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Abstract

This thesis explores the application of advanced machine learning techniques to forecast water
levels in Mono Lake, California, a critical ecological and hydrological resource. Given the
complex interplay of factors influencing water levels, such as precipitation, evaporation, natural
runoff, and diversions, accurately predicting these levels presents a significant challenge. Various
machine learning models, including Support Vector Machine (SVM), Random Forest (RF), and
Long Short-Term Memory (LSTM), were developed to forecast Mono Lake water levels. These
machine learning models integrate historical water levels, multiple precipitation datasets using a
Bayesian model, and outputs from the Large Lake Statistical Water Balance Model (L2SWBM) —

an advanced Bayesian model.

A novel contribution of this study is the development and application of the LSTM algorithm,
training, and optimization process to develop an Ensemble model for forecasting water levels,
which in simple terms develops a group of forecasts from multiple LSTM models to improve the
prediction accuracy of Mono Lake water levels forecasts. By training on historical data from 1970
to 2009 and validating model predictions against historical data from 2009 to 2018, the study offers
a comprehensive evaluation of the model’s performance, followed by forecasts from 2019 to 2023.
The findings reveal that the LSTM Ensemble models can accurately predict future water level
fluctuations, demonstrating the potential of machine learning in supporting Mono Lake water
resources management. Notably, this thesis identifies a critical balance in model complexity,
where neither overly simplistic nor excessively complex models yield the most accurate

predictions. Instead, a balanced approach, incorporating nuanced model training and optimization



methods emerges as crucial tools for minimizing model overfitting and capturing the nuanced
patterns of Mono Lake’s water levels. The insights from these training and optimization exercises
provided pivotal learning to improve accuracy. Hence, machine learning models like this can be
used for informing water diversion strategies, ecological conservation efforts, and policy

development, ensuring Mono Lake’s sustainability amidst changing environmental conditions.

By providing a detailed analysis of Mono Lake’s water level dynamics and the predictive
capabilities of LSTM Ensemble models, this thesis contributes valuable knowledge to the fields of
hydrology, environmental management, and machine learning, offering a blueprint for leveraging
machine learning in the stewardship of natural resources. The implications of this research extend
beyond Mono Lake, suggesting a broader applicability of machine learning in hydrology, climate
forecasting, and water resource management. As climate change and human activities increasingly
impact water resources, the integration of predictive modeling like machine learning into natural
resource management offers a path forward for balancing ecological preservation with human

needs, ensuring the sustainable management of water bodies worldwide.

Vi



Chapter 1 Introduction

The well-being and economic livelihoods of communities are closely intertwined with water
levels, particularly for those located near and dependent on bodies of water like lakes (Hékanson
et al., 2000). Fluctuations in water levels have far-reaching implications on water quality, the lake's
ecosystem, and the livelihoods of nearby communities that depend on the lake (Woolway et al.,
2022). These processes include circulation patterns that are pivotal for water mixing and sediment
resuspension (Molinos et al., 2015), which are vital in maintaining ecological balance.
Consequently, changes in water levels may lead to shifts in water quality (White et al., 2008),
ultimately affecting the health of aquatic ecosystems and humans, if consumed without water
treatment. Accurately predicting and managing water levels is thus of paramount importance.
Water level fluctuations are a complex hydrological phenomenon, influenced by a myriad of
factors including meteorological conditions and the exchange of water between the lake and

adjacent watersheds (Altunkaynak, 2007; Karimi et al., 2012).

1.1 Objective of the Research

The primary objective of this research is to forecast the water levels of Mono Lake. However,
predicting these levels presents a considerable challenge, due to the complexities tied to historical
fluctuations of the water levels in Mono Lake. These variations are influenced by a multitude of
factors, including precipitation, evaporation, temperature, humidity, and water exchange between

the lake and adjacent watersheds through runoff (Ficklin et al., 2013; State of the Lake).



To address the challenge of forecasting the water levels of Mono Lake, this research explores three
distinct approaches (Figure 1). First, we focus on using historical water levels to create three
separate machine learning models: Support Vector Machine (SVM), Random Forests, and Long-
Short Term Memory (LSTM). These models identify trends in historical data and learn from these
trends to predict future outcomes. Secondly, we integrated multiple precipitation datasets using a
Bayesian model. This method amalgamates data from three separate sources, providing
comprehensive and dependable inputs, that are used for training the machine learning models,
particularly the LSTM model. Lastly, we used the Large Lake Statistical Water Balance Model
(L2SWBM)(Gronewold et al., 2020) — an advanced Bayesian model, to combine multiple datasets
of precipitation, evaporation, and runoff. The L2Z2SWBM output is used as input for the Random

Forest model and the LSTM model.

The LSTM model architecture is designed to handle multiple input features and predict various
output features. These features are precipitation, evaporation, runoff, and diversions, which have
a strong influence on water levels. By incorporating these multiple features separately, the LSTM
model can effectively capture the complex interactions among different factors influencing water
levels and implicitly identify the most significant drivers. We further refined this LSTM model by
optimizing the model parameters, essentially creating a member of the 12 LSTM forecast, which
we call an LSTM Ensemble model. This LSTM Ensemble model showcases improved accuracy

in forecasting Mono Lake’s water levels.

Additionally, understanding and forecasting these water level changes are not merely academic

exercises, they hold significant implications for water resource management, biodiversity



conservation, and the sustainable use of environmental resources. The accuracy of these forecasts
is important and relevant to Mono Lake’s management and thereby to its ecosystem and the
surrounding environment. This research compares the machine learning-based water levels
forecast with the historical water levels of Mono Lake as recently as the last few years, from 2019
to 2023, assessing how closely these advanced machine learning models approximate the real-
world water level values. The research aims to provide critical insights for involved stakeholders

to develop an effective water management strategy.

Mono Lake Water Levels Forecasting using
Machine Learning

Historical Water Levels Historical Precipiation Historical Bayesian
Dataset Dataset Statistical Dataset
Support Vector Simple-Bayesian and
Machine (SVM) LSTM Model RF Model

Advanced-Bayesian

and LSTM Model LSTM Model

Random Forests (RF)

Long-Short Term
Memory (LSTM) LSTM Ensemble Model

Figure 1: This figure provides a visual representation of the different methodologies employed in

the Mono Lake water levels Forecasting using Machine Learning.




1.2 Study Area: Mono Lake

Mono Lake is situated at the eastern edge of the Sierra Nevada in California (Figure 2). It is located
at a latitude of 38.016° N and a longitude of 119.0093° W (Mono Lake Volcanic Field | U.S.
Geological Survey, n.d.). From a geological perspective, Mono Lake is part of the Mono Basin
with no outlet to the ocean (Geographic Names Information System, USGS). Due to this unique
circumstance, the dissolved salts from runoff accumulate in Mono Lake, subsequently increasing
the pH values of the water, resulting in an average pH level of around 9.8 (Oxburgh et al., 1991).
The primary tributaries of Mono Lake include Lee Vining Creek, Rush Creek, and Mill Creek,

which flows through Lundy Canyon. (Geographic Names Information System, USGS).

Covering more than 70 square miles, Mono Lake is also home to abundant brine shrimp and
alkaline flies that provide food for the millions of migratory birds that visit each year (4bout Mono
Lake, n.d.; Natural History, n.d.). Riparian forests of cottonwood and willow along the shore of
Mono Lake are created by freshwater runoff flowing into the lake (Mccreedy & Heath, 2004). In
addition to its ecological significance, Mono Lake is also a place for recreational activities, offering

year-round tourism for tours, canoeing, field seminars, and other activities.
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Figure 2: The study area is located on the eastern edge of the Sierra Nevada in California, which
is highlighted in red box. The top view of Mono Lake is also represented in the figure above.
Source: (L.A.’s New Water War: Keeping Its Supply from Mono Lake - Los Angeles Times, n.d.;

Mono Lake - Google Maps; OpenStreetMap).
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Furthermore, Mono Lake plays a crucial role as a water source for the population of Los Angeles,
California, supplying fresh clean water to around 200,000 residents of the city (Collins & Liu,
2023). Fresh water from Owens River that would otherwise flow into Mono Lake is diverted to
Los Angeles through the Los Angeles Aqueduct (The Mono Basin Project), henceforth referred as
diversions. Following the start of diversions in 1941, Mono Lake’s water levels plummeted from
6,417 feet to 6,372 feet over a 40-year period (Stine Scott, 1993). Hence, diversions caused the
lake to lose half'its volume and double its salinity (Stine Scott, 1993). The ecological consequences
were severe, including threats to the population of the California Gull and threats to the lake’s

ecosystem (State of the Lake, n.d.-b).

In response to these environmental conditions, the year 1994 marked a pivotal decision with the
California State Water Resources Control Board’s unanimous approval of Decision 1631 (SWRCB
Mono Lake Decision 1631, 1994). This decision required that Mono Lake be allowed to increase
the water levels to 6,392 feet above sea level (SWRCB Mono Lake Decision 1631, 1994). Decision
1631 introduced a tiered structure of diversions whereby the Los Angeles Department of Water
and Power (LADWP) would be limited on the amount of water they can divert according to the
levels of Mono Lake. According to Decision 1631, when Mono Lake’s level is between 6,380 and
6,391 feet, LADWP is permitted to divert up to 16,000 acre-feet of water annually. However, if
the water lake level falls to between 6,377 and 6,380 feet, LADWP will decrease its diversions to
a maximum of 4,500 acre-feet per year and if Mono Lake falls below 6,377 feet, the LADWP is

restricted from diverting any water (SWRCB Mono Lake Decision 1631, 1994).
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The selection of Mono Lake as the study area is not only due to its unique and complex
hydrological system but also due to its significant relevance to both the Mono Lake Committee
(MLC) and the Los Angeles Department of Water and Power (LADWP). The accurate prediction
of the future Mono Lake water levels is important for developing data-informed water resource

management strategies that benefit all stakeholders involved.

1.3 Historical Studies on Water Levels Forecasting

In previous decades, a diverse range of tools and models have been developed to forecast water
levels, taking into account various influencing factors and significantly aiding in water resource
management (Aksoy et al., 2013; Khatibi et al., 2014). For example, Gronewold et al. showed the
efficacy of using the Advanced Hydrologic Prediction System (AHPS) in capturing the seasonal
and inter-annual patterns of Lake Erie’s water levels (Gronewold et al., 2011). Another study by
VanDeWeghe et al. employed a statistical approach for projecting plausible climate-related
regional water supply scenarios into localized net basin supply sequences (VanDeWeghe et al.,
2022). This method preserved spatial and temporal correlations between hydrologic components,
enabling explicit representation and manipulation of component marginal and conditional
probability distributions (VanDeWeghe et al., 2022). The challenge of addressing climate or
unprecedented seasonal changes using statistical models, particularly in the Great Lakes system,
has also been a focal point of several studies (Gronewold & Stow, 2014). In addition, advanced
statistical algorithms have been increasingly experimented with to tackle climate change scenarios.
For instance, Myakisheva et al. developed a forecasting model using ARIMA (Auto-Regression
Integrated Moving Average), incorporating both historical and other climate variations,

specifically to study climate change impacts on lake water levels (Myakisheva et al., 2021). Other
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statistical techniques like Gene Expression Programming and Adaptive Neuro-Fuzzy Inference
Systems have been applied to predict daily lake levels for Lake Urmia in Northwestern Iran,
enhancing model forecasting performance over various intervals. Another recent study introduced
periodicity (month number of the year) into a statistical model for Lake Michigan, thereby
significantly improving forecasting accuracy (Demir, 2021). However, these models often require
considerable time and computational resources (P. S. Yu et al, 2006). Physics-based
hydrodynamic models, while offering enhanced accuracy and reliability, also demand a
comprehensive input data set, including lake bathymetry, inflow and outflow conditions, and a full
suite of meteorological variables. This requirement can make their application challenging,

especially in regions with limited data availability (Huang et al., 2010; Zhu et al., 2020).

1.4 Introduction to Machine Learning in Hydrology

Recently, the application of machine learning models in hydrology has seen substantial growth
(Deng et al., 2022; Obringer & Nateghi, 2018; Wang & Wang, 2020; Wee et al., 2021). Traditional
machine learning models such as artificial neural networks (ANNs) (Altunkaynak, 2007;
Buyukyildiz et al., 2014; Yarar et al., 2009), recurrent neural networks (RNN) (Giildal & Tongal,
2010; Kisi et al., 2012; Yarar et al., 2009), and extreme learning machines (ELM) (Bonakdari et
al., 2019; Kisi et al., 2012) have been extensively developed and implemented in hydrology. These
models represent a significant shift from traditional statistical approaches, offering new

capabilities in predictive accuracy and efficiency.

Moreover, machine learning models have demonstrated excellent results in predicting various

climatic parameters, such as precipitation, evaporation, natural runoff, and others (Hussein et al.,
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2021; Slater et al., 2023). A recent study successfully developed a rainfall forecasting model using
only conventional machine learning architectures, yielding more reliable results compared to
complex statistical models (Barrera-Animas et al., 2022). Furthermore, the concept of ensemble
learning, which involves combining results from multiple machine learning models, has also
proven effective in enhancing machine learning model forecasting accuracy. Most recently a study
by Sengoz et al. integrated results from eight different Numerical Weather Prediction (NWP)
models to create an ensemble machine learning model for North American precipitation
forecasting, which significantly surpassed the performance of baseline models (Sengoz et al.,

2023).

Machine learning models have also shown good performance in evaporation forecasting. A study
utilizing artificial neural networks (ANNSs) for monthly evaporation forecasting reported highly
reliable results with an R? value of 0.905 (Tezel & Buyukyildiz, 2016). Another research explored
multiple machine learning approaches, including extreme learning machine (ELM), gradient
boosting machine (GBM), quantile random forest (QRF), and Gaussian process regression (GPR)
for evaporation forecasting (Abed et al., 2022; Al Sudani & Salem, 2022). The gradient boosting
method, in particular, exhibited superior results in monthly pan evaporation forecasting (Al Sudani
& Salem, 2022). Another research compared Random Forest (RF) with two deep learning
techniques, namely convolutional neural networks (CNNs) and deep neural networks (DNN5), and

showed improvement in estimating monthly pan evaporation rates (Abed et al., 2022).

Machine learning models have shown commendable accuracy in natural runoff forecasting. A

recent study applied complex algorithms of backpropagation (BP) neural network, generalized
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regression neural network (GRNN), extreme learning machine (ELM), and wavelet neural network
(WNN) for short-term 7-day forecasting of runoff (Xiao et al., 2021). The study showed
improvement in accuracy in early warning capabilities of floods and droughts using machine
learning (Xiao et al., 2021). Another study developed a deep learning multi-dimensional ensemble
approach by combining three different deep learning neural networks thereby enhancing the runoff
prediction performance (Liu et al., 2022). In the context of Mono Lake water levels forecasting,
an early model was developed in 1985 by Peter Vorster. This model considered a mass balance
approach, which consisted of inflows and outflows for determining changes in Mono Lake water
levels (Peter Vorster, 1985). Despite the advancement of deep learning (DL) techniques like
Multilayer Perceptrons (MLPs), Convolutional Neural Networks (CNN), Long Short-Term
Memory networks (LSTMs), Restricted Boltzmann Machines (RBMs), and others, there has been
limited application of Machine Learning and particularly ensemble machine learning in water
levels time series Forecasting. The current research combines Vorster’s mass balance concept with
a machine learning approach to predict inflows and outflows, and thereby forecast water levels.
This study aims to overcome the limitations of existing models and fill the gap in integrating mass

balance with machine learning for increasing accuracy in Mono Lake water levels forecasting.

Chapter 2 discusses the study’s methodology, encompassing data collection, the algorithms of
machine learning models, and the concepts of deep neural networks. Chapter 3 represents the
results from each of the machine learning model, analyzing their results in detail. The study
concludes with Chapter 4, offering a summary and brief for future research.

Chapter 2 Methodology

16



2.1 The Water Balance Equation (WBE) of Mono Lake

The Water Balance Equation (WBE) for Mono Lake is fundamentally a mass balance equation,
which is pivotal in understanding the lake’s hydrological dynamics (Fry et al., 2020). This equation
is used to calculate the lake’s volume, here forth referred to as lake storage or simply storage. The

WBE for Mono Lake is expressed as follows:

AS=P—-E+R-D 1)

Where,

AS = Change in storage (kAc — Ft)
P = Precipitation (kAc — Ft)

E = Evaporation (kAc — Ft

R = Natural Runof f (kAc — Ft)

D = Diversions (kAc — Ft)

Precipitation is an inflow parameter that encompasses both rain and snow in Mono Lake and is
added to the WBE. Natural runoff is another inflow parameter that mainly consists of streamflow
resulting from snowfall on the Sierra Nevada that melts and flows into the lake during warmer
months(State of the Lake, n.d.-b). Evaporation is an outflow parameter that is subtracted in the
WBE. Diversions include stream diversions by the Los Angeles Department of Water and Power
(LADWP) through the LA Aqueduct. Lastly, the ‘Change in storage’ represents the change in the
lake’s volume over a one-month time step. In this study, all WBE units are measured in thousand-

acre feet (kAc-Ft). Additionally, the change in storage in kAc-Ft is calculated using stage-volume

17



curve calculations, which convert historical monthly lake water levels into volumes. This method
allows for precise calculation of change in storage, where the specific formula for the stage-volume

curve and the methodology for data collection are discussed in the next section.

2.2 Data Collection
This section outlines the data collection methods used in this research, focusing on data preparation
for water levels, precipitation, the Large Lake Statistical Water Balance Model (L2SWBM), and

the stage-volume curve method to calculate the monthly change in storage.

The first approach following our methodology used a water levels dataset which consists of the
historical water levels of Mono Lake measured in feet (Ft). The water levels dataset has a monthly
frequency spanning from 1/4/1941 to 12/1/2018. This dataset was sourced from the Mono Lake
Committee website (Mono Lake Levels 1979-Present (Monthly)). The second approach used
precipitation data, specifically from ERA6 (Hersbach et al.; Lavers et al., 2022), CRUTS _adj
(NOAA Physical Sciences Laboratory, n.d.), and MERRA3 (MERRA, NASA). The precipitation
datasets span from 1/1/1980 to 12/1/2021. These precipitation global datasets have been
extrapolated for our study area for the Mono Lake basin by hydrology experts (Gossard et al.,
2023). We utilized a Bayesian model to combine these three datasets. The precipitation output
from these Bayesian model is subsequently employed in machine learning models to analyze

precipitation patterns.

Furthermore, for our third approach, the outputs of precipitation, evaporation, and runoff datasets

are harmonized using the state-of-the-art Bayesian model, referred to as Large Lake Statistical
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Water Balance Model (L2SWBM) for closing Mono Lake water balance (Gossard et al., 2023).
For this research, we have selected the median values, produced by the L2SWBM. The median
values were selected due to the central tendency of the group as it is not exceptionally skewed by

high or low values. The timeframe covered for this dataset spans from 1/1/1970 to 12/1/2018.

Regarding the stage-curve calculations, we used the Smoothed Pelagos Corporation Bathymetry
Data (Table A-1. Bathymetry of Mono Lake, n.d.) of Mono Lake as a reference point to correlate
known water levels with their respective volumes. The detailed values of the Smoothed
Bathymetry Data of Mono Lake are available in Appendix I. Specifically, using the Bathymetry
data to convert known water levels into corresponding change in storage for each month, spanning
from 1/1/1970 to 12/1/2018. The data for Mono Lake water levels was collected from the Mono
Lake Committee website (Mono Lake Levels 1979-Present (Monthly)). In this calculation, we
used stage-volume interpolation to calculate the volume of water in Mono Lake corresponding to
the known water level and subsequently calculated the change in storage for each month. The

following formula was used for the calculations conversion of water levels to lake volume:

(Water Level-Lower Stage)*(Higher Volume—Lower Volume)

| @

VOlumeWL - ngher Volume + [ (Higher Stage—Lower Stage)

Where,

Volumey,, = Mono Lake volume corresponding to water level

Higher Volume =

Higher limit of volume correspoding to the water level from the Bathymetry table

Lower Volume =

19



Lower limit of volume correspoding to water level from the Bathymetry table
Higher Stage =

Higher limit of water stage correspoding to water level from the Bathymetry table
Lower Stage =

Lower limit of water stage correspoding to the water level from the Bathymetry table

Using this calculation, we first determined the volume of Mono Lake in thousand-acre feet (kAc-
Ft) for each monthly water level and we then calculated the change in volume (or storage) by

computing the difference between the final volume and the initial volume.

Finally, with the calculated values of change in storage and from the L2SWBM values of
precipitation, evaporation, and natural runoff, the only remaining component in the Water Balance
Equation (WBE) is the diversions. Here we used the water balance equation to calculate the
diversions per month which is also in the same unit (kAc-Ft) for the period from 1/1/1970 to

12/1/2018.

2.3 Machine Learning Algorithms and Deep Neural Networks

This section details the information on implemented machine learning algorithms and deep neural
networks. Our focus is on leveraging machine learning algorithms to predict future water levels as
well as the components of the WBE for Mono Lake to ultimately forecast water levels. This
process encompasses several key steps, including data cleaning, pre-processing, model selection,

and implementation of machine learning models, and the evaluation of their performance.
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2.3.1 Machine Learning Methods

Machine Learning (ML) methods can be broadly classified into three primary categories:
supervised learning, unsupervised learning, and reinforcement learning (Mosaffa et al., 2022). In
supervised learning, machine learning algorithms are trained using labeled datasets. These datasets
provide known input and output data, which the algorithms use to learn and then predict those
outputs. The accuracy of these predictions is evaluated by comparing the algorithm’s outputs with
historical output data (Google Cloud, n.d.). Unlike supervised learning, unsupervised learning
algorithms are trained on datasets without predefined output labels. These algorithms identify
structures, patterns, or trends within the data autonomously, without human intervention or
guidance on what specific outcomes to predict. Reinforcement learning involves algorithms that
learn to make decisions by performing selective actions in any given environment. In other words,
the learning process is guided by a system of rewards and penalties, where the algorithm aims to
maximize rewards and minimize penalties through self-learning and optimal decision-making
(IBM, n.d.). For the purposes of this study, we are only focused on Supervised Machine Learning.
This approach is particularly well-suited for our case of predicting future water levels of Mono
Lake, as we have a historical dataset with known inputs (such as precipitation, evaporation, runoff,
and diversions) and known outputs (such as water levels), allowing the algorithms to learn from

this data and make accurate predictions.

2.3.2 Development of Machine Learning Models
The development of supervised machine learning models involves a structured process
encompassing the following key steps: (1) data pre-processing, (2) feature selection, (3) training,

(4) validation, (5) hyperparameter tuning, and (6) forecasting (Badillo et al., 2020). Each of these
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steps plays an important role in the implementation of the machine learning model, which varies
based on the model’s algorithm design and training process. Detailed discussions on each of the

machine learning model’s algorithms and implementation will follow in the next sections.

In the data-preprocessing step, the dataset is cleaned, transformed, and prepared for subsequent
modeling steps (Szymanska, 2018). Key tasks here include handling missing values, removing any
duplicates, and most importantly, normalizing the dataset. Normalization aims to bring the range
of input dataset across a comparable scale, for example between 0 and 1, thereby ensuring a high-
quality, structured dataset for effective modeling. The next step feature selection involves
identifying the most relevant and significant features (or variables) in the dataset that impact the
target outcome (Tsagris et al., 2018). In our study, the pivotal features are the components of the
water balance equation: Precipitation, Evaporation, Natural Runoff, and Diversions. Each of these
features significantly influences the change in storage, which, in turn, affects the Mono Lake water
levels. The next step of the training process involves using a dataset to teach the machine learning
model to make predictions by recognizing patterns within a dataset (Raschka, 2018). In our case
of supervised machine learning modeling, the model is trained on a set of input features and their
corresponding output. The goal is to find the optimal parameters or weights for the model that
minimize the difference between the predicted and historical observed values during the training
process. This is achieved through iterative optimization algorithms like gradient descent and
others. The next step after training is validation in which we evaluate the model performance on a
separate dataset that was not used during the training (Raschka, 2018). This step helps to evaluate
the model’s ability to generalize over unseen data and prevents model overfitting or underfitting.

As the name suggests hyperparameters tuning is the determination of optimum parameters (e.g.,
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number of neurons, layers, lookback period, regularization, and others) for a machine learning
model (Raschka, 2018). The final step is forecasting, where the fully developed and fine-tuned
machine learning model is used to make future predictions (Makridakis et al., 2018). The following
section details information on the Bayesian model which we used to combine the precipitation

datasets (ERA6, CRUTS adj, MERRA3) for machine learning model input.

2.3.3 Bayesian Model for Precipitation Datasets

Bayesian modeling is a statistical approach that uses Bayes’ theorem to combine multiple data
sources to produce more reliable, consistent, and representative estimates of multiple datasets than
those derived from any single source or dataset (van de Schoot et al., 2021). This method utilizes
the Bayesian framework, integrating prior knowledge with new data to iteratively update beliefs
about a parameter (Castanedo, 2013). In our method, Bayesian modeling is applied to estimate
precipitation values from three distinct precipitation datasets (ERA6, CRUTS adj, MERRA3),
each characterized by its own uncertainty and bias. Bayesian reasoning updates prior beliefs about
a parameter with new data, leading to a posterior distribution. This process is defined by Bayes’

theorem:

P(X|6)+P(8)

P(O1X)= P

(&)

Where,

P(6 | X) = Posterior probability of the parameters 6, given the data X
P(X | 6) = Likelihood of observing the data X, given the parameters 6
P(6) = Prior probability of parameters

P(X) = Evidence (likelihood) of the data
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In the Bayesian framework for our model, we define priors representing initial beliefs about the
parameters before observing the data. For precipitation values, we assume a normal and half-
normal distribution for the true values with a mean () and standard deviation (o) set as zero and
ten, respectively. This assumption is based on the absence of any strong initial beliefs about the
precipitation values, hence a high standard deviation indicating a wide range of variability until
the data guides us to a more precise range through Bayesian inference. The model’s priors for
precipitation values are described as follows:

Precipitation ~ N(u,, 62) 4)
Fori=12,3..n
Where,
N = Normal distribution
U, = mean of the precipitation

0, = Standard deviation of the precipitation

Here the priors for px and ox can be described as:
Hx ~ N(0,10%) )

0y, ~ Half Normal(10) (6)

Additionally, we assume that each dataset is presumed to have an associated measurement error,
modeled as a half-normal distribution. This decision is to reflect any inherent uncertainty in each
dataset’s measurements. The likelihood function links the observed data from each dataset to the
estimated precipitation values through Bayesian interference while accounting for measurement

errors. The likelihoods for each dataset are modeled as normal distributions centered around the
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precipitation values, with standard deviations representing the measurement errors, thus capturing

the variability and potential inaccuracies in each precipitation dataset.

Building upon the established model framework, the application of Markov Chain Monte Carlo
(MCMC) methods marks a crucial phase in our Bayesian model. MCMC sampling stands as a
cornerstone for Bayesian inference, particularly valuable in models where deriving analytical
solutions for the posterior distribution is complex (van Ravenzwaaij et al., 2018). In our study,
MCMC sampling is used to approximate the posterior distributions of precipitation values and the
measurement error variances for each dataset. MCMC is used for sampling from the posterior

distribution, facilitating the estimation of parameters of interest.

To ensure efficient sampling and convergence, MCMC sampling is created across two distinct
scenarios. These two scenarios created two models that vary based on the number of samples
drawn from the posterior distribution and the number of tuning steps employed during the MCMC
sampling process: (1) Simple Bayesian model: This model undergoes 50 tuning steps to adjust the
sampling algorithm, subsequently drawing 100 samples to approximate the posterior distribution
and (2) Advanced Bayesian model: This model entails 1000 tuning steps for algorithm adjustment,

followed by the generation of 2000 samples to approximate the posterior distribution.

Following the MCMC sampling process, we compute the credible intervals for precipitation
values. These intervals denote the range within which the true values are probable to reside with a
specified certainty, thus quantifying the uncertainty in our estimates. Specifically, we calculate the

95% credible interval using the 2.5 and 97.5™ percentiles of the posterior distribution samples.

25



This range indicates where the true parameter values are expected to lie with a 95% probability,
according to the posterior distribution. The same credible intervals are calculated for each of the

above two distinct scenarios.

The subsequent phase, following the use of the Bayesian model, involves leveraging these output
values to train machine learning models. Specifically, the Bayesian Model’s output values were
used as input for the Long Short-Term Memory (LSTM) model. The algorithm and architecture of

the LSTM model are elaborated in the following section.

2.3.4 Support Vector Machine (SVM)

The Support Vector Machine (SVM) is a powerful and versatile supervised machine learning
algorithm, suitable for both classification and regression tasks (Gunn, 1998). In the context of
regression, which is our focus, SVM aims to identify a hyperplane in an N-dimensional space
(where N represents the number of features) that distinctly categorizes the data points within the
input dataset. The primary objective of the algorithm is to establish a plane with the maximum
margin, meaning the greatest possible distance (difference) between the data points of different
classes (Gunn, 1998). The SVM algorithm performs with the help of a kernel, which effectively
maps input dataset into high-dimensional feature spaces that allows the algorithm to fit the
maximum-margin hyperplane in a transformed feature space. Kernels can be linear, polynomial,
radial basis function (RBF), or sigmoid, but we implemented a linear kernel (Gunn, 1998). For a
linear SVM, the primary aim is to discover the optimal hyperplane that segregates linearly within
the feature space. The optimization problem is formulated as follows:

w-x+b=0 )
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Where,
w is the weight vector
x is the feature vector

b is the bias term

The objective function in SVM aims to minimize loss and is represented as follows:

rrLL'rLM,J,§||W||2 ®

This is subject to the constraint for each i*data point of y;(w - x; + b) > 1,

where y; are the class labels.

The regularization parameter (C) in the linear kernel SVM is set to 1, balancing the trade-off
between reducing training data error and minimizing the weight vector. The objective function

with regularization is therefore:

min,,, (5wl + C X, ¢,) ©)

Subjecttoy;(w-x; +b) =1—
Where,
{i are slack variables that allows for misclassification of the margin

C controls the tradeof f between maximizing the margin & minimizing classification errors

In our study, SVM is applied to the historical water levels of Mono Lake. The selected features

(X) are ‘year’ and ‘month’ derived from the date, with water levels as the target variable (y). The
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model undergoes training across 80% of dataset which we refer to as training dataset and remaining
20% of dataset which we refer to as validation dataset. The model performance is evaluated on the
validation set, which is unseen and unknown to the model and not used in the training process.
Before forecasting future water levels, we retrained the SVM model on the entire dataset including
training dataset and validation dataset to yield maximum attainable accuracy in forecasting future
water levels. Specifically, the retrained model is utilized to forecast water levels for the next 60
months (5 years), from 2019 to 2023 after retraining over the entire dataset from 1941 to 2018.
This forecast involves generating a new DataFrame for future dates, including ‘year’ and ‘month’,
and applying the SVM model to predict water levels for these specific future dates, which is from

1/1/2019 to 12/1/2023.

2.3.5 Random Forest (RF)

The Random Forest algorithm is a sophisticated machine learning method widely utilized for both
classification and regression tasks. The algorithm functions by constructing a multitude of decision
trees during the training period and gives the mean prediction of the individual trees for the
regression tasks (Breiman, 2001). Our study has employed Random Forests across three distinct
variations. Firstly, the Mono Lake water levels forecasting, where we directly apply Random
Forests to the historical water levels dataset of Mono Lake. Secondly, the Random Forests are
implemented to predict the components of the water balance equation, including precipitation,
evaporation, natural runoff, and diversions. By predicting these components, we can determine the
values of change in storage using water balance equation, which in turn, enables us to calculate
Mono Lake’s water levels. Finally, we explore the use of hyperparameters tuning within the

Random Forest model, this time to forecast the components of the water balance equation. The
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objective of fine-tuning the model is to mitigate any overfitting and enhance the model’s capability

in forecasting with higher accuracy (Probst & Boulesteix, 2018).

As mentioned, Random Forest is comprised of decision trees (Breiman, 2001). The construction
of each tree is driven by splitting the input data based on features, which are precipitation,
evaporation, runoff, and diversions. The criterion of the model is to minimize the Mean Squared

Error (MSE) for regression. The MSE is computed in random forests as follows:

MSE =<3, (f; = y)? (10)

Where,
N = Number of data points
f; = Value returned by the model at the data point i*"

y; = Actual value at the data point i*"

Random Forest was used due to its ability to handle complex, non-linear relationships among
features, which makes it an important tool for analyzing and predicting the dynamics of water
balance equation components of Mono Lake. After the construction of individual decision trees,
the model aggregates their mean predictions to generate a final output, effectively harnessing their

randomness and collective intelligence.

Now for the first case, the Random Forest model is applied to the historical water levels dataset of

Mono Lake. In this dataset, the Water Levels are designated as the target variable (y), which the
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model is targeting to predict. Here also, the historical dataset is divided into 80% training and 20%
validation. This approach ensures that after the training process we can evaluate model
performance on an unseen validation dataset. The model configuration in training employs the
Random Forest Regressor, setting the number of trees to 100. The random state of the model is
fixed to ensure reproducibility, given the inherent randomness of the Random Forests model. In
other words, if the model is run again the model output will remain constant. The model’s
performance is assessed on the validation set using Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE), following the training process. Upon completion of model evaluation, the
Random Forest model is retrained on the entire dataset to enhance its learning capability.
Subsequently, the model forecasts water levels for the next 60 months (from 1/1/2019 to

12/1/2023).

For the second case, the Random Forest model is applied to the water balance components of Mono
Lake, which includes Precipitation, Evaporation, Natural Runoff, and Diversions as generated by
the L2SWBM model. The date column is formatted into a datetime structure to facilitate time-
series analysis. The features are ‘Precipitation (kAc-Ft)’, ‘Evaporation (kAc-Ft)’, ‘Natural Runoff
(kAc-Ft)’, and ‘Diversions (kAc-Ft)’, each serving both as an independent variable and as a target
in a self-predictive model structure. The dataset is divided into 80% for training and 20% for
validation. Specifically, the training dataset spans from 1/1/1970 to 2/1/2009, and the validation
dataset starts from 3/1/2009 to 12/1/2018. This approach also utilizes the Random Forest Regressor
class with 100 individual decision trees, each contributing to its own predictions of the respective
feature. The model does not impose a limit on the depth of each tree, allowing them to expand

indefinitely until all data points in a leaf belong to the same class. This flexibility enables the model
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to capture complex patterns within the data, albeit with a potential risk of overfitting. A fixed
random state is used to ensure reproducibility of predictions, ensuring consistent results across

multiple runs with the same model configuration.

After training, the model’s performance is evaluated on the validation set using metrics such as
Root Mean Square Error (RMSE) and Mean Absolute Error (MAE). In addition to the model
evaluation, the validation phase also involves calculating the Residuals for all components, which
represents the absolute differences between the model predicted and historical dataset. These
residuals are visually represented through plots, providing insight into the model’s accuracy and
areas for improvement. For future predictions, the Random Forest model is retrained on the entire
dataset for each feature, using the last known value as a proxy for predicting future output. This
approach is selected based on the assumption that future patterns will mirror recent observations,
which is common in time-series forecasting where future external inputs are unavailable (Tyralis
& Papacharalampous, 2017). The random forests model forecasts the next 60 months (from
1/1/2019 to 12/1/2023) for Precipitation, Evaporation, Natural Runoff, and Diversions. The change
in storage are then computed using the Water Balance Equation (Equation 1) with results

illustrated through visual plots.

In the third scenario, the Random Forest algorithm is once again applied to the water balance
components of Mono Lake, but with a critical distinction, where the model undergoes fine-tuning
to mitigate overfitting and enhance model performance. While the procedural steps mirror those
of the previous case, the model architecture undergoes modifications to bolster its predictive

capacity. The Random Forest Regressor now includes 1000 individual decision trees, which is
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increased to help the model discern any complex patterns within the dataset. Furthermore, to avert
overfitting, various constraints have been implemented. Minimum samples for split within a tree
are set at 5, this parameter ensures that a minimum quantity of samples is necessary before further
splitting a node, thereby avoiding overly granular splits that could include noise. The max features
are limited to the square root of the total number of features, this setting restricts the number of
features evaluated for the optimal split at each node, which allows additional randomness into the
model that promotes variation across the trees. After the training phase, the model performance is
assessed using RMSE and MAE. Subsequently, as the previous model the fine-tuned random
forests model forecasts the next 60 months (from 1/1/2019 to 12/1/2023) for Precipitation,
Evaporation, Natural Runoff, and Diversions. The change in storage are then computed using the

WBE with results showcased through visual plots.

2.3.6 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) models are a sophisticated subset of deep learning neural
networks, belonging to the class of Recurrent Neural Network (RNN) (Greff et al., 2015). LSTM
models are specifically engineered to learn patterns and retain information across lengthy data
sequences, making them particularly useful for time-series analysis (Hochreiter & Urgen
Schmidhuber, 1991). The core of an LSTM unit is composed of four integral components: a unit
(cell), an input gate, an output gate, and a forget gate, as illustrated in Figure 3. This arrangement
allows the LSTM to meticulously regulate the flow of data (information), ensuring that the network
can retain relevant data over arbitrary intervals and discard less relevant or unnecessary

information (Y. Yu et al., 2019).

Forget Gate




Figure 3: Illustration of a conventional LSTM unit, featuring a cell, an input gate, an output gate,

and a forget gate. Source: (Gini et al., 2024).

Within the LSTM unit (cell or node), the input gate determines the relevance of incoming data for
modifying the cell’s memory. The sigmoid function filters the values, passing only significant ones
(either 0 or 1), while the tanh function assigns a level of importance to these values, ranging from
-1 to 1. The forget gate identifies which previously stored information in the cell state should be
discarded. Utilizing a sigmoid function, the forget gate evaluates each number against the previous
state and the current input generating a value between 0 (discard) and 1 (retain). Lastly, the output
gate decides the final output based on the cell’s input and its updated memory. The sigmoid
function again acts as a filter, and the tanh function assigns a weighted importance to the filtered
values, which are then scaled by the output of the sigmoid function. The mathematical equations

for each of the gate can be written as follows:
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Input gate:
iy = o(W; - [he—1, x] + b;) (11)

C, = tanh(W¢ - [hy_q, %] + b¢) 12)

where,

i, = Sigmoid Function

x; = Current input

C; = Tanh Function

o = Sigmoid

Wiand W, = Weight matrices for the input gate and significance values respectively
b; and b, = Bias terms

h:_1 = Previous time step hidden stage

Forget gate:
fe = o(Ws - [he—q, X¢] + by) 13)
where,
f+ = Forget gate Function
W; = Weight matrix for the forget gate

bf = Bias term

Qutput gate:

0 = o(W, - [he—q, x¢] + by) a4)
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Ce = ft * Ce—q + 1 x Cp) as)

h; = o, * tanh(C,) (16)

where,

0, = Output gate Function

* = Elementswise multiplication

W, = Weight matrix for the output gate
b, = Bias term

C¢_1 = Previous cell state

The Long Short-Term Memory (LSTM) cycle is structured into four steps to optimize the LSTM
model ability to learn and remember information across long sequences. This cycle’s intricacy
allows the LSTM to excel in forecasting time-series data. In first step, the input gate and tanh layer
identifies and updates new information to modify the cell state. The input gate evaluates the
incoming data, while the tanh function scales the values, determining their significance in the cell’s
state update (weightage). In the second step the forget gate identifies which information from the
previous timestep should be retained or discarded. It’s crucial for the model to forget irrelevant
data to maintain its learning. In the third step by combing the information from the forget and input
gates, and the LSTM updates its cell state (weightage). This step integrates new information and
discards the old, ensuring the cell state (weightage) reflects the most current trend. The final stage
utilizes the output gate and a squashing function, tanh, to filter the cell state’s information,
determining what will be outputted based on the current cell state and the input data (Analytics

Vidhya, n.d.; Choi & Lee, 2018; Song et al., 2020). It is important to realize that these steps are
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depicted for a single cell of LSTM model. Within an LSTM network there are numerous such
cells, which form a layer and each cell optimizing its weights to enhance overall prediction

accuracy (Figure 4).

input layer

Figure 4: Demonstrates an LSTM model, showcasing an input shape of three features, two model
layers each comprising four units (neurons) and the output shape is one feature respectively. This
representation shows the LSTM network’s layered structure, where the output from one-layer is
transitioned into the input for the subsequent layer. This is especially the case in LSTM models

having multiple layers. Source: (Microsoft Cognitive Toolkit, 2017)

Beyond the architectural framework, LSTM models also incorporate several pivotal parameters,
including the learning rate, Mean Squared Error (MSE) as a loss function, epochs, batch size, and
others (Bouktif et al., 2020). In our model, we have used Adam Optimizer as a learning rate. Adam
optimizer is an optimization algorithm known for its effectiveness in handling sparse gradients.

Adam optimizer combines the advantages of two other popular optimizers: AdaGrad and
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RMSProp and calculates the adaptive learning rates using these optimizers. In addition to storing
an exponentially decaying average of past squared gradients (v), the Adam optimizer also keeps
an exponentially decaying average of past gradients (m). Next is MSE, which serves as the loss
function, measuring the average of the squares of the errors or deviations, which is the difference
between the estimator and what is estimated. In the context of neural networks, it quantifies the
difference between the predicted values and the historical values. The formula for MSE is: MSE =

1on
n1=1

(Yi - ?1)2, where Y; is historical value and Y; is the predicted value. These parameters play
a vital role in measuring model performance during the training and fine-tuning periods of the

LSTM model.

An epoch in the neural network training encapsulates a complete cycle through the entire training
dataset. The count of epochs determines the repetition frequency of this process, directly
influencing the model’s learning efficacy (Nakisa et al., 2018). Insufficient epochs may result in
underfitting, whereas too many epochs can cause overfitting. Dropout regularization is another
important technique to prevent overfitting in neural networks, which involves randomly ‘dropping
units’ or ignoring a subset of units (neurons) during the training process. When a neuron is
dropped, it’s removed from the network, along with all its incoming and outgoing information,

thereby improving model generalization.

Beyond these foundational aspects, LSTM models also incorporate a myriad of other
hyperparameters that can be implemented during the data preparation, model architecture, training
process, cross-validation, sequence length, ensemble modeling, and others (Borovkova &

Tsiamas, 2019; Li & Wang, 2021; Siami-Namini et al., 2019; Song et al., 2020; Y. Yu et al., 2019).
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However, discussing all that is beyond the scope of this study. For our study, we have focused on
ensemble modeling, which combines results from multiple models to improve forecasting
accuracy. Different member models are created by tuning above discussed hyperparameters,
specifically in this case changing model architecture, sequence length (lookback period), and
regularization. A cumulative of 13 models including the base LSTM model is created. The
specifics of each hyperparameters tuning are mentioned in the later part of this section. The authors
believe that this ensemble machine learning approach will improve the forecasting accuracy of the

LSTM model.

In our study, LSTM models have been deployed across four distinct cases to forecast Mono Lake
water balance components and water levels: (1) LSTM model on water balance components from
L2SWBM dataset, (2) Ensemble LSTM model on water balance components from L2SWBM
dataset, (3) LSTM model on precipitation dataset from Simple Bayesian Model and Advanced

Bayesian Model, and (4) LSTM model on Mono Lake historical water levels.

In the first case, the LSTM model is applied to the water balance components of Mono Lake. The
dataset includes Precipitation, Evaporation, and Natural Runoff, which are outputs from the
L2SWBM model. The Diversions are separately calculated as discussed earlier. These datasets
serve as inputs for the LSTM model. The key features in the LSTM model are Precipitation (kAc-
Ft), Evaporation (kAc-Ft), Natural Runoff (kAc-Ft), and Diversions (kAc-Ft). In the historical
dataset, the first 80% of data is used as training and the last 20% as validation. Hence, the training
dataset spans from 1/1/1970 to 2/1/2009, and the validation dataset from 3/1/2009 to 12/1/2018.

Normalization of the features is then performed using the MinMaxScaler to fit training and
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validation dataset between 0 and 1. Normalization is typically performed to improve the LSTM
performance, which is highly sensitive to the scale of input data. Another crucial step in data
preparation for LSTM model involves creating time-stepped sequences as model input. We created
a function that structures the input data so that the LSTM can learn from a specified look-back
period (e.g., 48 months) to predict the next time step. Moreover, the random seed is fixed to ensure
result reproducibility of the model results. The LSTM model architecture includes 4 input cells for
each of the components (precipitation, evaporation, runoff, diversions), 100 units in the layer, and
a dense output layer with four units for each of the four components. We used the ‘adam’ optimizer

and ‘mean squared error’ as the loss function, and the model undergoes training over 50 epochs.

Once the training process is completed, the model predictions made over the validation period,
where the model output is inversely scaled to revert the normalization for all the four components
and then using WBE we calculate the change in storage, AS (kAc-Ft). Model performance on the
validation set is assessed using RMSE and MAE. Additionally, residual values, representing the
absolute difference between predicted and historical dataset for each component, are also
calculated and visually represented. After evaluating the model, future predictions are made for
each feature at a monthly interval from 1/1/2019 to 12/1/2023. Here utilizing a 48-month lookback
period, the model iteratively updates its input data by dropping the oldest value in the sequence
and appending the most recent prediction at the end. In other words, the first value (1* of the 48-
month lookback period) is dropped and the last predicted value (49" of a 48-month lookback
period) is appended to the model input data, and this iterative process continues throughout the
forecasting period. With the corresponding forecast values for all four components, the ‘Change

in Storage’ is calculated using WBE. The results of all components including ‘Change in Storage’
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are plotted over the entire period from 1970 to 2023 for visual representation. Finally, the change

is storage, AS (kAc-Ft), is converted to water levels using stage-curve calculation.

In the second case, the LSTM Ensemble model is constructed to forecast all water balance
components of WBE. To improve the performance and robustness of the LSTM model results, the
hyperparameters are changed in a specific manner, as outlined in Table 1 below. While the process
largely mirrors the above method in terms of data preparation, training, validation, forecasting,
and visualization steps, the model architecture and training process differ significantly as

represented in Table 1.

. Lookback
Model ID L?ﬁgﬂ%ﬂg;lts é\l 0- (;lf Period | Dropout

POCAs (months)
Base 1 Layer and 100 Units 50 48 0%
Model 1 1 Layer and 100 Units 50 36 0%
Model 2 1 Layer and 100 Units 50 36 20%
Model 3 1 Layer and 100 Units 100 48 0%
Model 4 1 Layer and 100 Units 100 48 20%
Model 5 1 Layer and 100 Units 150 48 20%
Model 6 1 Layer and 100 Units 200 60 20%
Model 7 2 Layers and 400 Units 50 36 0%
Model 8 2 Layers and 400 Units 50 36 20%
Model 9 2 Layers and 400 Units 100 48 0%
Model 10 | 2 Layers and 400 Units 100 48 20%
Model 11 2 Layers and 400 Units 150 48 20%
Model 12 | 2 Layers and 400 Units 200 60 20%

Table 1: LSTM Ensemble model. The table demonstrates various configurations of the LSTM
model(s), which we call members of LSTM Ensemble model. Each member is highlighting

differences in hyperparameters such as the number of layers and units, epochs, lookback period,
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and dropout. It is important to note that model complexity increases from the top to the bottom of

the table.

In the third case, the LSTM model targets the forecasting of a single component, which is
precipitation (inches). This approach differs from the previous ones by focusing on predicting one
feature at a time rather than multiple components simultaneously. The dataset for this case is output
from the Bayesian model discussed earlier, containing time-series precipitation data for Mono
Lake. The model here follows the same standard process as above in the data pre-processing and
training. However, a key adjustment in this setup is the change in the lookback period, which is
15 months, and model architecture which includes 50 units in the LSTM layer. This modification
was made to strike a balance between reducing model complexity and minimizing the risk of
overfitting, especially when focusing on predicting a single feature (precipitation). The model uses
the ‘mean squared error’ loss function and the ‘adam’ optimizer, aligning with similar practices
for LSTM regression. With the model being trained over 100 epochs and a batch size of 1, it
undergoes more extensive learning over the training dataset. After training, the model performance
is assessed over the validation dataset using similar metrics of RMSE and MAE. For future
predictions, a similar forecasting approach as earlier of iteratively predicting and updating the
input data sequence is applied. The forecasting period is of 60 months (from 1/1/2019 to

12/1/2023).

In the fourth case, the LSTM model forecasts water levels of Mono Lake directly. The dataset,

spanning from 4/1/1941 to 12/1/2018, contains historical water level data only, which serves as

both input and target for the model. This method focusses solely on water levels, in contrast to any
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of the previous approach of predicting single or multiple water balance components. The dataset
is normalized using the MinMaxScaler. The dataset is divided into training (80%) and validation
(20%) sets while maintaining the chronological order. The training set covers data from 4/1/1941
to 5/1/2003, while the validation set spans from 6/1/2003 to 12/1/2018. The look-back period of
15 months prepares the input data for LSTM model. The model consists of complex structure with
four LSTM layers, each with 100 units, which is designed to capture the complex data patterns.
To prevent overfitting, each LSTM layer is followed by a 20% dropout. The model is compiled
with the ‘adam’ optimizer and ‘mean squared error’ loss function, the model trains over 90 epochs
and we evaluate the model performance using RMSE and MAE. Future water level predictions for
the next 60 months (1/1/2019 to 12/12/2023) are made using the similar iteratively predicting and
updating the input data sequence. The model predictions are visually compared with the historical

Mono Lake water levels for further evaluation.

2.4 Model Evaluation:

To effectively evaluate the performance of various models in the context of our regression tasks,
like forecasting water balance components or water levels, we used several statistical metrics. This
section delves into the performance evaluation applied to assess the accuracy of our models
(Ferdinandy et al., 2020). It is important to note that this model evaluation is carried out over the
validation dataset for all the models. The main metrics include the Root Mean Squared Error
(RMSE), Mean Absolute Error (MAE), and residuals, each offering insights into the model’s

accuracy and reliability.

42



Root Mean Squared Error (RMSE) is one of the standard ways to measure the error of a model in
predicting quantitative data. It represents the square root of the average squared differences
between predicted and historical datasets to a robust measure of accuracy that penalizes larger
errors more than smaller ones. Mean Absolute Error (MAE) measures the average magnitude of
errors in the model predictions without considering their direction. It calculates the average of the
absolute differences between predicted and historical observations, treating all individual
differences equally. Residuals in regression models are the differences between historical and
predicted values. Ideally, residuals should scatter randomly near zero, without any discernible

pattern. The equation for these metrics is as follows:

1 A N\2
RMSE = \/; (=Y (16)
1 A
MAE =~ 3|V = Y 7
Residuals; = Y; — Y; 18)

where,
n = Number of observations
Y; = Actual Value

Y; = Predicted Value

Beyond quantitative assessments of RMSE, MAE, and residuals, visualizations of historical and
model predicted values are created to further understand the model performance. These
visualizations encompass training, validation, and forecasting plots, showcasing the models’

performance with respect to the historical observations. Residual plots created for Random Forests
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and LSTM models, including the LSTM Ensemble model are particularly useful in our evaluation.
By plotting residuals against the timescale, these plots act as diagnostic tools, highlighting areas
where the model predictions align or diverge significantly from the historical data. Such visual
diagnostics are invaluable for identifying model strengths and pinpointing areas requiring further
refinement. By using these visualization tools across different models, we aimed to gain a
comprehensive view of different model’s capabilities, facilitating an informed comparison of their
respective strengths and weaknesses, and iteratively improving our approach to Mono Lake water

levels forecasting.
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Chapter 3 Results and Discussions

3.1 Analysis of Machine Learning Forecasting Results

As mentioned earlier, this research employs three main approaches differentiated by the datasets
used for the machine learning model. The first approach involves using historical water level
dataset, where we specifically create three models: (1) Support Vector Machine (SVM), (2)
Random Forest (RF), and (3) Long Short-Term Memory Model (LSTM). The second approach
utilizes historical precipitation datasets (ERA6, CRUTS adj, and MERRA3) combined using a
Bayesian framework. The outputs from the Bayesian model were then used to create LSTM models
to forecast precipitation. In the third approach we used the outputs from the advanced Bayesian
model, the L2SWBM, which includes precipitation, evaporation, and natural runoffs, and we
calculated the change in storage and diversions using stage-curve method and the water balance
equation respectively. In this category, we specifically create three models: (1) Random Forests,
(2) LSTM, and (3) LSTM Ensemble models. The outputs from the above model, which include
four water balance components (precipitation, evaporation, natural runoffs, and diversions), were
used to calculate the change in storage through the water balance equation. Finally, the monthly
change in storage was converted to water levels using the stage-curve method. The following

subsections elaborates the results from each of the three approaches.

(1) Using Historic Mono Lake Water levels:

1. Support Vector Machine (SVM) model.
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The performance of the SVM model across the validation dataset range (4/1/2003 to 12/1/2018) is
shown in Table 2, which presents the Root Mean Square Error (RMSE) and Mean Absolute Error

(MAE) between the SVM model’s predicted and historical water levels.

Parameters (Feet) RMSE MAE

Water Levels 23.06796 | 22.8611

Table 2: Shows the SVM model’s performance using RMSE and MAE metrics in predicting water

levels within the validation dataset range (4/1/2003 to 12/1/2018).

Based on the values above it can be mentioned that the model performance was poor despite the
extensive training on 80% of the original dataset. Here the training data set range was 4/1/1941 to
4/1/2003. The possible reason behind the model performance can be attributed to the fact that there
1s massive variation in the dataset as after the period of 1948 the water levels declined drastically,
due to an increase in diversions. This implies that the SVM model is not able to capture the trend
over the training period and hence resulted in poor performance. Figure 5 below gives the visual
representation of model performance over the validation period by showcasing the historical
values represented in blue and the model results represented in red respectively. The residual
values are the difference between model predictions and observed historical data over the
validation time period (Figure 5b). The figure also shows the model forecasting data (Figure 5c),

which is in green color and is a continuation of model prediction since the validation data.
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Figure 5: (a) Shows the visualization of model predicted data and the historical data. (b)
Represents the difference between the model predicted and the historical data, and (c) Represents

the forecasting which is the continuation of the validation data by the SVM model.

ii.  Random Forest (RF) model:
Table 3 below shows the Random Forest (RF) model’s performance through RMSE and MAE

metrics, comparing RF model water level predictions to historical data within the validation dataset

spanning from 4/1/2003 to 12/1/2018.

Parameters (Feet) RMSE MAE

Water Levels 2.004326 | 1.469882

Table 3: The table shows RF model performance using RMSE and MAE metrics within the

validation dataset range (5/1/2003 to 12/1/2018).

Notably, the RF model demonstrates slightly higher accuracy over the SVM model, however, the
model’s predictions are flat (constant). This phenomenon can be clearly seen in the Figure 6, where
despite extensive training on 80% of the dataset (from 4/1/1941 to 4/1/2003), the RF model
predictions are consistently flat (straight line) over the validation period (Figure 6a). This can be
attributed to the nature of Random Forest model algorithm, which fall short in regression
forecasting. This clearly suggests that the model, despite training, failed to learn about any trend
or variation, defaulting to average constant results. In figure 6a, historical data are in blue and
model predictions are in red and the residual (Figure 6b). The forecasting data are indicated in the

green (Figure 6¢), which is a continuation of the model prediction from the validation data.
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Figure 6: (a) Represents the visualization of model predicted data and the historical data. (b)
Represents the difference between the model predicted and the historical data, and (c) Represents

the validation as well as the true forecasting data by the RF model.

iii. ~ Long Short-Term Memory (LSTM) Model

Table 4 below shows the results of RMSE and MAE between the LSTM model predicted and the
historical data of water levels across the validation dataset. The range of validation is from
4/1/2003 to 12/1/2018. As compared to the SVM and the RF model, the LSTM model shows better

performance over the validation dataset.

Parameters (Feet) RMSE MAE

Water Levels 1.610396 | 1.196895

Table 4: The table shows LSTM model performance by comparing predicted and historical data

within the validation dataset range (5/1/2003 to 12/1/2018) using RMSE and MAE metrics.

Based on the model results it can be interpreted that the model performance improved slightly but
there is a delay in the model prediction compared to the historical data. This pattern is discernable
in the Figure 7. The model is able to learn the trend and variations in the water levels due to
inherent nature of the LSTM model, which works by identifying the pattern within the datasets.
However, the sharp decline in the dataset following, 1948, and the subsequent fluctuations without
a clear trend challenge the model’s capability in learning and subsequently forecasting. The figure

7a provides a visual comparison of model performance during the validation period, showing
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historical data in blue, model predictions over validation dataset in red, and the forecasting results

in green.
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Figure 7: (a) Represents the visualization of model predicted data and the historical water level
data. (b) Represents the difference between the model predicted and the historical data, and (c)

Represents the validation as well as the forecasting data by the LSTM model.

(2) Using Historic Precipitation Dataset:

In this section, we will discuss the results of the LSTM model, which uses results from the
Bayesian models as an LSTM input. The simple Bayesian model integrates precipitation data from
three diverse datasets: ERA6, CRUTS adj, and MERRA3. The outputs from this Bayesian model
are subsequently used in the LSTM model. The dataset’s training period starts from 1/1/1980 to
7/1/2013, which is initial 80% of the dataset, while the validation period spans from 8/1/2013 to
12/1/2021, which is the last 20% of the dataset. Additionally, the advanced Bayesian model

follows the steps using the above three precipitation datasets.

Table 5 shows results of RMSE and MAE between LSTM model predicted and historical

precipitation data, which are from the simple Bayesian model. These metrics are calculated across
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the validation dataset. Based on the RMSE and MAE values it can be observed that the LSTM
model’s performance on the Bayesian-based historical precipitation dataset surpasses the LSTM

model’s performance on historical water levels dataset.

Parameters (Inches) | RMSE MAE

Precipitation 1.779439 | 1.200164

Table 5: The table shows the RMSE and MAE metrics comparing LSTM model predictions with
historical (simple Bayesian model) precipitation values within the validation dataset range from

8/1/2013 to 12/1/2021.

Figure 8 below provides a visual comparison between the LSTM model’s predictions and the
historical precipitation values, which are from the simple Bayesian model. From this figure, we
observe that the LSTM model successfully captures the seasonal patterns within the precipitation
data, aligning closely with the historical observations. The historical data are depicted in blue,
while the model’s predictions are shown in red (Figure 8a). Although the model adeptly identifies
the seasonality of the dataset, it struggles to predict the occasional spikes that occur in the
precipitation dataset. The residual plot, displayed in green, highlights the differences between the
model predicted and historical data, showing a close alignment with the historical results as the
residuals are narrowly distributed around the zero line (Figure 8b). This indicates a strong model
performance in terms of fitting the historical data. Forecasting data is plotted in green (Figure 8c),

which shows the LSTM model forecasting from 1/1/2022 to 12/1/2027.
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Figure 8: (a) Shows the visualization of model predicted data and the historical precipitation data
from the Simple Bayesian model, (b) Represents the difference between the model predicted and
the historical precipitation data, and (c) Represents the historical, validation, and forecasted dataset

across the timescale from 1980 to 2027.

The LSTM model skillfully forecasts the seasonal highs and lows within the precipitation dataset,
suggesting an effective understanding of the underlying seasonal patterns in precipitation. This
capability to predict future trends underscores the LSTM model’s potential to discern complex

climatic patterns.

Table 6 presents a comparison between LSTM model predicted and historical precipitation values,
which are from the advanced Bayesian model using of RMSE and MAE. These metrics are

calculated across the validation dataset.

Parameters (Inches) RMSE MAE

Precipitation 1.812644 | 1.109772

Table 6: The table shows the RMSE and MAE metrics comparing the LSTM model’s predictions
to historical (Advanced Bayesian) values within the validation dataset range (8/1/2013 to

12/1/2021).

Figure 9 shows the LSTM model’s prediction against the historical precipitation values, which are
from the advanced Bayesian model. It can observed that the LSTM model successfully captures

the seasonal patterns within the precipitation data. The historical data are depicted in blue, while
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the model’s predictions are shown in red, and they are labeled as historical data and validation data
(Figure 9a). Similar to the simple Bayesian model, the LSTM model struggles to predict spikes in
precipitation. The residual plot shows a good correlation of model prediction results with the
historical precipitation dataset (Figure 9b). This is evidenced by the residuals clustering near the
zero line. The LSTM model forecasting starts from 1/1/2022 to 12/1/2027 which is the green color
(Figure 9¢). The model adeptly forecasts the seasonal peaks and troughs within the precipitation
data in the forecasting period. Notably, the model also forecasts an increase in the precipitation in
the future. This suggests the model’s capability to discern not only seasonal but also climate change

patterns that are not immediately apparent.
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Figure 9: (a) Represents the visualization of model predicted data and the historical precipitation
data from the Advanced Bayesian model, (b) Shows the difference between the model predicted
and the historical precipitation data, and (c) Represents the historical, validation, and forecasted

dataset across the timescale from 1980 to 2027.
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One main observation is the LSTM model’s increased capability to capture the seasonal trends and
patterns from the dataset, when the Bayesian precipitation dataset is used as LSTM input. The
authors believe that the effectiveness of LSTM model has been influenced due to the better quality
of the input dataset, including less noise and trend clarification, as seen in the Bayesian model

generated outputs.

(3) Using Bayesian Statistical Dataset:

As we observed in the previous section, when machine learning models leverage Bayesian data as
inputs they perform better in capturing seasonal trends and patterns within the datasets. To validate
this observation, this section will discuss the forecasting results of machine learning models using
the Bayesian statistical dataset input, specifically using the Large Lake Statistical Water Balance
Model (L2SWBM). We use the output data of water balance components from the L2ZSWBM.
Additionally, the diversions and change in storage are computed using WBE (Equation 1). The
dataset spans from 1/1/1980 to 12/1/2018 with data expressed in thousand-acre feet (kAc-Ft). For
all models, the training data encompasses the period from 1/1/1980 to 2/1/2009, which is 80% of
the initial dataset, while the validation set starts from 3/1/2009 to 12/1/2018, which is 20% of the
final dataset. Forecasting is also consistent across all the models, which is from 1/1/2019 to
12/1/2023. The forecasting is applied to determine future precipitation, evaporation, natural runoff,
and diversions, which then allows us to calculate change in storage using WBE. Using this
Bayesian dataset we developed three model types: a Random Forest (RF) model, a Long Short-

Term Memory (LSTM) model, and an LSTM Ensemble model.

i.  Random Forest (RF) model using LZSWBM data:
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As mentioned in the methodology we created two variations of the Random Forest (RF) model: A

simple RF model and a fine-tuned RF model.

a) Simple Random Forest
The results of RMSE and MAE between the Simple Random Forest (RF) model predicted and the
historical data of each water balance components, including change in storage, across the

validation period are shown in Table 7.

Parameters (kAc-Ft) | RMSE MAE

Precipitation 0.039 0.011
Evaporation 0.04 0.022
Natural Runoff 1.728 0.251
Diversions 0.95 0.186

Change in storage 1.108486 | 0.284633

Table 7: The table shows the RMSE and MAE metrics comparing the predictions of the simple

RF model to historical data across the validation dataset period.

Based on the predicted data, it’s evident that the model’s performance closely mirrors the historical
data for each of the water balance components. This observation is clearly supported by the Figure
10. In these figures, historical data is depicted in blue, while model predictions are shown in red,
and the residual values representing the difference are in plot, all of which across the validation
period. The close alignment in figures between the model results in red with the historical data in
blue suggests exceptional model performance (Figure 10a, c, e, g, 1). However, this level of
accuracy raises concerns about potential overfitting, especially considering the lack of

hyperparameter tuning within the Random Forest (RF) model in this case. Essentially, the model’s
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parameters are so closely aligned with the historical data that they appear to be exactly or closely
similar. This is particularly evident in the residual plots, where the differences are nearly negligible
across all parameters during the validation period. Notably, the model demonstrates the least
overfitting with evaporation dataset as compared to the other components. Addressing this

overfitting issue is important, which would involve fine-tuning the RF model.
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Figure 10: The subfigures (a, c, e, g, 1) represents the visualization of the model’s predicted and
the historical data for each water balance component, including change in storage, in blue and red
lines respectively across the validation dataset period. The subfigures (b, d, f, h, j) shows the
residual plots for each water balance component, including change in storage, also across the

validation dataset period.
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Figure 11 shows the RF model results in the forecasting period, which starts from 1/1/2019 to
12/1/2023, along with representation of the historical and the validation dataset in those figures.
The model’s forecasting data are in green. Figure 11 underscores the RF model’s limitations in
regressive forecasting as discussed earlier in the RF model’s results using historical water levels.
Despite extensive model training, the model merely replicates the last known value from the
training set throughout the forecasting period, suggesting a significant challenge in its learning

capability for regressive forecasting.
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Figure 11: The subfigures (a, b, c, d, ) represents the forecasting results of the RF model across
the time scale of 2019 to 2023. The constant forecasting data across all components underscore a

fundamental flaw in our RF model’s algorithm to regressive forecasting.

b) Tuned Random Forest
The Tuned Random Forest (RF) model’s performance is also analyzed using RMSE and MAE by
comparing the model predicted results with the historical data for precipitation, evaporation,
natural runoff, diversions, and calculated change in storage. The RMSE and MAE values are shows

in Table 8.

Parameters (kAc-Ft) | RMSE MAE

Precipitation 0.283 0.041
Evaporation 0.055 0.037
Natural Runoff 2.126 0.316
Diversions 1.627 0.29

Change in storage 1.44782 | 0.366284

Table 8: This table illustrates the performance of the tuned RF model across the validation dataset

for each climate parameter.

A close examination reveals a slight decrease in model performance compared to the previous
simple RF model, which had closely matched the historical data of each component due to
overfitting. This change in performance is due to slightly reduced overfitting, which is evident in
the Figure 12. Here the historical data are depicted in blue and model predictions in red across the
validation period. The residual data also suggests that while the model continues to track closely

to the historical data (Figure 12b, d, £, h, j), the degree of overfitting has slighty diminished due to
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the fine-tuning of hyperparameters

evaporation and change in storage.

. The fine-tuned RF model shows the least overfitting for
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Change in Storage (kAc-Ft) (1970-2018)

60 1 —— Historical Data
—— Validation Data

20

Change in Storage (kAc-Ft)

1970 1980 1990 2000 2010 2020
Date

Residual Plot for Change in Storage (kac-Ft)
12 4

—— Residuals

10

Residuals

2009 2010 011 2012 2013 014 2015 2016 017 2018 2018
Date

G

Figure 12: The subfigures (a, c, e, g, 1) represents the visualization of the model’s predicted and

the historical data for each water balance component, including change in storage, in blue and red
lines respectively across the validation dataset period. The subfigures (b, d, f, h, j) shows the
residual plots for each water balance component, including change in storage, also across the

validation dataset period.
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Despite fine-tuning to reduce overfitting and improve the RF model’s capability in regressive
forecasting, the Figure 13 shows a continued challenge in the RF model’s forecasting. The model
forecasting results is depicted in green across the figures below, which shows that the model tends
to replicate the last known value from the training dataset throughout the forecasting period. This
behavior indicates a limitation in our model’s ability to perform forecasts, suggesting that while
the RF model excels in capturing the interdependencies among components, its use in forecasting

future results is a challenge.
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Figure 13: The subfigures (a, b, c, d, e) represents the forecasting results of the fine-tuned RF
model across the time scale of 2019 to 2023. The constant forecasting data across all the

components underscore a challenge in our RF model’s algorithm to regressive forecasting.

ii.  Long Short-Term Memory (LSTM) model:

The Long Short-Term Memory (LSTM) model is applied to forecast water balance components,
alongside calculating the change in storage using the water balance equation. The model results is
evaluated through Root Mean Square Error (RMSE) and Mean Absolute Error (MAE) metrics, as
detailed in Table 9. These metrics indicate the model’s accuracy in predicting each of the water

balance components.

Parameters (kAc-Ft) | RMSE | MAE

Precipitation 3.2522 | 2.2635
Evaporation 1.3649 | 1.0864
Natural Runoff 3.4543 | 2.6434
Diversions 6.7914 5.259
Change in storage 4.478 3.4367

Table 9: Shows the RMSE and MAE of the LSTM model across the validation dataset range for

each of the components of the water balance equation.

Based on the output above it can be said that, despite a slightly poorer performance compared to
previous models, which closely matched historical data due to overfitting, the LSTM model

demonstrates a commendable ability to understand the input and follow the trajectory of historical
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data. This is particularly evident in the model’s visualization plots below which aligns with the
historical trends. The detailed graphical representation of this analysis is represented below (Figure
14), which shows the LSTM model predictions in red alongside the historical data in blue,
providing a visual comparison of the model performance against historical dataset (Figures 14a, c,
e, g, 1). A notable observation is the model’s ability to forecast precipitation, which has high
variability across the historical dataset. Conversely, the model tends to underestimate evaporation
and overestimate natural runoff. Despite these discrepancies, the LSTM model’s overall
performance is exceptional, particularly in its ability to capture the seasonal patterns within each
of the water balance components. The residual plots in figures below further illustrate the
differences between predicted and historical data across the validation period for each water

balance components.

These residual plots are particularly helpful as it reveals the model’s performance and areas where
further adjustments could enhance its forecasting accuracy (Figure 14b, d, f, h, j). It is also
important to recall that the LSTM model is trained till 2/1/2009 and based on that learning it is
able to predict the data for five years from 1/1/2019 to 12/1/2023. In summary, the LSTM base
model shows a notable ability to capture and predict the dynamics of water balance components,

showcasing its potential as a valuable tool for forecasting climate-related parameters.
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Residual Plot for Change in Storage (kAc-Ft))
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Figure 14: The figures (a, c, e, g, 1) shows the LSTM model predicted data in red and the historical
data in blue, offering a direct visual comparison across each component. The figures (b, d, f, h, j)
represent residual plots, highlighting the difference between the model’s predictions and the

historical data.

The forecasting results depicted in the figure 15 shows the LSTM model’s ability in identifying
underlying patterns within the dataset, including the interdependencies among different
components and successfully generating 5-year forecasts. The model successfully captures the
seasonal highs and lows across all water balance components. Specifically in the forecasting
values, the LSTM model reflects a pattern that is seen in precipitation, shows a slight increase in
evaporation, and a significant increase in natural runoff. These results by LSTM model forecasting

can be attributed to changing climate.

While the visual changes across these forecasting data may appear small at first glance, it’s crucial

to remember the magnitude of these shifts, which are measured in thousand-acre feet (kAc-Ft).
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Furthermore, the model predicts a gradual decline in storage over the upcoming years, suggesting
an insightful understanding of the climate change phenomenon and its incorporation into the
forecasting. This ability to reflect climate trends within the predictions underscores the model’s
sophisticated learning mechanisms. An essential aspect of the LSTM model’s operation is its
reliance on its own previously predicted data for subsequent forecasting intervals. However, this
iterative process while efficient also introduces the potential for an accumulation of errors, where
inaccuracies at any given timestep would increase as LSTM model iteratively uses its own output
for future predictions. This amplifies the margin of error as the model prediction continues over
an extended forecast period. Despite this challenge, our research demonstrates that the LSTM

model has a commendable level of reliability across its predictions for upcoming five-year from

1/1/2019 to 12/1/2023.
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Change in storage (kAc-Ft) (1970 - 2023)
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Figure 15: The figures (a,b,c,d,e) shows the visualization of model forecasting data in green for

each of the water balance components.

In the last part of our analysis, the change in storage data (measured in kAc-Ft) derived from the
LSTM model’s predictions for the 5-year period from 1/1/2019 to 12/1/2023 are converted into
water levels (feet) using the stage-volume curve method, as detailed in Section 2.2. These
transformed LSTM prediction data for water levels are then compared against historical water
level data, which is sourced from the Mono Lake website (Mono Lake Levels 1979-Present

(Monthly)) to have direct comparison between predicted and historical water levels.
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Figure 16: Shows the comparative analysis, illustrating the historical water levels of Mono Lake
in blue and the LSTM model predictions in orange over the forecasting time period of 1/1/2019 to

12/1/2023.

From figure 16, it is observable that the model’s predictions are slightly higher than the historical
water levels of Mono Lake. However, it is still good, given that the model is only trained until the
year 2009. Furthermore, this discrepancy could also be attributed to the accumulation of error, a
phenomenon previously mentioned. Such error accumulation is easily visible, for example around
the beginning of 2020, the model begins to establish a forecasting pattern of increasing water levels
and then continues on that trend as the model relies on its own previous predictions for future
forecasts. This can be observed as discrepancies between the model’s forecasts and the historical

levels become more obvious over an extended period of time.

To address this inherent limitation in the LSTM model, we explored a final combination approach
aimed at refining the model’s predictive accuracy. Specifically, by tuning the hyperparameters, we
developed an ensemble model — 12 distinct member models — integrating their forecasting outputs
together to create an LSTM Ensemble model. This approach is designed to enhance the precision
and reliability of water level forecasts for Mono Lake using machine learning. The following
section will delve directly into the outcomes of this ensemble results for the water levels, shedding

light on its efficacy in improving the forecast accuracy compared to the one LSTM model.
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3.2 Long Short-Term Memory (LSTM) Ensemble Model Analysis

The ensemble model was developed through meticulous adjustments in model architecture,
training, lookback period, and dropout aiming to develop a spectrum of results for enhanced
predictive accuracy. It is important to recall that the model complexity increases as the model ID
increases from 1 to 12. Table 10 below outlines the comparative analysis of RMSE and MAE
metrics, comparing the LSTM member model predictions with historical data for change in
storage. Just like the previous model, this comparison spans across the validation dataset from

3/1/2009 to 12/1/2018 respectively.

. Lookback
Model Layer & Units No. of Period | Dropout | RMSE MAE
ID (Neurons) Epochs
(months)

Base 1 Layer and 100 Units 50 48 0% 4.47802 3.43675
Model 1 1 Layer and 100 Units 50 36 0% 5.780671 | 4.238276
Model 2 1 Layer and 100 Units 50 36 20% 4.328553 | 3.374905
Model 3 1 Layer and 100 Units 100 48 0% 5.259191 | 4.034933
Model 4 1 Layer and 100 Units 100 48 20% 4.481786 | 3.306287
Model 5 1 Layer and 100 Units 150 48 20% 5.116719 | 3.719537
Model 6 1 Layer and 100 Units 200 60 20% 5.179771 | 3.702729
Model 7 | 2 Layers and 400 Units 50 36 0% 5.609086 | 4.121331
Model 8 | 2 Layers and 400 Units 50 36 20% 4.804388 | 3.646154
Model 9 2 Layers and 400 Units 100 48 0% 5.871099 | 4.322593
Model 10 | 2 Layers and 400 Units 100 48 20% 5.169516 | 3.705442
Model 11 | 2 Layers and 400 Units 150 48 20% 5.458471 | 3.859242
Model 12 | 2 Layers and 400 Units 200 60 20% 5.144364 | 3.889063

Table 10: Represents the performance matrix of LSTM Ensemble model for the change in Storage
by evaluating each of the member model’s predictions against the historical data across the

validation dataset from 3/1/2009 to 12/1/2018.
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Based on observations from the table, it’s evident that model performance remains almost similar
as we transition from simpler models (Model 1) to more complex ones (Model 12). This
progression sees both Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) metrics

almost similar, indicating no correlation between model complexity and the predictive accuracy.

However, the LSTM Base model demonstrates acceptable accuracy, which is between model 4
and model 5 — the simpler and more complex model. A significant observation is the impact of
increased dropout rates during model training, which notably increases model performance at
almost all instances. This improvement can be attributed to the reduction of overfitting, as the
model omits 20% of the units (neurons) in the training. Another critical factor influencing model
performance is the lookback period. A longer lookback period and larger number of epochs enables
the model to better recognize patterns within the data, consequently improving the model learning
capability. However, it’s essential to maintain a delicate balance when increasing model
complexity, particularly concerning the lookback period and the number of epochs to avoid
overfitting. Overall, the members of ensemble model produce diverse results across different
scenarios, which is influenced by the changes in the LSTM model. This diversity in outcomes
underscores the reliability of the ensemble approach, where combining predictions from multiple
models yields better accuracy. The change in storage data, predicted by these member models were
converted to water levels (in feet) using the stage-curve method. Detailed results of each of these
water level predictions are presented in Appendix 2. Additionally, Appendix 3 contains figures

illustrating the Change in Storage for each member model.
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Figure shows the potential of the LSTM Ensemble models to accurately forecast the range of water
levels from 2019 to 2023 by combining outputs from all 12 members. Notably, the LSTM
Ensemble model demonstrates remarkable accuracy in near-term predictions, particularly for the
two-year span from 2019 to 2021. This accuracy indicates the model’s proficiency in capturing the
seasonality and inherent patterns within water balance components, allowing for precise
predictions in subsequent years. Upon detailed examination of the water levels forecasted by each
member model in comparison to historical data from Mono Lake, it becomes apparent that the
complexity of a model does not directly correlate with its accuracy. While some of the more
complex models significantly overestimate or underestimate water levels in their forecasts, Model
4 strikes a good balance between simplicity and complexity, and aligns close with observed water

levels of Mono Lake.

Moreover, the ensemble approach offers a distinct advantage by providing a comprehensive range
that gives insights into future water level trends at Mono Lake. For instance, the ensemble model
predicts that within the five-year window from 2019 to 2023, Mono Lake’s water levels are
expected to fluctuate between 6374 ft and 6393 ft. This prediction is especially noteworthy
considering the dramatic climate change that has influenced Mono Lake water levels. The
ensemble’s predictions closely match the real-world observations of Mono Lake’s water levels,
falling within the LSTM Ensemble model range. Furthermore, an intriguing aspect of the model’s
performance is its projection of an increase in water levels towards the latter part of the forecast
period, particularly from mid-2022 to 2023, which is noticable in figure 18 (c¢). This trend in the
model’s forecasts also correlates with the slight increase in the historical Mono Lake water levels,

which is also observed during the same period.
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Water Levels (Feet): Mono Lake (Historical) vs LSTM Ensemble Model
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Water Levels (Feet): Mono Lake (Historical) vs LSTM Ensemble Model
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Figure 17: (a) Visually represents the historical and Ensemble model data from 2018 to 2023. (b)
Represent the historical Mono Lake water levels and the LSTM Ensemble model predictions over
the time period of 1980 to 2023. (c) Shows the range of the LSTM Ensemble model over the

forecasting period with the historical Mono Lake water levels from 1980 to 2023.

Lastly, the performance of the LSTM Ensemble model could potentially be further enhanced
through hyperparameter optimization or by experimenting with other advanced deep learning
models such as Gated Recurrent Units (GRU), Autoregressive Integrated Moving Average
(ARIMA), and others. It is important to acknowledge that the LSTM models were trained only up
to 2/1/2009, subsequently tested on validated dataset ranging from 3/1/2009 to 12/1/2018, and then
used for forecasting from 1/1/2019 to 12/1/2023. This approach underscores an opportunity for
model improvement by retraining the LSTM models on the entire dataset before forecasting,
thereby refining their predictive accuracy and narrowing the forecasting range. However, the

exploration of such alternative methods is beyond the scope of this research.

3.3 Implications for Mono Lake Water Resources Management

The application of machine learning for forecasting Mono Lake’s water levels presents a
significant advancement to enable better water resource management. The predictive accuracy of
these LSTM Ensemble models, particularly in capturing the probable high and low of Mono Lake
water levels, provides critical insight for managing Mono Lake’s ecological balance, recreational

value, and water supply for the Los Angeles Department of Water and Power (LADWP).
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The LSTM Ensemble model’s ability to forecast water levels within a reasonably accurate range
is paramount for long-term water resource planning. Predicting water levels from 2019 to 2023
with reliable precision enables stakeholders to make informed decisions regarding water
allocation, conservation efforts, and ecological preservation. For instance, the model’s prediction
that water levels would range between 6374 ft and 6393 ft allows for the anticipation of potential
ecological stress conditions, guiding the implementation of conservation measures. Mono Lake’s
unique ecosystem, characterized by its saline nature and the presence of specialized flora and
fauna, depends on stable water levels. This result underscores the importance of implementing
adaptive management practices that can respond to predicted changes in water levels, ensuring the
protection of Mono Lake’s biodiversity. The ensemble model’s predictions also have significant
implications for water allocation and supply strategies. Given Mono Lake’s role in supplying water
to around 200,000 residents of Los Angeles, accurate forecasts of water levels will help balance
the diversions to manage the urban demand for water supply while ensuring the needs of
maintaining Mono Lake’s health. Furthermore, the granular ability of LSTM Ensemble model to
predict monthly water levels can aid in optimizing water diversion schedules, thereby minimizing

the impact on Mono Lake’s ecosystem while ensuring a reliable water supply for the city.

The predictive insights offered by the LSTM Ensemble model advocate for a cooperative and
adaptive management approach to Mono Lake’s water resources, incorporating model predictions,
such that the stakeholders can develop strategies in response to the anticipated changes in future
water levels. The findings from this research can also have direct policy implications, advocating
for the development and implementation of water management policies that are informed by our

modeling. By leveraging accurate water level forecasts, stakeholders can collaboratively develop
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sustainable management practices that balance stable water levels with water supply needs in

accordance with Decision 1631 (Decision 1631).

The authors believe that the application of LSTM Ensemble models for forecasting Mono Lake’s
water levels marks a pivotal advancement in the field of hydrology, environmental management,
and machine learning, offering a blueprint for leveraging machine learning in the stewardship of
natural resources. The model offers invaluable insights for sustaining ecological balance,
optimizing water supply, and implementing cooperative management strategies to bring balance
to Mono Lake water levels. As we move forward, the continuous refinement of machine learning
models and the integration of their insights into management and policy frameworks will be

essential for safeguarding lakes like Mono Lake to preserve our water resources.
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Chapter 4 Conclusion

4.1 Summary

This thesis embarked on an application of advanced machine learning techniques to forecast Mono
Lake water levels. Through rigorous machine learning modeling, this research has demonstrated
the potential of machine learning — especially the LSTM Ensemble model — to accurately predict

future water levels, offering invaluable insights for water resource management.

The research created and applied eight different models over three dataset types, specifically
historical water levels, historical precipitation datasets, and historical Bayesian statistical
(L2SWBM) datasets. The application of Support Vector Machine (SVM), Random Forests (RF),
and Long Short-Term Memory (LSTM) models to Mono Lake’s historical water levels highlighted
the strengths and limitations of each method. The SVM model, despite extensive training, showed
limited capability in capturing the variability of the lake’s water levels. On the other hand, the RF
model demonstrated improved performance, benefiting from its algorithm that captured complex
patterns through multiple decision trees. However, the RF model performed poorly in the
forecasting period. The LSTM model did show promising results on historical water levels, but
when used on a historical precipitation dataset created from the Bayesian model, LSTM model
showed exceptional results capturing the seasonality and variations. This observation led to the
use of machine learning models on advanced Bayesian datasets, specifically from L2SWBM.
Hence, the output of water balance components like precipitation, evaporation, natural runoff from
the LZSWBM, and diversions led to the input for the machine learning model, including the RF,

LSTM, and LSTM Ensemble model. While the RF model failed to generate promising results, the

91



LSTM model showed promising results in forecasting water balance components. This observation
ultimately led to fine tuning of the LSTM model by changing model architecture, training, dropout,

and lookback period, resulting in a family of 12 member models of the LSTM Ensemble model.

The key findings of this research underscore the LSTM Ensemble model’s capability to capture
the intricate patterns and seasonal fluctuations of precipitation, evaporation, runoff, and diversions.
By integrating outputs from 12 diverse models, including the LSTM Base model, the ensemble
approach provided a nuanced forecast that outperformed any individual model predictions. The
forecasts indicated that Mono Lake’s water levels would likely fluctuate within the range of 6374
ft to 6393 ft from 2019 to 2023, and notably, the historical water levels observed during this period
fell within our model predicted range. These predictions are crucial for various stakeholders for
sustaining ecological balance, optimizing water supply, and developing cooperative management
strategies to bring stability to Mono Lake water levels. Furthermore, a comparative analysis of the
LSTM Ensemble model revealed that model complexity and architecture did not correlate
significantly with forecasting accuracy, but the research found that a balanced approach — not too

simple or too complex model — created the most accurate and close predictions.

The practical implications of this research for Mono Lake’s water resource management are
profound. The LSTM Ensemble model’s forecasts will enable policymakers and management to
make informed decisions regarding water diversions, conservation efforts, and ecological
preservation. By anticipating future water levels, stakeholders can proactively address potential
challenges, ensuring that Mono Lake remains a viable habitat for its unique biodiversity while also

meeting the water needs of the communities in Los Angeles. Moreover, this research contributes
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to the broader field of hydrology, environmental modeling, and machine learning by demonstrating

its capability and effectiveness in the stewardship of natural resources management.

4.2 Future Research:

While this research marks an advancement in hydrological forecasting, it is not without its
challenges and limitations. The reliance on historical training datasets from 1970 to 2009 for
LSTM models, with validation in subsequent period from 2009 to 2018, underscores a gap of
model retraining over the entire dataset from 1970 to 2018 to improve its accuracy further. Looking
ahead, several other avenues for future research emerge from this study. Continuous refinement of
LSTM Ensemble models, including hyperparameter optimization and the exploration of
alternative architectures, could further increase Mono Lake water levels forecasting accuracy.
Integration of additional variables such as temperature, humidity, and others into the modeling
process could provide a more holistic view of the factors influencing Mono Lake’s water levels.
Comparative analysis with other model algorithms, such as Gated Recurrent Units (GRU),
Autoregressive Integrated Moving Average (ARIMA), and hybrid models, could also offer

insights into the relative strengths and weaknesses of different approaches.

In conclusion, this thesis represents a meaningful contribution to the field of hydrology, climate
forecasting, and water resource management. The successful application of LSTM Ensemble
models to predict Mono Lake’s water levels highlights the potential of machine learning to inform

and guide environmental conservation and natural resource management efforts.
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Table from Bathymetry of Mono Lake (Smoothed Pelagos)

Appendices — I

https://www.monobasinresearch.org/images/mbeir/dappendix/tablea-

1.pdf
Stage (ft) Area (ac) Volume (ac-ft) Salinity (g/1)
6300 14776 302324 693
6301 15162 317293 661
6302 15536 332642 630
6303 15903 348362 602
6304 16259 364443 575
6305 16609 380877 550
6306 16952 397657 527
6307 17289 414777 505
6308 17623 432233 485
6309 17949 450019 466
6310 18264 468126 448
6311 18574 486544 431
6312 18882 505272 415
6313 19189 524308 400
6314 19498 543651 386
6315 19808 563304 372
6316 20117 583267 359
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6317 20424 603537 347
6318 20727 624113 336
6319 21025 644989 325
6320 21319 666161 315
6321 21609 687625 305
6322 21895 709378 295
6323 22179 731415 287
6324 22455 753732 278
6325 22723 776321 270
6326 22986 799175 262
6327 23246 822291 255
6328 23505 845667 248
6329 23766 869302 241
6330 24029 893199 235
6331 24292 917360 228
6332 24557 941785 223
6333 24826 966476 217
6334 25094 991436 211
6335 25366 1016666 206
6336 25643 1042171 201
6337 25926 1067955 196
6338 26215 1094026 192
6339 26509 1120388 187
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6340 26805 1147045 183
6341 27101 1173998 179
6342 27398 1201247 174
6343 27695 1228794 171
6344 27987 1256635 167
6345 28277 1284767 163
6346 28565 1313188 160
6347 28848 1341895 156
6348 29124 1370881 153
6349 29391 1400138 150
6350 29650 1429659 147
6351 29904 1459436 144
6352 30158 1489467 141
6353 30409 1519750 138
6354 30662 1550286 135
6355 30920 1581077 133
6356 31182 1612128 130
6357 31449 1643443 128
6358 31720 1675028 125
6359 31998 1706886 123
6360 32283 1739027 121
6361 32575 1771456 118
6362 32873 1804180 116
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6363 33182 1837207 114
6364 33517 1870557 112
6365 33869 1904250 110
6366 34224 1938297 108
6367 34593 1972705 106
6368 35070 2007537 104
6369 35619 2042882 103
6370 36266 2078825 101
6371 36970 2115443 99
6372 37688 2152772 97
6373 38409 2190820 96
6374 39127 2229588 94
6375 39915 2269109 92
6376 40724 2309428 91
6377 41531 2350556 89
6378 42325 2392484 88
6379 43012 2435153 86
6380 43670 2478494 85
6381 44256 2522457 83
6382 44783 2566976 82
6383 45295 2612015 80
6384 45799 2657562 79
6385 46310 2703617 78
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6386 46734 2750139 76
6387 47112 2797062 75
6388 47492 2844364 74
6389 47865 2892042 72
6390 48245 2940097 71
6391 48584 2988512 70
6392 48893 3037250 69
6393 49194 3086294 68
6394 49491 3135637 67
6395 49796 3185280 66
6396 50093 3235225 65
6397 50375 3285459 64
6398 50660 3335976 63
6399 50930 3386771 62
6400 51204 3437838 61
6401 51469 3489175 60
6402 51720 3540769 59
6403 51967 3592613 58
6404 52208 3644700 58
6405 52451 3697030 57
6406 52685 3749598 56
6407 52904 3802392 55
6408 53117 3855403 54
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6409 53326 3908624 54
6410 53534 3962054 53
6411 53741 4015692 52
6412 53939 4069532 52
6413 54134 4123568 51
6414 54327 4177799 50
6415 54527 4232226 50
6416 54730 4286854 49
6417 54924 4341681 48
6418 55120 4396703 48
6419 55318 4451922 47
6420 55534 4507348 46
6421 55756 4562993 46
6422 55976 4618859 45
6423 56205 4674950 45
6424 56450 4731278 44
6425 56760 4787883 44
6426 57066 4843440 43
6427 57365 4900496 43
6428 57668 4957793 42
6429 57972 5015397 42
6430 58276 5073424 41
6431 58569 5132187 41
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6432 58853 5191152 40
6433 59136 5250319 40
6434 59412 5309688 39
6435 59675 5369259 39
6436 59920 5429032 39
6437 60150 5489007 38
6438 60365 5549184 38
6439 60565 5609563 37
6440 60750 5670144 37
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Appendices — 11

LSTM Ensemble Model Results in Water Levels (Feet)

Mono
Lake LSTM
Water Base

Dates Levels [ Model | Model | Model | Model | Model | Model | Model | Model | Model | Model | Model | Model | Model

(Monthly) (ft) (ft) 1 2 3 4 5 6 7 8 9 10 11 12
1/1/2019 | 6381.3 | 6381.5 | 6381.4 | 6381.4 | 6381.4 | 6381.5 | 6381.5 | 6381.5 | 6381.4 | 6381.4 | 6381.5 | 6381.5 | 6381.4 | 6381.5
2/1/2019 | 6381.5 | 6381.6 | 6381.4 | 6381.6 | 6381.5 | 6381.7 | 6381.5 | 6381.6 | 6381.5 | 6381.6 | 6381.6 | 6381.6 | 6381.5 | 6381.6
3/1/2019 | 6381.9 | 6381.7 | 6381.4 | 6381.6 | 6381.5 | 6381.7 | 6381.5 | 6381.5 | 6381.6 | 6381.7 | 6381.6 | 6381.6 | 6381.4 | 6381.5
4/1/2019 | 6382.1 | 6381.8 | 6381.5 | 6381.7 | 6381.5 | 6381.7 | 6381.6 | 6381.6 | 6381.7 | 6381.9 | 6381.5 | 6381.6 | 6381.2 | 6381.6
5/1/2019 | 6382.1 | 6382.1 | 6381.5 | 6381.8 | 6381.4 | 6381.8 | 6381.5 | 6381.5 | 6381.8 | 6382.2 | 6381.3 | 6381.6 | 6381.1 | 6381.6
6/1/2019 | 6382.1 | 6382.2 | 6381.2 | 6381.7 | 6381.1 | 6381.7 | 6381.2 | 6381.2 | 6381.5 | 6382.2 | 6381.1 | 6381.3 | 6380.7 | 6381.4
7/1/2019 | 6382.7 | 6382.1 | 6380.7 | 6381.4 | 6380.8 | 6381.3 | 6380.9 | 6380.8 | 6381.0 | 6381.9 | 6380.8 | 6380.9 | 6380.2 | 6381.0
8/1/2019 | 6383.1 | 6382.0 | 6380.2 | 6381.1 | 6380.6 | 6381.0 | 6380.6 | 6380.5 | 6380.6 | 6381.7 | 6380.5 | 6380.6 | 6379.9 | 6380.7
9/1/2019 | 6383.0 | 6381.9 | 6379.9 | 6381.0 | 6380.4 | 6380.9 | 6380.4 | 6380.4 | 6380.3 | 6381.6 | 6380.3 | 6380.4 | 6379.6 | 6380.4
10/1/2019 | 6382.6 | 6381.9 | 6379.8 | 6381.0 | 6380.4 | 6380.8 | 6380.3 | 6380.4 | 6380.2 | 6381.7 | 6380.2 | 6380.4 | 6379.5 | 6380.4
11/1/2019 | 6382.5 | 6382.1 | 6379.8 | 6381.1 | 6380.6 | 6380.9 | 6380.4 | 6380.5 | 6380.2 | 6381.8 | 6380.2 | 6380.4 | 6379.5 | 6380.4
12/1/2019 | 6382.5 | 6382.3 | 6379.9 | 6381.3 | 6380.8 | 6381.1 | 6380.5 | 6380.8 | 6380.4 | 6382.1 | 6380.4 | 6380.6 | 6379.7 | 6380.6
1/1/2020 | 6382.6 | 6382.5 | 6379.9 | 6381.5 | 6381.1 | 6381.4 | 6380.6 | 6380.9 | 6380.5 | 6382.3 | 6380.6 | 6380.8 | 6379.8 | 6380.8
2/1/2020 | 6382.6 | 6382.7 | 6380.0 | 6381.8 | 6381.3 | 6381.4 | 6380.7 | 6381.1 | 6380.7 | 6382.6 | 6380.8 | 6381.0 | 6379.9 | 6380.9
3/1/2020 | 6382.6 | 6382.8 | 6380.1 | 6381.9 | 6381.4 | 6381.4 | 6380.7 | 6381.1 | 6380.8 | 6382.8 | 6380.8 | 6381.0 | 6379.7 | 6380.9
4/1/2020 | 6382.6 | 6382.9 | 6380.3 | 6382.1 | 6381.6 | 6381.2 | 6380.7 | 6381.1 | 6380.9 | 6383.2 | 6380.7 | 6381.0 | 6379.6 | 6381.0
5/1/2020 | 6382.7 | 6383.2 | 6380.4 | 6382.5 | 6381.7 | 6381.2 | 6380.7 | 6381.4 | 6381.1 | 6383.7 | 6380.7 | 6381.1 | 6379.4 | 6381.1
6/1/2020 | 6382.6 | 6383.4 | 6380.2 | 6382.5 | 6381.7 | 6381.2 | 6380.4 | 6381.6 | 6380.8 | 6383.9 | 6380.6 | 6381.0 | 6379.0 | 6380.9
7/1/2020 | 6382.4 | 6383.4 | 6379.7 | 6382.3 | 6381.5 | 6380.8 | 6380.0 | 6381.4 | 6380.4 | 6383.7 | 6380.2 | 6380.7 | 6378.6 | 6380.5
8/1/2020 | 6382.1 | 6383.2 | 6379.3 | 6382.1 | 6381.4 | 6380.5 | 6379.7 | 6381.3 | 6380.0 | 6383.6 | 6379.9 | 6380.4 | 6378.3 | 6380.2
9/1/2020 | 6381.8 | 6383.2 | 6379.0 | 6382.0 | 6381.4 | 6380.5 | 6379.6 | 6381.2 | 6379.7 | 6383.6 | 6379.6 | 6380.2 | 6378.2 | 6379.9
10/1/2020 | 6381.5 | 6383.2 | 6378.9 | 6382.1 | 6381.5 | 6380.6 | 6379.5 | 6381.2 | 6379.7 | 6383.7 | 6379.5 | 6380.1 | 6378.1 | 6379.9
11/1/2020 | 6381.2 | 6383.4 | 6379.0 | 6382.3 | 6381.8 | 6381.0 | 6379.6 | 6381.4 | 6379.8 | 6384.0 | 6379.5 | 6380.2 | 6378.2 | 6379.9
12/1/2020 | 6381.1 | 6383.6 | 6379.0 | 6382.5 | 6382.2 | 6381.2 | 6379.7 | 6381.6 | 6379.9 | 6384.3 | 6379.7 | 6380.4 | 6378.3 | 6380.1
1/1/2021 | 6381.1 | 6383.8 | 6379.1 | 6382.8 | 6382.6 | 6381.4 | 6379.8 | 6381.8 | 6380.1 | 6384.6 | 6379.8 | 6380.6 | 6378.5 | 6380.2
2/1/2021 | 6381.3 | 6384.0 | 6379.3 | 6383.0 | 6382.9 | 6381.7 | 6379.9 | 6381.9 | 6380.2 | 6384.8 | 6379.9 | 6380.8 | 6378.4 | 6380.3
3/1/2021 | 6381.3 | 6384.0 | 6379.4 | 6383.1 | 6383.3 | 6381.7 | 6379.8 | 6381.8 | 6380.3 | 6385.1 | 6380.0 | 6380.8 | 6378.3 | 6380.3
4/1/2021 | 6381.3 | 6384.2 | 6379.6 | 6383.4 | 6383.8 | 6381.6 | 6379.9 | 6381.8 | 6380.5 | 6385.7 | 6379.8 | 6380.8 | 6378.2 | 6380.4
5/1/2021 | 6381.2 | 6384.5 | 6379.7 | 6383.7 | 6384.5 | 6381.9 | 6379.8 | 6381.8 | 6380.6 | 6386.2 | 6379.8 | 6380.9 | 6378.0 | 6380.4
6/1/2021 | 6381.1 | 6384.6 | 6379.5 | 6383.8 | 6385.0 | 6382.2 | 6379.5 | 6381.7 | 6380.3 | 6386.2 | 6379.6 | 6380.8 | 6377.6 | 6380.2
7/1/2021 | 6380.9 | 6384.5 | 6379.0 | 6383.5 | 6385.1 | 6382.2 | 6379.1 | 6381.6 | 6379.8 | 6386.0 | 6379.3 | 6380.5 | 6377.2 | 6379.8
8/1/2021 | 6380.6 | 6384.4 | 6378.6 | 6383.4 | 6385.0 | 6382.0 | 6378.8 | 6381.4 | 6379.5 | 6385.9 | 6378.9 | 6380.2 | 6377.0 | 6379.5
9/1/2021 | 6380.2 | 6384.3 | 6378.4 | 6383.3 | 6385.1 | 6381.9 | 6378.6 | 6381.3 | 6379.3 | 6386.0 | 6378.6 | 6380.0 | 6376.8 | 6379.2
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10/1/2021 | 6379.9 | 6384.4 | 6378.4 | 6383.4 | 6385.3 | 6381.9 | 6378.6 | 6381.4 | 6379.2 | 6386.2 | 6378.5 | 6379.9 | 6376.8 | 6379.2
11/1/2021 | 6379.8 | 6384.5 | 6378.4 | 6383.6 | 6385.7 | 6381.9 | 6378.6 | 6381.5 | 6379.3 | 6386.5 | 6378.5 | 6380.0 | 6376.9 | 6379.1
12/1/2021 | 6379.8 | 6384.7 | 6378.5 | 6383.8 | 6386.1 | 6382.1 | 6378.8 | 6381.9 | 6379.5 | 6386.8 | 6378.6 | 6380.2 | 6377.0 | 6379.3
1/1/2022 | 6379.9 | 6385.0 | 6378.6 | 6384.1 | 6386.5 | 6382.2 | 6378.9 | 6382.3 | 6379.7 | 6387.1 | 6378.7 | 6380.4 | 6377.1 | 6379.5
2/1/2022 | 6379.9 | 6385.1 | 6378.8 | 6384.3 | 6386.8 | 6382.3 | 6378.9 | 6382.6 | 6379.8 | 6387.3 | 6378.9 | 6380.6 | 6377.0 | 6379.6
3/1/2022 | 6379.9 | 6385.2 | 6378.9 | 6384.5 | 6387.1 | 6382.2 | 6378.9 | 6382.7 | 6379.9 | 6387.7 | 6379.0 | 6380.6 | 6376.9 | 6379.6
4/1/2022 | 6379.9 | 6385.3 | 6379.2 | 6384.8 | 6387.5 | 6382.1 | 6379.0 | 6382.9 | 6380.1 | 6388.3 | 6378.9 | 6380.6 | 6376.7 | 6379.6
5/1/2022 | 6379.8 | 6385.6 | 6379.3 | 6385.0 | 6388.1 | 6381.8 | 6378.9 | 6383.2 | 6380.2 | 6388.8 | 6378.8 | 6380.6 | 6376.4 | 6379.7
6/1/2022 | 6379.7 | 6385.7 | 6379.0 | 6385.0 | 6388.3 | 6381.4 | 6378.6 | 6383.5 | 6379.8 | 6388.6 | 6378.6 | 6380.6 | 6375.9 | 6379.4
7/1/2022 | 6379.5 | 6385.6 | 6378.5 | 6384.8 | 6388.2 | 6381.0 | 6378.2 | 6383.6 | 6379.3 | 6388.4 | 6378.3 | 6380.3 | 6375.7 | 6379.0
8/1/2022 | 6379.2 | 6385.5 | 6378.2 | 6384.6 | 6388.0 | 6380.7 | 6377.9 | 6383.5 | 6379.0 | 6388.4 | 6377.9 | 6380.0 | 6375.4 | 6378.7
9/1/2022 | 6379.0 | 6385.4 | 6378.1 | 6384.6 | 6388.2 | 6380.4 | 6377.7 | 6383.5 | 6378.8 | 6388.5 | 6377.7 | 6379.7 | 6375.3 | 6378.4
10/1/2022 | 6378.7 | 6385.5 | 6378.0 | 6384.7 | 6388.5 | 6380.4 | 6377.7 | 6383.6 | 6378.8 | 6388.8 | 6377.5 | 6379.7 | 6375.3 | 6378.4
11/1/2022 | 6378.5 | 6385.7 | 6378.1 | 6384.9 | 6389.1 | 6380.5 | 6377.8 | 6383.8 | 6378.9 | 6389.0 | 6377.4 | 6379.7 | 6375.5 | 6378.3
12/1/2022 | 6378.4 | 6385.9 | 6378.2 | 6385.2 | 6389.7 | 6380.6 | 6377.9 | 6384.0 | 6379.1 | 6389.4 | 6377.5 | 6379.9 | 6375.6 | 6378.5
1/1/2023 | 6378.6 | 6386.1 | 6378.4 | 6385.4 | 6390.1 | 6380.6 | 6378.0 | 6384.3 | 6379.3 | 6389.6 | 6377.7 | 6380.1 | 6375.6 | 6378.7
2/1/2023 | 6379.3 | 6386.2 | 6378.5 | 6385.6 | 6390.4 | 6380.6 | 6378.1 | 6384.5 | 6379.4 | 6389.9 | 6377.8 | 6380.3 | 6375.5 | 6378.8
3/1/2023 | 6379.5 | 6386.3 | 6378.7 | 6385.8 | 6390.8 | 6380.5 | 6378.0 | 6384.4 | 6379.5 | 6390.4 | 6378.0 | 6380.3 | 6375.4 | 6378.8
4/1/2023 | 6380.0 | 6386.4 | 6379.0 | 6386.1 | 6391.4 | 6380.4 | 6378.1 | 6384.4 | 6379.7 | 6391.0 | 6377.9 | 6380.3 | 6375.2 | 6378.9
5/1/2023 | 6380.1 | 6386.7 | 6379.0 | 6386.3 | 6392.0 | 6380.2 | 6378.0 | 6384.4 | 6379.7 | 6391.2 | 6377.8 | 6380.3 | 6374.8 | 6378.9
6/1/2023 | 6380.5 | 6386.8 | 6378.7 | 6386.3 | 6392.4 | 6379.8 | 6377.6 | 6384.3 | 6379.3 | 6391.0 | 6377.7 | 6380.2 | 6374.3 | 6378.6
7/1/2023 | 6381.6 | 6386.7 | 6378.2 | 6386.0 | 6392.4 | 6379.4 | 6377.2 | 6384.2 | 6378.8 | 6390.9 | 6377.5 | 6380.0 | 6374.1 | 6378.2
8/1/2023 | 6382.9 | 6386.5 | 6378.0 | 6385.9 | 6392.4 | 6379.1 | 6377.0 | 6384.2 | 6378.5 | 6390.9 | 6377.1 | 6379.6 | 6373.9 | 6377.9
9/1/2023 | 6383.2 | 6386.5 | 6377.8 | 6385.9 | 6392.6 | 6378.9 | 6376.8 | 6384.1 | 6378.4 | 6391.1 | 6376.8 | 6379.4 | 6373.8 | 6377.6
10/1/2023 | 6383.2 | 6386.6 | 6377.8 | 6386.0 | 6392.9 | 6378.8 | 6376.8 | 6384.2 | 6378.4 | 6391.3 | 6376.6 | 6379.4 | 6373.8 | 6377.6
11/1/2023 | 6383.1 | 6386.7 | 6377.9 | 6386.2 | 6393.4 | 6378.7 | 6376.8 | 6384.3 | 6378.5 | 6391.6 | 6376.5 | 6379.4 | 6374.0 | 6377.6
12/1/2023 | 6383.1 | 6387.0 | 6378.0 | 6386.5 | 6393.9 | 6378.8 | 6377.0 | 6384.6 | 6378.7 | 6391.9 | 6376.5 | 6379.6 | 6374.1 | 6377.7

114




Appendices — 111

Forecasting dataset of Change in storage for each of the LSTM Ensemble member models

Model 1:

Change in storage (kAc-Ft) (1970 - 2023)
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Model 3:

Change in storage (kAc-Fi)
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-4

Change in storage (kAc-Ft} {1970 - 2023}

— Taining Data
= Valdation Data
— Forecasting Data

-0
T T T T T ™ T T v T
1570 1975 1580 1585 1550 1895 000 005 2010 015 2020 025
Time [Years)
Model 4:
Change in storage (kAc-Ft) {1970 - 2023}
&0 — Taining Data
— Validation Data
— Forecasting Data
40
£
g
g 20
£
L3 |
:
0
=20
T 48 T T T
1870 175 1980 1985 1850 1a85 1000 2005 2010 w015 2020 2025
Time [Yeoars)
Model 5:
Change in storage (kAc-Ft) (1970 - 2023)
& —— Taining Data
— Validation Data
— Forecasting Data
40
20
[}
|
=20
1970 1875 1980 1285 1590 1gas 000 2005 2010 w15 2020 2025
Time [Years)

116



Model 6:

Change in storage (kAc-Ft) {1970 - 2023)
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Model 9:

Change in storage (kAc-Ft) (1970 - 2023)
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Model 10:

Change in storage (kAc-Ft) (1970 - 2023)
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Model 11:

Change in storage (kAc-Ft) (1970 - 2023}
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Model 12:

Change in storage {kAc-Ft)
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