastENLOC shrinkage-based enrichment 
parameter of eQTL (𝑌!-associated) variants in GWAS (𝑌#-associated) hits. The dotted line corresponds to the true 
simulated enrichment parameter (5.52) across the 1,000 simulations. B) The colocalization false discovery rate 
(FDR) calculated as the number of colocalized variants that were not simulated as causal for both traits (false 
positives) divided by the total number of colocalized variants across 1,000 simulations. The dotted line corresponds 
to 5% FDR. C) The colocalization power calculated as the number of colocalized variants that were simulated to be 
causal for both traits (true positives) divided by 250, the true number of colocalized variants across 1,000 
simulations. 
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Figure 3.3 Colocalization from adjusted marginal association analyses in a single-cohort design 

FastENLOC colocalization results from adjusted fine-mapping results applied to simulated data over a range of 
confounder (non-genetic error term shared across both traits) variance magnitudes 𝜙#. The color and shape of points 
corresponds to the fine-mapping adjustment strategy: known control (adjusting for the true confounder 𝑢), PPCA 
control, and PPCA-Ridge control with lambda parameter values 0.005, 0.01, and 0.05. The unadjusted analysis 
(green solid circles) shown in Figure 3.2 is included for comparison. A) The fastENLOC shrinkage-based 
enrichment parameter of eQTL (𝑌!-associated) variants in GWAS (𝑌#-associated) hits. The dotted line corresponds 
to the true simulated enrichment parameter (5.52) across the 1,000 simulations. B) The colocalization false 
discovery rate (FDR) calculated as the number of colocalized variants that were not simulated as causal for both 
traits (false positives) divided by the total number of colocalized variants across 1,000 simulations. The dotted line 
corresponds to 5% FDR. C) The colocalization power calculated as the number of colocalized variants that were 
simulated to be causal for both traits (true positives) divided by 250, the true number of colocalized variants across 
1,000 simulations. 
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3.6 Supplementary Material 

 

Supplementary Figure 3.1 Correlation of simulated continuous phenotypes 

Boxplots showing the distributions across 1,000 simulations of the Pearson correlations between the simulated gene 
expression (𝑌!) and complex trait (𝑌#) phenotypes calculated across 1,000 individuals by the magnitude of the 
confounder (non-genetic error term shared across both traits) variance. This variance, denoted 𝜙#, ranged from 0 (no 
shared non-genetic term) to 2 (twice the magnitude of the trait-specific error variance). Points are colored by 
simulated colocalization scenario: null (n=750), pleiotropy (n=200), and mediator (n=50). 
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Supplementary Figure 3.2 Estimation of the trait-shared, non-genetic confounder with probabilistic principal 
component analysis (PPCA) 

Boxplots showing the distributions across 1,000 simulations of the squared Pearson correlation between the first 
principal component estimated from the TWAS-adjusted 𝑌! and 𝑌# pseudo-residuals and the true simulated 
confounder by confounder variance 𝜙#. Points are colored by simulated colocalization scenario: null (n=750), 
pleiotropy (n=200), and mediator (n=50). 
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Supplementary Figure 3.3 Estimation of the trait-shared, non-genetic confounder with ridge regression residuals 
from probabilistic principal component analysis (PPCA) 

Boxplots showing the distributions across 1,000 simulations of the squared Pearson correlation between the 
residuals from ridge regression performed by regressing all genotypes on the first principal component estimated 
from the TWAS-adjusted 𝑌! and 𝑌# pseudo-residuals and the true simulated confounder. Boxplots are shown by 
confounder variance 𝜙# for a range of ridge regression lambda values (0.005, 0.01, and 0.05). Points are colored by 
simulated colocalization scenario: null (n=750), pleiotropy (n=200), and mediator (n=50). 

 

Confounder variance 
𝜙# 

Number of colocalized variants 
True positives False positives Total colocalized 

0 182 1 183 
0.5 153 6 159 
1 125 8 133 
2 93 17 110 

Supplementary Table 3.1 Unadjusted fastENLOC results 

The number of true and false positive colocalized variants from fastENLOC analysis applied to simulated data in a 
single cohort design by the magnitude of the simulated confounder variance 
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Confounder 
variance 𝜙# 

eQTL (𝑌!) fine-mapping GWAS (𝑌#) fine-mapping 

True positives False positives Total fine-
mapped 

True 
positives 

False 
positives 

Total fine-
mapped 

0 2,103 3 2,106 2,001 3 2,004 
0.5 1,919 5 1,924 1,876 7 1,883 
1 1,820 7 1,827 1,653 11 1,664 
2 1,519 4 1,523 1,421 9 1,430 

Supplementary Table 3.2 Unadjusted DAP-G results 

The number of true and false positive fine-mapped variants from DAP-G analysis applied to simulated data in a 
single cohort design. Fine-mapping results are shown separately for eQTL (𝑌!-associated) and GWAS (𝑌#-
associated) variants for a range of confounder variance magnitude values. 

 

Confounder variance 
𝜙# 

Number of colocalized variants 
True positives False positives Total colocalized 

0 182 1 183 
0.5 172 3 175 
1 161 4 165 
2 154 3 157 

Supplementary Table 3.3 Confounder-adjusted fastENLOC results 

The number of true and false positive colocalized variants from fastENLOC analysis of the true confounder adjusted 
marginal associations by the magnitude of the simulated confounder variance 

 

Confounder 
variance 𝜙# 

eQTL (𝑌!) fine-mapping GWAS (𝑌#) fine-mapping 

True positives False positives Total fine-
mapped 

True 
positives 

False 
positives 

Total fine-
mapped 

0 2,103 3 2,106 2,001 3 2,004 
0.5 2,107 3 2,110 2,046 5 2,051 
1 2,137 3 2,140 2,014 6 2,020 
2 2,072 5 2,077 2,019 4 2,023 

Supplementary Table 3.4 Confounder-adjusted DAP-G results 

The number of true and false positive fine-mapped variants from confounder-adjusted DAP-G analysis applied to 
simulated data in a single cohort design. DAP-G analysis was performed adjusting for the true simulated 
confounder. Fine-mapping results are shown separately for eQTL (𝑌!-associated) and GWAS (𝑌#-associated) 
variants for a range of confounder variance magnitude values. 

Confounder variance 
𝜙# 

Number of colocalized variants 

True positives 
False 

positives- 
collider 

False 
positives - 

other 
Total colocalized 

0 146 93 49 288 
0.5 157 509 155 821 
1 148 647 160 955 
2 159 909 388 1,297 

Supplementary Table 3.5 Probabilistic principal component analysis (PPCA)-adjusted fastENLOC results 

The number of true and false positive colocalized variants from fastENLOC analysis of the PPCA-adjusted marginal 
associations by the magnitude of the simulated confounder variance. False positives were divided into those due to 
collider bias (causal for only one trait in the simulation) and others. 
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Confounder 
variance 𝜙# 

eQTL (𝑌!) fine-mapping GWAS (𝑌#) fine-mapping 

True positives False positives Total fine-
mapped 

True 
positives 

False 
positives 

Total fine-
mapped 

0 2,134 95 2,229 1,736 71 1,807 
0.5 2,048 357 2,405 1,889 31 1,920 
1 2,014 343 2,357 1,792 50 1,842 
2 1,860 433 2,293 1,703 111 1,814 

Supplementary Table 3.6 Probabilistic principal component analysis (PPCA)-adjusted DAP-G results 

The number of true and false positive fine-mapped variants from probabilistic principal component analysis 
(PPCA)-adjusted DAP-G analysis applied to simulated data in a single cohort design. DAP-G analysis was 
performed adjusting for the first principal component estimated from the TWAS-adjusted 𝑌! and 𝑌# pseudo-
residuals. Fine-mapping results are shown separately for eQTL (𝑌!-associated) and GWAS (𝑌#-associated) variants 
for a range of confounder variance magnitude values. 

Ridge regression 
lambda 

Confounder 
variance 𝜙# 

Number of colocalized variants 
True positives False positives Total colocalized 

0.005 

0 181 2 183 
0.5 153 7 160 
1 125 9 134 
2 95 21 116 

0.01 

0 183 3 186 
0.5 154 9 163 
1 127 10 137 
2 98 31 129 

0.05 

0 187 6 191 
0.5 154 10 164 
1 129 20 149 
2 102 51 153 

Supplementary Table 3.7 Ridge regression residual-adjusted fastENLOC results  

The number of true and false positive colocalized variants from fastENLOC analysis of the ridge regression-adjusted 
marginal associations by the lambda parameter from the ridge regression and the magnitude of the simulated 
confounder variance. 
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Ridge 
regression 

lambda 

Confounder 
variance 𝜙# 

eQTL (𝑌!) fine-mapping GWAS (𝑌#) fine-mapping 

True 
positives 

False 
positives 

Total fine-
mapped 

True 
positives 

False 
positives 

Total 
fine-

mapped 

0.005 

0 2,120 5 2,125 2,025 10 2,035 
0.5 1,942 7 1,949 1,910 10 1,920 
1 1,841 8 1,849 1,686 14 1,700 
2 1,555 4 1,559 1,449 10 1,459 

0.01 

0 2,126 8 2,134 2,046 14 2,060 
0.5 1,961 12 1,973 1,926 11 1,937 
1 1,861 9 1,870 1,719 15 1,734 
2 1,581 5 1,586 1,476 16 1,493 

0.05 

0 2,150 19 2,169 2,100 43 2,143 
0.5 2,020 27 2,047 1,979 28 2,007 
1 1,939 24 1,963 1,795 33 1,828 
2 1,672 27 1,699 1,570 41 1,611 

Supplementary Table 3.8 Ridge regression residual-adjusted DAP-G results 

The number of true and false positive fine-mapped variants from ridge regression residual-adjusted DAP-G analysis 
applied to simulated data in a single cohort design. DAP-G analysis was performed adjusting for residuals from 
ridge regression performed by regressing all genotypes on the first principal component estimated from the TWAS-
adjusted 𝑌! and 𝑌# pseudo-residuals. Fine-mapping results are shown separately for eQTL (𝑌!-associated) and 
GWAS (𝑌#-associated) variants by ridge regression lambda parameter values and confounder variance magnitudes. 
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Chapter 4 Extensive Differential Gene Expression and Regulation by Sex in Human 

Skeletal Muscle 

4.1 Introduction 

Human skeletal muscle exhibits sex differences in its size, composition, physiology, and 

disease susceptibility. On average, male muscle is larger than female muscle, both in the cross-

sectional area of individual muscle fibers105 and in proportion to total body mass.106  Male 

muscle typically has larger proportions of fast-twitch, glycolytic (Type 2) fibers compared to 

female muscle, whereas female muscle typically has larger proportions of slow-twitch, oxidative 

(Type 1) fibers.107,108 Male muscle usually shows greater contractile strength whereas female 

muscle is less fatigable and shows greater endurance.107 There are also differences by sex in 

disease prevalence or progression of diseases such as type 2 diabetes,109 obesity,110 

cardiovascular disease,111 and osteoporosis112 for which skeletal muscle is a relevant tissue.113–

116  

 While the molecular mechanisms leading to these physiological differences remain 

largely unknown, studies measuring gene expression with microarrays117–120 or RNA-seq40,121–125 

have identified hundreds to thousands of genes that are differentially expressed by sex in bulk 

muscle tissue. Most gene expression studies conducted to date in human skeletal muscle have 

small sample sizes of no more than 30 participants117–121 or use postmortem samples from the 

GTEx consortium;40,122,123,125 all have used bulk skeletal muscle tissue. A subset of these 

studies40,118,120,121,123 performed gene set enrichment analyses126 to identify biologically 
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meaningful sets of genes overrepresented in the differentially expressed genes in muscle, but the 

same pathways have not been consistently identified. 

 Sex differences in transcriptional and post-transcriptional regulation and cell type 

composition can contribute to the observed sex differences in gene expression in bulk muscle 

tissue. At the transcriptional level, muscle sex-biased genes are enriched for differential DNA 

methylation124 and differential targeting by transcription factors, including sex hormone 

receptors.40,123 At the post-transcriptional level, microRNAs (miRNAs) have been suggested to 

regulate sex differences in gene expression,39,127 and 80 sex-biased miRNAs have been identified 

in human muscle tissue.128 Sex differences in cell type composition may also explain some of the 

observed sex-biased genes in any analysis of bulk tissue,40,124 but the extent to which differential 

gene and miRNA expression is associated with cell type composition differences in muscle is 

currently unknown. Single nucleus RNA-seq (snRNA-seq), which measures RNA abundance in 

single nuclei, can help resolve this question.10 

 Here, we combine single nucleus and bulk gene expression, single nucleus chromatin 

accessibility, and bulk miRNA expression data measured in up to 281 vastus lateralis samples 

from living Finnish donors. We characterize sex differences in cell type composition and identify 

widespread differential gene expression and regulation in individual muscle cell types and in 

muscle tissue as a whole. These results further our understanding of the molecular basis of sex 

differences in skeletal muscle tissue and may help uncover mechanisms of sex differences in 

muscle physiology and disease. 

4.2 Methods 

4.2.1 Data collection and processing 
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4.2.1.1 FUSION Tissue Biopsy Study 

The Finland-United States Investigation of NIDDM Genetics (FUSION) Tissue Biopsy 

Study is described in Scott et al.129 Briefly, we obtained ~250mg vastus lateralis skeletal muscle 

biopsies using a conchotome from 331 living participants at three study sites in Finland 

(Helsinki, Kuopio, and Savitaipale) between 2009-2013. We cleaned the biopsies of non-muscle 

tissue and froze them within 30 seconds of sampling. All physicians were trained to perform the 

biopsy in an identical manner following a standardized protocol. 

4.2.1.2 Single nucleus RNA- and ATAC-seq 

We profiled snRNA-seq and snATAC-seq in 10 batches from 287 frozen muscle tissue 

biopsy samples. Across all samples, there were 180,583 RNA-seq nuclei and 268,543 ATAC-seq 

nuclei that passed droplet-level QC thresholds. We performed ambient RNA decontamination for 

RNA-seq droplets with DecontX.130 We jointly clustered RNA-seq and ATAC-seq nuclei with 

Liger and annotated the clusters with known marker gene expression as adipocytes, endothelial 

cells, macrophages, mesenchymal stem cells, mixed muscle fiber, neuromuscular junction, 

neuronal, satellite cells, smooth muscle, T cells, Type 1 muscle fiber, Type 2a muscle fiber, and 

Type 2x muscle fiber. We excluded all mixed muscle fiber nuclei from analyses due to the high 

proportion of exonic reads. We excluded three samples with less than 100 RNA-seq nuclei or 

less than 100 ATAC-seq nuclei. We further excluded one sample from each of two pairs of first 

degree relatives, and one non-Finnish participant. After cell-type and sample QC, we retained 

177,350 RNA-seq nuclei from 279 individuals and 252,219 ATAC-seq nuclei from 281 

individuals. The 279 snRNA individuals were a subset of the 281 snATAC individuals 

(Supplementary Figure 4.1). 
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4.2.1.3 Bulk RNA-seq 

Data collection and processing methods for the bulk RNA-seq are described in detail in 

Scott et al.129 Briefly, we sequenced mRNA in 301 frozen muscle tissue biopsy samples to a 

mean depth of 91.3M strand-specific paired-end reads. Here, we analyzed 268 of these samples 

that also had single nucleus data to adjust for cell type proportions (Supplementary Figure 4.1).  

4.2.1.4 Bulk small RNA-seq (miRNA) 

We measured miRNA expression levels for 296 skeletal muscle tissue samples. The total 

RNA isolated for mRNA-sequencing was also used for miRNA isolation and sequencing. 

miRNA libraries were prepared at the NIH Intramural Sequencing Core (NISC) from 1 µg total 

RNA using Illumina’s TruSeq Small RNA Library Kit according to the manufacturer’s 

guidelines, except a 10% acrylamide gel was used to better separate the library from adapters. 

Libraries were pooled in groups of four to eight for gel purification. Single-end 51-base 

sequencing was performed on Illumina HiSeq 2500 sequencers in Rapid Mode using version 2 

chemistry. We mapped miRNA sequence reads using the exceRpt131 pipeline (v4.4.0) with 

default parameters. We counted reads mapped to each miRNA of miRBase132 (version 21). 

Because the same RNA extracts were used for both mRNA-seq and miRNA-seq, we 

excluded one sample identified as contaminated in mRNA-seq from mi-RNAseq analysis as 

well. We assessed the quality of each miRNA-seq dataset through metrics generated by exceRpt, 

including read length and library size, and did not observe outliers. After QC, 290 skeletal 

muscle tissue miRNA-seq samples remained for analysis. Here, we analyzed 256 of these 

samples that also had single nucleus data to be able to adjust for cell type proportions 

(Supplementary Figure 4.1). 
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4.2.2 Statistical analysis of single nucleus data 

4.2.2.1 Differential cell type composition by sex 

We used 279 FUSION samples with at least 100 nuclei from both RNA and ATAC 

modalities. For each cell type, we used negative binomial models to test for the association 

between the number of ATAC-seq and RNA-seq nuclei and sex, adjusting for age, batch, and 

city of collection, with an offset of the log of total nuclei across cell types. We corrected for 

multiple testing across the cell types by using a threshold of false discovery rate (FDR) <5%.  

4.2.2.2 Differential gene expression by sex in muscle cell types 

For each cell type, for samples with at least 10 nuclei, we analyzed genes with ≥1 count 

for at least 25% of the samples. We tested for the association between gene expression counts in 

the cell type (rounded to the nearest integer value) and sex using a negative binomial model as 

implemented in DESeq2 version 1.36.133 For the DESeq2 analysis, we used the recommended 

single cell settings, including using a likelihood ratio test, setting the minmu parameter to 1x10-6, 

which is appropriate for datasets with many genes with expected counts <1, and calculating 

single-cell specific size factors. We included batch, sample collection site, age, median 

mitochondrial fraction (across nuclei), and total RNA nuclei counts to account for differences in 

ability to isolate nuclei across all cell types as sample covariates. Quantitative covariates were 

inverse-normalized to limit influence of outlying values. We used a threshold of FDR <5% 

across all tested genes within each cell type for this analysis and all subsequent analyses. 
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4.2.2.3 Downsampling Type 1 fiber gene counts 

We downsampled the gene counts from the Type 1 fiber to approximate the power to 

detect sex-biased expression in each of the other cell types. For a given cell type, we subset the 

individuals analyzed in Type 1 fiber to the same individuals analyzed in the cell type. We 

multiplied the Type 1 fiber gene UMIs by the fraction of total UMIs in the cell type divided by 

the total UMIs in Type 1, rounding the gene UMIs to the nearest integer for analysis with 

DESeq2, thereby approximating the total UMIs in the cell type. We then tested for differential 

expression by sex in the downsampled Type 1 dataset as described above without further 

excluding individuals or genes.  

4.2.2.4 Differential gene expression in total single nucleus pseudobulk 

We created a total single nucleus pseudobulk dataset by summing the gene counts for all 

the cell types for each of the 279 samples. We tested for association between total single nucleus 

pseudobulk gene expression counts and sex using DESeq2 version 1.36 with the recommended 

bulk RNA settings. We used the same covariates for pseudobulk as for the muscle cell types, 

with the addition of cell type proportion covariates. We analyzed genes with at least 5 counts in 

at least 25% of the 279 samples, parallel to our analysis of bulk tissue (below).  

4.2.2.5 Gene type enrichment in muscle cell types 

For each cell type, we tested for association between differential expression status and 

gene type with logistic regression. We defined gene types from GENCODE annotations and 

grouped genes into protein-coding genes, lncRNAs (3’ overlapping ncRNA, antisense, 

bidirectional promoter lncRNA, lincRNA, macro lncRNA, non coding, processed transcript, 

sense intronic, and sense overlapping), pseudogenes (pseudogene, processed pseudogene, 

polymorphic pseudogene, transcribed processed pseudogene, transcribed unprocessed 
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pseudogene, transcribed unitary pseudogene, unitary pseudogene, and unprocessed pseudogene), 

and others (immunoglobulin genes, rRNA, miRNA, scaRNA, snoRNA, and those without 

annotations in GENCODE). We repeated the analyses adjusting for bins of mean UMI across all 

samples with breaks at 0, 1, 2, 3, 4, 5, 10, 50, 100, 500, 1,000, and 5,000 UMI to account for the 

greater power to detect differences by sex in genes with higher expression levels. 

4.2.2.6 Gene set enrichment analysis in muscle fiber types 

Separately for each of the three muscle fiber types, we identified Gene Ontology (GO) 

terms enriched for genes expressed more highly in males or females using RNA-Enrich.134 For 

each GO term, RNA-Enrich uses a logistic regression model to test for association between GO 

term membership as the outcome and the signed -log10 p-value from the differential expression 

analysis, accounting for gene expression level. We considered all GO Biological Processes, 

Cellular Components, and Molecular Functions gene sets that contain between 10 and 1,000 

genes to focus on terms that contain more than one sex-biased gene and that do not represent 

non-specific pathways. To reduce the impact of outliers on the analysis, we inverse normalized 

p-values on the -log10 p-value scale prior to running RNA-Enrich. We used Revigo135 to prune 

and select non-overlapping GO terms in Figure 2D.  

4.2.2.7 Differential chromatin accessibility by sex in muscle cell types 

We used 281 samples with at least 100 total ATAC nuclei. For each cell type, within 

samples with at least 10 nuclei, we analyzed the summed ATAC peak counts with mean peak 

count >1. We tested for the association between peak counts and sex using negative binomial 

models as implemented in DESeq2 version 1.36 using the recommended single cell settings. We 

included batch, sample collection site, age, median mitochondrial fraction (across nuclei), TSS 

enrichment, and total ATAC nuclei across all cell types as sample covariates.  
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4.2.2.8 Chromatin state enrichment analysis in muscle fiber types 

We obtained the genomic coordinates of chromatin states inferred by the 15 state 

ChromHMM model in two bulk skeletal muscle reference samples (E107: male, E108: female) 

from the Roadmap Epigenomics Consortium.136 In each of the three muscle fiber types, we 

annotated the midpoint of each ATAC-seq peak with the chromatin state in the female and 

separately in the male reference sample. Across all cell types, 68.4% of peaks were annotated as 

the same state in the male and female reference samples (termed consensus state). For each fiber 

type and each annotation method (consensus, female, male) we tested for an association between 

differential accessibility status and the chromatin state with a logistic regression model. We 

repeated the analyses adjusting for bins of mean peak count across all samples with breaks at 0, 

1, 2, 3, 4, 5, 10, 50, 100, 500, and 1,000, and to account for the greater power to detect 

differences by sex in peaks with higher counts.  

4.2.2.9 Transcription factor binding site enrichment analysis in muscle fiber types 

We obtained transcription factor binding site (TFBS) coordinates for 540 transcription 

factors (TF) described in D’Oliveira Albanus et al.137 For each TF, we identified ATAC-seq 

peaks that overlapped the TFBS coordinates by >=1 basepair. We used a logistic regression 

model to test for association between TFBS overlap and the inverse normalized signed -log10 p-

value from the differential accessibility by sex analysis, adjusting for bins of mean peak count 

across all samples (as above).  

4.2.3 Statistical analysis of bulk data 
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4.2.3.1 Differential mRNA expression in bulk skeletal muscle  

We tested for association between bulk gene expression counts and sex using DESeq2 

version 1.36 with the recommended bulk RNA settings. We adjusted for age, median insert size, 

mean RNA integrity number (RIN), median transcript integrity number (TIN), batch, sample 

collection site, mean GC content, and cell type proportion covariates (from the single nucleus 

data). We analyzed genes with at least 5 counts in at least 25% of the 268 samples. We used a 

significance threshold of FDR<5% across all tested genes in the bulk. 

4.2.3.2 Differential mRNA expression by sex in GTEx bulk skeletal muscle 

We downloaded GTEx Analysis Freeze 8 bulk skeletal muscle RNA-seq counts and 

phenotype data files for 790 individuals from the GTEx portal.138 We tested for association 

between gene expression counts and sex using DESeq2 version 1.36 with the recommended bulk 

RNA settings. We adjusted for age, Hardy Scale death circumstances, RNA integrity number, 

RNA isolation batch, and donor enrollment site. We analyzed genes with at least 5 counts in at 

least 25% of the 790 samples. We used a threshold of FDR<5% across all tested genes in the 

GTEx dataset. 

4.2.3.3 Differential miRNA expression by sex in bulk skeletal muscle 

We tested for association between the miRNA counts and sex using DESeq2 version 1.36 

with the recommended bulk RNA settings, using age, miRNA batch, sample collection site, and 

cell type proportion covariates. We analyzed genes with at least 5 counts in at least 25% of the 

256 samples with both miRNA and cell type proportion data. We used a threshold of FDR<5% 

across all tested miRNAs. 
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4.2.3.4 MiRNA targeting enrichment analysis in bulk skeletal muscle 

We downloaded predicted gene targets from TargetScan version 8.0139 for 742 mature 

miRNAs that we tested for differential expression by sex. Using target predictions with a 

cumulative weighted context++ score139 of -0.6 or less, we counted the number of miRNA 

targeting each gene. For the intersection of genes tested for differential expression in bulk 

muscle tissue and genes scanned for target sites (n=15,199), we used logistic regression to test 

for association between differential expression status of genes scanned for target site  and the 

number of differentially expressed miRNA predicted to target the gene, adjusting for the inverse-

normalized 3’ UTR length of the genes representative transcripts (from TargetScan) and inverse-

normalized mean expression, quantified in counts per million (CPM), of the gene. For each of 

605 miRNA families with at least 3 predicted gene targets, we tested for association between the 

predicted gene target status and differential expression status of the gene using a Firth logistic 

regression model, adjusting for inverse-normalized 3’ UTR length and inverse-normalized 

average expression of the gene. 

4.2.3.5 Concordance of miRNA 5p and 3p arms in bulk skeletal muscle 

We examined concordance in the direction of differential expression for mature miRNAs 

where both the 5p and 3p arms were measured and tested for differential expression. (5p,3p) 

pairs that were differentially expressed in the same direction with both arms having FDR<5% 

were counted as concordant. 

4.3 Results 

4.3.1 Gene and miRNA expression and chromatin accessibility assayed in 281 vastus lateralis 

muscle biopsies 
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We analyzed data from vastus lateralis muscle biopsies of 281 (118 female and 163 male) 

living Finnish donors from the FUSION Tissue Biopsy Study.129 Male and female donors were 

of similar age (mean 59.7 years for males and 60.9 years for females) and BMI (mean 27.9 for 

males and 27.4 for females) at the time of biopsy (Supplementary Table 4.1). A larger proportion 

of males (31.3%) than females (18.6%) had type 2 diabetes. We measured and analyzed bulk 

gene expression (n=268) and miRNA expression (n=256) as well as single nucleus gene 

expression (n=279) and chromatin accessibility (n=281) in individual muscle cell types 

(Supplementary Table 4.1). 

4.3.2 Clustering of snRNA-seq and snATAC-seq nuclei identifies 12 cell types 

We identified 12 cell types from the joint clustering of the 177,350 snRNA-seq and 

252,219 single nucleus ATAC-seq (snATAC-seq) nuclei (Figure 4.1A). Across all individuals, 

the most abundant cell types were the three muscle fiber types: Type 1 (slow twitch oxidative 

fiber; mean proportion = 0.34), Type 2A (fast twitch oxidative fiber; 0.20), and Type 2X (fast 

twitch glycolytic fiber; 0.16), followed by endothelial cells (0.10) and mesenchymal stem cells 

(0.05). Less abundant cell types included smooth muscle cells, T cells, satellite cells, 

neuromuscular junction, neuronal cells, adipocytes, and macrophages (mean proportion <0.05 

each) (Supplementary Table 4.2). There was substantial variability in the proportions of nuclei 

from each cell type across individuals in both sexes (Figure 4.1B), but the rank abundance of 

each cell type was the same in both sexes (Figure 4.1C). 

4.3.3 Single nucleus data show muscle cell type composition differs by sex 

To quantify sex differences in muscle cell type abundance, we tested the association of 

sex with the combined number of snRNA-seq and snATAC-seq nuclei for each of the 12 cell 
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types. On average, females had 25% more neuronal (p=2x10-6), 21% more Type 1 muscle fiber 

(p=1x10-5), and 11% more satellite cell (p=0.039) nuclei than males; males had 52% more Type 

2X muscle fiber (p=5x10-12) nuclei than females (Figure 4.1D, Supplementary Table 4.3). There 

were no significant differences in the abundance of the remaining 8 cell types. There was no 

significant difference in the abundance of satellite cells when analyzing only snATAC-seq 

nuclei, but all other results were consistent when analyzing snRNA-seq and snATAC-seq nuclei 

separately (Supplementary Table 4.3,  Supplementary Figure 4.2, Supplementary Figure 4.3). 

4.3.4 Differential gene expression by sex in muscle cell types 

We tested genes for differential expression by sex in the ten most abundant cell types. We 

found 3,349, 2,625, and 2,106 sex-biased genes (false discovery rate (FDR) <5%) in the Type 1, 

Type 2A, and Type 2X fibers, respectively, representing 12-14% of the tested genes (Figure 

4.2A). We found 630 sex-biased genes across the other cell types, including 399 sex-biased 

genes in mesenchymal stem cells (2.7% of those tested) and 168 sex-biased genes in satellite 

cells (1.5% of those tested). Consistent with escape from X inactivation, in all cell types, sex-

biased genes on the X chromosome were more likely to be female-biased. The median fold 

changes for both male- and female-biased expression of autosomal and X chromosome genes 

were similar (FC=1.2-1.3). There were, however, more female-biased X chromosome genes with 

larger effects (80th percentile FC=1.6-2.0) compared to male-biased chromosome X genes (80th 

percentile FC=1.5-1.6) and autosomal sex-biased genes (80th percentile FC=1.4-1.6) 

(Supplementary Figure 4.4). Adjusting the analysis for oral glucose tolerance test (OGTT) status 

had little impact on results (Supplementary Figure 4.5). 

We detected a larger number of sex-biased genes in the fiber types compared to non-fiber 

cell types. This could be due to biological differences in the effects of sex on gene expression or 
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to lower power given the smaller non-fiber cell type sample sizes (Supplementary Table 4.1) 

coupled with fewer nuclei or counts per gene (UMIs) (Supplementary Table 4.4). To help 

equalize the power to detect sex-biased genes in the Type 1 fiber (most abundant cell type) 

compared to other less abundant cell types, we downsampled the Type 1 fiber individuals and 

UMIs (see Methods). Compared to the downsampled Type 1 data, we observed more sex-biased 

genes in the Type 2A fiber (1.1 fold) and Type 2X fiber (1.2 fold) and fewer sex-biased genes in 

endothelial cells (0.1 fold), smooth muscle (0.4 fold), and neuromuscular junction (0.3 fold) 

(Figure 4.2B). 

4.3.5 Differential gene expression by sex is concordant across muscle fiber types 

The direction and magnitude of sex-biased genes across the three muscle fiber types were 

highly concordant by sex. Between pairs of fiber types, 98-100% of sex-biased genes were more 

highly expressed in the same sex (Supplementary Figure 4.6). The direction of sex-biased 

expression between the fiber types and non-muscle cell types was less concordant. For example, 

only 88% of sex-biased genes (67% of autosomal sex-biased genes) in both Type 1 muscle fiber 

and endothelial cells were more highly expressed in the same sex (Supplementary Figure 4.6).  

4.3.6 LncRNAs and pseudogenes enriched for differential expression by sex in muscle cell 

types 

Although the roles of individual noncoding genes in establishing and maintaining sex 

differences have been extensively studied (i.e. XIST, TSIX),140,141 the extent to which classes of 

noncoding genes are enriched or depleted for differential expression by sex has not been studied. 

Because the level of gene expression varied by gene type (Supplementary Table 4.4) and was 

associated with power to detect differential expression (Figure 4.2C), we tested for enrichment 
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by gene type with and without adjusting for mean UMI of each gene. In the unadjusted analyses 

for the three fiber types, lncRNAs and pseudogenes were depleted for differential expression 

compared to protein-coding genes (Supplementary Table 4.5). However, in UMI-adjusted 

analysis, in Type 1 fiber, lncRNAs were 1.38 (95% CI: 1.25-1.53; p=5.1x10-10) times and 

pseudogenes 1.30 (95% CI: 1.09,1.56, p=0.0037) times more likely to be differentially expressed 

by sex than protein-coding genes (Figure 4.2C, Supplementary Table 4.5, Supplementary Figure 

4.7); this enrichment remained when restricting the analysis to autosomal genes (Supplementary 

Figure 4.7). The most significant autosomal sex-biased lncRNAs were FAM230C and SNHG14, 

which were both male-biased in all three muscle fiber types.   

4.3.7 Mitochondrial activity, signal transduction, and cell differentiation pathways enriched 

for sex-biased genes in muscle fiber types 

To identify biological pathways enriched for sex-biased genes, we performed GO term 

enrichment analysis with RNA-Enrich.134 Expression was higher in males than females in genes 

in mitochondria-related and energy metabolism GO terms in all three muscle fiber types (Figure 

4.2D). The top autosomal sex-biased genes of the oxidative phosphorylation GO term show 

concordant directions of effect across all three fiber types (Figure 4.2E). Most genes had a 

consistently increasing or decreasing gradient of expression from Type 1 to Type 2A to Type 2X 

fiber. Other genes, such as the most significant sex-biased gene in the pathway, NDUFA10, were 

expressed with a given sex at similar levels across the three fiber types in each sex (Error! 

Reference source not found.F, Supplementary Figure 4.8A). Expression was higher in females 

than males in genes in the caveola, signal transduction pathways, and cell differentiation-related 

GO terms (Figure 4.2D). The top autosomal sex-biased genes of the caveola GO term, including 

components of caveolae such as CAVIN1 and CAVIN4, show higher expression levels in females 
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in one or more fiber types (Figure 4.2G, Supplementary Figure 4.8B). Many genes in the caveola 

GO term also showed a gradient of expression with Type 2A as an intermediate (Supplementary 

Figure 4.8B). The most significant sex-biased gene, SMO, showed highest expression in Type 

2X fiber (Error! Reference source not found.H). Results changed little when adjusting for 

OGTT status (Supplementary Figure 4.9). 

4.3.8 Differential gene expression by sex in bulk skeletal muscle 

Bulk RNA-seq captures the nuclear and cytoplasmic mRNA of all cell types present in 

muscle. Single nucleus pseudobulk, formed by summing the UMIs across all nuclei for an 

individual, is a representation of the nuclear mRNA of all cell types with statistical removal of 

non-nuclear contamination. To infer cytoplasmic (by way of total) and nuclear patterns of 

differential expression by sex, we tested for differential gene expression in the bulk and single 

nucleus pseudobulk data, adjusting for estimates of cell type proportions from the snRNA-seq 

data. We identified 8,870 (39.7%) sex-biased genes in the bulk and 3,192 (17.1%) sex-biased 

genes in the pseudobulk. Among the 15,722 genes analyzed in both the bulk and pseudobulk, 

many more were found to be significantly differentially expressed by sex in bulk only (5,048 

genes) compared to pseudobulk only (952 genes) (Figure 4.3A). Of the 1,886 sex-biased genes 

identified in bulk and pseudobulk, 96% were more highly expressed in the same sex (Figure 

4.3A). We hypothesized that the greater number of sex-biased genes identified in the bulk may 

be due to deeper sequencing. However, even when comparing genes with similar mean 

expression levels in the bulk and pseudobulk, there were more sex-biased genes identified in the 

bulk (Supplementary Figure 4.10).  

As an external comparison for bulk data, we tested sex-biased expression in the bulk 

skeletal muscle data from GTEx,138 although we could not adjust for estimates of cell type 
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proportions in this analysis. We found that 1,925 (93.9%) of the 2,050 sex-biased genes 

identified in both the FUSION and GTEx bulk datasets were more highly expressed in the same 

sex (Supplementary Figure 4.11). 

4.3.9 Concordance of sex-biased expression between cell types and bulk skeletal muscle 

At the cell type level, we identified 5,128 sex-biased genes across one or more fiber types 

of which 2,463 were not identified in the bulk data. Of the 2,665 sex-biased genes identified in 

both the bulk and at least one of the fiber types, 2,464 (92.5%) were more highly expressed in 

the same sex (Figure 4.3B). This high concordance is reflected also in the GO terms enriched for 

sex-biased genes in the bulk; the most significant GO terms in the bulk, including those related 

to mitochondrial function, are significantly enriched in the pseudobulk and at least nominally 

enriched in the fiber types for higher expression in the same sex as bulk (Figure 4.3C). There 

were 132 sex-biased genes more highly expressed in one sex in the fiber types and in the other 

sex in bulk (Figure 4.3B). For example, BCLAF1 is female-biased in the bulk and male-biased in 

the fiber types (Figure 4.3D). 

We identified 630 sex-biased genes in the non-fiber cell types of which 294 were not 

identified in the bulk data. Of the 336 sex-biased genes identified in both the bulk and at least 

one of the non-fiber cell types, 84% were more highly expressed in the same sex (Figure 4.3B). 

One counterexample is LPP, which is female-biased in the bulk and the fiber types but male-

biased in mesenchymal stem cells and satellite cells (Figure 4.3E).  

4.3.10 Differential miRNA expression by sex in bulk skeletal muscle 

MiRNAs are short, noncoding genes that regulate gene expression and translation, 

usually by binding to the 3’ UTR and promoting degradation of their target genes.142 Sex 
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differences in miRNA expression may contribute to sex differences in the post-transcriptional 

regulation of gene expression. To quantify sex differences in bulk miRNA expression, we tested 

for differential miRNA expression. We found 156 sex-biased miRNAs (20.7% of 755 tested) 

with a median absolute fold change of male to female counts of 1.3. MiRNAs derived from the 

same primary transcript are processed into two mature miRNAs (5p and 3p arms), both of which 

can be functional in a cell.143,144 In the absence of sex differences in miRNA degradation, we 

would expect pairs of 5p and 3p mature miRNAs derived from the same gene to have concordant 

directions of effect by sex. Among the 755 miRNAs tested for differential expression, 396 were 

part of 198 5p/3p pairs. Of these pairs, 20 were differentially expressed by sex for both the 5p 

and 3p arms; all had concordant directions of effect by sex (Figure 4.3F). Additionally, of the 36 

5p/3p pairs that were sex-biased for only one arm, 89% had nominally concordant direction of 

effect by sex with the other arm, suggesting that sex-biased expression of these miRNAs was 

likely primarily due to sex differences in transcriptional regulation.   

To investigate whether post-transcriptional regulation by sex-biased miRNAs may cause 

sex differences in gene expression in bulk muscle, we used TargetScan139 to predict the mRNA 

targets of 742 miRNAs. The proportion of sex-biased mRNAs did not differ by the number of 

sex-biased miRNAs targeting the mRNA (Figure 4.3G). We hypothesized that miRNAs might 

play a stronger role in regulation of genes that did not show sex-biased expression in the single 

nucleus data, as these may represent genes with sex differences in regulatory processes in the 

cytoplasm. However, the proportion of sex-biased genes in this subset of genes also did not 

differ by the number of sex-biased targeting miRNAs (Figure 4.3G). Because specific miRNAs 

may have stronger effects in a given tissue,145 we tested each miRNA family for enrichment of 

sex-biased genes among the miRNA family’s predicted targets. We did not find enrichment of 
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sex-biased genes among the targets of any miRNA. This held true when considering only 

miRNA families with at least one miRNA among the 10% most highly expressed miRNAs or 

miRNA families containing at least one sex-biased miRNA. 

4.3.11 Differential chromatin accessibility by sex in muscle cell types 

Open or accessible chromatin in gene promoters allows the binding of transcriptional 

machinery and is associated with positive regulation of gene expression.146 Differential 

chromatin accessibility by sex may contribute to sex differences in the transcriptional regulation 

of gene expression. We tested peaks on the autosomal and X chromosomes for differential 

chromatin accessibility by sex. We found 54,154, 62,680, and 38,197 sex-biased peaks 

(FDR<5%) in the Type 1, Type 2A, and Type 2X fibers, respectively (5.3-12.7% of tested peaks) 

(Figure 4.4A). Sex-biased peaks on the X chromosome were more likely to be female-biased. 

The median fold change of male- and female-biased peaks on the X chromosome (median 

FC=1.5-1.6 across the fiber types) were larger than male- and female-biased peaks on the 

autosomal chromosomes (median FC=1.3-1.4) (Supplementary Figure 4.12). To match the data 

available for the other cell types, we downsampled individuals and peak counts in the most 

abundant cell type, Type 1 fiber. Compared to the downsampled Type 1 fiber dataset, we 

observed more sex-biased peaks in the Type 2A fiber (2.9 fold), mesenchymal stem cell (6.2 

fold), and satellite cell (18.6 fold) nuclei (Figure 4.4B). Results were little changed when 

adjusting for OGTT status (Supplementary Figure 4.13). 

4.3.12 Differential chromatin accessibility by sex is concordant across muscle fiber types 
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The direction and magnitude of sex-biased peaks across the three muscle fiber types was 

highly concordant (Supplementary Figure 4.14). Between pairs of fiber types, over 99% of sex-

biased peaks were more highly expressed in the same sex.  

4.3.13 Sex-biased peaks enriched for gene regulatory function 

To characterize the potential regulatory functions of sex-biased peaks in the three fiber 

types, we tested for enrichment of autosomal sex-biased peaks in chromatin states defined from 

bulk skeletal muscle reference samples.136,147 Compared to the quiescent state, in all fiber types, 

sex-biased peaks were significantly enriched in enhancers, transcription start sites (TSS), and 

flanking transcription states and depleted in the strong transcription state (Supplementary Figure 

4.15, Supplementary Table 4.6). When adjusting for the peak read counts, which are lowest in 

the quiescent state, sex-biased peaks were significantly depleted in almost all states including 

enhancers, TSS, and flanking transcription states relative to the quiescent state (Figure 4.4C, 

Supplementary Table 4.6). These results were consistent when using chromatin states annotated 

with a male reference sample, a female reference sample, and when requiring the same 

annotation in both reference samples (Supplementary Figure 4.15).  

To determine which transcription factors may be involved in sex differences in chromatin 

accessibility, we tested for enrichment of 540 transcription factor binding sites (TFBS) in sex-

biased peaks in the three fiber types separately by chromatin state. We identified 335 TFBS that 

were significantly enriched in sex-biased peaks in at least one chromatin state in all three fiber 

types. TFBS enrichment was highly concordant across the fiber types. The most strongly 

enriched TFBS in male-biased peaks were androgen and glucocorticoid receptor binding sites 

(NR3C1 family) (Figure 4.4D). In Type 1 fiber, the most strongly enriched TFBS in female-

biased peaks were ZNF35 and PITX2 (Figure 4.4D).  
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4.3.14 Directional concordance of differential accessibility of promoter region peaks and gene 

expression 

Transcriptional regulation of gene expression can occur through the modulation of 

chromatin structure at gene promoters.148 To assess the relationship of sex differences in 

chromatin accessibility with sex differences in gene expression, we counted the number of sex-

biased peaks within 1kb upstream of the canonical gene TSS for each autosomal gene in the 

three fiber types, the single nucleus pseudobulk, and the bulk data (using sex-biased peaks in the 

Type 1 fiber for the pseudobulk and bulk). In these five datasets, 6-17% of sex-biased genes had 

one or more sex-biased peaks in the promoter region (Figure 4.4E). In each dataset, genes with at 

least one sex-biased peak were more likely to show sex-biased expression in the same direction 

as the peak. For example, in Type 1 fiber, genes with at least one male-biased promoter peak 

were 4.58 (p=2.8x10-51) times more likely to show male-biased expression and genes with at 

least one female-biased promoter peak were 5.00 (p=3.5x10-126) times more likely to show 

female-biased expression compared to genes without sex-biased promoter peaks (Supplementary 

Table 4.7). 

4.4 Discussion 

We found extensive sex differences in gene expression and regulation in human skeletal 

muscle, at both bulk and cell type (single-nucleus) resolution. Consistent with previous studies, 

we identified thousands of sex-biased genes in bulk muscle tissue. We showed, for the first time, 

widespread sex-biased expression in individual muscle cell types, identifying >2,100 sex-biased 

genes in Type 1, Type 2A, and Type 2X fiber nuclei. The high concordance of sex-biased 

expression across the fiber types and bulk tissue suggests that most sex-biased genes identified in 
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bulk represent sex-biased transcriptional control of gene expression and do not reflect 

confounding by sex differences in fiber type composition. 

Muscle fiber types range from the mitochondria-rich oxidative, slow-twitch Type 1 fiber, 

to the intermediate Type 2A fiber, to the glycolytic, fast-twitch Type 2X fiber.149,150 Previous 

studies in bulk muscle tissue have identified inconsistent enrichments of male-118,123 or female-

biased120,121 gene expression in pathways related to mitochondrial activity. We find that within 

each fiber type and in bulk muscle, biological pathways for mitochondrial components and 

oxidative energy metabolism are enriched for male-biased expression. Consistent with 

histological studies,107 we find more Type 1 fiber nuclei in females and more Type 2X fiber 

nuclei in males. It is possible that the higher expression of genes in these mitochondria-related 

pathways in males may reflect a relatively higher level of mitochondria in each fiber type to 

offset the lower proportion of mitochondria-rich Type 1 fiber in males.  

Skeletal muscle regeneration, characterized by the activation and differentiation of 

satellite cells, is essential for the preservation of muscle mass and function in response to 

injury.151,152 We find that females have a higher proportion of satellite cells than males. In 

addition, in muscle fibers, we find that the genes comprising caveolae, membrane organelles 

enriched in cholesterol with many cellular functions including a role in the repair and 

regeneration of muscle,151 are enriched for higher expression in females than in males. Similarly, 

we find genes in pathways related to morphogenesis, which in the context of muscle tissue may 

be related to regeneration,153 to be more highly expressed in females. PITX2, a transcription 

factor involved in muscle homeostasis,154 had one of the strongest enrichments for female-biased 

ATAC-seq peaks. Together, these results suggest significant sex differences in the muscle 
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regeneration pathway, potentially contributing to the greater endurance and recovery patterns107 

and slower loss of muscle strength with age155 observed in females. 

In addition to the sex-biased expression found in the fiber types, we identified 630 sex-

biased genes in the less abundant cell types. Single nucleus resolution data are essential to 

uncover the cell-type specific effects of the subset of these genes that were expressed more 

highly in the opposite sex in bulk tissue, such as LPP. The smaller number of sex-biased genes 

identified in the non-fiber types compared to the fiber types is mostly due to lower power from 

smaller numbers of nuclei; as sample sizes increase, we would expect to identify more sex-

biased genes in these cell types. 

Our comparisons between the bulk and single nucleus datasets suggest that most sex-

biased expression is likely due to sex differences in transcriptional regulation. We found that 

96% of sex-biased genes identified in both the bulk and single nucleus pseudobulk tissues were 

more highly expressed in the same sex, suggesting that the sex-biased expression for these genes 

is driven mostly by processes occurring in the nucleus. We found extensive differences in 

chromatin accessibility, identifying tens of thousands of sex-biased peaks in the fiber types. For 

the small number of genes with sex-biased peaks in the promoter, sex-biased expression was 

positively associated with the accessibility of the promoter region, suggesting that these sex 

differences are due to sex differences in transcriptional regulation. This was true even for bulk 

sex-biased genes not identified in the pseudobulk, which could indicate that sex differences from 

these genes are also due to transcriptional regulation and were not detected in pseudobulk due to 

lower power. Exceptions to the high concordance of bulk and pseudobulk include genes such as 

BCLAF1, which encodes a protein involved in muscle regeneration.156 Such examples could 

represent different regulatory processes in the nucleus and cytoplasm.  
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We also identified 156 sex-biased miRNAs, which can regulate gene expression in the 

cytoplasm. The concordant sex-biased expression of the 3p and 5p arms suggest that sex 

differences in the expression levels of miRNAs themselves are primarily transcriptionally 

regulated. We were unable to identify miRNA regulation of sex-biased expression. It is possible, 

however, that we were not able to identify miRNA targets accurately with computational tools 

alone because of the tissue-specific nature of miRNA targeting.  

We reach strikingly different conclusions about the enrichments of differential expression 

by type of gene and of chromatin accessibility by chromatin state when adjusting or not adjusting 

for mean gene or peak read count in the analysis. The mean gene (UMI) or peak read count is 

positively (and non-linearly) associated with the power to detect sex differences (Figures 2C, 

4C). In the unadjusted gene expression enrichment analysis, protein-coding genes, which have 

the highest mean counts of all gene types in the muscle fiber types, are strongly enriched for sex 

expression differences compared to other types of genes. However, when adjusting for read 

count, we found that lncRNAs are more highly enriched for expression differences by sex 

compared to protein-coding genes (Error! Reference source not found.C, Supplementary Table 

4.5). LncRNAs may form local hubs of transcription157 that could contribute to the known 

clustering of genes that are differentially expressed by sex.40 In the unadjusted chromatin state 

enrichment analysis, we found that peaks in the quiescent state, which have lower counts than 

most other states, were depleted for sex differences compared to peaks in other chromatin states 

(Supplementary Table 4.6). However, when adjusting for peak read counts, we found that the 

quiescent state is enriched for sex differences (Error! Reference source not found.C) compared 

to other states. These peaks that show the enrichment are the most highly expressed peaks in the 
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quiescent chromatin regions, are particularly sensitive to regulation by sex, and could be in 

regions that are misclassified as quiescent.  

The FUSION Tissue Biopsy Study provides unique advantages for studying sex 

differences in gene expression and regulation in human skeletal muscle. With 281 skeletal 

muscle biopsies, it is the largest study to datae with snRNA-seq and snATAC-seq to date. All of 

the biopsies were taken from living donors, and thus do not have variability in gene expression 

introduced by severe illness or the death process.158 The median age at the time of biopsy was 61 

years, and over 88% of donors were older than 50. We were therefore unable to ascertain sex 

differences in gene expression at younger ages when circulating sex hormone levels show greater 

differences between males and females,159 but showed instead that extensive sex differences in 

gene expression remain in older individuals. Although all FUSION donors are Finnish, the high 

degree of concordance in sex-biased expression between bulk FUSION and GTEx, particularly 

for genes with larger fold changes, suggests that our findings will generalize to non-Finnish 

populations.  

Overall, our findings demonstrate the potential of integrating bulk and single nucleus data 

and provide transcriptome-level insights into sex differences in skeletal muscle biology. Future 

studies will be needed to show the mechanisms by which sex-biased gene expression contributes 

to sex differences in skeletal muscle physiology and disease susceptibility. 
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4.5 Tables and Figures 

 

Figure 4.1 Sex differences in cell type composition of human skeletal muscle  

A. UMAP projection of 429,569 RNA and ATAC nuclei across 279 individuals. B. Cell type proportions for each 
individual sorted by sex and proportion of Type 1 muscle fiber nuclei. Mixed muscle fiber was removed from 
analysis. C. Mean cell type proportions by sex. D. Fold change and 95% confidence intervals for the combined 
number of RNA and ATAC male nuclei compared to the number of female nuclei in each cell type. Cell types with 
significantly more nuclei at FDR<0.05 in females are colored red and in males are colored blue.  
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Figure 4.2 Sex differences in cell type-specific gene expression in human skeletal muscle.  

A. The number and proportion of genes significantly differentially expressed by sex (FDR<5%) in 10 muscle cell 
types. B. The proportion of genes significantly differentially expressed by sex (FDR<5%) by the total UMI across 
all samples in each cell type in the observed data and in Type 1 muscle fiber data downsampled to match the sample 
size and total UMI of the other cell types. C. Histograms and smooth curves with 95% confidence intervals for the 
proportion of genes significantly differentially expressed by sex (FDR<5%) by gene type by mean UMI across all 
samples in Type 1 muscle fiber. D. The set of GO terms that are highly enriched (FDR<0.1%) for genes expressed 
higher in males (odds ratio >1) or females (odds ratio<1) in at least one muscle fiber type. E. The -log10 p-values 
across the three muscle fiber types colored by direction of effect for the top 40 autosomal genes in the biological 
process GO term oxidative phosphorylation. F. Boxplots of the TPMs of NDUFA10 in the female and male samples 
across the three muscle fiber types. One male and two female outlying samples with TPMs>430 in Type 2X and one 
outlying male with 0 TPMs in Type 2A are not shown. G. The -log10 p-values across the three muscle fiber types 
colored by direction of effect for the top 40 autosomal genes in the cellular component GO term caveola. H. 
Boxplots of the TPMs of SMO in the female and male samples across the three muscle fiber types. Two female 
outlying samples with TPMs>67 in Type 2X and one female outlying sample with TPM>60 in Type 2A are not 
shown. 
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Figure 4.3 Comparison of sex differences in gene expression from bulk vs. single nucleus RNA-seq  

A. Scatterplot of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential expression 
between the bulk and single nucleus pseudobulk. B. Directional upset plot of the number of significantly 
differentially expressed genes identified in the bulk RNA-seq, at least one fiber type, or at least one non-fiber cell 
type from snRNA-seq data. C. The set of GO terms that are most highly enriched for genes expressed higher in 
males (odds ratio >1) or females (odds ratio<1) in the bulk. D. Expression levels of BCLAF1 in CPMs by sex in 
bulk, pseudobulk, and Type 2a and 2x fibers. In the Type 2X fiber, one outlying male had a CPM value of 356, 
which is not shown in the plot. E. Expression levels of LPP in CPMs by sex in bulk, pseudobulk, Type 2a and 2x 
fibers, mesenchymal stem cells, and satellite cells. F. Scatterplot of the signed -log10 p-values (>0 higher in males; 
<0 higher in females) of differential expression between miRNA 5p and 3p arms. G. The proportion of genes 
significantly differentially expressed by sex (FDR<5%) in bulk muscle by the number of predicted miRNA targeting 
the gene that are significantly differentially expressed by sex. 
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Figure 4.4 Sex differences in cell-type specific chromatin accessibility in human skeletal muscle 

A. The number and proportion of peaks significantly differentially accessible by sex (FDR<5%) in 12 muscle cell 
types. B. The proportion of peaks significantly differentially accessible by sex (FDR<5%) by the total counts across 
all samples in each cell type in the observed data and in Type 1 muscle fiber data downsampled to match the sample 
size and total counts of the other cell types. C. The smooth curve and 95% confidence intervals for the proportion of 
peaks significantly differentially expressed by sex (FDR<5%) by chromatin state by mean peak count across all 
samples and histograms of the number of peaks by state and mean peak count in Type 1 muscle fiber. D. The set of 
transcription factor binding sites that are most highly enriched for peaks with higher counts in males (odds ratio >1) 
or females (odds ratio<1) in Type 1 muscle fiber in active TSS, strong transcription, quiescent, and enhancer 
consensus chromatin states. E. The proportion of autosomal genes with 0, 1, ≥2 sex-biased peaks <1kb upstream of 
gene TSS colored by their differential expression status and direction in the three fiber types, pseudobulk, and bulk. 
The single nucleus pseudobulk and bulk genes are annotated with sex-biased peaks from the Type 1 fiber. The 
histogram on the right shows the number of genes in bulk with each number/direction of DA peaks; the distribution 
is similar for the three fiber types and pseudobulk. 
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4.6 Supplementary Material 

 

Supplementary Figure 4.1 Sample sizes across molecular data modalities 

An upset plot describing the sample overlap between datasets for which bulk miRNA expression (miRNA), bulk 
mRNA expression (Bulk), single nucleus gene expression (snRNA), and single nucleus chromatin accessibility 
(snATAC) were collected. 
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Supplementary Figure 4.2 Sex differences in cell type composition of human skeletal muscle using RNA nuclei 

A. UMAP projection of 177,350 RNA nuclei across 279 individuals. B. Cell type proportions for each individual 
sorted by sex and proportion of Type 1 muscle fiber nuclei. C. Mean cell type proportions by sex based on RNA 
nuclei. D. Fold change and 95% confidence intervals for the number of male RNA nuclei compared to the number of 
female nuclei in each cell type. Cell types with significantly more nuclei at FDR<0.05 in females are colored red and 
in males are colored blue. 



 112 

 

Supplementary Figure 4.3 Sex differences in cell type composition of human skeletal muscle using ATAC nuclei 

A. UMAP projection of 252,219 ATAC nuclei across 281 individuals.  B. Cell type proportions for each individual 
sorted by sex and proportion of Type 1 muscle fiber nuclei. C. Mean cell type proportions by sex based on ATAC 
nuclei. D. Fold change and 95% confidence intervals for the number of male ATAC nuclei compared to the number 
of female nuclei in each cell type. Cell types with significantly more nuclei at FDR<0.05 in females are colored red 
and in males are colored blue. 
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Supplementary Figure 4.4 The cumulative distribution of the absolute fold change of sex-biased genes by cell type, 
chromosome, and direction of effect 
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Supplementary Figure 4.5 Comparison of differential expression by sex with and without adjusting for oral glucose 
tolerance test (OGTT) status 

Scatterplots of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential expression for a 
model not adjusting for OGTT status (x-axis) and a model adjusting for OGTT status (y-axis). Signed -log10 p-
values with an absolute magnitude >100 are not shown. Each gene is colored by the significance (FDR 0.05) from 
each model.  
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Supplementary Figure 4.6 Comparison of differential expression by sex across muscle cell types 

Scatterplots of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential expression 
between A. Type 1 muscle fiber and all other cell types and B. Type 2A muscle fiber and all other cell types for 
genes in common between each cell type pair.  Signed -log10 p-values with an absolute magnitude >100 are not 
shown. Each gene is colored by the significance (FDR 0.05) in each cell type. The proportion of genes that are 
significant in both cell types with concordant direction of effect is shown for each cell type pair in the lower left 
corner. 
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Supplementary Figure 4.7 Association of gene type with sex-biased expression  

The odds ratios and corresponding 95% confidence intervals by cell type from logistic regression models testing the 
association between sex-biased expression (FDR<5%) and gene type (lincRNA, pseudogene, other) compared to 
protein-coding genes, with and without adjusting for mean UMI. The column row includes all genes and the second 
row includes only genes on autosomal chromosomes. There were 0 sex-biased genes for any combination of gene 
type and cell type that does not appear on this plot. 
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Supplementary Figure 4.8 Gene expression levels in muscle fibers of top 20 autosomal sex-biased genes in oxidative 
phosphorylation and caveola GO terms 

Boxplots of the CPMs are shown for females (red) and males (blue) in Type 1, Type 2a, and Type 2x fibers for 
genes in A. the GO biological process oxidative phosphorylation and in B. the GO cellular component caveola. 
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Supplementary Figure 4.9 Comparison of gene set enrichment test results for differential expression by sex with and 
without adjusting for oral glucose tolerance test (OGTT) status 

Scatterplots of the signed -log10 p-values (>0 higher in males; <0 higher in females) of enrichment for GO terms 
calculated from the results of differential expression analyses from a model not adjusting for OGTT status (x-axis) 
and a model adjusting for OGTT status (y-axis). Each GO term is colored by the significance (FDR 0.05) from each 
model.  
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Supplementary Figure 4.10 Comparison of differential expression by sex between bulk and pseudobulk by 
expression level  

Scatterplots of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential expression for 
autosomal genes tested in bulk and pseudobulk by bins of expression level measured in counts. Signed -log10 p-
values with an absolute magnitude >10 are not shown. Each gene is colored by the significance (FDR 0.05) in bulk 
and pseudobulk. 
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Supplementary Figure 4.11 Comparison of differential expression by sex between FUSION bulk and GTEx bulk 

Scatterplot of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential expression for the 
19,939, genes tested in both the FUSION and GTEx bulk skeletal muscle. Signed -log10 p-values with an absolute 
magnitude >100 are not shown. Each gene is colored by the significance (FDR 0.05) in the FUSION and GTEx 
datasets. 



 122 

 

Supplementary Figure 4.12 The cumulative distribution of the absolute fold change of sex-biased peaks by cell type, 
chromosome, and direction of effect 
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Supplementary Figure 4.13 Comparison of differential accessibility by sex with and without adjusting for oral 
glucose tolerance test (OGTT) status 

Scatterplots of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential accessibility for 
a model not adjusting for OGTT status (x-axis) and a model adjusting for OGTT status (y-axis). Signed -log10 p-
values with an absolute magnitude >100 are not shown. Each peak is colored by the significance (FDR 0.05) from 
each model.  
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Supplementary Figure 4.14 Comparison of differential accessibility by sex across muscle cell types  

Scatterplots of the signed -log10 p-values (>0 higher in males; <0 higher in females) of differential eccessibility 
between A) Type 1 muscle fiber and all other cell types and B) Type 2A muscle fiber and all other cell types for 
peaks in common between each cell type pair.  Signed -log10 p-values with an absolute magnitude >100 are not 
shown. Each peak is colored by the significance (FDR 0.05) in each cell type. The proportion of peaks that are 
significant in both cell types with concordant direction of effect is shown for each cell type pair in the lower left 
corner. 
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Supplementary Figure 4.15 Association of chromatin state with differential accessibility by sex 

The odds ratios and corresponding 95% confidence intervals by fiber type from logistic regression models testing 
the association between differential accessibility by sex (FDR<5%) status and chromatin state (defined from female 
reference, male reference, or using only peaks with consensus calls) compared to the quiescent/low state, with and 
without adjusting for the mean peak count across all samples. 
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 Female 
(n=118) 

Male 
(n=163) 

Total 
(n=281) 

A. Sample characteristics (mean (SD)) 

Age 60.9 (7.0) 59.7 (7.8) 60.2 (7.5) 

BMI 27.4 (4.1) 27.9 (4.4) 27.7 (4.3) 
OGTT (n (%)) 

NGT 
IFG 
IGT 
T2D 

Missing 

 
52 (44.1%) 
12 (10.2%) 
32 (27.1%) 
22 (18.6%) 

0 (0%) 

 
47 (28.8%) 
27 (16.6%) 
37 (22.7%) 
51 (31.3%) 
1 (0.6%) 

 
99 (35.2%) 
39 (13.9%) 
69 (24.6%) 
73 (26.0%) 
1 (0.4%) 

B. Sample size by data type (n) 

Cell type(s) Modality    

Bulk RNA 110 158 268 
miRNA 108 148 256 

Si
ng

le
 n

uc
le

us
 

All RNA 117 162 279 
ATAC 118 163 281 

Adipocyte RNA 2 2 4 
ATAC 86 105 191 

Endothelial RNA 113 155 268 
ATAC 118 163 281 

Macrophage RNA 14 17 31 
ATAC 31 46 77 

Mesenchymal stem cell RNA 110 154 264 
ATAC 111 161 272 

Neuromuscular junction RNA 61 97 158 
ATAC 57 89 146 

Neuronal RNA 33 4 37 
ATAC 111 140 251 

Satellite cell RNA 65 64 129 
ATAC 74 101 175 

Smooth muscle RNA 97 129 226 
ATAC 114 154 268 

T cell RNA 1 1 2 
ATAC 115 163 278 

Type 1 RNA 117 162 279 
ATAC 117 163 280 

Type 2a RNA 117 161 278 
ATAC 116 161 277 

Type 2x RNA 114 160 274 
ATAC 116 163 279 

Supplementary Table 4.1 Sample characteristics and sample size by datatype of 118 female and 163 male vastus 
lateralis biopsy donors from the FUSION Tissue Biopsy Study.  

A. Mean and standard deviations of age and BMI at biopsy and the number and percent of samples with normal 
glucose tolerance (NGT), impaired fasting glucose (IFG), impaired glucose tolerance (IGT) and type 2 diabetes 
(T2D) from an oral glucose tolerance test (OGTT) by sex. B. Sample sizes by data type and sex. The sample size of 
individual cell types in the single nucleus data are the number of individuals with ≥10 nuclei per cell type and 
modality. 
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Cell type Modality Female Male Total 

Adipocyte 
RNA 0.00 (0.01) 0.00 (0.00) 0.00 (0.01) 

ATAC 0.02 (0.01) 0.02 (0.01) 0.02 (0.01) 
Combined 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 

Endothelial 
RNA 0.05 (0.03) 0.05 (0.02) 0.05 (0.03) 

ATAC 0.13 (0.05) 0.12 (0.04) 0.12 (0.04) 
Combined 0.09 (0.03) 0.10 (0.03) 0.10 (0.03) 

Macrophage 
RNA 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 

ATAC 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 
Combined 0.01 (0.00) 0.01 (0.01) 0.01 (0.01) 

Mesenchymal stem cell 
RNA 0.05 (0.02) 0.05 (0.03) 0.05 (0.02) 

ATAC 0.05 (0.02) 0.05 (0.03) 0.05 (0.03) 
Combined 0.05 (0.02) 0.05 (0.03) 0.05 (0.02) 

Neuromuscular junction 
RNA 0.03 (0.03) 0.03 (0.04) 0.03 (0.04) 

ATAC 0.01 (0.01) 0.02 (0.02) 0.02 (0.02) 
Combined 0.02 (0.02) 0.02 (0.02) 0.02 (0.02) 

Neuronal 
RNA 0.01 (0.01) 0.00 (0.00) 0.01 (0.01) 

ATAC 0.04 (0.01) 0.03 (0.01) 0.04 (0.02) 
Combined 0.03 (0.01) 0.02 (0.01) 0.02 (0.01) 

Satellite cell 
RNA 0.02 (0.01) 0.01 (0.01) 0.02 (0.01) 

ATAC 0.01 (0.01) 0.01 (0.01) 0.01 (0.01) 
Combined 0.02 (0.01) 0.01 (0.01) 0.01 (0.01) 

Smooth muscle 
RNA 0.03 (0.02) 0.04 (0.0) 0.03 (0.03) 

ATAC 0.04 (0.02) 0.04 (0.02) 0.04 (0.02) 
Combined 0.04 (0.01) 0.04 (0.02) 0.04 (0.02) 

T cell 
RNA 0.00 (0.00) 0.00 (0.00) 0.00 (0.00) 

ATAC 0.06 (0.03) 0.06 (0.02) 0.06 (0.02) 
Combined 0.04 (0.01) 0.03 (0.01) 0.03 (0.01) 

Type 1 
RNA 0.44 (0.12) 0.37 (0.12) 0.40 (0.12) 

ATAC 0.33 (0.10) 0.27 (0.09) 0.30 (0.10) 
Combined 0.38 (0.10) 0.31 (0.10) 0.34 (0.11) 

Type 2a 
RNA 0.25 (0.08) 0.25 (0.09) 0.25 (0.08) 

ATAC 0.16 (0.06) 0.16 (0.06) 0.16 (0.06) 
Combined 0.20 (0.07) 0.20 (0.07) 0.20 (0.07) 

Type 2x 
RNA 0.11 (0.06) 0.18 (0.09) 0.15 (0.09) 

ATAC 0.13 (0.06) 0.20 (0.08) 0.17 (0.08) 
Combined 0.12 (0.06) 0.19 (0.08) 0.16 (0.08) 

Supplementary Table 4.2 Mean and standard deviation of the proportion of nuclei by cell type and sex  

The statistics were calculated across 281 samples for snATAC-seq nuclei and 279 samples for snRNA-seq nuclei. 
The combined rows are calculated as the mean proportion of the sum of snATAC-seq and snRNA-seq nuclei across 
the 279 samples with both snATAC-seq and snRNA-seq data. 
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Cell type Modality Fold change (M to F) and 
95% confidence interval FDR adjusted p-value 

Adipocyte 
RNA 0.77 (0.47, 1.27) 0.54 

ATAC 0.91 (0.82, 1.01) 0.18 
Combined 0.92 (0.81, 1.04) 0.31 

Endothelial 
RNA 1.04 (0.94, 1.14) 0.54 

ATAC 1.02 (0.95, 1.09) 0.61 
Combined 1.03 (0.96, 1.11) 0.46 

Macrophage 
RNA 0.95 (0.80, 1.13) 0.61 

ATAC 1.07 (0.90, 1.26) 0.56 
Combined 1.05 (0.91, 1.21) 0.62 

Mesenchymal stem cell 
RNA 1.05 (0.95, 1.16) 0.54 

ATAC 1.09 (0.99, 1.21) 0.18 
Combined 1.08 (0.99, 1.19) 0.22 

Neuromuscular junction 
RNA 1.11 (0.89, 1.38) 0.54 

ATAC 1.18 (0.99, 1.41) 0.17 
Combined 1.15 (0.96, 1.38) 0.28 

Neuronal 
RNA 0.39 (0.32, 0.47) 5.0×10-19 

ATAC 0.89 (0.83, 0.96)  0.015 
Combined 0.80 (0.74, 0.87) 1.6×10-6 

Satellite cell 
RNA 0.84 (0.75, 0.93) 0.0044 

ATAC 0.95 (0.86, 1.04) 0.44 
Combined 0.90 (0.83, 0.98) 0.039 

Smooth muscle 
RNA 1.06 (0.93, 1.21) 0.54 

ATAC 1.03 (0.94, 1.14) 0.56 
Combined 1.05 (0.95, 1.16) 0.45 

T cell 
RNA 1.12 (0.78, 1.60) 0.61 

ATAC 0.95 (0.88, 1.02) 0.32 
Combined 0.98 (0.90, 1.06) 0.62 

Type 1 
RNA 0.84 (0.78, 0.91) 8.5×10-5 

ATAC 0.83 (0.77, 0.90) 7.6×10-5 
Combined 0.83 (0.77, 0.90) 1.4×10-5 

Type 2a 
RNA 1.02 (0.93, 1.12) 0.66 

ATAC 0.97 (0.87, 1.07) 0.56 
Combined 0.99 (0.90, 1.08) 0.77 

Type 2x 
RNA 1.60 (1.40, 1.83) 8.6×10-11 

ATAC 1.49 (1.34, 1.65) 2.4×10-12 
Combined 1.52 (1.36, 1.70) 4.8×10-12 

Supplementary Table 4.3 Associations of sex with the number of nuclei in each cell type from negative binomial 
regressions  

Fold changes >1 indicate more nuclei in males than females. FDR adjusted p-values were calculated separately for 
each modality. 
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Cell type Gene type Number of genes tested Mean (SD) UMI per gene 

Endothelial 

Protein coding 11,670 7.63 (17.80) 
lncRNA 2,061 3.50 (42.23) 

Pseudogene 494 2.71 (5.78) 
Other 104 0.77 (0.87) 
All 14,329 6.82 (22.77) 

Macrophage 

Protein coding 10,144 3.98 (9.95) 
lncRNA 1,276 2.62 (27.75) 

Pseudogene 311 1.92 (7.32) 
Other 45 0.61 (0.59) 
All 11,776 3.76 (13.06) 

Mesenchymal stem cell 

Protein coding 11,844 8.36 (24.31) 
lncRNA 2,399 4.44 (66.28) 

Pseudogene 528 2.73 (4.81) 
Other 108 0.73 (0.60) 
All 14,879 7.48 (34.39) 

Neuromuscular junction 

Protein coding 10,847 8.97 (40.97) 
lncRNA 2,040 7.98 (150.86) 

Pseudogene 438 3.16 (9.51) 
Other 92 0.89 (0.74) 
All 13,417 8.58 (69.43) 

Neuronal 

Protein coding 10,089 3.75 (12.24) 
lncRNA 2,579 3.10 (12.54) 

Pseudogene 469 1.55 (2.92) 
Other 49 0.60 (0.40) 
All 13,186 3.53 (12.08) 

Satellite cell 

Protein coding 9,806 3.40 (7.38) 
lncRNA 1,330 3.05 (26.00) 

Pseudogene 294 1.65 (2.23) 
Other 32 0.59 (0.35) 
All 11,462 3.31 (11.19) 

Smooth muscle 

Protein coding 11,467 6.69 (17.23) 
lncRNA 1,846 4.51 (72.31) 

Pseudogene 402 2.22 (3.83) 
Other 85 0.88 (0.86) 
All 13,800 6.24 (30.78) 

Type 1 

Protein coding 14,502 97.86 (705.44) 
lncRNA 6,520 32.04 (1,069.12) 

Pseudogene 2,023 9.69 (68.85) 
Other 796 2.42 (4.84) 
All 23,841 69.20 (785.48) 

Type 2a 

Protein coding 12,879 50.42 (367.71) 
lncRNA 4,690 19.54 (561.85) 

Pseudogene 1,314 6.58 (44.63) 
Other 483 1.72 (2.87) 
All 19,366 38.75 (408.38) 

Type 2x 

Protein coding 12,359 31.63 (205.55) 
lncRNA 3,897 13.09 (277.75) 

Pseudogene 1,021 5.08 (27.43) 
Other 345 1.41 (2.03) 
All 17,622 25.40 (216.40) 

Supplementary Table 4.4 Number and mean UMI of genes tested for differential expression by sex by gene type and 
cell type. Gene types were defined by GENCODE 
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Cell type Gene type 
Unadjusted for gene count Adjusted for gene count 

Odds Ratio and 95% 
confidence interval 

P-value Odds Ratio and 95% 
confidence interval P-value 

Endothelial 
lncRNA 1.62 (0.89, 2.94) 0.11 3.55 (1.89, 6.67) 8.6x10-5 

Pseudogene 1.45 (0.45, 4.67) 0.53 2.91 (0.89, 9.53) 0.078 
Other 0 (0, Inf) 0.98 0 (0, Inf) 0.99 

Macrophage 
lncRNA 7.97 (1.61, 39.51) 0.011 30.27 (5.77, 158.84) 5.5x10-5 

Pseudogene 0 (0, Inf) 0.99 0 (0, Inf) 1.00 
Other 0 (0, Inf) 1.00 0 (0, Inf) 1.00 

Mesenchymal 
stem cell 

lncRNA 0.79 (0.59, 1.06) 0.12 1.69 (1.24, 2.31) 9.3x10-4 
Pseudogene 1.24 (0.76, 2.01) 0.38 2.53 (1.54, 4.17) 2.6x10-4 

Other 0 (0, Inf) 0.96 0 (0, Inf) 0.96 

Neuromuscular 
junction 

lncRNA 1.10 (0.62, 1.95) 0.76 1.86 (1.02, 3.38) 0.043 
Pseudogene 1.83 (0.73, 4.56) 0.19 3.37 (1.33, 8.59) 0.011 

Other 0 (0, Inf) 0.98 0 (0, Inf) 0.98 

Satellite cell 
lncRNA 1.25 (0.80, 1.95) 0.32 2.18 (1.37, 3.48) 0.0011 

Pseudogene 1.99 (0.97, 4.10) 0.062 3.91 (1.85, 8.26) 3.5x10-4 
Other 2.29 (0.31, 16.92) 0.42 13.99 (1.79, 109.35) 0.012 

Smooth 
muscle 

lncRNA 2.34 (1.08, 5.03) 0.03 4.95 (2.20, 11.17) 1.2x10-4 
Pseudogene 3.58 (1.08, 11.95) 0.038 7.91 (2.29, 27.36) 0.0011 

Other 0 (0, Inf) 0.99 0 (0, Inf) 0.99 

Type 1 
lncRNA 0.59 (0.54, 0.64) 3.8x10-31 1.38 (1.25, 1.53) 5.1x10-10 

Pseudogene 0.44 (0.37, 0.52) 1.3x10-22 1.30 (1.09, 1.56) 0.0037 
Other 0.15 (0.10, 0.23) 1.7x10-19 0.60 (0.39, 0.91) 0.017 

Type 2a 
lncRNA 0.64 (0.57, 0.71) 3.8x10-17 1.49 (1.32, 1.68) 4.1x10-11 

Pseudogene 0.46 (0.38, 0.57) 3.0x10-13 1.25 (1.00, 1.56) 0.049 
Other 0.19 (0.11, 0.31) 3.9x10-11 0.70 (0.42, 1.16) 0.17 

Type 2x 
lncRNA 0.68 (0.60, 0.76) 1.9x10-10 1.56 (1.36, 1.78) 9.9x10-11 

Pseudogene 0.57 (0.45, 0.72) 2.0x10-6 1.50 (1.17, 1.92) 0.0014 
Other 0.30 (0.18, 0.50) 4.6x10-6 1.18 (0.69, 2.01) 0.55 

Supplementary Table 4.5 Association of gene type with differential expression by sex status  

Summary statistics comparing the likelihood of differential gene expression by sex for lncRNAs, pseudogenes, and 
other non-protein coding genes compared to protein-coding genes from logistic regression models not adjusting and 
adjusting for categories of gene count. All gene type categories with an odds ratio of 0 had no significantly 
differentially expressed genes. 
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Chromatin 
state (symbol) 

Fiber 
type 

Unadjusted for peak count Adjusted for peak count 

Odds Ratio and 95% 
confidence interval P-value 

Odds Ratio and 
95% confidence 

interval 
P-value 

Active TSS 
(TssA) 

Type 1 9.58 (9.12, 10.07) 0.00 0.37 (0.34, 0.39) 7.0x10-182 
Type 2a 4.42 (4.23, 4.63) 0.00 0.39 (0.37, 0.42) 1.2x10-185 
Type 2x 3.92 (3.68, 4.17) 0.00 0.24 (0.22, 0.26) 1.0x10-281 

Flanking 
Active TSS 
(TssAFlnk) 

Type 1 13.89 (13.27, 14.54) 0.00 0.60 (0.57, 0.64) 6.2x10-70 
Type 2a 4.28 (4.09, 4.48) 0.00 0.57 (0.54, 0.60) 3.3x10-96 
Type 2x 7.33 (6.95, 7.72) 0.00 0.42 (0.39, 0.45) 8.4x10-166 

Transcription 
at gene 5’ and 
3’ (TxFlnk) 

Type 1 9.90 (8.13, 12.05) 6.1x10-115 0.42 (0.34, 0.51) 2.2x10-17 
Type 2a 2.71 (2.26, 3.26) 6.9x10-27 0.34 (0.28, 0.41) 2.8x10-29 
Type 2x 4.97 (3.95, 6.24) 3.1x10-43 0.27 (0.21, 0.34) 1.3x10-28 

Strong 
transcription 

(Tx) 

Type 1 0.88 (0.82, 0.95) 0.0010 0.22 (0.21, 0.24) 1.8x10-301 
Type 2a 0.29 (0.27, 0.31) 3.2x10-267 0.27 (0.26, 0.29) 7.5x10-282 
Type 2x 0.58 (0.53, 0.63) 8.9x10-38 0.29 (0.26, 0.31) 2.5x10-174 

Weak 
transcription 

(TxWk) 

Type 1 1.42 (1.35, 1.49) 6.2x10-47 0.43 (0.41, 0.45) 9.8x10-226 
Type 2a 0.49 (0.47, 0.51) 1.7x10-195 0.43 (0.41, 0.45) 1.7x10-247 
Type 2x 0.79 (0.75, 0.84) 2.2x10-15 0.43 (0.41, 0.46) 1.3x10-155 

Genic 
enhancers 
(EnhG) 

Type 1 7.07 (6.60, 7.58) 0.00 0.48 (0.44, 0.51) 1.2x10-83 
Type 2a 1.94 (1.82, 2.07) 1.2x10-89 0.47 (0.44, 0.51) 5.3x10-97 
Type 2x 4.17 (3.86, 4.50) 1.8x10-288 0.41 (0.38, 0.45) 1.1x10-95 

Enhancers 
(Enh) 

Type 1 8.28 (8.02, 8.55) 0.00 0.73 (0.70, 0.76) 2.1x10-51 
Type 2a 2.38 (2.30, 2.46) 0.00 0.73 (0.70, 0.76) 1.0x10-55 
Type 2x 4.63 (4.46, 4.80) 0.00 0.63 (0.60, 0.66) 1.6x10-88 

ZNF genes 
and repeats 
(ZNF/Rpts) 

Type 1 2.43 (1.67, 3.53) 3.4x10-6 0.97 (0.66, 1.44) 0.89 
Type 2a 0.54 (0.33, 0.90) 0.018 0.56 (0.33, 0.94) 0.028 
Type 2x 1.72 (1.12, 2.65) 0.013 1.00 (0.64,1.58) 0.99 

Hetero-
chromatin 

(Het) 

Type 1 0.50 (0.36, 0.69) 2.4x10-5 0.77 (0.55, 1.08) 0.13 
Type 2a 0.48 (0.29, 0.77) 0.0028 0.63 (0.38, 1.04) 0.069 
Type 2x 0.28 (0.17, 0.46) 4.2x10-7 0.45 (0.28, 0.75) 0.0019 

Bivalent/ 
Poised TSS 

(TssBiv) 

Type 1 6.30 (5.43, 7.31) 1.9x10-130 0.50 (0.43, 0.58) 1.7x10-18 
Type 2a 2.19 (1.92, 2.49) 1.1x10-32 0.60 (0.52, 0.69) 2.8x10-13 
Type 2x 4.07 (3.47, 4.78) 7.6x10-67 0.45 (0.38, 0.53) 5.5x10-21 

Flanking 
Bivalent TSS/ 

Enhancer 
(BivFlnk) 

Type 1 4.90 (4.39, 5.48) 4.1x10-172 0.33 (0.29, 0.37) 4.1x10-79 
Type 2a 1.84 (1.68, 2.02) 5.1x10-39 0.45 (0.41, 0.50) 2.9x10-58 

Type 2x 2.78 (2.45, 3.16) 4.7x10-57 0.28 (0.24, 0.32) 1.4x10-82 

Bivalent 
Enhancer 
(EnhBiv) 

Type 1 4.97 (4.46, 5.55) 2.0x10-180 0.56 (0.50, 0.62) 2.0x10-23 
Type 2a 1.51 (1.37, 1.67) 3.5x10-16 0.65 (0.59, 0.73) 2.3x10-15 
Type 2x 2.84 (2.51, 3.22) 2.5x10-61 0.51 (0.45, 0.58) 7.7x10-24 

Repressed 
PolyComb 
(ReprPC) 

Type 1 1.28 (1.17, 1.39) 1.3x10-8 0.42 (0.39, 0.46) 9.8x10-83 
Type 2a 0.52 (0.48, 0.56) 7.0x10-64 0.57 (0.53, 0.61) 5.4x10-46 
Type 2x 0.77 (0.70, 0.85) 8.5x10-8 0.48 (0.43, 0.53) 1.6x10-47 

Weak 
Repressed 
PolyComb 

(ReprPCWk) 

Type 1 1.43 (1.35, 1.51) 9.8x10-39 0.90 (0.85, 0.95) 1.7x10-4 
Type 2a 0.92 (0.87, 0.98) 0.0043 1.01 (0.95, 1.07) 0.77 

Type 2x 1.01 (0.95, 1.08) 0.69 0.91 (0.85, 0.97) 0.0056 

Supplementary Table 4.6 Association of chromatin state with differential accessibility by sex status for autosomal 
peaks  

Summary statistics comparing the likelihood of differential chromatin accessibility by sex for consensus chromatin 
states (same annotation in male and female reference samples) compared to the quiescent/low signal chromatin state 
from logistic regression models, with and without adjusting for categories of peak count. 
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 a. Male-biased expression  b. Female-biased expression 
Cell type 

(genes, promoter peaks) 
Odds ratio and 95% 
confidence interval  

P-value Odds ratio and 95% 
confidence interval P-value 

Type 1, Type 1 4.58 (3.76, 5.58) 2.8x10-51 5.00 (4.38, 5.71) 3.5x10-126 
Type 2a, Type 2a 4.95 (4.05, 6.06) 2.7x10-54 3.45 (3.05, 3.91) 1.7x10-86 
Type 2x, Type 2x 4.22 (3.33, 5.35) 1.8x10-32 7.92 (6.54, 9.61) 1.5x10-98 

Pseudobulk, Type 1 3.02 (2.42, 3.77) 2.5x10-22 3.76 (3.27, 4.33) 7.9x10-76 
Bulk, Type 1 1.85 (1.55, 2.21) 5.8x10-12 2.89 (2.60, 3.22) 4.0x10-83 

Supplementary Table 4.7 Association of sex-biased promoter peaks with sex-biased gene expression in the fiber 
types, the single nucleus pseudobulk, and the bulk  

The odds ratios, 95% confidence intervals, and p-values from logistic regression models testing the association of 
(a) male-biased expression with having at least one male-biased peak ≥1kb of gene TSS compared to having zero 
sex-biased peaks ≥1kb of TSS and (b) female-biased expression with having at least one female-biased peak ≥1kb of 
gene TSS compared to having zero sex-biased peaks. 
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Chapter 5 Discussion 

5.1 Summary and immediate extensions 

Translating GWAS signals into a more complete understanding of the molecular 

mechanisms contributing to disease risk remains challenging. In this dissertation, I have 

presented three projects that address distinct challenges in this pipeline, from variant 

ascertainment and association detection (Chapter 2) to the identification of causal genes (Chapter 

3) to the characterization of diverse biological contexts in which genes function (Chapter 4). 

Here, I summarize the major findings from each chapter and propose potential extensions for 

future work. 

In Chapter 2, we quantified the extent to which array genotyping and imputation can 

approximate whole genome sequencing. We found that for three major US populations 

(European American, African/African American, and Hispanic/Latino), imputation with the 

TOPMed reference panel can accurately estimate the genotypes of nearly all common and low-

frequency SNVs. Researchers interested in studying the effects of these variants (e.g. with 

GWAS) can rely on TOPMed-based imputation for variant ascertainment and invest in larger 

sample sizes instead of more costly sequencing, with the caveat that TOPMed-based imputation 

quality varies substantially with genomic location. Researchers interested in studying rare 

variation in these populations can also use TOPMed-based imputation to investigate the effects 

of large numbers of rare variant genotypes. However, because ~50% of rare SNVs and even 

more indels and multiallelic variants are still not accurately imputed in these populations, 
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sequencing is still necessary when a more comprehensive set of rare variants is needed (e.g. for 

clinical use). 

Because technologies that capture genetic variation continue to evolve and costs continue 

to decrease, it is essential to have frameworks and tools for comparing technologies to inform 

cost-effective study design decisions. The specific price differentials and minor allele frequency 

thresholds presented in Chapter 2 represent a snapshot of the field at the time of publication but 

will soon be outdated. For instance, due to a combination of updated sequencers, expiring 

patents, and a proliferation of start-up companies, short-read whole genome sequencing prices 

have fallen substantially over the last year to as low as $200 per genome,160 which is no longer 

an order of magnitude more expensive than most standard genotyping arrays. More studies may 

now be able to perform whole genome sequencing and directly study the effects of genetic 

variants across the minor allele frequency spectrum. Nonetheless, the framework for comparing 

two variant ascertainment strategies that we used in Chapter 2 is applicable to other, similar 

scenarios. For instance, long-read (>10kb read length) sequencing more accurately captures 

structural variants and resolves highly repetitive regions.161 However, it is even more expensive 

than short-read sequencing,162 which means that sample sizes are currently limited by price. A 

familiar strategy of imputing from a reference panel assayed with the more costly technology has 

been used to impute structural variants from a small number of samples with long-read 

sequencing to characterize their associations with cholesterol levels and height in an Icelandic 

population.163 Our framework could be used here to evaluate the tradeoffs between 

accuracy/coverage and cost in order to make recommendations for researchers wishing to study 

the effects of many different types of genetic variation in diverse populations. 
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In Chapter 3, we evaluated the consequences of using existing methods for colocalization 

in a single cohort design in violation of the non-overlapping cohorts assumption. We showed that 

researchers can take advantage of the more powerful single-cohort design without inflated Type I 

error rates as long as non-genetic factors that affect both phenotypes are either small in 

magnitude or are measured and adjusted for in the marginal analyses. We showed that the 

existence of such factors can be estimated through probabilistic principal component analysis, 

but that adjusting for these estimates is not permissible due to inflated Type I error rates resulting 

from collider bias. The guidelines presented in this chapter can help researchers justify the use of 

existing colocalization methods or identify problematic scenarios where colocalization analysis 

alone is not likely to give reliable results 

There are several avenues for extending colocalization methods, both in single- and 

multiple-cohort study designs. First, incorporating functional annotations into the priors of 

Bayesian colocalization methods may increase power to detect causal variants. For example, 

because open chromatin is associated with gene expression levels,146 we would expect significant 

enrichment of caQTLs in eQTL sets; this enrichment has been observed in some cell types.164,165 

Incorporating information about the variant’s effects on chromatin accessibility or structure may 

therefore be useful in determining its causal eQTL status. Second, extending our analysis of 

single-cohort colocalization with two traits to a larger number of traits may be useful for cohorts 

for which large numbers of traits are measured on the same individuals (e.g. biobanks linked to 

electronic health record systems). HyPrColoc96 and mvSUSIE166 are methods that seek to 

perform multiple-trait colocalization and fine-mapping, respectively. However, HyPrColoc also 

assumes non-overlapping samples and provides only limited information about the consequences 

of violating this assumption. MvSUSIE, as it is not a colocalization method, does not provide 
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probabilities for causality for multiple traits. Finally, our strategy for measuring and accounting 

for confounding in the single-cohort design requires access to individual-level data, which is 

often impractical or impossible due to computational and privacy concerns. Methods based 

solely on adjusting summary statistics would be beneficial.  

In Chapter 4, we characterized sex differences in gene expression and regulation at the 

cell-type and whole-tissue levels in skeletal muscle. We found highly concordant sex-biased 

expression of genes in mitochondrial activity (males) and muscle regeneration (females) across 

Type 1, Type 2A, and Type 2X muscle fibers and bulk muscle tissue, suggesting that the 

significant sex differences in fiber-type composition do not drive most sex differences seen in 

bulk data. LncRNAs and miRNAs, both classes of genes known for gene regulatory activity, 

showed extensive sex-biased expression in the fiber-type and bulk data, respectively. We found 

sex-biased chromatin accessibility to be ubiquitous but enriched in proximal and distal regulatory 

states; in gene promoters, sex-biased chromatin accessibility was positively associated with sex-

biased gene expression. Binding sites for sex hormones and muscle-specific transcription factors 

were enriched in the sex-biased ATAC-seq peaks. Together, these results highlight nuclear and 

cytoplasmic mechanisms for sex-differential gene regulation in skeletal muscle. 

Many of the findings raised in Chapter 4 pose new questions that could be answerable 

with additional data types. For example, many sex-biased genes were only observed in the bulk 

data and not in the single-nucleus data, which we hypothesized was due to a combination of 

greater power from higher counts in the bulk data and different regulatory processes in the 

cytoplasm compared to the nucleus of the cell. Spatial transcriptomics, which maps the location 

in addition to the expression levels of a gene,167 could help resolve this question for individual 

genes. Additionally, our dataset was primarily comprised of individuals older than 50, which 
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meant that we were not well powered to ascertain sex differences in gene expression at younger 

ages or investigate interactions between sex and age. Because muscle tissue composition and 

gene expression are affected by age as well as sex,168–170 expanding our cohort to include 

individuals with younger ages would allow a more comprehensive assessment of sex differences 

in muscle across the lifespan. Finally, the associations that we identified between gene 

expression and sex are not sufficient to establish causal pathways that explain sex differences in 

muscle physiology or disease risk. Intermediate phenotypic data types, such as proteomics, could 

be useful for connecting sex-biased gene expression differences to higher-order phenotypes.  

5.2 Emerging themes and future directions 

5.2.1 Ancestral diversity in publicly available genetic and genomic resources 

One emerging theme among the projects presented in this dissertation is the need for 

diverse (in terms of ancestry, sex, age, and disease/comorbidity status) cohorts with genetic and 

genomic data. To date, the majority of GWAS analyses have been conducted in populations of 

European ancestry, limiting genetic discovery and potentially exacerbating health disparities as 

genetic information is brought into clinical care.171 A necessary resource for conducting GWAS 

in non-European populations is an imputation reference panel (or panels) with substantial 

numbers of non-European haplotypes. Specifically, reference haplotypes should match the 

ancestry of the study sample as closely as possible. In Chapter 2, we illustrated that imputation 

with the TOPMed panel, which contains unprecedented numbers of African American and 

Hispanic/Latino samples, greatly improves imputation quality over the primarily European HRC 

panel in studies of African and Hispanic/Latino ancestry, particularly for individual with large 

proportions of (assumed) West African ancestry. TOPMed-based imputation in African 

American and Hispanic/Latino populations has led to the identification novel genetic 
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associations with type 2 diabetes,172 hematological traits,50 and serum biomarkers,173 

demonstrating the utility of this resource.   

In addition to genotype data, collecting functional genomic data on cohorts of diverse 

ancestry is essential to understanding the impact of genetic variation globally. The expression 

levels of some genes differ by ancestry due to genetic variation and environmental 

influences.174,175 The majority of samples in commonly-used, publicly-available resources with 

gene expression data like the GTEx Consortium and The Cancer Genome Atlas (TCGA) are of 

predominantly European ancestry.176,177 As discussed in Chapter 3, colocalization power 

decreases with the degree of LD mismatch between the eQTL and GWAS datasets. Therefore, 

these resources are less effective for colocalization with non-European GWAS datasets. As we 

showed that the single-cohort design has the potential for more powerful colocalization analyses, 

performing both eQTL and GWAS analyses in cohorts with African ancestry may be a 

particularly powerful strategy for uncovering the functional impact of noncoding genetic variants 

because African populations have less LD178 and therefore higher fine-mapping power179 than 

non-African populations.178 Under the assumption that most true common causal variants and 

genes are shared across populations, this may be a powerful strategy for understanding of the 

functional impact in all ancestry groups of the genetic variants that are shared across populations.  

5.2.2 Modeling continuous nature of genetic ancestry 

As the size and diversity of genetic cohorts continue to increase, we will need new 

methods to appropriately analyze the data they generate. One area for methodological 

development is continuous ancestry modeling. Currently, many studies classify individuals into 

discrete population groups for convenience, counter to recommendations that the continuous 

nature of genetic ancestry be reflected in research whenever possible.180 For example, in Chapter 
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2, we used four discrete population labels despite showing that imputation quality varies with 

fine-scale ancestry within these population groups. Evaluating the accuracy of polygenic risk 

scores (PRS) is one area in which modeling the continuous nature of genetic ancestry is 

particularly relevant. Because most GWAS are conducted primarily in European populations, 

PRS have lower predictive accuracy in non-European population groups.171 However, the 

individual-level accuracy of PRS has been shown to vary along a continuum of genetic 

ancestry.181 Future work in developing, training, and evaluating PRS while modeling continuous 

ancestry is necessary to fully characterize (and, ideally, optimize) PRS performance across 

individuals of diverse backgrounds. 

5.2.3 Promises and challenges of translational genetics  

 In Chapter 1, we stated that one of the primary goals of human genetics was to identify 

genes that contribute to the risk of complex diseases to improve prevention and treatment 

strategies.1 The work presented in Chapters 2-4 is focused on the first piece of that statement: 

identifying causal genes and their pathways. The second half of the statement, translating genetic 

information into useful clinical practices, is another active area of research. In the context of 

complex disease, PRS have shown promise in stratifying individuals based on their genetic risk 

for a wide range of diseases to inform intervention efforts.182 However, as previously discussed, 

PRS have higher predictive accuracy in European populations and therefore show a potential to 

exacerbate health disparities.171 Efforts to reduce these disparities include the methods to 

increase PRS portability from European to non-European populations183 and the development of 

cross-ancestry PRS.184 In the rare disease context, whole genome sequencing has led to much 

higher rates of diagnosis185 and can inform treatment options through pharmacogenics.186 

However, using whole genome sequencing in the clinic also has the potential to exacerbate 
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health disparities because the European bias in reference datasets that are used for functional 

prediction has led to greater numbers of variants of unknown significance in non-European 

populations.187  

The emergence of electronic health record (EHR)-linked biobanks gives researchers 

access to clinical data on tens and hundreds of thousands of patients. Many biobanks have large 

numbers of non-European participants and, to varying degrees, reflect the ancestral diversity of 

their communities.52,188,189 EHR-linked biobanks are not only cost-effective resources for 

conducting genetic discovery analyses like GWAS on many diseases in diverse populations, but 

they also provide a platform for implementing and evaluating strategies for integrating genetics 

in clinical care.190 Clinical trials using PRS and WGS data to inform clinical practices are 

ongoing,184,191 and much future work is needed to evaluate the efficacy of these strategies in a 

range of patient populations. 

Fully realizing the potential of genetics to make broad and meaningful impacts on human 

health requires translating the biological knowledge we gain with GWAS and related analyses 

into clinical practice. In this endeavor, care must be taken to ensure the benefits of genetic 

research are shared as broadly as possible across people and populations.
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