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ABSTRACT: Metabolomics holds the promise as a new
technology to diagnose highly heterogeneous diseases. Conven-
tionally, metabolomics data analysis for diagnosis is done using
various statistical and machine learning based classification
methods. However, it remains unknown if deep neural network,
a class of increasingly popular machine learning methods, is
suitable to classify metabolomics data. Here we use a cohort of 271
breast cancer tissues, 204 positive estrogen receptor (ER+), and
67 negative estrogen receptor (ER−) to test the accuracies of feed-
forward networks, a deep learning (DL) framework, as well as six
widely used machine learning models, namely random forest (RF),
support vector machines (SVM), recursive partitioning and
regression trees (RPART), linear discriminant analysis (LDA),
prediction analysis for microarrays (PAM), and generalized
boosted models (GBM). DL framework has the highest area under the curve (AUC) of 0.93 in classifying ER+/ER− patients,
compared to the other six machine learning algorithms. Furthermore, the biological interpretation of the first hidden layer reveals
eight commonly enriched significant metabolomics pathways (adjusted P-value <0.05) that cannot be discovered by other
machine learning methods. Among them, protein digestion and absorption and ATP-binding cassette (ABC) transporters
pathways are also confirmed in integrated analysis between metabolomics and gene expression data in these samples. In
summary, deep learning method shows advantages for metabolomics based breast cancer ER status classification, with both the
highest prediction accuracy (AUC = 0.93) and better revelation of disease biology. We encourage the adoption of feed-forward
networks based deep learning method in the metabolomics research community for classification.
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■ INTRODUCTION

According to Global Health Estimates (WHO), more than one-
half million women died due of breast cancer worldwide.1

Breast cancer is the second leading cause of cancer-related
deaths among women in the United States.2 On the basis of
human epidermal growth factor receptor 2 (Her2), progesteron
receptor (PR), and estrogen receptor (ER), breast cancer can
be categorized into four molecular subtypes:3 Luminal A (ER+,
PR±, and Her2-), Luminal B (ER+, PR±, and Her2 ± ), Her2-
enriched (ER−, PR−, and Her2+), and triple negative (ER−,
PR−, and Her2−).4 The survival outcomes differ significantly
among these subtypes. Luminal A and B subtypes have a
relatively good prognosis; however, triple negative tumors and
Her2 tumors have very poor prognosis.5 Identification of
molecular subtypes is crucial in determining cancer prognosis
and therapeutic selection. Recently, many studies used
metabolomics data to segregate molecular subtypes, given
that breast cancer is manifested as a metabolic disease.6,7 For
example, glutamate-to-glutamine ratio and aerobic glycolysis

were proposed as biomarkers of ER and Her2 status,
respectively.8,9

Metabolomics studies are usually done by three major
platforms: gas chromatography−mass spectrometry (GC−MS),
liquid chromatography (LC−MS), and nuclear magnetic
resonance (NMR). The parallel use of these instruments
allows detecting more metabolites for the same sample.
Coupling with the development in the instrumentations,
state-of-the-art data analysis tools are much needed to handle
the large amount of metabolite data generated. For problems of
metabolomics data classification and regression, machine
learning algorithms have been applied.10 For example, random
forest (RF) is a widely used machine learning algorithm based
on decision tree theory. It works with high-dimensional data
and can deal with unbalanced and missing values in the data.11

Support vector machine (SVM) is another machine learning
algorithm that separates the metabolomics data with N data
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points into (N-1) dimensional hyperplane.12 SVM was used to
classify healthy and pneumonia patients based on nuclear
magnetic resonance (NMR) metabolomics data.12

DL or deep neural network, is a new class of machine
learning methods that have been successfully applied to various
areas of genomics research,13,14 including predicting the
intrinsic molecular subtypes of breast cancer,15 inferring
expression profiles of genes16 and predicting the functional
activity of genomic sequence.17 In a recent study, denoising
autoencoder (DAs), a type of DL algorithm, was applied to
gene expression data of the breast cancer.15 It successfully
extracted features that stratify normal/tumor samples, ER
+/ER− status, and intrinsic molecular subtypes. In another
study based on gene expression data, DL outperformed linear
regression in inference of the expression of target genes from
the expression of landmark genes.16 Moreover, an open source
conventional neural networks (CNNs) package “Basset” was
developed to learn the functional activity of 164 cell types DNA
sequences from genomics data and to annotate the noncoding
genome.17 Compared to the flourishing applications of DL in
genomics, it remains unknown if deep neural network is
suitable to classify metabolomics data, especially when the
samples are of medium size (i.e., several hundred).
Here we applied feed-forward networks, a type of DL

framework, as an alternative to the machine learning methods
such as those listed earlier, to classify metabolomics data. We
examined the predictive accuracy of the DL and other machine
learning algorithms to predict ER status from a public
metabolomics data set.18 We demonstrated this DL method
performs better than a wide cluster of machine learning
methods, including RF, SVM, recursive partitioning and
regression trees (RPART), linear discriminant analysis
(LDA), prediction analysis for microarrays (PAM), and
generalized boosted models (GBM). Furthermore, the bio-
logical interpretation of the hidden layers reveals eight breast
cancer related pathways such as central carbon metabolism in
cancer and glutathione metabolism. Moreover, we further
analyzed the extracted features from our DL model by mapping
the biosynthetic enzymes involved in the metabolomics
pathways.

■ MATERIALS AND METHODS

Data Set

The metabolomics data used in this study consists of 271 breast
cancer samples (204 ER+ and 67 ER−) collected from a
biobank at the Pathology Department of Charite ́ Hospital,
Berlin, Germany.18 Metabolomics profiles of these BC patients
can be downloaded from the Supplementary Material of this
study.19 A total of 162 metabolites with known chemical
structure were measured using gas chromatography followed by
time-of-flight mass spectroscopy (GC-TOFMS) for all tissue
samples. A detailed description of the protocols and the
platforms used in this study were described in ref 18. For
validation, we downloaded gene expression data set
GSE5919820 from the Gene Expression Omnibus (GEO)
database, which is composed of 154 samples, a subset of the
271 samples. In this data set, the gene expression profiles of BC
tumor tissues (122 ER+ and 32 ER−) were analyzed using the
cDNA-mediated annealing, selection, extension and ligation
(DASL) assay. A total of 15 927 genes were detected (p < 0.01)
in at least 10% of the samples after applying spline

normalization. Data can be downloaded from GEO repository
http://www.ncbi.nlm.nih.gov/geo.
Data Preprocessing

We used K-Nearest Neighbors (KNN) method to impute
missing metabolomics data.21 To adjust for the offset between
high and low-intensity features, and to reduce the hetero-
scedasticity, the logged value of each metabolite was centered
by its mean (x)̅ and autoscaled by its standard deviation (s) as
described in eq 1.22 We used quantile normalization to reduce
sample-to-sample variation:23
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Deep Learning

DL refers to deep neural network framework, which is widely
applied in pattern recognition, image processing, computer
vision, and recently in bioinformatics.13,24,25 Similar to other
feed-forward artificial neural networks (ANNs), DL employs
more than one hidden layer (y) that connects the input (x) and
output layer (z) via a weight (W) matrix as shown in eq 2. Here
we used sigmoid function as the activation function:

= +y sigmoid Wx b( ) (2)

Activation value of the hidden layer (y) can be calculated by
sigmoid of the multiplication of the input sample x with the
weight matrix W and bias b. The transpose of the weight matrix
W and the bias b can then be used to construct the output (z)
layer, as described in eq 3:

= ′ + ′z sigmoid W y b( ) (3)

The best set of the weight matrix W and bias b is expected to
minimize the difference between the input layer (x) and the
output layer (z). The objective function is called cross-entropy
in eq 4 below, in which the optimal parameters are obtained by
stochastic gradient descent searching:

∑= − + − −
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k

d

k k k k
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To train the model, we first supplied sample input (x) to the
first layer and obtained the best parameters (W, b) and the
activation of the first hidden layer (y), and then used y to learn
the second layer. We repeated this process in subsequent layers,
updating the weights and bias in each epoch. We then used
back-propagation to tune the parameters of all layers. Finally,
we fed the output of the last hidden layer to a softmax classifier
which assigned new labels to the samples.26 We used h2o R
package to tune the parameters of the DL model.27

Other Machine Learning Algorithms

We selected a representative set of six machine-learning
algorithms that are highly recommended by the metabolomics
community and applied widely in the literature reports: RF,
SVM, RPART, LDA, PAM, and GBM. To get the optimal
predictions, we used the caret R package28 to tune the
parameters in the models.
Modeling and Evaluation

We randomly split metabolomics samples into 80% training set
and 20% testing set. The 80/20 split is a common practice of
splitting ratio for samples of a moderate size in the machine
learning applications. We chose this ratio to having enough
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training samples to build a good model and sufficient testing
samples to evaluate the model. We performed 10-fold cross-
validation on the 80% training data during the model
construction process, and tested the model on the hold out
20% of data. We used pROC R package29 to compute area
under the curve (AUC) of a receiver-operating characteristic
(ROC) curve to assess the overall performance of the models.
To avoid sampling bias, we repeated the above splitting process
ten times and calculated the average AUC on the 10 hold out
test sets. To control overfitting, we used two regularization
parameters: L1, which increases model stability and causes
many weights to become 0 and L2, which prevents weights
enlargement.
We tuned DL model and other machine learning algorithms,

on the following parameters: DL model, Epochs (number of
passes of the full training set), l1 (penalty to converge many
weights to 0) and l2 (penalty to prevent weights enlargement),
and input dropout ratio (ratio of ignored neurons in the input
layer during training), number of hidden layers; RPART model,
complexity parameters (cost of adding node to the tree); GBM
model, number of trees and interaction depths; SVM model,
cost of classification; RF model, number of trees to fit; PAM
model, threshold amount by for each of the class’s centroid
shrinking toward the all classes’ centroid.
Feature Importance

Features importance was estimated based on model based
approach.28 In other words, a feature is considered important if
it contributes to the model performance.30 We used the variable
importance functions varimp in h2o and varImp in caret R
packages to rank models’ features.
Identifiers Standardization and Differentially Expressed
Genes

We used the PubChem Identifier Exchange Service31 to convert
metabolites into their corresponding KEGG compound IDs; we
then used KEGG API32 to get the compound pathways and
enzyme IDs. We used limma R package33 to find enzymes with
high fold changes as well as significant adjusted p-values
between ER+ and ER− samples.
Metabolomics Enzymes Network Reconstruction and
Visualization

We used MetScape34 v3.1.3, a Cytoscape plug-in to generate
gene-metabolite network that integrates reaction and pathway
information from KEGG and Edinburgh human metabolic

network (EHMN) databases. To build enzyme-metabolite
network, we selected a pathway based network from MetScape
analysis options. The input of this step were two files. The first
file included the compound KEGG IDs, p-value and the fold
change values of the top 20 metabolites extracted from the DL
model. The second file included the enzyme KEGG IDs, p-
value and the fold change values of the 898 genes whose
expression values were statistically significantly different
between ER− and ER+ samples.

Metabolites Enzymes Correlation

We calculated the correlations between the intensity levels of
the metabolites and enzymes using Spearman’s Correlation
Coefficient in R. We plot the Circos plot of the strongest
correlation using Circlize R package v0.4.0.

Joint Significant Pathway Analysis

To perform joint significant pathway analysis on metabolomics
and gene expression data from the same samples, we
considered a comprehensive list of pathways from Reactome,
EHMN, and KEGG databases, using online web tool
IMPaLA,35 and calculated hypergeometric p-values of genes
(PG) and metabolites (PM). The joint p-value (Pj) between
metabolites and genes for pathway i was calculated as Pji = PGi
PMi.

36 This value was adjusted to control for multiple testing
with the false discovery rate method.

Code Availability

We include all preprocessing and the learning steps of the DL
method as an R script in the Supporting Information.

■ RESULTS

Workflow of Autoencoder Based Classification

We aim to assess the predictive ability of the DL framework to
separate breast cancer patients based on their ER status, using
metabolomics data. Toward this goal, we implemented the
workflow of DL framework as in Figure 1. We applied
preprocessing steps (log transformation, centering, autoscaling,
and quantile normalization) before constructing the DL model,
as recommended by others.18,22 Before training the model, we
pretrained the model using autoencoder and the whole data
without labels. This step improves the model performance,
avoids random initialization of the weights, and selects the best
model architecture.37 Then we trained the DL model using a

Figure 1. Block diagram of the proposed system. The first step is the preprocessing (log transformation, centering, autoscaling, and quantile
normalization). We used Autoencoder pretraining (unsupervised step) to initial model weights and select model architecture. Model used the 80% of
data split to train the model and the remaining 20% to measure model performance. The data were split 10 times to avoid the bias of data sampling,
and the average AUC was calculated on the 10 hold out test sets.
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wide range of parameters and selected the best model with the
minimum mean square error (see Materials and Methods).

Performance of Autoencoder Based Deep Learning
Classification

We compared DL with six other machine-learning methods
commonly used in the community: RF, SVM, RPART, LDA,
PAM, and GBM. To assess the predictive power of the models,
we partitioned the data into 80% training and 20% testing
subsets. We performed 10-fold cross-validation on the 80%
training data, and tested the model on the hold out 20% of data.
To avoid sampling bias, we performed 10 independent splitting
of training and testing subsets. We reported the averaged AUCs
calculated on the hold out test sets. As shown in Figure 2A, the
average AUC of DL yields the best AUC of 0.93, compared to
other six classification methods. The superiority of DL accuracy
is statistically significant (Wilcoxon signed-rank test P < 0.05)
than other methods, except RF and GBM. LDA and RPAT had
the worst accuracy, likely due to their sensitivity to overfitting
and being unfit to the nonlinear problems.38

DL, as other machine learning algorithm, needs more
samples to achieve high accuracy.39 To assess the effect of
sample size on various models, we randomly removed 1/4,

1/2,
and 3/4 of the data sets (Figure S1). As expected, decreasing in
sample size decreases the averaged AUCs of all classification
methods in general except LDA on 1/4 samples due to
overfitting. Notably, the reduction of average AUC in DL is
most pronounced among all methods, from the full to 3/4 data
set (Figure S1). While DL loses the best average AUC status

when the sample size is around 255, GBM, SVM, and RF have
the highest AUC for small sample sizes of 203, 136 and 68,
respectively. Similarly, we also experimented the effect of
metabolite size on various models (Figure S2). We randomly
removed 1/8,

1/4, and
1/2 of the 162 metabolites. Even with

reduced numbers of metabolites, deep learning and the robust
machine learning method SVM still have fairly good
predictions, compared to other algorithms tested. This suggests
that, due to colinearlity, much of the information still exists in
the remaining metabolites. Together, the drop-out experiments
(Figures S1 and S2) demonstrate that DL method is sensitive
to sample size, but much less sensitive to metabolite size.

Important Features from DL

To relate the importance of metabolites to ER status directly,
we ranked the metabolites extracted from DL model based on
their functional contributions to the outputs. In this approach,
features that provide unique information to the trained network
are ranked more importantly than those giving redundant
information.40 We listed the top 20 metabolites from DL in
Table S1, and presented their heatmap and boxplots in Figure
S3. Note that the choice of 20 metabolite is guided by the
original study, in which 19 out of 162 metabolites were claimed
to change significantly among training and validation samples.19

The original author divided the 271 samples into two parts, the
training (2/3) and the validation (1/3) set. Among the training
set, 65 metabolites were different in ER− and ER+ and only 19
metabolites were validated in the validation set.

Figure 2. (A) Average AUC on 10 hold out test sets of the DL framework against six machine learning algorithms for prediction of ER status from
metabolomics data: recursive partitioning and regression trees (RPART) (0.83), linear discriminant analysis (LDA) (0.74), support vector machine
(SVM) (0.89), deep learning (DL) (0.93), random forest (RF) (0.89), generalized boosted models (GBM) (0.89), and prediction analysis for
microarrays (PAM) (0.88). The above algorithms were run 10 times on different train/test splits. We used pairwise Wilcoxon signed-rank test to
estimate the statistical significance of the difference in performance between DL and other methods (∗∗ p < 0.01, ∗ p < 0.1). (B) Bipartite graph of
the top 20 important metabolites extracted from DL model and other machine learning algorithms. Large nodes represent the models and small
nodes are metabolites. A connection between metabolite and the model means this metabolite is one of the top 20 high importance metabolites
extracted by this model.
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Among the 20 features, the top five features are beta-alanine,
xanthine, isoleucine, glutamate, and taurine. These five
metabolites have been either proposed as breast cancer
biomarkers or associated with breast cancers in the original
metabolomics report19 and/or other studies.6,8,41−43 For
instance, Budczies et al.19 found that beta-alanine had the
most significant and largest fold changes between ER−(n = 67)
and ER+ (n = 204) tumor tissues. In another study, Glutamate
was suggested as markers to segregate ER− from ER+ in the
training (n = 186) as well as validation data set (n = 88).8

Glutamate to glutamine ratio (GGR) was significantly increased
in the ER− tumors as compared to ER+. Overall survival
analyses suggested GGR as a positive prognostic marker for
BC.8 In another study, Fan et al. classified BC plasma samples
into subtypes, that is, ER+ versus ER− and HER2+ versus
HER2-, based on a training set (n = 51) and another test set (n
= 45).6 They found isoleucine had significant differential level
between ER+ (lower) and ER− (higher) samples. Similarly, a
study among female breast cancer patients (n = 50) suggested
serum taurine as an early marker, where its level was
significantly lower than the normal (n = 20) and high risk
samples (n = 15).42 In a cell line based study, xanthine was
suggested as potential biomarker of breast cancer metastasis,43

as it had the highest variable influence on projection (VIP) in
the three pairwise comparisons among MCF-7/MCF-10A,
MDA-MB-231/MCF-10A, and MDA-MB-231/MCF-7.43

Further, we compared DL-based top 20 features with the
same number of top features from all other methods in a
bipartite graph (Figure 2B). Twelve metabolites are shared

between DL and one or more algorithms. Among them, one
(xanthine) is shared by six methods, two (glyceric acid and
citrulline) are shared by five methods, four (glutamine, taurine,
glutamic acid, and beta-alanine) are shared by four methods,
one (2-aminoadipic acid) is shared by three methods, and two
(nicotinamide acid and trehalose) are shared by two methods
(Table S1). Additionally, DL has identified eight unique
metabolites: isoleucine, putrescine, glycerol, 5′-deoxy-5′-meth-
ylthioadenosine, ornithine, tocopherol beta, phenylalanine, and
arachidonic acid,

Biological Relevance of Hidden Layers

To understand the high performance of the DL model, we
probed into the hidden layer and analyzed the 25 activation
nodes from the first hidden layer. Among the top 12 nodes with
the variances >0.1, node 8, 22, and 25 are significantly
correlated with the samples’ ER− status (P = 1.14e−12),
whereas all other top nine nodes are associated with the ER+
status (Figure 3A). These results confirm that the nodes in DL
have significant biological meaning.
We identified a total of 129 metabolites which contribute

most to the activation values of the top 12 nodes. Their
relationships between the 129 metabolites and 12 nodes are
shown in Figure S4. We define that metabolite x contributes to
the activation value (y) of node n, if the aboslute value of the
weight connecting metabolite x and node n is greater than 0.1.
Beta-alanine and xanthine are the most common metabolites
from all top 12 nodes. Among nodes 8, 22, and 25 which are
highly correlated with ER− (Figure 3A), four common
metabolites are shared: inositol, glutamate, xanthine, and uracil.

Figure 3. Biological relevance of the DL hidden layers. (A) Activation levels of the high variance nodes extracted from the layer 1 of the DL model.
Columns are samples and rows are the top 12 nodes with high variance >0.1. (B) Bipartite graph of enriched significant metabolomics pathways and
top hidden nodes. The nodes represent enriched pathways common to all top 12 nodes (green color) in the first hidden layer of DL in KEGG
pathway enrichment analysis (FDR< 0.05).
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Xanthine was among the panel of prognostic markers of breast
cancer metastasis based on the metabolic profiling of the three
breast cancer cell lines.43 Glutamate has been reported as
biomarker to segregate ER− from ER+ in the training as well as
validation data set, as described earlier.8 Inositol phosphate
metabolism pathway was previously reported to be associated
with breast cancer, but not between ER+ and ER− cancers.44

Uracil is, however, a potencial new marker for ER− breast
cancer that was not reported previously, according to our
knowledge.
To link the metabolites in Figure S4 with biological

functions, we conducted pathways enrichment analysis using
online web tool IMPaLA.35 The pathways are taken from
Reactome, EHMN, and KEGG databases. Eight significant
breast cancer related pathways (Figure 3B) are enriched in all
nodes: protein digestion and absorption, central carbon
metabolism in cancer, neuroactive ligand receptor interaction,
ABC transporters, mineral absorption, inositol phosphate
metabolism, glutathione metabolism, and cysteine and
methionine metabolism. Albeit the name of “neuroactive
ligand-receptor interaction”, this pathway is significantly
enriched (q-value = 0.001) and it was shown changed in
breast cancer cell lines45 and naked mole rat.46 Aspartate,
glycine, taurine, and glutamate are metabolites associated with
this pathway in the metabolic data set. Another interesting
pathway with the name “mineral absorption” also shows
significance (q-value = 7.51 × 10−06), attributed by five
metabolites tryptophan, alanine, glycine, phosphoric acid, and
glutamine. All these five metabolites were found related with
breast cancer previously.47−49

Integration of DL Metabolites and Enzymes

We further aimed to validate the important metabolite features
of DL model by integrating metabolomics and gene expression
data from the same patients. Toward this, we first conducted a
joint pathway analysis between 20 metabolites extracted from
DL model and 898 significantly differentiated enzymes between
ER+ and ER− samples using IMPALA (Figure 4). Most of the
top significant pathways are related to metabolism of amino
acids or protein digestion and absorption. Two pathways
remain significant in joint pathway analysis by comparing to
metabolomics based pathway analysis in Figure 3B: protein
digestion and absorption and ABC transporters, with six and
nine metabolites over-represented, respectively. Specifically,
urea, inositol allo-, phosphoric acid, glucose, glutamine,
isoleucine, and glutathione are the associated metabolites in
ABC transporters. For protein digestion, glutamine, lysine,
isoleucine, and beta-alanine are associated metabolites. Some
literature evidences show that protein digestion and ABC
transporters are related to breast cancer. For example, humans
have 49 members of the ATP-binding cassette (ABC)
membrane proteins.50 Several of them, such as ABCB1 and
ABCC1, have developed “multidrug resistance” (MDR) in
breast cancer, when they are overexpressed over a period of
time.51

To gain insights at individual metabolite/enzyme level, we
then calculated Spearman’s correlations between the intensity
levels of the top 20 metabolites and enzymes whose gene
expression levels are significantly different between ER+/ER−
for the same patients.20 The Circos plot in Figure 5 shows the
names of metabolomics and enzymes that have correlations (|r|
> 0.35). Impressively, beta-alanine, the top ranked metabolite in

Figure 4. Joint pathway analysis between the top 20 DL metabolites and the highly differentiated enzymes. Only significant pathways with at least
five overlapping metabolites are shown. X-axis shows the number of overlapped metabolites with the number of genes (number in parentheses)
involved in the same pathway, y-axis shows the adjusted joint P-value calculated from IMPALA tool.42 The size of the nodes represents the size of
metabolomic pathway (number of metabolites involved in that pathway). The color of the nodes represents the database source of these pathways.
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DL, is the single most connected metabolite, correlated to more
than 100 significantly differentially expressed enzymes. Pathway
analysis of these enzymes correlated with beta-alanine shows
strikingly significant enrichment (adjusted p-value = 3.84e−05)
with FOXM1 transcription factor network pathway. FOXM1 is
highly expressed in ER− samples and with a correlation
coefficient r = 0.5 with beta-alanine.
Complementary to the correlation based analysis, we also

used MetScape (Cytoscape plug-in) for gene-metabolite
network analysis, by combining the ER+/ER− metabolomics
data18 and gene expression (from GSE59198)20 for the same
patients. ABAT, the enzyme that catalyzes beta-alanine to
malonate semialdehyde (Figure 6B), is highly correlated with
beta-alanine (r = −0.62, Figure 6A). To understand better the
connection between beta-alanine and FOX genes family, we
performed motif enrichment analysis for the enzymes
interacted with beta-alanine in Figure 6B using PASTAA
tool.52 Interestingly, FOXO1 was one of most significant
transcription factors (p = 5.89e−04) that targeted the promoter
regions of beta-alanine interacting enzymes.

■ DISCUSSION

Metabolomics has become a new platform for biomarker
discovery. Accompanying this technology, robust and accurate
classification methods to predict sample labels are in critical
need. Recently, DL methods have gained much attention in
domains such as genomics and imaging analysis. However,
there has not been any systematic investigation of DL methods
in the metabolomics space. In this report, we aimed to fill this
void and assessed the performance of feed-forward network, a
widely used DL framework, on classifying ER+/ER− breast
cancer metabolomics data.
There are many advantages of DL over shallow machine

learning algorithms, which are beyond the scope of this study.
The conventional machine learning algorithms require
engineering domain knowledge to create features from raw
data, whereas DL automatically extracts simple features from
the input data using general purpose learning procedure. These
simple features are mapped into outputs using a complex
architecture composed of a series of nonlinear functions
“hierarchical representations,” to maximize the predictive

Figure 5. Circos plot of Spearman’s correlation values between top 20 DL metabolites and highly differentiated enzymes with cutoff = |0.35|.
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accuracy of the model optimally. By increasing number of layers
and neurons per layers, robust features may be constructed, and
error signals can be diminished as they pass through multiple
layers.13 Therefore, DL succeeds to construct high-level
transformed features from input data, making it more desirable
than shallow machine learning algorithms in this respect.14

We demonstrated that DL has a higher predictive accuracy
over the other six popular machine learning methods in
detecting ER status from metabolomics data. DL exploits the
idea that the higher “succeeding” layer is learned from the lower
“preceding” layer and selects the essential metabolites from DL
model. These metabolites are useful for the learning process
and explain the high predictability of DL compared to
conventional machine learning algorithms. DL extracted
features that could be considered as novel biomarkers, such
as uracil, which were not previously reported as breast cancer.
Also, unlike other machine learning methods, DL method offers
additional insights on eight KEGG pathway being significantly
different due to ER status. All these new observations warrant
further investigation.
An interesting new link we discover lies between FOXM1

family and beta-alanine. A recent study showed FOXM1 to be a
major cause for resistance to various chemotherapeutics,53 and

reduction of FOXM1 levels induced apoptosis of breast cancer
cells.54 The motif enrichment analysis of the beta-alanine
interacted enzymes indicates that the transcription factor
FOXO1 targeted the promoter regions of these enzymes.
Thus, the relationships among beta-alanine, FOXM1, and
FOXO1 are worth further investigation. In addition, we found
many interesting involvement of DL-based unique metabolites
in breast cancer diagnosis and treatment. For example,
phenylalanine is found significantly elevated in the advanced
metastatic breast cancer55 and linoleic acid has been used to
lower the risk of breast cancer.56 Also, putrescine has been
known to play a critical role in many metabolomics processes in
breast cancer, such as apoptosis, and proliferation.57 The
knock-down experiments on ornithine decarboxylase (ODC),
an enzyme which converts ornithine to putrescin, showed the
growth inhibition in the ERα+ MCF7 and T47D and ERα-
MDA-MB-231 breast cancer cells.58 Arachidonic acid was
previously shown to be integral part of the new signaling for the
cell migrations in the MDA-MB-231 breast cancer cells.59

Despite the outstanding performance of DL methods, one
should be mindful of several caveats in its application in
metabolomics research. DL is time-consuming computation
(Table S2), relative to some other machine learning methods.40

Figure 6. Beta-alanine and ABAT interaction network. (A) Metabolite level of beta-alanine and expression of ABAT. (B) Beta-alanine-ABAT
interaction network in ER− breast cancer tissues compared to ER+ breast cancer tissues. MetScape, a Cytoscape plug-in, was used to integrate ER
+/ER− metabolomics and gene expression data (GSE59198) of the same patients. Fold change of metabolites (hexagon nodes) or enzymes (circle
nodes) are represented by the size of the nodes. The input of MetScape are the top 20 metabolites from the DL model and the 898 genes whose
expression values are statistically significantly different between ER− and ER+ samples. Enzymes and metabolites with significant difference are
marked by green line(s) on the shapes.
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Also, metabolomics data sets are generally small, in comparison
to imaging data. Thus, very small data sets may not be suitable
for DL. We experimented with the effects of reducing sample
size and metabolite size on the seven methods in comparison,
and found that DL is indeed sensitive to the sample size of the
study. On the contrary, due to colinearlity among metabolites,
autoencoder has fairly robust predictions even when the
number of metabolites are reduced. Another point of
consideration is the reproducibility of the technology itself. A
platform with better reproducibility is expected to yield
biomarker models that predict more accurately in validation
data sets (less overfitting). We thus speculate that DL models
based on NMR metabolomics data (more metabolites and
better reproducibility) will be more accurate than DL models
based on LC−MS data, when other conditions are the same.
Lastly, in this report we compared the ML versus DL under

the topic of classification of metabolomics data. The advantages
of DL on other nonclassification problems in metabolomics
research are yet to be explored. For example, unsupervised
machine learning algorithms such as PCA and hierarchical
clustering were applied to the metabolomics data,60 and our
group is currently exploring using autoencoders for unsuper-
vised learning in metabolomics data. As another example, we
have also worked on prognosis prediction using shallow and
deep neural network models in the genomics space.61,62 We
successfully used autoencoder to integrate multiple omics data
sets (RNA-Seq, microRNA-Seq and DNA methylation) to
predict patient survival robustly, exemplified by liver cancer.62

Compared to genomics data, metabolomics data have higher
multicolinearity and noise levels. Also the number of
identifiable metabolites are lower than the identifiable genes
in genomics assays. These issues pose potential challenges
when extending genomics tools for metabolomics research.
Nevertheless, it will be very interesting to test these DL and
neural network models on appropriate metabolomics data sets
alone or in combination with coupled genomics data.

■ CONCLUSIONS

We show evidence that DL outperforms other machine learning
algorithms for ER status classification in breast cancer
metabolomics data. The biological interpretation of the hidden
layer of the DL model also reveals eight significant breast
cancer related pathways, which are not able to obtain from the
other machine learning algorithms in comparison.
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