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Abstract

This study investigates the relationship between field size and agricultural productivity in

smallholder farming systems, focusing on three districts in Eastern Uttar Pradesh, India.

We employ a Mask R-CNN image segmentation model and high-resolution satellite

imagery to predict field boundaries, and estimate crop yield using maximum NDVI from

Sentinel-2 imagery during the winter wheat growing season. Our findings reveal a slight

positive relationship between field size and productivity across 7 of 8 zones in the study

area when controlling for village-level effects. This is contrary to the consensus of an

inverse productivity-size relationship in smallholder farming systems. This study

provides a framework to investigate the relationship between productivity and field size

at a large and dense scale, without the use of self-reported yield data. Limitations

include the reliance on maximum NDVI as a yield proxy and the spatial resolution of

Sentinel-2 imagery. Future research should explore alternative yield metrics and

higher-resolution satellite data to refine our understanding of the productivity-size

relationship in smallholder farming systems.



1. Introduction

Optimal agricultural productivity is essential to food security and development in regions

with smallholder farming systems. The relationship between agricultural productivity and

size has been heavily debated in the literature. Exploring and determining this

relationship is important because trends in field sizes can be dynamic. In India, for

example, data from agricultural censuses have shown that average sizes of agricultural

holdings have decreased, from 2.28 hectares in 1970-71 (I.J Naidu 1971) to 1.08

hectares in 2015-16 (DEPARTMENT OF AGRICULTURE 2020). Additionally, agricultural

and economic policy can influence how agricultural land is allocated, and therefore what

the size distribution of agricultural plots in a region would be (Zeng et. al. 2018). To

understand the implications of the current and possible future trends on food production,

exploring the dynamics of the productivity size relationship is necessary.

The theory of an inverse productivity size relationship is largely assumed by agricultural

scientists, popularized in the South Asian context by developmental economist Amartya

Sen in 1962. The theory states that smaller farms have higher productivity. There have

been multiple reasonings behind this hypothesis. Namely, labor intensity due to family

labor, efficient land use and management due to limited land, and a greater incentive

structure for laborers because of a direct ownership of land (Sen 1962). Numerous

studies across various regions and timeframes have consistently demonstrated a

negative relationship between farm size and agricultural productivity. In South Asia, the

relationship has been found to be negative across three years from surveys in

Bangladesh (Gautam and Ahmed 2019), and has also been proven in large studies in

India (Gaurav and Mishra 2015). Outside South Asia, this relationship has been found



in numerous developing nations, such as Zambia (Kimhi 2006), Rwanda (Ali and

Deininger 2015), and Brazil (Helfand and Taylor 2021).

The lesser adopted hypothesis of a positive relationship comes from the theory of

economies of scale. According to this theory, because fixed costs stay constant for all

fields, the per-unit cost of cultivating larger farms may be lesser. This may lead to a

larger amount of capital for owners of larger farms, who can then invest more resources

into their crop, leading to higher yield. This can be seen in areas where land

consolidation has caused an increase in technical efficiency in agricultural production.

(Zeng et. al. 2018).

While many studies have been conducted to assess this theory in multiple parts of the

world, there have been important limitations to these assessments. Firstly, they have not

been spatially representative, often occurring on a small number of fields relative to the

total agricultural extent of study due to the use of costly household surveys as their data

source. A second issue, which is also related to household surveys, is yield reporting

bias. Self-reporting surveys have been known to be inaccurate (Carletto et al. 2015), for

example due to errors such as heaping (the tendency to round up to multiples of 5 or

10), which can lead to large inaccuracies for small plots (Desiere and Jolliffe 2018).

Studies have analyzed self-reported yields from household surveys, and have found

that they are insufficient as inputs for remote sensing and economics- based

modeling(Paliwal and Jain 2020, Abay 2020). In addition, self-report inaccuracies are

associated with yields in smaller fields being over-reported, and yields in larger fields



underreported (Desiere and Jolliffe 2018). Such biases can lead to incorrect inferences

about the relationship between field size and yield.

Remote sensing approaches may resolve both the issue of inaccurate self-reported

yields, and small sample size. Satellite data are available globally, and different sensors

have been used to accurately map field size and crop yield (Zhao et al. 2020, Paliwal et

al. 2023). This is particularly important in smallholder systems, where household

surveys would only be able to capture a fraction of all farmers and fields. For

smallholder farming systems, remote sensing allows the digitizing and cartography of

millions of small fields to be done remotely, which saves time and labor, and allows for a

much larger coverage.

In this study, we use satellite data to determine the relationship between productivity

and field size in three districts in Eastern Uttar Pradesh, India. India is an ideal region to

investigate this relationship. With a fast-rising population and existing food scarcity, it is

important to understand how the fragmentation, and possible consolidation of farms in

India will affect the productivity of agriculture in the nation. While our results are specific

to India, the methods applied can be used to more broadly understand the relationship

between field size and yield in other agricultural systems across the globe.



2. Study Area

Figure 1. Map of the study area depicting land cover, with an inset map showing the position of the area within India. Map Source:

ESRI Topo World. Land Cover Source: ESA WorldCover



The three districts in Uttar Pradesh that make up the region of interest (ROI) are Maharajganj,

Deiora, and Gorakhpur (Figure 1). These districts are located in the central-eastern region of the

Indo-Gangetic plain. They make up a total area of 8,882 square kilometers. Agriculture covers

74.9% of the total land cover in the districts (European Space Agency 2021). In Uttar Pradesh,

65% of the population’s employment is in the agricultural industry. The agriculture in this region,

as in the rest of India, is primarily a smallholder system. The average agricultural holding size in

Uttar Pradesh as of 2016 is 0.73 hectares (DEPARTMENT OF AGRICULTURE 2020). There

are 2 main farming systems in this region- Rabi (winter season), and Kharif (monsoon season).

Most crops in this region follow a rice-wheat system, with rice grown in the Kharif season, and

wheat grown in the monsoon season.

3. Methods

We detail the steps needed to predict field boundaries (Section 3.1), predict crop yield

(Section 3.2), compile the dataset for analysis (Section 3.3), and conduct statistical

analyses to identify the relationship between field size and crop yield (Section 3.4).

3.1) Predicting Field Boundaries

We predicted field boundaries using Mask R-CNN and high-resolution WorldView and

Quickbird imagery (Mei et al. 2022). Mei et. al. (2022) used Digital Globe images to

train, validate, and test a model with these goals in Bihar, India, and the model was able

to draw field boundary polygons with a precision of 0.73 and an F1 score of 0.7. This

model was then tested in a new area in Uttar Pradesh without any new training data,

and a similar level of accuracy was achieved, with a precision of 0.79, and an F1 score

of 0.75 (Mei et al. 2022). This model creates the ability to digitize a large number of



smallholder farms with a great reduction in time and effort, and makes large-scale

field-level analyses more feasible.

3.1.1) High-resolution Satellite Data

Worldview and Quickbird level 1B imagery were acquired from the DigitalGlobe

collection for the three districts in Eastern Uttar Pradesh, India. These images were

available as panchromatic images (0.5 m ground sampling distance), and multispectral

images with NIR, red, green, and blue bands (2 m ground sampling distance), with

panchromatic counterparts.

Our choice of imagery for field boundary segmentation was driven by multiple factors.

Initial evaluations found that image segmentation predicted field boundaries with highest

accuracy during active agriculture months, which range from July to March. We also

prioritized multispectral imagery over panchromatic due to findings in a previous study

on their efficacy (Mei et. al. 2022). Maximum coverage of the area was also prioritized.

We chose a total of 63 from the months of October, March, and February in 2018, with

the majority of the images being from February (Figure 2). All but one of the images

were multispectral. One panchromatic image was chosen due to unavailability of

multispectral imagery from desired months in the corresponding area. The images in

total covered 93.6 % of the region of interest.



Fig 2: Number of Images in Selected Worldview and Quickbird Image Collection Per Month

3.1.2) Preprocessing Images

The images acquired had minimal cloud cover, were radiometrically corrected, and

sensor corrected.. Geometric correction was performed on these images for further

improved accuracy. A Digital Elevation Model (DEM) for the region was acquired from

the Shuttle Radar Topography mission (NASA (National Aeronautics and Space

Administration) 2000). This DEM had a spatial resolution of 3 arc seconds, and was

modified to have a 90 m ground Sampling Distance. Using the “Geometric” function

from the ArcGIS library of raster functions (Esri Inc. 2023), the DEM was used to

produce orthorectified versions of all selected images, projected in UTM Zone 44N. For

multispectral imagery, the same function was applied to the panchromatic counterparts

of the images.



The panchromatic images had a spatial resolution of 0.5 m, whereas the multispectral

images had a spatial resolution of 2 m. To increase the spatial resolution of the

multispectral images, they were pan-sharpened using their panchromatic counterparts.

This was done in Python using GDAL’s pansharpen.py function (GDAL/OGR

contributors 2024), and resulted in multispectral images with the spatial resolution of 0.5

m. To input into the model, Python’s GDAL library was used to split all images into 512

X 512 image chips, which were also rescaled to have an 8-bit radiometric resolution

(0-255 pixel values).

3.1.3) Inputting images into the Mask R-CNN Model

The image chips were input into a Mask R-CNN model trained for field boundary

detection (Mei et. al., 2022). This is an instance segmentation model that was trained

using hand-digitized field boundaries to segment high-resolution satellite imagery to

isolate individual agricultural fields. The output of this model is a raster that is then

converted to shapefiles representing detected agricultural fields. The training site for this

model was 200 km southeast from our study region. In this study, this model was

extrapolated to our region of interest (63 images across 3 districts in Uttar Pradesh,

India).

3.1.4) Post-Processing Polygons

The field detection method resulted in data gaps at the edges of each 512 X 512 image

chip. To reduce inaccuracies from this phenomenon, fishnet shapefiles for every image

were created that reflected the borders of the 512 X 512 image chips. Using Python’s

Geopandas and Shapely libraries, the maximum and minimum x and y coordinates for



each polygon were calculated. We selected any of these coordinates that were within 2

meters of the corresponding fishnet border, and were likely affected by data gaps at the

edge of the respective image chip. We then modified these coordinates to instead have

the coordinates of the border of the image chip. Geopandas’ “unary_union” and

“explode” tools (Jordahl et al. 2020) were then used to merge the polygons together to a

single multipolygon, and separate all non-intersecting sections into separate polygons

(Figure 3).

A B

Fig 3: An example of affected polygons A) before and B) after applying the merging function

We visually inspected the resulting polygons and found that the function worked best in

dense agricultural areas, and in areas with the most accurate field boundary predictions.

3.2) Predicting Crop Yield

Crop yield for the winter wheat crop was estimated using maximum NDVI of Sentinel-2

Level 2A imagery during the 2019-2020 Rabi (Winter) growing season (October - April).

Previous studies have shown that maximum NDVI during the growing season is a good

proxy for the yield for grain crops. (Johnson 2016, Liu et al. 2020, Wuepper et al. 2023).

We calculated maximum NDVI for our field polygons using Google Earth Engine’s



Python API (Gorelick et al. 2017), and GEE’s “Quality Mosaic” and “ReduceRegions”

functions. This resulted in a raster of maximum NDVI values for the region of interest

(ROI), between the months of October and May, 2019-2020 and mean NDVI values for

the selected field boundary polygons.

3.3) Compilation and Organization of Data

3.3.1) Shapefile Creation

To manage the heavy data processing workload of a large number of fields, The ROI

was split into 8 random zones by merging boundaries of villages within the region of

interest (Figure 4). In cases where there were multiple overlapping tiles for the same

location, we selected tiles with better prediction accuracy or those from similar months.

Next, shapefiles were filtered to only include polygons that 1) had their centroid within

the corresponding zone boundary, and 2) did not intersect with polygons that were

imported before. ArcGIS Pro (Esri Inc. 2023) was used to visualize the accuracy of

predictions for each image, and to create a single merged shapefile for each zone.



Fig 4: Division of region of interest into 8 zones, shown with land cover (Source: ESA WorldCover)

3.3.2.) Filtering Polygons

Once the shapefiles were created, polygons were further filtered to remove some

inaccurately predicted polygons. We removed fields smaller than 85 m2 as a visual

inspection of subsets of the data showed that fields smaller than this size were mostly

inaccurately predicted polygons. We also removed polygons that occurred in

non-agricultural land cover, specifically forests and water bodies, using land cover



classes from WORLDCOVER (European Space Agency 2021), a 10 m resolution global

land cover dataset. Additionally, areas near large rivers with inaccurate predictions were

hand digitized and these polygons were also removed. Polygons that were not correctly

merged during the gap processing of small image tiles were removed. Based on visual

inspection, we identified these as polygons that had one or two vertices greater than 12

m in length. Finally, given the large size of our dataset, we selected only 10% of all

fields from each village for our analysis.

3.4) Statistical Analysis

To test theories of field size and yet we fit linear regressions model of field area size

and maximum NDVI. One regression was run for each zone, and the regressions were

run using village as a fixed effect. This controlled for any factors that varied across

villages, such as soil type, irrigation access, and farmer wealth. All analysis used the

‘PLM' package (Croissant and Millo 2008) in the R Project Software (R Core Team

2021)

4. Results

The area coefficient of the fixed effects regression was examined. For all zones but one,

the coefficient was a small positive number that was statistically significant. For zone 3,

the coefficient was a small negative number that was statistically significant. Our results

therefore showed a positive productivity size relationship for 7 out of 8 zones, and a

negative productivity size relationship for 1 out of 8 zones.



Zone Coefficient Sign P value

1 2.0566E-6 + 1.191E-7

2 6.4251E-6 + <2.2E-16

3 -7.0536E-6 - <2.2E-16

4 8.9821E-6 + <2.2E-16

5 9.0275E-6 + <2.2E-16

6 5.0061E-6 + 5.745E-16

7 7.3144E-6 + <2.2E-16

8 7.3307E-6 + <2.2E-16

Table 1: Coefficient values, signs, and p Values for the “Area” variable in fixed effect regression for each zone

Fig 5: Bar Chart Depicting Coefficient Values for “Area” Coefficient Per Zone



5. Discussion

By finding a positive relationship between field size and productivity in 7 out of 8 zones,

our findings are contrary to the popular theory of an inverse productivity-size

relationship, and demonstrate the need to reconsider this hypothesis in the context of

smallholder farming systems. While the magnitude of these coefficients is small, the

significant p values depict that in these zones, an increase in field size adds to

productivity, along with the multitude of factors that determine the productivity of an

agricultural field.

While zones 1, 2, and 4 through 8 showed a significant positive relationship, zone 3

showed a significant negative relationship. The most prominent differences in zone 3

compared to the rest of the zones were that 1) the profile of land cover in the zone was

visibly different from the rest of the zones. Zone 3 had much more forested area, with

25.6% of the zone covered in dense vegetation. This may signify differences in climatic

and environmental variables that affect yield, and a larger number of selected polygons

in the area close to dense vegetation. 2) Zone 3 also had the lowest average area

compared to all the zones, with an average of 610 square meters, whereas the mean of

area for the rest of the zones was 890 square meters.

The positive relationship in the majority of zones may be due to economies of scale,

and may not be reflected in studies with self-reported yields, due to the previously

discussed human errors that come with collecting self-reported data. 



One of the limitations of this study is the estimation of yield. Though studies have shown

a high correlation between maximum NDVI and field size, there are other metrics that

have fared better than maximum NDVI in yield prediction, and/or can improve the

accuracy when modeled along with maximum NDVI. The first example of this are crop

phenology-based characteristics such as sow date, green-up rate, and senescence

rate(Bolton and Friedl 2013). In addition, other vegetation indices that use the red-edge

band, such as the Chlorophyll Index (CI), have been shown to more accurately capture

yield than other vegetation indices (Zhao et al. 2020). We did not incorporate either of

these in our yield metrics as sow date, green up rate, and senescence rate require

analyzing time-series data, which is more computationally expensive than the quality

mosaic method used in this study. Furthermore, we did not use vegetation indices

based on the red-edge band in this study as it has a spatial resolution of 20 m, which is

coarse relative to the size of fields in this region.

Yield measurements in our study were also limited by the spatial resolution of Sentinel-2

imagery. The area of one Sentinel-2 pixel is 100 square meters. A 0.09 hectare field,

which is close to the average field size in most zones, would be covered by only 9

pixels. This may result in mixed pixels, where pixels on the edges of the field are

drawing information from neighboring fields. Using higher resolution imagery, such as

Planet imagery that has a pixel area size of 9 square meters, could reduce this problem.

Such imagery is not available on an open-source platform, such as Google Earth

Engine, and was therefore not used for this study.



Another limitation to consider is the discrepancy in the years between different imagery

sources. Due to image availability constraints, the Quickbird and Worldview images

used for predicting field boundaries were from 2018, whereas the sentinel-2 images

used for estimating yield were from the 2019-20 season. This study assumes minimal

to no change in the spatial characteristics of fields within the period of one season.

Lastly, the performance of the field boundary prediction model, reflected by an F1 score

of 0.75 in our region of interest, suggests the potential for misinterpretations of field

boundaries. While we applied methods to remove and repair fields misinterpreted by the

model, some inaccuracies may still exist in the dataset.

6. Conclusion

In conclusion, we found that for 7 out of 8 zones in the region of interest, there was a

slightly positive, significant relationship between area and productivity (represented by

maximum NDVI). At this level, these results are contrary to the productivity area inverse

theory. In further studies, this relationship should be closer explored by controlling for

factors that influence yield. In addition, yield estimates can be improved by using

alternate satellite imagery with higher spatial resolution, and considering red-edge

bands that are more predictive of yield. Future work should examine whether the

detected relationships remain after these improvements.
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