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Project Summary 
 
This project develops a methodological framework for modeling the high-fidelity naturalistic 

driving environment (NDE) with high-resolution trajectory data. Different from traditional NDE 

models that mainly match the moments of macroscopic traffic behaviors, the high-fidelity NDE 

models will match the distributions of microscopic driving behaviors, which are critical for safety-

critical applications such as autonomous vehicle testing and training. Specifically, we develop 

NeuralNDE, a deep learning-based model to learn multi-agent interaction behavior from vehicle 

trajectory data, and propose a conflict critic model and a safety mapping network to refine the 

generation process of safety-critical events, following real-world occurring frequencies and 

patterns. Utilizing high-resolution trajectory data collected by roadside sensors, we can train the 

NeuralNDE model to achieve statistical realism. The results show that NeuralNDE can achieve 

both accurate safety-critical driving statistics (e.g., crash rate/type/severity and near-miss 

statistics, etc.) and normal driving statistics (e.g., vehicle speed/distance/yielding behavior 

distributions, etc.), as demonstrated in the simulation of urban driving environments. 

 



 

  

1. Introduction 

Autonomous driving technologies are revolutionizing the future of transportation systems in 
unprecedented ways and speeds. However, safety remains the key challenge for the 
development and deployment of highly automated driving systems [1,2]. Simulation provides a 
controllable, efficient, and low-cost venue for both developing and testing autonomous vehicles 
(AV) [3,4]. But for simulation to be an effective tool, statistical realism of the simulated driving 
environment is a must [2,4,5,6,7]. In particular, the simulated environment needs to reproduce 
safety-critical encounters that AV might face in the real world with distribution-level accuracy. 
Unfortunately, the real-world naturalistic driving environment (NDE) is spatiotemporally complex 
and highly interactive. Therefore, how to achieve statistical realism for such simulators is a long-
standing problem in the field. 

In recent years, great efforts have been made in developing simulators for autonomous driving 
systems. Thanks to rapid advances in artificial intelligence (AI), computer vision and graphics, and 
high-performance computing devices, accurate vehicle dynamics, photorealistic rendering, and 
realistic sensor simulation are now being realized and accessible. Some well-known simulators 
include Intel’s CARLA [8], Google/Waymo’s CarCraft [9] and SimulationCity [5], Tesla’s simulator, 
Microsoft’s AirSim [10], NVIDIA’s DRIVE Sim [11], Baidu’s AADS [3], and Cruise’s simulator, etc. 
Despite the above efforts and advancements, these simulators mainly focus on the fidelity of the 
vehicle rather than the driving environment, especially for the background road user behavior. 
The behaviors of background agents are either replayed from logged data or simulated using 
oversimplified heuristic rules, which leaves a significant gap between the simulation and the real-
world driving environment. 

The key to high-fidelity NDE is accurate modeling of human driving behavior. Microscopic traffic 
simulators, which mimic the interactive agent behaviors through a combination of physics-driven 
models and hand-crafted rules, such as car-following models [12,13], lane-changing models 
[14,15], gap-acceptance models [16], etc., have been studied and developed in the 
transportation engineering domain for decades. Some well-known traffic simulators are SUMO 
[17], VISSIM [18], and AIMSUN [19]. Due to the limited capability of the underlying parametric 
models and manually encoded rules, the model fidelity is constrained. Many attempts have been 
made by using neural networks [20-25], Markovian-based models [6,26], Bayesian networks 
[27,28], and game theory [29], etc., to achieve better performance in modeling specific behaviors 
(e.g., car-following) or specific scenarios (e.g., unprotected left turn). However, they can hardly 
be generalized and scaled to model complex urban environments and highly interactive 
scenarios. 

The focus of this study is to build a high-fidelity simulator that is statistically representative of 



real-world driving environments, particularly for those long-tail safety-critical events. Especially, 
we aim to produce safety-critical events with distribution-level accuracy, including both crashes 
and near-misses, which are critical for training and testing AVs. This differentiates our proposed 
NeuralNDE model from most existing simulators based on imitation learning (including 
generative adversarial imitation learning) [30-36], where statistical realism is hardly considered 
and cannot be achieved. For example, the crash rates of these simulation environments are 
significantly higher (e.g., SimNet [33]) than that of real-world traffic. Moreover, these methods 
can only generate short-time simulations in the order of a few seconds (e.g., D2Sim [36]), which 
limits the capability of full-length trip training and evaluation of AVs. To reproduce high-fidelity 
safety-critical events, there are also methods proposed based on real-world event 
reconstruction. For example, the researchers constructed the simulation environment based on 
real-world fatal collision events from various data sources including police reports [37]. However, 
it may be difficult to reconstruct near-miss events using this method since the information 
needed for reconstruction is usually not available. Therefore, these reconstruction-based 
methods and our learning-based method serve to complement each other when building high-
fidelity simulators. 

The lack of statistical realism for simulation can potentially mislead AV development in both 
training and testing. An illustration example is shown in Figure 1a. Consider a roundabout 
environment that includes multiple vehicles. At time 𝑡𝑡, a vehicle (vehicle 1) is circulating, and 
another vehicle (vehicle 2) is about to enter the roundabout. Their potential future positions are 
denoted by shaded blue areas, and they have a probability to collide if vehicle 2 fails to yield. 
Assume the distance between the two vehicles in the real world follows certain distribution as 
shown by the red curve and the simulated results are the dashed blue curve. This statistical 
difference, i.e., distribution inconsistency between the real world and simulation, will lead to an 
underestimation of vehicle crash rate and therefore provide optimistic estimates of AV safety 
performance. Also, since the distance between vehicles in the simulation environment is not 
consistent with the real world, an AV agent trained in it might not fit in real traffic due to the 
large sim-to-real gap. In real-world driving environments, instead of two agents, multiple human 
drivers are continuously interacting with each other and their states are progressively evolving 
for a long time horizon. Therefore, the underlying joint NDE distribution is extremely complex 
and in a very high-dimensional space as shown in Figure 1b. The goal of NDE modeling is to 
achieve distribution-level accuracy under both normal driving and safety-critical situations. 
Therefore, a wide range of environment statistics, for example, vehicle speed and distance 
distributions, crash rate, crash type and severity distributions, near-miss measurements, etc., 
need to be consistent with the real world.  



Figure 1 Modeling naturalistic driving environment with statistical realism. a, Statistical errors 
in simulation may mislead AV development. b, The underlying naturalistic driving environment 
distribution is highly complex and in a high dimensional space since it involves multiple agents 
and long time horizons. The simulation environment needs to achieve statistical realism, i.e., 
distribution-level accurate statistics regarding human driving behaviors in both normal and 
safety-critical driving conditions. c, Major challenges for modeling multi-agent interaction 
behaviors and constructing naturalistic driving environments. The challenges include the “curse 
of dimensionality” for multi-agent highly interactive behaviors, the “curse of rarity” [8] of safety-
critical events in the real world, and the “distribution shift” for long-time simulations. 

The challenges of modeling NDE with statistical realism mainly come from three aspects as shown 
in Figure 1c. The first challenge is from the “curse of dimensionality”. The real-world driving 
environment is highly interactive and spatiotemporally complex with large numbers of road users 
and long time horizons, which make NDE modeling a very high-dimensional problem. The second 
challenge is from the “curse of rarity” [38]. Since safety-critical events (e.g., crashes) rarely 
happen in the real-world driving environment (on average10−6  crashes per driving mile for 



human drivers [39]), modeling such rare events in high fidelity requires an extremely high 
precision of the microscopic behavior. The compounding effects of the “curse of rarity” on top of 
the “curse of dimensionality” in the real world NDE will make it even more challenging [38]. The 
third challenge is from the “distribution shift” [30], which is particularly critical for learning-based 
simulators. Short-term and small modeling errors may accumulate both in space and time, which 
might lead to out-of-distribution behaviors like frequent offroad, unrealistic collision, or even the 
collapse of the entire simulation. Moreover, due to the highly interactive nature of the driving 
environment, unrealistic behaviors of a single agent will impact and propagate to all agents in 
the simulation. 

In this project, we solve this long-standing problem by developing NeuralNDE - a novel deep 
learning-based framework for simulating Naturalistic Driving Environment with statistical 
realism. To demonstrate the effectiveness of our approach, we construct a multi-lane 
roundabout environment located in the US using real-world data. The simulated environment is 
validated to be statistically accurate with the real world, including vehicle instantaneous speed, 
distance, and yielding behavior. More importantly, the proposed NeuralNDE can achieve 
accurate safety-critical statistics including both crash and near-miss measurements, for example, 
crash rate, crash type, crash severity, post-encroachment time (PET [44]), etc. The fidelity of 
NeuralNDE-generated crash events is further validated against real-world crash videos and police 
crash reports. To the best of our knowledge, this is the first time that a simulation environment 
can systematically reproduce the real-world driving environment with statistical realism, 
particularly for those long-tail safety-critical events that are critical to AV safety. In addition, the 
proposed environment can perform long-time (hour-level) simulation, where the AV under 
training or testing can continuously interact with background vehicles. The proposed NeuralNDE 
should be readily integrated with different high-fidelity AV simulators, for example, CARLA [5], 
which focuses on photorealistic rendering and sensor simulations, to provide a realistic traffic 
environment. Furthermore, it should be noted that the proposed NeuralNDE model can be used 
for other safety-related applications other than AV training and testing. For example, the 
proposed NeuralNDE model can be used to estimate the safety performance of a traffic facility 
under different traffic flow conditions. 

2. Methodology

2.1 Overall framework 

The overview of the proposed framework is shown in Figure 2. We frame the simulation modeling 
under an imitation learning paradigm with deep neural networks under the supervision of large-
scale real-world demonstration. The behavior modeling network takes in all road users' past 
states within a historical time window as input and predicts their joint distribution of future 
actions. We leverage the recent advances in fundamental models (e.g., GTP [40] and BERT [41]) 



 

  

and use Transformer as the backbone of the behavior modeling network to characterize multi-
agent interaction behaviors. The multi-agent actions will be sampled from the predicted 
distribution and passed through the safety mapping network to simulate the vehicle state at 
future moments. To further overcome the distribution shift issue, we integrate the generative 
adversarial training as in in GAN [42] and GAIL [43], where a discriminator is introduced to be 
jointly trained with the behavior modeling network. The simulated trajectory will be rolled out 
multiple times in an autoregressive manner to generate long trajectories and input into the 
discriminator. Therefore, two types of loss, i.e., imitation loss and adversarial loss, will be 
backpropagated to train the behavior modeling network to learn multi-agent interactive 
behaviors. The adversarial loss will also be used to train the discriminator to distinguish between 
real-world and simulated trajectories. 

 
Figure 2 The framework and training pipeline of the NeuralNDE. 

The behavior modeling network can achieve distribution-level accuracy in normal driving 
conditions, however, it cannot achieve such accuracy in safety-critical conditions, due to the 
rarity of safety-critical events in the training data, which will lead to inaccurate statistics like 
unrealistically high crash rates. To tackle this issue, a conflict critic mechanism is introduced 
during the inference time as shown in Figure 3. It will monitor the generated trajectories, and if 
there is a potential conflict, there is a certain probability of accepting vehicles performing 
dangerous behavior, which makes NeuralNDE capable of realizing accurate safety-critical 
statistics. Otherwise, the generated behaviors will be guided and rectified by the safety mapping 
network to resolve the conflict. The acceptance probability is trajectory-dependent and will be 
calibrated to fit ground-truth safety-critical statistics (e.g., crash rate and crash type distribution). 
Therefore, the conflict critic module controls the occurring frequencies and patterns of 
dangerous driving behavior during the simulation. 



Figure 3 Demonstration of the behavior modeling network, conflict critic module, and safety 
mapping network during the inference time. 

The differentiable safety mapping network is a neural mapper pretrained from physics and 
driving rules to map unsafe behaviors to a feasible domain of safety. Therefore, the safety 
mapping network will guide vehicle behavior and rectify their actions in safety-critical situations. 
The safety mapping network is pretrained and fixed when training the behavior modeling 
network and the discriminator jointly. During the simulation process, as shown in Figure 4, the 
state of all road users will be updated based on the behavior modeling network, conflict critic 
module, and the safety mapping network in each simulation step to autoregressively generate 
the simulation environment. The details of each component in the NeuralNDE framework will be 
introduced in the following sections. 

Figure 4 Illustration of the simulation process. 



2.2 Behavior modeling network 

We frame the behavior modeling via imitation learning with the help of large-scale real-world 
offline demonstrations. Given a large-scale collection of real-world vehicle trajectory data, we 
aim to jointly model both vehicle-to-vehicle interactions and their long-term state trajectories 
within a certain temporal range. In our framework, we consider each vehicle instance as an agent 
with stochastic actions and future states where the actions and states of each agent are not only 
related to its own historical trajectories, but also to that of all other agents.  

Suppose 𝐬𝐬𝐢𝐢𝐭𝐭 and 𝐚𝐚𝐢𝐢𝐭𝐭 represent the state vector (e.g., location, pose, vehicle size, etc.) and action 
vector (e.g., acceleration, yaw rate, etc.) of 𝑖𝑖 th agent at time step 𝑡𝑡 . 𝐒𝐒𝐍𝐍𝛕𝛕:𝐭𝐭 =
{𝐬𝐬𝟏𝟏𝐭𝐭−𝛕𝛕+𝟏𝟏, … 𝐬𝐬𝟏𝟏𝐭𝐭 , … 𝐬𝐬𝐍𝐍𝐭𝐭−𝛕𝛕+𝟏𝟏, … 𝐬𝐬𝐍𝐍𝐭𝐭 } represents a collection of the state trajectories of all 𝑁𝑁 agents from 
all 𝜏𝜏 time steps ahead of the current time 𝑡𝑡. The modeling of all agents’ future actions can be thus 
essentially considered as a conditional probabilistic inference problem, i.e., to estimate the joint 
distribution of actions from all agents 𝑝𝑝(𝐚𝐚𝟏𝟏𝐭𝐭 , … , 𝐚𝐚𝐍𝐍𝐭𝐭 |𝐒𝐒𝐍𝐍𝛕𝛕:𝐭𝐭) given their historical states as conditional 
inputs. To accurately model the joint distribution, the Transformer model is used as the backbone 
of our behavior modeling network. Transformer models originated from the field of natural 
language processing [54], and have revealed remarkable performance in many applications, 
including computer vision [55], bioinformatics [56], and multimodal data generative modeling 
[57].  

There are three advantages to modeling each agent as a “token” in the language model. The first 
advantage is that the Transformer is naturally suitable for modeling long-term interactive 
behavior in a multi-agent environment. The self-attention mechanism is capable of characterizing 
inter-token relations, which model the interaction between agents. The position-wise feed-
forward network in the Transformer can capture intra-token information, which measures the 
influence of the historical states of each agent on their future behavior. The second advantage is 
model scalability. In this study, our model can handle up to 32 objects simultaneously, 
considering the size of the roundabout and for the convenience of experiments. However, the 
framework we designed should be able to handle a much larger number of objects, as each agent 
in the simulation is modeled as a “token”. It has been shown in previous studies [58,59] that the 
Transformer can handle up to thousands of “tokens”. The third advantage is the permutation 
invariant property. The Transformer block is permutation invariant to the order of tokens. 
Therefore, by modeling each agent as a token, we do not need to specify the order of agents, 
which are geographically located in a two-dimensional space (i.e., on a road), making it difficult 
to order them in a one-dimensional space (i.e., determine the token order in input). 



At each time step of modeling, the behavior modeling network FM takes in the historical states 
𝐒𝐒𝐍𝐍𝛕𝛕:𝐭𝐭  of all agents and is trained to jointly predict their future actions (𝐚𝐚𝟏𝟏𝐭𝐭 , … , 𝐚𝐚𝐍𝐍𝐭𝐭 ). Instead of 
predicting deterministic actions values, we predict the stepwise action distributions and consider 
distribution as a multi-variable Gaussian over their action space:  

𝑝𝑝(𝐒𝐒𝐍𝐍𝛕𝛕:𝐭𝐭) =  FM(𝐒𝐒𝐍𝐍𝛕𝛕:𝐭𝐭)~𝑁𝑁(𝛍𝛍𝐚𝐚,𝐢𝐢=𝟏𝟏…𝐍𝐍
𝐭𝐭 ,𝚺𝚺𝐚𝐚,𝐢𝐢=𝟏𝟏…𝐍𝐍

𝐭𝐭 ), (1) 
where 𝑝𝑝(𝐒𝐒𝐍𝐍𝛕𝛕:𝐭𝐭)  is the joint action distribution and  𝛍𝛍𝐚𝐚,𝐢𝐢=𝟏𝟏…𝐍𝐍

𝐭𝐭  and 𝚺𝚺𝐚𝐚,𝐢𝐢=𝟏𝟏…𝐍𝐍
𝐭𝐭  are the mean and 

covariance matrix of the Gaussian distribution. After we obtain the joint distribution of actions, 
a group of action vectors for each agent are sampled: 

𝐚𝐚𝟏𝟏𝐭𝐭 , … ,𝐚𝐚𝐍𝐍𝐭𝐭 ← 𝑁𝑁(𝛍𝛍𝐚𝐚,𝐢𝐢=𝟏𝟏…𝐍𝐍
𝐭𝐭 ,𝚺𝚺𝐚𝐚,𝐢𝐢=𝟏𝟏…𝐍𝐍

𝐭𝐭 ). (2) 

Then, for each agent, its new state vector 𝐬𝐬𝐢𝐢𝐭𝐭+𝟏𝟏 is determined by a differentiable state transition 
function T determined by vehicle dynamics: 

𝐬𝐬𝐢𝐢𝐭𝐭+𝟏𝟏 = T(𝐚𝐚𝐢𝐢𝐭𝐭, 𝐬𝐬𝐢𝐢𝐭𝐭). (3) 

The above processing will be repeated so that new states of all agents can be generated in an 
auto-regressive manner. In practice, instead of one-step prediction, multiple time steps (e.g., 𝜅𝜅 
steps) predictions 𝐒𝐒𝐍𝐍𝐭𝐭:𝛋𝛋 = {𝐬𝐬𝟏𝟏𝐭𝐭+𝟏𝟏, … 𝐬𝐬𝟏𝟏𝐭𝐭+𝛋𝛋, … 𝐬𝐬𝐍𝐍𝐭𝐭+𝟏𝟏, … 𝐬𝐬𝐍𝐍𝐭𝐭+𝛋𝛋}  will be made by the behavior modeling 
network. Note that to simulate the uncertainty of drivers, during the simulation, at each time 
step, we will sample from the joint distribution to determine all agents' future trajectories and 
then simulate forward. Also, our model can be easily extended to generate multimodal outputs, 
where several Gaussian distributions instead of one will be predicted to further improve the 
uncertainty of drivers [60]. 

Figure 5 Network architecture of the behavior modeling network. 

The proposed behavior modeling network consists of a frequency encoding layer, an input 
embedding layer, a Transformer backbone, and a prediction layer, as shown in Figure 5. Detailed 
network architecture can be found in the later section. The input embedding layer is a fully 



connected layer with weights shared across different tokens. The Transformer backbone consists 
of several standard BERT [41] layers stacked on top of each other. Since the action prediction is 
independent of the input order of the 𝑁𝑁 agent, we, therefore, have removed the “positional 
encoding”, which is a standard encoding layer in Transformers to capture order-related 
information for sequence input data. Also, before the state vectors are input to the input 
embedding layer, we adopt the ideas of Mildenhall et al. [61] to use frequency encoding, which 
applies a set of sine and cosine basis functions that projects the vectors to high dimensional space 
to improve capturing high-frequency variation in the state spaces. Suppose 𝛾𝛾 defines a mapping 
function from 𝑅𝑅1 to 𝑅𝑅2𝐿𝐿+1, where 𝐿𝐿 is the order of frequencies. The state value 𝐬𝐬 after mapping 
can be written as follows: 

𝜸𝜸(𝒔𝒔) = [𝐬𝐬, sin (20𝜋𝜋𝐬𝐬) , cos (20𝜋𝜋𝐬𝐬) , … , sin (2𝐿𝐿−1𝜋𝜋𝐬𝐬) , cos (2𝐿𝐿−1𝜋𝜋𝐬𝐬)]. (4) 

To train the model FM with implicit variance, in the prediction layer, two prediction heads are 
attached for each input token at the output end, one for predicting 𝛍𝛍𝐚𝐚,𝐢𝐢

𝐭𝐭 , another for predicting 
𝚺𝚺𝐚𝐚,𝐢𝐢
𝐭𝐭 . The training of the behavior modeling network can be formulated as a maximum likelihood 

estimation process. Given 𝑁𝑁 agents of 𝑇𝑇 time steps, the state trajectories within [𝑡𝑡 − 𝜏𝜏, 𝑡𝑡] are 
used as input and the action vectors at time 𝑡𝑡 are used as the ground truth (𝑡𝑡 = 1, … ,𝑇𝑇), then 
the likelihood function can be written as follows: 

𝑝𝑝(FM) = 𝑝𝑝(𝐬𝐬𝟏𝟏𝟏𝟏, 𝐬𝐬𝟏𝟏𝟐𝟐, … , 𝐬𝐬𝐢𝐢𝐭𝐭, … , 𝐬𝐬𝐍𝐍𝐓𝐓). (5) 

For simplification, we assume that there is no correlation between variables in the multivariate 
Gaussian distribution, so the action covariance matrix for each agent is a diagonal matrix, i.e., 
𝚺𝚺𝐚𝐚,𝐢𝐢
𝐭𝐭 ≈ 𝑑𝑑𝑖𝑖𝑑𝑑𝑑𝑑(𝜎𝜎𝑖𝑖,1𝑡𝑡 , … ,𝜎𝜎𝑖𝑖,𝐷𝐷𝑡𝑡 ), 𝐷𝐷 is the dimension of the action vector. Then the joint probability of 

an action vector 𝐚𝐚𝐢𝐢𝐭𝐭 can be implied as follows: 

𝑝𝑝 (𝐬𝐬 𝐭𝐭 ) = ∏  
1

(2𝜋𝜋)
1
2

1
𝜎𝜎𝑖𝑖,𝑗𝑗𝑡𝑡

 𝑒𝑒𝑒𝑒𝑝𝑝 {−
(𝜇𝜇𝑖𝑖,𝑗𝑗𝑡𝑡 − 𝑑𝑑𝑖𝑖,𝑗𝑗𝑡𝑡 )2

2(𝜎𝜎𝑖𝑖,𝑗𝑗𝑡𝑡 )2 
}

𝐷𝐷

𝑗𝑗=1

, (6) 

where 𝜇𝜇𝑖𝑖,𝑗𝑗𝑡𝑡  represents the predicted 𝑗𝑗th action value at time 𝑡𝑡 for 𝑖𝑖th agent. 

We approximate the joint probability distribution 𝑝𝑝(FM) in Equation (5) as the multiplicative 
form of each agent’s marginal probabilities, and combine it with Equation (6) to derive the loss 
function in the negative log-likelihood form as follows: 

(𝜇𝜇𝑖𝑖,𝑗𝑗𝑡𝑡 − 𝑑𝑑𝑖𝑖,𝑗𝑗𝑡𝑡 )2

2(𝜎𝜎𝑖𝑖,𝑗𝑗𝑡𝑡 )2
] . (7) 

The approximation of Equation (5) will not affect the solution since the term 1
2

(𝜇𝜇𝑖𝑖,𝑗𝑗𝑡𝑡 − 𝑑𝑑𝑖𝑖,𝑗𝑗𝑡𝑡 )2/
(𝜎𝜎𝑖𝑖,𝑗𝑗𝑡𝑡 )2 in Equation (7), which represents the expected prediction accuracy of the actions, can still 
make the model converge to the optimal solution. Note that although we don’t have ground 
truth for the predicted variance 𝜎𝜎𝑖𝑖,𝑗𝑗𝑡𝑡 , it can be jointly estimated as implicit variables along with 

L (F  )= ∑∑∑
𝑇𝑇 𝑁𝑁 𝐷𝐷

[ln(    , )+σt
i j

M M 𝑡𝑡=1 𝑖𝑖=1 𝑗𝑗=1



the mean action 𝜇𝜇𝑖𝑖,𝑗𝑗𝑡𝑡  during the training process, where a high uncertainty prediction naturally 
responds to a large variance and vice versa. 

2.3 Conflict critic module 

The simulated environment must be able to reproduce accurate safety-critical driving statistics 
including both near-miss and crash events. Although the behavior modeling network can 
generate realistic conflicts, it may not be able to achieve distribution-level accuracy, due to the 
rarity of safety-critical events in the training dataset. For example, the crash rate can be 
unrealistically high, and the crash type distribution can be inconsistent with the real-world driving 
environment. To tackle this issue, we design a model-based conflict critic module Fc to control 
the occurring frequencies and patterns of safety-critical behaviors during the inference time to 
achieve statistical realism. The input to Fc are the sampled 𝜅𝜅 steps predicted trajectories of all 𝑁𝑁 
agents 𝐒𝐒𝐍𝐍𝐭𝐭:𝛋𝛋 = {𝐬𝐬𝟏𝟏𝐭𝐭+𝟏𝟏, … 𝐬𝐬𝟏𝟏𝐭𝐭+𝛋𝛋, … 𝐬𝐬𝐍𝐍𝐭𝐭+𝟏𝟏, … 𝐬𝐬𝐍𝐍𝐭𝐭+𝛋𝛋} generated by the behavior modeling network at the 
current time 𝑡𝑡. The output of Fc is the acceptance probability 𝑝𝑝𝑎𝑎  for not passing through the 
safety mapping network: 

𝑝𝑝𝑎𝑎 = Fc(𝐒𝐒𝐍𝐍𝐭𝐭:𝛋𝛋). (8) 

Figure 6 Illustration of the conflict critic module. 

If there is a potential conflict in predicted trajectories 𝐒𝐒𝐍𝐍𝐭𝐭:𝛋𝛋, we will have a probability 𝑝𝑝𝑎𝑎 to accept 
it, and a probability 1 − 𝑝𝑝𝑎𝑎 to reject it and let the safety mapping network guide and rectify the 
dangerous driving behavior. The acceptance probability is trajectory-dependent, which means 
that for those conflict patterns that have a higher probability of occurring in the real world, we 
will have correspondingly higher 𝑝𝑝𝑎𝑎 to accept it. Therefore, by calibrating the Fc function, we can 
control the generation process of safety-critical events to match real-world statistics in both 
near-misses and crashes. Specifically, in the study, each crash type will have a specific acceptance 
probability. The implementation details and calibration methods are introduced in the following 



paragraphs. 

In this project, we consider vehicle conflicts in a one-step prediction for simplicity. Let 𝐒𝐒𝐍𝐍𝐭𝐭+𝟏𝟏 
denotes all vehicle states predicted by the behavior modeling network at the next time step 𝑡𝑡 +
1. If there is a crash happening in the predicted trajectory, we will have a certain probability to
accept the crash and generate it, otherwise, the vehicle behavior will be rectified by the safety
mapping network to avoid the crash. The acceptance probability will depend on the predicted
crash type that happens in 𝐒𝐒𝐍𝐍𝐭𝐭+𝟏𝟏 and will be calibrated as discussed in the next paragraph. For the
same crash type, the acceptance probability will be the same. If there is no crash in 𝐒𝐒𝐍𝐍𝐭𝐭+𝟏𝟏, the
acceptance probability will be zero. An illustration figure is shown in Figure 6. By calibrating the
conflict critic module, i.e., obtaining the acceptance probability 𝑝𝑝𝑎𝑎(𝑗𝑗)  for different crash types 𝑗𝑗,
we can realize accurate crash rate and crash type distribution of the simulation environment.

The calibration process is divided into two steps, where the first step aims to fit the crash rate 
and the second step tries to fit the crash type distribution. In the first step, we first assume a 
uniform acceptance probability (𝑝𝑝𝑢𝑢𝑎𝑎) for different crash types and try to fit the ground-truth 
crash rate. The calibration process is, at the first iteration, making a random initial guess of the 
uniform acceptance probability 𝑝𝑝𝑢𝑢𝑎𝑎1 ∈ (0,1] , then run simulations to obtain the current 
NeuralNDE crash rate at the first iteration 𝑐𝑐1 . Then linearly update the uniform acceptance 
probability as follows 

𝑝𝑝𝑢𝑢𝑎𝑎𝑖𝑖+1 = 𝑐𝑐𝑔𝑔𝑡𝑡 ⋅
𝑝𝑝𝑢𝑢𝑎𝑎𝑖𝑖

𝑐𝑐𝑖𝑖
, (9) 

where 𝑐𝑐𝑔𝑔𝑡𝑡  denotes the desired ground-truth crash rate, and 𝑖𝑖  denotes the current iteration 
number. Continue this process until the NeuralNDE crash rate is close to the ground truth with 
satisfactory accuracy. In the second step, we will calibrate the acceptance probability for each 
crash type. The acceptance probability 𝑝𝑝𝑎𝑎(𝑗𝑗)  for crash type 𝑗𝑗  needs to satisfy the following 
system of linear equations to fit both crash rate (Equation 10) and crash type distribution 
(Equation 11): 

∑  𝑝𝑝 (𝑗𝑗 )𝑝𝑝 𝑎𝑎 (𝑗𝑗 )
𝑗𝑗

= 𝑝𝑝𝑢𝑢𝑎𝑎. (10) 

𝑝𝑝(𝑗𝑗)𝑝𝑝𝑎𝑎(𝑗𝑗)
∑ 𝑝𝑝(𝑗𝑗)𝑝𝑝𝑎𝑎(𝑗𝑗)𝑗𝑗

= 𝑐𝑐𝑔𝑔𝑡𝑡(𝑗𝑗),∀𝑗𝑗 ∈ 𝐽𝐽, (11) 

where 𝑐𝑐𝑔𝑔𝑡𝑡(𝑗𝑗)  is the ground-truth probability of crash type 𝑗𝑗 , 𝑝𝑝𝑢𝑢𝑎𝑎  is the uniform acceptance 
probability obtained from the first step, and 𝑝𝑝(𝑗𝑗) is the probability of crash type 𝑗𝑗 occurring in 
NeuralNDE using the uniform probability 𝑝𝑝𝑢𝑢𝑎𝑎 . For Equation (12), the summation of 𝑝𝑝(𝑗𝑗)𝑝𝑝𝑎𝑎(𝑗𝑗) 
over all potential crash types 𝑗𝑗 is the overall acceptance probability considering different crash 



types. It needs to be equal to the uniform acceptance probability (𝑝𝑝𝑢𝑢𝑎𝑎) obtained in the first step, 
which can guarantee the accurate crash rate of the simulation. Therefore, the acceptance 
probability 𝑝𝑝𝑎𝑎(𝑗𝑗) equals to 

𝑝𝑝𝑎𝑎(𝑗𝑗) = 𝑝𝑝𝑢𝑢𝑎𝑎 ⋅
𝑐𝑐𝑔𝑔𝑡𝑡(𝑗𝑗)
𝑝𝑝(𝑗𝑗)

. (12) 

We will use 𝑝𝑝𝑎𝑎(𝑗𝑗) as the acceptance probability of different crash types 𝑗𝑗 ∈ 𝐽𝐽 for the conflict critic 
module. 

2.4 Safety mapping network 

To improve the modeling accuracy and achieve statistical realism in safety-critical conditions, we 
propose a safety mapping network that can guide vehicle behavior in safety-critical situations by 
mapping the unsafe vehicle behaviors to their closest safe neighbors. The safety mapping 
network serves as a safety guard to rectify vehicle behaviors before an imminent crash. Given 
the current state and predicted 𝜅𝜅 steps future actions of all agents {𝐒𝐒𝐍𝐍𝐭𝐭 ,𝐀𝐀𝐍𝐍

𝐭𝐭:𝛋𝛋}, the safety mapping 
network FS jointly predicts the rectified actions 𝐀𝐀𝐍𝐍

𝐭𝐭:𝛋𝛋,∗ of all agents as follows 

𝐀𝐀𝐍𝐍
𝐭𝐭:𝛋𝛋,∗ = FS(𝐒𝐒𝐍𝐍𝐭𝐭 ,𝐀𝐀𝐍𝐍

𝐭𝐭:𝛋𝛋). (13) 

If there is an impending crash using the original action vector 𝐀𝐀𝐍𝐍
𝐭𝐭:𝛋𝛋, the safety mapping network 

will modify the action vector to resolve the potential conflict. Note that the action rectification 
will only be done if the original action vector will result in a predicted crash, otherwise the action 
output by the safety mapping network will be the same as the original action vector. 

Figure 7 Illustration figure of the physics-based safety mapping rule to guide vehicle behavior 
in safety-critical situations. 

The safety mapping network is trained to imitate existing model-based safety guards based on 
domain knowledge. In this project, for simplicity and generality, we consider one-step prediction 
and use a physics-based safety guard as the training target. The illustration figure is shown in 
Figure 7. When two vehicles are going to collide with each other, we resolve the potential conflict 
by setting a repulsive force between them. The force is projected to the heading direction of each 



vehicle and restricts their action to avoid the crash. We generate a large number of offline 
random states-response pairs based on the above rules. The loss function for training the safety 
mapping network can be written as follows: 

(14) 

where Â 𝐍𝐍  are the ground truth rectified actions of each agent at time 𝑡𝑡 , ‖ ∙ ‖1 represents 
the sum of element-wise absolute distance. Since the action rectification also involves complex 
interactions between agents, we also use the Transformer as the backbone of the safety mapping 
network. Similar to the behavior modeling network, each agent is considered as an individual 
token, and the Transformer is trained to predict the residue between the rectified and the 
reference control. After training, the pretrained safety mapping network will be fixed and 
embedded into the framework, therefore, the whole pipeline can be trained end-to-end as 
shown in Figure 2. 

By incorporating the safety mapping network, we can mitigate the inevitable modeling error of 
the behavior modeling network in safety-critical situations. We showed that the safety mapper 
significantly reduces the modeling error (e.g., measured by crash rate) by several orders of 
magnitude in Ablation studies, while such behavior is extremely difficult for existing data-driven 
approaches to master due to the “curse of rarity” issue discussed previously. Also, it helps to 
decouple the safety objective when training the behavior modeling network and let it focus on 
realistic multi-agent interaction modeling. It should be noted that the proposed method is not 
limited to the chosen physics-based rule. Different safety guards proposed recently can also be 
used, for example, safety envelope-based methods [62], potential force field-based methods 
[63,64], online verification methods [65], etc.  

2.5 Generative adversarial training 

To further improve the realism of the generated trajectories and tackle the distribution shift 
issue, generative adversarial training is adopted when training the behavior modeling network. 
The key to the generative adversarial training is a minimax two-player game under which two 
networks will contest with each other and force the generated data to be indistinguishable from 
real ones [42]. During the training, we rollout forward the simulation for several steps and 
assume the generated trajectories can be easily differentiated from real ones if they exhibit 
unrealistic patterns (e.g., offroad or other distribution shift behaviors). To this end, we introduce 
a discriminator network – a multi-layer perceptron network, which takes in the state trajectories 
of an agent and is trained to distinguish whether the input is sampled from the real-world dataset 
or from the simulation. Meanwhile, we force the behavior modeling network to capture the true 
distribution of real trajectories and make generated data indistinguishable from the discriminator 
side. In this way, the adversarial loss can be backpropagated to the behavior modeling network 
to further improve the modeling fidelity. 

t t 𝐭𝐭L  (F  ) = ||F  (S   ,A  ) - Â 𝐍𝐍||1,
S S S N N

T



(15) 

During the training process, since all components are differentiable, the networks FM and D can 
be alternatively updated under a unified objective. By combining the loss function (Equation (9)) 
of the behavior modeling network FM, our final objective function is defined as follows: 

FM∗ , D∗ =arg min
FM

max
D

{LM(FM) + 𝛽𝛽 Ladv(FM, D)} . (16) 

where FM  tries to minimize this objective while D  tries to maximize it. 𝛽𝛽  is a pre-defined 
hyperparameter for balancing the weights between the two loss terms. 

3. Implementation details

3.1 Datasets 

Roundabout is an important and challenging urban driving environment for AVs. We validate our 
model using a real-world dataset collected from a two-lane roundabout located at State St. and 
W Ellsworth Rd. intersection, Ann Arbor, Michigan, USA (abbreviated as AA dataset). The 
illustration figure of this two-lane roundabout is shown in Figure 8. This is a busy roundabout 
with a large traffic volume and the fourth highest crash rate in Michigan [45]. A roadside 
perception system [46,47] is deployed for real-time traffic object detection, localization, and 
tracking to collect all vehicle trajectory information (e.g., position, heading) within the 
roundabout at 2.5Hz. The AA dataset includes both the detailed normal and safety-critical driving 
conditions data. The safety-critical events data, which includes crash event trajectories, crash 
videos, police crash reports, etc., are crucial for providing safety-critical statistics ground-truth to 
validate the simulation fidelity. To the best of our knowledge, the real-world safety-critical rare-
event data are not available in any most existing public datasets, however, they are essential for 
constructing and validating the performance of generated simulation environments. For training 
purposes, we used data collected on May 2nd, 2021, from 10:00 to 17:00, including around 
17,000 road users. For each vehicle, the data includes its position, heading, and other information 
at 2.5 Hz. We excluded frames that involve pedestrians, cyclists, and trailers since there are only 
a few frames that include these agents and the data size is limited for training. It should be noted 
that the proposed method can handle diverse road users (e.g., pedestrians) and model their 
interactions if the data is sufficient. For validation purposes, we used crash data from large-scale 
trajectories and police crash reports [50] to obtain ground-truth safety-critical events statistics 

Suppose D represents the discriminator network,  Ŝ~     (S𝑝R   
t

                      N )      represents a trajectory sampled
from the real-world data distribution, and                    S~   𝑝 (S   )t

NG   represents a trajectory generated from the
simulation. We follow a standard adversarial training pipeline and define the adversarial loss
functions as follows:

L      (F   , D)  =  E              [log D (Ŝ)]  + E               [log(1 - D (S))].adv    M                  Ŝ~     (S  )                                S~    (S   )               𝑝 t                                                            t𝑝
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(e.g., crash rate and crash type distribution). 

Figure 8 Illustration figure of the roundabout at Ann Arbor, Michigan, USA. 

3.2 Network architecture 

The network architecture of the behavior modeling network is shown in Figure 5. Each road user 
is considered as a token and the input to the network is its historical trajectory, i.e., position (x, 
y coordinates) and heading (cosine and sine of heading), of all road users within the historical 
time window. The number of historical steps at the input is set to 𝜏𝜏 = 5 with a resolution of 0.4 
seconds per step. Then, the input will pass through the frequency encoding [61] layer, in which 
we apply a set of sine and cosine basis functions that project the vectors to high dimensional 
space to improve capturing high-frequency variation in the state spaces. Suppose 𝛾𝛾 defines a 
mapping function from 𝑅𝑅1 to 𝑅𝑅2𝐿𝐿+1, where 𝐿𝐿 is the order of frequencies, we use 𝐿𝐿 = 4 in the 
study. The input embedding layer is a fully connected layer that converts the state dimension to 
the Transformer hidden layer dimension. Then a set of (𝑁𝑁 = 4) standard BERT [41] transformer 
layers is stacked together. The dimension of the hidden layer in the Transformer block is 256, the 
number of heads in multi-headed attention layers is 4, the dimension of intermediate layers in 
the position-wise feedforward net is 512, the probability of dropout of various hidden layers is 0, 
and the probability of dropout of attention layers is 0. Then, the output from the Transformer 
will pass through prediction heads (single layer MLP with 256 neurons) to generate the final 
output. In practice, we directly predict the states of each vehicle rather than actions for simplicity. 
Therefore, the output of the behavior modeling network is the predicted trajectory, i.e., 
stochastic position (one prediction head for the mean of position, one prediction head for the 
variance of position, and one prediction head for deterministic heading), of each vehicle in the 
prediction time horizon. The number of prediction steps at the output is set to 𝜅𝜅 = 5 with a 
resolution of 0.4 seconds per step.  

The discriminator is a four-layer MLP with dimensions 1024*512*256*1. The activation function 



is LeakyReLU with a slope equal to 0.2. The input of the discriminator is the trajectory either from 
the behavior modeling network or the real-world sample and the output is a scalar value. Similar 
to the behavior modeling network, frequency encoding is applied before passing through the 
MLP. 

The network architecture of the safety mapping network is the same as the behavior modeling 
network. The input of the network is also the position and heading of all vehicles. The safety 
mapping network is performed frame-by-frame, so the input includes only the vehicle state at 
the current step. The output of the safety mapping network is the position and heading after 
rectifications that project the unsafe state to the nearest safe one. 

3.3 Training details 

We train the safety mapping network by using the RMSprop optimizer. We set the batch size to 
64 and the learning rate to 0.0001. The learning rate is reduced to its 0.3 every 600 epochs. The 
training took around 20 days on an Intel i7-10700F CPU and NVIDIA 3070 GPU desktop with a 
total number of 3,000 training epochs. To cover all potential safety critical patterns, we randomly 
sampled the vehicle states as input and their ground truth is generated with a rule-based model. 
When two vehicles are going to collide, we push them apart by setting a repulsive force between 
them. The force is projected to the heading direction of each vehicle and rectifies their states 
until they are not colliding with each other, as illustrated in Figure 7. Each vehicle is considered 
as 3.8 meters in length and 2.0 meters in width when training the safety mapper, which includes 
a 0.2 meters buffer compared to the real size. Note that we do not modify the heading of each 
vehicle and only rectify the position, which is similar to guiding the vehicle to decelerate or 
accelerate in safety-critical situations to avoid a crash. Instead of directly predicting the rectified 
states, we train the mapper to generate the residual between the ground truth and the input. 
The rectification is performed frame-by-frame. The mean absolute error between the predicted 
position residue and the ground-truth residue is used as the loss function. Since safety-critical 
situations rarely happen, the residual may follow a sparse pattern where most of the values are 
close to zero. Therefore, when generating the training data, we balance the ratio between the 
activated and non-activated output by using heuristic sampling where in each frame, the first 
80% of vehicle states are uniformly sampled and the rest 20% are sampled from the neighbor of 
existing vehicles. We generate 240,000 random frames for each training epoch. During the 
training phase, the number of tokens (vehicles) is set to a fixed number of 32 considering the 
batch-wise training efficiency. However, in the inference phase, there are no such restrictions, 
and the network can adapt to any number of vehicles. 

When training the behavior modeling network, we freeze the safety mapping network. Both the 
behavior modeling network and the discriminator are updated jointly by using the RMSprop 
optimizer. The batch size is set to 32 and the learning rate is set to 0.0001 with decay to its 0.3 
every 300 epochs. We set the training token size to 32. When there are fewer than 32 vehicles in 
the road network, fake vehicle states will be used to pad the input matrix. Data augmentation is 



applied with Gaussian noise of zero mean and 0.0025 variance for position and 0.000001 for 
cosine and sine of heading. The number of training epochs is set to 1,500 and the training takes 
around 3 days on an NVIDIA 3070 GPU desktop. The number of historical steps at the input is set 
to 5 with a resolution of 0.4s per step. The number of output steps within a single forward pass 
is set to 5 with the same resolution. In practice, we train the network to predict the states rather 
than the actions. The state variables include the position (x and y coordinates) and heading 
(cosine and sine heading) of each vehicle. The loss function is composed of three parts: imitation 
loss of position, imitation loss of heading, and adversarial loss. The weight of each component is 
set as 1, 20, and 0.1. The imitation loss of position and heading is calculated by the mean absolute 
error between the predicted states (predicted x and y coordinates and heading) and ground-truth 
states at the next 5 steps. The adversarial loss is calculated using the BCEWithLogitsLoss following 
the general setting of generative adversarial training.  

4. Case studies

4.1 Experiment settings 

The proposed NeuralNDE simulator is first initialized with a randomly sampled trajectory clip of 
2 seconds with all agents following their logged trajectories. Then, all agents’ behaviors are 
controlled by NeuralNDE. At each simulation timestep, new vehicles will be generated in each 
entry lane by following a Poisson process whose arrival rate is calibrated using the dataset. Also, 
vehicles will leave the road network when reaching exit areas. Each simulation episode lasts for 
3600 seconds with a simulation resolution of 0.4 seconds. If a crash happens, the simulation will 
be terminated early. We use approximately 15,000 simulation hours of data to validate the 
statistical realism of the NeuralNDE, where all data are used for calculating crash-related metrics 
and 100 hours of data are used for other metrics. We conducted the experiments on the 
University of Michigan’s Great Lakes High-Performance Computing (HPC) cluster using 1,000 
cores and 2000 GB RAM. It took around 1,440 seconds of real-world time to conduct 3,600 
seconds of simulation. Therefore, the simulation speed ratio (simulation time/real-world time) is 
around 0.4.  

We compare the proposed method with SUMO [17] - a widely used simulation platform for traffic 
environments, and other state-of-the-art methods. For SUMO simulator, the map is obtained 
from the OpenStreetMap. For each episode, the simulation duration and time resolution are the 
same with NeuralNDE. The Sublane-Model is used to improve the simulation fidelity since by 
default vehicle lane changes are performed instantly and vehicles are always staying on the 
centerline of the road in SUMO. The lateral resolution is set as 0.25m for the continuous lane-
change behavior. The IDM [13] and SL2015 [17] model are used as the car-following model and 
lane-changing model, respectively. 

4.2 Evaluation metrics 



To evaluate the fidelity and statistical realism of the proposed NeuralNDE, a suite of statistical 
metrics is examined, with both normal and safety-critical driving behaviors. The metrics include: 

1. Vehicle instantaneous speed distribution;

2. Vehicle distance distribution;

3. Vehicle yielding distance and yielding speed distributions;

4. Vehicle crash rate;

5. Vehicle crash type distribution;

6. Vehicle crash severity distribution;

7. Vehicle Post-Encroachment Time (PET) distribution.

The instantaneous speed distribution is collected when vehicles travel in the roundabout 
circle.  The speed is calculated using the Euclidean distance traveled between two timesteps 
divided by the simulation time resolution. To measure the distance between two vehicles, each 
vehicle is approximated using three circles with an equal radius as shown in Figure 9. Vehicle 
distance is defined by the nearest circle centers of two vehicles. We use 𝑟𝑟 = 1.0 meters and 𝑙𝑙 =
2.7 meters in this project. 

Figure 9 Illustration figure of the vehicle distance. 

A vehicle is considered to yield if it reaches a running stop, i.e., speed smaller than 5mph, in the 
yielding area of each entry as shown in Figure 10. Vehicles in the corresponding circle quadrant 
as shown in Figure 10 are conflicting vehicles for the vehicle in the yielding area. The vehicle 
yielding distance is the Euclidean distance between 1) the yielding vehicle at the entrance and 2) 
the nearest conflicting vehicle in the roundabout. The speed of the closest conflicting vehicle is 
recorded for the vehicle yielding speed distribution. 



Figure 10 Illustration figure of the yielding area. 

Two agents are considered in a crash if their bounding boxes overlap. The crash rate is calculated 
by the number of collisions divided by the total travel distances of all vehicles. The crash type is 
adopted from the definition of the NHTSA [49]. 

We use the Delta-V, a widely used metric to estimate occupant injury risk to measure the 
simulated crash severity. It is defined by the difference between the vehicle impact speed and 
the separation speed. The impact speed is the vehicle speed at the crash moment, and the 
separation speed is calculated based on the conservation of momentum. Many existing studies 
investigated the relationship between Delta-V and occupant injury level, we follow their found 
thresholds to measure the crash severity. Specifically, in side impact crashes (e.g., angle crash), 
there is no injury if Delta-V is smaller than 8 mph, minor injury if Delta-V is between 8 and 14 
mph, serious injury if Delta-V is between 14 and 24 mph, and fatal injury if Delta-V is greater than 
24 mph. For frontal impact crashes (e.g., rear-end crash), the corresponding thresholds are no 
injury (0,11] mph, minor injury (11, 23], serious injury (23,34], and fatal injury (34,∞). 

The PET is a widely used surrogate safety measure for characterizing near-miss events. It is 
defined by the time difference between a vehicle leaving the potential conflict area and a 
conflicting vehicle entering the same area. We will only consider the PET within the roundabout 
circle where most conflicts happen. We rasterize the roundabout into 1.3×1.3 meters blocks, and 
each block is a potential conflict area. 

We compare the statistics between the simulated results and the empirical ground truth data. 
To quantitatively measure the divergence between two distributions, Hellinger distance and KL-



divergence are used as measurements. For two discrete probability distributions 𝐏𝐏 and 𝐐𝐐, their 
Hellinger distance 𝐷𝐷𝐻𝐻 is calculated as follows: 

𝐷𝐷𝐻𝐻(𝐏𝐏,𝐐𝐐) = 1
√2

√∑𝑥𝑥 (√𝑃𝑃 (𝑒𝑒 ) − √𝑄𝑄 (𝑒𝑒 ))2 , (17) 

which is directly related to the Euclidean norm of the difference between the square root of the 
two probability vectors. The range of Hellinger distance is between 0 to 1, and the smaller the 
value, the more similar the two distributions. Suppose 𝐏𝐏 is the real-world data distribution and 
𝐐𝐐 is the simulated distribution, the KL-divergence 𝐷𝐷𝐾𝐾𝐿𝐿 can be calculated as 

𝐷𝐷𝐾𝐾𝐿𝐿(𝐏𝐏,𝐐𝐐) = ∑ 𝑃𝑃(𝑒𝑒) log 𝑃𝑃(𝑥𝑥)
𝑄𝑄(𝑥𝑥)𝑥𝑥 . (18) 

KL-divergence ranges from 0 to infinity, and also the smaller the value, the more similar the two 
distributions. 

4.3 Statistical realism of normal driving behavior 

Since high-fidelity normal driving behavior is the prerequisite for reproducing accurate safety-
critical events, in this section, we will first validate the statistical realism of normal driving 
statistics of the proposed NeuralNDE. Vehicle speed and position are direct outcomes of 
microscopic driving behaviors, and they are critical for both training and testing the AV. The 
proposed NeuralNDE can generate accurate vehicle instantaneous speed distribution as in the 
real world, as shown in Figure 11a. Compared with the SUMO baseline, vehicle speeds in 
NeuralNDE are naturally distributed among the whole range, covering both low and high-speed 
situations. Furthermore, NeuralNDE can also accurately reproduce vehicle distance distribution 
as shown in Figure 11b, reflecting the full distribution of encounters that AV might face in the 
real world.  



 

  

 
Figure 11 Statistical realism of normal driving behavior. a, Vehicle instantaneous speed 
distribution. b, Vehicle distance distribution. 

In a two-lane roundabout environment, a highly interactive location is at the roundabout 
entrance where entering vehicles need to yield to conflicting vehicles within the roundabout. 
Many real-world conflicts and crashes occur in this location, and the fidelity of these safety-
critical events depends on the accuracy of the yielding behavior. Therefore, we will examine the 
yielding behavior simulated by NeuralNDE to further demonstrate its fidelity in modeling human 
interactions. The yielding behavior depends on the distance to the conflicting vehicle and the 
speed of the conflicting vehicle that is traveling within the roundabout. The results of yielding 
distance and yielding speed distributions are shown in Figure 12a and Figure 12b, respectively. 
We can find that NeuralNDE can accurately replicate human yielding behavior and significantly 
outperforms the SUMO simulator. Human drivers are naturally heterogeneous and have different 
characteristics. Different drivers often exhibit diverse driving behaviors and make different 
decisions, for example, some drivers are more aggressive and only give way when conflicting 



 

  

vehicles are very close while others might be more conservative. The proposed NeuralNDE is 
directly learned from real-world data without hand-crafted rules, therefore, it can master the 
nuanced yielding behavior of human drivers and generate a realistic and diverse driving 
environment.  

 
Figure 12 Statistical realism of normal driving behavior. a, Yielding distance distribution: 
distance between the yielding vehicle and its nearest conflicting vehicle. b, Yielding speed 
distribution: speed of the nearest conflicting vehicle. 

4.4 Statistical realism of safety-critical driving behavior 

The key challenge of current AV development is how to handle safety-critical driving situations 
occurring in the real world, therefore, the simulation environment must be able to reproduce 
these long-tail rare events with high fidelity. In this section, we will examine the performance of 
NeuralNDE in generating safety-critical events, which include both crash and near-miss 
situations. The first important statistic is the crash rate. The Ann Arbor roundabout ground-truth 



 

  

crash rate is obtained based on data from August to mid-November 2021 for around 75 days 
from 7:00-19:00. There were 14 crashes in this roundabout with a total vehicle travel distance of 
1.16 × 105  kilometers. Therefore, the ground-truth crash rate of the studied roundabout is 
1.21 × 10−4  crash/km. The crash rate of the NeuralNDE is 1.25 × 10−4  crash/km, which can 
accurately reproduce the real-world ground truth.  

Not only can the proposed NeuralNDE reproduce an accurate crash rate, but also the detailed 
composition of crash types and crash severity distribution as shown in Figure 13a and Figure 13b, 
respectively. The ground-truth crash type and crash severity distributions are queried from the 
Michigan Traffic Crash Facts dataset [50] whose data is directly from police crash reports. We use 
data from 2016-2020, and there are a total of 520 crashes at this roundabout. For the crash 
severity, we use the worst injury of all involved occupants in the crash as the ground truth. Of 
the 520 crashes, 498 were non-injury crashes, 22 were minor injuries, and zero serious and fatal 
crashes. These demonstrate that NeuralNDE can generate accurate and diverse crash events 
following real-world occurring patterns, which are crucial for comprehensive testing of AV 
performance in different potential crashes. Compared with most state-of-the-art methods, for 
example, Refs [30,33,34,35,51], none of them compared their simulation results (e.g., crash 
rates/types/severities) against the real-world data. To the best of our knowledge, we are the only 
study that validated the simulated safety-critical statistics with real-world ground truth. For each 
crash type, we will further compare NeuralNDE-generated and real-world crash events in the 
later section to qualitatively demonstrate the fidelity of our approach. These results validate the 
capability and effectiveness of the proposed NeuralNDE in generating accurate crash statistics, 
which is critical for AV applications. 

 
Figure 13 Statistical realism of safety-critical driving behavior. a, Vehicle crash type 
distribution. b, Vehicle crash severity distribution. 

In addition to crashes, near-miss situations are also important. Two measurements, vehicle 
distance and PET distributions, are examined to validate the NeuralNDE fidelity. The closest 
distance between vehicles objectively characterizes potential conflicts between them. To 



 

  

validate the near-miss fidelity, we will focus on the vehicle distance that is smaller than a certain 
threshold, for example, 10 meters is used in this case. The PET is a widely used surrogate safety 
measure for identifying near-miss situations. The closer the distance and the smaller the PET, the 
more dangerous the situation. The results of the distance distribution in near-miss situations are 
shown in Figure 14a. We can find that NeuralNDE can replicate the distance in near-miss 
situations with high accuracy. Similarly, the simulated PET distribution can also accurately 
reproduce real-world dangerous driving conditions as shown in Figure 14b. These results 
demonstrate that in addition to crashes, NeuralNDE can also characterize real-world near-miss 
statistics, which validates the modeling accuracy of the proposed method regarding vehicle 
safety-critical behaviors. 

 
Figure 14 Statistical realism of safety-critical driving behavior. a, Vehicle distance distribution 
in near-miss situations. b, Post-encroachment time (PET) distribution in near-miss situations. 

4.5 Generated crash events 

The proposed NeuralNDE can generate complex and diverse interactions that happen in real-
world traffic. Human drivers naturally exhibit different characteristics and spontaneously 
interact, negotiate, and cooperate to navigate through the roundabout. During vehicle 
interactions, crashes may happen due to different reasons, for example, failure to yield, improper 
lane usage, etc. In this section, we showcase three generated crashes by NeuralNDE. By 
comparing them with real-world crash events, we can demonstrate that NeuralNDE can generate 
realistic and diverse crash patterns. These results further validate NeuralNDE fidelity on vehicle 
safety-critical behaviors which are very difficult to model. The illustration figures of the three 
crash examples with corresponding real-world crash events are shown in Figure 16.  



 

  

 
Figure 15 Crash events in the real world and NeuralNDE. a, Angle crash caused by failure to 
yield. b, Sideswipe crash caused by improper lane usage. c, Rear-end crash caused by failure to 
stop within assured clear distance. 

The first case is an angle crash caused by failure to yield as shown in Figure 16a, where the main 
image denotes the crash event generated by NeuralNDE, and the image in the red box is a real-
world crash event. For the NeuralNDE results, vehicles' current states and their past trajectories 
are shown by rectangles and lines, respectively. For better visualization, only vehicles that are of 
our interest are shown in colors and other vehicles are shown in grey. In this case, vehicle #1 
(shown in blue) is circulating within the roundabout, and vehicle #2 (shown in pink) is at the south 



 

  

entrance. We can find that vehicle #2 fails to yield to the right-of-way of vehicle #1, and chooses 
to enter the roundabout aggressively. As a result, vehicle #1 cannot decelerate in time and a 
crash happens. The generated crash is very similar to what would happen in the real world as 
shown by the images in the red box of Figure 16a. As captured by the roadside camera, vehicle 
#2 at the entrance fails to yield and finally crashed with vehicle #1 within the roundabout. 

The second case is a sideswipe crash caused by improper lane usage as shown in Figure 16b. In 
this case, two vehicles enter the roundabout from the west entrance side by side. Vehicle #1 
(shown in blue) drives in the inner lane and vehicle #2 (shown in pink) drives in the outer lane. 
When they are approaching the south part of the roundabout, vehicle #2 recklessly steers into 
vehicle #1’s lane and leads to a crash. This type of improper lane usage crash also frequently 
occurs in the real world. As shown by the images in the red box of Figure 16b, vehicle #1 also 
improperly intrude into the lane of vehicle #2, causing a crash to happen. 

The third case is a rear-end crash caused by failure to stop within assured clear distance. In this 
case, vehicle #1 (shown in blue) is stopped and waiting to enter the roundabout, while vehicle #2 
(shown in pink) fails to maintain a safe distance from vehicle #1 and causes a rear-end collision. 
The NeuralNDE-generated crash is very similar to the crash event happening in real traffic as 
shown in Figure 16c. From these results, we can find that NeuralNDE can generate realistic crash 
events that occur in the real world. The ability to reproduce these rare safety-critical events is 
essential for AV testing. 

 
Figure 16 Proof-of-concept for modeling a road network. 

4.6 Model scalability 

Modeling a large traffic network is more challenging than modeling individual scenarios because 
of two reasons: 1. It will be difficult to obtain full trajectory data for all vehicles in the network; 
2. Error accumulation issue may become more noticeable because the elapsed time for each 



 

  

agent will be longer. The key idea for extending to a traffic network is that a large network can 
be decomposed into subareas, where critical subareas (e.g., intersection, roundabout, highway 
entrance and exit, etc.) that involve complex interactions will be controlled by NeuralNDE 
models, and other subareas (e.g., road segments connecting different scenarios, etc.) can be 
controlled by traditional rule-based models. Therefore, we only need to have trajectory data to 
build NeuralNDE models for those critical nodes in a large network, and connect these nodes with 
links that are modeled by traditional rule-based approaches (for example, car-following and lane 
changing models).  

As a proof of concept, we build a “network”, as shown in Figure 16, that involves two scenarios, 
i.e., a four-way stop sign-controlled intersection and a two-lane roundabout. We use SUMO [17] 
simulator to generate vehicle trajectory data and use it as the ground truth of the NDE. We 
assume the traffic network is not fully perceptional and we only have vehicle trajectory data in 
the intersection and roundabout areas. Therefore, these two areas are controlled by trained 
NeuralNDE models, and the transition areas between the two scenarios are controlled by rule-
based IDM car-following model [13] and SL2015 [17] lane-changing model. 

 
Figure 17 Statistical realism of the intersection area in the road network. a, Vehicle 
instantaneous speed distribution. b, Vehicle distance distribution. c, Vehicle distance 



 

  

distribution in near-miss situations. d, Post-encroachment time (PET) distribution in near-miss 
situations. 

We simulate the network and collect the data in intersection and roundabout areas to 
quantitively evaluate the performance. The simulated network can still achieve statistical realism 
and the results are discussed below. We run around 100 hours of simulation to collect the data. 
For the intersection area, we evaluate vehicle instantaneous speed and distance distributions to 
demonstrate the performance of normal driving behavior, as shown in Figure 17a-b, respectively. 
From the results, we can find that the simulated distribution is consistent with the ground truth. 
We further validate the statistical realism of the safety-critical driving behavior. The results of 
vehicle distance in near-miss situations (smaller than 10 meters) and PET are shown in Figure 
17c-d, respectively. We can find that the proposed method can replicate the ground-truth with 
high accuracy. 

 
Figure 18 Statistical realism of the roundabout area in the road network. a, Vehicle 
instantaneous speed distribution. b, Vehicle distance distribution. c, Yielding speed distribution. 
d, Yielding distance distribution. e, Vehicle distance distribution in near-miss situations. f, Post-
encroachment time (PET) distribution in near-miss situations.  

For the roundabout area, the vehicle instantaneous speed, distance, yielding speed, and yielding 
distance results are shown in Figure 18a-d, respectively. The safety-critical events metrics 
(vehicle distance in the near-miss situations and PET) are shown in Figure 18e-f, which also 
demonstrate satisfactory performance. These results serve as a proof of concept to demonstrate 



 

  

the performance and scalability potential of our proposed NeuralNDE models for simulating large 
traffic networks. 

5. Findings  

In this project, we demonstrated the effectiveness of NeuralNDE for modeling a complex urban 
driving environment with statistical realism for both normal and safety-critical driving conditions. 
To the best of the authors’ knowledge, this is the first time that a simulation environment can be 
statistically representative of the real-world driving environment. More importantly, it can 
accurately characterize long-tail rare-event statistics, for example, crash rate, crash type, and 
crash severity distributions, which are very difficult to achieve but will notably influence AV 
training and testing accuracy. The proposed NeuralNDE model focuses on modeling the 
microscopic behavior of human drivers, addressing a significant gap in mainstream AV simulators 
(e.g., CARLA [8]) that predominantly emphasize photorealistic rendering and sensor simulations. 
Therefore, the NeuralNDE can be directly integrated with them to constitute a complete 
simulation suite. 

Beyond its applications in the context of AVs, NeuralNDE boasts wide-ranging potential across 
diverse domains. For instance, it can serve as a tool for assessing the safety performance of traffic 
facilities under varying traffic flow conditions. In essence, this high-fidelity microscopic simulator 
equips us to address 'what-if' questions within the realm of transportation engineering. 

6. Recommendations 

Despite the promising potential of the proposed method, it still comes with specific limitations 
and can be improved in the future. Firstly, incorporating road geometry information into the 
model input could further enhance its generalizability. Secondly, as human-driven vehicles may 
exhibit distinct behaviors when interacting with AVs [53], further development might be required 
to consider the AV influences on surrounding human-driven vehicles. 

7. Outputs, Outcome, and Impacts 

Outcome: In this project, we develop methodologies for building high-fidelity simulation 
environments, which serve as the prerequisite and foundation of various AV applications, for 
example, training and testing the AV safety performance. We leverage the recent advances in 
fundamental models and use Transformer as the backbone to model human interaction 
behaviors. The proposed method can reproduce the real-world driving environment with 
statistical realism, particularly for safety-critical situations. With such high-fidelity simulator, we 
can obtain trustworthy results with minimum sim-to-real gap. 

Impact: The proposed method paves the way for enhancing AV safety performance, which is 
beneficial for all stakeholders, including AV developers, customers, and regulators, and 



contributes to the long-term development of AV technology. Beyond its applications in the 
context of AVs, the proposed method boasts wide-ranging potential across diverse domains. For 
instance, it can serve as a tool for assessing the safety performance of traffic facilities under 
varying traffic flow conditions. In essence, this high-fidelity microscopic simulator equips us to 
address ’what-if’ questions within the realm of transportation engineering. 

Outputs: The following outputs were generated during the performance of this project: 

• Journal Paper [66]: Yan, X., Zou, Z., Feng, S., Zhu, H., Sun, H., & Liu, H. X. (2023). Learning 
naturalistic driving environment with statistical realism. Nature Communications, 14(1), 
2037. https://www.nature.com/articles/s41467-023-37677-5

• Conference oral presentation:

o 2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 
2023). Session: Autonomous Vehicles - Safety and Systems.

o 2023 INFORMS Annual Meeting. Session: The Impact of Uncertainty on 
Transportation Systems.

• Conference poster: 2023 IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS 2023). Session: Late Breaking Posters.

• Media coverage: Ann Arbor Observer October 2023 issue. Also available digitally: 
https://annarborobserver.com/virtual-roundabout/

• Learning Naturalistic Driving Environment Code. DOI: 10.7302/22417

• Learning Naturalistic Driving Environment Data. DOI: 10.7302/22417

https://www.nature.com/articles/s41467-023-37677-5
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