
Automotive Software Attestation:
Self, Remote, and Peer

Building Trust in Autonomous Driving Safety Systems

by

Robert Michael Kaster

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer and Information Science)

in the University of Michigan-Dearborn
2024

Doctoral Committee:

Professor Di Ma, Chair
Assistant Professor Birhanu Eshete
Professor James Freudenberg
Professor Hafiz Malik
Assistant Professor Probir Roy

1

Robert Michael Kaster
rkaster@umich.edu

ORCID iD: 0000-0003-0061-5286

© Robert Michael Kaster 2024

Ammor magnus doctor est. I must thank my wife Judith for the exciting journey and for the

motivation to return to UM after the kids were away at college.

ii

ACKNOWLEDGEMENTS

Over the course of my academic and professional careers, I have had the privilege of interacting

with very intelligent, gifted, and influential people. Among these, Professor Di Ma stands out

for her patient and persistent counsel. It was an unexpected experience to have someone with her

expertise invest so much time inculcating advanced knowledge while helping me cultivate research

and academic skills. Meeting with Professor Ma has been the highlight of the week with her

genuine personal interest and stimulating conversation.

I had the privilege of taking Birhanu Eshete’s first class at UM Dearborn and have enjoyed

interacting with him throughout my entire time here. He has consistently been both personally

encouraging and intellectually challenging. I want to thank him for participating on my committee

and for unlocking many doors in the world of cybersecurity.

James Freudenberg’s presentation of control theory for my Master’s degree was both captivating

and challenging. He sparked a continued interest that led to my decision to pursue doctoral

studies. His admonition to “respect the unstable” has helped me throughout my career developing

automotive safety systems. With his recent work leading the automotive engineering program in

Ann Arbor, I appreciate him taking the time to step out of his comfort zone and serve on my

dissertation committee for automotive cybersecurity.

Probir Roy joined the university during quarantine and was my fellow companion in our first

virtual department meeting mixers. He reviewed my early papers and provided valuable feedback

and challenged me to better explain my ideas.

I want to thank Hafiz Malik for lending his expertise in automotive cybersecurity from the ECE

department to serve on my committee. Professor Malik’s reputation among the engineers that have

studied under him is greatly appreciated and led to him sharing his expertise on automotive security

and speaking at our Bosch cybersecurity day to our leaders and technical experts.

iii

I need to explicitly recognize my debt to Linxi Zhang, who has graciously offered suggestions

and help from my first project detecting poor configuration settings on mobile apps to man-in-

the-middle attacks, supporting presentations, to suggestions on formatting this thesis. Linxi has

been a consistent help, even after becoming an assistant professor. I’d also like to thank Ahmad

Nasser who first informed me that UM Dearborn offered this program and who took my request

to accelerate the secure boot process and turned it into a research problem. Thanks also to Andre

Weimerskirch from MCity and Lear for helping to get me started in the Ph.D. program.

Penultimately, I would like to thank Oliver Korasiak, Paul Thomas, and Lauren Iwema and

Bosch LLC as a whole for allowing, supporting, and funding my pursuit of a Ph.D. I would also

like to thank Frederik Stumpf, Anthony Freilach, Ivan Granero, Francisco Briceno, Ashish Behl,

Bartosz Bakalarczyk, Andreas Dolezal, Martin Emele, Martin Schmiedecker, Josh Rambo, Michael

Tucci, Rita Barrios, Peter Morris, Sven Schran, Jaime Lopes, Srikanth Narayanan Venkatesa, Jens

Schmuelling, Bob Tremain, Naveenkumar Balasubramanian, Carina Boettcher, Jorge Merchan

Guajardo, Josh Beck, Zachariah Pelletier, Tim Arntson, Ramona Jung, Markus Hofmann, and

Holger Niemann from Bosch for their support while I pursued doctoral research while maintaining

my full-time work responsibilities. Dan Zajac and Michael Westra from Ford, Stephen McFarland

from Toyota, Tobias Gärtner from Amazon, Tom Forest and David Nairn from GM, Stephen

McKnight and Bill Mazzara from Stellantis, Faye Francy, Josh Poster, and Ricky Brooks from

the Auto-ISAC, John McShane from Synopsys, Douglas Gordon from CNH, David Brumley from

Carnegie Mellon, Willem Melching from Commaai, Ira MacDonald from High North, and John

Auld from Cybellum, Philip Lapczynski from Renesas, John Cotner and Allen Houck from NXP

for criticism and test samples that contributed to this work.

Ultimately, I need to recognize my wife Judith, who has pushed me to do rather than just think,

for my children for whom I wanted to provide an example of seeking God with your mind and

loving your neighbor by innovating to improve their lives in this magical and meaningful world,

for my growing family that promises to do even more, and my parents who pushed me to start my

journey at UM and family that’s been with me for the entire journey.

iv

TABLE OF CONTENTS

DEDICATION . ii

ACKNOWLEDGEMENTS . iii

LIST OF FIGURES . x

LIST OF TABLES . xi

LIST OF ALGORITHMS . xii

ABSTRACT . xiii

CHAPTER

Acronyms . 2

1 Introduction . 5

1.1 Motivation . 5
1.2 Questions to Answer . 6
1.3 Challenges . 6
1.4 Contributions . 8

1.4.1 Self Attestation . 8
1.4.2 Remote Attestation . 9
1.4.3 Peer Attestation . 10

1.5 Publications . 10
1.6 Organization . 11

2 Literature Review . 12

2.1 Automotive Security Appliance - HSM . 12
2.2 Self Attestation . 12
2.3 Remote Attestation . 14
2.4 Cyber-Physical Systems . 16

v

2.5 Digital Twins . 17
2.6 Zero Trust . 17
2.7 External Security Monitoring . 18
2.8 Internal Security Monitoring . 18
2.9 Software Defined Networks . 19
2.10 Software Defined Vehicle Architecture . 20

3 Sliced Secure Boot - Accelerated Self Attestation . 21

3.1 Introduction . 21
3.1.1 Contributions . 23
3.1.2 Organization . 24

3.2 Adversary Model . 24
3.3 Proposed Approach . 25

3.3.1 Initial Scheme Algorithms – Column-wise Slicing 25
3.3.2 Setup Algorithm . 27
3.3.3 Verify Phase . 29
3.3.4 Monitor Phase . 30
3.3.5 Action Phase . 31
3.3.6 Complicate Shadowing in Fingerprint Generation 34
3.3.7 Complicate Shadowing in Fingerprint Selection 36
3.3.8 Asymmetric Memory Focus . 38

3.4 Security Analysis . 38
3.4.1 Automotive Controller Memory Patterns and Shadowing 39
3.4.2 Fingerprint Robustness . 41
3.4.3 Algorithm Selection . 42
3.4.4 Escape Rate Detection . 43
3.4.5 Effective Scrambling . 49
3.4.6 Impact of Fingerprint Distribution . 50

3.5 Performance Analysis . 50
3.5.1 Complexity and Memory Cost . 52
3.5.2 Time Reduction Factor . 52
3.5.3 Real-World Evaluation . 53

3.6 Discussion . 55
3.7 Conclusions . 56

4 Digital Shadows - Remote Attestation without SW Image 58

4.1 Introduction . 58

vi

4.1.1 Contributions . 60
4.1.2 Organization . 61

4.2 Initial Scheme . 61
4.2.1 Remote Attestation Concept . 61
4.2.2 Trust Model . 63
4.2.3 Hash-based Digital Shadow . 64
4.2.4 Adapting a Merkle Tree for Automotive Architecture 64
4.2.5 Algorithm . 66

4.2.5.1 Regulator Algorithm . 66
4.2.5.2 DS Calculation Algorithm . 67
4.2.5.3 Branch Calculation Algorithm 68
4.2.5.4 Leaf Calculation Algorithm . 69

4.2.6 Security Analysis . 70
4.2.6.1 Security Robustness . 70
4.2.6.2 Calculation Time . 70

4.3 Improved Scheme . 71
4.3.1 Algorithm Improvements . 71
4.3.2 Regulator Algorithm . 72
4.3.3 DS Calculation Algorithm . 73
4.3.4 Branch Calculation Algorithm . 75
4.3.5 Node Calculation Algorithm . 76
4.3.6 Security Analysis . 77

4.4 Expanded Algorithm to Address HW Status . 78
4.4.1 Problem Definition . 78
4.4.2 Concept Approach . 79

4.5 Performance Analysis . 82
4.5.1 Memory Requirement . 82
4.5.2 Time Requirement . 83

4.6 Discussion . 85
4.7 Conclusions . 86

5 Zero Trust for SDV - Peer Attestation . 87

5.1 Introduction . 87
5.1.1 Contributions . 89
5.1.2 Organization . 89

5.2 Initial Scheme - Single Trust Component . 90

vii

5.2.1 Adapting Zero Trust to Automobiles . 90
5.2.2 Calculating Risk . 92
5.2.3 Calculating Trust for each Message . 94
5.2.4 Calculating Reliance . 94

5.3 Concept Example - Single Trust Component . 95
5.3.1 Example Description . 95
5.3.2 Example Risk . 96
5.3.3 Example Trust . 96
5.3.4 Reliance Transfer Function . 96
5.3.5 System Parameter Calculation . 97

5.4 Performance Analysis - Single Trust Component 98
5.4.1 Adversary Objectives . 98
5.4.2 False Detection Robustness . 98
5.4.3 Attack Detection Reliance Tradeoff . 99
5.4.4 Performance Analysis . 100
5.4.5 Validation . 100

5.5 Complex Scheme - Multiple Trust Components 101
5.5.1 Calculating Risk . 101
5.5.2 Calculating Trust for each Message . 101
5.5.3 Reliance Calculus . 102
5.5.4 Potential Use Cases . 103

5.6 Concept Example - Multiple Trust Components 105
5.6.1 Trust and Risk Calculation . 105
5.6.2 Reliance Calculation . 106
5.6.3 Example Operation . 106

5.7 Performance Analysis - Multiple Trust Components 106
5.7.1 Adversary Objectives . 107
5.7.2 VSOC Operation . 109

5.8 Discussion . 109
5.9 Conclusions . 110

6 Conclusion and Future Work . 111

6.1 Conclusion . 111
6.2 Future Work . 112

Appendix A Modulo 16 Multiplication Table . 113

Appendix B Modulo 17 Multiplication Table . 115

viii

Appendix C SSB Theoretical Derivation . 117

C.1 Bayesian Learning Improving Escape Rate . 117
C.2 Linked Scanning . 120
C.3 Fingerprint Robustness . 121

C.3.1 How to Define Robustness for Sampled Authentication 121
C.3.2 SSB Variants . 122
C.3.3 Initial Detection . 123
C.3.4 Long-Term Detection . 123

BIBLIOGRAPHY . 124

ix

LIST OF FIGURES
FIGURE

2.1 HSM Definition . 13

3.1 SW Verification Process . 32
3.2 Escape Rate Fingerprint Generation . 45
3.3 Impact of Fingerprint Generation on Escape Rate . 46
3.4 Escape Rate Multiplication vs. column-wise . 48
3.5 Escape Rate Multiplication vs. Escape Rate column-wise 48
3.6 Escape Rate for Modulo Multiplication 16 Odd vs. 17 Full 51
3.7 SSB Time Reduction vs. Block Width for Renesas D3 and Infineon TC37 53

4.1 Classic Remote Attestation Model . 62
4.2 Classic Proof Data Possession Model . 62
4.3 Hybrid Digital Signature Model . 63
4.4 Classic Merkle Tree . 65
4.5 Vehicle Merkle Tree . 65
4.6 Regulator Perspective . 72
4.7 Root ECU Perspective . 74
4.8 Branch ECU Perspective . 75
4.9 How to Build RT (Encrypted Run Time) . 80
4.10 How to Build a Digital Signature with Run Time . 81

5.1 Ideal Trust Transfer Function . 97
5.2 Vehicle Speed Estimates . 99
5.3 Reliance Dependence on Trust . 100
5.4 Error in Vehicle Speed Estimates . 100
5.5 Estimating Total Impact . 101
5.6 Dynamic Evaluation of Vehicle Speed based on Trust 107
5.7 IDS and VSOC Impact on Trust . 107
5.8 Algorithm Efficiency . 108

C.1 Simulated Escape Rate for SSB . 119

x

LIST OF TABLES
TABLE

3.1 Variable Definition . 27

4.1 Regulator Database . 82
4.2 Regulator to OEM Daily Communication . 83
4.3 Regulator to Vehicle Daily Communication . 83
4.4 Run-Time Measurements . 84

5.1 Variable Definition . 92
5.2 Initial Component Trust Rating Values . 105

A.1 Modulo 16 Multiplication . 114

B.1 Modulo 17 Multiplication . 116

C.1 Effective Coverage Rate . 123

xi

LIST OF ALGORITHMS
ALGORITHM

1 SSB Setup() . 29
2 SSB Verify() . 30
3 SSB Run-Time Verify() . 31

4 Digital Shadow Remote Attestation . 67
5 Calculate Digital Signature . 68
6 Build Branch Hash . 69
7 Build Leaf Hash . 69
8 Remote Attestation with Digital Shadow . 73
9 Calculate Digital Signature . 74
10 Build Branch MAC . 76
11 Build Node MAC . 77

xii

ABSTRACT

“Can you trust a car’s software (SW)?” This question attracts attention from professionals,

politicians, and professors for three reasons: ability, access, and interest. Autonomous and driver

assistance systems have responsibility and authority in controlling the vehicle - increased ability.

Many cars today are connected to the outside world with Bluetooth, Wi-Fi, USB, and cellular

connections - increased access. Talented researchers, organized crime and nation state intelligence

agencies are turning their attention to develop sophisticated cyber-attacks on expensive critical

infrastructure - increased interest. People all over the world trust their vehicles with their lives and

livelihoods. The increase of authority within, connectivity without, and motivation to exploit all

serve to increase the risk of compromised vehicle software, the importance of checking, and the

required depth of verification. My research focuses on three critical challenges for automotive SW

attestation, each expanding on the question for a different ‘you’.

1. Self Attestation How can a real-time automotive controller verify its own SW before

starting and maintain compatibility with start-up time, functional safety, and limited power

requirements? Secure boot has successfully protected systems from executing untrusted SW,

but low-power controllers lack sufficient time to check every memory cell while satisfying

real-time functional safety requirements. Automotive controllers need to maintain security

through multiple cycles of remote, unsupervised operation and reach a secure state in a safe

manner when an anomaly is detected. To accelerate the boot time, we propose Sliced Secure

Boot: build fingerprints by slicing orthogonally through memory blocks, protect each cell

with a reusable fingerprint using a reproducible pattern with sufficient entropy, and randomly

check one fingerprint pattern during boot. Sampling does not offer equivalent protection

to exhaustive checks, but careful sampling can provide a sufficient level of detection while

maintaining compatibility with both startup time and functional safety requirements.

xiii

2. Remote Attestation (RA) How can someone verify the SW integrity of an automobile without

access to sensitive intellectual property? Researchers have explored using RA on computers

and Internet of Things (IoT) devices, but these use cases presuppose that the verifier has

access to the full SW image or can control the memory access of the prover. Our Digital

Shadow (DS) approach takes a ‘snapshot’ of a Digital Twin (DT) with sufficient detail to

identify, but not enough to reconstruct. It builds a modified Merkle tree signature based on

each module’s current SW and compares this with a fingerprint that the Original Equipment

Manufacturer (OEM) maintains of the DT. We measured the time required to calculate a

vehicle fingerprint with 14 different types of vehicle controllers and the amount of data to

support the concept. Verifying the SW integrity confirms that the correct SW is available but

does not prove that it is actually controlling the vehicle. We expand DS to monitor internal

and external plausibility verification of the run time and fault codes. This enables a quick

verification of the vehicle’s cyber-health state with limited trust requirements on the party

performing the check.

3. Peer Attestation With advanced vehicle architectures, software defined vehicles, cloud

computing, and service-oriented architectures, how can a module build trust in the

information it is receiving in a manner that is dynamic, nuanced, and adaptive? Today’s

vehicle architectures build trust on a framework that is static, binary, and rigid. The Zero

Trust (ZT) paradigm supports this dynamic need, but current implementations are focused on

protecting information and do not consider the additional challenges that automobiles face

interacting with the physical world. We propose expanding ZT for a Cyber-Physical System

(CPS) by weighing the potential safety impact of taking action based on information provided

against the amount of trust in the message and develop a method to evaluate the effectiveness

of this strategy. This strategy offers a solution to the problems of implementing real-time

responses to active attacks over vehicle lifetime.

xiv

i

1

Acronyms

ABS Anti-lock Braking System. 87

AES Advanced Encryption Standard. 12, 28, 42, 51–53

ASIL Automotive Security Integrity Level. 31, 93, 94, 102

CAN Controller Area Network. 16, 19, 21, 25, 84, 90, 101

CBC Cipher Block Chain. 42

CBC-MAC Cipher Block Chaining Message Authentication Code. 22, 28, 42

CMAC Cipher-based Message Authentication Code. 42, 83

CPS Cyber-Physical System. xiv, 7, 8, 16, 18, 22, 55, 93, 111

CVE Common Vulnerability Enumeration. 5

CVN Controller Verification Number. 16

DS Digital Shadow. xiv, 9, 59–61, 63, 64, 66, 67, 70, 72, 73, 77, 79, 80, 84, 85

DSA Digital Signature Algorithm. 14, 41, 121

DT Digital Twin. xiv, 9, 17, 60, 66, 71, 77, 79, 80, 85, 112

ECU Electronic Control Unit. 5–10, 14–17, 22–28, 31–34, 40, 41, 43, 55–60, 62, 63, 66, 67,

69–71, 75–80, 82–85, 87, 88, 90–95, 101, 102, 105, 111, 112, 117, 121, 122

2

FMEA Failure Mode and Effect Analysis. 93, 94, 102

FOTA Flash Over The Air. 6, 64, 109

FPGAs Field Programmable Gate Arrays. 13

HMAC Hash-based Message Authentication Code. 42

HSM Hardware Security Module. 12, 22–36, 42, 46, 49–53, 55, 84

HTA Hardware Trust Anchor. 121

HW hardware. 12, 19, 42, 51, 78–80, 85

IDS Intrusion Detection System. 10, 11, 18, 19, 88–90, 94–96, 98–102, 104, 106, 109, 112

IoT Internet of Things. xiv, 11, 14–16, 59

IP Intellectual Property. 60

IT Information Technology. 7, 11, 15, 16, 18, 88, 90, 91

IV Initial Value. 42

LUT LookUp Table. 24, 39, 46, 47, 52, 56

MAC Message Authentication Code. 9, 22, 27–29, 32, 42, 52, 59, 71, 73, 75, 76, 83, 84, 112

ML Machine Learning. 90, 96

MTD Moving Target Defense. 104, 110

NIST National Institute for Standards and Technology. 17, 88

OEM Original Equipment Manufacturer. xiv, 6, 26, 31, 34, 58–63, 66, 70–72, 77–79, 82, 85, 104

PBASS Probabilistic Boot Authentication Sampling Scheme. 14, 37

3

PDP Proof of Data Possession. 16, 61

PII Personally Identifiable Information. 59

PRNG PseudoRandom Number Generator. 34, 52

RA Remote Attestation. xiv, 9, 15, 16, 58, 61

RAM Random Access Memory. 53

RTD Run-Time Detection. 55

SDN Software Defined Network. 19, 20

SDV Software Defined Vehicle. 10, 11, 20, 34, 87, 88, 92, 104, 107, 109, 110, 112

SOC Security Operations Center. 18

SSB Sliced Secure Boot. 9, 21–24, 26, 27, 29, 31, 37, 38, 40, 43, 52, 53, 56, 57, 111, 122, 123

SW software. xiii, xiv, 5–12, 14, 15, 18, 22, 24, 26–28, 41, 42, 53–56, 58, 59, 61–63, 66, 70,

77–79, 83, 85–89, 103, 104, 109, 111, 112, 121

TRF Time Reduction Factor. 51–53

uC microcontroller. 7, 9, 71, 83

VIN Vehicle Identification Number. 66, 82

VSOC Vehicle Security Operation Center. 18, 88, 102–106, 109, 112

ZT Zero Trust. xiv, 11, 17, 19, 88, 90, 91, 93, 109, 110, 112

ZT4SDV Zero Trust for SW Defined Vehicles. 19, 89, 95, 104, 106

ZTA Zero Trust Architecture. 17

4

CHAPTER 1

Introduction

1.1 Motivation

SW attestation has become a critical factor in the modern automobile for three reasons: ability,

access, and interest. The Electronic Control Unit (ECU) has dramatically increased its responsibility

and authority in controlling modern vehicles - ability. In 2021, 42,915 people died in the US alone

from traffic-related fatalities [5]; advanced technology offers the best hope to reduce this number

[2] [3] [107]. Vehicles are rapidly adding functionality to improve economy and comfort, while

enhancing the user’s experience as well. Undergirding a vehicle is a network of microcontrollers,

monitoring and interacting with the physical world in real time. As of January 1, 2024, the

Common Vulnerability Enumeration (CVE) database lists 766 Bluetooth vulnerabilities, 104 in

just 2023 [131]. With an estimated 87% of new vehicles now being outfitted with Bluetooth

[167], connectivity to common remote interfaces is a factor for nearly all new vehicles - access.

Governments [55] [67] and researchers [183] have issued warnings that not just friendly researchers

[44] [190] but nation state actors and organized crime have begun turning their interest to cyber-

physical systems - interest. How can we trust that all of this new powerful, connected SW is actually

doing what it is supposed to do?

5

1.2 Questions to Answer

Trust is essential for automotive ECUs to support enhanced comfort and life saving features in

modern vehicles. Systems, especially safety-relevant systems, need to be able to determine if the

SW should be trusted before they begin controlling moving vehicles. A robust answer to this

question requires several layers of protection. The first layer is within the vehicle, within each

ECU itself. The ECU checking the integrity of its own SW is a process known as self-attestation.

The most effective way to do this is secure boot. The second layer is demonstrating SW integrity

to interested parties outside of the vehicle, this is known as remote attestation. The final layer

is building trust to other devices that are using the information to control the vehicle. We call this

process peer attestation - each ECU needs to prove its trustworthiness to the other ECUs that are

using the information it provides. These other ECUs have other responsibilities and may not be

capable of generating the information on their own.

1.3 Challenges

It is helpful to understand the unique challenges modern vehicles face in building trust to

support enhanced comfort and life saving features as both connectivity to the outside world

and authority in influencing vehicle operation increase. While ECUs from the 90’s used non-

reprogrammable memory, modern ECUs primarily use reprogrammable flash and OEMs are

pushing to implement Flash Over The Air (FOTA). We can expect tomorrow’s vehicles to see

SW updates and modifications. As automotive engineers draw proven security techniques from

computers, internet applications, and smartphones, unexplored elements of real-time constraints,

limited memory space, physical safety concerns, unreliable network connections, and long life

introduce factors that were not considered when these techniques were developed.

Lethargic response times in a laptop or smartphone may be annoying and eventually lead to the

device being replaced, but every ECU in the vehicle is constantly racing to complete its calculations

before they are needed to control the vehicle. ECUs perform calculations to determine the state of

6

the vehicle, relying on timely updates from sensors and other ECUs. If these updates do not come

before the calculations are performed, the systems cannot correctly determine which actions are

appropriate to take. Instead of a video stream glitching on a phone, the motor controller cannot

determine when to inject the fuel, the braking controller cannot apply the brakes to keep the car

from skidding, and the steering controller cannot turn the wheels to keep the vehicle on the road.

The real-time operation nature places rigid requirements on how long calculations can take.

Limited memory and computation resources play an important role in ECU design. A typical

automotive microcontroller (uC) relies solely on flash memory built into the chip and single digit

megabyte memory space is common. With a clock speed measured in MHz, the system is not

capable of performing demanding cryptographic calculations or storing large numbers of keys.

Advanced vehicle architectures may use high-powered zone, domain, and vehicle computers with

requirements approaching supercomputer performance. These systems have much more powerful

processors, but also significantly more memory to check.

The safety of the vehicle occupants is a primary goal in the design of nearly all automotive

systems. Traditional Information Technology (IT) systems are concerned with protecting

confidentiality, integrity, and availability of the information they store and process [158] [168].

The fact that the vehicle interacts with the physical world takes priority as a cybersecurity goal [43]

[113] [114] [118] [119] [132] [151] [152] [165]. Any changes to the SW need to first be evaluated

and verified, sometimes with in-vehicle testing to ensure the safety of the vehicle before a change

can be rolled out to the fleet.

Vehicles are transportation devices, their raison d’être is to move people and products from one

location to another. Mobility means that the vehicle must be able to function without a low-cost,

high-availability network connection. This provides an additional challenge as the individual

components or vehicles may not be able to report attacks or receive a new SW package.

Automotive controllers that interact with CPSs in real-time operate in a much more restricted

ecosystem than laptops or smart phones. The user has very little direct interaction with the system

(no keyboard or display) and has no means to load or configure new SW. Detecting modified

7

embedded SW is in a sense easier – a stable memory space makes malware detection a question of

looking for differences from the original SW. For many ECUs, it is sufficient to say that the SW has

been modified, not necessarily identify which programs, apps, or memory cells have been changed.

Any untrusted changes to the memory means that the ECU may not be safe to engage in critical

operations [139].

Automotive security measures need to protect the vehicle over its entire lifetime. The median

US vehicle age exceeds 12 years [58], roughly five times that of a smartphone’s [52] [173].

1.4 Contributions

Systems, especially safety-relevant systems, need to be able to determine if the SW should be trusted

before they begin controlling moving vehicles. Manufacturers, owners, users, and regulators need

to be able to determine if the vehicles should be trusted. Individual components within the vehicle

need to know if they should trust the information they are receiving to take safety-critical actions.

This paper contributes to the tripartite question of trust necessary to secure the next generation of

automobiles.

1.4.1 Self Attestation

Secure boot broadly refers to a process with three objectives: verify SW authenticity, achieve a

desired level of assurance, and test SW before it is executed. Automotive controllers face fresh

challenges beyond a typical computer or smart phone - they must maintain compatibility with

the functional safety concept for CPSs, complete regular tasks within the confines of real-time

requirements, squeeze all the code and data into limited on-chip memory, and thrive in unprotected

environments. If our available time to check the SW only allows us to check a portion of the

memory, how can we achieve a high level of assurance that the SW has not been compromised?

A pragmatic adversary wants to maintain basic system operation but add features, disable

protections, or modify behavior; these changes will present as a series of contiguous code segments

8

(executable change) or clustered groupings (calibration modification). Sliced Secure Boot (SSB)

takes the memory as a series of blocks and slices through them - creating a fingerprint of the

slice. It uses an ECU-specific key to ensure that an adversary cannot create the signature after

modifying the memory and an ECU-specific pattern to prevent scalable attacks. We developed a

formula to characterize the adversary’s escape rate and verified this with simulations. We evaluated

this concept on several automotive uCs and verified that the reduced time was compatible with

automotive safety concepts.

1.4.2 Remote Attestation

As the connectivity and autonomy increase in automotive controllers, the need for external parties

to verify the integrity of the SW also increases. We propose using DTs to maintain a copy of the

intended SW and DSs to verify vehicle SW, efficiently and robustly.

RA in the automotive world faces several interesting challenges - the prover neither has access to

the known-good SW nor controls the individual vehicles. The intellectual property value, the risk

from increased cyber attacks, and liability with potential misuse complicate sharing - even with

parties that need to verify the authenticity and freshness. The adversary may have direct control

over the target vehicle and external communication, and even copy a module’s memory.

A DS is a hierarchical tree built from signatures of each individual ECU. Our initial scheme uses

a hash-based algorithm to build the signatures, but it does not provide robustness against replay

attacks. Our second scheme uses a Message Authentication Code (MAC)-based algorithm with

a random starting point address this weakness and demonstrate that the vehicle has access to the

correct SW. We then include the fault codes and run time to ensure that the desired SW is actually

in control of the vehicle. We propose reasonable estimates for time and data required to support

this concept and provide measurements representative of real vehicle modules.

9

1.4.3 Peer Attestation

The automotive industry sees great potential enabling new features by implementing Software

Defined Vehicle (SDV) architectures [16] [32], accompanying this is the need for SW modules to

verify that their partners can be trusted to perform critical operations. With traditional automotive

architectures, each task is assigned to a specific ECU. Trusting that an input is authentic or that an

output can be executed means verifying that the assigned ECU is functioning properly and sending

and receiving the messages. If the task can be dynamically reassigned to different ECUs, then a

new means of building trust needs to be developed.

With new vehicle architectures, it is anticipated that ECUs will dynamically assign services to

different SW modules that are running in the vehicle or even in the cloud. Before a module can

assign a function to another module, it may want the module to perform some sort of attestation,

proving that it can be trusted - either to provide reliable data or to faithfully execute a command.

With limited memory space available, it is not feasible for each module to maintain a copy of its

peers’ program code.

Our contribution takes this proposal and builds a proof of concept. We build a paradigm to

allow a single component of trust to dynamically interact with two sensors. We work through an

example and demonstrate how the dynamic trust paradigm can allow an Intrusion Detection System

(IDS) to directly interact with the system in a manner that is tolerant of false positive events and

method to evaluate its performance. We then expand the concept to multiple trust components with

a more sophisticated usage profile that can also process probabilistic intelligence information and

adapt system behavior to active threats without requiring new SW.

1.5 Publications

The Self Attestation work was presented at Escar USA 2021 on sampled secure boot [97], at Escar

Europe 2021 on reusable fingerprints [100], and the completed concept published in the Society of

Automotive Engineers Journal of Connected and Automated Vehicles [99].

10

The Remote Attestation work was presented at the ACM Cyber-Physical Systems and Internet

of Things Week 2023 in San Antonio [98].

The Peer Attestation work was submitted to three conferences scheduled in the first half of

2024. The first paper focuses on modifying the concepts of ZT to support an automotive IDS

and is accepted to be presented at the IEEE International Conference on Computing and Machine

Intelligence. The second expands this concept to support probabilistic intelligence and flexible

architectures. The third paper provides more details at developing a dynamic trust concept allowing

advanced vehicle electrical architectures to support a software defined vehicle with flexible and

frequent updates.

1.6 Organization

Chapter 2 provides an overview of relevant literature reflecting automotive security measures and

needs, and overview of security measures implemented in IT and IoT systems. Chapter 3 introduces

our accelerated secure boot proposal that is compatible with automotive safety needs and evaluates

its performance and security. Chapter 4 examines our remote attestation scheme that allows a

third party to verify a vehicle’s SW integrity without access to the full SW within reasonable time

and data restrictions. Chapter 5 introduces our dynamic trust model for SDVs and examines an

application to a single and multiple trust component system. Chapter 6 summarizes the impact of

these innovations and discusses future work.

11

CHAPTER 2

Literature Review

2.1 Automotive Security Appliance - HSM

Bosch proposed a reference design for an Hardware Security Module (HSM) suitable for use in

automotive controllers in 2011 [35], and worked with several microcontroller suppliers to implement

this in their controllers [53] [90] [91] [127] [147] [163] and is widely used in the industry today.

Figure 2.1 summarizes this reference design with a physical core in the microcontroller dedicated to

security operations, dedicated security hardware (HW) blocks including an Advanced Encryption

Standard (AES) accelerator, a true and pseudo-random number generators, and protected memory

for storing keys and code. The security SW runs on this security core and performs various security

critical functions, such as secure boot. Automotive functions, such as steering and braking, are

supported by functional SW, which runs on the main core using the main memory. The main core

does not have access to the protected memory, but the HSM can access both the protected and the

main memory. SAE J3101 describes a general approach to an automotive hardware trust anchor

[49]. Arm has also developed a TrustZone with similar objectives [73] [94].

2.2 Self Attestation

Arbaugh et al. developed a scheme to build trust within computers by having a trusted root check

the signature of each SW component before it is executed - building a chain of trust to ensure

12

Figure 2.1: HSM Definition

proper operation [17] guaranteeing that the system is in a secure state when the boot process

completes. No code executes unless it is implicitly trusted or explicitly verified. More recent work

has emphasized the importance of secure boot [60] [115]. This strategy is well suited to systems

that tolerate start-up delays and load multiple programs at different times and has been implemented

for computers and smart phones for years but controllers without a file system that execute directly

from flash memory do not lend themselves to this type of segmentation. Operating systems such

as Windows [128] [129], iOS [12] [13] [14] [15], Ubuntu [185] [188], Arch Linux [18] [19], and

Android [72] [177] have successfully integrated secure boot based on this concept. Secure boot

has been discussed for embedded controllers [155] [181] and Field Programmable Gate Arrays

(FPGAs) [111] [153]. Several automotive security firmware vendors have developed secure boot

concepts based on Arbaugh’s principles [71] [75] [159] [193], but are not able to check the entire

memory space before the system begins operating.

Researchers have investigated methods of bypassing secure boot [8] [191].

Ateniese et al. proposed a two-component system for remote attestation: a data owner generates

and maintains a set of single-use fingerprints, and the untrusted server maintains the data and

13

calculates the fingerprints for the owner to verify that the data are still intact [25]. This concept

provides a hopeful starting point for self-attestation but requires excessive memory space to support

the entire life of the product. Recent research in remote attestation of embedded IoT devices provide

interesting perspectives for automotive controllers [110].

Nasser et al. explored the concept of using a sampling-based strategy to accelerate the boot

process with Probabilistic Boot Authentication Sampling Scheme (PBASS) [138]. They proposed

creating a single-use fingerprint check for automotive systems when the system in a secure state

to verify memory integrity on the next boot cycle. They demonstrated that this concept can

provide a reasonable level of detection while meeting timing requirements but did not address

the struggles with guaranteeing the resources to securely calculate the next fingerprint. If the

compromise successfully evades detection, all future fingerprints built on the image would not

detect the compromise.

A Digital Signature Algorithm (DSA) provides a powerful tool to verify authenticity when

delivering new SW [189] [196] and has been used effectively with modern microprocessors. The

use of asymmetric cryptographic algorithms provides scalability but requires a significant amount

of computation. DSAs are commonly used to verify the integrity of new SW, an event that occurs

relatively infrequently and only when the vehicle is in a dormant state. The microcontrollers used

in ECUs such as braking or steering controllers do not have sufficient time to feasibly utilize these

algorithms on every boot cycle.

2.3 Remote Attestation

Remote attestation challenges a device to prove, using time or behavior measurements, to

demonstrate that it has not been modified and will behave and use resources as expected [28].

Remote Attestation strategies for embedded and IoT devices need to be compatible with low

powered microprocessors, limited run time, and are required to operate without a dedicated internet

connection.

14

Coker et al. constrain the system to to provide evidence about the state of the running SW to

determine if an attack has occurred [48]. They highlight five principles: fresh information (what the

system is doing now), comprehensive information (assess the entire system), constrained disclosure

(information distribution defined for need), semantic explicitness (clear indication of what is being

attested), and trustworthy mechanism (provide evidence of mechanism).

Nunes et al. proposed several strategies to remotely verify data integrity in semi-trusted remote

servers including embedded and devices [142] [143] [144] [145] [146]. The data owner uses a

trusted verifier to measure the current state of the remote memory in a not-yet trusted prover. Before

transferring the data to the remote server, the data owner uses seed-based random patterns to sample

memory locations throughout the memory space and stores the associated fingerprints in a trusted

location. Then during use, the verifier requests the prover to check one of the seed’s patterns and

submit the current fingerprint for comparison. This strategy assumes that the party performing the

verification had access to the entire dataset and can compel the prover to verify arbitrary memory

cells. Xian integrated classical security mechanisms into RA [200].

Francillon et al. explored a minimalist approach to RA [79]. They emphasized verification of

the internal state of the device is necessary for embedded devices, especially to ensure that the

targets will behave as intended.

With new vehicle architectures, it is anticipated that ECUs will dynamically assign services to

different SW modules that are running in the vehicle or even in the cloud. Before a module can

assign a function to another module, it may want the module to perform some sort of attestation,

proving that it can be trusted - either to provide reliable data or to faithfully execute a command.

With limited memory space available, it is not feasible for each module to maintain a copy of its

peers’ program code. Dushku et al. developed a scheme to allow IoT devices to verify integrity

with the use of logical clocks [65]. IoT remote attestation strategies addressed peer attestation in

swarms of identical or similar modules [7] [10] [34] [38] [59] [66] [105] [164] [186].

Kuang et al. prepared a comprehensive survey of RA in IoT devices in 2022 [104]. Chantis et

al. cataloged differences between IoT and IT security [42].

15

Ateniese et al. developed a model called Proof of Data Possession (PDP) to allow a trusted party

to verify that a remote data center has maintained a copy of the data stored there, without access to

the entire dataset [23] [24] [25]. The scheme precomputes fingerprints of samples throughout the

memory and provides them to a trusted checker. The checker requests the data store to recreate the

fingerprint and prove that the data are still available. Ma and Tsudik proposed a lean secure logging

scheme [117]. Eldefrawy et al. considered secure cloud data storage [68] and formal verification

[70] and RA [69]. Others have continued work on PDP [74] [95].

Ding and Tsudik proposed the concept of presence attestation to verify the state of health of the

security appliance [61]. Carpent et al. expanded to consider RA via self-measurement [39]. Tan

et al. considered IoT devices [179], Arias et al. as well [20] [21].

Many vehicles support a checksum-based verification of the engine controller memory.

Checksums are not collision resistant and are only reliable when used in trusted environments.

The Controller Verification Number (CVN) offers little protection against a motivated adversary.

This strategy of checking each ECU individually does not scale well to support verifying an entire

fleet.

2.4 Cyber-Physical Systems

IT systems focus on the CIA triad - protecting confidentiality, integrity, and availability. When

we consider connecting the digital world to the physical world, security considerations need to

expand. Additionally, physical systems tend to have limited resources and additional requirements.

Research has considered the impact on CPS [1] [11] [41] [40] [50] [54] [56] [87] [187] [197] and

on IoT systems [116] [178].

They also use special communication protocols such as Controller Area Network (CAN) or

automotive Ethernet, which have unique approaches to cyber-attacks and defenses [46] [45] [78]

[81] [83] [106] [172] [184] [194] [199] [204]. New systems are also connecting to infrastructure

to improve safety and functionality but bring the need for considering new risks [84] [134] [156].

16

2.5 Digital Twins

Grieves proposed the concept of DTs to support manufacturing [82]. Vickers used this at NASA

to provide a tighter control of pre-prototype design. Automobile suppliers are exploring DTs to

support new feature development and predictive diagnostics. To support predictive diagnostics, a

virtual copy of the ECU is kept in the cloud and the vehicle sends data to the DT to model the same

wear that the real vehicle is experiencing. Combined with experience from the rest of the fleet, it

becomes possible to predict when maintenance will be required [6] [29] [30] [31] [33] [51] [88]

[92] [101] [123] [130] [141] [150] [160] [171] [180] [182] [201].

2.6 Zero Trust

Rose et al. describe NIST’s proposal for Zero Trust Architecture (ZTA) to protect enterprise assets

by preventing data breaches and limiting lateral movement [157]. ZT is a paradigm to meet security

objectives by following these high-level assumptions:

• The network is always hostile.

• External and internal threats exist at all times.

• Local network messages are not implicitly trusted.

• Implicit trust zones need to be as small as possible.

• Never grant trust implicitly.

Google [93] [195] and Amazon [161] have taken significant steps to introduce ZT in their

infrastructure and published their findings.

Gilman [80] describes how ZT separates the responsibility for transferring data and controlling

access into a data plane and a control plane. For each request, the requestor first proves his identity

and then the policy engine verifies that the requestor should have access to that data. The trust

17

engine determines the amount of verification required, depending on the sensitivity of the requested

data access.

2.7 External Security Monitoring

Several measures have proven helpful in the IT security world [102]. A company can engage

a Security Operations Center (SOC) to actively collect information and intelligence about their

computers and devices to assess the threats and risks. IT systems can actively monitor computer

networks, isolate compromised systems, patch vulnerable SW, and implement recovery procedures.

A Vehicle Security Operation Center (VSOC) monitors risk by evaluating the entire fleet, but current

systems struggle to continuously monitor vehicles, especially vehicles that are in motion, especially

vehicles that an adversary may have isolated from communication back to the manufacturer [4].

Making even a small change to the vehicle SW may require extensive development effort and

validation for a CPS. So even if a SW vulnerability is identified, it may require driving multiple

vehicles on test tracks to ensure that the modified SW is safe to use before taking direct action based

on the intelligence.

2.8 Internal Security Monitoring

An IDS can monitor network traffic for suspicious or malicious behavior. When augmented with

Prevention to isolate a compromised device it may be called an IDPS or IPS. Allowing an IDS to

directly interact with moving vehicles presents a complex problem, since a security action cannot

compromise a safety measure [166].

Marchetti et al. considered IDS for automotive applications [120] [121]. Levi et al. widen the

approach to consider the entire vehicle [108]. Lin et al. proposed mixed integer linear programming

[109]. Kang and Kang proposed using Deep Neural Networks [96]. Narayanan et al. proposed a

hidden Markov model [135] and a rule-based detection scheme [136]. Cho proposed a clock-based

IDS [47].

18

Zhang et al. categorize automotive IDS as rule-based or neural network-based [202] [203]. Rule-

based solutions are fast for real-time operation on a small microcontroller, but creative adversaries

may uncover a gap in the rules. Neural networks go beyond explicit rules, but require significant

computational power. False positive detections restrict granting IDS direct control of the vehicle.

Even the full precision neural network exhibited a false positive rate of 0.08%. With more than

a million CAN messages per hour, the number of false detections is so high that even a simple

warning would frighten or annoy any driver.

2.9 Software Defined Networks

Software Defined Network (SDN) is a concept developed to address challenges with rigid and

proprietary network HW by separating network functions from network devices [89] [133].

Abstracting physical HW management from each manufacturer’s unique implementations allows

policy managers to enable uniform configuration in a scalable manner. Decoupling policy actions

from the HW that is implementing them enables rapid deployment of changes. By monitoring

traffic patterns for deviations from normal usage patterns and suspicious activity, measures can be

identified far more easily in a SDN than in a physically defined architecture.

Buttyan and Hubaux used game theory to evaluate the forwarder’s dilemma - a selfish node

should invest the resources to forward messages without an immediate benefit because, in the

aggregate, it will benefit from other nodes forwarding its messages [37]. They quantified the cost

and the benefit from taking an action, then looked for strategies to justify the cost. Developing

a price and currency for ZT in automobiles provides the starting point for Zero Trust for SW

Defined Vehicles (ZT4SDV). Do et al. have also investigated game theory to support cybersecurity

investigations [62].

19

2.10 Software Defined Vehicle Architecture

The industry sees great potential in adopting a model based on SDNs, with a new architecture

radically increasing the pace of development and updates. Slama et al. characterize a

Software Defined Vehicle (SDV) with computers linking sensors, actuators, and displays to enable

autonomous driving and an intelligent personalized immersive experience [169]. SDVs promise

to aggressively improve development costs, time to market, scalabilty, and the pace of changes.

This is enabled by the introduction of powerful general purpose vehicle computers that enable

a significant changes in functionality and dependence. It also will redefine the value stream of

the entire industry. The SDV looks to adopt the practices and pacing that have invigorated the

smartphone industry [9] [16] [32].

20

CHAPTER 3

Sliced Secure Boot - Accelerated Self Attestation

3.1 Introduction

Automotive controllers need a new approach to self-attestation due to time, resources, and safety

response. For many automotive controllers, an exhaustive secure boot is not feasible; there is

simply insufficient time to complete the check before the system must be fully functional. To

satisfy these, we can either spend more money on faster processors, delay verification and limit

potential reactions, or check just a portion of the total memory. The only time when a security

appliance knows that it is safe to control the safety core is before the safety core begins operation.

Giving the security appliance unfettered authority to control the safety core exposes the system to

risks from random defects and end-of-life failures. If the image check completes after the system

is running, the system may not be able to safely enter a secure state until the next ignition cycle.

Delaying the check may mean that the only safe action for the current ignition cycle is to deny

access to CAN message authentication. Unfortunately, maintaining the freedom from interference

requirement preventing unexpected interruptions of the safety core may preclude authoritative

protections of the critical vehicle functions for which the secure boot was implemented.

Additionally, if a compromise is detected after the system is operating, intervening may interfere

with the safety operation [56]. Checking the entire memory space may mean protecting the next

ignition cycle rather than the current one. We developed and evaluated SSB - a sampling-based

scheme with reusable fingerprints that accelerates the boot check and maintains compatibility with

21

the safety concept. First, it processes the entire memory space as a set of 𝑑 blocks, each comprised

of 𝑏 cells. With the ECU in a safe and secure state, the HSM generates a secret key to protect the

fingerprints. In the secure state, it computes 𝑏 fingerprints and stores them in unprotected memory.

During each subsequent ignition cycle, the verify algorithm randomly selects one fingerprint and

verifies that the protected cells have not been modified. SSB constrains fingerprint generation to

ensure that each ECU has unbiased patterns and randomly selects which fingerprint to use on each

boot cycle.

Our first approach generated a batch of single-use fingerprints and analyzed the escape rate over

multiple boot cycles [97]. If the attackers can identify which cells are going to be checked on

the next boot cycle or, more precisely, which cells are not likely to be checked on the next boot

cycle, they can modify these cells to craft their attack and avoid detection. Single-use fingerprints

provide a security advantage by only checking a given pattern once. But with limited memory space

available, protecting an estimated 100,000 ignition cycles over the vehicle life with just 16 bytes for

each fingerprint would take an unacceptably large 1.6 megabytes. Furthermore, an adversary who

controls power to the ECU also controls fingerprint consumption and could exhaust the available

fingerprints. We expanded this concept with SSB to support reusable fingerprints [99] [100].

Our survey indicates that a Cipher Block Chaining Message Authentication Code (CBC-MAC)

provides the quickest method to securely authenticate SW for embedded controllers [35] [53] [90]

[91] [127] [147] [163] [176]. A Message Authentication Code (MAC) uses a symmetric key to

enable quick and robust detection of modified SW. Real-time CPSs require compatibility with

rigid functional safety requirements [77], granting the security appliance authoritative control only

before the boot process starts.

A pragmatic adversary wants to maintain basic system operation but add features, disable

protections, or modify behavior; these changes will present as a series of contiguous code segments

(executable change) or clustered groupings (calibration modification). Embedded controllers do

not use a file system, this restricts how a successful modification can be made - but we may not know

which locations the adversary will attack. We developed a formula relating the escape rate to the

22

number and size of the modifications and verified it with simulation. To reuse fingerprints without

leaking information, a controlled pattern generation ensures that each ECU does not undersample

any memory cells. This does not provide the adversary with sufficient information to predict which

cells are less likely to be checked on the next boot cycle, even with physical access to meticulously

observe multiple boot cycles and record monitored cells before launching the attack. Modulo

addition with a stream of pseudo-random numbers provides a per-ECU unique pattern.

In summary, SSB accomplishes a feasible secure boot concept for automotive controllers. SSB

both meets reasonable security objectives and maintains compatibility with automotive functional

safety and timing requirements. As a proof of concept, we adapted a commercial HSM firmware

[75], tested SSB on five different microcontrollers and reduced the image check time by a factor

of 9 on Infineon’s and 23 on Renesas’ automotive microcontrollers with 64 slices, allowing us to

achieve our goal of verifying the system memory in a short enough time to avoid disrupting system

availability. The concept efficiently used protected memory and total system memory. Each ECU

is protected by a unique fingerprint key and a unique selection pattern to protect against scalable

attacks. Sampled checks are not well suited to protect against small modifications, security critical

memory such as the bootloader or diagnostic access control may need to be checked on each boot

cycle.

3.1.1 Contributions

The noteworthy contributions of this chapter are:

• Accelerated Secure Boot: The SSB concept dramatically improves boot time allowing a

reasonable level of security during the time allotted to the boot process with minimal memory

space requirements.

• Compatibility with Safety Concept: SSB allows the entire boot check process to run inside

the HSM and allows the security appliance to take authoritative action when it knows that

the safety core is not performing any safety-critical operations, i.e., when it is in reset.

23

• Empirical Data Supporting Boot Time: We implemented the SSB algorithm on commercial

HSM firmware and validated the performance impact.

• Escape Rate Simulation: We provide extensive simulation results documenting the coverage

and escape rate for optimal attack patterns.

3.1.2 Organization

This chapter is organized according to the following structure. Section 3.2 describes our adversary

model. Section 3.3 introduces our SSB algorithm. Section 3.4 analyzes the security and proposes

improvements to the algorithm. Section 3.5 analyzes the performance of the scheme on several

automotive controllers. Section 3.6 discusses the impact and Section 3.7 concludes the chapter.

3.2 Adversary Model

We assume the adversaries have detailed knowledge of the algorithm, physical access to a single

device and the ability to control the power - starting and stopping the ECU repeatedly. Although

many automotive microcontrollers use on-chip flash, some also use external flash memory which

may leak fingerprint patterns to an adversary with physical access.

Our adversaries want to retain basic ECU functionality but modify the SW to achieve a specific

goal - not just demonstrate the ability to change a bit, but to purposefully change segments of code

or clusters of LookUp Table (LUT)s [103] [170]. They are able to read and write any unprotected

memory cells but are not able to control the HSM or access its protected memory. The adversaries

cannot access keys in the HSM protected memory but can read or modify any fingerprints or data

in unprotected memory.

They are willing to invest significant time and energy to compromise a single device, with

the goal of uncovering an extendable technique to compromise multiple devices without physical

access. Reusable fingerprints increase sensitivity to adversaries capable of monitoring memory

access patterns. With physical access to the device, they may be able use a logic analyzer or

24

side-channel attack to monitor which memory addresses are being checked during repeated boot

cycles.

Safety-relevant ECUs are designed to function reliably under worst-case conditions. With the

available memory space in embedded controllers limiting the number of potential keys, and the

attackers’ ability to control the consumption of fingerprints, one-time pad strategies face a security

challenge. Safe designs must be robust against intermittent power dropouts; security concepts

cannot presume that, under worst-case conditions, the security appliance can control system power

cycles or have sufficient time to refresh fingerprints. Since automotive controllers cannot control

how often the ECU will boot (which drives how quickly the fingerprints will be used) the security

risks of reusing fingerprints can be lower than the risk of regenerating fingerprints in potentially

insecure states. The adversaries may be able to deny the HSM time to regenerate fresh fingerprints -

either by submitting high-priority requests such as CAN message authentication requests or cutting

power to the module before the full image check can be completed.

We assume that the adversary is able to modify the unprotected memory and control the operation

of the host core (once it is running). Conversely, the HSM maintains its integrity and the attacker

is not able to execute code on the HSM or view (or modify) the contents of the HSM-protected

memory. These assumptions are relevant for our investigation because an attacker able to control

the HSM and break the root of trust would also be able to compromise a standard secure boot

scheme as well.

3.3 Proposed Approach

3.3.1 Initial Scheme Algorithms – Column-wise Slicing

In contrast to Arbaugh’s strategy of checking each functional block as a unit, we slice orthogonal to

functionality with the goal of detecting purposeful modifications. Arbaugh views each functional

block as a unit and checks each byte of code sequentially - verifying that the entire function has

not been modified. Embedded controllers do not use advanced file systems with the flexibility to

25

store program segments around the hard drive, many of them execute exclusively from on-chip

memory. Since the memory structure is more rigid, instead of examining entire functional blocks,

we consider ‘physical’ blocks and slice them according to the memory address. We accomplish

this by considering the memory as a matrix of 𝑑 blocks (rows) each 𝑏 cells wide (columns) and

generating a fingerprint for each column-wise slice of memory. We have then a total of 𝑏 × 𝑑

memory cells. Reducing 𝑏 increases the detection likelihood (increasing the ratio of modified cells

per block) but also increases the number of blocks and the time to check each boot cycle.

Similar to other sampling-based verification schemes, SSB incorporates several stages.

• Phase 1 - Setup Algorithm: Assuming that a robust process such as Uptane [189] delivers

and authenticates new SW [196], immediately after authentication, the HSM launches the

setup algorithm to prepare the fingerprints.

• Phase 2 - Preboot Verify Algorithm: during each subsequent boot cycle, while the main

core is still in reset, the HSM randomly selects one of the fingerprints and verifies that the

protected cells have not changed since the fingerprint was generated. If the signature matches,

the HSM allows the main core to start operating. The keys may be generated by the chip

vendor, ECU manufacturer, or OEM, depending on how the OEM manages trust in the supply

chain. The robustness of the algorithm depends on the keys being unique and unknown to

the attackers. The OEM may verify key uniqueness or inject its own keys to reduce the risk

of third parties controlling the keys.

• Phase 3 - Run-Time Algorithm: during normal operation, the HSM periodically executes

a run-time modification detection check to determine if the SW has been modified.

• Phase 4 - Response Strategy: If an error is detected, the HSM should take action and bring

the ECU or vehicle into a secure state, in a manner that does not interfere with the safety

concept.

When we have new SW or just want to create a new batch of fingerprints, the system is brought

into a secure state and then the HSM slices up the memory and creates a cryptographically unique

26

fingerprint of each memory slice. These fingerprints are stored and do not change until new SW

is loaded into the ECU. When the ECU initializes for all subsequent boot cycles, one of these

fingerprints is selected at random, and the fingerprint is recalculated. If the freshly calculated

fingerprint does not match the stored fingerprint; we know that the memory has been changed.

Some systems may need to periodically check the fingerprints while the system is running to meet

their security goals. If the HSM determines that the memory has been modified, the system should

follow a predetermined plan to bring the ECU into a secure state without jeopardizing vehicle

safety. The following discussion details these algorithms. Table 3.1 summarizes the variables used

in this analysis.

Table 3.1: Variable Definition

Variable Description
𝐷 = {𝐷1, . . . , 𝐷𝑖, 𝐷𝑑} memory arranged in equal sized data blocks, 𝑑 total

𝑑 = |𝐷 | number of data blocks
𝐷𝑖 = {𝐷𝑖,1, . . . , 𝐷𝑖, 𝑗 , 𝐷𝑖,𝑏} each data block consists of 𝑏 cells

𝑏 = |𝐷𝑖 | number of cells in each data block
𝐹 = {𝐹1, . . . , 𝐹 𝑓 } the set of 𝑓 fingerprints for the ECU

𝑓 = |𝐹 | number of fingerprints
𝐾𝐸𝑌 𝑘 bit Key used for MAC protection
𝑏 × 𝑑 total number of cells in memory
𝑖 variable to select which block to address
𝑗 variable to select which cell from block 𝑖 to address
𝑚 number of ignition cycles after memory compromised before

detection occurs
𝑠 offset to increase entropy
𝑣 number of compromised blocks
𝑤 number of compromised cells per block
𝑧 total number of compromised cells 𝑧 = (𝑣 × 𝑤)

3.3.2 Setup Algorithm

Algorithm 1 describes the SSB Setup algorithm which runs once when new SW is installed. A MAC

function builds each fingerprint with an ECU-specific secret key and the memory cells from the

slice of memory. The HSM stores the key in protected memory and the fingerprints in unprotected

27

memory. Without access to the unique fingerprint key stored in protected memory, an attacker who

is able to modify the SW and the fingerprints still cannot figure out how to make them match to

escape detection.

For the initial algorithm 𝑓 = 𝑏, one fingerprint protects each column. 𝑗 is incremented to step

through each of the 𝑏 fingerprints. The MAC function has two inputs - the secret key and all the

memory cells from the slice. We initialize the AES accelerator with the secret key and then build

a slice of the column, picking the memory cells from each row that lie in that column. The cells

from the slice are fed into the HSM to output a MAC, which is a fixed-length number describing

the sequence that is very hard to determine without the key. Each fingerprint protects one cell from

each block, and each cell is protected by one fingerprint. Since 𝑏 and 𝑑 are integers, their product

may not perfectly cover the memory space. For the simulations, we calculated the remainder of

𝑇𝑜𝑡𝑎𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 − 𝑏 × (𝑑 − 1). The first columns in the final row then were calculated based on 𝑑

cells. The other columns were calculated based on 𝑑 − 1 cells.

Reducing 𝑏 increases the detection likelihood (increasing the ratio of modified cells per block)

but also increases the number of blocks and the time to check each boot cycle. A CBC-MAC

function builds each fingerprint with an ECU-specific secret key and the memory cells from the

slice of memory. The HSM stores the key in protected memory and the fingerprints in unprotected

memory. Without the unique fingerprint key, the attacker will not be able to calculate the required

MAC for the modified SW.

28

Algorithm 1: SSB Setup()
Input: Consider data image D as a set of 𝑑 blocks of size 𝑏

𝐷 = {𝐷1, . . . , 𝐷𝑖, 𝐷𝑑}, |𝐷 | = 𝑑

𝐷𝑖 = {𝐷𝑖,1, . . . , 𝐷𝑖, 𝑗 , 𝐷𝑖,𝑏}, |𝐷𝑖 | = 𝑏

Output: Fingerprints {𝐹𝑗 } where 𝑗 ∈ {1, . . . , 𝑏} of 𝑏 slices

begin

Generate 𝑘 bit random ECU fingerprint 𝐾𝐸𝑌

Store 𝐾𝐸𝑌 in protected memory

for 𝑗 ∈ {1, . . . , 𝑏} do
𝐹𝑗 ← 𝑀𝐴𝐶 (𝐾𝐸𝑌, 𝐷1, 𝑗 | |𝐷2, 𝑗 | | · · · | |𝐷𝑑, 𝑗)

Store 𝐹𝑗 in unprotected memory

end

end

The SSB Setup algorithm completes two nested loops. The initial algorithm assigns 𝑓 = 𝑏, one

fingerprint protecting each column. The outer loop prepares the 𝑏 MAC-based fingerprints. The

MAC function has two inputs - the secret key and all the memory cells from the slice. The inner

loop builds the slice by selecting one cell from each block. The key and the cells from the slice are

fed into the HSM to output a MAC, which is a fixed length number describing the sequence that

is very hard to determine without the key. Each fingerprint protects one cell from each block and

each cell is protected by one fingerprint.

3.3.3 Verify Phase

At each ignition cycle, Algorithm 2, the SSB Verify algorithm, randomly selects one column,

computes the signature, and compares it with the stored signature. When the microcontroller starts

up, the HSM does not allow the main core to begin operation until it completes the check. Since

the HSM knows that the main core has not started, it can authoritatively control the HSM while

maintaining compatibility with the safety concept. The boot process is accelerated by reducing the

29

number of cells that we check. Once the Verify phase is complete, the HSM releases control of the

system to the main core and completes the secure boot process.

Algorithm 2: SSB Verify()
Input: D, F, KEY

Output: Pass/Fail

begin

Randomly select fingerprint index 𝑗 ∈ {1, . . . , 𝑏}

𝑓 ′← 𝑀𝐴𝐶 (𝐾𝐸𝑌, 𝐷1, 𝑗 | |𝐷2, 𝑗 | | · · · | |𝐷𝑑, 𝑗)

if 𝑓 ′ = 𝐹𝑗 then

Return Pass

else

Return Fail

end

end

3.3.4 Monitor Phase

It may be necessary to periodically check the health of the memory while the system is running.

This concept can also be used to support an enhanced run-time manipulation detection scheme.

Real-time systems may not have sufficient cycle time to guarantee completion of both the image

check and their core function, especially with compromised host core SW. Real-time systems require

predictable time windows for the check to complete. The Run-Time Verification algorithm shown

in Algorithm 3 periodically selects a random slice of the memory and verifies that the fingerprint

still matches. If this is run continuously, it will verify the entire memory, running in the background

as a series of short tasks. Checking a much smaller portion of memory allows the HSM to allocate

a predictable time for the computation, perhaps with a higher priority. If the slices are small

enough to not interfere with critical functions, the check could be run as an uninterruptible atomic

process. Sequentially selecting the fingerprints could allow the attacker to craft an attack, as the

30

just-checked cells will not be checked until the 𝑏 − 1 fingerprints have been checked. Randomly

selecting the fingerprints would prevent this and incrementally builds trust that the memory has not

been compromised.

Algorithm 3: SSB Run-Time Verify()
Output: Pass/Fail

begin

while 𝑁𝑜𝑟𝑚𝑎𝑙 𝑂𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 𝑇𝑅𝑈𝐸 do
SSB Verify()

end

end

3.3.5 Action Phase

Many ASIL systems approach failure response echoing Archilochus’ maxim πoλλ’ oιδ’ αλωπηξ,

αλλ’ εχινoς εν µεγα - the fox knows many tricks, but the hedgehog just a good one. If you cannot be

sure that you’re safe, then roll up into a little ball and shut down. An ordered shutdown for random

defects allows the system to prioritize completing a critical maneuver, then perform a graceful

shutdown. If the HSM detects a failure after the system is running, current systems may not be

able to safely, authoritatively, and immediately shut down the ECU. A vehicle-level approach can

minimize interference with the safety core by the HSM denying access to the protected secret keys,

e.g., by refusing to authenticate messages or allow reprogramming to occur.

Figure 3.1 describes a comprehensive system behavior for the SW verification process. First,

the ECU starts up and hands control to the SSB Verify algorithm. If verification fails, we assume

that the ECU is compromised and conduct a complete test on the system with the OEM’s digital

signature to ensure that the failure was not due to a random read error. The next step is to use the

random defect memory correction algorithm if the error is not due to a malicious attack. If this is

not possible, then the ECU should go into locked mode until the rehabilitation process can be used

to reprogram the ECU. This rehabilitation process is outside the scope of this paper. The strategy of

retesting failed boot checks to reduce nuisance faults triggering warranty claims should be tempered

31

Figure 3.1: SW Verification Process

by the risk that rechecking a compromised system may offer an advantage to an attacker.

The process step background colors indicate the state of trust in the system. Yellow indicates

that the system is in an untrusted state, green indicates that the system is now in a trusted state,

and red indicates that the system is known to be compromised. The system starts in an untrusted

state; before being allowed to enter a trusted state, it must pass an image test. This strategy only

penalizes system startup behavior for suspicious devices, it does not penalize healthy systems.

While it may be desirable for the HSM to authoritatively assert control over a compromised host

core from a security perspective, the system must also operate in a safe way when a defect occurs

in the HSM. It is difficult to develop a concept that satisfies both concerns inside a single ECU –

safe for random defects and secure for intentional attacks. Instead of just denying access to MAC

keys, the HSM could sign messages with a “Compromise Detected” key. The HSM usually does

32

not have access to the communication bus, and cannot directly notify the other ECUs in the vehicle

or request assistance except through the host core, but using an invalid key to authenticate regular

state of health messages would signal to the other ECUs that a compromise has been detected and

request help. Figure 3.1 shows the HSM notifying the other ECUs in the vehicle that it needs help,

the encryption is depicted with the request for help spelled out in reverse “!em pleH”. The host

core must continue sending the periodic messages; otherwise, its partners would detect a problem

with the ECU. Alerting the host core that the compromise was detected could potentially trigger

malicious behavior since it may not have much longer to influence the vehicle. The host core does

not know the secret key and would be unable to detect if the HSM were requesting help or notifying

other ECUs that the integrity has been compromised.

Implementing a graceful limp home function within a compromised ECU presents significant

challenges for all automotive ECUs and a complete treatment is outside the scope of this paper. As

a tangible example, consider when the HSM inside the braking system controller fails a run-time

check. The HSM recognizes that the memory has been corrupted, but it does not know what the

vehicle is doing. The ASIL-D rated safety controller cannot accept a shutdown request from the

HSM in the middle of a safety-critical maneuver because it must also maintain safe operation when

a transistor inside the HSM fails. It is problematic to grant the HSM the authority to forcefully shut

down the safety controller if it detects a problem and futile to merely request a shutdown from a

compromised host controller.

Implementing a graceful limp home function on a vehicle level offers the opportunity to reach

a secure state while following a safe path. A simplistic example illustrating the concept with the

previous example could include: the video camera and radar systems could determine that the road

ahead and behind are clear, and it is safe to reduce the vehicle speed. The engine controller could

then safely reduce the maximum vehicle speed. The steering controller could determine the vehicle

is not currently performing a high dynamics maneuver. And the intelligent power distribution

controller could shut down power to the braking controller. While this is difficult for a single

compromised controller to achieve, a distributed approach could maintain compatibility with the

33

functional safety concept at each step along the way. Each critical vehicle system would need to

have an appropriate response path mapped out. Chapter 5 proposes how SDV architectures may

take further advantage of this approach.

3.3.6 Complicate Shadowing in Fingerprint Generation

Adding entropy to the fingerprint generation process makes it difficult for the adversary to predict

fingerprint patterns. Embedded controllers need to work within several constraints.

• Reproducible: The random pattern used to create the fingerprints should not exceed the

computational capabilities of the HSM in the verify phase to be a successful boot.

• Unpredictable: The random pattern should provide a unique pattern for each block, or at

least a pattern with sufficient entropy to prevent pattern prediction, with special attention to

preventing scalable attacks.

• Indexable: The pattern must sparingly use protected memory space.

On a conceptual level, we want to reshuffle the cells so that the adversary cannot predict

which cells will be protected by which fingerprint. We would like to have a high entropy, but

reproducible, mapping for how the fingerprints in this block are ordered. With the column-wise

algorithm, essentially the offset is always zero. To provide a reproducible stream of random offsets,

each ECU needs a unique random seed to generate the stream. First, use the true random number

generator inside the HSM to generate the seed, or an OEM who provides the key could also generate

the seed in the same process. Second, feed an ECU-unique seed into a PseudoRandom Number

Generator (PRNG) to generate a reproducible stream of random bits and use ⌈𝑙𝑜𝑔2𝑏⌉ bits to form

a random offset for each block. Modulo addition shifts the fingerprints for that block by 𝑠 𝑗 . Lastly,

use the PRNG to generate the random offsets for each block, so we only need to store the seed in

protected memory.

At startup, the seed initializes the PRNG, which then provides a stream of bits that is unique for

the ECU, difficult for an adversary to guess, but easy for the HSM to reproduce at each boot cycle,

34

and we only need to store the seed in protected memory, not the entire bit stream. Let us examine a

few concepts that allow a low-powered processor to quickly calculate the patterns, but still maintain

the one-to-one mapping from fingerprints to memory cells in each block.

• Modulo Addition: Modulo addition, especially with a power of two base, is easily computed

by the HSM. This provides an unpredictable starting point for each block, quickly shifting

each fingerprint in the block by the same offset. This provides 𝑏 possible patterns for each

block.

𝑠 𝑗 ← {0, 1, . . . , 𝑏 − 1} (3.1)

𝑖′← 𝑖 + 𝑠 𝑗 mod 𝑏 (3.2)

• Modulo Subtraction: We use an additional bit from the random bit stream to control the

direction that the fingerprints are built. This provides 2𝑏 possible patterns, but still only 𝑏

effective unique fingerprint mappings as the analysis will examine in detail. Multiplying 𝑖 by

−1 builds the fingerprints in the inverted order.

𝑠 𝑗 ← {0, 1, . . . , 𝑏 − 1} (3.3)

𝑠𝑖𝑔𝑛← {−1, 1} (3.4)

𝑖′← 𝑖 + 𝑠𝑖𝑔𝑛 × 𝑠 𝑗 mod 𝑏 (3.5)

• Modulo Multiplication: Using modulo multiplication with relative primes gives a ring of

randomly scattered patterns. For each block 𝑖, the HSM selects a random offset 𝑠𝑖 and then

35

multiplies the column index 𝑗 to determine the cell for each block. Scattering the fingerprints

rather than building them sequentially makes shadowing of contiguous code blocks very

difficult as each cell must be individually matched. Modulo multiplication in arbitrary bases

is not supported in current HSMs, even using a computationally efficient base would still tax

the HSM and introduce an unacceptable delay.

𝑠𝑖 ← {1, 2, . . . , 𝑏 − 1} (3.6)

𝑖′← 𝑠𝑖 × 𝑗 mod 𝑏 ∈ P (3.7)

• Random: The best theoretically possible option is to generate a unique pattern for each

block. We would need to maintain 𝑑 patterns, one for each block. To keep track of the order

for each of the 𝑏 cells in the block, we would need to store 𝑑 × 𝑏 numbers, which is the total

number of cells.

𝑠𝑖, 𝑗 ← {1, 2, . . . , 𝑏}, 𝑠𝑖, 𝑗 ≠ 𝑠𝑖, 𝑗 ′ ∀ 𝑗 , 𝑗 ′ ∈ {1, . . . , 𝑏}, 𝑖 ∈ {1, . . . , 𝑑} (3.8)

𝑖′← 𝑓 (𝑠𝑖, 𝑗) (3.9)

• Reduced Random: We consider a smaller, pragmatic number of patterns, sufficient to

ensure entropy and generate these patterns. These should be unique to the ECU and stored

in protected memory.

3.3.7 Complicate Shadowing in Fingerprint Selection

Shadowing resistance can also be enhanced by further constraining the fingerprint selection.

36

• Oversampling: Oversampled fingerprints with different groupings of cells across blocks

limit the attacker’s ability to successfully shadow across multiple fingerprints. Single-use

fingerprints require an unbiased source but reusable fingerprints require an unbiased result.

For a single-use fingerprint, the probability that a cell will be checked should not depend on

its previous history. For reusable fingerprints, we must ensure that there are not cells which

are under-protected considering previous history.

A cell is considered under-protected if the 𝑃𝑟 (𝐶ℎ𝑒𝑐𝑘 𝑐𝑒𝑙𝑙 𝑜𝑛 𝑛𝑒𝑥𝑡 𝑏𝑜𝑜𝑡) < 1
𝑏

. Assuming

the adversary can monitor repeated boot cycles to determine which cells are under-protected

or even unprotected by any fingerprints, these cells are more likely to be targets for potential

attack. Using multiple different fingerprints to protect each cell could improve the shadowing

resistance, as the adversary would have to defeat different patterns, but the sampling should

still ensure that each cell is protected by the same number of fingerprints.

• Skipping: Both PBASS and SSB consider the number of compromised cells in each block

and have not taken advantage of the fact that the adversary’s executable code consists of

contiguous cells. If we know that the compromised segments have a minimum length of 𝑤,

checking every 𝑤𝑡ℎ cell reaches 100% detection by the
⌈
𝑏
𝑤

⌉𝑡ℎ check. Although this puts a

hard limit on how many checks are required to guarantee detection, the attacker could reduce

𝑤 to defeat this approach.

• History: A sequential selection of the fingerprints speeds detection but an adversary could

just wait until a specific cell is checked, then be confident that it will not be checked again for

the next 𝑏 boot cycles. A hybrid approach favoring recently unchecked fingerprints, could

balance the increase in speed with the predictability, e.g., select one of the last 𝑏2 cells checked

with 25% weighting and 75% for the half that has not recently been checked.

Simulations with random modification placement did not show a strong advantage with randomly

placed modifications but consider oversampling and history as potential approaches against an

intelligent adversary.

37

3.3.8 Asymmetric Memory Focus

All cells are not equal from a security perspective. The ability to modify a single bit in the life cycle

counter may have a significant security impact. Conversely, the ability to modify large sections of

unexecutable memory may not offer any advantage to an attacker. Sampled memory checks need to

carefully weigh the security impact of the memory cells and may require some cells to be included

in multiple or even every fingerprint. Unused memory may not even require a cryptographically

secure fingerprint. With every bit in its erased state, calculating a collision-resistant secret does not

provide any additional confidence for self-attestation.

There are three options for handling security sensitive cells. The first, is to check the security

sensitive cells every boot cycle and then start the sampled boot. The second, is to include the

security sensitive cells in every fingerprint. We could also consider protecting cells with multiple

fingerprints, but not every fingerprint – effectively reducing 𝑏 for a sensitive region of memory.

3.4 Security Analysis

If we only sample a portion of the memory, how likely are we to detect the compromised code,

especially as we continue reusing the fingerprints over multiple ignition cycles? Since SSB covers

every memory cell with exactly one fingerprint, this maps to the ball and urn problem from

combinatorics. We select 𝑏 urns and assign each one of them to represent a fingerprint. We

examine each of the 𝑑 blocks from memory, placing a ball into the corresponding urn for each

compromised cell. After examining the entire memory space, some of the urns will have balls

in them and some may be empty. If we randomly select an urn and it contains at least one ball,

checking the corresponding fingerprint would detect the compromised memory. If the selected

urn happens to be empty, then it would escape detection. For our analysis, we randomly select an

urn and check if it contains a ball. If it does, we detected the compromised memory. If not, we

continue selecting urns until we find one with a ball. The number of urns we have to check before

finding one with a ball corresponds to the number of boot cycles that would escape detection. This

38

equivalent problem was used to significantly accelerate the simulation process to generate billions

of simulations to provide smooth curves on a logarithmic scale.

3.4.1 Automotive Controller Memory Patterns and Shadowing

Automotive microcontroller memory typically diverges into two usage patterns: executable code,

and calibration tables. LUTs provide a flexible and computationally efficient tool, where a small

microcontroller manipulates a large number of variables with complex formulae, perhaps even

without closed-form solutions, allowing engineers to tune behavior with varying granularity in

different operating conditions. An adversary can attempt to modify component behavior by

modifying the program by stringing together contiguous segments of code [122] or by changing

the values of LUTs. In both cases, modified cells will tend to cluster together, resulting in a high

number of compromised cells in a small region.

If we do not have sufficient time to check every memory cell before booting, we can

take advantage of the restrictions that the microcontroller architecture places on the adversary.

Embedded controllers typically do not have dynamic file systems and adversaries need to work

within a more rigid memory structure. We can improve the detection rate over just randomly

selecting cells from the entire memory space by dividing the memory into uniform length blocks,

and testing one cell from each block. If an adversary modifies 𝑤 out of the 𝑏 cells in the block,

the likelihood that the modification will escape detection from a randomly selected cell is given in

Equation 3.10.

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒) =
(
𝑏 − 𝑤
𝑏

)
(3.10)

If the adversary divides the attack into 𝑤 cells in 𝑣 different blocks, Equation 3.11 shows the

escape rate with randomly placed modified cells, evenly distributed among the 𝑣 blocks. If the

modified cells are not uniformly distributed, the detection rate increases above Equation 3.11. The

block with the highest number of modified cells will dominate the escape rate. Diving deeper

39

into the escape rate for randomly placed modified cells does not provide much improvement in

the security of the concept as skilled adversaries will focus their attention on shadowing the

modifications over the random approach to impact as few fingerprints as possible.

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒) =
(
𝑏 − 𝑤
𝑏

)𝑣
(3.11)

As we continue to power up the system on subsequent boot cycles, randomly selecting one

fingerprint to verify, Equation 3.12 shows the escape rate after the 𝑚𝑡ℎ check.

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒) =
(
𝑏 − 𝑤
𝑏

)𝑚×𝑣
(3.12)

As the following analysis demonstrates, modifying even a modest number of cells will be

quickly detected. An adversary with knowledge of the SSB algorithm can attempt to maximize

the shadowing of the compromised cells. The first priority is to try to align the compromised

cells in each successive block to coincide with fingerprints already monitoring compromised cells,

minimizing the number of fingerprints that will check compromised cells. With 100% shadowing,

each of the 𝑣 modified code segments will be protected by the same fingerprints. We still will have

at least 𝑤 fingerprints that are compromised, so the escape rate is bounded by Equation 3.13.

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒) ≤
(
𝑏 − 𝑤
𝑏

)𝑚
(3.13)

If we use column-wise fingerprint generation, it is easy for the attacker to achieve 100%

shadowing, because the simple fingerprint pattern is known. We want to implement sufficient

entropy in the fingerprint generation pattern so that it becomes very difficult for the attacker to

achieve effective shadowing. To protect a single ECU, the modulo multiplication and full random

patterns were most effective, as the attacker would have to not just know the starting offset, but also

make very small code snippets. Using ECU-specific seeds makes the effort to uncover patterns and

develop an effective attack prohibitively expensive, as this would probably entail destroying the

ECU, preventing a scalable attack model.

40

3.4.2 Fingerprint Robustness

When we think about using a sampled rather than an exhaustive basis to ascertain that the SW

image is intact, there are a few questions to consider.

• New SW: When an ECU receives new SW, it needs to verify the origin, freshness, and

applicability of the SW. DSAs and asymmetric cryptography work well to establish sufficient

levels of trust. Since this happens infrequently and SW updates can be postponed until the

vehicle is in a safe state, the time it takes to verify with slow algorithms is warranted.

• Primary Detection: We would like to know how effective the scheme is at detecting

compromised code. Exhaustive checks guarantee detection, but all sampling schemes, since

they do not check every single cell, must evaluate the detection effectiveness in terms of

probability of escaping detection. How effectively can the scheme detect the compromise on

the first ignition cycle after introduction?

• Secondary Detection: Considering the case where the attacker is able to evade detection

on the initial boot cycle, will it eventually detect the modification? Does the probability of

escaping detection decrease on each subsequent ignition cycle?

• Sustainable Detection: Let us assume that the adversary has studied the behavior of a

specific module and is able to build a profile of the fingerprints. Can the adversary determine

a strategy to avoid detection altogether? How effectively can he shadow his modifications to

reduce the detection rate?

• Scalability: Let us assume that the adversary invests significant effort into successfully

compromising a single ECU. A scheme that can withstand significant attacks and then leave

only a single ECU compromised may make the entire effort undesirable for many attackers.

41

3.4.3 Algorithm Selection

For our initial analysis, we identified the Cipher Block Chaining Message Authentication

Code (CBC-MAC) algorithm as the fastest algorithm in most automotive controller HSM AES

accelerators, as a high potential candidate for secure boot image checks. We investigated the

improvement ratio observed in our sampled check over a full image check. We set the Initial Value

(IV) to zero as is commonly defined for the CBC when used to calculate a MAC [76] [125] since

a codebook attack is out of scope for a MAC. This algorithm requires the use of a dedicated key.

Although length-based attacks present a challenge for the CBC-MAC algorithm in general, our

use case posits a dedicated HSM core verifying on-chip memory against a key it controls. For

the initial concept, the algorithm simply pads with zeros at the end of the last block if needed.

Selecting a value of 𝑏 that fills the AES block or reading additional memory cells could improve

this implementation as a next step. The following measures provide robustness against an adversary

modifying the SW image and fingerprints (MACs):

1. The HSM controls the padding, the IV, and the number of cells checked.

2. The HSM controls which memory cells are checked.

3. The HSM never reveals its calculation for the current fingerprint - only if it matches the stored

fingerprint.

4. The HSM may reveal the original memory fingerprint values by storing them in unprotected

memory to an adversary who is able to read out the memory.

5. The attacker cannot force the HSM to calculate a new fingerprint or reveal what the fingerprint

should be for an arbitrary modification.

We do not have a second party that is trying to determine if the message has been modified

in transit, but the same party running the same SW to verify if the image has been modified.

Other MAC algorithms such as CMAC and HMAC could also be used if the AES HW accelerator

42

supports them, but selecting a slower algorithm means checking fewer cells in the time available

for the image check.

3.4.4 Escape Rate Detection

Sampled checks balance the number of cells modified (attack), the number of cells checked (time),

and the escape rate (detection). Non-exhaustive checks cannot guarantee detection, so let’s explore

how to evaluate the detection rate. First, we recognize that from a security perspective, not all cells

are the same. Researchers have successfully compromised ECUs by changing just a few cells on

ECUs without secure boot checks [86] [124]. Cells that control secure access, diagnostic access,

SW signatures, or modify safety-critical features may need to be checked on every boot cycle.

Sampled checks are not effective at detecting single-cell changes, but exhaustive checks are not

efficient at protecting large blocks of code. Can we efficiently check the remaining overwhelming

majority of the cells—those that do not directly control security functions?

To evaluate the effectiveness of SSB, let 𝑧 be the number of cells the adversary needs to modify

to achieve the objective modified behavior and let us explore how they are configured. The security

engineer can vary the minimum start up time improvement factor and the target maximum escape

rate. The attacker attempts to balance the desired functionality and the minimum number of

modified cells to achieve the functionality while hiding the small snippets in memory.

Fortunately SSB is very effective at detecting even a small number of modified cells. To make the

analysis interesting, let’s examine a very minimal modification, probably significantly smaller than

an adversary would attempt to implement. Assume that the adversary needs to change 0.01% of

the cells in a microcontroller with 8 megabytes of on-chip memory using 4-byte words as cells. So

𝑧 = 0.01%×8388608
4 = 210 words. With 𝑏 = 64, what is the likelihood of detecting these compromised

cells in the memory?

Let us assume that the adversary wants to create a contiguous block of executable code. If 𝑧 ≥ 𝑏

then every fingerprint will contain at least one modified cell, no matter how the attacker orients

the compromised code, and detection is guaranteed. Familiar with the algorithm, the adversary

43

can break up the code into 𝑣 smaller segments, each linking to the next segment with a jump

command, save the last. Each of the modified 𝑣 segments will contain 𝑤 =
⌈
𝑧+𝑣−1
𝑣

⌉
compromised

cells. Consider the case where 𝑤 < 𝑏, each of the 𝑣 blocks with modified segments will contain

𝑤 modified cells. If the compromised segment straddles two blocks, the impact on the escape rate

remains unchanged.

Figure 3.2 depicts the escape rate over the first three ignition cycles as the number of segments

with the different fingerprint generating patterns varies. We swept v from 1 to 63 and then calculated

𝑤 to give 𝑧 = 210 active modified cells. We generated the fingerprints using several fingerprint

generating algorithms:

1. A simple column-wise algorithm with fingerprints made up from the key and each cell in the

column from each block.

2. A modulo addition algorithm with each block 𝑖 having a random 𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑖 = {0, . . . , 63}.

3. A modulo subtraction algorithm with each block 𝑖 having a random offset and direction:

𝑜 𝑓 𝑓 𝑠𝑒𝑡𝑖 = {0, . . . , 63}, 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = {−1, +1}.

4. A modulo multiplication algorithm with each block 𝑖 having a random product:

𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑖 = {1, 3, 5, . . . , 63}.

Figure 3.2 illustrates the results of 1,000,000 simulations of each configuration, modifying the 𝑣

segments of code 𝑤 cells long, then counting how many boot cycles it takes before the modification

is discovered.

All four strategies provide similar protection on the first boot cycle. Since 𝑣, 𝑤 ∈ Z, their

product, or the total number of modified cells, will often exceed our target value of 𝑧 = 210, this

changing total causes sawtooth ripples in the curves. We select the combination of 𝑣 = 11 and

𝑤 = 20 as an interesting configuration, as 𝑣 increases, the additional jump commands increase

the total number of compromised cells. The escape rate averages 1.6% on the first boot. On

the second boot, the column-wise, addition, and subtraction strategies achieved an escape rate of

44

Figure 3.2: Escape Rate Fingerprint Generation

0.19%. The multiplication strategy achieved an escape rate about four times better with 0.046%.

This significant improvement comes from more effectively spreading the contiguous strings into

more fingerprints. On the third boot, the first three strategies achieved 0.029% escape rate, and the

multiplication about ten times more effectively at 0.0017%.

Figure 3.3 investigates the behavior of this attack profile in more detail. We also include an

analysis of a column-wise approach, where the adversary effectively shadows the compromised

segments. If the adversary has the ability to arbitrarily place the modified code, adding entropy to

the fingerprint generation provides a significant improvement to the detection. Randomly placing

the compromised code in memory does not discriminate between column-wise, modulo addition and

modulo subtraction, but we anticipate adversarial intelligence to implement significant shadowing

with column-wise sampling. For column-wise, modulo addition, and subtraction, the first modified

code segment affecting 𝑤 fingerprints. When the second code segment is added, the portion of

the compromised code that overlaps the first segment provides no benefit to detection – just the

portion that extends either at the beginning or end of the original segment catches new fingerprints.

45

Figure 3.3: Impact of Fingerprint Generation on Escape Rate

Modulo subtraction provided no significant improvement over modulo addition because the effective

shadowing is the same for both methods. If fingerprints 1 through 20 cover the first modified code

segment, and then fingerprints 20 through 1 cover the second, it does not increase the number of

fingerprints that catch a modified cell. So although the order of the fingerprints catching these cells

changes, the shadowing does not improve. Modulo multiplication offers a significant advantage

because the fingerprint coverage distributes the modified cells more effectively across multiple

fingerprints.

There are 𝑏! possible fingerprint combinations to protect each cell with one fingerprint. column-

wise fingerprints provide 1 combination, modulo addition provides 𝑏, modulo subtraction provides

2𝑏, but only 𝑏 are unique when considering shadowing. The tested modulo multiplication variant

with just the odd factors gives 𝑏/2 unique combinations. To ensure that each cell is protected by

a single fingerprint, we need to ensure that 𝑏 and 𝑖𝑛𝑑𝑒𝑥 are relatively prime. Selecting a prime

number for 𝑏 allows 𝑏 − 1 possible configurations, but multiplication in general, and modulo

multiplication in particular are not trivial calculations for an HSM. A computationally feasible

strategy would be to create a set of random arrangements and store a LUT in the protected memory.

46

Then a pseudorandom stream selects a configuration from the LUT for each block. The number

of available configurations needs to be controlled, but our example with just 32 variants provided

an attractive alternative - a relatively small number of patterns effectively distributes the modified

cells into different fingerprints. Modulo addition with a power of 2 base is a trivial operation, as

the higher order bits can simply be discarded.

If the adversary is able to monitor the memory patterns (e.g., with off-chip memory), identifying

the blocks that use the same pattern allows effective shadowing. We can increase the resilience

against this in two ways. The first would be to increase the number of patterns (which may be

impractical with limited memory available). The second is to use multiple patterns to oversample

the cells. For our modulo multiplication example, if we oversample with 𝑓 = 3𝑏, the redundant

fingerprint patterns protect each cell with a different pattern, we would have 32× 31× 30 = 29, 760

different protection patterns. With 8 MB of memory arranged as 2,097,152 4-byte cells, we have

32,768 blocks. Even if the attacker can optimize an effective shadow for one set of fingerprints,

the other fingerprint patterns would not be effectively shadowed and the unshadowed fingerprints

would dominate in selection frequency.

Figure 3.4 shows the effectiveness of modulo multiplication increases over column-wise

sampling as the number of compromised code segments increases. With just a single modified

code segment 𝑣 = 1, the two strategies have the same escape rate. When we increment to 𝑣 = 2,

modulo multiplication begins to demonstrate more effective shadowing resistance. As we continue

adding modified code segments, modulo multiplication continues to increase its effectiveness as it

more effectively casts the modified cells into different fingerprints. The bumps in the curves occur

when the escape rates approach one sample out of the million simulations.

In Figure 3.5, we plot the curve fitting exponents from Figure 3.4 and the dramatic influence of

effective scrambling on improving detection for randomly placed modified code segments.

47

Figure 3.4: Escape Rate Multiplication vs. column-wise

Figure 3.5: Escape Rate Multiplication vs. Escape Rate column-wise

48

3.4.5 Effective Scrambling

It is difficult to derive a closed form equation for the likelihood of shadowing, and it is not very

useful, as the attacker is not using a random-based approach. What appears to be helpful, is if we

can try to provide a set of patterns that meet the following criteria:

• Unbiased and even distribution of fingerprints: Ideally, we would like to see an unbiased

mapping for each cell position into each fingerprint. Table A.1 shows the possible patterns of

modulo multiplication with base 16. If we use the columns as memory cells, the rows as the

offset factors, and the table values as the fingerprint that the cell should be mapped to, then it

is clear that the even factors are not suitable (half of the fingerprints check no cell) and avoid

𝑏 ≡ 0 mod 𝑏 as well. The even numbers are not relatively prime and share 2 as a common

factor with 16. One additional point to notice is column number 8. Since it always maps to

the same fingerprint, this could provide a foothold to an attacker. Using a prime base, as in

Table B.1 with 𝑏 = 17, provides a perfectly balanced scrambling of the fingerprints. Each

cell maps to one fingerprint and can map to any of the fingerprints. We used 𝑏 = 64 to allow

consistent evaluation with the other methods, but 𝑏 = 61 would have been better for modulo

multiplication or perhaps 𝑏 = 65 with even offsets.

• Different spacings: Table B.1 provides also a balanced distribution of the spacing from

adjacent cells to different fingerprints. If the adversary is constrained to use contiguous code

segments, spreading out the spacing complicates shadowing. For a prime number base, this

is automatically supported.

• Sufficient entropy: The number of possible fingerprint patterns should be sufficient to

prevent an adversary from effectively shadowing compromised code segments.

• Quick to calculate: If the mathematics behind the implementation slows the HSM boot

check, we will have to check fewer cells to compensate.

• Threat scenario: Can the adversary get access to the memory bus to determine which cells

49

are linked in a given fingerprint? If we assume that the adversary cannot easily determine

which cells are being protected by which fingerprint, the risk of effective shadowing is

reduced. If we assume the attacker can easily monitor fingerprint usage, we may increase the

number of patterns.

3.4.6 Impact of Fingerprint Distribution

How much could we improve the detection by optimizing the fingerprint patterns? To analyze this

question, we compared the performance of modulo multiplication in Table A.1 and Table B.1. The

first is labeled as Mult16, since we are using modulo multiplication with base 16, but only selecting

the odd offset factors. The second is labeled Mult17. We generate a random offset factor between

1 and 16, then we generate a series of 5 cell long modifications that are between cells 1 and 16

(if it passes 16, then we wrap around to 1). We then multiply the factor and the modified cell in

modulo 17, then subtract 1 to give us a range from 0 to 15 so that it is compatible with the other

calculations. We do not want to multiply by 0, as this would always map all cells in the block to

the same fingerprint.

For both models, we have 16 fingerprints. For Mult16, we only have 8 fingerprint ordering

patterns (from the odd factors) and cell 8 always maps to fingerprint 8, and cell 16 always maps to

fingerprint 0. For Mult17, we have 16 fingerprints. Figure 3.6 shows that Mult17 performs a bit

better than Mult16, but even with 10 million samples per data point, the advantage with randomly

placed compromised cells is not significant. Since our example uses a small number for the number

of compromised segments 𝑣, it is still not likely that modified cells are in blocks and same locations

using the same fingerprint pattern.

3.5 Performance Analysis

We prepared a proof-of-concept implementation running inside an HSM on five automotive ASIL-D

rated microcontrollers. The three different Renesas RH850C family controllers [53] have the same

50

Figure 3.6: Escape Rate for Modulo Multiplication 16 Odd vs. 17 Full

HSM and behaved the same in testing, Infineon’s TC37x and TC39x [91] likewise. We evaluated

the influence of using a word or byte as the cell size, varied the block size, the amount of memory

processed by the algorithm, and RAM allocated to the buffer. We reduced the verification time by a

factor of 9 on the Infineon devices and a factor of 23 on the Renesas, bringing the boot time within

a range compatible with the safety concept.

‘Flash block’ commonly refers to a physical group of memory cells that are erased together, but

’block’ here refers to a logical group of memory cells; the investigation considered the block size

ranging from 4 to 64 words. Microcontrollers are typically optimized to read contiguous sections of

memory into the AES accelerator, which influences the Time Reduction Factor (TRF). We calculate

TRF as the ratio of the time required to complete the full image check to a sampled check. Since

𝑡𝑜𝑡𝑎𝑙 𝑚𝑒𝑚𝑜𝑟𝑦 = 𝑏 × 𝑑, as the block size 𝑏 increases, the number of cells checked and the time to

check them decrease.

We use ‘cell’ as a collection of data, and then select the optimum size. Our initial measurements

treated each byte as a cell, but the HW is optimized to read words (4 bytes) rather than bytes.

Switching to words caused a 51% performance improvement. Using 16-byte long cells to feed

the AES engine optimizes the read rate, but also reduces the effective snippet length 𝑤 and thus

51

the detection rate. Aligning the cell size to the smallest functional unit in the microcontroller

maximizes the length of the code snippet. If a string of cells are compromised, checking all of

them does not increase the detection rate over checking just one.

3.5.1 Complexity and Memory Cost

Our scheme sparingly uses HSM-protected memory and efficiently uses unprotected memory. For

SSB, we store the 128-bit AES key (16 bytes) in protected memory. With 𝑏 = 64, the fingerprints

take 1 kB of memory and the proof-of-concept implementation stored these in protected memory.

Storing the fingerprints in unprotected memory would allow the attacker to generate her own

fingerprints, but she must first defeat the collision resistance of the AES key protecting the MAC to

compute a fingerprint corresponding to the modification. Modulo addition requires an additional

128-bit seed stored in protected memory. Modulo subtraction requires the same amount of memory

as the PRNG provides the values for the individual blocks.

Modulo multiplication also would require an additional seed, but we did not evaluate the

performance impact, as it is likely to impact the HSM speed. Using a partial random LUT requires

an index for each element, 𝑏 × 𝑛 × 𝑙𝑜𝑔2𝑏, where 𝑛 is the number of needed patterns plus a seed to

be stored in protected memory but should have a negligible speed impact.

3.5.2 Time Reduction Factor

To evaluate the improvement in boot time, we propose TRF as a metric. This is simply the

amount of time it took to perform a sampled boot check divided by the time it took to perform a

complete boot check. Figure 3.7 plots the best-case TRF for the Infineon TC37x and the Renesas

D3 microcontrollers against the block width 𝑏. We evaluated the influence of using a word or byte

as the cell size, varied the block size, the amount of memory processed by the algorithm, and RAM

allocated to the buffer. The verification time reduced by a factor of 9 on the Infineon devices and

a factor of 23 on the Renesas, bringing the boot time within a range compatible with the safety

concept. The influence of using a word or byte as the cell size, the block size, the amount of memory

52

Figure 3.7: SSB Time Reduction vs. Block Width for Renesas D3 and Infineon TC37

processed by the algorithm, and the amount of RAM allocated to the buffer were analyzed. The

configuration that provided the quickest verification time was selected and then used to calculate

the TRF for the five microcontrollers.

We varied the block size from 4 to 64 at powers of 2. The TRF was identical for the

microcontroller vendors as they use the same HSM block within the same family. The TRF

increased directly proportional to the block size 𝑏, but overhead in loading the AES accelerator

from memory attenuated the reduction. With a block size of 𝑏 = 64, TRF was 9 on the Infineon

devices and a factor of 23 on the Renesas ones, bringing the boot time within a range compatible

with the safety concept.

For the Infineon TC37x and T39x, the TRF is 𝑏/7.1. With 𝑏 = 64, this provided a TRF of 9.

3.5.3 Real-World Evaluation

Even if we persuade ourselves that SSB is robust against random constellations of modified cells,

we need confidence that it will be robust against real-world attacks. Unable to evaluate publicly

available real-world automotive modified SW, we checked Offensive Security’s shell code exploit

53

database [162] and found the smallest entries are slightly larger than 100 bytes. Dolezal et

al. explored compromised automotive code [63] [64]. We examined a tuner-modified engine

controller and compared the modified SW to the original SW and achieved 100% detection, i.e.,

each fingerprint checked at least one modified cell, up to 𝑏 = 2048 with byte-sized cells. The tuners

modified 0.08% of the memory space, but to achieve the modified engine controller performance,

their modifications were clustered together. Of course, if the secure boot had been in place, they

would have had to adapt their strategy. With only 0.08% of the memory space modified, the scheme

delivered promising results on a real-world modification.

The deciding questions for successful introduction of this scheme are: “What is the smallest

number blocks and cells does the adversary have to modify to achieve her desired behavior?” and

“What is the minimum acceptable detection rate?”

54

3.6 Discussion

Several risk factors should be considered when using a sampled secure boot strategy.

• Size: It works well for larger modifications, but small modifications may escape detection

[124]. A practical implementation will probably need to evaluate some cells with a higher

sample rate, and some cells every boot cycle. A more complicated fingerprint pattern could

also present an attack vector for a skilled attacker.

• Entropy: The ability of an attacker to escape detection strongly depends on the entropy of

the patterns. Having unique fingerprint keys and fingerprint patterns for each ECU helps to

limit the scalability of an attack and hence the attractiveness of the attack vector. Attacking

the HSM entropy could present an interesting attack path, but it probably would also affect

the standard secure boot strategy as well.

• Objectives: It is essential to determine a reasonable escape rate and use this to drive the

parameter selection process. For most vehicle applications, a 99% likelihood of detecting

compromised SW on a single boot cycle would offer sufficient protection to serve as a

reasonable defense mechanism.

• Asset Value: Even with robust secure boot protection, embedded controller HSMs are not

well suited to protect high value secrets such as fleet-wide keys. Researchers have successfully

launched attacks on full image secure boot scenarios [154].

• Response: Responding to an anomaly detection with a decoupled, real-time, CPS requires

careful planning. Security engineers are conditioned to try to bring the system to a secure

state, but the safety needs must also be considered for automotive systems. This is especially

important for RTD.

Several principles enable the use of reusable fingerprints to protect sampled secure boot.

• Constrain fingerprint generation to ensure uniform, unbiased protection, i.e., protect each

cell by the same number of fingerprints.

55

• Select fingerprints randomly without bias.

• Protect the fingerprint signature with an ECU-unique key.

• Protect the fingerprint pattern with an ECU-unique key.

• Generate fingerprints when the ECU is in a protected state.

• The likelihood of escaping detection on the first boot cycle after modification should be low

and decrease on each successive boot cycle, even if the adversary observes all fingerprint

patterns before implementing the modifications.

3.7 Conclusions

The SSB-proposed scheme can be used to make secure boot feasible for automotive ECUs by

reducing the time required to verify SW integrity to the point where secure boot does not interfere

with the safety concept. Even without checking every cell in memory, the sampled check can

provide an acceptable level of security to protect automotive controllers.

Using entropy in the fingerprint patterns can protect against shadowing, but several

considerations come into play. Modulo addition provides a quick and lean pattern to protect

against shadowing. Modulo multiplication and reduced random LUTs provide more time

intensive and memory intensive respectively solutions that have significant improvements in certain

configurations.

We see significant benefits from using SSB as a run-time detection algorithm, where we build

trust incrementally in small chunks rather than hoping that a compromised host core will allow

sufficient execution time to complete the image check before the power is shut off. As electric

vehicles and autonomous vehicles modify driving cycle behavior, boot cycles may occur less

frequently, increasing the need for run-time monitoring.

We mapped out a prospective state diagram for how to respond if the system detects a

compromised memory image in a safe manner. It may be easier to reach a secure state in a safe

56

manner by using a vehicle-level approach rather than trying to accomplish this with a compromised

ECU.

The critical question facing automotive security engineers is not “is a sampled secure boot as

good as a full one?” but the pragmatic one “Since we must meet our functional safety and start up

time requirements, do we implement SSB protecting this ignition cycle or a full image background

check protecting the next?” A defense mechanism that shrinks the likelihood of success to the point

where the adversary decides this path is not worth the effort should be considered effective.

57

CHAPTER 4

Digital Shadows - Remote Attestation without SW

Image

4.1 Introduction

Automobiles need a new approach to RA due to limited resources, network access, and intellectual

property access. As automotive connectivity and autonomy increase, the need for external parties

to trust the integrity of the SW in a vehicle also increases, even for parties without access to the

complete SW. Consider a government regulator, without either physical access to the vehicle or

access to confidential proprietary information, who needs to ensure all the autonomous vehicles

driving on roads within its jurisdiction are using the correct SW. With 1.4 billion vehicles driving

around the globe, and 284 million just in the US alone - if each vehicle sports 65 ECUs, verifying

each vehicle twice a year would entail checking 100 million ECUs per day [22] [85] [174]. Other

parties could also benefit; owners to verify that their vehicles haven’t been hacked, a potential car

buyer to ensure that the vehicle hasn’t been running tuned SW causing excessive wear, a parent to

“kick the tires” of a robotaxi before sending the kids off to school, and the vehicle manufacturer to

periodically check the cyber-health of its fleet.

Classic RA is a process with two parties. A trusted device (the verifier) measures the current

state of the device under test (the prover). RA in the automotive world faces several interesting

challenges - the verifier neither has access to the known-good SW nor controls the individual

vehicles that are being verified. Within this low-trust environment, the OEM may be the only party

58

with access to the known-good SW. The intellectual property’s value, the risk from increased cyber

attacks, and liability with potential misuse complicate sharing with regulators or even owners.

Parties beyond the OEMs may have a valid need to verify the authenticity and freshness before

entrusting human lives into the hands of a vehicle’s ECU. Furthermore, the adversary may have

direct control over the target vehicle and the communication network to the prover. With physical

access to the vehicle, the adversary may modify or copy the module’s memory, add another device

in the vehicle, or perhaps even capture or modify messages on the network back to the prover.

Many automotive controllers have similar challenges to IoT devices with low processing power,

intermittent supply power, and the ability to control cyber-physical systems and collect sensitive

Personally Identifiable Information (PII) data [27].

The potential adversary objectives include malicious attempts to modify the vehicle SW to

injure the passengers, commercial desires to unlock functionality or increase performance which

could impact the safety or reliability of the vehicle, and benign neglect of a required updates or

inadvertently loaded improper SW.

Pragmatic concerns limit the time and data available to support the process. Some background

information with reasonable numbers may help security experts understand the challenges. Any

process that takes more than about 10 seconds during the manufacturing process can have a

significant impact on the manufacturing line and brings prohibitive costs. To be useful, the check

in the field should not take more than 30 minutes. Limiting the government database to 4 terabytes

and the data exchange to support all requests to less than 1 terabyte per day keeps the storage

requirement manageable with off-the-shelf devices. The concept needs the flexibility to support

SW updates during the life of the vehicle.

We propose DS which combines 4 elements to form a concept that addresses these concerns.

Firstly, it realizes that new vehicle electrical architecture topologies, with careful tweaking, can be

aligned into a tree structure with a root node and multiple layers connecting all ECUs in the vehicle.

It then uses a seed and a unique key to incrementally build a MAC-based signature for each module

as a low-priority background task, with each ECU calculating its signature in parallel. Inspired by

59

Merkle trees [126], each module sends its signature to its parent node, which then builds a signature

based on its fingerprint and all its children, then sends this to its parent node. This repeats until the

signature for the root node is computed. We call this root-node signature a DS - a cryptographically

robust signature of the entire vehicle which can be safely shared with third parties, over untrusted

networks, without leaking sensitive data.

Secondly, we assume that the OEMs are already working to implement DTs of the entire vehicle

fleet for reasons other than security. A DT is a connected virtual copy of the vehicle that can keep

track, in high resolution, of the status and health of the vehicle [82]. Then the DT computes the

OEM’s vehicle target and send it DS to the prover. The costs required to setup and maintain the DT

architecture are already covered with these other uses, just the differential cost for supporting the

third party verifications needs to be considered. A regulator could mandate that all vehicles rated

SAE level 3 [148] or higher could implement the DS algorithm.

Thirdly, the prover compares the DS from the vehicle with the DS from the OEM and determines

if the signatures match with reasonable trust requirements. The prover initiates the process and

performs the comparison.

Fourthly, all ECUs compute their signature concurrently rather than sequentially, so the DS will

be completed shortly after the slowest ECU completes.

We evaluated the time and data loads for this concept with a sample of key vehicle ECUs. This

concept will not immediately cover every vehicle, but the ones with the highest levels of autonomy

and connectivity present the greatest need for remote authentication also are the most likely to have

a DT supporting them.

4.1.1 Contributions

The noteworthy contributions of this chapter are:

• Access to sensitive IP: The DS is built without the verifier requiring access to sensitive IP.

• Data leakage: The DS does not leak any sensitive data about the state of the vehicle or

60

anything contained within such as location history or driving patterns. There are no privacy

concerns with a third party viewing the DS.

• Usage: By incorporating run time and fault code information, the DS can be used to verify

that the vehicle does not just possess the right SW, but is actually using it, and has been since

the last check.

• Data: We provide measurements and estimates of the time required to build a DS and the

data required to implement the concept.

4.1.2 Organization

This chapter is organized with Section 4.2 introducing and analyzing the initial scheme. Section

4.3 explores the first improvement against replay attacks. Section 4.4 includes the verification that

the SW is actually controlling the vehicle. Section 4.5 analyzes the data and time, and Section 4.7

concludes the chapter.

4.2 Initial Scheme

4.2.1 Remote Attestation Concept

Figure 4.1 illustrates a classic RA-based scheme where the vehicle (prover) has to submit evidence

to the OEM (verifier), who has a complete copy of the desired vehicle SW and performs the check.

• Our case considers three parties: the physical vehicle, the OEM with the known-good SW,

and the regulator who wants to verify the authenticity of the vehicle SW. We need to expand

the classic RA scheme to support a third party without access to the desired SW.

Figure 4.2 illustrates a classic PDP scheme where the OEM can designate a third party (who

never has complete access to the vehicle SW) to periodically authenticate the SW.

61

Figure 4.1: Classic Remote Attestation Model

• Pre-computing a batch of fingerprints is not suitable for our concept, because the OEM does

not know when the regulator will want to authenticate the SW or when updates will occur.

• Storing the pre-computed fingerprints would require a prohibitively large amount of memory,

with each ECU in each vehicle requiring a lifetime’s worth of fingerprints.

• The responsibilities and relationships differ in our example. The OEM does not assign the

regulator the responsibility to authenticate the SW.

Figure 4.2: Classic Proof Data Possession Model

Figure 4.3 illustrates our hybrid concept, where we have a government regulator as the third

party authenticating the SW for the vehicle.

• In this concept, the regulator controls the process, determining the time for each vehicle to

perform the attestation.

• The regulator also conducts the comparison, minimizing the trust each party needs to place

on the others.

• In addition to limiting the trust, practical considerations mandate a tight rein on the amount

of data exchanged.

62

Figure 4.3: Hybrid Digital Signature Model

4.2.2 Trust Model

The trust model drives the need for a new concept. What can be shared and what cannot? How

trustworthy and reliable are the communication paths? Why are we concerned about how much

can be shared? The OEM is responsible for generating, validating, and distributing the SW to the

individual vehicles. The enormous amount of innovation that goes into modern vehicle SW and the

effort that goes into validation makes OEMs uncomfortable jeopardizing the intellectual property

associated with this investment. Sharing the SW image presents a substantial risk, as the end user

and regulator may not possess the same motivation and capabilities to keep it confidential. Although

most vehicle controllers do not encrypt their SW at the moment, this may change. Regardless, there

is a significant amount of effort required to extract the SW from an ECU inside a vehicle.

We assume that the government regulator trusts the OEM to deliver the current vehicle address,

maintain an accurate and authentic digital twin of the critical ECUs in each vehicle, compute the

DS on request, and communicate the DS back to the government.

We cannot assume that the communication network will maintain confidentiality, integrity, or

accessibility. Supplemental controls may be required to force the vehicle to complete the test before

being granted access to drive on certain roads.

The security check may not endanger vehicle safety and may not execute with high priority

when the vehicle is driving. It may execute as a low-priority background task.

63

4.2.3 Hash-based Digital Shadow

We define a DS as a cryptographically unique one-way identifier of the SW image with the following

characteristics:

1. The value should be identical if it is calculated by the actual vehicle or the digital twin.

2. The DS can be openly shared and will not divulge sensitive information about the vehicle.

3. An adversary should not be able to determine the DS fingerprint with knowledge of the SW.

4. An adversary should not be able to determine the SW with knowledge of the DS fingerprint

and the algorithm.

5. The scheme should support FOTA updates and dynamic configuration of software defined

vehicles.

4.2.4 Adapting a Merkle Tree for Automotive Architecture

Figure 4.4 illustrates a classic Merkle tree. Merkle proposed that each leaf node would calculate

a hash of its memory and submit it to its parent branch [126]. Each parent branch computes a

hash of its two children and submits it to its parent branch. This pattern continues until it reaches

a root node. A Merkle tree is characterized by this binary tree structure. Traditionally, if a leaf’s

memory pattern changes, a small number of branch nodes hashes need to be recalculated, allowing

a logarithmic amount of effort to compute the hash of the entire memory space.

Figure 4.5 depicts a reference vehicle architecture with a similar tree structure. A telematics

unit connects to the outside world, redundant vehicle gateways connect the domains, and multiple

domain controllers connect a few ECUs in their domain. We propose adapting the Merkle tree

structure to reflect the architecture of the vehicle. Merkle’s concept needs to be expanded to allow

more than two children for each branch. This will not support all of Merkle’s original objectives,

but offers natural potential to efficiently build a unique signature for the vehicle network.

64

Figure 4.4: Classic Merkle Tree

Figure 4.5: Vehicle Merkle Tree

65

4.2.5 Algorithm

For our initial attempt to solve this problem, let’s consider a simple approach that allows the

regulator to determine if the vehicle SW matches the OEM’s expectation.

Let’s assume that the OEM has a record of 𝐴𝐷𝑅𝑉𝐼𝑁 , the address to communicate with each

vehicle using it’s unique Vehicle Identification Number (VIN). Since the address may change, we’ll

have the OEM keep track of the address for each vehicle and have the regulator request this from

the OEM. To ensure identity authenticity, we assume that both the OEM and the regulator have

generated asymmetric key pairs and exchanged the public keys. We also assume that the OEM

maintains a DT of each vehicle, possibly for other reasons such as enabling predictive maintenance

[205].

We build our DS by creating a hash of the memory space for each ECU. Each ECU then sends the

hash to its parent ECU in the vehicle network. The parent builds a hash of its memory concatenated

with the hashes of its children and passes it up to its parent. This process repeats until the root node

computes the hash of its hash plus its children, which forms the DS. The root node then sends the

hash to the regulator, who verifies that the DS of the physical vehicle matches one from the DT.

4.2.5.1 Regulator Algorithm

The regulator initiates the process by obtaining the address for the vehicle from the OEM. To

prevent an adversary from misdirecting the request, the exchange is protected by encryption and

authentication using pre-exchanged public keys. The regulator generates a random nonce to prevent

replay attacks.

66

Algorithm 4: Digital Shadow Remote Attestation
Input: 𝑉𝐼𝑁

Output: {𝑃𝐴𝑆𝑆, 𝐹𝐴𝐼𝐿}

Known: 𝑅𝐸𝐺𝑃𝑅𝐼 , 𝑂𝐸𝑀𝑃𝑈𝐵

begin

Generate random 𝑁𝑂𝑁𝐶𝐸

𝑆𝐼𝐺𝑁𝑂𝐸𝑀 = 𝑆𝑖𝑔𝑛(𝑅𝐸𝐺𝑃𝑅𝐼 ;𝑉𝐼𝑁 | |𝑁𝑂𝑁𝐶𝐸)

Send 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑂𝐸𝑀𝑃𝑈𝐵;𝑉𝐼𝑁 | |𝑁𝑂𝑁𝐶𝐸 | |𝑆𝐼𝐺𝑁𝑂𝐸𝑀) to OEM

Get 𝐴𝐷𝑅𝑉𝐼𝑁 , 𝐷𝑆𝐷𝑇 from OEM

Decrypt using 𝑅𝐸𝐺𝑃𝑅𝐼 , verify using 𝑂𝐸𝑀𝑃𝑈𝐵

Send 𝑆𝑖𝑔𝑛(𝑅𝐸𝐺𝑃𝑅𝐼;𝑉𝐼𝑁 | |𝑁𝑂𝑁𝐶𝐸) | |𝑁𝑂𝑁𝐶𝐸) to 𝐴𝐷𝑅𝑉𝐼𝑁

Get encrypted 𝐷𝑆𝑉𝐸𝐻 from 𝐴𝐷𝑅𝑉𝐼𝑁

if 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑅𝐸𝐺𝑃𝑅𝐼 ;𝐷𝑆𝑉𝐸𝐻) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑅𝐸𝐺𝑃𝑅𝐼 ;𝐷𝑆𝐷𝑇) then

Return 𝑃𝐴𝑆𝑆

else

Return 𝐹𝐴𝐼𝐿

end

end

4.2.5.2 DS Calculation Algorithm

The ECU corresponding to the root node of the vehicle, our example in Figure 4.5 uses the

Telematics Master. This ECU is responsible for communicating with the regulator, directing all

ECUs to compute their hashes, building the DS for the entire vehicle, and also managing the

encryption and authentication with the regulator.

67

Algorithm 5: Calculate Digital Signature
Input: 𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸

Output: 𝐷𝑆

Known: 𝑅𝐸𝐺𝑃𝑈𝐵, 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑 , 𝑇𝑀𝐾𝐸𝑌 , 𝑁𝑢𝑚𝑀𝑒𝑚

begin

Verify 𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸 with 𝑅𝐸𝐺𝑃𝑈𝐵

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Send CALCULATE-DS command to child 𝐸𝐶𝑈𝑖

end

ℎ𝑎𝑠ℎ𝑇𝑀 ← 𝐻𝐴𝑆𝐻 (𝑇𝑀 (1) | |𝑇𝑀 (2) | | . . . | |𝑇𝑀 (𝑁𝑢𝑚𝑀𝑒𝑚))

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Get ℎ𝑎𝑠ℎ𝑖 from child 𝐸𝐶𝑈𝑖

end

𝐷𝑆 ← 𝐻𝐴𝑆𝐻 (ℎ𝑎𝑠ℎ𝑇𝑀 | |ℎ𝑎𝑠ℎ1 | | . . . | |ℎ𝑎𝑠ℎ𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑
)

Send 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑅𝐸𝐺𝑃𝑈𝐵;𝐷𝑆) to Regulator

end

4.2.5.3 Branch Calculation Algorithm

Each branch receives the CALCULATE-DS command from its parent and sends it to its children.

It computes the hash of its memory space, concatenates the hashes of its children, and sends it to

its parent.

68

Algorithm 6: Build Branch Hash
Output: ℎ𝑎𝑠ℎ𝑥

Known: 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑 , 𝑁𝑢𝑚𝑀𝑒𝑚

begin

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Send CALCULATE-DS command to child 𝐸𝐶𝑈𝑖

end

ℎ𝑎𝑠ℎ𝐸𝐶𝑈 ← 𝐻𝐴𝑆𝐻 (𝐸𝐶𝑈 (1) | |𝐸𝐶𝑈 (2) | | . . . | |𝐸𝐶𝑈 (𝑁𝑢𝑚𝑀𝑒𝑚))

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Get ℎ𝑎𝑠ℎ𝑖 from child 𝐸𝐶𝑈𝑖

end

ℎ𝑎𝑠ℎ𝑁𝑜𝑑𝑒 ← 𝐻𝐴𝑆𝐻 (ℎ𝑎𝑠ℎ𝐸𝐶𝑈 | |ℎ𝑎𝑠ℎ1 | | . . . | |ℎ𝑎𝑠ℎ𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑
)

Send ℎ𝑎𝑠ℎ𝑁𝑜𝑑𝑒 to Parent

end

4.2.5.4 Leaf Calculation Algorithm

Each ECU calculates the hash of its actively protected memory space. It then sends the hash up to

its parent ECU.

Algorithm 7: Build Leaf Hash
Output: ℎ𝑎𝑠ℎ𝑥

Known: 𝑁𝑢𝑚𝑀𝑒𝑚

begin

ℎ𝑎𝑠ℎ𝐸𝐶𝑈 ← 𝐻𝐴𝑆𝐻 (𝐸𝐶𝑈 (1) | |𝐸𝐶𝑈 (2) | | . . . | |𝐸𝐶𝑈 (𝑁𝑢𝑚𝑀𝑒𝑚))

Send ℎ𝑎𝑠ℎ𝐸𝐶𝑈 to Parent

end

69

4.2.6 Security Analysis

4.2.6.1 Security Robustness

The concept meets the first security criterion, namely we calculate the digital shadow based on

the critical ECUs in both the vehicle and the digital twin. With the digital twin’s modeling of

the vehicle, the hash calculations should be identical if the SW is identical, and different if even a

checked single byte in just a single ECU is different.

The DS can also be freely shared, as the one-way calculation nature of the hash function allows

the hash to be shared without jeopardizing the content that goes into generating it - satisfying

criteria two and four.

The solution supports the fifth criterion, as the on-demand check verifies the current SW against

the OEM’s desired SW. This eliminates the need for maintaining an elaborate database of SW in

each vehicle and ensuring it remains up to date.

This concept fails the third criterion however, as the hash function is well documented and

provides repeatable results for anyone who runs the calculation. Any party that can access the ECU

and read the SW can consistently generate the correct hash. A skilled adversary would be able to

read the memory and calculate the hash or just request the hash from the ECU, record the response,

and then simply submit the correct response whenever the request occurs.

An additional weakness is that an adversary with control of the communication bus could

monitor the computed correct answer from the OEM and then submit this result as if it were

coming from the vehicle.

4.2.6.2 Calculation Time

By running the hash calculations for each ECU in parallel, building the DS takes slightly more time

than the slowest ECU. This represents a significant improvement over individually checking each

ECU individually.

70

4.3 Improved Scheme

4.3.1 Algorithm Improvements

The simple concept’s main drawback is a lack of robustness against replay attacks. We need to

force the ECU to check each physical memory cell in the ECU for each request. We also need to

ensure that each request generates a different correct answer.

We propose three additions to the scheme.

1. Key-Based Signature: Instead of using a hash function to compress the data, providing a

fingerprint without a secret, we swap the cryptographic primitive and use a MAC instead. A

MAC requires each ECU to have a unique key. While it may be prudent to avoid sharing keys

outside the vehicle, for this concept to work, this key needs to be stored in both the vehicle

and in the DT. This will prevent an adversary from being able to calculate the correct answer

without knowing the key.

2. Random Seed: Replay protection requires each request to have a different correct answer.

A simple way to support this is to vary the starting position for each check. A typical small

uC contains one to four megabytes of on-chip memory, providing a million different patterns.

With an expected life of 25 years, checking twice per year will only use 50 of these patterns.

3. Delay Correct Answer: In order to prevent an adversary from capturing the correct answer

from OEM and replaying it, the regulator waits to request the answer from the OEM until it

has received the response from the vehicle.

4. Run Time Measurement: We include the run time for each ECU. It needs to be authenticated

with the ECU’s secret key to prevent falsification by an adversary.

5. Authenticate Requests: Only perform the calculation if the request can be authenticated

from the regulator to prevent an adversary from scanning the memory.

71

Figure 4.6: Regulator Perspective

4.3.2 Regulator Algorithm

Figure 4.6 shows that the regulator initiates and controls the process. Firstly, the regulator generates

a 𝑁𝑂𝑁𝐶𝐸 and requests the𝑉𝐼𝑁 from OEM similar to the original algorithm. We have the regulator

generate a random 𝑆𝐸𝐸𝐷 and also not request the DS from the OEM until it receives it from the

vehicle. And lastly, the regulator performs the check to compare that the two digital shadows match.

72

Algorithm 8: Remote Attestation with Digital Shadow
Input: 𝑉𝐼𝑁

Output: {𝑃𝐴𝑆𝑆, 𝐹𝐴𝐼𝐿}

Known: 𝑅𝐸𝐺𝑃𝑅𝐼 , 𝑂𝐸𝑀𝑃𝑈𝐵

begin

Generate random 𝑁𝑂𝑁𝐶𝐸

𝑆𝐼𝐺𝑁𝑂𝐸𝑀 = 𝑆𝑖𝑔𝑛(𝑅𝐸𝐺𝑃𝑅𝐼 ;𝑉𝐼𝑁 | |𝑁𝑂𝑁𝐶𝐸)

Send 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑂𝐸𝑀𝑃𝑈𝐵;𝑉𝐼𝑁 | |𝑁𝑂𝑁𝐶𝐸 | |𝑆𝐼𝐺𝑁𝑂𝐸𝑀) to OEM

Get 𝐴𝐷𝑅𝑉𝐼𝑁 from OEM

Decrypt using 𝑅𝐸𝐺𝑃𝑅𝐼 , verify using 𝑂𝐸𝑀𝑃𝑈𝐵

Generate random 𝑆𝐸𝐸𝐷

Send 𝑆𝐸𝐸𝐷, 𝑆𝑖𝑔𝑛(𝑅𝐸𝐺𝑃𝑅𝐼 ; 𝑆𝐸𝐸𝐷) to 𝐴𝐷𝑅𝑉𝐼𝑁

Get encrypted 𝐷𝑆𝑉𝐸𝐻 from 𝐴𝐷𝑅𝑉𝐼𝑁

Send 𝑆𝐸𝐸𝐷, 𝑆𝑖𝑔𝑛(𝑅𝐸𝐺𝑃𝑅𝐼 ; 𝑆𝐸𝐸𝐷) to OEM

Get encrypted 𝐷𝑆𝐷𝑇 from OEM

if 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑅𝐸𝐺𝑃𝑅𝐼 ;𝐷𝑆𝑉𝐸𝐻) = 𝐷𝑒𝑐𝑟𝑦𝑝𝑡 (𝑅𝐸𝐺𝑃𝑅𝐼 ;𝐷𝑆𝐷𝑇) then

Return 𝑃𝐴𝑆𝑆

else

Return 𝐹𝐴𝐼𝐿

end

end

4.3.3 DS Calculation Algorithm

Figure 4.7 shows the algorithm from the Telematics Master or root’s perspective. For the DS

calculation, we change from the hash to the MAC cryptographic primitive and include the secret

𝐾𝐸𝑌 . The telematics root node also sends the 𝑆𝐸𝐸𝐷 to each child, then collects the signature

from each of its children and builds the DS for the entire vehicle.

73

Figure 4.7: Root ECU Perspective

Algorithm 9: Calculate Digital Signature
Input: 𝑆𝐸𝐸𝐷, 𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸

Output: 𝐷𝑆

Known: 𝑅𝐸𝐺𝑃𝑈𝐵, 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑 , 𝑇𝑀𝐾𝐸𝑌 , 𝑁𝑢𝑚𝑀𝑒𝑚

begin

Get 𝑆𝐸𝐸𝐷 from Regulator

Verify vehicle in safe state

Verify 𝑆𝐼𝐺𝑁𝐴𝑇𝑈𝑅𝐸 with 𝑅𝐸𝐺𝑃𝑈𝐵

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Send 𝑆𝐸𝐸𝐷 to child 𝐸𝐶𝑈𝑖

end

𝑀𝐴𝐶𝑇𝑀 ← 𝑀𝐴𝐶 (𝑇𝑀𝐾𝐸𝑌 ;𝑇𝑀 (𝑆𝐸𝐸𝐷) | |𝑇𝑀 (𝑆𝐸𝐸𝐷 +

1) | | . . . | |𝑇𝑀 (𝑁𝑢𝑚𝑀𝑒𝑚) | |𝑇𝑀 (1) | | . . . | |𝑇𝑀 (𝑆𝐸𝐸𝐷 − 1))

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Get 𝑀𝐴𝐶𝑖 from child 𝐸𝐶𝑈𝑖

end

𝐷𝑆 ← 𝑀𝐴𝐶 (𝑇𝑀𝐾𝐸𝑌 ;𝑀𝐴𝐶𝑇𝑀 | |𝑀𝐴𝐶1 | | . . . | |𝑀𝐴𝐶𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑
)

Send 𝐸𝑛𝑐𝑟𝑦𝑝𝑡 (𝑅𝐸𝐺𝑃𝑈𝐵;𝐷𝑆) to Regulator

end

74

Figure 4.8: Branch ECU Perspective

4.3.4 Branch Calculation Algorithm

Figure 4.8 illustrates the exchange between a branch ECU and its children. Calculating each branch

proceeds similar to in the simple algorithm, but using the MAC, 𝐸𝐶𝑈𝐾𝐸𝑌 , and 𝑆𝐸𝐸𝐷 in its

calculation and sending the 𝑆𝐸𝐸𝐷 to all its children. After the children compute their MAC, the

branch node combines them together using its secret key.

75

Algorithm 10: Build Branch MAC
Input: 𝑆𝐸𝐸𝐷

Output: 𝑀𝐴𝐶𝑥

Known: 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑 , 𝐸𝐶𝑈𝐾𝐸𝑌 , 𝑁𝑢𝑚𝑀𝑒𝑚

begin

Get 𝑆𝐸𝐸𝐷 from Parent ECU

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Send 𝑆𝐸𝐸𝐷 to child 𝐸𝐶𝑈𝑖

end

𝑀𝐴𝐶𝐸𝐶𝑈 ← 𝑀𝐴𝐶 (𝐸𝐶𝑈𝐾𝐸𝑌 ; 𝐸𝐶𝑈 (𝑆𝐸𝐸𝐷) | |𝐸𝐶𝑈 (𝑆𝐸𝐸𝐷 + 1) | | . . .

| |𝐸𝐶𝑈 (𝑁𝑢𝑚𝑀𝑒𝑚) | |𝐸𝐶𝑈 (1) | | . . . | |𝐸𝐶𝑈 (𝑆𝐸𝐸𝐷 − 1))

for 𝑖 ∈ {1, . . . , 𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑} do

Get 𝑀𝐴𝐶𝑖 from child 𝐸𝐶𝑈𝑖

end

𝑀𝐴𝐶𝑁𝑜𝑑𝑒 ← 𝑀𝐴𝐶 (𝐸𝐶𝑈𝐾𝐸𝑌 ;𝑀𝐴𝐶𝐸𝐶𝑈 | |𝑀𝐴𝐶1 | | . . . | |𝑀𝐴𝐶𝑁𝑢𝑚𝐶ℎ𝑖𝑙𝑑
)

Send 𝑀𝐴𝐶𝑁𝑜𝑑𝑒 to Parent

end

4.3.5 Node Calculation Algorithm

Figure 4.8 also shows the calculation of inside the node ECU. Here, we make two changes: we

use the MAC with the secret 𝐸𝐶𝑈𝐾𝐸𝑌 instead of the hash function. And we also vary the starting

location for the memory scan. The MAC calculation starts checking the memory cells at memory

location 𝑆𝐸𝐸𝐷 and counts up to 𝑁𝑢𝑚𝑚𝑒𝑚, the last memory cell, then wraps around starting at

the beginning and counting up to 𝑆𝐸𝐸𝐷 − 1. We want 𝑆𝐸𝐸𝐷 to be a random number up to the

memory size of the largest ECU, again to make it more difficult to launch a replay attack with

external memory. This would require that we truncate 𝑆𝐸𝐸𝐷 for smaller ECUs.

We did not describe the process of generating or exchanging the 𝐸𝐶𝑈𝐾𝐸𝑌 between the physical

76

ECU and the virtual, as this process may vary significantly from OEM to OEM depending on their

DT-concept.

Algorithm 11: Build Node MAC
Input: 𝑆𝐸𝐸𝐷

Output: 𝑀𝐴𝐶𝑥

Known: 𝐸𝐶𝑈𝐾𝐸𝑌 , 𝑁𝑢𝑚𝑀𝑒𝑚

begin

Get 𝑆𝐸𝐸𝐷 from Parent ECU

𝑀𝐴𝐶𝐸𝐶𝑈 ← 𝑀𝐴𝐶 (𝐸𝐶𝑈𝐾𝐸𝑌 ; 𝐸𝐶𝑈 (𝑆𝐸𝐸𝐷) | |𝐸𝐶𝑈 (𝑆𝐸𝐸𝐷 + 1) | | . . .

| |𝐸𝐶𝑈 (𝑁𝑢𝑚𝑀𝑒𝑚) | |𝐸𝐶𝑈 (1) | | . . . | |𝐸𝐶𝑈 (𝑆𝐸𝐸𝐷 − 1))

Send 𝑀𝐴𝐶𝐸𝐶𝑈 to Parent

end

4.3.6 Security Analysis

The modifications made in the second approach address the weakness against replay attacks. By

using a more appropriate cryptographic primitive, ECU-unique keys, and randomizing the scan

starting memory cell, we can ensure that each request will generate a unique DS. Since the regulator

initiates the request, having the DT wait to submit the ‘correct’ response until after the vehicle sends

its response also prevents an adversary with control of the network from being able to falsify the

correct response as coming from the vehicle.

While the initial scheme did not address our third criterion where an adversary should not be

capable of determining the DS even with access to the SW, this implementation does. Without the

secret key, an adversary is not able to determine what the correct answer should be. The regulator

can ensure that the 𝑆𝐸𝐸𝐷 is not reused, either by maintaining a log or having a space sufficiently

large to keep the probability of reuse small enough to make such an attack unlikely to succeed.

By having the regulator sign each request, we also prevent an adversary from being able to

pre-compute all possible responses. An adversary with physical access to the vehicle could remove

77

an ECU and scan through the entire memory space, store each result, and then replay them without

knowing the key. This would be effective until a SW update occurs. To prevent this attack, we

could have critical ECUs also verify the signature from the regulator, rather than relying on the

telematics master to authenticate all requests.

4.4 Expanded Algorithm to Address HW Status

4.4.1 Problem Definition

As digital controllers proliferate in number and authority in influencing automobile behavior,

people using and regulating these vehicles expect commensurate trust in these advanced systems.

What does it mean to verify the integrity of the controllers? Building on the concept of control

flow analysis to monitor that the SW is executing in the proper order [57], we want the vehicle to

demonstrate that it is capable of making proper, predictable decisions and that is able to execute

the intended actions. These objectives all need to be fulfilled without forcing the vehicle or the

manufacturer to share sensitive information or exchange large amounts of data. Beyond verifying

that the vehicle contains the correct SW, we want to verify that this correct SW is actually controlling

the vehicle. We can build the required trust by forcing the system to remotely attest the following

properties:

• SW Integrity: Does the memory inside the physical ECU M, match the memory that the

OEM expectsM′? The program memory and the operational run-time memory may need to

be considered separately.

• Current HW Status: Does the current state of the physical ECU S, match the state that the

OEM expects S′?

• Operation Decisions: Since automotive ECUs make safety-critical decisions that impact the

real world, we want to verify that the vehicle as a whole and the individual advanced systems

78

are making the correct decisions about how to operate the vehicle. Are the ECUs functioning

internally as intended?

• Decision Execution: In addition to making correct decisions, we also require the ECUs to

demonstrate that they are actually controlling the mechanical systems in the vehicle. Are the

ECUs controlling the vehicle as intended?

• Recent History: We want to prevent an adversary from keeping the ECU (or a copy of it) in

the vehicle to support an attestation request. We want to make sure that the ECU has actually

been controlling the vehicle, for the entire time since the last attestation.

The attestation should not divulge sensitive information to the parties involved or to anyone

listening. Consider protecting the vehicle SW intellectual property, driver profiles and location

data, and the cost of sharing data over a mobile connection.

4.4.2 Concept Approach

What can we measure to force the system to attest these properties? To verify SW integrity, we

build a DS of the entire memory space of each ECU for the entire vehicle and submit it to the

third party verifier. We have the trusted OEM prepare a similar summary for the intended state

and submit it to the verifier also. The verifier compares the two, verifing that the memory is in its

intended state.

To verify the state of the HW, we could think about checking the transient RAM, but the

DT does not possess sufficient granularity to accurately model the current running SW with a

sub-millisecond resolution. Instead a combination of internal plausibility checks of the fault codes

and the cumulative run time, together with an external plausibility can check against the DT to

provide a good indication of the current state. The fault codes are the result of the periodic

monitoring systems to verify that the system is properly connected. The correct run time without

errors can confirm that the ECU is actually controlling the vehicle. With a tight link between

vehicle operation and run time, crosschecking the run time across all the ECUs can demonstrate

79

Figure 4.9: How to Build RT (Encrypted Run Time)

that they all have been running together. If no fault codes have been set and the run times match,

we can be confident of the current HW status.

The precise times will vary slightly, scrambling them in a hash will not allow reconstruction.

To enable this range comparison, we include the run time for each ECU outside of the hash. Figure

4.9 illustrates that we collect the run time and fault memory for each ECU, then encrypt them with

an ECU-specific key. Figure 4.10 shows how to build the DS by hashing the memory signatures

together, but include each ECU’s encrypted run time data. The verifier can check the run time of

each ECU and verify that the differences within the vehicle are within an acceptable range. We

encrypt the run time for each ECU with its individual symmetric key to prevent an attacker from

falsifying the correct value and provide the encrypted run times for each ECU to the DT, who can

check the run time of each ECU and test for anomalous behavior against other vehicles.

We build the DS containing the memory fingerprint as before, but now we take the individual

ECU encrypted run times and send all of them up to the parent node. This test also attests to the

decision execution and recent history, all with exchanging a limited amount of data.

We could measure the ability to make good decisions by submitting new problems to the

vehicle and ECUs and evaluating their response, but a mature DT model already receives detailed

information about what the vehicle is perceiving. A remote service could measure both functional

safety and product security aspects of the vehicle.

80

Figure 4.10: How to Build a Digital Signature with Run Time

81

4.5 Performance Analysis

4.5.1 Memory Requirement

From the regulator’s perspective, there are three aspects of memory usage to evaluate: first, the

database to keep track of all the OEMs and vehicles, second the data exchanged with the OEM in

monitoring the vehicles, and third the data exchanged with the vehicles. We would like to keep

the required data storage size to be small enough to fit on a single hard drive, or assume less than

a terabyte. Table 4.1 represents an rough estimate of the amount of memory required to support

the 284.4 million vehicles in the United States [174] as a sample use case. We assume that the

regulator needs to store its keys, and the public keys and IP addresses for each OEM, and a record

of the VINs and a date for when the next check is due. With these assumptions, we expect the

regulator to store 6.4 GB, which fits easily within our target size.

Data Element Size = 6.4 GB
Private, public keys (RSA 4k) 10 kB

Public keys for each OEM 4 kB * 25 OEMs = 100 kB
IP address for each OEM 8 B * 25 OEMs = 200 B

VIN and date of last check (17 B + 7 B) * (284.4 *106) = 6.4 GB

Table 4.1: Regulator Database

Table 4.2 summarizes the daily data exchange among the regulator and the OEMs with biannual

vehicle checks. With a dedicated request per vehicle, we see 3.0 GB / day. If the regulator bundles

the requests together, the load reduces to 120 MB / day.

The regulator needs to exchange the seed and the digital shadow with each individual vehicle,

this does not lend itself to bundling, as each ECU needs to be addressed individually. Table 4.3

shows that the regulator needs to communicate 1.5 GB / day with the vehicle fleet.

We assume that the OEMs are already maintaining the digital twins for other uses, a record of all

VINs they have manufactured, and storing a few cryptographic keys will not present a significant

load for them. The vehicle only needs to store the regulator’s public key. The vehicle already knows

its VIN.

82

Data Element Batch 120 MB Single 3.0 GB
NONCE 16 B 512 B

VIN 17 B 512 B
IP Address (IP v6) 16 B 512 B

SEED 16 B 512 B
Digital Shadow 16 B 512 B

Vehicles per Day
(284.4 106 * 2 / 365.24) 1.6 MB

Table 4.2: Regulator to OEM Daily Communication

Data Element Total = 1.5 GB / day
SEED (16 bytes) 512 B

Digital Shadow (16 bytes) 512 B
Vehicles per Day (284.4 * 106 * 2 / 365.24) 1,510,921

Table 4.3: Regulator to Vehicle Daily Communication

4.5.2 Time Requirement

For automotive uCs, we see the MAC calculation taking less time than the hash function. We have

focused our measurements accordingly on the time required to calculate a 128-bit CMAC on the

entire memory space of the ECU. We either measure this time with an ECU running production

SW and executing as a low-priority background run time measurement, or we assume that the uC

can dedicate 10% of its run-time to the measurement without impacting operation.

We see in Table 4.4 that the length of time to complete the check is linearly dependent on the

memory in the ECU. We also see that different controllers process at radically different speeds. In

general, we find that some controllers will be complete in a few minutes, but the larger controllers

such as vehicle computers, zone computers, and infotainment systems can take around half an hour

with our partial loading assumptions. For systems with off-chip memory, the bottleneck is often

the memory used rather than the microprocessor.

83

Table 4.4: Run-Time Measurements

Manufacturer Microcontroller ECU Type Memory (MB) Time (seconds)

Infineon TC38

Engine Controller 8 11

Engine Controller 12 16

Engine Controller 16 22

NXP
S32K3x

BMS Controller 4 120

I/O Aggregator 8 230

LX2160A Vehicle Computer 24,576 1,500

Renesas

RH850 ICU-M

Airbag 2 83

ABS 4 165

ESP 8 330

R-Car SOC V3H
Vision 2,048 134

Vehicle Computer 32,768 2,138

ST Chorus 4M
Gateway 2 67

Radar Controller 4 134

Qualcomm Snapdragon Infotainment System 32,768 3,277

After each ECU calculates its MAC, the process to build the digital shadow proceeds very

quickly. If we assume that each ECU computes a 16 byte MAC and each branch has 8 children,

creating the node MAC will need 8 + 16 × 8 = 136 bytes. The MAC is built in 16-byte segments,

so this will take 9 cycles. The ST Chorus HSM takes 35 microseconds to compute one cycle, so

0.315 ms to build a branch MAC. Sending the signature to it’s parent on the CAN bus will strongly

depend on bus loading, but 10 ms is a good starting point. Even if we assume 10 layers deep, this

will only take about a second to build the digital shadow. The amount of time required to build the

DS will be lost in the noise, so we assume that the total time to generate the digital shadow will

be roughly the time it takes for the slowest ECU to compute its MAC. Running the calculations in

parallel allow a much faster generation than individually querying each ECU.

84

To accelerate the process, the OEM can begin calculating the DS after the 𝐴𝐷𝑅𝑉𝐼𝑁 request is

received and send them in a batch to the regulator.

4.6 Discussion

Remotely verifying the integrity of an entire vehicle, without access to its target SW is a challenging

task. Digital Shadows enable this with a surprisingly lean imposition on industry. A few noteworthy

considerations stand out.

• Dummy ECUs: It is possible that the attacker leaves the original ECU connected to the

communication bus, but inserts a second compromised ECU to control the vehicle. A

comprehensive memory check cannot detect this, but the digital twin can be configured to

also monitor run time, behavior, and any faults detected.

• Compliance: DS can also be used to support compliance testing - demonstrating that the

vehicle is operating as intended and has not been tuned or modified with emissions defeat

devices.

• Diagnosis: DS can also be used to support diagnosis and identification of the modified

module by walking the tree and having each parent node submit its signature.

• HW Plausibility: Adding monitoring of fault codes and run time needs to be done without

being hashed with the memory. It is anticipated that the DT will have a slightly different run

time than the actual vehicle. Fault codes may not be accurately tracked in the DT as these

represent non-ideal behavior.

85

4.7 Conclusions

As the industry explores digital twins, digital shadows provide a scalable option for third parties

to verify the integrity of automotive SW. With reasonable trust from the users and network, data

storage, data exchanged, and time requirements, the scheme provides a framework that provide a

trusted authentication of the current vehicle SW. Merging Merkle’s tree data structure and vehicle

network architecture builds a cryptographically robust fingerprint of the vehicle’s current SW

without leaking sensitive information about the vehicle.

86

CHAPTER 5

Zero Trust for SDV - Peer Attestation

5.1 Introduction

Automobiles need a new approach to peer attestation due to new dynamic architectural structures

and the probabilistic nature of security intelligence. Autonomous vehicle development is moving

at an unprecedented pace, and the vehicles are facing fundamentally new cybersecurity challenges.

Today’s vehicle can be characterized as a collection of highly-specified ECUs, uniquely entrusted

with all associated functionality. For example, the Anti-lock Braking System (ABS) ECU controls

the braking system. All functions linked to braking the vehicle find their home in this ECU.

The problem of trust within this architecture is solved by sharing symmetric keys to authenticate

messages between critical modules [198]. Signed messages provide confidence that these messages

are coming from the correct ECU and not an exploiter. The trust anchor can revoke access to keys if

it determines an ECU has been compromised, but does not typically interact with the safety system.

These keys are injected during vehicle assembly [36] [175] and require a protected environment

if any updates are needed. Keys and operating SW seldom change, and only with great difficulty.

The receiver poses the question “Is this message really coming from the ECU that I’ve been trusting

for my entire life?” If the signature matches, then the message is completely trusted. If the signature

does not match, then the message is ignored - a response with no gradation. This trust model is

static, binary, and rigid.

A SDV takes a dramatically different approach, relying on powerful general-purpose computers

87

to control vehicle operation and expecting frequent updates [32] [112] [140]. Autonomous vehicles

may use dynamic service oriented protocols such as SOME/IP [26] that allow SW modules to request

services and negotiate information sources in real-time. Outside the vehicle, a manufacturer can set

up a VSOC team to actively monitor fleets for anomalous behavior, but it needs a means to quickly

feed probabilistic intelligence into safety-critical systems. Inside the vehicle, an IDS can detect

anomalous behavior in automotive systems, but high false positive rates and AI-hallucinations make

it difficult to allow these systems to interact with critical systems with authoritative actions. To take

full advantage of these powerful innovations, a SDV craves a dynamic, nuanced, and adaptive

trust model.

The National Institute for Standards and Technology (NIST) actively promotes ZT to protect

against and limit data breaches, and provides a rich field of reference. Older network security

strategies followed the analogy of a castle and moat defense. Elaborate defensive measures

attempted to keep invaders out, but did not protect against enemy soldiers inside the city. Assuming

that an adversary can never breach defenses leaves a false sense of security and the development of

new technologies such as planes, parachutes, missiles, and drones renders them ineffective. Classic

network security strategies also attempt to keep intruders out, but attackers have been successfully

breaching defenses, moving laterally through systems, and gaining access to sensitive information.

By assuming that the network cannot be trusted, threats are always present, forcing users to prove

their identity, and using fine-grained access rights, ZT forges a new paradigm for defenders.

We propose changing the focus of ZT from protecting against exposing sensitive data to

protecting against taking unsafe actions. Within a vehicle, individual ECUs do not prioritize

keeping secrets from other ECUs. So many data are generated to keep the vehicle running that

it is not possible to share everything on a bandwidth limited network. The overarching security

risk within a cyber-physical system is not in leaking information, but in taking actions based

on compromised information. IT systems manage abstract data, but moving vehicles need to be

concerned about their interaction with the physical world. The initial concept considers the problem

of introducing IDS into an automobile and giving it the authority to directly influence operation.

88

Inside the vehicle, an IDS can detect anomalous behavior in automotive systems, but it is difficult

to allow IDS to interact with critical systems with authoritative actions, especially when AI-driven

systems suffer from hallucinations. Setting the threshold aggressive enough to protect against

sophisticated attackers will also trigger on unexpected, but correct behavior.

5.1.1 Contributions

The noteworthy contributions of this chapter are:

• Dynamic Trust Model: ZT4SDV provides a scheme that allows a vehicle to dynamically

adapt to changing trust. This will be increasingly important as the industry moves to advanced

vehicle architectures.

• Validation in Development Phase: ZT4SDV allows the designers to verify the impact of

the entire range of trust during the development phase.

• Quick Updates: Updating the trust policy does not require writing, testing, validating, then

distributing new SW, but just distributing a new parameter.

• Robustly handles Probabilistic and False Positive Data: Since system operation can be

fully validated with a range of trust, the system can be setup and validated with probabilistic

intelligence updates and can robustly handle false positive detection from advanced IDS

inputs.

5.1.2 Organization

This chapter is organized according to the following structure. Section 5.2 introduces the dynamic

trust scheme with a single trust component, an example is proposed then analyzed. Section 5.5

expands this concept with multiple trust components. Section 5.8 concludes the discussion.

89

5.2 Initial Scheme - Single Trust Component

This section explains our initial scheme to use a dynamic trust model on a single component in an

automotive environment and describes a mathematical approach. We use the trust rating of an IDS

to balance the weighting of two sensors estimating a value.

5.2.1 Adapting Zero Trust to Automobiles

It is an impressive achievement that vehicles today can circumnavigate the planet four times and

last more than a decade without needing anything more than routine maintenance. Each step from

development through validation to manufacturing is challenging and demanding. The automobile

industry relies on consistency, controllability, and predictability to achieve low cost, high quality,

and reliability. Enormous effort goes into making one vehicle work right, then duplicating it as

closely as possible; any change introduces safety and quality risks which need to be evaluated,

tested, and validated.

Connecting an IDS to a safety critical ECU suffers from several tactical issues. If anomalous

or even malicious behavior is detected, how can the vehicle take authoritative actions that do not

reduce vehicle safety? How can a system with a high false positive detection rate be allowed to take

authoritative actions? What good is a protection system that is not allowed to take authoritative

actions?

Zhang et al. [203] explored the potential of using Machine Learning (ML) to detect malicious

CAN messages and propose an efficient scheme for achieving this, but did not address the question

of what to do with the thousands of false positive detections that even a good system will see every

hour.

IT systems effectively use ZT to protect confidentiality using a twofold question of trust. Can the

requestor prove he is who he claims to be - identity? Should the requestor access this information

- authorization? But when we consider how to apply ZT to enhance security in automobiles,

functional safety usurps priority as the primary concern for cyber-physical systems. For our initial

90

concept, we consider that each potential action has an associated safety risk. Inside a vehicle,

multiple sources may supply information and within the confines of the vehicle, the current state

and functions of the vehicle are not really a secret needing protection. Within the vehicle, the main

cybersecurity question is not “Do I trust the other ECUs enough to honor their request?”, but

“Do I trust the other ECUs enough to act based on their claim?” In contrast to ZT in IT systems

that protect abstract access to data, for cyber-physical systems, the ‘asset’ we want to protect is

actions in the physical world.

91

Table 5.1 provides an overview of the variables we will use in our analysis.

Table 5.1: Variable Definition

Variable Usage

S Complete definition of the current vehicle state

S′ Desired next state of vehicle

S∗ Incorrect next state of vehicle

𝑥S Value of system parameter 𝑥 in state of S

𝑉S Estimate of preceding vehicle used by ECUs

𝐴S Appropriate action to take in state S

𝐴F False or inappropriate action to take in state S

𝑅𝐴 Risk of taking action 𝐴S

𝑀𝑖 Message # 𝑖

𝑇𝑀 Trust value in message 𝑀

𝑅𝑒𝑙𝑀 Reliance of estimate on message 𝑀

𝑇𝑅 𝑗 Trust Rating of component 𝑗

𝑊 𝑗 Weight of component 𝑗

𝑘 Scaling constant

𝑇𝑜𝑙𝐶 Tolerance of camera sensor

𝑇𝑜𝑙𝑅 Tolerance of radar sensor

𝑉𝐶 Camera sensor’s estimate speed of preceding vehicle

𝑉𝑅 Radar sensor’s estimated speed of preceding vehicle

𝜂 Effectiveness of scheme

5.2.2 Calculating Risk

Traditional cybersecurity priorities consider risk due to loss of confidentiality, integrity, and

availability. SDVs may rely on a business model of unlocking features, customers may want

92

to protect vehicle location history; for this paper, we focus our analysis on the unique additional

aspect of CPSs - safety. Let S be the complete definition of the state of the vehicle and S′ be

the desired state of the vehicle that we want to reach. Furthermore, let 𝑥S represent an individual

system parameter such as vehicle speed, coefficient of friction of the right front tire, or the current

rotational angle of the motor in the state of S. Each ECU needs to know the subset of S to determine

what action, denoted as 𝐴S, it needs to take to reach S′.

S
𝐴𝑆−−→ S′ (5.1)

Let 𝑅𝐴 be the risk associated with executing action 𝐴S. This risk considers both the consequences

of failure to properly execute 𝐴S (correctly determining S′ but reaching S∗) and failure to properly

determine 𝐴S (using 𝐴F to reach the inappropriate state S∗). For many automotive functions, the

risk is solely a function of safety. For this paper, we focus our attention on how we can use ZT

principles to protect the safety risk.

𝑅𝐴 = 𝑓 (safety), 0 ≤ 𝑅𝐴 ≤ 1

S

𝐴S−−→ S∗

S
𝐴F−−→ S∗

(5.2)

The risk needs to be calculated for each action. Current methods for qualitative risk assessment

in automobiles are Failure Mode and Effect Analysis (FMEA) [192] and Automotive Security

Integrity Level (ASIL) [77] [149] [137]. ISO 26262 defines risk:

𝑅𝑖𝑠𝑘 𝐼𝑆𝑂26262 = 𝑃𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦 × 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦

FMEA ranks risk:

𝑅𝑖𝑠𝑘𝐹𝑀𝐸𝐴 = 𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦 ×𝑂𝑐𝑐𝑢𝑟𝑟𝑒𝑛𝑐𝑒 × 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛

93

And ASIL uses a look up table to define risk:

𝑅𝑖𝑠𝑘𝐴𝑆𝐼𝐿 = 𝑓 (𝑆𝑒𝑣𝑒𝑟𝑖𝑡𝑦, 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒, 𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑎𝑏𝑖𝑙𝑖𝑡𝑦)

The severity ratings from the FMEA or ASIL safety impact can provide a value for 𝑅𝐴. For

example, braking the vehicle with an Automatic Emergency Braking maneuver is an ASIL-D

function. Properly executed, it can save the life of a child crossing the street, but improper actuation

could brake the vehicle when driving on the expressway. ASIL-D functions typically require

advanced plausibility detection and redundancy to support safety requirements. Displaying the

vehicle speed on the instrument cluster is an ASIL-B function; it is important to know how fast the

vehicle is driving, but a significant error is easily detected.

5.2.3 Calculating Trust for each Message

ECUs collect data from sensors and devices in the vehicle to ascertain the true vehicle state S. Based

on the estimated state S, the ECUs then determine what actions would be appropriate to control the

vehicle. An IDS evaluates the behavior of a device searching for anomalous or suspicious behavior.

Often IDSs provide a ‘yes’ or ‘no’ output. We want to measure trust as a spectrum. The trust

that the IDS has in the source ECU or message should be a graduated estimate of the trust in the

message 𝑀 it sends as 𝑇𝑀 .

𝑇𝑀 = 𝑓 (IDS), 0 ≤ 𝑇𝑀 ≤ 1 (5.3)

5.2.4 Calculating Reliance

Many vehicle state parameters have multiple sources that can attest to the vehicle’s state and

concerns other than security play a role in the reliance of a model on a sensor or input. We use

𝑅𝑒𝑙𝑀 to describe this reliance on the message under evaluation.

94

𝑅𝑒𝑙𝑀 = 𝑓 (𝑇𝑟𝑢𝑠𝑡, 𝑅𝑖𝑠𝑘), 0 ≤ 𝑅𝑒𝑙𝑀 ≤ 1 (5.4)

We scale the input from each available source 𝑖 by the reliance 𝑅𝑒𝑙𝑀𝑖
and if sufficient trust exists

to outweigh the risk of misclassifying the vehicle in state S, then we execute action 𝐴S.

𝑖 𝑓
∑︁
𝑖

𝑅𝑒𝑙𝑀𝑖
× 𝑇𝑀𝑖

≥ 𝑅𝐴 ⇒ execute action 𝐴S (5.5)

We also can estimate the value of a parameter S𝑥 in the vehicle model. The ECUs will use

S𝑥 to determine how it should activate controls in the vehicle. 𝑥S is calculated by combining the

available messages attesting to the value of 𝑥 scaled by their reliance. We include a normalization

constant 𝑘 when combining multiple inputs.

𝑥S = 𝑘 ×
∑︁
𝑖

𝑅𝑒𝑙𝑀𝑖
× 𝑥𝑀𝑖

(5.6)

5.3 Concept Example - Single Trust Component

In this section, we evaluate ZT4SDV using a concrete example with a single trust component.

5.3.1 Example Description

The proof of concept example for integrating a dynamic trust concept consists of two sensors

measuring the speed of the vehicle in front of the car, and an IDS that monitors them. The system

generates estimates of the speed for two different safety risk settings. The radar and camera sensors

have different tolerances, when the system is running normally, the estimate should be more heavily

based on the accurate sensor. We simulate a false positive event and an attack on the more accurate

sensor and examine the behavior of the estimated speeds.

The radar sensor provides an accurate value with a tolerance of +/- 1 km/h, so 𝑇𝑜𝑙𝑅 = 1.0. The

optical camera provides a less accurate value with a tolerance of +/-5 km/h, so 𝑇𝑜𝑙𝐶 = 5.0. 𝑉𝑅 and

95

𝑉𝐶 are velocities indicated in the messages received from the radar and camera.

5.3.2 Example Risk

Different consumers use this information within the vehicle and the functions they support have

different safety levels. The moderate safety integrity level ASIL-B has a minimum risk level of

0.6. The maximum safety integrity level ASIL-D has a minimum risk rating of 0.9. With different

trust thresholds, the two velocity estimates behave differently as trust in the sensors varies.

5.3.3 Example Trust

The IDS examines the messages and provides a trust rating for each of the sensors. The subject of

the investigation is the trust in the radar, 𝑇𝑅, which varies throughout the simulation. 𝑇𝐶 , the trust

in the camera remains at 1.0 for the entire simulation.

Zhang et al.’s ML-based IDS outputs a binary indication if the system is more likely compromised

or not [203]. This investigation needs an analog graduated response. One possible strategy takes

the outputs from the final hidden layer, sums them, then normalizes to give an output ranging from

0.0 to 1.0, indicating the trust level that the IDS has in each sensor.

5.3.4 Reliance Transfer Function

An ideal dynamic trust model weighs multiple information sources and adapts the dependence

during operation as the trust landscape changes. This is difficult for a rigid trust model, but our

model allows us to adjust the reliance on different inputs based on the output of an IDS. We also

consider that input sources may have different tolerance and accuracy. Our initial concept weights

tolerance with a linear function and trust with an exponential. The functions should be continuous

to gradually redistribute reliance as trust changes. The signal sources are weighted relative to their

accuracy as long as the sources have sufficient trust. When the source is questionable, the reliance

reduces dramatically.

96

Figure 5.1: Ideal Trust Transfer Function

Figure 5.1 shows the proposed trust weighting function with the trust threshold risk, 𝑅𝐴 = 0.5.

Above this level, we have full reliance in the input. When the trust decreases to 0.1 below the

risk threshold, the reliance drops to 0.1. Equation 5.7 shows the formula to enable an exponential

transfer in reliance as the trust falls off. The value of 23 was heuristically selected to provide this

desired characteristic.

𝑅𝑒𝑙 =

𝑒23(𝑇𝑀−𝑅𝐴) , 0 ≤ 𝑇𝑀 < 𝑅𝐴

1 , 𝑅𝐴 ≤ 𝑇𝑀 ≤ 1
(5.7)

5.3.5 System Parameter Calculation

The classic approach to fusing the sensor data would combine the two sources based on their

accuracy or tolerance. For our discussion, we will calculate the speed of the vehicle based on

tolerance and trust. Equation 5.7 calculates the reliance on the radar 𝑅𝑒𝑙𝑅 and camera 𝑅𝑒𝑙𝐶 .

When 𝑇𝑀 ≥ 𝑅𝐴, we want to weight the estimation of the system parameter S𝑣 inversely

proportional to the tolerance of the input. The normalization factor 𝑘 is calculated in (5.8).

𝑘 =
𝑇𝑜𝑙𝐶 × 𝑇𝑜𝑙𝑅

𝑇𝑜𝑙𝑅 × 𝑅𝑒𝑙𝑅 + 𝑇𝑜𝑙𝐶 × 𝑅𝑒𝑙𝐶
(5.8)

𝑉S, the system estimate of the preceding vehicle velocity is built in (5.9).

97

𝑉S = 𝑘 ×
(
𝑅𝑒𝑙𝑅 ×𝑉𝑅
𝑇𝑜𝑙𝑅

+ 𝑅𝑒𝑙𝐶 ×𝑉𝐶
𝑇𝑜𝑙𝐶

)
(5.9)

5.4 Performance Analysis - Single Trust Component

This section evaluates the performance of the single component dynamic trust algorithm.

5.4.1 Adversary Objectives

To evaluate the performance of this scheme, we do not address the general problem of IDS detection

effectiveness but focus on the impact on the physical system. The adversary has two objectives - to

compromise the system in a way that allows a substantial impact to the vehicle behavior and avoids

detection for a significant length of time.

Our system has the following principal objectives that lend themselves to measurement.

• While allowing the IDS to affect system performance, the impact of false positive detections

should be within allowable limits.

• Testing for the variable IDS influence should be safely, completely, and efficiently validated

in the development phase.

• A compromised system should be quickly detected.

• A small change in the transmitted values should be quickly detected.

5.4.2 False Detection Robustness

The vehicle speed starts at 80 km/h and then varies by up to 1 km/h every 100 ms. The radar and

camera read the vehicle speed and each adds a random error based on its tolerance. At 5 seconds,

the IDS erroneously detects suspicious behavior on the radar, reducing 𝑇𝑅 down to 0.78 and back

to 1.0 at 6 seconds. Figure 5.2 does not show a change in the calculated ASIL-B or ASIL-D speed.

98

Figure 5.4 however shows that the error for the ASIL-D signal increases above the error for the

ASIL-B signal. Figure 5.3 shows that between 5 and 6 seconds, the ASIL-D value transfers its

reliance from the radar to the vision camera based on the input from the IDS, but the ASIL-B

signal, with a lower risk rating and requisite trust, does not. If the accuracy of the camera sensor is

sufficient to allow safe operation, then the system operates properly even when IDS misdetection

occurs.

Figure 5.2: Vehicle Speed Estimates

5.4.3 Attack Detection Reliance Tradeoff

At 10 seconds, the attacker changes the radar speed to 25 km/h. Figure 5.3 shows the output of the

IDS trust in the radar starts at 100% when the attack happens and drops off 1% each 100 ms. This

is not how a real IDS would behave, but it provides a good illustration of how the reliance transfers

as the trust drops off. Until 11 seconds, 𝑇𝑅 ≥ 𝑅𝐴𝑆𝐼𝐿−𝐷 so there’s no change in the reliance on the

sensors.

At 11 seconds, the IDS degrades the trust in the radar to the threshold 𝑇𝑅 = 𝑅𝐴𝑆𝐼𝐿−𝐷 , Figure 5.3

shows that the reliance of the 𝑉S−𝐴𝑆𝐼𝐿−𝐷 on 𝑉𝑅 drops off exponentially and begins relying on 𝑉𝐶

instead. The attacker successfully modifies 𝑉S−𝐴𝑆𝐼𝐿−𝐷 until the IDS reduces the trust at 𝑇𝑅 = 0.9.

At 14 seconds, the IDS degrades the trust in the radar to 𝑇𝑅 = 𝑅𝐴𝑆𝐼𝐿−𝐵. Figure 5.3 shows that

the reliance of the ASIL-B estimate then begins to drop as well.

99

Figure 5.3: Reliance Dependence on Trust

Figure 5.4: Error in Vehicle Speed Estimates

5.4.4 Performance Analysis

Figure 5.5 illustrates our first proposal to measure the impact of the attack by integrating the

difference between the value that the algorithm estimates for this parameter during the compromise

and the value that the algorithm would estimate based on the uncompromised sensor data. We then

integrate the difference over the time that the attack is active to calculate the effectiveness 𝜂. The

quicker the algorithm detects a smaller error, the better the performance.

𝜂 =

∫ 𝑡𝐷𝐸𝑇

0
|𝑉𝑆−𝐴𝑆𝐼𝐿−𝐷 −𝑉𝐶 | (5.10)

5.4.5 Validation

Abstracting the IDS input and characterizing it as a risk-based measurement allows validation to

occur during the development process. It requires in-vehicle testing for several critical values of

100

Figure 5.5: Estimating Total Impact

𝑇𝑅 and 𝑇𝐶 , supplemented by simulations sweeping their entire ranges. This process can be safely

integrated into the vehicle allowing robust validation and direct interaction of the IDS in critical

operation. This supports a gradual shifting of reliance rather than an abrupt change in the system

operation.

5.5 Complex Scheme - Multiple Trust Components

This section expands the dynamic trust concept to consider multiple components of trust.

5.5.1 Calculating Risk

We now want to expand the concept to evaluate multiple components of trust or factors that

contribute to how much the ECU should trust the incoming message. It will use the same strategy

for evaluating S, 𝑥S, and 𝑅𝐴 as previously discussed.

5.5.2 Calculating Trust for each Message

The ECU collects data from sensors and devices to ascertain the true vehicle state S. We now

want to consider measuring trust by evaluating multiple components. Did the message travel

a short distance, e.g., from another ECU on a dedicated CAN bus? Is there a long history of

communicating with that same ECU or is this a new communication partner? Is there robust

101

attestation of the message’s authenticity? Has the VSOC downgraded the trust in the source ECU

based on intelligence gathered from monitoring vehicles in the field? Has the IDS downgraded the

trust in the source ECU or message based on internal plausibility? We refer to the trust in message

𝑀 as 𝑇𝑀 :

𝑇𝑀 = 𝑓 (distance, history, authentication, VSOC, IDS) (5.11)

We calculate the trust in Equation 5.11 by evaluating two factors for each component. Selecting

the 𝑗 𝑡ℎ element from the set of components 𝐶, let𝑊 𝑗 be the weight of component 𝐶 𝑗 relative to the

other components. Let 𝑇𝑅 𝑗 be the Trust Rating for component 𝑗 ranging from 0 to 1. We compute

the trust for each message 𝑀 by Equation 5.12.

𝑇𝑀 =

∑
𝑗 𝑊 𝑗 ∗ 𝑇𝑅 𝑗∑

𝑗 𝑊 𝑗

(5.12)

5.5.3 Reliance Calculus

For the expanded case with multiple trust components, we calculate 𝑅𝐴, the risk associated with

taking action 𝐴𝑆 which would be appropriate if the vehicle is in state S. We use the FMEA or ASIL

ratings to provide a numerical value for the risk as shown in (5.2).

We calculate the trust in the messages informing the ECU that the vehicle is in state S using

(5.12).

Many vehicle state parameters have multiple sources that can attest to the vehicle’s state and

concerns other than security play a role in the reliance of a model on a sensor or input. The reliance

on message 𝑀 , 𝑅𝑒𝑙𝑀 is a function of trust and risk as in (5.4).

With multiple sources providing messages with information attesting to the vehicle state, we

scale the input from each available source 𝑖 by the reliance 𝑅𝑒𝑙𝑀𝑖
and if sufficient trust exists to

outweigh the risk of misclassifying the vehicle in state S, then execute action 𝐴S as in (5.5).

The value of an individual system parameter𝑉S can also be estimated by combining the available

102

messages attesting to the value of𝑉S scaled by their reliance on the trust and accuracy of the source

as in (5.6)

5.5.4 Potential Use Cases

An ideal dynamic trust model weighs multiple information sources and adjusts the dependence in

the field. The following objectives and use cases are difficult for a rigid trust model, but well suited

to a dynamic one.

• Validation during Development Process: By varying the trust rating during the

development process, engineers can evaluate the impact on system performance and validate

resulting behavior. After development is complete, revalidating vehicle operation becomes

onerous, expensive, and lengthy. During the validation process, the concept validates that

the system operates properly while varying 𝑇𝑅 𝑗 for each input source.

• Scalability: Since vehicles are inherently mobile, they may receive their updates over slow,

unreliable connections. It is much easier to update a trust policy parameter than to deliver a

complete SW package as required by today’s model.

• Time to Deploy: Performing the validation during the development cycle and supporting

lean updates shortens the time to develop, test, and rollout a fix from months to minutes.

• Maintainability: Maintaining a comprehensive test fleet to validate SW updates is

complicated, expensive, and time intensive, especially as the target population ages.

• VSOC: A manufacturer’s VSOC with a rigid trust structure cannot easily implement updates.

Reworking the SW may require in-vehicle testing. However a fully validated system that

accepts a full range of trust ratings allows the VSOC to make fine-grained changes reflecting

current threat intelligence. The VSOC can make authoritative changes that directly influence

vehicle control, as the parameters have already been validated. The VSOC can also quickly

103

roll out these changes as a change to the trust policy is just a few bytes rather than megabytes

for a new SW package.

• IDS: Today’s vehicles are reluctant to place too much authority on IDS warnings, as safety

must be maintained and false positive detection rates limit the usability of the systems. A

fine-grained trust rating enables an IDS to engage by gradually influencing vehicle operation.

• Right to Repair: Industry, advocates, and lawmakers are struggling with balancing right

to repair concerns with security risk. The flexibility from the dynamic trust strategy allows

fine-grained and flexible control of service and diagnostics, perhaps opening up certain

vehicles to more third-party service options or allowing classic cars to be enjoyed after

security updates are discontinued.

• Moving Target Defense (MTD): A MTD strategy increases variation in system configuration

to make it difficult for adversaries to develop a successful, long-term, scalable attack. For

SDVs, MTD could have each vehicle develop a custom reliance pattern or a time-limited

reliance pattern; adaptability and diversification serve to both harden individual vehicles and

increase detection of suspicious behavior in the fleet. The worst-case cybersecurity scenario

is where attackers develop an attack on a single vehicle, then deploy this to the entire fleet of

identical vehicles with identical systems and identical security measures. A MTD can reduce

the scalability risk of successful attacks either by limiting the similarity between vehicles or

the length of time that a specific configuration is active.

• Health Check: When a vehicle is isolated from the network, either with malicious or benign

intent, it is not aware of available security updates from the VSOC or safety updates from the

OEM. The dynamic model could include a trust component for health whose value decreases

at regular intervals and gets refreshed by checking for updates. ZT4SDV enables a graceful

degradation of functionality until the system can check for updates. Functions and sensors

could degrade at different rates depending on their susceptibility to malicious attack and

104

sensitivity to time-critical updates. These rates could also be adjusted by the VSOC to

provide granular control.

5.6 Concept Example - Multiple Trust Components

This section demonstrates the proof of concept example for integrating a dynamic trust concept

retains the two radar and camera sensors that send regular messages with estimates of the speed of

the vehicle in front of the car.

5.6.1 Trust and Risk Calculation

We start each component’s trust rating at 1.0, assuming the sensors have already built sufficient

trust. The single exception is the distance component, the hypothetical vehicle has other ECUs

on the same bus and anticipates potential malicious messages. We rank 𝑊 𝑗 for each component

according to a plausible relative rating for the importance of the different components.

Table 5.2: Initial Component Trust Rating Values

𝐶 𝑗 𝑊 𝑗 Initial 𝑇𝑅 𝑗

IDS 5 1.0

VSOC 5 1.0

Distance 4 0.4

Authentication 3 1.0

History 1 1.0

Based on Equation 5.12, the calculated trust for the camera messages, 𝑇𝑐𝑎𝑚𝑒𝑟𝑎 is 0.87 for the

entire event. The calculated trust for the radar, 𝑇𝑟𝑎𝑑𝑎𝑟 also starts at 0.87 but changes over the course

of the simulation.

We assume that there are multiple functions using this information with different safety ratings.

We assigned the minimum trust level of 0.6 for an ASIL-B function and 0.8 for one rated ASIL-D.

105

5.6.2 Reliance Calculation

We retain the tolerances and variable names from (5.7), (5.8), and (5.9). Again, we calculate an

estimate of the vehicle speed based on the risk, trust, and tolerance. The ASIL-D value has a higher

risk threshold and will be more sensitive to reductions from any of the components that we are

using to calculate trust. As the components contribute to trust, they will also impact the reliance of

the system parameter on the different sources.

5.6.3 Example Operation

Figure 5.6 illustrates the concept in action. The true speed of the preceding vehicle is blue, starting

at 80 km/h randomly changing by up to 1 km/h every 100 ms. The radar sensor estimate is in

red, the optical camera’s estimate is the brown trace. At time 8 seconds, the trust engine receives

input from the VSOC that there other vehicles have reported suspicious activity on the radar sensor

and downgrades the trust to 𝑇𝑅𝑉𝑆𝑂𝐶 = 0.8. At 10 seconds, the adversary launches the attack and

changes the radar speed to 25 km/h. Based on the current trust settings, the ASIL-B and ASIL-D

estimates drop to 33.3 km/h.

Figure 5.7 illustrates that the onboard IDS quickly detects the suspicious behavior and begins

gradually downgrading the trust in the radar sensor 𝑇𝑅𝐼𝐷𝑆 in increments of 0.2. As the trust engine

decreases the trust, the system gradually transfers its reliance on the vehicle speed from the more

accurate but compromised radar to the uncompromised camera. Since the vehicle-level impact of

the ASIL-D action is higher than the ASIL-B, it is more sensitive to a loss in trust. The ASIL-D

value becomes totally dependent on the camera by 14 seconds, whereas the ASIL-B value is just

starting to respond. At 18 seconds, the VSOC provides another update to the vehicle to further

downgrade the trust in the radar sensor with 𝑇𝑅𝑉𝑆𝑂𝐶 = 0.6 and the final value of 𝑇𝑟𝑎𝑑𝑎𝑟 = 0.48.

5.7 Performance Analysis - Multiple Trust Components

This section evaluates performance of the multiple component ZT4SDV concept.

106

Figure 5.6: Dynamic Evaluation of Vehicle Speed based on Trust

Figure 5.7: IDS and VSOC Impact on Trust

5.7.1 Adversary Objectives

We assume the adversaries attacking a SDV want to maintain a higher level of trust than is warranted.

They want to use this trust to achieve two things:

1. Modify the vehicle behavior by a significant amount.

107

Figure 5.8: Algorithm Efficiency

2. Avoid detection for a long time.

The performance of this concept is demonstrated by evaluating the ASIL-D calculated speed,

𝑉S−𝐴𝑆𝐼𝐿−𝐷 . We measure the difference between the value that the algorithm estimates for this

parameter during the compromise and the value that the algorithm would estimate if it had access to

an omniscient oracle with access to these same data sources without any compromise, 𝑉S−𝐴𝑆𝐼𝐿−𝐷∗.

We then integrate the difference over the time that the attack is detected to calculate the effectiveness

𝜂. The quicker the algorithm detects a smaller error, the better the performance.

𝜂 =

∫ 𝑡𝐷𝐸𝑇

0
|𝑉S−𝐴𝑆𝐼𝐿−𝐷 −𝑉S−𝐴𝑆𝐼𝐿−𝐷 ∗ | (5.13)

For this example, Figure 5.8 illustrates the proposal to measure the total error, namely add up

area in the red shaded region of this difference. When the attack starts at 10 seconds, the initial error

108

is significant, the error is 45.8 km/h. As the IDS detects the compromise and the trust degrades,

the error drops. At 12.1 seconds, the error is only 15.6 km/h, and at 14.1 seconds, the error is 4.0

km/h, which is within the tolerance of the camera. The integral of this error over the time of the

attack totals to 103.7 km/h-seconds. The small continuing contribution to the error after conclusive

detection is due to the reliance on the less accurate sensor providing an error greater than if the

compromise had not occurred.

This evaluation scheme provides a method of rating different IDS implementations and parameter

settings while interacting with a vehicle.

5.7.2 VSOC Operation

In this example, the VSOC was able to directly interact with the safety systems in real time by

allowing a nuanced input to reflect the fuzzy nature of security intelligence. A full SW update

requires significant effort to develop the new models, test them in a virtual environment, test

them in physical vehicles, and then roll it out to the fleet. Even if the vehicles support FOTA

updates, the process of sending new updates often requires a vehicle to be parked near a trusted

internet connection for a significant period of time. Sending a small update to the trust engine of

a parameter is far easier. It also allows system developers to validate adjusting a parameter during

the pre-production validation process.

5.8 Discussion

This paper is an illustrative demonstration of a strategy to enable probabilistic security measures

to interact with a SDV. The main limitation of this work is its conceptual nature - it has not been

developed in sufficient detail to test in a vehicle or evaluate with explicit functions. We are working

to submit a proposal to CCAT to continue investigating the following steps of ZT for SDV:

• Build a trust concept compatible with functional safety.

109

• Investigate how to build a signal from different sources with different trust and reliance levels.

• Investigate if it is compatible with functional safety requirements to adapt reliance weightings

on a functioning vehicle.

• Evaluate if validating the trust parameters in the development phase is feasible and efficient.

• Develop a concept for separating the control plane from the data plane for a SDV. Should

the trust engine reside in a central computer evaluating the values from different sources or

in the actuator?

• Evaluate the system from the attacker’s perspective.

• Develop a proof of concept MTD automotive model. Is there sufficient breadth of signal

reliance to build sufficient uniqueness to provide an advantage to defenders? Does a time

limited reliance pattern provide an advantage to defenders? Is there another strategy that

could be used to implement MTD in a vehicle environment?

• Include time of last update as a trust component with a timer measuring how long it has been

since the last update.

• Finally, evaluate the concept with real-world data.

5.9 Conclusions

Adapting the ZT paradigm to a cyber-physical automobile requires refocusing the key objective to

link trust and safety impact. Actions cannot be taken unless the actuator has sufficient trust in the

signals. The dynamic, nuanced, and adaptive concept enables SDVs to grant security mechanisms

direct authority in operation and verify the behavior during the development phase.

110

CHAPTER 6

Conclusion and Future Work

6.1 Conclusion

The underlying concern tying these problems together is that tomorrow’s automobiles will be

characterized by increased connectivity and increased authority of the electronics. Adopting proven

cybersecurity techniques to address these new risks is complicated by the real-time, safety-critical,

CPS, low power microcontrollers driving them. Chapter 3 explains our solutions for how these

devices can verify their SW before starting. Chapter 4 details our solution for how government

regulators and other interested third parties can remotely verify the SW while the vehicles are

deployed. Chapter 5 explains our strategy to allow software defined vehicles to have SW modules

dynamically adjust the trust and reliance on their peers.

Sliced Secure Boot reduces the time required to verify the ECU’s SW to make secure boot feasible

for automotive ECUs while avoiding interference with the safety concept. Carefully defining the

adversary objectives allows the sampled check to provide an acceptable level of security to protect

automotive controllers. Each ECU can use a unique key to protect the fingerprints and a unique

pattern to generate them. Our formula defining the behavior, the simulations verifying them, and

the real-world measurements exhibit significant benefits from using SSB as a run-time detection

algorithm, where we build trust incrementally. The critical question facing automotive security

engineers is not “Is a sampled secure boot as good as a full one?” but the pragmatic one “Since we

must meet our functional safety and start up time requirements, do we implement SSB protecting

111

this ignition cycle or a full image background check protecting the next?”

Digital shadows provide a scalable option for third parties to verify the integrity of automotive

SW using digital twins. With reasonable trust from the users and network, data storage, data

exchanged, and time requirements, the scheme provides a framework that provide a trusted

authentication of the current vehicle SW without leaking sensitive information about the vehicle.

The MAC-based algorithm with a random starting address together with information about the

run-time and fault codes demonstrate to a third party that the desired SW is actually in control

of the vehicle. Our measurements demonstrate that concept works within reasonable limits with

memory and time.

Dynamic Trust for SDVs adopts the ZT paradigm to a cyber-physical automobile by linking trust

and safety impact. Actions cannot be taken unless the actuator has sufficient trust in the signals.

Our simulation shows that vehicle state variables can be built by including trust as a factor in sensor

fusion. The dynamic, nuanced, and adaptive concept enables SDVs to grant probablistic security

intelligence mechanisms like IDS and VSOC direct authority in operation and verify the behavior

during the development phase.

6.2 Future Work

As is the case for most doctoral research, this paper reflects a significant amount of thinking, testing,

arguing, and hopefully a few good ideas. The secure boot project is at a state where it could be

implemented and is being considered to protect automotive ECUs. The remote attestation project

has met moderate interest from several DT adopters, but it needs broader adoption of digital twins

before it would make sense to consider. The dynamic trust concept provides an interesting approach

to a problem that is still quite fresh. There is significant interest from government and industry to

introduce principles of ZT in the automotive industry and SDVs need an adaptive trust model. I

plan to continue researching this topic at work and hope to align with other collaborators.

112

Appendix A

Modulo 16 Multiplication Table

Table A.1 shows the shuffling patterns with modulo 16 multiplication. The rows represent the offset

that is chosen for a block. The columns represent the memory cells that are selected. The mapping

proceeds as follows. Assume 𝑂 𝑓 𝑓 𝑠𝑒𝑡 = 5. The first fingerprint samples cell 5, the second samples

cell 10, the ninth cell 13.

Modulo multiplication requires careful selection of the base. Using a composite number with

common factors causes the patterns to collapse. The even offsets create a degenerate state where

the odd cells are not protected by any fingerprints. Cell 8 maps always to either fingerprint 0 or

8, fingerprint 16 (or 0 in Modulo 16) always maps to fingerprint 0. Any predictability in these

patterns provides a foothold for the attacker.

The odd offsets are relatively prime to the modulo, so these 8 offsets provide full coverage

patterns ensuring that each cell will be protected by a fingerprint. The fact that cell 16 always maps

to fingerprint 0 provides a bit of shadowing that a creative adversary may be able to exploit.

113

Table A.1: Modulo 16 Multiplication

Offset Memory Cell Column
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 0
2 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14 0
3 3 6 9 12 15 2 5 8 11 14 1 4 7 10 13 0
4 4 8 12 0 4 8 12 0 4 8 12 0 4 8 12 0
5 5 10 15 4 9 14 3 8 13 2 7 12 1 6 11 0
6 6 12 2 8 14 4 10 0 6 12 2 8 14 4 10 0
7 7 14 5 12 3 10 1 8 15 6 13 4 11 2 9 0
8 8 0 8 0 8 0 8 0 8 0 8 0 8 0 8 0
9 9 2 11 4 13 6 15 8 1 10 3 12 5 14 7 0
10 10 4 14 8 2 12 6 0 10 4 14 8 2 12 6 0
11 11 6 1 12 7 2 13 8 3 14 9 4 15 10 5 0
12 12 8 4 0 12 8 4 0 12 8 4 0 12 8 4 0
13 13 10 7 4 1 14 11 8 5 2 15 12 9 6 3 0
14 14 12 10 8 6 4 2 0 14 12 10 8 6 4 2 0
15 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
16 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

114

Appendix B

Modulo 17 Multiplication Table

Table B.1 shows the shuffling patterns with modulo 17 multiplication. The degenerate factor 0 was

excluded leaving 16 unique columns and combinations. We also see these desirable qualities.

• Unique scattering patterns: We see that each offset provides a unique scattering pattern.

• Full coverage: We see that each offset supports each cell being protected by a single

fingerprint.

• Full variation: We see that each offset maps a cell to a different fingerprint.

• Unbiased distribution: We see there is no bias in the mapping. E.g., as Table A.1 with cell

8 mapping to fingerprint 8, or cell 2 mapping to fingerprint 2 twice, but never to fingerprint

1.

• Different jump sizes: The offsets correspond to how many cells are jumped between

fingerprints. Having different jump sizes makes it difficult to conceal contiguous code

blocks.

115

Table B.1: Modulo 17 Multiplication

Offset Memory Cell Column

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

2 2 4 6 8 10 12 14 16 1 3 5 7 9 11 13 15

3 3 6 9 12 15 1 4 7 10 13 16 2 5 8 11 14

4 4 8 12 16 3 7 11 15 2 6 10 14 1 5 9 13

5 5 10 15 3 8 13 1 6 11 16 4 9 14 2 7 12

6 6 12 1 7 13 2 8 14 3 9 15 4 10 16 5 11

7 7 14 4 11 1 8 15 5 12 2 9 16 6 13 3 10

8 8 16 7 15 6 14 5 13 4 12 3 11 2 10 1 9

9 9 1 10 2 11 3 12 4 13 5 14 6 15 7 16 8

10 10 3 13 6 16 9 2 12 5 15 8 1 11 4 14 7

11 11 5 16 10 4 15 9 3 14 8 2 13 7 1 12 6

12 12 7 2 14 9 4 16 11 6 1 13 8 3 15 10 5

13 13 9 5 1 14 10 6 2 15 11 7 3 16 12 8 4

14 14 11 8 5 2 16 13 10 7 4 1 15 12 9 6 3

15 15 13 11 9 7 5 3 1 16 14 12 10 8 6 4 2

16 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

116

Appendix C

SSB Theoretical Derivation

I spent a lot of energy trying to develop a closed form equation describing the robustness of the

fingerprints and the escape rate probability. Estimating the most likely escape rate with random

distribution of the compromised cells was modeled and reflected in Chapter 2. Trying to determine

how likely the adversary was to improve his escape rate beyond this proved difficult to thoroughly

model. It did provide the advantage of helping to define an attacker strategy, namely where the

attacker would attempt to ”shadow” the compromised cells from each block to fall into the same

fingerprints. This appendix is included to describe a technique for calculating a more effective

attack, but was not included in Chapter 2, as we anticipate skilled attackers would use their

intelligence to maximize shadowing. Using ECU-specific unique patterns makes it very difficult to

transfer a successful attack pattern from one ECU to the next. Limiting the return on an attacker’s

investment to a single ECU is an effective protection measure. This appendix is included to address

questions about modeling the escape rate for randomly placed modifications in greater detail, but

a skilled attacker will not randomly place modifications.

C.1 Bayesian Learning Improving Escape Rate

We do know that the escape rate is bounded. Ideally, we would like each fingerprint to sample

only one modified code cell, and the adversary would like 𝑣 modified cells to be sampled by each

fingerprint. We can think of this as shadowing, or the portion of the compromised code segments

from different rows that are covered by the multiple fingerprints. We can also consider this as

117

how effective the adversary is at predicting the sampling pattern. If we have no shadowing, or

the adversary fails at concealing any compromised code segments to being checked by the same

fingerprint, the minimum escape rate will be:

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒𝑚) ≥
(
1 − 𝑤 × 𝑣

𝑏

)𝑚
(C.1)

If the adversary is fully successful at shadowing the compromised segments, the fingerprint

patterns will effectively only see a single compromised segment, so the maximum escape rate will

be:

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒𝑚) ≤
(
1 − 𝑤

𝑏

)𝑚
(C.2)

Rather than considering the coverage rate by looking at the individual compromised blocks, we

can map the compromised cells onto the fingerprint patterns and see how many fingerprints contain

compromised cells. If we consider that the 𝑣 segments map to an effective number of cells covered

in a single block 𝑤∗, we calculate the most likely value of the coverage to be:

𝑃𝑟 (𝐸𝑠𝑐𝑎𝑝𝑒𝑚) =
(
1 − 𝑤

𝑏

)𝑣×𝑚
=

(
1 − 𝑤

∗

𝑏

)𝑚
(C.3)

𝑤∗ = 𝑏

(
1 −

(
1 − 𝑤

𝑏

)𝑣)
(C.4)

To address this theoretically, I think what we would need is to be able to calculate the amount of

shadowing given that we have escaped 𝑚 events previously. I considered using the combinatorial

formula.

𝑁𝑢𝑚𝑏𝑒𝑟𝑖𝑠𝑠𝑢𝑒𝑠 = 𝑛𝐶𝑣 × 𝑤(𝑠)𝑚 (1 − 𝑠)𝑛−𝑚 (C.5)

But what we really want, is what is the maximum likelihood value of 𝑤𝑒 𝑓 𝑓𝑚 , given that we have

successfully evaded 𝑚 cycles. We know that 𝑤 ≤ 𝑤𝑒 𝑓 𝑓 ≤ 𝑤×𝑚𝑖𝑛(𝑣, 𝑏). When 𝑚 = 1, 𝑤𝑒 𝑓 𝑓 = 𝑤∗.

For the first 𝑏
𝑤∗ ignition cycles, we actually don’t learn anything, since we expect our first

detection to occur after 1/𝑤∗
𝑏

cycles. After we pass twice this amount, then it is pretty likely that

118

Figure C.1: Simulated Escape Rate for SSB

the adversary has effectively shadowed some of the cells. If 𝑣 > 𝑤
𝑏

, then the distribution will start

to look Gaussian due to the law of large numbers. In Figure C.1, we see the weighted average as

𝑤∗. I think if we run a simulation with 𝑤𝑒 𝑓 𝑓 ∈ (−1𝜎, 𝑣 × 𝑤), we would get an escape rate roughly

equal to 𝑤𝑒 𝑓 𝑓 = 𝑤∗. If we run a simulation with 𝑤𝑒 𝑓 𝑓 ∈ (−2𝜎,−1𝜎), we would get an escape rate

roughly equal to 𝑤𝑒 𝑓 𝑓 = 𝑤∗ − 𝜎. If we calculate the cumulative distribution function for the value

of 𝑤𝑒 𝑓 𝑓 and use this as a basis for the fall off rate, I think this may be the best way to determine

this theoretically. Maybe do a Taylor series expansion for the CDF and then see how it behaves as

we decrease 𝑤𝑒 𝑓 𝑓 .

Consider the case when 𝑤/𝑏 is small and 𝑣 is large, so that the estimated value of 𝑤∗ ≈ 𝑏. After

each successive sample, we learn that the shadowing is significant. But, if we have 𝑣 small, we do

not learn much about the shadowing.

If we wanted to define a value of shadowing, I’d say 𝑠 = 1, when 𝑤𝑒 𝑓 𝑓 = 𝑤. And 𝑠 = 0, when

𝑤𝑒 𝑓 𝑓 = 𝑣 × 𝑤. This does not play a role with single-use fingerprints, as the shadowing will change

with each fingerprint, and on average 𝑤𝑒 𝑓 𝑓 = 𝑤∗.

119

C.2 Linked Scanning

If we return to the idea of shadowing, another perspective could be to think of the linkage in the

fingerprint patterns. If we have a fully linked, worst-case from the detection perspective, we would

have 𝑤𝑒 𝑓 𝑓 = 𝑤.

If we have unlinked or randomly linked, we would have 𝑤𝑒 𝑓 𝑓 = 𝑤∗. This is the value that we

have for batch processing - where we have the possibility of having multiple fingerprints scan the

same cells.

If we look at the unlinked case, we see that we are not taking advantage of the 𝑤 × 𝑣 − 𝑤∗

compromised cells - they are not contributing to the detection. Could we develop a best-case linked

fingerprint scenario? I think for this, we would need to take advantage of the contiguous segment

characteristic.

If we assume column-wise selection, the likelihood that the second compromised block will

have full shadowing is 1
𝑏

- of the 𝑏 possible columns for the compromised segment to start,

if the same one is chosen, then we get full shadowing. For all the compromised segments,

𝑃𝑟 (𝐹𝑢𝑙𝑙 𝑆ℎ𝑎𝑑𝑜𝑤𝑖𝑛𝑔) =
(1
𝑏

)𝑣−1. This obviously does not consider the possibility of the adversary

crafting her attack to take advantage of column-wise sampling. If the adversary knows the value of

𝑏 and is able to modified cells without impacting critical code locations, which may not present a

substantial problem if 𝑑 presents a wide enough range to select from.

If we use modulo multiplication to build the fingerprints, we have 𝑏 possible starting points for

the code and 𝑏 − 1 patterns so the probability of getting full shadowing is 𝑃𝑟 (𝐹𝑢𝑙𝑙 𝑆ℎ𝑎𝑑𝑜𝑤𝑖𝑛𝑔) =(1
𝑏(𝑏−1)

)𝑣−1.

If we use the sampling without replacement to build the fingerprints, then the probability that

the second fingerprint will match the first is calculated by how likely it is for each cell from the

compromised cell to match. It is not important that the first cell from the first sample is the first

cell from the second sample, but that it picks one of them. The first segment covers 𝑤 out of 𝑏

cells. To obtain full shadowing, the first cell chosen from the second segment must fit into one of

the 𝑤 fingerprints. In order to get full shadowing, the second fingerprint will select one of the 𝑤−1

120

remaining compromised cells, out of the 𝑏 − 1 available cells. This continues until the last of the 𝑤

compromised cells are put into the remaining fingerprint that already covers a compromised cell.

𝑃𝑟 (𝐹𝑢𝑙𝑙 𝑆ℎ𝑎𝑑𝑜𝑤𝑖𝑛𝑔2) =
𝑤

𝑏
× 𝑤 − 1
𝑏 − 1

. . .
1

𝑏 − 𝑤
=
𝑤!(𝑏 − 𝑤 − 1)!

𝑏!

(C.6)

For the remaining 𝑣 − 2 compromised segments, the probability of catching full shadowing is

the same, and independent for each.

𝑃𝑟 (𝐹𝑢𝑙𝑙 𝑆ℎ𝑎𝑑𝑜𝑤𝑖𝑛𝑔𝑛) =
(
𝑤!(𝑏 − 𝑤 − 1)!

𝑏!

)𝑣−1
(C.7)

C.3 Fingerprint Robustness

C.3.1 How to Define Robustness for Sampled Authentication

When we think about using a sampled rather than an exhaustive basis to ascertain that the SW

image is intact, there are a few questions to consider.

1. New SW or current SW: When an ECU receives new SW, it needs to verify the origin,

freshness, and applicability of the SW. DSAs and asymmetric cryptography work well

to establish sufficient levels of trust, since this happens relatively infrequently and SW

updates can be postponed until the vehicle is in a safe state, the confidence gained by using

these established algorithms warrants the time it takes to execute the computation-intensive

algorithms on slow processors. When starting the vehicle, most ECUs do not have sufficient

time to verify the memory space with asymmetric algorithms. Symmetric algorithms are

faster, but require significant infrastructure to securely distribute keys. With this in mind, an

ECU-specific symmetric key is able to provide robust detection of changes between an initial

state and the current state in the ECU. A HTA with protected memory access can be used to

build a robust strategy.

121

2. Primary Detection: We would like to know how effective the scheme is at detecting

compromised code. Exhaustive checks provide guaranteed detection, but all sampling

schemes, since they do not check every single cell, must evaluate the detection effectiveness

in terms of probability of escaping detection. How effectively can the scheme detect the

compromise on the first ignition cycle after introduction?

3. Secondary Detection: Considering the case where the attacker is able to evade detection

on the initial boot cycle, will it eventually detect the modification? Does the probability of

escaping detection decrease on each subsequent ignition cycle?

4. Sustainable Detection: Let us assume that the adversary has studied the behavior of a

specific module and is able to build a profile of the fingerprints. Can he determine a strategy

to avoid detection altogether? How effectively can he shadow his modifications to reduce the

detection rate?

5. Scalability: Let us assume that the adversary invests significant effort into successfully

compromising a single ECU. Is it possible for an adversary to use this to easily compromise

additional devices?

C.3.2 SSB Variants

There are a few different schemes for implementing the slides from SSB. The simplest is to use

column-wise slices, so slice 𝑗 is constructed by building a fingerprint from the 𝑗 𝑡ℎ cell from each

row. The second option is to use modulo addition with each row having it’s own unique offset. This

is computationally simple to implement when 𝑏 = 2𝑖. Rather than storing the value for each row’s

offset, it is possible to generate them with a function. This provides 𝑏 different offsets. The third

option is to use modulo multiplication, but either 𝑏 ∈ P, or GCD(b,index)=1, with 𝑏 − 1 different

patterns (index=0 needs to be avoided). The last option is to have a random selection without

replacement, giving 𝑏! possible patterns. SSB needs to protect each cell with one fingerprint, so it

is important to sample without replacement.

122

Table C.1: Effective Coverage Rate

Scheme Maximum Average Minimum Pr(Full Shadow)

Random with Replacement 1 𝑤∗ 0
(∑𝑤

𝑖=0
(𝑏
𝑖

) (
𝑤
𝑏

) 𝑖 (1 − 𝑤
𝑏

)𝑏−𝑖)𝑣
SSB column-wise 𝑣 × 𝑤 𝑤∗ 𝑤

(1
𝑏

)𝑣−1 if algorithm secret
w w w 1 if algorithm known

SSB Modulo + 𝑣 × 𝑤 𝑤∗ 𝑤
(1
𝑏

)𝑣−1 if algorithm known
SSB Modulo * 𝑣 × 𝑤 𝑤∗ 𝑤

(1
𝑏(𝑏−1)

)𝑣−1

SSB Random 𝑣 × 𝑤 𝑤∗ 𝑤

(
𝑤!(𝑏−𝑤−1)!

𝑏!

)𝑣−1

C.3.3 Initial Detection

For each of these instances, we guarantee that at least 𝑤 of the fingerprints will detect compromised

memory cells. For the SSB column-wise, an adversary with knowledge of the algorithm with

attempt to construct the attack with shadowing. For the other SSB variants, the pattern would be

unique per ECU and difficult to predict beforehand, and on average 𝑤∗ fingerprints would detect

compromised memory cells - the same as with batch fingerprints.

C.3.4 Long-Term Detection

If we assume that the adversary has the ability to monitor the complete fingerprint patterns, what

is the best that he could do? For batch, assuming that we re-use the fingerprints, the adversary

could measure the bias in the fingerprint coverage. On average, we are assuming that each cell has

a probability of being checked = 1
𝑏
, and while that may be true for the next unknown fingerprint,

an adversary could determine that there are cells which are protected infrequently or perhaps not

at all. This would make the long-term protection decrease to nCw (1/b)cells (1-1/b)f.

For SSB Column-wise, the adversary does not have control over the selection of which fingerprint

to use, so the detection rate will still be at least based on w. For SSB Modulo*, I think that the

long-term will still be w*, as he cannot find contiguous cells to compromise.

123

BIBLIOGRAPHY

[1] Heather Adkins, Betsy Beyer, Paul Blankinship, Piotr Lewandowski, Ana Oprea, and
Adam Stubblefield. Building Secure and Reliable Systems: Best Practices for Designing,
Implementing, and Maintaining Systems. O’Reilly, 2020.

[2] National Highway Traffic Safety Administration. Automated vehicles for safety. https:
//www.nhtsa.gov/technology-innovation/automated-vehicles-safety.

[3] National Highway Traffic Safety Administration. U.s. dot announces 2017
roadway fatalities down — nhtsa. https://www.nhtsa.gov/press-releases/

us-dot-announces-2017-roadway-fatalities-down.

[4] National Highway Traffic Safety Administration. Cybersecurity
best practices for the safety of modern vehicles, updated
2022. https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-09/

cybersecurity-best-practices-safety-modern-vehicles-2022-tag.pdf,
9 2022.

[5] National Highway Traffic Safety Administration. Nhtsa’s 2021 estimate of
traffic deaths shows 16-year high. https://www.nhtsa.gov/press-releases/

early-estimate-2021-traffic-fatalities, 5 2022.

[6] Shohin Aheleroff, Xun Xu, Ray Y. Zhong, and Yuqian Lu. Digital twin as a service
(dtaas) in industry 4.0: An architecture reference model. Advanced Engineering Informatics,
47:101225, 1 2021.

[7] Masoom Alam, Tamleek Ali, Sanaullah Khan, Shahbaz Khan, Muhammad Ali, Mohammad
Nauman, Amir Hayat, Muhammad Khurram Khan, and Khaled Alghathbar. Analysis of
existing remote attestation techniques. Security and Communication Networks, 5:1062–1082,
2012.

[8] Gunnar Alendal, Geir Olav Dyrkolbotn, and Stefan Axelsson. Forensics acquisition analysis
and circumvention of samsung secure boot enforced common criteria mode. https://doi.
org/10.1016/j.diin.2018.01.008, 2018.

[9] Amazon. Software-defined vehicle — automotive cloud solutions. https://aws.amazon.
com/automotive/software-defined-vehicle/.

124

https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/technology-innovation/automated-vehicles-safety
https://www.nhtsa.gov/press-releases/us-dot-announces-2017-roadway-fatalities-down
https://www.nhtsa.gov/press-releases/us-dot-announces-2017-roadway-fatalities-down
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-09/cybersecurity-best-practices-safety-modern-vehicles-2022-tag.pdf
https://www.nhtsa.gov/sites/nhtsa.gov/files/2022-09/cybersecurity-best-practices-safety-modern-vehicles-2022-tag.pdf
https://www.nhtsa.gov/press-releases/early-estimate-2021-traffic-fatalities
https://www.nhtsa.gov/press-releases/early-estimate-2021-traffic-fatalities
https://doi.org/10.1016/j.diin.2018.01.008
https://doi.org/10.1016/j.diin.2018.01.008
https://aws.amazon.com/automotive/software-defined-vehicle/
https://aws.amazon.com/automotive/software-defined-vehicle/

[10] Sigurd Frej Joel Jørgensen Ankergård, Edlira Dushku, and Nicola Dragoni. State-of-the-art
software-based remote attestation: Opportunities and open issues for internet of things.
Sensors, 21:1–23, 3 2021.

[11] Anuradha Annaswamy, Samarjit Chakraborty, Dip Goswami, S. Ramesh, and Marilyn Wolf.
Trustworthy cyber physical systems. 2016 29th International Conference on VLSI Design
and 2016 15th International Conference on Embedded Systems (VLSID), 2016.

[12] Apple. Hardware security overview. https://support.apple.com/guide/security/
hardware-security-overview-secf020d1074/1/web/1.

[13] Apple. ios and ipados secure boot chain. https://support.apple.com/guide/

security/ios-and-ipados-secure-boot-chain-secb3000f149/web.

[14] Apple. Startup security utility on a mac with an apple t2 security
chip - apple support. https://support.apple.com/guide/security/

startup-security-utility-secc7b34e5b5/1/web/1, 2 2021.

[15] Apple. Apple platform security - apple support. https://support.apple.com/guide/
security/welcome/web, 5 2022.

[16] Aptive. What is a software-defined vehicle? https://www.aptiv.com/en/insights/
article/what-is-a-software-defined-vehicle.

[17] William A. Arbaugh, David J. Farber, and Jonathan M. Smith. Secure and reliable bootstrap
architecture. Proceedings of the IEEE Computer Society Symposium on Research in Security
and Privacy, pages 65–71, 1997.

[18] Archlinux. Secure boot. https://wiki.archlinux.org/index.php/Secure_Boot.

[19] Archlinux. Unified extensible firmware interface/secure boot - archwiki. https://wiki.
archlinux.org/title/Unified_Extensible_Firmware_Interface/Secure_Boot,
10 2022.

[20] Orlando Arias, Fahim Rahman, Mark Tehranipoor, and Yier Jin. Device attestation: Past,
present, and future. Proceedings of the 2018 Design, Automation and Test in Europe
Conference and Exhibition, DATE 2018, 2018-January:473–478, 4 2018.

[21] Orlando Arias, Dean Sullivan, Haoqi Shan, and Yier Jin. Lahel: Lightweight attestation
hardening embedded devices using macrocells. Proceedings of the IEEE International
Symposium on Hardware Oriented Security and Trust, HOST 2020, pages 305–315, 12
2020.

[22] ACEA European Automobile Manufacturers’ Association. Automobile
industry pocket guide 2022-2023. https://www.acea.auto/publication/

automobile-industry-pocket-guide-2022-2023/.

[23] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Osama Khan, Lea
Kissner, Zachary Peterson, and Dawn Song. Remote data checking using provable data
possession. ACM Transactions on Information and System Security (TISSEC), 14, 6 2011.

125

https://support.apple.com/guide/security/hardware-security-overview-secf020d1074/1/web/1
https://support.apple.com/guide/security/hardware-security-overview-secf020d1074/1/web/1
https://support.apple.com/guide/security/ios-and-ipados-secure-boot-chain-secb3000f149/web
https://support.apple.com/guide/security/ios-and-ipados-secure-boot-chain-secb3000f149/web
https://support.apple.com/guide/security/startup-security-utility-secc7b34e5b5/1/web/1
https://support.apple.com/guide/security/startup-security-utility-secc7b34e5b5/1/web/1
https://support.apple.com/guide/security/welcome/web
https://support.apple.com/guide/security/welcome/web
https://www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle
https://www.aptiv.com/en/insights/article/what-is-a-software-defined-vehicle
https://wiki.archlinux.org/index.php/Secure_Boot
https://wiki.archlinux.org/title/Unified_Extensible_Firmware_Interface/Secure_Boot
https://wiki.archlinux.org/title/Unified_Extensible_Firmware_Interface/Secure_Boot
https://www.acea.auto/publication/automobile-industry-pocket-guide-2022-2023/
https://www.acea.auto/publication/automobile-industry-pocket-guide-2022-2023/

[24] Giuseppe Ateniese, Randal Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
Peterson, and Dawn Song. Provable data possession at untrusted stores. Proceedings of the
ACM Conference on Computer and Communications Security, pages 598–610, 2007.

[25] Giuseppe Ateniese, Roberto Di Pietro, Luigi V Mancini, and Gene Tsudik. Scalable and
efficient provable data possession. SecureComm, 2008.

[26] AUTOSAR. Some/ip protocol specification. https://www.autosar.org/fileadmin/
standards/R1-3/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf, 2017.

[27] Kwang-Hyun Baek, Sergey Bratus, Sara Sinclair, and Sean W Smith. Attacking and
defending networked embedded devices. https://cs.dartmouth.edu/˜sws/pubs/

bbss07.pdf.

[28] Network Bandwidth and Qijun Gu. Phenotyping. Encyclopedia of Cryptography and
Security, pages 927–927, 2011.

[29] Michael Batty. Digital twins. Environment and Planning B: Urban Analytics and City
Science, 45:817–820, 9 2018.

[30] Marco Bertoni and Alessandro Bertoni. Designing solutions with the product-service systems
digital twin: What is now and what is next? Computers in Industry, 138:103629, 6 2022.

[31] Oleksiy Bondarenko and Tetsugo Fukuda. Development of a diesel engine’s digital twin for
predicting propulsion system dynamics. Energy, 196:117126, 4 2020.

[32] Bosch. Bosch software-defined vehicle. https://www.bosch-mobility-solutions.
com/en/mobility-topics/software-defined-vehicle/.

[33] Bosch. Digital twin — bosch iot things documentation. https://docs.

bosch-iot-suite.com/things/getting-started/twin/.

[34] Ferdinand Brasser, Kasper B. Rasmussen, Ahmad Reza Sadeghi, and Gene Tsudik. Remote
attestation for low-end embedded devices: The prover’s perspective. Proceedings - Design
Automation Conference, 05-09-June-2016, 6 2016.

[35] Oliver Bubek, Jens Gramm, and Markus Ihle. A hardware security module for engine control
units. 2011.

[36] Mike Burmester and Yvo Desmedt. A secure and efficient conference key distribution
system. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 950:275–286, 1995.

[37] Levente Buttyan and Jean-Pierre Hubaux. Security and Cooperation in Wireless Networks
Thwarting Malicious and Selfish Behavior in the Age of Ubiquitous Computing. Cambridge
University Press, 1.5.1 edition, 6 2012.

[38] Xavier Carpent, Karim Eldefrawy, Norrathep Rattanavipanon, Ahmad-Reza Sadeghi, and
Gene Tsudik. Invited: Reconciling remote attestation and safety-critical operation on simple
iot devices. 2018.

126

https://www.autosar.org/fileadmin/standards/R1-3/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://www.autosar.org/fileadmin/standards/R1-3/FO/AUTOSAR_PRS_SOMEIPProtocol.pdf
https://cs.dartmouth.edu/~sws/pubs/bbss07.pdf
https://cs.dartmouth.edu/~sws/pubs/bbss07.pdf
https://www.bosch-mobility-solutions.com/en/mobility-topics/software-defined-vehicle/
https://www.bosch-mobility-solutions.com/en/mobility-topics/software-defined-vehicle/
https://docs.bosch-iot-suite.com/things/getting-started/twin/
https://docs.bosch-iot-suite.com/things/getting-started/twin/

[39] Xavier Carpent, Norrathep Rattanavipanon, and Gene Tsudik. Remote attestation via self-
measurement. ACM Transactions on Design Automation of Electronic Systems, 24, 1 2019.

[40] Claude Castelluccia, Aurélien Francillion, Daniele Perito, and Claudio Soriente. On the
difficulty of software-based attestation of embedded devices. Proceedings of the 16th ACM
conference on Computer and communications security, pages 400–409, 11 2009.

[41] Samarjit Chakraborty, Mohammad Abdullah Al Faruque, Wanli Chang, Dip Goswami,
Marilyn Wolf, and Qi Zhu. Automotive cyber-physical systems: A tutorial introduction.
IEEE Design and Test, 2016.

[42] Fotios Chantzis, Ioannis Stais, Paulino Calderon, Evangelos Deirmentzoglou, and Beau
Woods. Practical IOT Hacking: The Definitive Guide to Attacking the Internet of Things.
No Starch Press, 2021.

[43] Anupam Chattopadhyay and Kwok Yan Lam. Security of autonomous vehicle as a cyber-
physical system. 2017 7th International Symposium on Embedded Computing and System
Design, ISED 2017, 2018.

[44] Stephen Checkoway, Damon Mccoy, Brian Kantor, Danny Anderson, Hovav Shacham,
Stefan Savage, Karl Koscher, Alexei Czeskis, Franziska Roesner, and Tadayoshi Kohno.
Comprehensive experimental analyses of automotive attack surfaces. Proceedings of the
20th USENIX Conference on Security, 2011.

[45] Kyong-Tak Cho and Kang Shin. Viden: Attacker identification on in-vehicle networks. 2017.

[46] Kyong-Tak Cho and Kang G. Shin. Error handling of in-vehicle networks makes
them vulnerable. Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security - CCS’16, 2016.

[47] Kyong Tak Cho and Kang G. Shin. Fingerprinting electronic control units for vehicle
intrusion detection. Proceedings of the 25th USENIX Security Symposium, pages 911–927,
2016.

[48] George Coker, Joshua Guttman, Peter Loscocco, Amy Herzog, Jonathan Millen, Brian
O’Hanlon, John Ramsdell, Ariel Segall, Justin Sheehy, and Brian Sniffen. Principles of
remote attestation. International Journal of Information Security, 10:63–81, 6 2011.

[49] Vehicle Electrical System Security Committee. J3101 202002: Hardware protected security
for ground vehicles. https://www.sae.org/standards/content/j3101_202002/, 2
2020.

[50] Marco Conti, Sajal K. Das, Chatschik Bisdikian, Mohan Kumar, Lionel M. Ni, Andrea
Passarella, George Roussos, Gerhard Tröster, Gene Tsudik, and Franco Zambonelli. Looking
ahead in pervasive computing: Challenges and opportunities in the era of cyberphysical
convergence. Pervasive and Mobile Computing, 8:2–21, 2012.

127

https://www.sae.org/standards/content/j3101_202002/

[51] Philip Cooke. Image and reality: ‘digital twins’ in smart factory automotive process
innovation – critical issues. https://0-doi-org.wizard.umd.umich.edu/10.1080/
00343404.2021.1959544, 2021.

[52] Mauro Cordella, Felice Alfieri, Christian Clemm, and Anton Berwald. Durability of
smartphones: A technical analysis of reliability and repairability aspects. Journal of Cleaner
Production, 286, 3 2020.

[53] Renesas Electronics Corporation. Security-conscious debugging methods for rh850
devices (main-core debugging). https://www.renesas.com/us/en/document/apn/
security-conscious-debugging-methods-rh850-devices-main-core-debugging?

language=en, 5 2020.

[54] Gianpiero Costantino, Antonio La Marra, Fabio Martinelli, and Ilaria Matteucci. Candy:
A social engineering attack to leak information from infotainment system. IEEE Vehicular
Technology Conference, 2018-June, 2018.

[55] Cybersecurity and Infrastructure Security Agency. Cisa, fbi, and cnmf release advisory
on multiple nation-state threat actors exploit cve-2022-47966 and cve-2022-42475 — cisa.
https://www.cisa.gov/news-events/alerts/2023/09/07/, 9 2023.

[56] Alvaro A Cárdenas, Saurabh Amin, Bruno Sinopoli, Annarita Giani, Adrian Perrig,
and Shankar Sastry. Challenges for securing cyber physical systems. https://pdfs.
semanticscholar.org/d514/97e5827cc00d9d00c26e27a769d42284cfba.pdf.

[57] Heini Bergsson Debes, Edlira Dushku, Ubitech Ltd agiannetsos, ubitecheu Ali Marandi,
Thanassis Giannetsos, and Ali Marandi. Zekra: Zero-knowledge control-flow attestation.
https://doi.org/10.1145/3579856.3582833.

[58] Jayme Deerwester. The average age of a car in the us is 12.2 years,
a new record. https://www.usatoday.com/story/money/cars/2022/05/24/

average-american-car-12-years-old/9907901002/, 5 2022.

[59] Karim El Defrawy, Aurélien Francillon, Daniele Perito, and Gene Tsudik. Smart: Secure
and minimal architecture for (establishing a dynamic) root of trust.

[60] Kurt Dietrich and Johannes Winter. Secure boot revisited. Proceedings of the 9th
International Conference for Young Computer Scientists, ICYCS 2008, pages 2360–2365,
2008.

[61] Xuhua Ding and Gene Tsudik. Initializing trust in smart devices via presence attestation.
Computer Communications, 131:35–38, 10 2018.

[62] Cuong T Do, Nguyen H Tran, Choongseon Hong, Charles A Kamhoua, Kevin A Kwiat, Erik
Blasch, Shaolei Ren, Niki Pissinou, and Sundaraja Sitharama. 30 game theory for cyber
security and privacy. ACM Comput. Surv, 50, 2017.

[63] Andreas Dolezal and Ulrich Bayer. Manipulationsschutz fuer antriebssteuergeraete
vernetzter, autonomer fahrzeuge in der automobilindustrie. 9 2020.

128

https://0-doi-org.wizard.umd.umich.edu/10.1080/00343404.2021.1959544
https://0-doi-org.wizard.umd.umich.edu/10.1080/00343404.2021.1959544
https://www.renesas.com/us/en/document/apn/security-conscious-debugging-methods-rh850-devices-main-core-debugging?language=en
https://www.renesas.com/us/en/document/apn/security-conscious-debugging-methods-rh850-devices-main-core-debugging?language=en
https://www.renesas.com/us/en/document/apn/security-conscious-debugging-methods-rh850-devices-main-core-debugging?language=en
https://www.cisa.gov/news-events/alerts/2023/09/07/
https://pdfs.semanticscholar.org/d514/97e5827cc00d9d00c26e27a769d42284cfba.pdf
https://pdfs.semanticscholar.org/d514/97e5827cc00d9d00c26e27a769d42284cfba.pdf
https://doi.org/10.1145/3579856.3582833
https://www.usatoday.com/story/money/cars/2022/05/24/average-american-car-12-years-old/9907901002/
https://www.usatoday.com/story/money/cars/2022/05/24/average-american-car-12-years-old/9907901002/

[64] Andreas Dolezal and Martin Schmiedecker. Identifikation von angriffspfaden fuer threat-
analysis und risk-assessment durch design und systems thinking. 8 2023.

[65] Edlira Dushku, Md Masoom Rabbani, Mauro Conti, Luigi V. Mancini, and Silvio Ranise.
Sara: Secure asynchronous remote attestation for iot systems. IEEE Transactions on
Information Forensics and Security, 15:3123–3136, 2020.

[66] Edlira Dushku, Md Masoom Rabbani, Jo Vliegen, An Braeken, and Nele Mentens. Prove:
Provable remote attestation for public verifiability. Journal of Information Security and
Applications, 75:103448, 6 2023.

[67] Mahmoud Hashem Eiza and Qiang Ni. Driving with sharks: Rethinking connected vehicles
with vehicle cybersecurity. IEEE Vehicular Technology Magazine, 12, 2017.

[68] Karim Eldefrawy, Sky Faber, and Tyler Kaczmarek. Proactively secure cloud-enabled
storage. 2017 IEEE 37th International Conference on Distributed Computing Systems
(ICDCS), pages 1499–1509, 6 2017.

[69] Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik. Hy-dra: Hybrid design for
remote attestation (using a formally verified microkernel). 12, 2017.

[70] Karim Eldefrawy and Gene Tsudik. Advancing remote attestation via computer-aided formal
verification of designs and synthesis of executables. Proceedings of the 12th Conference on
Security and Privacy in Wireless and Mobile Networks - WiSec ’19, pages 45–48, 2019.

[71] Elektrobit. Automotive embedded security with eb zentur. https://www.elektrobit.
com/products/security/.

[72] Nikolay Elenkov. Android Security Internals: An in-Depth Guide to Android’s Security
Architecture. No Starch Press, 2014.

[73] Elsevier. Secure boot, trusted boot and remote attestation for arm trustzone-based iot nodes.
https://reader.elsevier.com/reader/sd/pii/S1383762121001661.

[74] Chris Erway, Alptekin Küpçü, Charalampos Papamanthou, and Roberto Tamassia. Dynamic
provable data possession. Proceedings of the ACM Conference on Computer and
Communications Security, pages 213–222, 2009.

[75] Escrypt. Cycurhsm. https://www.escrypt.com/en/products/cycurhsm.

[76] Neil Ferguson, Bruce Schneier, and Tadayoshi Kohno. Cryptography Engineering: Design
Principles and Practical Applications. Wiley, 2010.

[77] International Organization for Standardization. Iso 26262-1:2018(en), road vehicles —
functional safety — part 1: Vocabulary. https://www.iso.org/obp/ui/#iso:std:
iso:26262:-1:ed-2:v1:en, 2018.

[78] Daniel S. Fowler, Madeline Cheah, Siraj Ahmed Shaikh, and Jeremy Bryans. Towards a
testbed for automotive cybersecurity. Proceedings - 10th IEEE International Conference on
Software Testing, Verification and Validation, ICST 2017, 2017.

129

https://www.elektrobit.com/products/security/
https://www.elektrobit.com/products/security/
https://reader.elsevier.com/reader/sd/pii/S1383762121001661
https://www.escrypt.com/en/products/cycurhsm
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:26262:-1:ed-2:v1:en

[79] Aurelien Francillon, Quan Nguyen, Kasper B. Rasmussen, and Gene Tsudik. A minimalist
approach to remote attestation. 2014 Design, Automation Test in Europe Conference
Exhibition, pages 1–6, 4 2014.

[80] Evan Gilman and Doug Barth. Zero Trust Networks. O’Reilly, 7 2017.

[81] Vanessa Gratzer and David Naccache. Alien vs. quine, the vanishing circuit and other tales
from the industry’s crypt. 2006.

[82] Michael W Grieves. Plm–beyond lean manufacturing. Manufacturing Engineering, 130:23,
3 2003.

[83] Bogdan Groza and Pal Stefan Murvay. Efficient intrusion detection with bloom filtering in
controller area networks. IEEE Transactions on Information Forensics and Security, 14,
2019.

[84] Badis Hammi, Jean Philippe Monteuuis, Houda Labiod, Rida Khatoun, and Ahmed
Serhrouchni. Using butterfly keys: A performance study of pseudonym certificates requests
in c-its. 2017 1st Cyber Security in Networking Conference (CSNet), pages 1–6, 10 2017.

[85] Hedges. How many cars are there in the world in 2023? statistics by country. https://
hedgescompany.com/blog/2021/06/how-many-cars-are-there-in-the-world/.

[86] Greg Hogan. Tesla ap1 epas and 2018 honda accord eps both have some sort of can terminal
which allows arbitrary memory read write. https://twitter.com/gregjhogan, 3 2020.

[87] Tobias Hoppe, Stefan Kiltz, and Jana Dittmann. Security threats to automotive can networks
- practical examples and selected short-term countermeasures. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 5219 LNCS:235–248, 2008.

[88] Zhe Hou, Qinyi Li, Ernest Foo, Jin Song Dong, and Paulo De Souza. A digital twin runtime
verification framework for protecting satellites systems from cyber attacks. Proceedings of
the IEEE International Conference on Engineering of Complex Computer Systems, ICECCS,
2022-March:117–122, 2022.

[89] Dijang Huang, Ankur Chowdhary, and Sandeep Pisharody. Software-Define Networking and
Security (Data-Enabled Engineering). CRC Press, 2019.

[90] Infineon. Aurix™ security solutions. https://www.infineon.com/

cms/en/product/microcontroller/32-bit-tricore-microcontroller/

aurix-security-solutions/.

[91] Infineon. Aurix™ security solutions. https://www.infineon.com/

cms/en/product/microcontroller/32-bit-tricore-microcontroller/

aurix-security-solutions/, 2020.

[92] Michael Jacoby and Thomas Usländer. Digital twin and internet of things-current standards
landscape. Applied Sciences (Switzerland), 10, 9 2020.

130

https://hedgescompany.com/blog/2021/06/how-many-cars-are-there-in-the-world/
https://hedgescompany.com/blog/2021/06/how-many-cars-are-there-in-the-world/
https://twitter.com/gregjhogan
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/
https://www.infineon.com/cms/en/product/microcontroller/32-bit-tricore-microcontroller/aurix-security-solutions/

[93] Michael Janosko, Hunter King, Betsy (Adrienne Elizabeth) Beyer, and Max Saltonstall.
Beyondcorp 6: Building a healthy fleet. https://research.google/pubs/pub47356/,
2018.

[94] Hang Jiang, Rui Chang, Lu Ren, and Weiyu Dong. Implementing a arm-based secure boot
scheme for the isolated execution environment. 2017 13th International Conference on
Computational Intelligence and Security (CIS), pages 336–340, 2017.

[95] Nesrine Kaaniche, Ethmane El Moustaine, and Maryline Laurent. A novel zero-knowledge
scheme for proof of data possession in cloud storage applications. Proceedings - 14th
IEEE/ACM International Symposium on Cluster, Cloud, and Grid Computing, CCGrid
2014, pages 522–531, 2014.

[96] Min Joo Kang and Je Won Kang. Intrusion detection system using deep neural network for
in-vehicle network security. PLoS ONE, 11, 6 2016.

[97] Robert Kaster and Di Ma. Secure sampled boot in automotive controllers.
https://www.escar.info/images/Datastore/2021_escar_USA/papers/Secure_

Sampled_Boot_in_Automotive_Controllers_Paper.pdf, 2021.

[98] Robert Kaster and Di Ma. Digital shadows for remote automotive sw verification. ACM
International Conference Proceeding Series, pages 25–30, 5 2023.

[99] Robert Kaster and Di Ma. Sliced secure boot: An accelerated secure boot concept compatible
with automotive safety controllers. SAE International Journal of Connected and Automated
Vehicles, 6:365–382, 6 2023.

[100] Robert Kaster, Di Ma, Ashish Behl, and Bartosz Bakalarczyk. Sliced secure boot-
sampled secure boot with re-usable fingerprints sliced secure boot-sampled secure boot with
reusable fingerprints. https://www.escar.info/images/Datastore/2021_escar_
EU/Papers/210920_escar2021_Konferenzband_A4_01_paper10.pdf, 2021.

[101] Ron S Kenett and Jacob Bortman. The digital twin in industry 4.0: A wide-angle perspective.
Quality Reliability Engineering International, 38:1357–1366, 2022.

[102] El Khayari. Secure automotive on-board electronics network architecture. http://www.
eurecom.fr/fr/publication/3132/download/rs-publi-3132.pdf.

[103] Alissa Knight. Hacking Connected Cars Tactics, Techniques, and Procedures. Wiley, 2020.

[104] Boyu Kuang, Anmin Fu, Willy Susilo, Shui Yu, and Yansong Gao. A survey of remote
attestation in internet of things: Attacks, countermeasures, and prospects. Computers &
Security, 112:102498, 1 2022.

[105] Boyu Kuang, Anmin Fu, Shui Yu, Guomin Yang, Mang Su, and Yuqing Zhang. Esdra: An
efficient and secure distributed remote attestation scheme for iot swarms. IEEE Internet of
Things Journal, 6:8372–8383, 10 2019.

131

https://research.google/pubs/pub47356/
https://www.escar.info/images/Datastore/2021_escar_USA/papers/Secure_Sampled_Boot_in_Automotive_Controllers_Paper.pdf
https://www.escar.info/images/Datastore/2021_escar_USA/papers/Secure_Sampled_Boot_in_Automotive_Controllers_Paper.pdf
https://www.escar.info/images/Datastore/2021_escar_EU/Papers/210920_escar2021_Konferenzband_A4_01_paper10.pdf
https://www.escar.info/images/Datastore/2021_escar_EU/Papers/210920_escar2021_Konferenzband_A4_01_paper10.pdf
http://www.eurecom.fr/fr/publication/3132/download/rs-publi-3132.pdf
http://www.eurecom.fr/fr/publication/3132/download/rs-publi-3132.pdf

[106] Hyunsung Lee, Seong Hoon Jeong, and Huy Kang Kim. Otids: A novel intrusion detection
system for in-vehicle network by using remote frame. Proceedings - 2017 15th Annual
Conference on Privacy, Security and Trust, PST 2017, 2018.

[107] Andrew J Leslie, Raymond J Kiefer, Michael R Meitzner, and Carol A Flannagan. Analysis of
the field effectiveness of general motors production active safety and advanced headlighting
systems. 2019.

[108] Matan Levi, Yair Allouche, and Aryeh Kontorovich. Advanced analytics for connected car
cybersecurity. IEEE Vehicular Technology Conference, 2018-June, 2018.

[109] Chung Wei Lin, Qi Zhu, and Alberto Sangiovanni-Vincentelli. Security-aware modeling and
efficient mapping for can-based real-time distributed automotive systems. IEEE Embedded
Systems Letters, 7, 2015.

[110] Zhen Ling, Huaiyu Yan, Xinhui Shao, Junzhou Luo, Yiling Xu, Bryan Pearson, and Xinwen
Fu. Secure boot, trusted boot and remote attestation for arm trustzone-based iot nodes.
Journal of Systems Architecture, 119:102240, 10 2021.

[111] Jiajia Liu, Shubin Zhang, Wen Sun, and Yongpeng Shi. In-vehicle network attacks and
countermeasures: Challenges and future directions. IEEE Network, 31, 2017.

[112] Sidi Lu and Weisong Shi. Vehicle as a mobile computing platform: Opportunities and
challenges. 2023.

[113] Tianbo Lu, Jinyang Zhao, Lingling Zhao, Yang Li, and Xiaoyan Zhang. Security objectives of
cyber physical systems. Proceedings - 7th International Conference on Security Technology,
SecTech 2014, 2015.

[114] Tianbo Lu, Jinyang Zhao, Lingling Zhao, Yang Li, and Xiaoyan Zhang. Towards a framework
for assuring cyber physical system security. International Journal of Security and its
Applications, 2015.

[115] Hans Löhr, Ahmad Reza Sadeghi, and Marcel Winandy. Patterns for secure boot and secure
storage in computer systems. ARES 2010 - 5th International Conference on Availability,
Reliability, and Security, pages 569–573, 2010.

[116] Di Ma and Nitesh Saxena. A context-aware approach to defend against unauthorized reading
and relay attacks in rfid systems. Security and Communication Networks, 7:2684–2695, 12
2014.

[117] Di Ma and Gene Tsudik. A new approach to secure logging. Lecture Notes in Computer
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 2008.

[118] Georg Macher, Eric Armengaud, Eugen Brenner, and Christian Kreiner. Threat and risk
assessment methodologies in the automotive domain. Procedia Computer Science, 83, 2016.

132

[119] Tobias Madl, Hans-Joachim Hof, Jasmin Brückmann, and Dr-Ing Hans-Joachim Hof.
Reference architecture for the design of secure automotive cyber systems automotive
security view project security for smart homes. https://www.researchgate.net/
publication/318722901, 2017.

[120] Mirco Marchetti and Dario Stabili. Anomaly detection of can bus messages through analysis
of id sequences. IEEE Intelligent Vehicles Symposium, Proceedings, 2017.

[121] Mirco Marchetti, Dario Stabili, Alessandro Guido, and Michele Colajanni. Evaluation of
anomaly detection for in-vehicle networks through information-theoretic algorithms. 2016
IEEE 2nd International Forum on Research and Technologies for Society and Industry
Leveraging a Better Tomorrow, RTSI 2016, 2016.

[122] Maria Markstedter. Arm Assembly: Internals and Reverse Engineering. Wiley, 2023.

[123] Stefan Marksteiner, Slava Bronfman, Markus Wolf, and Eddie Lazebnik. Using cyber digital
twins for automated automotive cybersecurity testing. https://arxiv.org/abs/2107.
07355, 7 2021.

[124] Willem Melching. Hacking a vw golf power steering ecu - part 4. https://icanhack.
nl/blog/vw-part4/, 2022.

[125] Alfred Menezes, Paul van Oorschot, and Scott Vanstone. Handbook of Applied
Cryptography. CRC Press, 1997.

[126] Ralph Merkle. Method of providing digital signatures. https://patents.google.com/
patent/US4309569A/en, 1982.

[127] ST Microelectronics. Spc58nh92c5 - 32-bit power architecture mcu for
automotive general purpose applications - chorus family. https://www.st.com/en/
automotive-microcontrollers/spc58nh92c5.html.

[128] Microsoft. Boot and uefi - windows drivers. https://docs.microsoft.com/en-us/
windows-hardware/drivers/bringup/boot-and-uefi.

[129] Microsoft. Secure boot. https://docs.microsoft.com/en-us/windows-hardware/
design/device-experiences/oem-secure-boot.

[130] Roberto Minerva, Gyu Myoung Lee, and Noel Crespi. Digital twin in the iot context: A
survey on technical features, scenarios, and architectural models. Proceedings of the IEEE,
108:1785–1824, 10 2020.

[131] MITRE. Cve - cve. https://cve.mitre.org/.

[132] Arslan Munir and Farinaz Koushanfar. Design and analysis of secure and dependable
automotive cps: A steer-by-wire case study. IEEE Transactions on Dependable and Secure
Computing, 2018.

[133] Thomas Nadeau and Ken Gray. SDN: Software Defined Networks. O’Reilly, 2013.

133

https://www.researchgate.net/publication/318722901
https://www.researchgate.net/publication/318722901
https://arxiv.org/abs/2107.07355
https://arxiv.org/abs/2107.07355
https://icanhack.nl/blog/vw-part4/
https://icanhack.nl/blog/vw-part4/
https://patents.google.com/patent/US4309569A/en
https://patents.google.com/patent/US4309569A/en
https://www.st.com/en/automotive-microcontrollers/spc58nh92c5.html
https://www.st.com/en/automotive-microcontrollers/spc58nh92c5.html
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi
https://docs.microsoft.com/en-us/windows-hardware/drivers/bringup/boot-and-uefi
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://docs.microsoft.com/en-us/windows-hardware/design/device-experiences/oem-secure-boot
https://cve.mitre.org/

[134] K N Sridharan Namboodiri. An efficient batch verification scheme for secure
vehicular communication using bilinear pairings. https://doi.org/10.1007/

978-981-15-2475-2_65.

[135] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. Obd-securealert: An anomaly
detection system for vehicles. 2016 IEEE International Conference on Smart Computing,
SMARTCOMP 2016, 2016.

[136] Sandeep Nair Narayanan, Sudip Mittal, and Anupam Joshi. Using semantic technologies to
mine vehicular context for security. 37th IEEE Sarnoff Symposium, Sarnoff 2016, 2017.

[137] Ahmad MK Nasser. Automotive Cybersecurity Engineering Handbook The automotive
engineer’s roadmap to cyber-resilient vehicles. Packt, 10 2023.

[138] Ahmad MK Nasser, Wonder Gumise, and Di Ma. Accelerated secure boot for real-time
embedded safety systems. SAE International Journal of Transportation Cybersecurity and
Privacy, 2:11–02–01–0003, 7 2019.

[139] Ahmad MK Nasser, Di Ma, and Priya Muralidharan. An approach for building security
resilience in autosar based safety critical systems. https://www.riverpublishers.
com/journal/journal_articles/RP_Journal_2245-1439_633.pdf, 2017.

[140] Nicolas Navet, Aurélien Monot, Bernard Bavouxt, and Françoise Simonot-Lion. Multi-
source and multicore automotive ecus - os protection mechanisms and scheduling. IEEE
International Symposium on Industrial Electronics, 2010.

[141] Tu N. Nguyen, Sherali Zeadally, and Abhijith B. Vuduthala. Cyber-physical cloud
manufacturing systems with digital twins. IEEE Internet Computing, 26:15–21, 2022.

[142] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, Michael Steiner, and
Gene Tsudik. Vrased: A verified hardware/software co-design for remote attestation. 28th
USENIX Security Symposium, 8 2019.

[143] Ivan De Oliveira Nunes, Karim Eldefrawy, Norrathep Rattanavipanon, and Gene Tsudik.
Pure: Using verified remote attestation to obtain proofs of update, reset and erasure in low-
end embedded systems. IEEE/ACM International Conference on Computer-Aided Design,
Digest of Technical Papers ICCAD, 11 2019.

[144] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and Gene Tsudik.
On the toctou problem in remote attestation. CCS ’21: Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security, pages 2921–2936, 11 2021.

[145] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, Norrathep Rattanavipanon, and Gene Tsudik.
Towards remotely verifiable software integrity in resource-constrained iot devices. IEEE
Communications Magazine, pages 1–7, 2024.

[146] Ivan De Oliveira Nunes, Sashidhar Jakkamsetti, and Gene Tsudik. Dialed: Data integrity
attestation for low-end embedded devices. Proceedings - Design Automation Conference,
2021-December:313–318, 12 2021.

134

https://doi.org/10.1007/978-981-15-2475-2_65
https://doi.org/10.1007/978-981-15-2475-2_65
https://www.riverpublishers.com/journal/journal_articles/RP_Journal_2245-1439_633.pdf
https://www.riverpublishers.com/journal/journal_articles/RP_Journal_2245-1439_633.pdf

[147] NXP. Hsm and she on i.mx 8qxp and i.mx 8dxl. https://www.nxp.com/docs/en/
application-note/AN12906.pdf, 4 2021.

[148] Society of Automotive Engineers. Sae levels of driving automation™ refined for clarity and
international audience. https://www.sae.org/blog/sae-j3016-update.

[149] Society of Automotive Engineers. Sae j2980. https://www.sae.org/standards/
content/j2980_202310/, 10 2023.

[150] Surjya Kanta Pal, Debasish Mishra, Arpan Pal, Samik Dutta, Debashish Chakravarty, and
Srikanta Pal. Digital twin – fundamental concepts to applications in advanced manufacturing.
2022.

[151] Simon Parkinson, Paul Ward, Kyle Wilson, and Jonathan Miller. Cyber threats facing
autonomous and connected vehicles: Future challenges. IEEE Transactions on Intelligent
Transportation Systems, 18:2898–2915, 11 2017.

[152] Jonathan Petit and Steven E. Shladover. Potential cyberattacks on automated vehicles. IEEE
Transactions on Intelligent Transportation Systems, pages 1–11, 2014.

[153] G Pocklassery, W Che, F Saqib, M Areno, and J Plusquellic. Self-authenticating secure boot
for fpgas. 2018 IEEE International Symposium on Hardware Oriented Security and Trust
(HOST), pages 221–226, 2018.

[154] Enrico Pozzobon, Nils Weiss, Jürgen Mottok, and Václav Matoušek. Fuzzy fault injection
attacks against secure automotive bootloaders. Escar, 2023.

[155] R. V. Rashmi and A. Karthikeyan. Secure boot of embedded applications - a review.
Proceedings of the 2nd International Conference on Electronics, Communication and
Aerospace Technology, ICECA 2018, pages 291–298, 9 2018.

[156] Roland Rieke, Marc Seidemann, Elise Kengni Talla, Daniel Zelle, and Bernhard Seeger.
Behavior analysis for safety and security in automotive systems. Proceedings - 2017
25th Euromicro International Conference on Parallel, Distributed and Network-Based
Processing, PDP 2017, 2017.

[157] Scott Rose, Oliver Borchert, Stu Mitchell, and Sean Connelly. Nist special publication
800-207 zero trust architecture. https://doi.org/10.6028/NIST.SP.800-207, 2020.

[158] Jerome Saltzer and M Schroeder. The protection of information in computer systems.
http://ieeexplore.ieee.org/document/1451869/, 1975.

[159] Steffen Sanwald, Liron Kaneti, Marc Stöttinger, and Martin Böhner. Secure boot revisited:
Challenges for secure implementations in the automotive domain. SAE International Journal
of Transportation Cybersecurity and Privacy, 2, 8 2020.

[160] Michael Schluse, Marc Priggemeyer, Linus Atorf, and Juergen Rossmann. Experimentable
digital twins-streamlining simulation-based systems engineering for industry 4.0. IEEE
Transactions on Industrial Informatics, 14:1722–1731, 4 2018.

135

https://www.nxp.com/docs/en/application-note/AN12906.pdf
https://www.nxp.com/docs/en/application-note/AN12906.pdf
https://www.sae.org/blog/sae-j3016-update
https://www.sae.org/standards/content/j2980_202310/
https://www.sae.org/standards/content/j2980_202310/
https://doi.org/10.6028/NIST.SP.800-207
http://ieeexplore.ieee.org/document/1451869/

[161] Steve Schmidt. What is zero trust on aws? – amazon web services (aws). https://aws.
amazon.com/security/zero-trust/.

[162] Offensive Security. Exploit database shellcodes. https://www.exploit-db.com/

shellcodes, 2023.

[163] NXP Semiconductors. S32g2 safe and secure vehicle network processor.
https://www.nxp.com/products/processors-and-microcontrollers/

s32-automotive-platform/s32g-vehicle-network-processors/

s32g2-processors-for-vehicle-networking:S32G2, 5 2022.

[164] Ioannis Sfyrakis and Thomas Gross. A survey on hardware approaches for remote attestation
in network infrastructures. http://arxiv.org/abs/2005.12453, 5 2020.

[165] Barry Sheehan, Finbarr Murphy, Martin Mullins, and Cian Ryan. Connected and autonomous
vehicles: A cyber-risk classification framework. Transportation Research Part A: Policy and
Practice, 11 2018.

[166] Ali Shoker, Vincent Rahli, Jérémie Decouchant, and Paulo Esteves-Verissimo. Intrusion
resilience systems for modern vehicles. IEEE Vehicular Technology Conference, 2023-June,
2023.

[167] Bluetooth SIG. Bluetooth market update 2020 white paper. https://www.bluetooth.
com/wp-content/uploads/2020/03/2020_Market_Update-EN.pdf, 2020.

[168] Purnendu Sinha. Dynamic task-level reconfiguration in automotive software architectures.
Proceedings of the 6th India Software Engineering Conference on - ISEC ’13, 2013.

[169] Dirk Slama, Achim Nonnenmacher, and Thomas Irawan. The Software-Defined Vehicle: A
Digital-First Approach to Creating Next-Generation Experiences. O’Reilly Media, 2023.

[170] Craig Smith. The Car Hacker’s Handbook A Guide for the Penetration Tester. No Starch
Press, 2016.

[171] Yoo Ho Son, Kyu Tae Park, Donggun Lee, Seung Woo Jeon, and Sang Do Noh. Digital
twin-based cyber-physical system for automotive body production lines. The International
Journal of Advanced Manufacturing Technology, 115:291–310, 2021.

[172] Dario Stabili, Luca Ferretti, and Mirco Marchetti. Analyses of secure automotive
communication protocols and their impact on vehicles life-cycle. Proceedings - 2018 IEEE
International Conference on Smart Computing, SMARTCOMP 2018, 2018.

[173] Statista. U.s.: smartphones replacement cycle 2013-2027. https://www.statista.com/
statistics/619788/average-smartphone-life/.

[174] Statista. U.s.: vehicles in operation 2022. https://www.statista.com/statistics/
859950/vehicles-in-operation-by-quarter-united-states/.

136

https://aws.amazon.com/security/zero-trust/
https://aws.amazon.com/security/zero-trust/
https://www.exploit-db.com/shellcodes
https://www.exploit-db.com/shellcodes
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-network-processors/s32g2-processors-for-vehicle-networking:S32G2
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-network-processors/s32g2-processors-for-vehicle-networking:S32G2
https://www.nxp.com/products/processors-and-microcontrollers/s32-automotive-platform/s32g-vehicle-network-processors/s32g2-processors-for-vehicle-networking:S32G2
http://arxiv.org/abs/2005.12453
https://www.bluetooth.com/wp-content/uploads/2020/03/2020_Market_Update-EN.pdf
https://www.bluetooth.com/wp-content/uploads/2020/03/2020_Market_Update-EN.pdf
https://www.statista.com/statistics/619788/average-smartphone-life/
https://www.statista.com/statistics/619788/average-smartphone-life/
https://www.statista.com/statistics/859950/vehicles-in-operation-by-quarter-united-states/
https://www.statista.com/statistics/859950/vehicles-in-operation-by-quarter-united-states/

[175] Michael Steiner, Gene Tsudik, and Michael Waidner. Diffie-hellman key distribution
extended to group communication. Proceedings of the ACM Conference on Computer
and Communications Security, 1996.

[176] Frederic Stumpf. Hardware security modules for embedded systems. https://studylib.
net/doc/8154745/hardware-security-modules-forembedded-systems, 2011.

[177] Darell J J Tan, Tong wei Chua, and Vrizlynn L L Thing. Securing android: A survey,
taxonomy, and challenges. ACM Comput. Surv, 47, 2015.

[178] Hailun Tan, Wen Hu, and Sanjay Jha. A remote attestation protocol with trusted platform
modules (tpms) in wireless sensor networks. Security and Communication Networks, 8:2171–
2188, 9 2015.

[179] Hailun Tan, Gene Tsudik, and Sanjay Jha. Mtra: Multi-tier randomized remote attestation
in iot networks. Computers and Security, 81:78–93, 3 2019.

[180] Fei Tao, Qinglin Qi, Lihui Wang, and A. Y.C. Nee. Digital twins and cyber–physical systems
toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering,
5:653–661, 8 2019.

[181] TCG. Tcg mobile trusted module specification specification version 1.0. https:\www.
trustedcomputinggroup.org, 4 2010.

[182] Adam Thelen, Xiaoge Zhang, Olga Fink, Yan Lu, Sayan Ghosh, Byeng D. Youn, Michael D.
Todd, Sankaran Mahadevan, Chao Hu, and Zhen Hu. A comprehensive review of digital twin
– part 1: Modeling and twinning enabling technologies. Structural and Multidisciplinary
Optimization 2022 65:12, 65:1–55, 8 2022.

[183] Vrizlynn L.L. Thing and Jiaxi Wu. Autonomous vehicle security: A taxonomy of attacks and
defences. Proceedings - 2016 IEEE International Conference on Internet of Things; IEEE
Green Computing and Communications; IEEE Cyber, Physical, and Social Computing;
IEEE Smart Data, iThings-GreenCom-CPSCom-Smart Data 2016, 2017.

[184] Andrew Tomlinson, Jeremy Bryans, Siraj Ahmed Shaikh, and Harsha Kumara Kalutarage.
Detection of automotive can cyber-attacks by identifying packet timing anomalies in time
windows. Proceedings - 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops, DSN-W 2018, pages 231–238, 7 2018.

[185] Mathieu Trudel-Lapierre. How to sign things for secure boot — ubuntu. https://ubuntu.
com/blog/how-to-sign-things-for-secure-boot, 8 2017.

[186] Gene Tsudik. Challenges in remote attestation of low-end embedded devices. pages 1–1,
2014.

[187] Shane Tuohy, Martin Glavin, Ciarán Hughes, Edward Jones, Mohan Trivedi, and Liam
Kilmartin. Intra-vehicle networks: A review, 2015.

137

https://studylib.net/doc/8154745/hardware-security-modules-forembedded-systems
https://studylib.net/doc/8154745/hardware-security-modules-forembedded-systems
https:\www.trustedcomputinggroup.org
https:\www.trustedcomputinggroup.org
https://ubuntu.com/blog/how-to-sign-things-for-secure-boot
https://ubuntu.com/blog/how-to-sign-things-for-secure-boot

[188] Ubuntu. How to sign things for secure boot. https://ubuntu.com/blog/

how-to-sign-things-for-secure-boot.

[189] Uptane. Uptane securing sw updates for automobiles. https://uptane.github.io/,
2022.

[190] Chris Valasek and Charlie Miller. Remote exploitation of an unaltered passenger vehicle.
https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_

Hacking-1.pdf, 2015.

[191] Aurélien Vasselle, Hugues Thiebeauld, Quentin Maouhoub, Adèle Morisset, and Sébastien
Ermeneux. Laser-induced fault injection on smartphone bypassing the secure boot-extended
version. IEEE Transactions on Computers, 69:1449–1459, 2020.

[192] AIAG & VDA. AIAG & VDA FMEA Handbook. Automotive Industry Action Group, 1
edition, 2019.

[193] Vector. Automotive safety and security. https://www.vector.com/int/en/products/
solutions/safety-security/.

[194] Qian Wang, Zhaojun Lu, and Gang Qu. An entropy analysis based intrusion detection
system for controller area network in vehicles. International System on Chip Conference,
2018-September:174–179, 1 2019.

[195] Rory Ward and Betsy Beyer. Beyondcorp: A new approach to enterprise security. https:
//research.google/pubs/pub43231/, 2014.

[196] André Weimerskirch. Secure software flashing. SAE Technical Papers, pages 83–86, 2009.

[197] Marko Wolf, Andre Weimerskirch, and Christof Paar. Secure In-Vehicle Communication,
pages 95–110. Springer, 2006.

[198] Samuel Woo, Hyo Jin Jo, In Seok Kim, and Dong Hoon Lee. A practical security architecture
for in-vehicle can-fd. IEEE Transactions on Intelligent Transportation Systems, 17, 2016.

[199] Samuel Woo, Hyo Jin Jo, and Dong Hoon Lee. A practical wireless attack on the connected
car and security protocol for in-vehicle can. IEEE Transactions on Intelligent Transportation
Systems, 16, 2015.

[200] Liu Xian’gang, Xing Zhang, Yingfang Fu, and Changxiang Shen. National high technology
research and development program of china and the national basic research program of china.
15, 2010.

[201] Guoqi Xie, Wei Wu, Gang Zeng, Renfa Li, and Shiyan Hu. Risk assessment and
development cost optimization in software defined vehicles. IEEE Transactions on Intelligent
Transportation Systems, 22:3675–3686, 6 2021.

[202] Linxi Zhang, Xuke Yan, and Di Ma. Accelerating in-vehicle network intrusion detection
system using binarized neural network. SAE International Journal of Advances and Current
Practices in Mobility, 4:2037–2050, 3 2022.

138

https://ubuntu.com/blog/how-to-sign-things-for-secure-boot
https://ubuntu.com/blog/how-to-sign-things-for-secure-boot
https://uptane.github.io/
https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_Hacking-1.pdf
https://ioactive.com/wp-content/uploads/2018/05/IOActive_Remote_Car_Hacking-1.pdf
https://www.vector.com/int/en/products/solutions/safety-security/
https://www.vector.com/int/en/products/solutions/safety-security/
https://research.google/pubs/pub43231/
https://research.google/pubs/pub43231/

[203] Linxi Zhang, Xuke Yan, and Di Ma. A binarized neural network approach to accelerate
in-vehicle network intrusion detection. IEEE Access, 10:123505–123520, 2022.

[204] Youqian Zhang and Kasper Rasmussen. Detection of electromagnetic interference attacks
on sensor systems. http://www.cs.ox.ac.uk/files/11036/SP.pdf.

[205] Dong Zhong, Zhelei Xia, Yian Zhu, and Junhua Duan. Overview of predictive maintenance
based on digital twin technology. https://pubmed.ncbi.nlm.nih.gov/37025897/,
2023.

139

http://www.cs.ox.ac.uk/files/11036/SP.pdf
https://pubmed.ncbi.nlm.nih.gov/37025897/

	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	List of Algorithms
	Abstract
	Acronyms
	Introduction
	Motivation
	Questions to Answer
	Challenges
	Contributions
	Self Attestation
	Remote Attestation
	Peer Attestation

	Publications
	Organization

	Literature Review
	Automotive Security Appliance - HSM
	Self Attestation
	Remote Attestation
	Cyber-Physical Systems
	Digital Twins
	Zero Trust
	External Security Monitoring
	Internal Security Monitoring
	Software Defined Networks
	Software Defined Vehicle Architecture

	Sliced Secure Boot - Accelerated Self Attestation
	Introduction
	Contributions
	Organization

	Adversary Model
	Proposed Approach
	Initial Scheme Algorithms – Column-wise Slicing
	Setup Algorithm
	Verify Phase
	Monitor Phase
	Action Phase
	Complicate Shadowing in Fingerprint Generation
	Complicate Shadowing in Fingerprint Selection
	Asymmetric Memory Focus

	Security Analysis
	Automotive Controller Memory Patterns and Shadowing
	Fingerprint Robustness
	Algorithm Selection
	Escape Rate Detection
	Effective Scrambling
	Impact of Fingerprint Distribution

	Performance Analysis
	Complexity and Memory Cost
	Time Reduction Factor
	Real-World Evaluation

	Discussion
	Conclusions

	Digital Shadows - Remote Attestation without SW Image
	Introduction
	Contributions
	Organization

	Initial Scheme
	Remote Attestation Concept
	Trust Model
	Hash-based Digital Shadow
	Adapting a Merkle Tree for Automotive Architecture
	Algorithm
	Regulator Algorithm
	DS Calculation Algorithm
	Branch Calculation Algorithm
	Leaf Calculation Algorithm

	Security Analysis
	Security Robustness
	Calculation Time

	Improved Scheme
	Algorithm Improvements
	Regulator Algorithm
	DS Calculation Algorithm
	Branch Calculation Algorithm
	Node Calculation Algorithm
	Security Analysis

	Expanded Algorithm to Address HW Status
	Problem Definition
	Concept Approach

	Performance Analysis
	Memory Requirement
	Time Requirement

	Discussion
	Conclusions

	Zero Trust for SDV - Peer Attestation
	Introduction
	Contributions
	Organization

	Initial Scheme - Single Trust Component
	Adapting Zero Trust to Automobiles
	Calculating Risk
	Calculating Trust for each Message
	Calculating Reliance

	Concept Example - Single Trust Component
	Example Description
	Example Risk
	Example Trust
	Reliance Transfer Function
	System Parameter Calculation

	Performance Analysis - Single Trust Component
	Adversary Objectives
	False Detection Robustness
	Attack Detection Reliance Tradeoff
	Performance Analysis
	Validation

	Complex Scheme - Multiple Trust Components
	Calculating Risk
	Calculating Trust for each Message
	Reliance Calculus
	Potential Use Cases

	Concept Example - Multiple Trust Components
	Trust and Risk Calculation
	Reliance Calculation
	Example Operation

	Performance Analysis - Multiple Trust Components
	Adversary Objectives
	VSOC Operation

	Discussion
	Conclusions

	Conclusion and Future Work
	Conclusion
	Future Work

	Appendix Modulo 16 Multiplication Table
	Appendix Modulo 17 Multiplication Table
	Appendix SSB Theoretical Derivation
	Bayesian Learning Improving Escape Rate
	Linked Scanning
	Fingerprint Robustness
	How to Define Robustness for Sampled Authentication
	SSB Variants
	Initial Detection
	Long-Term Detection

	Bibliography

