Paul A. Den Uyl

Genetic Characterization of Saxitoxin Producing Cyanobacteria Associated with Western Lake Erie Harmful Algal Blooms

submitted in partial fulfillment of the requirements for the degree of Master of Science in Earth and Environmental Sciences Department of Earth and Environmental Sciences The University of Michigan

Accepted by:

Signature Gregory J. Dick 2/29/24 Name Date & Khun Jenan J Kharbush 4/3/24 Signature Name Date Julia Cole May 13, 2024 Department Chair Signature Name Date

I hereby grant the University of Michigan, its heirs and assigns, the non-exclusive right to reproduce and distribute single copies of my thesis, in whole or in part, in any format. I represent and warrant to the University of Michigan that the thesis is an original work, does not infringe or violate any rights of others, and that I make these grants as the sole owner of the rights to my thesis. I understand that I will not receive royalties for any reproduction of this thesis.

Permission granted.

□ Permission granted to copy after:

□ Permission declined.

Pal & De Gel 11

Author Signature

<u>Abstract</u>

Saxitoxins (STXs) are a group of closely related neurotoxins and among the most potent natural toxins known. While genes encoding STX biosynthesis have been observed in Lake Erie, the organism(s) responsible for producing STXs in the region have not been confirmed. We used metagenomic tools to identify a full suite of STX biosynthesis genes in a high-quality metagenome-assembled genome (MAG) from the Anabaena-Dolichospermum-Aphanizomenon (ADA) clade of cyanobacteria. The order and sequence of *sxt* genes suggest the Lake Erie MAG is capable of producing STX as well as other STX congeners. The absence of a *sxtX* gene suggests an inability to produce neoSTX, one of the most potent congeners of STX. We also recovered highly similar ADA MAGs that did not contain STX genes, implying gene loss or horizontal gene transfer. The full suite of STX biosynthesis genes was observed in metagenomic datasets across 13 of 123 unique sampling dates between 2014 and 2022, with occurrences spanning from July 6 to September 19. Our results also reveal trends in the increasing abundance of ADA MAGs during late-season blooms. Collectively, this study provides a foundation for understanding a potential new front of threats to Lake Erie water quality.

Introduction

Saxitoxins (STXs) are primarily sourced from freshwater cyanobacteria and marine dinoflagellates and have been extensively studied as the causative agent for paralytic shellfish poisoning (PSP) in marine environments. Research on STXs in freshwater ecosystems is limited compared to other cyanotoxins like microcystin. Despite no reported human fatalities from STX exposure in freshwater, incidents of sheep mortality due to STX-contaminated cyanobacterial blooms highlight potential risks (Negri et al., 1995; Smith, 2000). Given the significance of many freshwater bodies as drinking water sources, recognizing STX presence during water treatment processes is imperative (Orr et al., 2004; Westrick, 2008). In freshwater, instances of STX exposure have been linked to recreational activities, with exposure able to occur through inhalation and skin contact (Rapala et al., 2005). STXs can also bioaccumulate in freshwater fish and shellfish, posing concerns for human consumption (J. P. Berry & Lind, 2010; da Silva et al., 2011; Galvão et al., 2009; Ibelings & Chorus, 2007; Negri & Jones, 1995). The proliferation of cyanobacteria harmful algal blooms (cyanoHABs) due to climate change further amplifies concerns about STX presence in freshwater environments (Paerl & Huisman, 2009).

More than 50 STX congeners have been identified, including non-sulfated (STX and neoSTX), mono-sulfated (gonyautoxins (GTXs 1-6)), dicarbamoyl (dcSTX, dc-neoSTX, dcGTXs 1-4) and di-sulfated (C1-4) forms (Christensen & Khan, 2020). STX congeners display variable toxicity, with STX, neoSTX, and gonyautoxins (GTX) consistently identified as the most potent (Ballot et al., 2016; Selwood et al., 2017; Suarez-Isla, 2014; United Nations Environment Programme, 1984). Due to its extreme toxicity, STX is classified as a bioweapon under the Chemical Weapons Convention (Al-Tebrineh et al., 2010; Sierra & Martínez-Álvarez, 2020).

Nine genes in cyanobacteria (*sxtA*, *sxtG*, *sxtB*, *sxtD*, *sxtS*, *sxtU*, *sxtI*, *sxtH*, and *sxtT*) have been proposed to play a direct role in STX biosynthesis (Kellmann et al., 2008). Additional genes have been hypothesized to alter STX into distinct congeners (*sxtL*, *sxtN*, *sxtX*) (Mihali et al., 2009). The *sxtA* gene takes a central role in initiating STX biosynthesis operon through catalyzing a unique Claisen condensation reaction. The crucial role played by the *sxtA* gene in

STX biosynthesis makes it an effective qPCR target for accurately quantifying STX producers in the environment (Al-Tebrineh et al., 2010; Pearson et al., 2010).

Western Lake Erie (WLE) is especially susceptible to toxic cyanoHABs, including those with the potential to produce saxitoxin (Watson et al., 2016). This vulnerability is underscored by the presence of several municipal water intakes, notably including Toledo, OH, where a nearly three day "do not drink" advisory was issued in 2014 as a result of microcystins persisting in finished water (Steffen et al., 2017; Wynne & Stumpf, 2015). The 2014 Toledo Water Crisis left over 400,000 residents without access to safe tap water. Additionally, the area relies heavily on recreation, tourism, and a significant commercial fishing industry, potentially heightening the exposure risks to cyanoHABs. While considerable efforts have been dedicated to monitoring and understanding the development, movement, and toxicity of cyanoHABs in WLE, research into cyanotoxins beyond microcystin in this region remains notably understudied. A recent investigation into the diversity of cyanobacterial biosynthetic gene clusters in WLE, which identified the presence and expression of cyanotoxins and cyanopeptides beyond microcystins, highlights the need for expanded research on this topic (Yancey et al., 2023).

Use of ELISA to identify saxitoxin and qPCR to detect *sxtA* genes in Lake Erie has confirmed the presence of both the toxin and key genetic markers responsible for STX production (Chaffin et al., 2019; Nauman et al., 2024; Ohio Environmental Protection Agency, 2022). Despite preliminary evidence from Chaffin et al. (2019) suggesting a potential association between the presence of the *sxtA* gene and the cyanobacterial genus *Dolichospermum* based on flowCAM observations, a confirmed source of STXs in WLE or the Great Lakes has not been established. STXs have been found to be produced by several cyanobacterial genus present in WLE. Potential STX producers include *Microcystis*, the dominant genus of WLE cyanoHABs, along with members of the *Anabaena*, *Dolichospermum*, and *Aphanizomenon* (ADA) cyanobacteria clade, as well as *Cylindrospermopsis*, and *Lyngbya* (Conroy et al., 2007; Naknaen et al., 2021; Wiese et al., 2010). STX genes have not been identified in any ADA-clade or *Microcystis* genomes characterized in the Great Lakes (Sheik et al., 2022; Yancey et al., 2023). The potency of STX paired with the potential for production by multiple, currently unidentified, species of cyanobacteria creates a situation of concern for cyanoHABs in WLE.

The existence of extensive monitoring efforts in WLE offers opportunities to investigate the presence of STXs. In this study, metagenomic sequence data collected from both routine and opportunistic cyanoHABs monitoring efforts (Boegehold et al., 2023) was used to assess the potential for STX production and its distribution across WLE. The DNA sequence database used in this study, the Great Lakes Atlas of Multi-omics Research (GLAMR, greatlakesomics.org), included more than 500 samples of sequenced metagenomic data collected in WLE between 2014 and 2022 (Chaffin et al., 2021; Colleen E. Yancey et al., 2022; Den Uyl et al., 2022; Koeppel et al., 2022; McKindles Katelyn M. et al., 2020). Incorporating GLAMR into this research provides a robust methodology for pinpointing neurotoxin-producing organisms and understanding their spatial and temporal distribution. This framework is essential for advancing knowledge and awareness of the associated risks of STXs in WLE.

Results

Identification of a saxitoxin (STX) source and additional ADA MAGs

Within GLAMR, *de novo* assembly of metagenomic reads from 570 WLE samples produced a total of 1,844 metagenome-assembled genomes (MAGs) with greater than or equal to

90% completeness and less than 10% contamination. Dereplication of MAGs using a 98% average nucleotide identity (ANI) threshold resulted in 850 representative MAGs generated. After dereplication, a single high-quality representative MAG belonging to the cyanobacterial ADA clade was identified possessing a full suite of biosynthetic genes for STX production (STX+). This MAG, designated LE20-WE8, was generated from a sample taken at the WLE routine monitoring station WE8 on July 6, 2020. LE20-WE8, classified as the species *Dolichospermum sp000312705*, has high completion (96.78%) and low contamination (2.56%) (Table 1) and is the only representative MAG in this study possessing the biosynthetic potential to produce STXs. Ten additional representative MAGs from the GLAMR database were identified in WLE belonging to the ADA clade (Table 1). Genes specific to STX biosynthesis were not detected (STX-) in these ten MAGs. Representative ADA MAGs were also examined for the presence of the cyanotoxin genes known to produce microcystin (*mcyE gene*), anatoxin A (*anaC*, *anaF*), cylindrospermopsin (*cyrA*), guanitoxin (*gntF*), and β -Methylamino-L-alanine or BMAA (*sbnA-B*) using blastn. None of these additional cyanotoxin genes were detected.

MAG	STX Potential	Date of collection	Latitude	Longitude	Station	GTDB-Tk species classification	Completeness	Contamination	Strain heterogeneity	N50	GC	Number of contigs	Size mb
LE20-WE8	+	6-Jul-20	41.8192	-83.3592	WE8	Dolichospermum sp000312705	96.78	2.56	58.82	7007	0.39	903	4.577
LE17-WE2	-	7-Aug-17	41.7633	-83.3303	WE2	Dolichospermum sp000312705	93.05	2.83	60	18103	0.38	348	4.338
LE17-WE12	-	11-Sep-17	41.7032	-83.254	WE12	Dolichospermum circinale	90.54	6.81	62.5	2791	0.38	1678	4.108
LE20-WE12	-	5-Oct-20	41.704	-83.2552	WE12	Dolichospermum circinale	95.2	7.85	82	3051	0.37	1664	4.352
LE21-WE12	-	21-Sep-21	41.7041	-83.2529	WE12	Dolichospermum circinale	90.7	1.08	85.71	11487	0.38	414	3.569
LE22-WE12	-	30-Sep-22	41.7058	-83.2556	WE12	Dolichospermum circinale	99.55	0.22	100	24272	0.37	342	4.773
LE21-ER30	-	7-Apr-21	42.4295	-81.2044	ER30	Dolichospermum flosaquae	98.22	0.22	50	33828	0.37	190	3.905
LE16-WE8	-	12-Sep-16	41.8322	-83.3589	WE8	Dolichospermum flosaquae	90.06	4.83	40.74	3373	0.37	1734	3.787
LE19-WE12	-	3-Sep-19	41.7034	-83.2558	WE12	Dolichospermum flosaquae	98.91	0.78	50	20287	0.37	293	4.238
LE20-WE2- Aug	_	10-Aug-20	41.7614	-83.3329	WE2	Cuspidothrix issatschenkoi	97.33	4.19	80.95	4975	0.38	1200	4.345
LE20-WE2- Sep	_	9-Sep-20	41.7628	-83.3297	WE2	Cuspidothrix issatschenkoi	92.37	1.85	92.31	8046	0.38	598	3.602

Table 1. Metadata and summary statistics of representative ADA MAGs obtained from WLE samples using the GLAMR database (greatlakesomics.org).

Both LE20-WE8 (STX+) and LE17-WE2 (STX-) clustered into a distinct ADA branch that contains several strains isolated from the Great Lakes, including *Dolichospermum* sp. SB001 (Lake Superior metagenome), *Anabaena* sp. AL09 (Lake Huron culture), *Anabaena* sp. LE011-02 (Lake Erie culture) and LE14-WE4 (Lake Erie metagenome) (Driscoll et al., 2018; Sheik et al., 2022; Yancey et al., 2023) (Fig. 1). GTDBTK annotations designate individuals within this branch as *Dolichospermum sp000312705*, whereas earlier research has sometimes used the name *Dolichospermum lemmermannii* (Sheik et al., 2022). Additional ADA MAGs recovered here also fell into branches with previously identified species. LE20-WE2-Aug and LE20-WE2-Sep clustered with *Cuspidothrix issatschenoki*. LE16-WE8, LE19-WE12, and LE21-ER30 were in a branch with *Dolichospermum flosaquae* and are very closely related to LE14-WE12 (97.9% - 99.6% ANI) which came from WLE in August 2014 (Yancey et al., 2023). The largest diversity of MAGs identified in this study (LE17-WE12, LE20-WE12, LE21-WE12, and LE22-WE12) clustered in a branch with *Dolichospermum circinale*. These MAGs were closely related (96.8% - 97.1% ANI) to an STX producer, *D. circinale* AWQC131C isolated from Lake Cargelligo,

NSW Australia (Llewellyn et al., 2001). There does not appear to be any relationship between the genetic potential to produce STXs and strain placement within the phylogenomic tree of the ADA clade (Fig. 1).

Figure 1. Phylogenomic tree of representative ADA clade members constructed using 251 housekeeping genes and a maximum likelihood approach through the GToTree workflow. The dataset incorporated ADA genomes from prior investigations (Dreher et al., 2021; Österholm et al., 2020; Sheik et al., 2022; Yancey et al., 2023). MAGs obtained from this study are highlighted in colored and bolded text. Colors reflect phylogeny and correspond to Figure 4 to aid comparison. Stars indicate ADA strains from the Great Lakes, sourced from: Lake Erie (black), Lake Superior (white), and Lake Ontario (grey). Red circles identify STX+ strains. Numbers on branches are bootstrap values, support metrics that reflect the robustness of relationships among taxa based on resampling.

24 additional MAGs from the ADA clade were identified using a stricter ANI threshold for dereplication compared to the criteria used for establishing representative MAGs (99% ANI instead of 98%) (Fig. S1). These 24 MAGs were also examined for the presence of cyanotoxinencoding genes, but none were identified. Despite appearing directly adjacent to LE20-WE8 (STX+) on the phylogenomic tree, the MAG samp_2047_concoct_1911 lacked genes associated with STX production (STX-). We identified that the *sxt* genes were instead assigned to an *alphaproteobacteria* MAG (samp_2047_concoct_1969) during the binning process by CONCOCT. *sxt* genes were ultimately determined not to belong to the *alphaproteobacteria* bin after manual QC and genome refinement via Anvi'o (Eren et al., 2015). There is no record of *alphaproteobacteria* being able to produce STXs, further suggesting the contigs were incorrectly assigned. These contigs containing *sxt* genes were annotated to belong to *Dolichospermum* by kaiju. Binning by MaxBin also assigned these *sxt* genes to a MAG annotated as *Dolichospermum sp000312705*, which matches the species annotation of LE20-WE8 (STX+). We conclude *sxt* genes contained within the MAG samp_2047_concot_1969 were misassigned during the generation of bins using the automated binner CONCOCT. To confirm that STX biosynthesis genes weren't misassigned for other MAGs that were closely related to STX+ organisms, such as LE17-WE2 (STX-), metagenomic sample reads were examined using blastn for *sxt* genes. There were no *sxt* genes present in the sample reads from which LE17-WE2 (STX-) was generated. Further analysis of MAGs will be focused only on representatives determined using the ANI threshold of 98%, referred to hereafter as representative MAGs (n =11, Table 1).

STX biosynthesis genes

The STX biosynthesis operon identified in LE20-WE8 was divided across three contigs (Fig. 2). Each contig contained *sxt* genes in nearly the same order and orientation as the STX biosynthesis operon identified in *Aphanizomenon* sp. NH-5, a culture isolated from a small pond near Durham, New Hampshire (Mihali et al., 2009). The most notable differences between the gene clusters identified in this study and *Aphan*. sp. NH-5 are the absence of *sxtX*, *sxtW*, and a partial length *sxtD* gene in LE20-WE8.

Figure 2. Comparison of STX gene cluster structure between LE20-WE8, *Aphanizomenon* sp. NH-5, *Dolichospermum circinale* AWQC131C, and *Cylinderospermopsis raciborskii* T3. GenBank accession numbers are listed below organism names. Gray lines indicate homologous genes sharing \geq 80% nucleotide sequence identity. Gray labels show CoDing Sequence (CDS) annotations. Figure adapted from Mihali et al., 2009.

Only 156bp of the 759bp *sxtD* gene sequence from *Aphan*. sp. NH-5 aligned with LE20-WE8 contigs (99.4% ID; 21% coverage) via blastn. An unassigned contig (402bp) from sample LE20-WE8 showcased high sequence similarity (blastn 99.0% ID; 100% coverage) to a distinct section of the *sxtD Aphan*. sp. NH-5 reference. The length of this contig (402bp) makes it too short to reliably bin using automated methods. Considering this additional fragment and the partial *sxtD* gene identified in LE20-WE8, 74% of the *sxtD* gene is accounted for with greater than 99% blastn ID.

To examine the distribution and diversity of STX biosynthesis genes across WLE, metagenomic reads were mapped back to the assembled *sxt* genes from the three LE20-WE8 contigs (Fig. S2). Metagenomic read mapping resulted in 22 samples having >60% coverage of each of the three reference contig sequences (Table S1). All results with >60% coverage of each

of the three reference sequences had at least 95% nucleotide identity between each mapped alignment and its complimentary reference sequence (Fig. S3-S5). The 22 samples with substantial read mapping alignment to *sxt* genes were collected across 13 unique sampling dates, encompassing a seasonal range from as early as July 6 to as late as September 19, spanning years 2016 to 2021.

ADA MAG metabolic pathways

KEGGDecoder was used to annotate metabolic pathways in the 11 representative ADA MAGs. Notable pathways of LE20-WE8 include ferrous iron transporter *feoB*, which was only found in the two representative *D. sp000312705* MAGs (Fig. 3). The pathway for synthesis of the carotenoid zeaxanthin diglucoside was also possessed by *D. sp000312705* MAGs, LE20-WE8 (STX+), LE17-WE2 (STX-) and one *C. issatschenoki* MAG, LE20-WE2-Aug. Nitrogen fixation pathways were present in KEGGDecoder annotations for all *Dolichospermum* MAGs, ranging between 33-66% complete, but were absent in *Cuspidothrix* MAGs. The nitrogen fixation pathway for LE20-WE8 was identified by KEGGDecoder as 66% complete, with two out of the three enzymes required for nitrogen fixation, *nifK* (K02591) and *nifD* (K02586), present. Genome annotation using Bakta revealed the remaining *nif* gene, *nifH* (K02588) in LE20-WE8. Additional *nifH*, *D*, *K* genes, beyond those annotated in KEGGDecoder, were also identified in six additional *Dolichospermum* MAGs through Bakta annotation (Table S3). No additional *nif* genes were identified in *Cuspidothrix* MAGs by Bakta.

All representative MAGs exhibited pathways facilitating the uptake of additional nutrients via urea, phosphate, and phosphonate transporters. Urease subunits were identified in Bakta annotations for all eleven representative MAGs, including the alpha, beta, and gamma subunits in LE20-WE8 (Table S3). Additionally, all representative MAGs featured pathways involved in sulfolipid biosynthesis, as well as the production of carotenoids nostoxanthin, myxoxanthophylls, and astaxanthin (Fig. 3).

Figure 3. Heatmap visualization of KEGGDecoder functional analysis for representative MAGs

Temporal and spatial abundance of ADA MAGs

Metagenomic read mapping to representative ADA MAGs allowed for the calculation of relative organism abundance across stations and dates of sample collection (Fig. 4). Given the

difficulty of short read mapping to discriminate different strains within the same species, reads per kilobase million (RPKM) values were combined for MAGs sharing the same species annotation. Across the sampling season, ADA MAGs were consistently identified in metagenomes, indicating a persistent presence. However, their abundance and distribution displayed substantial variability between years. In years 2014, 2017, and 2018, ADA MAGs were detected for only 4 weeks, highlighting the dynamic nature of their occurrence. Multiple species often co-occurred in the same sample (37% of samples). When just one species was detected, it was most often *D. circinale* (42% of samples), followed by *D. flosaquae* and *D. sp000312705* (15% and 5% of samples, respectively).

Figure 4. Reads per kilobase million (RPKM) determined from metagenomic read mapping of MAGs. Dot size determined from summing RPKM of MAGs that belong to the same species. WE20-WE8 (STX+) and LE17-WE2 (STX-) = *D. sp000312705*; LE17-WE12, LE20-WE12, LE21-WE12, and LE22-WE12 = *D. circinale*; LE21-ER30, LE16-WE8, and LE19-WE12 = *D. flosaquae*; and LE20-WE2-Aug and LE20-WE2-Sep = *C. issatschenoki*. Only the highest RPKM value is shown for each unique species and week combination. Red outlines indicate the presence of a STX biosynthesis operon determined through read mapping to assembled *sxt* genes from LE20-WE8 contigs ($\geq 60\%$ coverage and $\geq 95\%$ nucleotide identity) (Fig. S3-S5). NOAA Site based off of routine WLE monitoring stations (Boegehold et al., 2023) and expanded to include samples collected within a 5 km radius of each station.

The presence of the species *D. sp000312705* is particularly significant due to the identification of the saxitoxin-producing capability of MAG LE20-WE08, a species member. The maximum RPKM belonging to species *D. sp000312705* reached 6.93e-03 on July 6, 2020, at WE8 (Table S2). This was the same sample that representative MAG LE20-WE8 was sourced. *D. sp000312705* prominently occurred at station WE12, being identified at that site on 8 out of 15 of the species detection dates. Dates of *D. sp000312705* observations are concentrated in the months of July (n=5), August (n=7), and September (n=3). In 2014, 2016, and 2018, whenever *D. sp000312705* appeared, it was consistently the only ADA species from this study identified in

a sample (n = 10). For other years where *D.* sp000312705 appeared (2017, and 2019-2022) it cooccurs with other ADA species in 10 of 11 samples.

D. sp000312705 presence corresponds well with the occurrence of STX biosynthesis genes determined by metagenomic read mapping (15 of 22 samples). Species *D. circinale* and *C. issatschenoki* were both present in the seven instances where STX biosynthesis genes were identified through read mapping and *D. sp000312705* was not. *D. sp000312705* also occurs where there are no significant STX biosynthesis genes mapped on five occasions, including WE2 in week 32 (Aug, 7th) of 2017, the sample that representative MAG LE17-WE2 (STX-) was sourced.

D. circinale stood out as the species exhibiting the highest relative organism abundance in a sample, reaching 0.207 RPKM within a late-season cyanobacterial bloom in early November of 2022 (week 44, Figure 4). Notably, the same sample also recorded the highest individual MAG abundance, corresponding to LE22-WE12 at 0.167 RPKM. The nine highest species RPKM values identified were from late season 2022 cyanobacterial bloom(s) and belonged to *D. circinale*. LE22-WE12 was the most abundant *D. circinale* MAG in each of these occurrences. *D. circinale* appears to have an increased presence in years 2020-2022, particularly after week 37 each season. *D. circinale* is present in 4 of 12 sampling dates collected after week 37 between years 2014-2019, while it is present in 16 of 16 sampling dates after week 37 between 2020-2022.

The least frequently detected species from metagenomic read mapping was *C*. *issatschenoki*, observed only in samples collected during 2018 and 2020 sampling years. *C*. *issatschenoki* did emerge as the second most frequently observed species by date in 2020 (5 of 10 sampling dates, 13 of 49 samples). *D. flosaquae* showcased a variable presence in WLE. *D. flosaquae* stood out as the most frequently observed species in 2019, by both date and sample count (15 of 22 sampling dates, 37 of 120 samples), while it was absent in all samples collected in 2018.

Discussion

To identify the organism(s) responsible for producing potential STXs, a potent group of neurotoxins (Wiese et al., 2010) with supporting biochemical (Ohio Environmental Protection Agency, 2022), environmental (Watson et al., 2016), and genetic evidence (Chaffin et al., 2019; Nauman et al., 2024) in Lake Erie, we analyzed metagenomes from 570 samples collected across WLE from 2014-2022. We identified one MAG containing a full suite of STX biosynthesis genes, attributing it to *D. sp000312705* through phylogenomic analysis. Beyond identification of organisms responsible for STX production, these results offer insights into potential biosynthetic products of the identified *sxt* genes. Additionally, the metabolic potential and environmental distribution of this STX-producing organism and related non-STX-producing organisms is discussed in more detail below.

STX biosynthesis genes – potential STX products

Comparing *sxt* genes identified in the LE20-WE8 MAG obtained from WLE to the *sxt* genes of closely related organisms with characterized STX products provides crucial insights into STX biosynthesis and potential congeners produced. The conserved order and sequence similarity observed between contigs with *sxt* genes in MAG LE20-WE8 and the STX biosynthesis operon of *Aphan*. sp. NH-5 initially suggests a capacity to produce similar products

(Fig. 2, Table S4). *Aphan.* sp. NH-5's toxin profile is primarily composed of STX and neoSTX with minor constituents also identified as 12,12dido-dcSTX, 12 β do-doSTX, dcNEO, dcSTX, 12 β do-dcSTX (LWTX-4), 12 α do-doSTX, doSTX, M4, and 12 α do-dcSTX congeners (D'Agostino et al., 2019). neoSTX was identified to compose approximately 85% of the quantified toxin profile of *Aphan.* sp. NH-5 in culture (D'Agostino et al., 2019; Mahmood & Carmichael, 1986). STX and neoSTX have been characterized to have similar toxicity and be amongst the most toxic saxitoxin congeners (2008; Selwood et al., 2017; Suarez-Isla, 2014; Wiese et al., 2010).

A closer investigation into the *sxt* genes identified in LE20-WE8 MAG suggests that it is likely not capable of neoSTX production. *sxtX*, the gene putatively responsible for N-1 hydroxylation of STX, converting STX to neoSTX (Kellmann et al., 2008; Mahmood & Carmichael, 1986; Mihali et al., 2009; Soto-Liebe et al., 2010), is absent in LE20-WE8. *sxtX* is also absent in previously characterized STX biosynthesis gene clusters belonging to *Raphidiopsis brookii* D9, *D. circinale* AWQC131C, and ACMB13 (formerly referred to as species *Anabaena circinalis*), all of which have been shown to not synthesize any STX variants featuring a hydroxyl group at N-1, including neoSTX (Mihali et al., 2009; Soto-Liebe et al., 2010). Subsequently, the toxin profile of the Great Lakes MAG LE20-WE8 may be suggested to consist of STX and other congeners without a hydroxyl group at N-1 observed in *Aphan*. sp. NH-5's toxin profile (12,12dido-dcSTX, 12βdo-doSTX, dcSTX, 12βdo-dcSTX).

The lack of a *sxtW* gene in MAG LE20-WE8 is also shared by *R. brookii* D9 and *D. circinale* AWQC131C (Mihali et al., 2009; Stucken et al., 2010). The putative function of *sxtW* is thought to be similar to a ferredoxin and perform electron transport required for hydroxylation of products encoded by *sxtT* and *sxtH*. Mihali *et al.* (2009) suggested an endogenous ferredoxin may compensate for the lost function from a missing *sxtW* gene, but no ferredoxin-like alternative was identified in LE20-WE8. Even without *sxtW*, *R. brookii* D9 and *D. circinale* AWQC131C and have been found to have toxin profiles that include STX and other STX, GTX, and C-toxin congeners (D'Agostino et al., 2019; Llewellyn et al., 2001; Soto-Liebe et al., 2010).

The direct involvement of *sxtD* in STX synthesis raises questions about its partial presence in LE20-WE8. *sxtD* encodes a putative desaturase and is suggested to introduce double bonds into carbon-carbon bonds within the STX biosynthetic pathway. It plays a crucial role alongside *sxtS* and *sxtU*, directly contributing to STX synthesis (Kellmann et al., 2008; Mihali et al., 2009; Pearson et al., 2010). The potential absence of certain genes, including *sxtD*, could be attributed to artifacts in metagenomic assembly and binning methods. To address this, manual analyses were conducted scrutinizing the presence of *sxtD*. It is asserted that the occurrence of *sxtD* has been adequately addressed through these analyses, particularly after identifying an additional partial *sxtD* fragment in an unassigned contig post-binning. This manual examination significantly bolsters confidence in affirming the presence of a *sxtD* gene in the MAG LE20-WE8.

With over 50 documented STX congeners and an incomplete understanding of the relationship between biosynthetic genes and products, there exists a pressing need for further investigation. This is crucial to unveil the complete range of STX congeners produced by LE20-WE8. Toxicity levels among these congeners vary significantly, with STX, neoSTX, and gonyautoxins (GTX) identified as the most potent variants (Wiese et al., 2010). Metabolic transformations of mixtures of STX congeners have also been observed in vectors like shellfish and humans (Munday & Reeve, 2013; Suarez-Isla, 2014). These transformations often escalate

toxicity rather than diminish it, emphasizing the critical importance of comprehensively understanding toxin profiles.

Metabolic potential and distribution

Exploring metabolic pathways of representative ADA MAGs can enhance our comprehension of cyanoHABs members and their potential interactions within WLE (Fig. 3, Fig. S6). Notably, the presence of nitrogen fixation genes in all nine *Dolichospermum* MAGs builds upon previous observations of nitrogen-fixing abilities within the WLE ADA clade (Yancey et al., 2023). This nitrogen-fixing potential in *Dolichospermum* is crucial for late-season or secondary blooms, potentially allowing *Dolichospermum* to thrive after *Microcystis* has depleted much of the available nitrogen (Chaffin, 2013; Michalak et al., 2013; Takamura et al., 1987; Wang et al., 2021). The occurrence of cyanoHABs with a large presence of ADA clade cyanobacteria, specifically *D. circinale*, are being increasingly observed later in the year (Fig. 4). Fortunately, these late-season blooms do not appear to possess the genetic potential to produce STXs. Further research is imperative to understand the evolving dynamics of late-season blooms in Lake Erie.

Mechanisms to compensate for phosphorus limitation are also present in representative ADA-clade MAGs. The presence of sulfolipid biosynthesis genes is identified in all eleven MAGs (Fig. 4). Substitution of sulfolipids for phospholipids in response to phosphorus limitation has been identified in *Microcystis* cultures, mesocosms, and *Microcystis*-dominated cyanoHAB samples from WLE (Martin et al., 2023). These non-phosphorus-containing lipids (sulfolipids) reduce the burden of phosphorus in cellular membrane construction as they can be used to substitute phosphorus containing phosphatidylglycerol.

The presence of urease genes and at least partial urea, phosphate, and phosphonate transporters across all representative MAGs highlights additional mechanisms for external nutrient acquisition in WLE ADA-clade cyanobacteria, including the use of organic nutrients. These pathways may be closely tied to agricultural practices in the Lake Erie watershed. Around 60% of land use in the Lake Erie watershed is allocated for agriculture, leading to significant contributions of nitrogen from prevalent inorganic fertilizers, commonly in the form of phosphate (Barnard et al., 2021; Mohamed et al., 2019). Increased use of organic urea in fertilizers in recent years further adds to the high nutrient setting in WLE (Belisle et al., 2016).

Transporters for phosphonate, conventionally perceived as a less bioavailable organic phosphorus form, also potentially serves as a nutrient source for ADA-clade cyanobacteria (Horsman & Zechel, 2017; McGrath et al., 2013). Glyphosate, commonly referred to as RoundUp Ready®, is a phosphonate that has seen increased use in recent decades and could promote ADA-clade cyanobacteria including strains capable of saxitoxin production (Spiese et al., 2023). The utilization of organic phosphonate by ADA-clade cyanobacteria is also relevant to the ongoing phosphorus management efforts by the United States and Canada, which rely on reduction in total phosphorus and soluble reactive phosphorus (SRP) and do not include phosphonate (Maccoux et al., 2016).

Comparing metabolic pathways in MAGs also demonstrated several potential factors governing spatial and temporal distribution of STX. The pathway for ferrous iron Fe(II) transporter *FeoB* is unique to *D. sp000312705* MAGs and may also be relevant to nitrogen fixation. The production of nitrogenase, the enzyme accountable for nitrogen fixation, relies heavily on significant quantities of iron (Larson et al., 2018). Therefore, the potential need for iron uptake to provide for nitrogenase function may support nitrogen fixation in low nitrogen

environments. STXs are also nitrogen rich and demand substantial nitrogen. It has been suggested that STX production in cyanobacteria may be regulated by environmental factors such as nitrogen and phosphate (Dias et al., 2002). The exclusive presence of the *FeoB* transporter in *D. sp000312705*, the species associated with LE20-WE8 (STX+), might be attributed to nitrogen demands for STX production. This transporter aids in the uptake of exogenous Fe(II), potentially supplementing the nitrogenase requirements for nitrogen fixation, crucial in supplying the necessary nitrogen for STX production.

Other notable metabolic pathways include zeaxanthin diglucoside synthesis unique to *D. sp000312705* MAGs LE20-WE8, LE17-WE2 and *C. issatschenoki* MAG, LE20-WE2-Aug. Zeaxanthin diglucoside is a carotenoid synthesized as a protective response to environmental stressors, including high light intensity and oxidative stress commonly experienced in cyanoHAB conditions (Hellweger et al., 2022; Latifi et al., 2009; Smith et al., 2022). All MAGs also have the pathways for additional carotenoids including nostoxanthin, myxoxanthophylls, and astaxanthin. Some missing pathways may be due to incomplete MAGs especially those with lower completeness such as LE17-WE12, LE21-WE12, and LE16-WE8 (~90% complete; Table 1).

Impact of STX source identification and sxt gene distribution

Identification of an STX producer in WLE emphasizes the current gaps in knowledge of toxin production within the region's cyanoHABs. This limitation significantly impacts the capacity to provide comprehensive guidance for general monitoring or risk assessments in the area. The characterization of STX biosynthesis genes in LE20-WE8 signify a critical advancement in ongoing efforts aimed at understanding and tracking potential cyanotoxin producers in WLE and the broader Great Lakes.

Specific observations of concern include the prevalence of LE20-WE8 around monitoring station WE12. This station is adjacent to the city of Toledo's water intake that supplies water to >400,000 residents. The occurrence of a full suite of STX biosynthesis genes near WE12 occurs across all summer months (July – September) and multiple years (2016, 2018 – 2020), suggesting reoccurring STX presence in the area. This occurrence of STX biosynthesis genes is also widespread across the western basin of Lake Erie, occurring at five of eight routine NOAA WLE monitoring stations. Four of these five stations (WE2, WE8, WE12, and WE16) can be described as nearshore, but are outside of more direct input from the Maumee River such as stations WE6 and WE9. The fifth NOAA station, WE4, has been characterized as offshore and receives more significant influence from the Detroit River along with station WE13, which did not have any occurrence of STX biosynthesis identified (Berry et al., 2017).

There is also a potential for other strains and species to produce STX in WLE. While the presence of LE20-WE8 corresponded well with the presence of *sxt* genes through read mapping analysis, there were several instances where complete STX operons were identified as present and the species belonging to MAG LE20-WE8, *D. sp000312705*, was not. Both species corresponding with STX genes in the instances where *D. sp000312705* was absent, *D. circinale* and *C. issatschenoki*, have strains capable of producing STXs in other environments (Mihali et al., 2009; Nogueira et al., 2004). Given the trends in late-season bloom occurrences of *D. circinale*, it is particularly important to acknowledge its ongoing potential for STX production (Fig. 4). *sxt* genes are variably present in closely related strains (Fig. 1) and do not correlate with overall organism phylogeny. This variability suggests frequent gene loss or horizontal gene

transfer of *sxt* genes within the ADA-clade and incites an additional concern in determining STX sources in WLE.

Potentially positive observations also came to light through the characterization and examined distribution of LE20-WE8. The absence of the *sxtX* gene responsible for neoSTX production suggests an inability to produce one of the most toxic STX congeners (Ballot et al., 2016). The current absence of STX genes within late season cyanoHAB blooms is also a positive indication. However, the presence of STX earlier in the season alongside microcystin may pose a risk from synergistic effects between the two cyanotoxins or other secondary metabolites (Metcalf & Codd, 2020).

Conclusions

This study underscores the significance of expanding the research scope of cyanoHAB bloom monitoring to encompass various potential cyanotoxins. The identification of a *Dolichospermum* MAG (LE20-WE8) possessing a full suite of STX biosynthesis genes is a significant and necessary stride forward in determining risks to both public health and ecosystem well-being associated with these toxins. The available infrastructure currently used to investigate WLE cyanoHABs, ranging from field monitoring efforts (Boegehold et al., 2023) to data processing tools (GLAMR, greatlakesomics.org), provides an opportunity to address many subsequent questions regarding STX production in WLE. Furthermore, the importance of employing these methods in the broader Great Lakes, where many areas experience cyanoHABs, may be valuable in determining STX producers, as well as producers of other cyanotoxins and impactful secondary metabolites.

Materials and Methods

Database

In this study, the GLAMR database was utilized to access and analyze over 500 metagenomic samples from WLE collected between 2014-2022 (greatlakesomics.org). GLAMR serves as a comprehensive repository housing metagenomic, transcriptomic, and amplicon sequencing data alongside relevant metadata, including environmental measurements and processing details. This database boasts a user-friendly interface and standardized bioinformatics pipelines, streamlining the exploration and comparison of omics datasets.

Bioinformatic Analysis

Assembly, binning, and refinement

De novo assemblies were performed on single samples to recover MAGs using GLAMR pipelines for metagenomic assembly and binning (https://github.com/Geo-omics/GLAMR_omics_pipelines). Metagenomic assemblies were completed using MEGAHIT (D. Li et al., 2015). Multiple binning software were used to maximize MAG recovery, including CONCOCT, MetaDecoder, VAMB, MetaBAT 2, MaxBin 2.0, and SemiBin (Alneberg et al., 2014; Kang et al., 2019; Liu et al., 2022; Nissen et al., 2021; Pan et al., 2022; Wu et al., 2016). MAG refinement was manually performed on representative MAGs using Anvi'o v.7 utilizing differential coverage read mapping from bowtie2 (Eren et al., 2015; Langmead & Salzberg, 2012). Kaiju 1.6.2 annotated metagenomic contigs using its nr database (accessed March 23, 2023), with results imported into Anvi'o to aid in MAG assessment and curation (Menzel et al., 2016).

MAG identification

blastn was used to check GLAMR assemblies for the presence of *sxtA*, *G*, *H*, and *I*, four genes essential to produce STXs 5/13/24 3:09:00 PM. This step and all other uses of blastn in this study set an e-value of 1e-2 to reduce the chances of missing any potential targets of interest. Bins from assemblies with positive blastn hits to *sxtA*, *G*, *H*, or *I* were then examined for the presence of these *sxt* genes using a second blastn analysis.

Through GLAMR pipelines, all bins were assigned taxonomy using GTDB-Tk v2.1.1 with reference data from GTDB release207 v2 (Chaumeil et al., 2020) and completion, contamination, and strain heterogeneity was assessed using CheckM v.1.2.2 (Parks, 2014). Additional ADA bins were selected for further analysis if they were annotated belonging to the family *Nostocaceae*, regardless of STX gene presence. Ultimately, only bins with greater than or equal to 90% completeness and less than 10% contamination were retained for subsequent analyses. These bins, referred to as MAGs due to their high quality, were then run through dRep to identify the highest quality representatives at two different secondary ANI cutoffs, 98 and 99 (Olm et al., 2017).

Genetic analysis and visualization

To establish the phylogenetic context of representative ADA MAGs, GToTree was employed to construct a phylogenomic tree (Lee, 2019). Using GToTree, a maximum likelihood tree encompassing 251 marker genes was generated featuring ADA genomes sourced from prior studies and an outgroup represented by Cyanobium gracile PCC 6307 (NCBI: PRJNA158695) (Dreher et al., 2021; Österholm et al., 2020; Sheik et al., 2022; Yancey et al., 2023). ANI values between representative ADA MAGs were calculated using FastANI (Jain et al., 2018). The program "clinker" was utilized to visualize contigs of LE20-WE8 containing STX genes and compare them with previously characterized STX operons (Gilchrist & Chooi, 2021; Mihali et al., 2009).

Metagenomic read mapping

Metagenomic read mapping was performed using Minimap2 with presets for short genomic paired-end reads (Li, 2018). Minimap2 output was filtered using AUGUSTUS to retain reads with minimum query cover of 50% and minimum percent ID of 80% when mapping to *sxt* genes and a minimum query cover of 80% and minimum percent ID of 90% when mapping to representative ADA MAGs (Stanke et al., 2006). The determination of the final cutoff (>60% cover) for each of the three STX reference contig sequences, indicating the presence or absence of STX genes in a sample, was validated by plotting percent coverage and mean coverage depth of read mapping results for each reference. Rsamtools was utilized to aid in calculations of percent identity, coverage, and mean depth for read mapping results (Morgan et al., 2023). RPKM values were calculated in the R statistical platform (Equation 1) (Dick, 2018). RPKM values were aggregated for MAGs of the same species to reduce unambiguous read mapping between MAGs within a species. Results were visualized using ggplot2 (Wickham, 2016).

Equation 1.

 $Relative \ Organism \ Abundance = RPKM \ per \ genomes = \frac{total \ \# \ of \ reads \ mapped \ per \ MAG}{(length \ of \ MAG)*(total \ number \ of \ reads \ per \ sample)} * 10^{6}$

Functional profiling

Representative ADA MAGs were annotated to predict protein-coding genes in microbial genomes using Prodigal v2.6.3 (Hyatt et al., 2010). KofamScan v1.3.0 annotated genes based on KEGG orthology (database accessed September 16, 2022). KEGGDecoder v1.3 was used to examine KofamScan output to determine the metabolic pathway completeness (https://github.com/bjtully/BioData). Results were visualized using ggplot2. To supplement the profiling of pathways that were either not included in the original analysis or found to be incomplete by KofamScan, Bakta v1.8.1 annotations were generated using database v5.0 (Schwengers et al., 2021).

References

Alneberg, J., Bjarnason, B. S., de Bruijn, I., Schirmer, M., Quick, J., Ijaz, U. Z., Lahti, L., Loman, N. J., Andersson, A. F., & Quince, C. (2014). Binning metagenomic contigs by coverage and composition. *Nature Methods*, 11(11), 1144–1146. https://doi.org/10.1038/nmeth.3103

 Al-Tebrineh Jamal, Mihali Troco Kaan, Pomati Francesco, & Neilan Brett A. (2010). Detection of Saxitoxin-Producing Cyanobacteria and Anabaena circinalis in Environmental Water Blooms by Quantitative PCR. *Applied and Environmental Microbiology*, *76*(23), 7836–7842. https://doi.org/10.1128/AEM.00174-10

- Ballot, A., Bernard, C., & Fastner, J. (2016). Saxitoxin and Analogues. In Handbook of Cyanobacterial Monitoring and Cyanotoxin Analysis (pp. 148–154). https://doi.org/10.1002/9781119068761.ch14
- Belisle, B. S., Steffen, M. M., Pound, H. L., Watson, S. B., DeBruyn, J. M., Bourbonniere, R. A., Boyer, G. L., & Wilhelm, S. W. (2016). Urea in Lake Erie: Organic nutrient sources as potentially important drivers of phytoplankton biomass. *Journal of Great Lakes Research*, 42(3), 599–607. https://doi.org/10.1016/j.jglr.2016.03.002
- Berry, J. P., & Lind, O. (2010). First evidence of "paralytic shellfish toxins" and cylindrospermopsin in a Mexican freshwater system, Lago Catemaco, and apparent bioaccumulation of the toxins in "tegogolo" snails (Pomacea patula catemacensis). *Harmful Algal Blooms and Natural Toxins in Fresh and Marine Waters -- Exposure, Occurrence, Detection, Toxicity, Control, Management and Policy*, 55(5), 930–938. https://doi.org/10.1016/j.toxicon.2009.07.035
- Berry, M. A., Davis, T. W., Cory, R. M., Duhaime, M. B., Johengen, T. H., Kling, G. W., Marino, J. A., Den Uyl, P. A., Gossiaux, D., Dick, G. J., & Denef, V. J. (2017). Cyanobacterial harmful algal blooms are a biological disturbance to Western Lake Erie bacterial communities. *Environmental Microbiology*, 19(3), 1149–1162. https://doi.org/10.1111/1462-2920.13640
- Boegehold, A. G., Burtner, A. M., Camilleri, A. C., Carter, G., DenUyl, P., Fanslow, D., Fyffe Semenyuk, D., Godwin, C. M., Gossiaux, D., Johengen, T. H., Kelchner, H., Kitchens, C.,

Mason, L. A., McCabe, K., Palladino, D., Stuart, D., Vanderploeg, H., & Errera, R. (2023). Routine monitoring of western Lake Erie to track water quality changes associated with cyanobacterial harmful algal blooms. *Earth Syst. Sci. Data Discuss.*, *2023*, 1–39. https://doi.org/10.5194/essd-2023-62

- Chaffin, J. (2013). Nitrogen Constrains the Growth of Late Summer Cyanobacterial Blooms in Lake Erie. *Adv Microbiol.*, *3*. https://doi.org/10.4236/aim.2013.36A003
- Chaffin, J. D., Bratton, J. F., Verhamme, E. M., Bair, H. B., Beecher, A. A., Binding, C. E., Birbeck, J. A., Bridgeman, T. B., Chang, X., Crossman, J., Currie, W. J. S., Davis, T. W., Dick, G. J., Drouillard, K. G., Errera, R. M., Frenken, T., MacIsaac, H. J., McClure, A., McKay, R. M., ... Zhou, X. (2021). The Lake Erie HABs Grab: A binational collaboration to characterize the western basin cyanobacterial harmful algal blooms at an unprecedented high-resolution spatial scale. *Harmful Algae*, *108*, 102080. https://doi.org/10.1016/j.hal.2021.102080
- Chaffin, J. D., Mishra, S., Kane, D. D., Bade, D. L., Stanislawczyk, K., Slodysko, K. N., Jones, K. W.,
 Parker, E. M., & Fox, E. L. (2019). Cyanobacterial blooms in the central basin of Lake Erie:
 Potentials for cyanotoxins and environmental drivers. *Journal of Great Lakes Research*, 45(2),
 277–289. https://doi.org/10.1016/j.jglr.2018.12.006
- Chaumeil, P.-A., Mussig, A. J., Hugenholtz, P., & Parks, D. H. (2020). GTDB-Tk: A toolkit to classify genomes with the Genome Taxonomy Database. *Bioinformatics*, 36(6), 1925–1927. https://doi.org/10.1093/bioinformatics/btz848
- Christensen, V. G., & Khan, E. (2020). Freshwater neurotoxins and concerns for human, animal, and ecosystem health: A review of anatoxin-a and saxitoxin. *Science of The Total Environment*, 736, 139515. https://doi.org/10.1016/j.scitotenv.2020.139515
- Colleen E. Yancey, Derek J. Smith, Paul A. Den Uyl, Osama G. Mohamed, Fengan Yu, Steven A.
 Ruberg, Justin D. Chaffin, Kelly D. Goodwin, Ashootosh Tripathi, David H. Sherman, &
 Gregory J. Dick. (2022). Metagenomic and Metatranscriptomic Insights into Population Diversity of *Microcystis* Blooms: Spatial and Temporal Dynamics of *mcy* Genotypes, Including a Partial

Operon That Can Be Abundant and Expressed. *Applied and Environmental Microbiology*, 0(0), e02464-21. https://doi.org/doi:10.1128/aem.02464-21

- Conroy, J. D., Quinlan, E. L., Kane, D. D., & Culver, D. A. (2007). Cylindrospermopsis in Lake Erie: Testing its Association with Other Cyanobacterial Genera and Major Limnological Parameters. *Journal of Great Lakes Research*, 33(3), 519–535. https://doi.org/10.3394/0380-1330(2007)33[519:CILETI]2.0.CO;2
- da Silva, C. A., Oba, E. T., Ramsdorf, W. A., Magalhães, V. F., Cestari, M. M., Oliveira Ribeiro, C. A.,
 & Silva de Assis, H. C. (2011). First report about saxitoxins in freshwater fish Hoplias
 malabaricus through trophic exposure. *Toxicon*, 57(1), 141–147.
 https://doi.org/10.1016/j.toxicon.2010.10.015
- D'Agostino, P. M., Boundy, M. J., Harwood, T. D., Carmichael, W. W., Neilan, B. A., & Wood, S. A. (2019). Re-evaluation of paralytic shellfish toxin profiles in cyanobacteria using hydrophilic interaction liquid chromatography-tandem mass spectrometry. *Toxicon*, 158, 1–7. https://doi.org/10.1016/j.toxicon.2018.11.301
- Den Uyl, P. A., Thompson, L. R., Errera, R. M., Birch, J. M., Preston, C. M., Ussler, W., Yancey, C. E., Chaganti, S. R., Ruberg, S. A., Doucette, G. J., Dick, G. J., Scholin, C. A., & Goodwin, K. D. (2022). Lake Erie field trials to advance autonomous monitoring of cyanobacterial harmful algal blooms. *Frontiers in Marine Science*, *9*. https://www.frontiersin.org/articles/10.3389/fmars.2022.1021952
- Dias, E., Pereira, P., & Franca, S. (2002). PRODUCTION OF PARALYTIC SHELLFISH TOXINS BY APHANIZOMENON SP. LMECYA 31 (CYANOBACTERIA)1. *Journal of Phycology*, 38(4), 705–712. https://doi.org/10.1046/j.1529-8817.2002.01146.x
- Dick, G. (2018). Genomic approaches in earth and environmental sciences. John Wiley & Sons.
- Dreher, T. W., Davis, E. W., Mueller, R. S., & Otten, T. G. (2021). Comparative genomics of the ADA clade within the Nostocales. *Harmful Algae*, *104*, 102037. https://doi.org/10.1016/j.hal.2021.102037

- Driscoll, C. B., Meyer, K. A., Šulčius, S., Brown, N. M., Dick, G. J., Cao, H., Gasiūnas, G., Timinskas, A., Yin, Y., & Landry, Z. C. (2018). A closely-related clade of globally distributed bloomforming cyanobacteria within the Nostocales. *Harmful Algae*, 77, 93–107.
- Eren, A., Esen, Ö., Quince, C., Vineis, J., Sogin, M., & Delmont, T. (2015). Anvi'o: An advanced analysis and visualization platform for 'omics data. https://doi.org/10.7287/PEERJ.PREPRINTS.1275
- Galvão, J. A., Oetterer, M., Bittencourt-Oliveira, M. do C., Gouvêa-Barros, S., Hiller, S., Erler, K.,
 Luckas, B., Pinto, E., & Kujbida, P. (2009). Saxitoxins accumulation by freshwater tilapia
 (Oreochromis niloticus) for human consumption. *Toxicon*, 54(6), 891–894.
 https://doi.org/10.1016/j.toxicon.2009.06.021
- Gilchrist, C. L. M., & Chooi, Y.-H. (2021). clinker & clustermap.js: Automatic generation of gene cluster comparison figures. *Bioinformatics*, 37(16), 2473–2475. https://doi.org/10.1093/bioinformatics/btab007
- Hellweger, F. L., Martin, R. M., Eigemann, F., Smith, D. J., Dick, G. J., & Wilhelm, S. W. (2022).
 Models predict planned phosphorus load reduction will make Lake Erie more toxic. *Science*, 376(6596), 1001–1005. https://doi.org/10.1126/science.abm6791
- Hyatt, D., Chen, G.-L., LoCascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. *BMC Bioinformatics*, *11*(1), 119. https://doi.org/10.1186/1471-2105-11-119
- Ibelings, B. W., & Chorus, I. (2007). Accumulation of cyanobacterial toxins in freshwater "seafood" and its consequences for public health: A review. *Environmental Pollution*, 150(1), 177–192. https://doi.org/10.1016/j.envpol.2007.04.012
- Jain, C., Rodriguez-R, L. M., Phillippy, A. M., Konstantinidis, K. T., & Aluru, S. (2018). High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. *Nature Communications*, 9(1), 5114. https://doi.org/10.1038/s41467-018-07641-9

- Kang, D., Li, F., Kirton, E., Thomas, A., Egan, R., An, H., & Wang, Z. (2019). MetaBAT 2: An adaptive binning algorithm for robust and efficient genome reconstruction from metagenome assemblies. *PeerJ*, 7, e7359. https://doi.org/10.7717/peerj.7359
- Kellmann, R., Mihali, T. K., Jeon, Y. J., Pickford, R., Pomati, F., & Neilan, B. A. (2008). Biosynthetic intermediate analysis and functional homology reveal a saxitoxin gene cluster in cyanobacteria. *Applied and Environmental Microbiology*, 74(13), 4044–4053.

https://doi.org/10.1128/AEM.00353-08

- Koeppel, A. F., Goodrum, W. J., Steffen, M. M., Wurch, L. L., & Turner, S. D. (2022). Environmental DNA sequencing dataset from Lake Erie algal blooms using Oxford Nanopore MinION. *Data in Brief*, 45, 108688. https://doi.org/10.1016/j.dib.2022.108688
- Langmead, B., & Salzberg, S. L. (2012). Fast gapped-read alignment with Bowtie 2. *Nature Methods*, 9(4), 357–359. https://doi.org/10.1038/nmeth.1923
- Larson, C. A., Mirza, B., Rodrigues, J. L. M., & Passy, S. I. (2018). Iron limitation effects on nitrogenfixing organisms with possible implications for cyanobacterial blooms. *FEMS Microbiology Ecology*, 94(5), fiy046. https://doi.org/10.1093/femsec/fiy046
- Latifi, A., Ruiz, M., & Zhang, C.-C. (2009). Oxidative stress in cyanobacteria. *FEMS Microbiology Reviews*, 33(2), 258–278. https://doi.org/10.1111/j.1574-6976.2008.00134.x
- Lee, M. D. (2019). GToTree: A user-friendly workflow for phylogenomics. *Bioinformatics*, 35(20), 4162–4164. https://doi.org/10.1093/bioinformatics/btz188
- Li, D., Liu, C.-M., Luo, R., Sadakane, K., & Lam, T.-W. (2015). MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph.
 Bioinformatics, 31(10), 1674–1676. https://doi.org/10.1093/bioinformatics/btv033
- Li, H. (2018). Minimap2: Pairwise alignment for nucleotide sequences. *Bioinformatics*, *34*(18), 3094–3100. https://doi.org/10.1093/bioinformatics/bty191

- Liu, C.-C., Dong, S.-S., Chen, J.-B., Wang, C., Ning, P., Guo, Y., & Yang, T.-L. (2022). MetaDecoder: A novel method for clustering metagenomic contigs. *Microbiome*, 10(1), 46. https://doi.org/10.1186/s40168-022-01237-8
- Llewellyn, L., Negri, A., Doyle, J., Baker, P., Beltran, E., & Neilan, B. (2001). Radioreceptor assays for sensitive detection and quantitation of saxitoxin and its analogues from strains of the freshwater cyanobacterium, Anabaena circinalis. *Environmental Science & Technology*, 35(7), 1445–1451.
- Mahmood, N. A., & Carmichael, W. W. (1986). Paralytic shellfish poisons produced by the freshwater cyanobacterium Aphanizomenon flos-aquae NH-5. *Toxicon*, 24(2), 175–186. https://doi.org/10.1016/0041-0101(86)90120-0
- Martin, R. M., Denney, M. K., Pound, H. L., Chaffin, J. D., Bullerjahn, G. S., McKay, R. M. L., Zastepa, A., Jones, K. A., Castro, H. F., Campagna, S. R., & Wilhelm, S. W. (2023). Sulfolipid substitution ratios of Microcystis aeruginosa and planktonic communities as an indicator of phosphorus limitation in Lake Erie. *Limnology and Oceanography*, 68(5), 1117–1131. https://doi.org/10.1002/lno.12333
- McKindles Katelyn M., Manes Makayla A., DeMarco Jonathan R., McClure Andrew, McKay R.
 Michael, Davis Timothy W., & Bullerjahn George S. (2020). Dissolved Microcystin Release
 Coincident with Lysis of a Bloom Dominated by Microcystis spp. In Western Lake Erie
 Attributed to a Novel Cyanophage. *Applied and Environmental Microbiology*, 86(22), e01397-20.
 https://doi.org/10.1128/AEM.01397-20
- Menzel, P., Ng, K. L., & Krogh, A. (2016). Fast and sensitive taxonomic classification for metagenomics with Kaiju. *Nature Communications*, 7(1), 11257. https://doi.org/10.1038/ncomms11257
- Metcalf, J. S., & Codd, G. A. (2020). Co-Occurrence of Cyanobacteria and Cyanotoxins with Other Environmental Health Hazards: Impacts and Implications. *Toxins*, 12(10). https://doi.org/10.3390/toxins12100629
- Michalak, A. M., Anderson, E. J., Beletsky, D., Boland, S., Bosch, N. S., Bridgeman, T. B., Chaffin, J.D., Cho, K., Confesor, R., Daloglu, I., Depinto, J. V., Evans, M. A., Fahnenstiel, G. L., He, L.,

Ho, J. C., Jenkins, L., Johengen, T. H., Kuo, K. C., Laporte, E., ... Zagorski, M. A. (2013).
Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends
consistent with expected future conditions. *Proceedings of the National Academy of Sciences of the United States of America*, 110(16), 6448–6452. https://doi.org/10.1073/pnas.1216006110

- Mihali, T. K., Kellmann, R., & Neilan, B. A. (2009). Characterisation of the paralytic shellfish toxin biosynthesis gene clusters in Anabaena circinalis AWQC131C and Aphanizomenon sp. NH-5. BMC Biochemistry, 10(1), 8. https://doi.org/10.1186/1471-2091-10-8
- Morgan, M., Pagès, H., Obenchain, V., & Hayden, N. (2023). Rsamtools: Binary alignment (BAM), FASTA, variant call (BCF), and tabix file import. (2.18.0) [Computer software]. https://doi.org/10.18129/B9.bioc.Rsamtools,
- Munday, R., & Reeve, J. (2013). Risk assessment of shellfish toxins. Toxins, 5(11), 2109–2137.
- Naknaen, A., Ratsameepakai, W., Suttinun, O., Sukpondma, Y., Khan, E., & Pomwised, R. (2021). Microcystis Sp. Co-Producing Microcystin and Saxitoxin from Songkhla Lake Basin, Thailand. *Toxins*, 13(9). https://doi.org/10.3390/toxins13090631
- Nauman, C., Stanislawczyk, K., Reitz, L. A., & Chaffin, J. D. (2024). The spatiotemporal distribution of potential saxitoxin-producing cyanobacteria in western Lake Erie. *Journal of Great Lakes Research*, 102342. https://doi.org/10.1016/j.jglr.2024.102342
- Negri, A. P., & Jones, G. J. (1995). Bioaccumulation of paralytic shellfish poisoning (PSP) toxins from the cyanobacterium Anabaena circinalis by the freshwater mussel Alathyria condola. *Toxicon*, 33(5), 667–678. https://doi.org/10.1016/0041-0101(94)00180-G
- Negri, A. P., Jones, G. J., & Hindmarsh, M. (1995). Sheep mortality associated with paralytic shellfish poisons from the cyanobacterium Anabaena circinalis. *Toxicon*, 33(10), 1321–1329. https://doi.org/10.1016/0041-0101(95)00068-W
- Nissen, J. N., Johansen, J., Allesøe, R. L., Sønderby, C. K., Armenteros, J. J. A., Grønbech, C. H., Jensen, L. J., Nielsen, H. B., Petersen, T. N., Winther, O., & Rasmussen, S. (2021). Improved

metagenome binning and assembly using deep variational autoencoders. *Nature Biotechnology*, *39*(5), 555–560. https://doi.org/10.1038/s41587-020-00777-4

- Nogueira, I. C. G., Pereira, P., Dias, E., Pflugmacher, S., Wiegand, C., Franca, S., & Vasconcelos, V. M. (2004). Accumulation of paralytic shellfish toxins (PST) from the cyanobacterium
 Aphanizomenon issatschenkoi by the cladoceran Daphnia magna. *Toxicon*, 44(7), 773–780. https://doi.org/10.1016/j.toxicon.2004.08.006
- Ohio Environmental Protection Agency. (2022). *Public Water System Harmful Algal Bloom Response Strategy* (pp. 1–61). https://epa.ohio.gov/monitor-pollution/maps-and-advisories/harmful-algalbloom-monitoring
- Olm, M. R., Brown, C. T., Brooks, B., & Banfield, J. F. (2017). dRep: A tool for fast and accurate genomic comparisons that enables improved genome recovery from metagenomes through dereplication. *The ISME Journal*, 11(12), 2864–2868. https://doi.org/10.1038/ismej.2017.126
- Orr, P. T., Jones, G. J., & Hamilton, G. R. (2004). Removal of saxitoxins from drinking water by granular activated carbon, ozone and hydrogen peroxide—Implications for compliance with the Australian drinking water guidelines. *Water Research*, 38(20), 4455–4461. https://doi.org/10.1016/j.watres.2004.08.024
- Österholm, J., Popin, R. V., Fewer, D. P., & Sivonen, K. (2020). Phylogenomic Analysis of Secondary

Metabolism in the Toxic Cyanobacterial Genera Anabaena, Dolichospermum and Aphanizomenon. *Toxins*, *12*(4). https://doi.org/10.3390/toxins12040248

- Paerl, H. W., & Huisman, J. (2009). Climate change: A catalyst for global expansion of harmful cyanobacterial blooms. *Environmental Microbiology Reports*, 1(1), 27–37. https://doi.org/10.1111/j.1758-2229.2008.00004.x
- Pan, S., Zhu, C., Zhao, X.-M., & Coelho, L. P. (2022). A deep siamese neural network improves metagenome-assembled genomes in microbiome datasets across different environments. *Nature Communications*, 13(1), 2326. https://doi.org/10.1038/s41467-022-29843-y

- Parks, D. (2014). CheckM: assessing the quality of microbial genomes recovered from isolates, single cells, and metagenomes. *PeerJ PrePrints*, 2. https://doi.org/10.7287/peerj.preprints.554v1
- Pearson, L., Mihali, T., Moffitt, M., Kellmann, R., & Neilan, B. (2010). On the Chemistry, Toxicology and Genetics of the Cyanobacterial Toxins, Microcystin, Nodularin, Saxitoxin and Cylindrospermopsin. *Marine Drugs*, 8(5), 1650–1680. https://doi.org/10.3390/md8051650
- Rapala, J., Robertson, A., Negri, A. P., Berg, K. A., Tuomi, P., Lyra, C., Erkomaa, K., Lahti, K., Hoppu,
 K., & Lepistö, L. (2005). First report of saxitoxin in Finnish lakes and possible associated effects on human health. *Environmental Toxicology*, 20(3), 331–340. https://doi.org/10.1002/tox.20109
- Schwengers, O., Jelonek, L., Dieckmann, M. A., Beyvers, S., Blom, J., & Goesmann, A. (2021). Bakta:
 Rapid and standardized annotation of bacterial genomes via alignment-free sequence
 identification. In *Microbial Genomics* (Vol. 7, Issue 11). Microbiology Society.
 https://doi.org/10.1099/mgen.0.000685
- Selwood, A. I., Waugh, C., Harwood, D. T., Rhodes, L. L., Reeve, J., Sim, J., & Munday, R. (2017).
 Acute Toxicities of the Saxitoxin Congeners Gonyautoxin 5, Gonyautoxin 6, Decarbamoyl
 Gonyautoxin 2&3, Decarbamoyl Neosaxitoxin, C-1&2 and C-3&4 to Mice by Various Routes of
 Administration. *Toxins*, 9(2). https://doi.org/10.3390/toxins9020073
- Sheik, C. S., Natwora, K. E., Alexson, E. E., Callaghan, J. D., Sailer, A., Schreiner, K. M., Steinman, B.
 A., Finkenbinder, M. S., Filstrup, C. T., & Bramburger, A. J. (2022). Dolichospermum blooms in Lake Superior: DNA-based approach provides insight to the past, present and future of blooms. *Journal of Great Lakes Research*, 48(5), 1191–1205. https://doi.org/10.1016/j.jglr.2022.08.002
- Sierra, M. A., & Martínez-Álvarez, R. (2020). Ricin and Saxitoxin: Two Natural Products That Became Chemical Weapons. *Journal of Chemical Education*, 97(7), 1707–1714. https://doi.org/10.1021/acs.jchemed.9b00841
- Smith Derek J., Berry Michelle A., Cory Rose M., Johengen Thomas H., Kling George W., Davis Timothy W., & Dick Gregory J. (2022). Heterotrophic Bacteria Dominate Catalase Expression

during Microcystis Blooms. *Applied and Environmental Microbiology*, 88(14), e02544-21. https://doi.org/10.1128/aem.02544-21

- Smith, P. T. (2000). Freshwater neurotoxins: Mechanisms of action, pharmacology, toxicology, and impacts on aquaculture. FOOD SCIENCE AND TECHNOLOGY-NEW YORK-MARCEL DEKKER-, 583–602.
- Soto-Liebe, K., Murillo, A. A., Krock, B., Stucken, K., Fuentes-Valdés, J. J., Trefault, N., Cembella, A., & Vásquez, M. (2010). Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins. *Toxicon*, *56*(8), 1350–1361. https://doi.org/10.1016/j.toxicon.2010.07.022
- Spiese, C. E., Bowling, M. N., & Moeller, S. E. M. (2023). Is glyphosate an underlying cause of increased dissolved reactive phosphorus loading in the Western Lake Erie basin? *Journal of Great Lakes Research*, 49(3), 631–639. https://doi.org/10.1016/j.jglr.2023.03.009
- Stanke, M., Keller, O., Gunduz, I., Hayes, A., Waack, S., & Morgenstern, B. (2006). AUGUSTUS: ab initio prediction of alternative transcripts. *Nucleic Acids Research*, 34(suppl_2), W435–W439. https://doi.org/10.1093/nar/gkl200
- Steffen, M. M., Davis, T. W., McKay, R. M. L., Bullerjahn, G. S., Krausfeldt, L. E., Stough, J. M. A., Neitzey, M. L., Gilbert, N. E., Boyer, G. L., Johengen, T. H., Gossiaux, D. C., Burtner, A. M., Palladino, D., Rowe, M. D., Dick, G. J., Meyer, K. A., Levy, S., Boone, B. E., Stumpf, R. P., ... Wilhelm, S. W. (2017). Ecophysiological Examination of the Lake Erie Microcystis Bloom in 2014: Linkages between Biology and the Water Supply Shutdown of Toledo, OH. *Environmental Science & Technology*, *51*(12), 6745–6755. https://doi.org/10.1021/acs.est.7b00856
- Stucken, K., John, U., Cembella, A., Murillo, A. A., Soto-Liebe, K., Fuentes-Valdés, J. J., Friedel, M.,
 Plominsky, A. M., Vásquez, M., & Glöckner, G. (2010). The Smallest Known Genomes of
 Multicellular and Toxic Cyanobacteria: Comparison, Minimal Gene Sets for Linked Traits and
 the Evolutionary Implications. *PLOS ONE*, *5*(2), e9235.
 https://doi.org/10.1371/journal.pone.0009235

Suarez-Isla, B. A. (2014). Saxitoxin and Other Paralytic Toxins: Toxicological Profile. In P. Gopalakrishnakone, V. Haddad Jr., W. R. Kem, A. Tubaro, & E. Kim (Eds.), *Marine and Freshwater Toxins: Marine and Freshwater Toxins* (pp. 1–16). Springer Netherlands. https://doi.org/10.1007/978-94-007-6650-1 25-1

- Takamura, N., Iwakuma, T., & Yasuno, M. (1987). Uptake of 13 C and 15 N (ammonium, nitrate and urea) by Microcystis in Lake Kasumigaura. *Journal of Plankton Research*, 9(1), 151–165. https://doi.org/10.1093/plankt/9.1.151
- United Nations Environment Programme. (1984). *Aquatic (marine and freshwater) biotoxins*. World Health Organization. https://wedocs.unep.org/20.500.11822/29334
- Wang, J., Wagner, N. D., Fulton, J. M., & Scott, J. T. (2021). Diazotrophs modulate phycobiliproteins and nitrogen stoichiometry differently than other cyanobacteria in response to light and nitrogen availability. *Limnology and Oceanography*, 66(6), 2333–2345. https://doi.org/10.1002/lno.11757
- Watson, S. B., Miller, C., Arhonditsis, G., Boyer, G. L., Carmichael, W., Charlton, M. N., Confesor, R., Depew, D. C., Höök, T. O., Ludsin, S. A., Matisoff, G., McElmurry, S. P., Murray, M. W., Peter Richards, R., Rao, Y. R., Steffen, M. M., & Wilhelm, S. W. (2016). The re-eutrophication of Lake Erie: Harmful algal blooms and hypoxia. *Harmful Algae*, *56*, 44–66. https://doi.org/10.1016/j.hal.2016.04.010
- Westrick, J. A. (2008). Cyanobacterial toxin removal in drinking water treatment processes and recreational waters. In *Cyanobacterial harmful algal blooms: State of the science and research needs* (pp. 275–290). Springer.
- Wickham, H. (2016). Ggplot2: Elegant graphics for data analysis (2nd ed.). Springer International Publishing.
- Wiese, M., D'Agostino, P. M., Mihali, T. K., Moffitt, M. C., & Neilan, B. A. (2010). Neurotoxic alkaloids: Saxitoxin and its analogs. *Marine Drugs*, 8(7), 2185–2211. https://doi.org/10.3390/md8072185

- Wu, Y.-W., Simmons, B. A., & Singer, S. W. (2016). MaxBin 2.0: An automated binning algorithm to recover genomes from multiple metagenomic datasets. *Bioinformatics*, 32(4), 605–607. https://doi.org/10.1093/bioinformatics/btv638
- Wynne, T. T., & Stumpf, R. P. (2015). Spatial and Temporal Patterns in the Seasonal Distribution of Toxic Cyanobacteria in Western Lake Erie from 2002–2014. *Toxins*, 7(5), 1649–1663. https://doi.org/10.3390/toxins7051649
- Yancey, C. E., Mathiesen, O., & Dick, G. J. (2023). Transcriptionally active nitrogen fixation and biosynthesis of diverse secondary metabolites by Dolichospermum and Aphanizomenon-like Cyanobacteria in western Lake Erie Microcystis blooms. *Harmful Algae*, *124*, 102408. https://doi.org/10.1016/j.hal.2023.102408

Supplemental Figures and Tables

Figure S1. Phylogenomic tree comprised of ADA clade members constructed using a maximum likelihood approach, utilizing 251 housekeeping genes through the GToTree workflow. The dataset incorporated ADA genomes from prior investigations (Dreher et al., 2021; Österholm et al., 2020; Sheik et al., 2022, Yancey et al., 2023). MAGs obtained from this study are highlighted in colored and bolded text. The distinct colors represent the average nucleotide identity (ANI) thresholds (98 in blue and 99 in red) applied during MAG dereplication to select the respective strain representatives.

Figure S2. Sections of LE20-WE8 contigs highlighted (in red) indicate sequences utilized for genomic read mapping of *sxt* genes. This mapping serves to determine the presence or absence of STX biosynthesis potential in a sample.

Metagenomic reads mapped to reference contig 220425_trim

Figure S3. Read counts at each base position (red) and relative abundance of matching bases to reference averaged over 10bp intervals (blue) of for metagenomic read mapping results. Breaks in blue line and red line at 0 indicate no read mapping at that position. Reference contig 220425_trim only (Fig. S2).

Metagenomic reads mapped to reference contig 266508_trim

Figure S4. Read counts at each base position (red) and relative abundance of matching bases to reference averaged over 10bp intervals (blue) of for metagenomic read mapping results. Breaks in blue line and red line at 0 indicate no read mapping at that position. Reference contig 266508_trim only (Fig. S2). Investigations into the 203bp sequence causing substantial peaks in read counts does not appear to be explicitly related to saxitoxin production, appearing in genomes not capable of saxitoxin production (STX-) via web based blastn (blast.ncbi.nlm.nih.gov).

Metagenomic reads mapped to reference contig 36365_trim

Figure S5. Read counts at each base position (red) and relative abundance of matching bases to reference averaged over 10bp intervals (blue) of for metagenomic read mapping results. Breaks in blue line and red line at 0 indicate no read mapping at that position. Reference contig 36365_trim only (Fig. S2).

Figure S6. Heatmap visualization of KEGGDecoder functional analysis for representative MAGs, including pathways with zero completeness across examined MAGs.

SampleName	percent_cover	percent_id	lat	lon	collection	NOAA Site	contig_220425_trim	contig_266508_trim	contig_36365_trim	contig_220425_trim	contig_266508_trim	contig_36365_trim	sample_id
SampleMarile	all_ref	all_ref	uar	ton	date	NOAA_Site	percent_cover	percent_cover	percent_cover	percent_id	percent_id	percent_id	GLAMR
7-18-16WLE4	74.14	99.92	41.826	-83.1947	7/18/16	WE4	79.01	70.65	73.18	99.96	99.82	99.94	samp_2042
8-1-16WLE8	99.99	99.8	41.8346	-83.3565	8/1/16	WE8	100	100	100	99.91	99.52	99.91	samp_2047
7-30-18 WLE 12	84.07	99.91	41.7036	-83.2547	7/30/18	WE12	82.85	77.23	92.33	99.94	99.5	99.93	samp_2088
8-13-18 WLE 12	75.99	99.93	41.7032	-83.2536	8/13/18	WE12	89.05	69.78	70.17	99.96	99.69	99.98	samp_2092
8-20-18 WLE 12	83.12	99.95	41.7031	-83.2543	8/20/18	WE12	81.86	86.57	80.92	99.94	99.68	99.98	samp_2096
7-6-20 WLE 8	85.75	99.95	NA	NA	7/6/20	WE8	83.79	86.79	86.6	99.95	99.92	99.97	samp_2141
7-6-20 WLE 12	74.7	99.98	41.7035	-83.2552	7/6/20	WE12	63.09	80.57	79.65	99.98	99.97	99.98	samp_2142
8-24-20 WLE8	95.49	99.4	41.8342	-83.3604	8/24/20	WE8	97.31	93.71	98.84	99.79	98.26	99.85	samp_2153
8-31-20 WLE2	70.46	99.41	NA	NA	8/31/20	WE2	65.7	67.27	78.99	99.8	98.41	99.65	samp_2155
8-31-20 WLE 12	85.32	99.52	NA	NA	8/31/20	WE12	84.92	92.03	81.58	99.93	98.77	99.99	samp_2158
8761-SRC-7	85.59	98.99	41.7628	-83.3297	9/9/20	WE2	85.42	87.68	86.42	99.97	97.78	99.89	samp_4338
8761-SRC-10	74.59	99.03	41.7055	-83.2542	9/9/20	WE12	76.61	72.92	76.82	99.93	97.34	99.93	samp_4341
E20160030	85.08	99.95	41.7048	-83.2544	8/1/16	WE12	85.5	84.83	84.98	99.99	99.87	99.98	samp_451
E20200011	100	99.96	41.7634167	-83.3307	7/6/20	WE2	100	100	100	99.98	99.92	99.99	samp_470
E20200013	100	99.95	41.81916	-83.35921	7/6/20	WE8	100	100	100	99.98	99.9	99.98	samp_471
E20200015	98.12	99.96	41.7034833	-83.255167	7/6/20	WE12	99.24	99.27	95.93	99.97	99.93	99.98	samp_472
E20200047	92.32	99.05	41.76135	-83.33285	8/10/20	WE2	89.82	96.45	91.15	99.72	97.85	99.61	samp_477
E20200089	77.49	97.51	41.7627833	-83.32965	9/9/20	WE2	75.15	77.5	82.37	99.94	95.28	99.97	samp_481
E20200094	80.9	98.33	41.7054833	-83.254233	9/9/20	WE12	83.43	78.79	83.37	99.99	95.9	99.99	samp_484
E20212010	80.65	99.96	41.653433	-83.177667	8/3/21	WE16-WSW	75.02	86.13	80.55	99.99	99.73	99.98	samp_499
LE17	80.87	99.98	41.8265	-83.1893	9/19/16	WE4	78.14	86.39	77.89	99.97	99.99	99.96	samp_509
LE20	99.64	99.96	41.7035	-83.2537	7/15/19	WE12	99.64	99.97	99.3	99.99	99.92	99.97	samp_511

Table S1. Metagenomic read mapping results for LE20-WE8 *sxt* reference contig sequences (Figure S2). Column headers labeled with 'all_ref' represent the aggregated results of all three contig sections.

SampleName E2014-0110-100LTR	mag LE20-WE8	group D_lem	group_rpkm 0.00126443	mag_length_mb 4.57749	id_ref_mag percent 99.05	mag_cover percent 77.48	rpkm 0.000873822	lat 41.8268	lon -83.1947	noaa_site WE4	collection date 9/29/14	clustered_site WE4	study_id set_17	year 2014	month Sep	day yda 29 272	y week 39	sample_id GLAMR samp_40
E20160030 E20200011 E20200013	LE20-WE8 LE20-WE8 LE20-WE8	D_lem D_lem	0.000372243	4.57749 4.57749 4.57749	99.6 99.91 99.87	99.14 99.54	0.000261752	41.7048 41.7634167 41.81916	-83.2544 -83.3307 -83.35921	WE2 WE8	7/6/20 7/6/20	WE2 WE8	set_35 set_35 set_35	2016 2020 2020	Aug Jul Jul	6 188 6 188	27 27	samp_451 samp_470 samp_471
E20200015 E20200047	LE20-WE8 LE20-WE8	D_lem D_lem	0.000941889 0.000217949	4.57749 4.57749	99.74 99.57	93.7 60.86	0.000561013 0.000167038	41.7034833 41.76135	-83.255167 -83.33285	WE12 WE2	7/6/20 8/10/20	WE12 WE2	set_35 set_35	2020 2020	Jul Aug	6 188 10 223	27 32	samp_472 samp_477
E20210086 E20212010	LE20-WE8 LE20-WE8	D_lem D_lem	0.000129569 0.00022155	4.57749 4.57749	99.64 99.27	52.31 78.56	8.37E-05 0.000124514	41.7026667 41.653433	-83.25035 -83.177667	WE12 WE16-WSW	8/16/21 8/3/21	WE12 WE16	set_35 set_35	2021 2021	Aug Aug	16 228 3 215	33 31	samp_490 samp_499
LE17 LE20 SV 663	LE20-WE8 LE20-WE8	D_lem D_lem	0.000458414 0.000702374 0.000114083	4.57749 4.57749 4.57749	99.7 99.84 98.39	63.23 94.24 54.9	0.000337667 0.000560901 5.33E-05	41.8265 41.7035 41.7574	-83.1893 -83.2537 -83.3325	WE4 WE12 T10	9/19/16 7/15/19 7/26/22	WE4 WE12 WE2	set_35 set_35 set_42	2016 2019 2022	Sep Jul	19 263 15 196 26 207	38 28 30	samp_509 samp_511 samp_2016
7-18-16 WLE 4 8-1-16 WLE 8	LE20-WE8 LE20-WE8	D_lem D_lem	0.000932758	4.57749 4.57749	99.89 99.76	56.26 96.27	0.000750993	41.826 41.8346	-83.1947 -83.3565	WE4 WE8	7/18/16 8/1/16	WE4 WE8	set_41 set_41	2016 2016	Jul Aug	18 200 1 214	29	samp_2042 samp_2047
8-7-17 WLE 2 7-30-18 WLE 12	LE20-WE8 LE20-WE8	D_lem D_lem	0.000612251 0.001231645	4.57749 4.57749	99.25 99.88	55.66 58.34	0.000130652 0.00099205	41.7633 41.7036	-83.3303 -83.2547	WE2 WE12	8/7/17 7/30/18	WE2 WE12	set_41 set_41	2017 2018	Aug Jul	7 219 30 211	32 31	samp_2073 samp_2088
8-13-18 WLE 12 8-20-18 WLE 12 7-6-20 WLE 8	LE20-WE8 LE20-WE8	D_lem D_lem	0.001495235 0.001018504	4.57749 4.57749 4.57749	99.9 99.81	55.5 67.67 89.52	0.001199965 0.000797739 0.000583259	41.7032 41.7031	-83.2536 -83.2543	WE12 WE12 WE8	8/13/18 8/20/18 7/6/20	WE12 WE12 WE8	set_41 set_41	2018 2018 2020	Aug Aug	13 225 20 232 6 189	33 34 27	samp_2092 samp_2096
7-6-20 WLE 8 7-6-20 WLE 12 LE14	LE20-WE8 LE20-WE8 LE20-WE8	D_lem D_lem	0.000441884	4.57749 4.57749	99.7 98.88	75.73 58.75	0.000322172 9.70E-05	41.7035 41.7026	-83.2552 -83.2547	WE12 WE12	7/6/20 9/7/21	WE12 WE12	set_41 set_41 set_35	2020 2020 2021	Jul Sep	6 188 7 250	27 27 36	samp_2141 samp_2142 samp_3935
E2014-0110-100LTR E20200011	LE17-WE2 LE17-WE2	D_lem D_lem	0.00126443 0.003766677	4.337595 4.337595	98.97 99.49	73.35 68.63	0.000390608 0.000645893	41.8268 41.7634167	-83.1947 -83.3307	WE4 WE2	9/29/14 7/6/20	WE4 WE2	set_17 set_35	2014 2020	Sep Jul	29 272 6 188	39 27	samp_40 samp_470
E20200013 E20200015	LE17-WE2 LE17-WE2	D_lem D_lem	0.006929648	4.337595 4.337595 4.227595	99.45 99.69	74.44 87.33	0.001160084 0.000380876	41.81916 41.7034833 41.8246	-83.35921 -83.255167	WE8 WE12	7/6/20 7/6/20	WE8 WE12	set_35 set_35	2020 2020 2016	Jul Jul Aug	6 188 6 188	27 27	samp_471 samp_472
8-7-17 WLE 2 E2014-0106-CNA	LE17-WE2 LE17-WE2 LE17-WE12	D_lem D_circ	0.000213740	4.337595 4.108029	99.86 99.13	99.59 60.88	0.000481599 9.98E-05	41.7633 41.76472222	-83.3303 -83.335	WE2 WE2	8/7/17 9/29/14	WE2 WE2	set_41 set_41 set_17	2010 2017 2014	Aug Sep	7 219 29 272	32 39	samp_2073 samp_14
E2014-0106-100LTR E2014-0108-100LTR	LE17-WE12 LE17-WE12	D_circ D_circ	0.00053057 0.000371661	4.108029 4.108029	99.13 99.33	71.06 67.66	0.000186769 0.000131147	41.76472222 41.7031	-83.335 -83.2591	WE2 WE12	9/29/14 9/29/14	WE2 WE12	set_17 set_17	2014 2014	Sep Sep	29 272 29 272	39 39	samp_15 samp_38
E2014-0108-CNA E20170045 E20190025	LE17-WE12 LE17-WE12	D_circ D_circ	0.000726368	4.108029 4.108029 4.108029	99.5 99.7 97.75	84.88 73.84 76.95	0.00025968 0.000805334	41.7031 41.764 41.7624	-83.2591 -83.3296 -83.3306	WE12 WE2	9/29/14 8/28/17 8/5/19	WE12 WE2 WE2	set_17 set_35	2014 2017 2019	Sep Aug	29 272 28 240 5 217	39 35 31	samp_39 samp_456 samp_462
E20190026 E20190026 E20190028	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.003700002 0.002921565 0.001933314	4.108029 4.108029	98.32 97.91	82.95 72.12	0.000704012 0.000426497	41.703 41.7615	-83.2544 -83.3309	WE12 WE2	8/5/19 8/12/19	WE12 WE2	set_35 set_35 set_35	2019 2019 2019	Aug Aug	5 217 5 217 12 224	31 31 32	samp_463 samp_464
E20190029 E20200013	LE17-WE12 LE17-WE12	D_circ D_circ	0.001004902 0.002026368	4.108029 4.108029	97.84 97.69	61.63 59.15	0.000221754 0.00053967	41.7021 41.81916	-83.2551 -83.35921	WE12 WE8	8/12/19 7/6/20	WE12 WE8	set_35 set_35	2019 2020	Aug Jul	12 224 6 188	32 27	samp_465 samp_471
E20200047 E20200051 E20200052	LE17-WE12 LE17-WE12	D_circ D_circ	0.001383328	4.108029 4.108029	99.15 99.43	75.11 88.02 55.15	0.000326585 0.000739122 0.000157786	41.76135 41.7174667 41.702	-83.33285 -83.424367 -83.254333	WE2 WE9 WE12	8/10/20 8/10/20 8/10/20	WE2 WE9 WE12	set_35 set_35	2020 2020 2020	Aug	10 223 10 223 10 223	32 32 32	samp_477 samp_479 samp_480
E20200089 E20200090	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.001813956	4.108029 4.108029	99.51 99.69	83.59 50.29	0.000481451 0.000148627	41.7627833 41.8275333	-83.32965 -83.196683	WE2 WE4	9/9/20 9/9/20	WE2 WE4	set_35 set_35	2020 2020	Sep Sep	9 253 9 253	37 37	samp_481 samp_482
E20200094 E20200118	LE17-WE12 LE17-WE12	D_circ D_circ	0.003140385	4.108029 4.108029	99.61 99.78	86.56 90.57	0.000827507 0.004389272	41.7054833 41.7622833	-83.254233 -83.330583	WE12 WE2	9/9/20 9/28/20	WE12 WE2	set_35 set_35	2020 2020	Sep Sep	9 253 28 272	37 39	samp_484 samp_485
E20200119 E20200123 E20212012	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.00417101 0.000425267 0.00041014	4.108029 4.108029 4.108029	99.59 99.48 99.18	58.49 55.17 55.6	0.000818092 0.000105752 0.00012014	41.826 41.7035167 41.76265	-83.193/33 -83.254533 -83.329	WE4 WE12 WF2	9/28/20 9/28/20 8/31/21	WE4 WE12 WE2	set_35 set_35 set_35	2020 2020 2021	Sep Sep Aug	28 272 28 272 31 243	2 39 2 39 35	samp_486 samp_487 samp_501
E20212016 E20212018	LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.002457347	4.108029 4.108029	99.72 99.78	85.63 89.4	0.000819222 0.001820755	41.76265 41.7269	-83.329 -83.42329	WE2 WE9	9/21/21 9/21/21	WE2 WE9	set_35 set_35	2021 2021 2021	Sep Sep	21 264 21 264	38	samp_505 samp_506
E20212019 6538-PDU-21	LE17-WE12 LE17-WE12	D_circ D_circ	0.003604476	4.108029 4.108029	99.54 99.57	86.54 50.37	0.00073032	41.70406 41.7427	-83.25291 -83.3048	WE12 NF	9/21/21 8/9/21	WE12 WE2	set_35 set_51	2021 2021	Sep Aug	21 264 9 221	38 32	samp_507 samp_1443
6538-PDU-41 SV_658 SV 661	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.000480277 0.001112076 0.009220734	4.108029 4.108029 4.108029	99.62 99.33 99.77	50.11 79.7 90.43	0.00017283 0.000150266 0.000958323	41.8326 41.7628 41.7626	-83.3512 -83.3283 -83.3291	NF T10 T10	8/16/21 8/24/22 9/20/22	WE8 WE2 WE2	set_51 set_42 set_42	2021 2022 2022	Aug Aug Sep	16 228 24 236 20 263	33 34 38	samp_1463 samp_2011 samp_2014
SV_663 sv_639	LE17-WE12 LE17-WE12	D_circ D_circ	0.001609055 0.000241635	4.108029 4.108029	99.53 99.33	94.64 58.61	0.000337447 7.76E-05	41.7574 41.7635	-83.3325 -83.3288	T10 T10	7/26/22 8/17/21	WE2 WE2	set_42 set_42	2022 2021	Jul Aug	26 207 17 229	30 33	samp_2016 samp_2025
sv_641 sv_645	LE17-WE12 LE17-WE12	D_circ D_circ	0.000501963	4.108029 4.108029	99.38 99.78	58.39 91.03	0.000104708	41.7654 41.7664	-83.3273 -83.3268	T6 T9	9/15/21 10/5/21	WE2 WE2	set_42 set_42	2021 2021	Sep Oct	15 258 5 278	37 40	samp_2027 samp_2031
8-15-16 WLE 8 8-29-16 WLE 4 9-12-16 WLE 2	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D circ	0.000197562 0.00158174 0.001628439	4.108029 4.108029 4.108029	99.38 99.37 99.16	50.97 51.69 50.92	0.00039454	41.834 41.8302 41.7632	-83.364 -83.1904 -83.3315	WE8 WE4 WE2	8/29/16 9/12/16	WE4 WE2	set_41 set_41 set 41	2016 2016 2016	Aug Aug Sep	15 228 29 242 12 256	33 35 37	samp_2051 samp_2054 samp_2057
9-12-16 WLE 4 9-12-16 WLE 8	LE17-WE12 LE17-WE12	D_circ D_circ	0.005925267 0.011649241	4.108029 4.108029	99.46 99.45	77.42 87.78	0.001574753 0.002386868	41.826 41.8322	-83.1925 -83.3589	WE4 WE8	9/12/16 9/12/16	WE4 WE8	set_41 set_41	2016 2016	Sep Sep	12 256 12 256	i 37 i 37	samp_2058 samp_2059
10-11-16 WLE 4 8-7-17 WLE 2 8-21-17 WLE 2	LE17-WE12 LE17-WE12	D_circ D_circ	0.008960357	4.108029 4.108029 4.108029	99.67 99.59 99.77	85.87 81.7 92.95	0.002482582	41.8256 41.7633 41.7624	-83.1933 -83.3303 -83.3295	WE4 WE2	10/11/16 8/7/17 8/21/17	WE4 WE2 WE2	set_41 set_41	2016 2017 2017	Oct Aug	11 285 7 219 21 233	41 32	samp_2062 samp_2073 samp_2077
8-21-17 WLE 4 8-21-17 WLE 8	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.003743202	4.108029 4.108029	99.74 99.66	79.85 89.68	0.001393596 0.000616727	41.8265 41.8337	-83.1978 -83.3583	WE4 WE8	8/21/17 8/21/17	WE4 WE8	set_41 set_41 set_41	2017 2017 2017	Aug Aug Aug	21 233 21 233 21 233	34 34 34	samp_2077 samp_2078 samp_2079
7-22-19 WLE 2 7-29-19 WLE 4	LE17-WE12 LE17-WE12	D_circ D_circ	0.000491693	4.108029 4.108029	98.67 97.42	55.39 63.82	0.000107213 0.000466947	41.763 41.8261	-83.3289 -83.1946	WE2 WE4	7/22/19 7/29/19	WE2 WE4	set_41 set_41	2019 2019	Jul Jul	22 203 29 210	29 30	samp_2109 samp_2114
7-29-19 WLE 8 7-29-19 WLE 12 8-19-19 WLE 2	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.000939711 0.002278847 0.000707756	4.108029 4.108029 4.108029	98.01 97.71 98.42	80.15 53.15 72.19	0.000217266 0.000484403 0.000120455	41.8328 41.7028 41.7621	-83.3625 -83.2563 -83.3303	WE8 WE12 WE2	7/29/19 7/29/19 8/19/19	WE8 WE12 WE2	set_41 set_41 set_41	2019 2019 2019	Jul Jul Aug	29 210 29 210 19 231	30 30 33	samp_2115 samp_2116 samp_2117
7-27-20 WLE 2 8-10-20 WLE 2	LE17-WE12 LE17-WE12	D_circ D_circ	0.000619176 0.002007348	4.108029 4.108029	98.68 99.11	65.24 81.83	0.000143566 0.000431152	NA 41.7614	NA -83.3329	WE2 WE2	7/27/20 8/10/20	WE2 WE2	set_41 set_41	2020 2020	Jul Aug	27 209 10 223	30 32	samp_2143 samp_2147
8-24-20 WLE 2 8-24-20 WLE 8	LE17-WE12 LE17-WE12	D_circ D_circ	0.003888262	4.108029 4.108029	99.32 99.69	83.58 96.56	0.000779995	41.7618 41.8342	-83.331 -83.3604	WE2 WE8	8/24/20 8/24/20	WE2 WE8	set_41 set_41	2020 2020	Aug Aug	24 237 24 237	34 34	samp_2151 samp_2153
8-24-20 WLE 12 8-31-20 WLE 2 8-31-20 WLE 8	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D circ	0.002665071	4.108029 4.108029 4.108029	99.48 99.56 99.64	90.7 94.12	0.000842329	41.7031 NA NA	-83.2557 NA NA	WE2 WE8	8/24/20 8/31/20 8/31/20	WE2 WE8	set_41 set_41 set_41	2020 2020 2020	Aug Aug Aug	24 237 31 244 31 244	34 35 35	samp_2154 samp_2155 samp_2157
8-31-20 WLE 12 9-14-20 WLE 2	LE17-WE12 LE17-WE12	D_circ D_circ	0.012362757 0.010189501	4.108029 4.108029	99.18 99.72	92.74 83.24	0.002473435 0.002977486	NA NA	NA NA	WE12 WE2	8/31/20 9/14/20	WE12 WE2	set_41 set_41	2020 2020	Aug Sep	31 244 14 258	35 37	samp_2158 samp_2159
9-14-20 WLE 8 9-14-20 WLE 12	LE17-WE12 LE17-WE12	D_circ D_circ	0.00965797 0.004791122	4.108029 4.108029 4.108029	99.55 99.57 97.64	84.09 76.56 57.77	0.001819016 0.001052071 9.185-05	NA NA 41 700044	NA NA -83 250217	WE8 WE12	9/14/20 9/14/20 8/2/19	WE8 WE12 WE12	set_41 set_41	2020 2020 2019	Sep Sep	14 258 14 258 2 214	37 37 31	samp_2161 samp_2162
LE14 LE2	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.000390983	4.108029 4.108029	98.68 99.67	51.46 87.37	7.13E-05 0.00034238	41.7026 41.7032	-83.2547 -83.254	WE12 WE12	9/7/21 9/11/17	WE12 WE12	set_35 set_35	2010 2021 2017	Sep Sep	7 250 11 254	36 37	samp_3935 samp_3937
doli_UT_Erie_late_2022 8761-SRC-7	LE17-WE12 LE17-WE12	D_circ D_circ	0.206590332	4.108029 4.108029	99.83 99.5	76.95 92.5	0.015824039	NA NA	NA NA	NA WE2	NA 9/9/20	WE6 WE2	set_35 set_41	2022 2020	NA Sep	NA NA 9 253	44 37	samp_4333 samp_4338
8761-SRC-8 8761-SRC-9 8761-SRC-10	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D circ	0.002132266 0.007746412 0.0087103	4.108029 4.108029 4.108029	99.64 99.54	91.16 92.41	0.000770955 0.001936794 0.00181684	NA NA NA	NA NA	WE4 WE8 WE12	9/9/20 9/9/20 9/9/20	WE8 WE12	set_41 set_41 set 41	2020 2020 2020	Sep Sep Sep	9 253 9 253 9 253	37 37 37 37	samp_4339 samp_4340 samp_4341
8761-SRC-11 8761-SRC-13	LE17-WE12 LE17-WE12	D_circ D_circ	0.008030088 0.005412309	4.108029 4.108029	99.71 99.77	88.69 90.62	0.00233067 0.001909352	NA NA	NA NA	WE2 WE8	10/5/20 10/5/20	WE2 WE8	set_41 set_41	2020 2020	Oct Oct	5 279 5 279	40 40	samp_4342 samp_4343
8761-SRC-14 8761-SRC-24 8761-SRC-26	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.003237957 0.009401801 0.001780052	4.108029 4.108029 4.108029	99.23 99.74 99.62	72.42 91.84 86.46	0.000665492 0.003166475 0.000457272	NA NA NA	NA NA NA	WE12 WE2 WE8	10/5/20 9/20/21 9/20/21	WE12 WE2 WE8	set_41 set_41 set_41	2020 2021 2021	Oct Sep Sen	5 279 20 263 20 263	40 38 38	samp_4344 samp_4353 samp_4355
8761-SRC-27 8761-SRC-27 8761-SRC-28	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.005748146	4.108029 4.108029	99.65 99.72	92.06 91.77	0.001512621 0.00139226	NA NA	NA NA	WE12 WE2	9/20/21 10/4/21	WE12 WE2	set_41 set_41 set_41	2021 2021 2021	Sep Oct	20 263 4 277	38 40	samp_4356 samp_4357
8761-SRC-29 8761-SRC-30	LE17-WE12 LE17-WE12	D_circ D_circ	0.004382092	4.108029 4.108029	99.75 99.77	75.38 93.07	0.001493858	NA NA	NA NA	WE4 WE8	10/4/21 10/4/21	WE4 WE8	set_41 set_41	2021 2021	Oct Oct	4 277 4 277	40 40	samp_4358 samp_4359
8761-SRC-31 8761-SRC-33 8761-SRC-35	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D circ	0.008022129 0.005829398 0.001918135	4.108029 4.108029 4.108029	99.55 99.37	97.55 96	0.002250121	NA NA NA	NA NA	WE12 WE2 WE8	7/18/22	WE2 WE8	set_41 set_41 set 41	2021 2022 2022	Jul Jul	4 277 18 199 18 199	40 29 29	samp_4362 samp_4364
8761-SRC-37 8761-SRC-38	LE17-WE12 LE17-WE12	D_circ D_circ	0.002836836 0.001836272	4.108029 4.108029	99.58 99.45	79.27 79.53	0.00037789 0.00029444	NA NA	NA NA	WE2 WE4	8/17/22 8/17/22	WE2 WE4	set_41 set_41	2022 2022	Aug Aug	17 229 17 229	33 33	samp_4366 samp_4367
8761-SRC-39 8761-SRC-41 8761-SRC-43	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.001358964 0.001953536 0.002178549	4.108029 4.108029 4.108029	99.34 99.48 99.41	83.42 86.88 80.78	0.000206178 0.000229952 0.000258692	NA NA NA	NA NA NA	WE8 WE2 WE8	8/17/22 8/29/22 8/29/22	WE8 WE2 WE8	set_41 set_41 set_41	2022 2022 2022	Aug Aug Aug	17 229 29 241 29 241	33 35 35	samp_4368 samp_4370 samp_4372
8761-SRC-44 8761-SRC-45	LE17-WE12 LE17-WE12	D_circ D_circ	0.001073596 0.010036444	4.108029 4.108029	99.27 99.68	70.27 79.21	0.000114919 0.000984559	NA	NA NA	WE12 WE2	8/29/22 9/12/22	WE12 WE2	set_41 set_41	2022 2022	Aug Sep	29 241 12 255	35 37	samp_4373 samp_4374
8761-SRC-46 8761-SRC-47	LE17-WE12 LE17-WE12	D_circ D_circ	0.005257714	4.108029 4.108029	99.36 99.63	52.47 85.67	0.000687994	NA NA	NA NA	WE4 WE8	9/12/22 9/12/22	WE4 WE8	set_41 set_41	2022 2022	Sep Sep	12 255 12 255	37 37	samp_4375 samp_4376
8761-SRC-49 8761-SRC-51	LE17-WE12 LE17-WE12 LE17-WE12	D_circ D_circ D circ	0.00329929 0.026085088 0.059879046	4.108029 4.108029 4.108029	99.75 99.79	63.28 92.53	0.002381663	NA NA	NA NA	WE12 WE2 WE8	9/30/22 9/30/22	WE2 WE8	set_41 set_41 set 41	2022 2022 2022	Sep Sep Sep	30 273 30 273	39 39 39	samp_4377 samp_4378 samp_4379
8761-SRC-53 8761-SRC-55	LE17-WE12 LE17-WE12	D_circ D_circ	0.148223532 0.097418149	4.108029 4.108029	99.78 99.8	92 91.81	0.012614427 0.008584309	NA NA	NA NA	WE2 WE8	10/11/22 10/11/22	WE2 WE8	set_41 set_41	2022 2022	Oct Oct	11 284 11 284	41 41	samp_4381 samp_4382
8761-SRC-56 8761-SRC-57 8761-SRC-58	LE17-WE12 LE17-WE12	D_circ D_circ	0.083122387 0.142999268 0.04847821	4.108029 4.108029 4.108029	99.8 99.8 99.83	92.43 91.64 83.01	0.007431621 0.011607296 0.004048743	NA NA	NA NA	WE12 WE2 WE4	10/11/22 10/24/22 10/24/22	WE12 WE2 WE4	set_41 set_41	2022 2022 2022	Oct Oct	11 284 24 297 24 297	41 43	samp_4383 samp_4384
8761-SRC-59 8761-SRC-60	LE17-WE12 LE17-WE12	D_circ D_circ D_circ	0.11365768	4.108029 4.108029	99.81 99.79	89.92 89.53	0.009198198 0.013573239	NA NA	NA NA	WE8 WE12	10/24/22 10/24/22	WE8 WE12	set_41 set_41	2022 2022	Oct Oct	24 297 24 297	43 43	samp_4386 samp_4387
E2014-0108-CNA E20170045	LE20-WE12 LE20-WE12	D_circ D_circ	0.000726368	4.351921 4.351921	99.35 99.49	73.25 52.98	0.000136954	41.7031	-83.2591 -83.3296	WE12 WE2	9/29/14 8/28/17	WE12 WE2	set_17 set_35	2014 2017	Sep Aug	29 272 28 240	39 35	samp_39 samp_456
E20190025 E20190026 E20190028	LE20-WE12 LE20-WE12 LE20-WF12	D_circ D_circ D_circ	0.003/66682 0.002921565 0.001933314	4.351921 4.351921 4.351921	97.91 97.95 97.66	85.12 75.88	0.000833351 0.000594075 0.000412481	41.7624 41.703 41.7615	-83.3306 -83.2544 -83.3309	WE12 WE2	8/5/19 8/5/19 8/12/19	WE12 WE2	set_35 set_35 set_35	2019 2019 2019	Aug Aug Aug	o 217 5 217 12 224	31 31 32	samp_462 samp_463 samp_464
E20190029 E20200013	LE20-WE12 LE20-WE12	D_circ D_circ	0.001004902 0.002026368	4.351921 4.351921	97.58 97.1	64.93 61.77	0.0002188 0.000458443	41.7021 41.81916	-83.2551 -83.35921	WE12 WE8	8/12/19 7/6/20	WE12 WE8	set_35 set_35	2019 2020	Aug Jul	12 224 6 188	32 27	samp_465 samp_471
E20200027 E20200047	LE20-WE12 LE20-WE12	D_circ D_circ	0.00055396	4.351921 4.351921	97.09 98.85	50.42 73.05	0.00013168	41.8274167 41.76135	-83.195617 -83.33285	WE4 WE2	7/28/20 8/10/20	WE4 WE2	set_35 set_35	2020 2020	Jul Aug	28 210 10 223	30 32	samp_474 samp_477
E20200051 E20200052 E20200089	LE20-WE12 LE20-WE12 LE20-WE12	D_CIRC D_CIRC D_CIRC	0.003088196 0.000820946 0.001813956	4.351921 4.351921 4.351921	98.21 99.31	60.41 80.41	0.00062437 0.000186213 0.000347302	41.702 41.7627833	-03.424367 -83.254333 -83.32965	WE12 WE2	8/10/20 9/9/20	WE12 WE2	set_35 set_35 set 35	2020 2020 2020	Aug Aug Sep	10 223 10 223 9 253	32 32 32 37	samp_480 samp_481
E20200094 E20200118	LE20-WE12 LE20-WE12	D_circ D_circ	0.003140385 0.012232969	4.351921 4.351921	99.46 99.64	83.47 90.19	0.000598965 0.00223258	41.7054833 41.7622833	-83.254233 -83.330583	WE12 WE2	9/9/20 9/28/20	WE12 WE2	 set_35 set_35	2020 2020	Sep Sep	9 253 28 272	37 39	samp_485
E20200119 E20212016	LE20-WE12 LE20-WE12	D_circ D_circ	0.00417101	4.351921 4.351921	99.51 99.56	52.8 79.38	0.000662418	41.826 41.76265	-83.193733 -83.329	WE4 WE2	9/28/20 9/21/21	WE4 WE2	set_35 set_35	2020 2021	Sep Sep	28 272 21 264	39 38	samp_486 samp_505
E20212018 E20212019 SC11_50_Metagenome 2019	LE20-WE12 LE20-WE12 LE20-WE12	D_CIRC D_CIRC D_CIRC	0.00482268 0.003604476 0.000881982	4.351921 4.351921 4.351921	99.45 98.75	83.76 50.62	0.000876396 0.000672103 0.000191759	41.7269 41.70406 41.74394092	-03.42329 -83.25291 -83.13597092	WE9 WE12 NF	9/21/21 9/21/21 8/26/19	WE12 WE13	set_35 set_35 set_36	2021 2021 2019	Sep Aug	 ∠1 264 21 264 26 238 	38 38 34	samp_507 samp_1296
SV_658 SV_661	LE20-WE12 LE20-WE12	D_circ D_circ	0.001112076 0.009220734	4.351921 4.351921	99.43 99.73	82.19 91.49	0.000193503 0.000825113	41.7628 41.7626	-83.3283 -83.3291	T10 T10	8/24/22 9/20/22	WE2 WE2	set_42 set_42	2022 2022	Aug Sep	24 236 20 263	i 34 38	samp_2011 samp_2014
SV_663 sv_641	LE20-WE12 LE20-WE12	D_circ D_circ	0.001609055	4.351921 4.351921	99.44 99.37	90.77 55.19	0.000274216 9.90E-05	41.7574 41.7654	-83.3325 -83.3273	T10 T6 T9	7/26/22 9/15/21	WE2 WE2	set_42 set_42	2022 2021	Jul Sep	26 207 15 258	30 37	samp_2016 samp_2027
9-12-16 WLE 4 9-12-16 WLE 8	LE20-WE12 LE20-WE12 LE20-WF12	D_CIRC D_CIRC D_CIRC	0.01112/123 0.005925267 0.011649241	4.351921 4.351921 4.351921	99.27 99.38	73.32 83.49	0.002075738 0.001208033 0.002345979	41.826 41.8322	-03.3268 -83.1925 -83.3589	WE4 WE8	9/12/16 9/12/16	WE4 WE8	set_42 set_41 set_41	2021 2016 2016	Sep Sen	5 278 12 256 12 256	40 37 37	samp_2031 samp_2058 samp_2059
10-11-16 WLE 4	LE20-WE12	D_circ	0.008960357	4.351921	99.56	80.6	0.001778492	41.8256	-83.1933	WE4	10/11/16	WE4	set_41	2016	Oct	11 285	41	samp_2062

Table S2. (Page 1 of 5) Reads per kilobase million (RPKM) calculations and sample metadata used in Figure 4.

SampleName	mag	group	group_rpkm	mag_length_mb	id_ref_mag percent	mag_cover percent	rpkm l	lat	lon	noaa_site	collection date	clustered_site	study_id	year month	day yday	week	sample_id GLAMR
8-21-17 WLE 2 8-21-17 WLE 2 8-21-17 WLE 4	LE20-WE12	D_circ	0.00677139	4.351921	99.66 99.63	90.9	0.001308785	41.7624	-83.3295	WE2 WE4	8/21/17	WE2	set_41	2017 Aug 2017 Aug 2017 Aug	21 233 21 233	34 34	samp_2073 samp_2077
8-21-17 WLE 8 7 22 10 WLE 2	LE20 WE12	D_circ	0.001866488	4.351921	99.48	84.9	0.000364749	41.8337	-83.3583	WE8	8/21/17	WE8	set_41	2017 Aug	21 233	34	samp_2079
7-22-19 WLE 2 7-22-19 WLE 4	LE20-WE12 LE20-WE12	D_circ D_circ	0.000491693	4.351921	97.28	54.78	0.000101262 4	41.763	-83.3289	WE4	7/22/19	WE2 WE4	set_41 set_41	2019 Jul 2019 Jul	22 203 22 203	29 29	samp_2109 samp_2110
7-29-19 WLE 4 7-29-19 WLE 8	LE20-WE12 LE20-WE12	D_circ D_circ	0.002200539	4.351921 4.351921	97.26 97.65	67.85 84.53	0.000519774 4 0.000206517 4	41.8261 41.8328	-83.1946 -83.3625	WE4 WE8	7/29/19 7/29/19	WE4 WE8	set_41 set_41	2019 Jul 2019 Jul	29 210 29 210	30 30	samp_2114 samp_2115
7-29-19 WLE 12 8-19-19 WLE 2	LE20-WE12 LE20-WE12	D_circ D_circ	0.002278847	4.351921 4.351921	97.53 98.57	57.6 76.66	0.000522803	41.7028 41.7621	-83.2563 -83.3303	WE12 WE2	7/29/19 8/19/19	WE12 WE2	set_41 set 41	2019 Jul 2019 Aug	29 210 19 231	30 33	samp_2116 samp_2117
8-19-19 WLE 8	LE20-WE12	D_circ	0.000266805	4.351921	97.45	50.13	6.01E-05 4	41.8336	-83.3598	WE8	8/19/19	WE8	set_41	2019 Aug	19 231 27 209	33 30	samp_2119
8-10-20 WLE 2	LE20-WE12	D_circ	0.002007348	4.351921	98.95	82.55	0.000434908	41.7614	-83.3329	WE2	8/10/20	WE2	set_41	2020 Aug	10 223	32	samp_2140
8-24-20 WLE 2 8-24-20 WLE 8	LE20-WE12 LE20-WE12	D_circ D_circ	0.003888262 0.068110198	4.351921 4.351921	99.22 99.57	85.89 99.2	0.000832171 4	41.7618 41.8342	-83.331 -83.3604	WE2 WE8	8/24/20 8/24/20	WE2 WE8	set_41 set_41	2020 Aug 2020 Aug	24 237 24 237	34 34	samp_2151 samp_2153
8-24-20 WLE 12 8-31-20 WLE 2	LE20-WE12 LE20-WE12	D_circ D_circ	0.002665071 0.01550335	4.351921 4.351921	99.14 99.47	56.29 93.87	0.000565948 4	41.7031 NA	-83.2557 NA	WE12 WE2	8/24/20 8/31/20	WE12 WE2	set_41 set_41	2020 Aug 2020 Aug	24 237 31 244	34 35	samp_2154 samp_2155
8-31-20 WLE 8 8-31-20 WLE 12	LE20-WE12	D_circ	0.032520372	4.351921 4.351921	99.55 99.08	97.68 96.76	0.006664626	NA	NA	WE8 WE12	8/31/20 8/31/20	WE8 WF12	set_41 set_41	2020 Aug	31 244 31 244	35 35	samp_2157 samp_2158
9-14-20 WLE 2	LE20-WE12	D_circ	0.010189501	4.351921	99.6	77.03	0.002008196	NA	NA	WE2	9/14/20	WE2	set_41	2020 Sep	14 258	37	samp_2159
9-14-20 WLE 8 9-14-20 WLE 12	LE20-WE12	D_circ	0.00983797	4.351921	99.46	73.49	0.000946782	NA	NA	WE12	9/14/20	WE12	set_41 set_41	2020 Sep	14 258 14 258	37 37	samp_2162
TWTPSurge_080219 LE14	LE20-WE12 LE20-WE12	D_circ D_circ	0.000507701 0.000390983	4.351921 4.351921	97.82 98.92	65.22 54.88	0.000106491 4 7.86E-05 4	41.700044 41.7026	-83.250217 -83.2547	NA WE12	8/2/19 9/7/21	WE12 WE12	set_18 set_35	2019 Aug 2021 Sep	2 214 7 250	31 36	samp_2214 samp_3935
LE2 doli UT Erie late 2022	LE20-WE12 LE20-WE12	D_circ D_circ	0.000844169	4.351921 4.351921	99.45 99.83	56.84 70.57	0.000138642 4	41.7032 NA	-83.254 NA	WE12 NA	9/11/17 NA	WE12 WE6	set_35 set 35	2017 Sep 2022 NA	11 254 NA NA	37 44	samp_3937 samp 4333
8761-SRC-7	LE20-WE12	D_circ	0.00932581	4.351921	99.45 99.53	96.21 92.59	0.001893882	NA	NA	WE2 WE8	9/9/20 9/9/20	WE2	set_41	2020 Sep	9 253 9 253	37 37	samp_4338
8761-SRC-10	LE20-WE12	D_circ	0.0087103	4.351921	99.49	94.78	0.001767362	NA	NA	WE12	9/9/20	WE12	set_41	2020 Sep	9 253 5 070	37	samp_4341
8761-SRC-13	LE20-WE12	D_circ D_circ	0.008030088	4.351921	99.66 99.66	85.68 88.29	0.000963899	NA	NA	WE8	10/5/20	WE8	set_41 set_41	2020 Oct 2020 Oct	5 279 5 279	40 40	samp_4342 samp_4343
8761-SRC-14 8761-SRC-24	LE20-WE12 LE20-WE12	D_circ D_circ	0.003237957 0.009401801	4.351921 4.351921	99.23 99.62	88.71 90.36	0.000913982 I 0.00177516 I	NA NA	NA NA	WE12 WE2	10/5/20 9/20/21	WE12 WE2	set_41 set_41	2020 Oct 2021 Sep	5 279 20 263	40 38	samp_4344 samp_4353
8761-SRC-26 8761-SRC-27	LE20-WE12 LE20-WE12	D_circ D_circ	0.001780052	4.351921 4.351921	99.49 99.52	83.98 92.37	0.000344715	NA	NA NA	WE8 WE12	9/20/21 9/20/21	WE8 WE12	set_41 set_41	2021 Sep 2021 Sep	20 263 20 263	38 38	samp_4355 samp_4356
8761-SRC-28	LE20-WE12	D_circ	0.0042785	4.351921	99.58	92.1	0.000806469	NA	NA	WE2	10/4/21	WE2	set_41	2021 Oct	4 277	40	samp_4357
8761-SRC-29 8761-SRC-30	LE20-WE12 LE20-WE12	D_circ D_circ	0.004382092	4.351921 4.351921	99.62 99.66	95.13	0.000/9//11 1	NA NA	NA	WE8	10/4/21	WE8	set_41 set_41	2021 Oct 2021 Oct	4 277 4 277	40 40	samp_4358 samp_4359
8761-SRC-31 8761-SRC-33	LE20-WE12 LE20-WE12	D_circ D_circ	0.008022129 0.005829398	4.351921 4.351921	99.57 99.28	92.22 95.88	0.001529009	NA NA	NA NA	WE12 WE2	10/4/21 7/18/22	WE12 WE2	set_41 set_41	2021 Oct 2022 Jul	4 277 18 199	40 29	samp_4360 samp_4362
8761-SRC-35 8761-SRC-37	LE20-WE12 LE20-WE12	D_circ D_circ	0.001918135	4.351921 4.351921	99.19 99.54	92.38 76.71	0.000324652	NA	NA	WE8 WE2	7/18/22 8/17/22	WE8 WE2	set_41 set_41	2022 Jul 2022 Aug	18 199 17 229	29 33	samp_4364 samp_4366
8761-SRC-38	LE20-WE12	D_circ	0.001836272	4.351921	99.42	77.43	0.00029617	NA	NA	WE4	8/17/22	WE4	set_41	2022 Aug	17 229	33	samp_4367
8761-SRC-41	LE20-WE12	D_circ D_circ	0.001358964	4.351921	99.48	88.59	0.00021122 1	NA	NA	WE2	8/29/22	WE2	set_41 set_41	2022 Aug 2022 Aug	229 29 241	33 35	samp_4308
8761-SRC-43 8761-SRC-44	LE20-WE12 LE20-WE12	D_circ D_circ	0.002178549 0.001073596	4.351921 4.351921	99.44 99.3	82.76 75.95	0.000308799 1 0.000135294 1	NA	NA	WE8 WE12	8/29/22 8/29/22	WE8 WE12	set_41 set_41	2022 Aug 2022 Aug	29 241 29 241	35 35	samp_4372 samp_4373
8761-SRC-45 8761-SRC-46	LE20-WE12 LE20-WF12	D_circ D_circ	0.010036444	4.351921 4.351921	99.65 99.43	79.13 58	0.000842091	NA	NA	WE2 WE4	9/12/22 9/12/22	WE2 WE4	set_41 set_41	2022 Sep 2022 Sep	12 255 12 255	37 37	samp_4374 samp_4375
8761-SRC-47	LE20-WE12	D_circ	0.010050091	4.351921	99.61 99.4	87.08	0.000945632	NA	NA	WE8 WE12	9/12/22	WE8 WE12	set_41	2022 Sep	12 255	37 37	samp_4376
8761-SRC-49	LE20-WE12	D_circ	0.026085088	4.351921	99.73	56.63	0.00182166	NA	NA	WE2	9/30/22	WE2	set_41	2022 Sep	30 273	39 00	samp_4378
8761-SRC-53	LE20-WE12 LE20-WE12	u_circ D_circ	0.059879046 0.148223532	4.351921 4.351921	99.77	94.14 92.88	0.009749807	NA	NA	WE2	9/30/22 10/11/22	WE2	set_41 set_41	2022 Sep 2022 Oct	30 273 11 284	39 41	samp_4379 samp_4381
8761-SRC-55 8761-SRC-56	LE20-WE12 LE20-WE12	D_circ D_circ	0.097418149 0.083122387	4.351921 4.351921	99.78 99.78	92.36 93.63	0.00645302 1 0.005631753 1	NA	NA NA	WE8 WE12	10/11/22 10/11/22	WE8 WE12	set_41 set_41	2022 Oct 2022 Oct	11 284 11 284	41 41	samp_4382 samp_4383
8761-SRC-57	LE20-WE12	D_circ	0.142999268	4.351921	99.79	82.48	0.008953285	NA	NA	WE2	10/24/22	WE2	set_41	2022 Oct	24 297	43	samp_4384
8761-SRC-59	LE20-WE12	D_circ	0.11365768	4.351921	99.8	87.68	0.007091485	NA	NA	WE8	10/24/22	WE4 WE8	set_41	2022 Oct	24 297	43	samp_4386
E2014-0108-CNA	LE20-WE12 LE21-WE12	D_circ D_circ	0.169975815	4.351921 3.568765	99.78 99.32	85.34 81.42	0.000124657	NA 41.7031	NA -83.2591	WE12 WE12	9/29/14	WE12 WE12	set_41 set_17	2022 Oct 2014 Sep	24 297 29 272	43 39	samp_4387 samp_39
E20160044 E20170045	LE21-WE12 LE21-WE12	D_circ D_circ	0.000337484 0.00205555	3.568765 3.568765	99.52 99.37	78.35 53.77	0.00016399 4	41.8268 41.764	-83.192 -83.3296	WE4 WE2	8/22/16 8/28/17	WE4 WE2	set_35 set_35	2016 Aug 2017 Aug	22 235 28 240	34 35	samp_455 samp_456
E20190025 E20190026	LE21-WE12 LE21-WE12	D_circ D_circ	0.003766682	3.568765 3.568765	98.06 98.7	95.41 98.17	0.001228248 4	41.7624	-83.3306 -83.2544	WE2 WE12	8/5/19 8/5/19	WE2 WE12	set_35 set_35	2019 Aug 2019 Aug	5 217 5 217	31 31	samp_462 samp_463
E20190028	LE21-WE12	D_circ	0.001933314	3.568765	98.33	94.58	0.000660171 4	41.7615	-83.3309	WE2	8/12/19	WE2	set_35	2019 Aug	12 224	32	samp_464
E20200013	LE21-WE12	D_circ	0.001004902	3.568765	97.08	68.59	0.000531243	41.7021	-83.35921	WE8	7/6/20	WE12 WE8	set_35 set_35	2019 Aug 2020 Jul	6 188	32 27	samp_405 samp_471
E20200027 E20200047	LE21-WE12 LE21-WE12	D_circ D_circ	0.00055396 0.001383328	3.568765 3.568765	97.31 99.34	62.27 92.86	0.000167432 4	41.8274167 41.76135	-83.195617 -83.33285	WE4 WE2	7/28/20 8/10/20	WE4 WE2	set_35 set_35	2020 Jul 2020 Aug	28 210 10 223	30 32	samp_474 samp_477
E20200051 E20200052	LE21-WE12 LE21-WE12	D_circ D_circ	0.003088196	3.568765 3.568765	99.55 98.92	98.94 83.56	0.001161193 4	41.7174667	-83.424367 -83.254333	WE9 WE12	8/10/20 8/10/20	WE9 WE12	set_35 set 35	2020 Aug 2020 Aug	10 223 10 223	32 32	samp_479 samp_480
E20200089	LE21-WE12	D_circ	0.001813956	3.568765	99.6	97.23	0.000615984	41.7627833	-83.32965	WE2	9/9/20	WE2	set_35	2020 Sep	9 253	37	samp_481
E20200118	LE21-WE12	D_circ	0.012232969	3.568765	99.69	99.45	0.002281874	41.7622833	-83.330583	WE2	9/28/20	WE12 WE2	set_35 set_35	2020 Sep	9 253 28 272	37 39	samp_485
E20200119 E20200123	LE21-WE12 LE21-WE12	D_circ D_circ	0.00417101 0.000425267	3.568765 3.568765	99.75 99.6	80.59 72.74	0.001381752 4 0.000153112 4	41.826 41.7035167	-83.193733 -83.254533	WE4 WE12	9/28/20 9/28/20	WE4 WE12	set_35 set_35	2020 Sep 2020 Sep	28 272 28 272	39 39	samp_486 samp_487
E20212010 E20212011	LE21-WE12 LE21-WE12	D_circ D_circ	0.000313041	3.568765 3.568765	99.2 99.26	65.71 66.21	8.79E-05 4	41.653433 41.653433	-83.177667 -83.177667	WE16-WSW WE12-S	8/3/21 8/3/21	WE16 WE12	set_35 set 35	2021 Aug 2021 Aug	3 215 3 215	31 31	samp_499 samp 500
E20212012	LE21-WE12	D_circ	0.00041014	3.568765	99.36	60.99	0.000118032	41.76265	-83.329	WE2	8/31/21	WE2	set_35	2021 Aug	31 243	35	samp_501
E20212013	LE21-WE12	D_circ	0.000363166	3.568765	99.36	62.96	0.000159827 2	41.70406	-83.25291	WE12	8/31/21	WE4 WE12	set_35 set_35	2021 Aug 2021 Aug	31 243 31 243	35 35	samp_502 samp_504
E20212016 E20212018	LE21-WE12 LE21-WE12	D_circ D_circ	0.002457347 0.00482268	3.568765 3.568765	99.69 99.68	96.67 98.16	0.000588686 4 0.000784526 4	41.76265 41.7269	-83.329 -83.42329	WE2 WE9	9/21/21 9/21/21	WE2 WE9	set_35 set_35	2021 Sep 2021 Sep	21 264 21 264	38 38	samp_505 samp_506
E20212019 LE8	LE21-WE12 LE21-WE12	D_circ D_circ	0.003604476	3.568765 3.568765	99.77 97.92	99.39 52.75	0.001664618 4	41.70406 41.7028	-83.25291 -83.2563	WE12 WE12	9/21/21 7/29/19	WE12 WE12	set_35 set 35	2021 Sep 2019 Jul	21 264 29 210	38 30	samp_507 samp 508
LE25 SC50_50_Metagenome	LE21-WE12	D_circ	0.000206499	3.568765	99.62 98.81	50.16 56.22	0.000107405	41.82726	-83.19041 -83.21184393	WE4	9/13/21 8/24/18	WE4	set_35	2021 Sep	13 256 24 236	37 34	samp_516
SC05_50_Metagenome_2019	LE21-WE12	D_circ	0.000398297	3.568765	98.45	52.63	0.000133988	41.70248614	-83.25536512	NF	8/27/19	WE12	set_36	2019 Aug	27 239	35	samp_994
SC39_50_Metagenome_2019 SC31_50_Metagenome_2019	LE21-WE12 LE21-WE12	D_circ D_circ	0.000588186	3.568765	98.61	59.01	0.000201731 2	41.73074728 41.85004718	-83.29734036 -83.19432782	NF	8/23/19	WE2 WE4	set_36 set_36	2019 Aug 2019 Aug	21 233 23 235	34 34	samp_1288 samp_1290
SC11_50_Metagenome_2019 SC27_50_Metagenome_2019	LE21-WE12 LE21-WE12	D_circ D_circ	0.000881982 0.000527004	3.568765 3.568765	99.23 98.73	76.36 55.69	0.000340386 4	41.74394092 41.83387126	-83.13597092 -83.35776843	NF	8/26/19 8/23/19	WE13 WE8	set_36 set_36	2019 Aug 2019 Aug	26 238 23 235	34 34	samp_1296 samp_1313
SC41_50_Metagenome_2019 SC39 50 Metagenome 2019	LE21-WE12 LE21-WE12	D_circ D_circ	0.00079012	3.568765 3.568765	98.8 98.47	69.04 56.66	0.000288466	41.79870352	-83.34393421 -83.29734036	NF	8/20/19 8/21/19	WE2 WE2	set_36 set 36	2019 Aug 2019 Aug	20 232 21 233	34 34	samp_1317 samp_1326
6538-PDU-21	LE21-WE12	D_circ	0.000615818	3.568765	99.62	50.83	0.000164479	41.7427	-83.3048	NF T10	8/9/21	WE2	set_51	2021 Aug	9 221 24 236	32	samp_1443
SV_661	LE21-WE12	D_circ	0.009220734	3.568765	99.82	99.67	0.001183902	41.7626	-83.3291	T10	9/20/22	WE2	set_42	2022 Sep	20 263	38 30	samp_2014
SV_663 sv_639	LE21-WE12 LE21-WE12	D_circ D_circ	0.001609055 0.000241635	3.568765	99.7 99.37	99.55 58.45	0.000500915 4 7.06E-05 4	41.7574 41.7635	-83.3325 -83.3288	T10 T10	7/26/22 8/17/21	WE2 WE2	set_42 set_42	2022 Jul 2021 Aug	26 207 17 229	30 33	samp_2016 samp_2025
sv_641 sv_642	LE21-WE12 LE21-WE12	D_circ D_circ	0.000501963	3.568765 3.568765	99.7 99.63	86.82 74.29	0.000221953 4	41.7654 41.7603	-83.3273 -83.329	T6 T10	9/15/21 9/15/21	WE2 WE2	set_42 set_42	2021 Sep 2021 Sep	15 258 15 258	37 37	samp_2027 samp_2028
sv_645 8-15-16 WI F 8	LE21-WE12 LE21-WE12	D_circ	0.011127123	3.568765 3.568765	99.74 99.45	99.55 52.01	0.00235927 4	41.7664 41.834	-83.3268 -83.364	T9 WE8	10/5/21 8/15/16	WE2 WE8	set_42	2021 Oct	5 278 15 229	40 33	samp_2031 samp_2051
8-29-16 WLE 4	LE21-WE12	D_circ	0.00158174	3.568765	99.51	66.84 01.60	0.00055023	41.8302	-83.1904	WE4	8/29/16	WE4	set_41	2016 Aug	29 242	35	samp_2054
9-12-16 WLE 8	LE21-WE12	D_circ	0.011649241	3.568765	99.68	98.83	0.005124286	41.8322	-83.3589	WE8	9/12/16	WE8	set_41	2010 Sep	12 256	37	samp_2059
10-11-16 WLE 4 8-7-17 WLE 2	LE21-WE12 LE21-WE12	D_circ D_circ	0.008960357 0.000412191	3.568765 3.568765	99.72 99.37	96.98 59.08	0.002882887 4 7.02E-05 4	41.8256 41.7633	-83.1933 -83.3303	WE4 WE2	10/11/16 8/7/17	WE2	set_41 set_41	2016 Oct 2017 Aug	11 285 7 219	41 32	samp_2062 samp_2073
8-21-17 WLE 2 8-21-17 WLE 4	LE21-WE12 LE21-WF12	D_circ D, circ	0.00677139	3.568765 3.568765	99.7 99.63	99.45 70.68	0.001301243 4	41.7624 41.8265	-83.3295 -83.1978	WE2 WE4	8/21/17 8/21/17	WE2 WE4	set_41 set_41	2017 Aug 2017 Aug	21 233 21 233	34 34	samp_2077 samp 2078
8-21-17 WLE 8	LE21-WE12	D_circ	0.001866488	3.568765	99.59 99.13	97.15	0.000448788 4	41.8337	-83.3583	WE8 WE2	8/21/17	WE8	set_41	2017 Aug	21 233	34 20	samp_2079
7-22-19 WLE 2 7-22-19 WLE 4	LE21-WE12	D_circ	0.000531143	3.568765	97.46	65.54	0.000154694	41.8311	-83.195	WE4	7/22/19	WE4	set_41	2019 Jul	22 203	29 29	samp_2109 samp_2110
7-22-19 WLE 12 7-29-19 WLE 2	LE21-WE12 LE21-WE12	D_circ D_circ	0.008482869 0.000872867	3.568765 3.568765	98.22 99.2	52.05 69.32	0.003022905 4 0.000311358 4	41.706 41.7602	-83.2518 -83.3336	WE12 WE2	7/22/19 7/29/19	WE12 WE2	set_41 set_41	2019 Jul 2019 Jul	22 203 29 210	29 30	samp_2112 samp_2113
7-29-19 WLE 4 7-29-19 WLE 8	LE21-WE12 LE21-WE12	D_circ D_circ	0.002200539	3.568765 3.568765	97.46 98.11	80.82 96.85	0.000637369 4	41.8261 41.8328	-83.1946 -83.3625	WE4 WE8	7/29/19 7/29/19	WE4 WE8	set_41 set 41	2019 Jul 2019 Jul	29 210 29 210	30 30	samp_2114 samp_2115
7-29-19 WLE 12	LE21-WE12	D_circ	0.002278847	3.568765	98.01	74	0.000731236	41.7028	-83.2563	WE12	7/29/19	WE12	set_41	2019 Jul	29 210 19 231	30 33	samp_2116
8-19-19 WLE 8	LE21-WE12	D_circ	0.000266805	3.568765	97.88	65.07	8.37E-05	41.8336	-83.3598	WE8	8/19/19	WE8	set_41	2019 Aug	19 231	33	samp_2119
8-19-19 WLE 12 8-28-19 WLE 12	LE21-WE12	D_CIRC D_CIRC	0.000969894	3.568765	90.94 99.08	73.04 53.36	0.00040///1 4	41.7029 41.7424	-o3.2539 -83.138	WE12 WE12	8/19/19 8/28/19	WE12	ระเ_41 set_41	2019 Aug 2019 Aug	19 231 28 240	33 35	samp_2120 samp_2134
7-6-20 WLE 8 7-27-20 WLE 2	LE21-WE12 LE21-WE12	D_circ D_circ	0.00066562 0.000619176	3.568765 3.568765	97.37 98.92	54.34 82.76	0.000132209 1 0.000203608 1	NA	NA NA	WE8 WE2	7/6/20 7/27/20	WE8 WE2	set_41 set_41	2020 Jul 2020 Jul	6 188 27 209	27 30	samp_2141 samp_2143
7-27-20 WLE 4 7-27-20 WLF 8	LE21-WE12 LE21-WF12	D_circ	0.000812347	3.568765 3.568765	97.26 98.09	55.64 51.34	0.000230254	NA	NA NA	WE4 WE8	7/27/20	WE4 WE8	set_41 set 41	2020 Jul 2020 Jul	27 209 27 209	30 30	samp_2144 samp_2145
8-10-20 WLE 2	LE21-WE12	D_circ	0.002007348	3.568765	99.4	97.35	0.000787824	41.7614	-83.3329	WE2	8/10/20	WE2	set_41	2020 Aug	10 223	32	samp_2147
8-24-20 WLE 2 8-24-20 WLE 8	LE21-WE12	D_CIRC D_CIRC	0.003888262 0.068110198	3.568765	99.39 99.74	99.96	0.001661053 4 0.019448503 4	41.8342	-03.331 -83.3604	WE8	o/24/20 8/24/20	WE8	ระเ_41 set_41	2020 Aug 2020 Aug	24 237 24 237	34 34	samp_2151 samp_2153
8-24-20 WLE 12 8-31-20 WLE 2	LE21-WE12 LE21-WE12	D_circ D_circ	0.002665071 0.01550335	3.568765 3.568765	99.22 99.73	66.03 99.69	0.000656179 4 0.006425574 1	41.7031 NA	-83.2557 NA	WE12 WE2	8/24/20 8/31/20	WE12 WE2	set_41 set_41	2020 Aug 2020 Aug	24 237 31 244	34 35	samp_2154 samp_2155
8-31-20 WLE 8 8-31-20 WLF 12	LE21-WE12 LE21-WE12	D_circ	0.032520372	3.568765 3.568765	99.78 99.48	99.91 99.76	0.012949433	NA	NA	WE8 WE12	8/31/20 8/31/20	WE8 WE12	set_41 set 41	2020 Aug	31 244 31 244	35 35	samp_2157 samp_2158
9-14-20 WLE 2	LE21-WE12	D_circ	0.010189501	3.568765	99.74	95.16	0.002921193	NA	NA	WE2	9/14/20	WE2	set_41	2020 Sep	14 258	37	samp_2159
9-14-20 WLE 8 9-14-20 WLE 12	LE21-WE12	D_circ D_circ	0.00905/9/	3.568765	99.71	95.4	0.004398392	NA	NA	WE12	9/14/20 9/14/20	WE12	set_41 set_41	2020 Sep	14 258 14 258	37 37	samp_2161 samp_2162
TWTPIntake_080219	LE21-WE12 LE21-WE12	D_circ D_circ	0.000507701 0.000278628	3.568765 3.568765	98.56 98.27	89.15 59.98	0.000186683 4 8.25E-05 4	41.700044 41.700044	-83.250217 -83.250217	NA	8/2/19 8/2/19	WE12 WE12	set_18 set_18	2019 Aug 2019 Aug	2 214 2 214	31 31	samp_2214 samp_2215
LE14 LE2	LE21-WE12 LE21-WE12	D_circ D, circ	0.000390983	3.568765 3.568765	99.56 99.62	89.93 76.96	0.000180158	41.7026 41.7032	-83.2547 -83.254	WE12 WE12	9/7/21 9/11/17	WE12 WE12	set_35 set 35	2021 Sep 2017 Sen	7 250 11 254	36 37	samp_3935 samp_3937
doli_UT_Erie_late_2022 8761-SBC-7	LE21-WE12	D_circ	0.206590332	3.568765	99.83 99.74	72.78	0.012356452	NA	NA NA	NA WF2	NA 9/9/20	WE6 WE2	set_35	2022 NA	NA NA 9 252	44 37	samp_4333
8761-SRC-9	LE21-WE12	D_circ	0.007746412	3.568765	99.73	99.72	0.002765736	NA	NA	WE8	9/9/20	WE8	set_41	2020 Sep	9 253 9 653	37	samp_4340
8761-SRC-10	LE21-WE12 LE21-WE12	D_CIRC D_CIRC	0.008/103	3.568765 3.568765	99.75 99.61	96.81	0.003//9341 I 0.001538395 I	NA	NA	WE12 WE2	9/9/20 10/5/20	WE2	set_41 set_41	2020 Sep 2020 Oct	9 253 5 279	37 40	samp_4341 samp_4342
8761-SRC-13 8761-SRC-14	LE21-WE12 LE21-WE12	D_circ D_circ	0.005412309 0.003237957	3.568765 3.568765	99.65 99.3	98.06 90.8	0.000834322 I 0.000985116 I	NA	NA NA	WE8 WE12	10/5/20 10/5/20	WE8 WE12	set_41 set_41	2020 Oct 2020 Oct	5 279 5 279	40 40	samp_4343 samp_4344
8761-SRC-20	LE21-WE12	D_circ	0.000114358	3.568765	99.17	51.19	3.58E-05	NA	NA	WE2	8/30/21	WE2	set_41	2021 Aug	30 242	35	samp 4349

Table S2. (Page 2 of 5) Reads per kilobase million (RPKM) calculations and sample metadata used in Figure 4.

SampleName 8761-SRC-22 8761-SRC-23	mag group group_rpkm mag_length_mb LE21-WE12 D_circ 0.000173264 3.568765 LE21-WE12 D_circ 0.000188204 3.568765	id_ref_mag percent 99.5 99.23	mag_cover percent 78.77 60.58	rpkm 6.85E-05 6.78E-05	lat NA NA	lon NA NA	noaa_site WE8 WE12	collection date 8/30/21 8/30/21	clustered_site WE8 WE12	study_id set_41 set_41	year month 2021 Aug 2021 Aug	dayydaywee30242353024235	k sample_id GLAMR samp_4351 samp_4352
8761-SRC-24 8761-SRC-25 8761-SRC-26	LE21-WE12 D_circ 0.009401801 3.568765 LE21-WE12 D_circ 0.00050037 3.568765 LE21-WE12 D_circ 0.001780052 3.568765	99.69 99.63 99.71	99.42 76.34 98.75	0.002085465 0.000236695 0.00064797	NA NA NA	NA NA NA	WE2 WE4 WE8	9/20/21 9/20/21 9/20/21	WE2 WE4 WE8	set_41 set_41 set_41	2021 Sep 2021 Sep 2021 Sep	20 263 38 20 263 38 20 263 38	samp_4353 samp_4354 samp_4355
8761-SRC-27 8761-SRC-28 8761-SRC-29	LE21-WE12 D_circ 0.005748146 3.568765 LE21-WE12 D_circ 0.0042785 3.568765 LE21-WE12 D_circ 0.004382092 3.568765	99.72 99.68 99.66	99.74 99.67 75.7	0.00200959 0.001060734 0.000942687	NA NA NA	NA NA NA	WE12 WE2 WE4	9/20/21 10/4/21 10/4/21	WE12 WE2 WE4	set_41 set_41 set_41	2021 Sep 2021 Oct 2021 Oct	20 263 38 4 277 40 4 277 40	samp_4356 samp_4357 samp_4358
8761-SRC-30 8761-SRC-31 8761-SRC-33	LE21-WE12 D_circ 0.027606805 3.568765 LE21-WE12 D_circ 0.008022129 3.568765 LE21-WE12 D_circ 0.005829398 3.568765	99.7 99.72 99.4	99.9 99.71 99.79	0.004933266 0.002405091 0.001242405	NA NA NA	NA NA NA	WE8 WE12 WE2	10/4/21 10/4/21 7/18/22	WE8 WE12 WE2	set_41 set_41 set 41	2021 Oct 2021 Oct 2022 Jul	4277404277401819929	samp_4359 samp_4360 samp_4362
8761-SRC-35 8761-SRC-37 8761-SRC-38	LE21-WE12 D_circ 0.001918135 3.568765 LE21-WE12 D_circ 0.002836836 3.568765 LE21-WE12 D_circ 0.001836272 3.568765	99.56 99.74 99.73	99.67 96.95 97.92	0.00061266 0.000626485 0.000655981	NA NA	NA NA	WE8 WE2 WF4	7/18/22 8/17/22 8/17/22	WE8 WE2 WE4	set_41 set_41	2022 Jul 2022 Aug 2022 Aug	18 199 29 17 229 33 17 229 33	samp_4364 samp_4366 samp_4367
8761-SRC-39 8761-SRC-41 8761-SRC-43	LE21-WE12 D_circ 0.001358964 3.568765 LE21-WE12 D_circ 0.001358964 3.568765 LE21-WE12 D_circ 0.001953536 3.568765	99.64 99.76 99.76	98.54 99.46	0.000477768 0.000544383 0.000725817	NA NA	NA NA	WE8 WE2 WE8	8/17/22 8/29/22 8/29/22	WE8 WE2 WE8	set_41 set_41	2022 Aug 2022 Aug 2022 Aug	17 229 33 29 241 35 29 241 35	samp_1007 samp_4368 samp_4370
8761-SRC-44 8761-SRC-45	LE21-WE12 D_circ 0.00173596 3.568765 LE21-WE12 D_circ 0.010036444 3.568765 LE21-WE12 D_circ 0.010036444 3.568765	99.71 99.76	97.83 96.98	0.000299951 0.001222558 0.002047026	NA NA	NA NA	WE0 WE12 WE2	8/29/22 9/12/22	WE12 WE2 WE4	set_41 set_41	2022 Aug 2022 Aug 2022 Sep	29 241 35 12 255 37 12 255 27	samp_4373 samp_4374
8761-SRC-47 8761-SRC-48 8761-SRC-48	LE21-WE12 D_sinc 0.000229714 0.000700 LE21-WE12 D_sinc 0.010050091 3.568765 LE21-WE12 D_sinc 0.00329929 3.568765 LE21-WE12 D_sinc 0.00329828 3.568765	99.77 99.75 99.75	99.26 98.65 65.15	0.001620955 0.00144835 0.002026596	NA NA	NA NA	WE8 WE12 WE2	9/12/22 9/12/22 9/30/22	WE8 WE12 WE2	set_41 set_41	2022 Sep 2022 Sep 2022 Sep	12 255 37 12 255 37 12 255 37 30 273 39	samp_4376 samp_4377 samp_4377
8761-SRC-51 8761-SRC-53 8761-SRC-55	LE21-WE12 D_circ 0.059879046 3.568765 LE21-WE12 D_circ 0.148223532 3.568765 LE21-WE12 D_circ 0.148223532 3.568765	99.78 99.76	99.79 99.19 99.17	0.004633158 0.010191757 0.006677252	NA NA	NA NA	WE8 WE2	9/30/22 10/11/22	WE8 WE2 WE9	set_41 set_41	2022 Sep 2022 Sep 2022 Oct 2022 Oct	30 273 39 11 284 41	samp_4379 samp_4381
8761-SRC-56 8761-SRC-57 8761-SRC-57	LE21-WE12 D_circ 0.083122387 3.568765 LE21-WE12 D_circ 0.142999268 3.568765 LE21-WE12 D_circ 0.142999268 3.568765	99.79 99.79 99.82	99.78 84.34 76.31	0.005997857 0.009371473 0.003226213	NA NA	NA NA	WE0 WE12 WE2	10/11/22 10/24/22 10/24/22	WE12 WE2 WE4	set_41 set_41	2022 Oct 2022 Oct 2022 Oct 2022 Oct	11 284 41 24 297 43 24 297 43	samp_4383 samp_4384 samp_4385
8761-SRC-59 8761-SRC-60 F2014-0106-1001TR	LE21-WE12 D_circ 0.11365768 3.568765 LE21-WE12 D_circ 0.169975815 3.568765 LE21-WE12 D_circ 0.00053057 4.77371	99.8 99.77 98.39	93.82 88.03 55.12	0.007414863 0.010907274 0.000181114	NA NA 11 76472222	NA NA -83 335	WE8 WE12 WE2	10/24/22 10/24/22 9/29/14	WE8 WE12 WE2	set_41 set_41	2022 Oct 2022 Oct 2022 Oct	24 297 43 24 297 43 24 297 43 29 272 39	samp_1000 samp_4386 samp_4387 samp_15
E2014-0108-100LTR E2014-0108-CNA E2017-0108-CNA	LE22-WE12 D_circ 0.000371661 4.773271 LE22-WE12 D_circ 0.000726368 4.773271 LE22-WE12 D_circ 0.0007555 4.773271	98.55 99.12 99.3	53.66 76.07 61.01	0.000121579 0.000205077 0.000551354	41.7031 41.7031 41.7031	-83.2591 -83.2591	WE12 WE12 WE2	9/29/14 9/29/14 8/28/17	WE12 WE12 WE2	set_17 set_17 set_17	2014 Sep 2014 Sep 2014 Sep	29 272 39 29 272 39 29 272 39 28 240 35	samp_10 samp_38 samp_39 samp_456
E20190025 E20190026 E20190028	LE22-WE12 D_sirc 0.00260603 4.773271 LE22-WE12 D_sirc 0.003766682 4.773271 LE22-WE12 D_sirc 0.002921565 4.773271 LE22-WE12 D_sirc 0.001933314 4.773271	97.04 97.34 97.06	76.93 81.14 72.57	0.000876648	41.7624 41.703 41.7615	-83.3306 -83.2544	WE2 WE12 WE2	8/5/19 8/5/19 8/12/19	WE2 WE12 WE2	set_35 set_35	2019 Aug 2019 Aug 2019 Aug	20 240 00 5 217 31 5 217 31 10 224 32	samp_462 samp_463
E20190029 E20200013 E20200027	LE22-WE12 D_circ 0.001004902 4.773271 LE22-WE12 D_circ 0.002026368 4.773271 LE22-WE12 D_circ 0.00055336 4.773271	97 96.88 96.83	63.18 63	0.000231395	41.7021 41.81916 41.8274167	-83.2551 -83.35921 -83.195617	WE12 WE8 WE4	8/12/19 7/6/20 7/28/20	WE12 WE8 WE4	set_35 set_35	2019 Aug 2020 Jul 2020 Jul	12 224 32 12 224 32 6 188 27 28 210 30	samp_465 samp_471 samp_474
E20200047 E20200051 E20200052	LE22-WE12 D_circ 0.001383288 4.773271 LE22-WE12 D_circ 0.003088196 4.773271 LE22-WE12 D_circ 0.000820946 4.773271	98.61 98.99 97.64	69.23 84.03 54.5	0.000264723 0.000563511	41.76135 41.7174667 41.702	-83.33285 -83.424367 -83.254333	WE2 WE9 WE12	8/10/20 8/10/20 8/10/20	WE2 WE9 WE12	set_35 set_35	2020 Aug 2020 Aug 2020 Aug	10 223 32 10 223 32 10 223 32	samp_17 samp_477 samp_479 samp_480
E20200089 E20200094 E20200118	LE22-WE12 D_sinc 0.0008120040 4.773271 LE22-WE12 D_sinc 0.003140385 4.773271 LE22-WE12 D_sinc 0.003140385 4.773271 LE22-WE12 D_sinc 0.10232966 4.773271	99.16 99.31 99.57	80.48 82.16	0.000369219	41.7627833 41.7054833 41.7052833	-83.32965 -83.254233 -83.330583	WE12 WE12 WE2	9/9/20 9/9/20 9/28/20	WE12 WE12 WE2	set_35 set_35	2020 Sep 2020 Sep 2020 Sep	9 253 37 9 253 37 9 253 37 28 272 39	samp_481 samp_484 samp_485
E20200119 E20212016 E20212018	LE22-WE12 D_circ 0.00417101 4.773271 LE22-WE12 D_circ 0.002457347 4.773271 LE22-WE12 D_circ 0.004287347 4.773271	99.67 99.48 99.56	76.27 83.75 97.93	0.001308747	41.826 41.76265	-83.193733 -83.329 -83.42329	WE4 WE2 WE9	9/28/20 9/21/21	WE4 WE2 WE9	set_35 set_35	2020 Sep 2021 Sep 2021 Sep	28 272 39 21 264 38 21 264 38	samp_100 samp_486 samp_505 samp_506
E20212019 SV_658 SV_661	LE22-WE12 D_sirc 0.003604476 4.773271 LE22-WE12 D_sirc 0.001112076 4.773271 LE22-WE12 D_sirc 0.001112076 4.773271 LE22-WE12 D_sirc 0.00920734 4.773271	99.26 99.54	80.89 98.81	0.000537435	41.70406 41.7628	-83.25291 -83.3283	WE12 T10	9/21/21 8/24/22 9/20/22	WE12 WE2 WE2	set_35 set_42	2021 Sep 2022 Aug 2022 Sep	21 264 38 21 264 38 24 236 34 20 263 38	samp_000 samp_507 samp_2011
SV_663 SV_645	LE22-WE12 D_circ 0.001609055 4.773271 LE22-WE12 D_circ 0.001609055 4.773271 LE22-WE12 D_circ 0.011127123 4.773271 LE22 WE12 D_circ 0.00522567 4.773271	99.54 99.63	99.74 99.76	0.000496477 4	41.7574 41.7664 41.926	-83.3325 -83.3268 -83.1025	T10 T9	7/26/22 10/5/21	WE2 WE2 WE4	set_42 set_42 set_42	2022 Jul 2021 Oct 2016 Sop	26 203 30 26 207 30 5 278 40 12 256 27	samp_2014 samp_2016 samp_2031
9-12-16 WLE 4 9-11-16 WLE 8 10-11-16 WLE 4	LE22-WE12 D_circ 0.00392207 4.773271 LE22-WE12 D_circ 0.011649241 4.773271 LE22-WE12 D_circ 0.008960357 4.773271 LE22-WE12 D_circ 0.008410191 4.773271	99.06 99.37	76.19 75.05	0.001792107 0.001816396	41.8322 41.8256 41.7622	-83.3589 -83.1933	WE4 WE8 WE4	9/12/16 10/11/16	WE8 WE4 WE2	set_41 set_41 set_41	2016 Sep 2016 Sep 2016 Oct 2017 Aug	12 236 37 12 256 37 11 285 41 7 210 22	samp_2050 samp_2059 samp_2062
8-21-17 WLE 2 8-21-17 WLE 2 8-21-17 WLE 4	LE22-WE12 D_circ 0.000412191 4.773271 LE22-WE12 D_circ 0.00677139 4.773271 LE22-WE12 D_circ 0.003743202 4.773271	99.14 99.51 99.46	88.96 66.75	0.001695142	41.7624 41.8265	-83.3295 -83.1978	WE2 WE2 WE4	8/21/17 8/21/17 8/21/17	WE2 WE2 WE4	set_41 set_41 set_41	2017 Aug 2017 Aug 2017 Aug	7 219 32 21 233 34 21 233 34 21 233 34	samp_2073 samp_2077 samp_2078
7-22-19 WLE 2 7-22-19 WLE 2 7-22-19 WLE 4	LE22-WE12 D_circ 0.001866488 4.773271 LE22-WE12 D_circ 0.000491693 4.773271 LE22-WE12 D_circ 0.000531143 4.773271 LE22-WE12 D_circ 0.000531143 4.773271	99.3 97.75 97.08	54.93 57.54	9.61E-05 0.000147654	41.8337 41.763 41.8311	-83.3583 -83.3289 -83.195	WE8 WE2 WE4	7/22/19 7/22/19	WE2 WE4	set_41 set_41 set_41	2017 Aug 2019 Jul 2019 Jul	21 233 34 22 203 29 22 203 29 22 203 29	samp_2079 samp_2109 samp_2110
7-29-19 WLE 4 7-29-19 WLE 8 7-29-19 WLE 12	LE22-WE12 D_circ 0.002200539 4.773271 LE22-WE12 D_circ 0.000939711 4.773271 LE22-WE12 D_circ 0.002278847 4.773271 LE22-WE12 D_circ 0.002278847 4.773271	96.95 97.24 97.11	83.06 56.49	0.000576449 0.000225502 0.000540404	41.8261 41.8328 41.7028	-83.3625 -83.2563	WE4 WE8 WE12	7/29/19 7/29/19 7/29/19	WE8 WE12	set_41 set_41 set_41	2019 Jul 2019 Jul 2019 Jul	29 210 30 29 210 30 29 210 30 29 210 30 10 201 30	samp_2114 samp_2115 samp_2116
8-19-19 WLE 2 8-19-19 WLE 8 7-6-20 WLE 8	LE22-WE12 D_circ 0.000/07/56 4.7/3271 LE22-WE12 D_circ 0.000266805 4.773271 LE22-WE12 D_circ 0.00066562 4.773271 LE22-WE12 D_circ 0.00066562 4.773271	97.8 97.11 97.37	73.23 53.95 57.13	7.40E-05 0.000174791	41.8336 NA	-83.3598 NA	WE2 WE8 WE8	8/19/19 8/19/19 7/6/20	WE8 WE8	set_41 set_41 set_41	2019 Aug 2019 Aug 2020 Jul	19 231 33 19 231 33 6 188 27 97 999 999	samp_2117 samp_2119 samp_2141
8-10-20 WLE 2 8-24-20 WLE 2 8-24-20 WLE 2	LE22-WE12 D_circ 0.000619176 4.773271 LE22-WE12 D_circ 0.002007348 4.773271 LE22-WE12 D_circ 0.003888262 4.773271 LE22-WE12 D_circ 0.00201000 4.773271	97.93 98.54 98.87	75.64 77.74	0.000132141 1	41.7614 41.7618	-83.3329 -83.331	WE2 WE2 WE2	8/10/20 8/24/20	WE2 WE2 WE2	set_41 set_41 set_41	2020 Jut 2020 Aug 2020 Aug	27 209 30 10 223 32 24 237 34 24 207 34	samp_2143 samp_2147 samp_2151
8-24-20 WLE 8 8-24-20 WLE 12 8-31-20 WLE 2	LE22-WE12 D_circ 0.006161636 4.773271 LE22-WE12 D_circ 0.0026605071 4.773271 LE22-WE12 D_circ 0.01550335 4.773271	98.98 99.21	55.63 87.49	0.000600616	41.7031 NA	-83.2557 NA	WE8 WE12 WE2	8/24/20 8/24/20 8/31/20	WE12 WE2	set_41 set_41 set_41	2020 Aug 2020 Aug 2020 Aug	24 237 34 24 237 34 31 244 35 21 244 25	samp_2153 samp_2154 samp_2155
8-31-20 WLE 8 8-31-20 WLE 12 9-14-20 WLE 2	LE22-WE12 D_circ 0.032320372 4.773271 LE22-WE12 D_circ 0.012362757 4.773271 LE22-WE12 D_circ 0.010189501 4.773271 LE22-WE12 D_circ 0.010189501 4.773271	99.53 98.66 99.52	90.48 92.77 80.28	0.003263336 0.002038263 0.002282627	NA NA NA	NA NA NA	WE8 WE12 WE2	8/31/20 9/14/20	WE12 WE2	set_41 set_41 set_41	2020 Aug 2020 Aug 2020 Sep	31 244 35 31 244 35 14 258 37 14 259 37	samp_2157 samp_2158 samp_2159
9-14-20 WLE 8 9-14-20 WLE 12 TWTPSurge_080219	LE22-WE12 D_circ 0.00969797 4.773271 LE22-WE12 D_circ 0.004791122 4.773271 LE22-WE12 D_circ 0.000507701 4.773271 LE22-WE12 D_circ 0.00004102 4.773271	99.34 99.38 96.81	78.69 60.46	0.0001505782 1 0.000960169 1 0.000122733 4	NA NA 41.700044	NA NA -83.250217	WE8 WE12 NA	9/14/20 9/14/20 8/2/19	WE12 WE12 WE12	set_41 set_41 set_18	2020 Sep 2020 Sep 2019 Aug	14 258 37 14 258 37 2 214 31 11 254 27	samp_2161 samp_2162 samp_2214
doli_UT_Erie_late_2022 8761-SRC-7	LE22-WE12 D_circ 0.000344169 4.773271 LE22-WE12 D_circ 0.206590332 4.773271 LE22-WE12 D_circ 0.00932581 4.773271 LE22-WE12 D_circ 0.00932581 4.773271	99.09 99.92 99.14	99.97 94.49	0.166568985 0.00140773 0.000641607	NA NA	-85.254 NA NA	WE12 NA WE2	9/11/17 NA 9/9/20	WE12 WE6 WE2	set_35 set_35 set_41	2017 Sep 2022 NA 2020 Sep	NA NA 44 9 253 37 0 252 27	samp_3937 samp_4333 samp_4338
8761-SRC-9 8761-SRC-10 8761-SRC-10	LE22-WE12 D_circ 0.002746412 4.773271 LE22-WE12 D_circ 0.0087103 4.773271 LE22-WE12 D_circ 0.0087003 4.773271	99.38 99.19	95.14 91.09	0.001504263 0.001346757 0.002779643	NA NA	NA NA	WE4 WE8 WE12 WE2	9/9/20 9/9/20 10/5/20	WE8 WE12 WE2	set_41 set_41 set_41	2020 Sep 2020 Sep 2020 Sep 2020 Oct	9 253 37 9 253 37 9 253 37 5 279 40	samp_4300 samp_4340 samp_4341
8761-SRC-11 8761-SRC-13 8761-SRC-14	LE22-WE12 D_circ 0.006030088 4.773271 LE22-WE12 D_circ 0.005412309 4.773271 LE22-WE12 D_circ 0.003237957 4.773271 LE22-WE12 D_circ 0.000401401 4.773271	99.6 99.04	99.82 77.02	0.001704736	NA NA NA	NA NA NA	WE2 WE8 WE12	10/5/20 10/5/20 10/5/20	WE8 WE12	set_41 set_41 set_41	2020 Oct 2020 Oct 2020 Oct 2021 Sep	5 279 40 5 279 40 5 279 40 20 262 28	samp_4342 samp_4343 samp_4344
8761-SRC-24 8761-SRC-26 8761-SRC-27	LE22-WE12 D_clirc 0.003401801 4.773271 LE22-WE12 D_clirc 0.001780052 4.773271 LE22-WE12 D_clirc 0.005748146 4.773271 LE22-WE12 D_clirc 0.004738 4.773271	99.31 99.34	80.93 89.6 96.41	0.002374701 1 0.000330095 1 0.001106003 1	NA NA NA	NA NA NA	WE2 WE8 WE12	9/20/21 9/20/21 9/20/21	WE8 WE12 WE2	set_41 set_41 set_41	2021 Sep 2021 Sep 2021 Sep 2021 Oct	20 203 38 20 263 38 20 263 38 4 277 40	samp_4355 samp_4355 samp_4356
8761-SRC-29 8761-SRC-30 8761-SRC-31	LE22-WE12 D_circ 0.004382092 4.773271 LE22-WE12 D_circ 0.027606805 4.773271 LE22-WE12 D_circ 0.00822129 4.773271	99.54 99.62 99.47	73.84 99.95 98.47	0.001147836 0.008144864 0.001837908	NA NA	NA NA	WE4 WE8 WE12	10/4/21 10/4/21 10/4/21	WE4 WE8 WE12	set_41 set_41 set_41	2021 Oct 2021 Oct 2021 Oct 2021 Oct	4 277 40 4 277 40 4 277 40 4 277 40	samp_4358 samp_4359 samp_4360
8761-SRC-33 8761-SRC-35 8761-SRC-37	LE22-WE12 D_circ 0.005822125 4.773271 LE22-WE12 D_circ 0.001918135 4.773271 LE22-WE12 D_circ 0.00383836 4.773271	99.39 99.04	99.9 99.17 99.73	0.001792302 0.000410924 0.001498102	NA NA	NA NA	WE2 WE8 WE2	7/18/22 7/18/22 8/17/22	WE2 WE8 WE2	set_41 set_41 set_41	2022 Jul 2022 Jul 2022 Jul	18 199 29 18 199 29 18 199 29 17 229 33	samp_4362 samp_4364 samp_4366
8761-SRC-38 8761-SRC-39 8761-SRC-40	LE22-WE12 D_circ 0.001836272 4.773271 LE22-WE12 D_circ 0.001358964 4.773271 LE22-WE12 D_circ 0.000840262 4.773271	99.65 99.54 99.78	98.27 99.29 81.56	0.000589681 0.000463798 0.000490058	NA NA	NA NA	WE4 WE8 WE12	8/17/22 8/17/22 8/17/22	WE4 WE8 WE12	set_41 set_41 set_41	2022 Aug 2022 Aug 2022 Aug	17 229 33 17 229 33 17 229 33 17 229 33	samp_4367 samp_4368 samp_4369
8761-SRC-41 8761-SRC-43 8761-SRC-44	LE22-WE12 D_circ 0.001953536 4.773271 LE22-WE12 D_circ 0.002178549 4.773271 LE22-WE12 D_circ 0.001073596 4.773271	99.8 99.75 99.77	99.89 99.78 99.73	0.000926508 0.000885241 0.000523433	NA NA NA	NA NA NA	WE2 WE8 WE12	8/29/22 8/29/22 8/29/22	WE2 WE8 WE12	set_41 set_41 set_41	2022 Aug 2022 Aug 2022 Aug	29 241 35 29 241 35 29 241 35 29 241 35	samp_4370 samp_4372 samp_4373
8761-SRC-45 8761-SRC-46 8761-SRC-47	LE22-WE12 D_circ 0.010036444 4.773271 LE22-WE12 D_circ 0.01005257714 4.773271 LE22-WE12 D_circ 0.010050091 4.773271	99.91 99.64 99.89	99.92 89.52 99.93	0.006987236 0.001676476 0.006483152	NA NA NA	NA NA NA	WE2 WE4 WE8	9/12/22 9/12/22 9/12/22	WE2 WE4 WE8	set_41 set_41 set_41	2022 Sep 2022 Sep 2022 Sep	12 255 37 12 255 37 12 255 37 12 255 37	samp_4374 samp_4375 samp_4376
8761-SRC-48 8761-SRC-49 8761-SRC-51	LE22-WE12 D_circ 0.00329929 4.773271 LE22-WE12 D_circ 0.026085088 4.773271 LE22-WE12 D_circ 0.059879046 4.773271	99.58 99.92 99.91	99.29 99.89 99.98	0.000873891 0.019855169 0.045082756	NA NA NA	NA NA	WE12 WE2 WE8	9/12/22 9/30/22 9/30/22	WE12 WE2 WE8	set_41 set_41	2022 Sep 2022 Sep 2022 Sep	12 255 37 30 273 39 30 273 39	samp_1070 samp_4377 samp_4378 samp_4379
8761-SRC-52 8761-SRC-53 8761-SRC-55	LE22-WE12 D_circ 0.006131792 4.773271 LE22-WE12 D_circ 0.148223532 4.773271 LE22-WE12 D_circ 0.097418149 4.773271	99.94 99.91 99.92	99.45 99.98 99.98	0.004859538 0.115667541 0.075703468	NA NA NA	NA NA NA	WE12 WE2 WE8	9/30/22 10/11/22 10/11/22	WE12 WE2 WE8	set_41 set_41 set_41	2022 Sep 2022 Oct 2022 Oct	30 273 39 11 284 41 11 284 41	samp_4380 samp_4381 samp_4382
8761-SRC-56 8761-SRC-57 8761-SRC-58	LE22-WE12 D_circ 0.083122387 4.773271 LE22-WE12 D_circ 0.142999268 4.773271 LE22-WE12 D_circ 0.142999268 4.773271	99.92 99.92 99.94	99.98 99.98 99.97	0.064061156 0.113067213 0.038095888	NA NA	NA NA	WE12 WE2 WF4	10/11/22 10/24/22 10/24/22	WE12 WE2 WE4	set_41 set_41	2022 Oct 2022 Oct 2022 Oct	11 284 41 24 297 43 24 297 43	samp_4383 samp_4384 samp_4385
8761-SRC-59 8761-SRC-60 8761-SRC-102	LE22-WE12 D_circ 0.11365768 4.773271 LE22-WE12 D_circ 0.169975815 4.773271 LE22-WE12 D_circ 0.05571287 4.773271	99.93 99.92 99.9	99.98 99.98 96.67	0.089953133 0.135046888 0.004250924	NA NA	NA NA	WE8 WE12 WF4	10/24/22 10/24/22 10/11/22	WE8 WE12 WE4	set_41 set_41	2022 Oct 2022 Oct 2022 Oct	24 297 43 24 297 43 11 284 41	samp_4386 samp_4387 samp_425
E2014-0106-100LTR E2014-0048-100LTR E20150030	LE21-ER30 D_flos 0.000797091 3.90547 LE21-ER30 D_flos 0.000718535 3.90547 LE21-ER30 D_flos 0.000665611 3.90547	99.34 99.42 99.59	73.67 74.28 82.46	0.000264536 0.000190341 0.000280483	41.76472222 41.7025 41.7037	-83.335 -83.26305556 -83.2553	WE2 WE12 WE12	9/29/14 8/4/14 8/10/15	WE2 WE12 WE12	set_17 set_17 set_35	2014 Sep 2014 Aug 2015 Aug	29 272 39 4 216 31 10 222 32	samp_15 samp_22 samp_448
E20150032 E20190025 E20190026	LE21-ER30 D_ftos 0.000392729 3.90547 LE21-ER30 D_ftos 0.010823969 3.90547 LE21-ER30 D_ftos 0.013620331 3.90547	99.56 99.54 99.6	71.82 97.53 98.53	0.000167756 0.002875239 0.003806036	41.7172 41.7624 41.703	-83.016 -83.3306 -83.2544	WE14 WE2 WE12	8/10/15 8/5/19 8/5/19	WE14 WE2 WE12	set_35 set_35 set_35	2015 Aug 2019 Aug 2019 Aug	10 222 32 5 217 31 5 217 31	samp_450 samp_462 samp_463
E20190028 E20190029 E20190037	LE21-ER30 D_ftos 0.007465809 3.90547 LE21-ER30 D_ftos 0.003531 3.90547 LE21-ER30 D_ftos 0.001052131 3.90547	99.62 99.6 99.58	97.51 96.55 70.53	0.002127136 0.001036169 0.000324226	41.7615 41.7021 41.7606	-83.3309 -83.2551 -83.3326	WE2 WE12 WE2	8/12/19 8/12/19 9/3/19	WE2 WE12 WE2	set_35 set_35 set_35	2019 Aug 2019 Aug 2019 Sep	12 224 32 12 224 32 3 246 36	samp_464 samp_465 samp_467
E20190038 E20200011 E20200013	LE21-ER30 D_ftos 0.002286958 3.90547 LE21-ER30 D_ftos 0.001596018 3.90547 LE21-ER30 D_ftos 0.00736591 3.90547	99.64 99.5 99.54	70.88 92.41 92.2	0.000343275 0.000608047 0.002554295	41.7034 41.7634167 41.81916	-83.2558 -83.3307 -83.35921	WE12 WE2 WE8	9/3/19 7/6/20 7/6/20	WE12 WE2 WE8		2019 Sep 2020 Jul 2020 Jul	3 246 36 6 188 27 6 188 27	samp_468 samp_470 samp_471
E20200027 E20212010 E20212011	LE21-ER30 D_flos 0.000428774 3.90547 LE21-ER30 D_flos 0.001565883 3.90547 LE21-ER30 D_flos 0.001484297 3.90547	99.27 99.65 99.63	58.54 80.01 74.02	0.000136311 0.000541748 0.000492693	41.8274167 41.653433 41.653433	-83.195617 -83.177667 -83.177667	WE4 WE16-WSW WE12-S	7/28/20 8/3/21 8/3/21	WE4 WE16 WE12		2020 Jul 2021 Aug 2021 Aug	28 210 30 3 215 31 3 215 31	samp_474 samp_499 samp_500
E20212015 LE8 LE20	LE21-ER30 D_ftos 0.000690298 3.90547 LE21-ER30 D_ftos 0.002582696 3.90547 LE21-ER30 D_ftos 0.000454234 3.90547	99.61 99.55 99.49	60.44 94.01 71.56	0.000211536 0.000788547 0.000197351	41.70406 41.7028 41.7035	-83.25291 -83.2563 -83.2537	WE12 WE12 WE12	8/31/21 7/29/19 7/15/19	WE12 WE12 WE12	set_35 set_35 set_35	2021 Aug 2019 Jul 2019 Jul	31 243 35 29 210 30 15 196 28	samp_504 samp_508 samp_511
LE21 SC53_50_Metagenome_2019 SC05_50_Metagenome_2019	LE21-ER30 D_ftos 0.000934808 3.90547 LE21-ER30 D_ftos 0.000840428 3.90547 LE21-ER30 D_ftos 0.00059693 3.90547	99.51 99.57 99.56	80.85 59.24 70.88	0.000275495 0.000282607 0.000233364	41.8261 41.74046627 41.70248614	-83.1946 -83.29939226 -83.25536512	WE4 NF NF	7/29/19 8/17/19 8/27/19	WE4 WE2 WE12	 set_35 set_36 set_36	2019 Jul 2019 Aug 2019 Aug	29 210 30 17 229 33 27 239 35	samp_512 samp_980 samp 994
SC57_50_Metagenome_2019 SC41_50_Metagenome_2019 SC43_50_Metagenome_2019	LE21-ER30 D_ftos 0.000556493 3.90547 LE21-ER30 D_ftos 0.00063083 3.90547 LE21-ER30 D_ftos 0.000793039 3.90547	99.54 99.44 99.6	54.58 51.7 73.45	0.000176676 0.000180312 0.000318715	41.74057002 41.79870352 41.80373272	-83.30542931 -83.34393421 -83.36106082	NF NF	8/16/19 8/20/19 8/20/19	WE2 WE2 WE8	set_36 set_36 set_36	2019 Aug 2019 Aug 2019 Aug	16 228 33 20 232 34 20 232 34	samp_1315 samp_1317 samp_1319
SC37_50_Metagenome_2019 SC49_50_Metagenome_2019 SV_663	LE21-ER30 D_flos 0.002067918 3.90547 LE21-ER30 D_flos 0.001574878 3.90547 LE21-ER30 D_flos 0.000467376 3.90547	99.55 99.57 99.49	54.15 80.86 81.96	0.000315549 0.000473519 0.000138954	41.73539193 41.73442755 41.7574	-83.29849188 -83.29631719 -83.3325	NF NF T10	8/21/19 8/17/19 7/26/22	WE2 WE2 WE2	set_36 set_36 set_42	2019 Aug 2019 Aug 2022 Jul	21 233 34 17 229 33 26 207 30	samp_1324 samp_1328 samp_2016

Table S2. (Page 3 of 5) Reads per kilobase million (RPKM) calculations and sample metadata used in Figure 4.

SampleName	mag	group	group_rpkm	mag_length_mb	id_ref_mag percent	mag_cover percent	rpkm	lat	lon	noaa_site	collection date	clustered_site	study_id	year month d	ay yd	ay wee	k sample_id GLAMR
sv_639 9-12-16 WLE 8	LE21-ER30 LE21-ER30	D_flos	0.000467941	3.90547 3.90547	99.66 99.52	69.09 58.58	0.00012834 0.000936293	41.7635 41.8322	-83.3288 -83.3589	110 WE8	8/1//21 9/12/16	WE2 WE8	set_42 set_41	2021 Aug 1 2016 Sep 1	7 22 2 25	9 33 6 37	samp_2025 samp_2059
8-7-17 WLE 2 7-22-19 WLE 2	LE21-ER30 LE21-ER30	D_flos D_flos	0.000463084	3.90547 3.90547	99.54 99.57	66.54 93.02	0.000101219 0.000453391	41.7633 41.763	-83.3303 -83.3289	WE2 WE2	8/7/17 7/22/19	WE2 WE2	set_41 set_41	2017 Aug 7 2019 Jul 2	21 2 20	9 32 3 29	samp_2073 samp_2109
7-22-19 WLE 8	LE21-ER30	D_flos	0.014755786	3.90547	99.58	55.73	0.002935736	41.8354	-83.3584	WE8	7/22/19	WE8	set_41	2019 Jul 2	2 20	3 29	samp_2111
7-29-19 WLE 2 7-29-19 WLE 4	LE21-ER30 LE21-ER30	D_flos	0.003999353	3.90547 3.90547	99.58	95.67	0.000727904	41.7602	-83.3336 -83.1946	WE4	7/29/19	WE2 WE4	set_41 set_41	2019 Jul 2 2019 Jul 2	9 21 9 21	0 30	samp_2113 samp_2114
7-29-19 WLE 8	LE21-ER30	D_flos	0.003109758	3.90547	99.55	97.52	0.000818504	41.8328	-83.3625	WE8 WE12	7/29/19	WE8 WE12	set_41	2019 Jul 2	9 21	0 30	samp_2115
8-19-19 WLE 2	LE21-ER30	D_flos	0.000366966	3.90547	99.37	76.96	0.000104146	41.7621	-83.3303	WE2	8/19/19	WE2	set_41	2019 Aug 1	9 23	31 33	samp_2117
9-3-19 WLE 12 7-6-20 WLE 2	LE21-ER30 LE21-ER30	D_flos D_flos	0.003446266	3.90547 3.90547	99.67 99.53	67.12 79.13	0.000681879	41.7034 41.7634	-83.2558 -83.3307	WE12 WE2	9/3/19 7/6/20	WE12 WE2	set_41 set_41	2019 Sep 3 2020 Jul 6	24	6 36 8 27	samp_2138 samp_2139
7-6-20 WLE 8	LE21-ER30	D_flos	0.005559975	3.90547	99.58 99.5	97.88 65.98	0.001863517	NA 41 7035	NA	WE8 WE12	7/6/20	WE8 WE12	set_41	2020 Jul 6	18	8 27	samp_2141
8-24-20 WLE 8	LE21-ER30	D_flos	0.001169967	3.90547	97.85	69.8	0.000350499	41.8342	-83.3604	WE8	8/24/20	WE8	set_41	2020 Aug 2	4 23	87 34	samp_2153
TWTPSurge_080219 TWTPIntake_080219	LE21-ER30 LE21-ER30	D_flos D_flos	0.000383046	3.90547 3.90547	99.33 99.6	77.42 95.55	0.000129331 0.000482774	41.700044 41.700044	-83.250217 -83.250217	NA	8/2/19 8/2/19	WE12 WE12	set_18 set_18	2019 Aug 2 2019 Aug 2	21	4 31 4 31	samp_2214 samp_2215
LE2	LE21-ER30	D_flos	0.000495575	3.90547	99.54	53.23	0.000131546	41.7032	-83.254	WE12	9/11/17	WE12	set_35	2017 Sep 1	1 25	4 37	samp_3937
8761-SRC-20 8761-SRC-22	LE21-ER30	D_flos	0.000522983	3.90547	99.62	78.33	0.000154685	NA	NA	WE8	8/30/21	WE8	set_41 set_41	2021 Aug 3	0 24	2 35	samp_4351
8761-SRC-23 8761-SRC-33	LE21-ER30 LE21-ER30	D_flos D_flos	0.000891071 0.009035442	3.90547 3.90547	99.62 99.65	85.03 89.35	0.000277323 0.002574168	NA	NA NA	WE12 WE2	8/30/21 7/18/22	WE12 WE2	set_41 set_41	2021 Aug 3 2022 Jul 1	0 24 8 19	2 35 9 29	samp_4352 samp_4362
8761-SRC-35	LE21-ER30	D_flos	0.007307129	3.90547	99.61	91.77	0.00243914	NA	NA	WE8	7/18/22	WE8	set_41	2022 Jul 1	8 19	9 29	samp_4364
E2014-0106-100LTR	LE21-ER30 LE16-WE8	D_flos	0.00100291	3.786874	99.44	83.71	0.000317647	NA 41.76472222	-83.335	WE2 WE2	9/29/14	WE2 WE2	set_41 set_17	2022 Oct 2 2014 Sep 2	4 28 9 27	2 39	samp_15
E2014-0048-100LTR E2014-0124-100LTR	LE16-WE8 LE16-WE8	D_flos	0.000718535	3.786874 3.786874	99.59 99.46	95.78 50.57	0.000421657 7.14E-05	41.7025 41.76388889	-83.26305556 -83.33083333	WE12 WE2	8/4/14 10/20/14	WE12 WF2	set_17 set_17	2014 Aug 4 2014 Oct 2	21	6 31 3 42	samp_22 samp_35
E2014-0108-100LTR	LE16-WE8	D_flos	0.000173721	3.786874	99.45	52.18	7.68E-05	41.7031	-83.2591	WE12	9/29/14	WE12	set_17	2014 Sep 2	9 27	2 39	samp_38
E2014-0066-100LTR E20150030	LE16-WE8 LE16-WE8	D_flos	0.000417839	3.786874	99.38 99.65	59.92 75.2	0.000198859	41.705 41.7037	-83.25638889 -83.2553	WE12 WE12	8/25/14 8/10/15	WE12 WE12	set_17 set_35	2014 Aug 2 2015 Aug 1	5 23 0 22	37 34 22 32	samp_42 samp_448
E20150032	LE16-WE8	D_flos	0.000392729	3.786874	99.62 99.66	63.14 96.53	0.000145826	41.7172	-83.016	WE14 WE2	8/10/15	WE14 WE2	set_35	2015 Aug 1	0 22	2 32	samp_450
E20190026	LE16-WE8	D_flos	0.013620331	3.786874	99.72	98.01	0.004497454	41.703	-83.2544	WE12	8/5/19	WE12	set_35	2019 Aug 5	21	7 31	samp_463
E20190028 E20190029	LE16-WE8 LE16-WE8	D_flos D_flos	0.007465809 0.003531	3.786874 3.786874	99.67 99.65	96.1 93.81	0.001979967 0.000955152	41.7615 41.7021	-83.3309 -83.2551	WE2 WE12	8/12/19 8/12/19	WE2 WE12	set_35 set_35	2019 Aug 1 2019 Aug 1	2 22 2 22	4 32 4 32	samp_464 samp_465
E20190038	LE16-WE8	D_flos	0.002286958	3.786874	99.53	52.7	0.000252182	41.7034	-83.2558	WE12	9/3/19	WE12	set_35	2019 Sep 3	24	6 36	samp_468
E20200011 E20200013	LE16-WE8 LE16-WE8	D_flos D_flos	0.001596018	3.786874 3.786874	99.6 99.68	88.81 92.38	0.000631001	41.7634167 41.81916	-83.3307 -83.35921	WE2 WE8	7/6/20 7/6/20	WE2 WE8	set_35 set_35	2020 Jul 6 2020 Jul 6	18	8 27 8 27	samp_470 samp_471
E20200015	LE16-WE8	D_flos	0.000315886	3.786874	99.54	52.59	0.000147839	41.7034833	-83.255167	WE12	7/6/20	WE12	set_35	2020 Jul 6	18	8 27	samp_472
E20200027	LE16-WE8	D_flos	0.001565883	3.786874	99.8	93.17	0.000792921	41.653433	-83.177667	WE16-WSW	8/3/21	WE16	set_35	2021 Aug 3	21	5 31	samp_499
E20212011 E20212012	LE16-WE8 LE16-WE8	D_flos D_flos	0.001484297 0.000255854	3.786874 3.786874	99.79 99.77	88.03 63.04	0.000774734 0.000136495	41.653433 41.76265	-83.177667 -83.329	WE12-S WE2	8/3/21 8/31/21	WE12 WE2	set_35 set_35	2021 Aug 3 2021 Aug 3	21 1 24	5 31 3 35	samp_500 samp_501
E20212015	LE16-WE8	D_flos	0.000690298	3.786874	99.8	80.7	0.000376048	41.70406	-83.25291	WE12	8/31/21	WE12	set_35	2021 Aug 3	1 24	3 35	samp_504
LE20	LE 10-WE8	D_flos	0.002582696	3.786874	99.59	62.74	0.000869049	41.7028	-83.2563	WE12 WE12	7/15/19	WE12 WE12	set_35 set_35	2019 Jul 2 2019 Jul 1	ฮ 21 5 19	0 30 96 28	samp_508 samp_511
LE21 SC53 50 Metagenome 2019	LE16-WE8	D_flos	0.000934808	3.786874	99.66 99.66	80.94 55.57	0.000318507	41.8261	-83.1946 -83.2993922	WE4 NF	7/29/19	WE4 WE2	set_35	2019 Jul 2	9 21	0 30	samp_512 samp_980
SC05_50_Metagenome_2019	LE16-WE8	D_flos	0.00059693	3.786874	99.62	62.75	0.000228839	41.70248614	-83.25536512	NF	8/27/19	WE12	set_36	2019 Aug 2	7 23	9 35	samp_994
SC57_50_Metagenome_2019 SC43_50_Metagenome_2019	LE16-WE8 LE16-WE8	D_flos D_flos	0.000556493	3.786874 3.786874	99.64 99.59	56.4 58.19	0.000209811 0.000236966	41.74057002 41.80373272	-83.30542931 -83.36106082	NF NF	8/16/19 8/20/19	WE2 WE8	set_36 set_36	2019 Aug 1 2019 Aug 2	ы 22 0 23	8 33 2 34	samp_1315 samp_1319
SC37_50_Metagenome_2019	LE16-WE8	D_flos	0.002067918	3.786874	99.6 99.62	57.07	0.000330484	41.73539193	-83.29849188	NF	8/21/19	WE2	set_36	2019 Aug 2	1 23	3 34	samp_1324
6538-PDU-29	LE16-WE8	D_flos	0.000573355	3.786874	99.8	65.35	0.000453434	41.8381	-03.29031/19 -83.3504	NF	8/11/21	WE8	set_36 set_51	2019 Aug 1 2021 Aug 1	/ 22 1 22	.a 33 23 32	samp_1328 samp_1451
SV_663	LE16-WE8	D_flos	0.000467376	3.786874	99.74 99.8	95.69 88.65	0.000246287	41.7574	-83.3325 -83.3288	T10 T10	7/26/22	WE2 WE2	set_42	2022 Jul 2	6 20	07 30 9 32	samp_2016
sv_641	LE16-WE8	D_flos	0.000204093	3.786874	99.79	55.98	0.000142866	41.7654	-83.3273	T6	9/15/21	WE2	set_42 set_42	2021 Aug 1 2021 Sep 1	5 25	is 33	samp_2027
7-18-16 WLE 8 9-12-16 WLE 8	LE16-WE8 LE16-WE8	D_flos D_flos	0.000255379 0.004472647	3.786874 3.786874	99.84 99.85	60.69 96.4	0.000178913	41.8338 41.8322	-83.3511 -83.3589	WE8 WE8	7/18/16 9/12/16	WE8 WE8	set_41 set_41	2016 Jul 1 2016 Sep 1	8 20 2 25	0 29 6 37	samp_2043 samp_2059
8-7-17 WLE 2	LE16-WE8	D_flos	0.000463084	3.786874	99.82	92.2	0.00030262	41.7633	-83.3303	WE2	8/7/17	WE2	set_41	2017 Aug 7	21	9 32	samp_2073
8-21-17 WLE 2 7-22-19 WLE 2	LE16-WE8 LE16-WE8	D_flos	0.000216554	3.786874	99.4 99.7	95.05	0.000104793	41.7624 41.763	-83.3295 -83.3289	WE2 WE2	8/21/17 7/22/19	WE2 WE2	set_41 set_41	2017 Aug 2 2019 Jul 2	1 23 2 20	3 34 3 29	samp_2077 samp_2109
7-22-19 WLE 4	LE16-WE8	D_flos	0.000394011	3.786874	99.34	53.61	0.000197739	41.8311	-83.195	WE4	7/22/19	WE4	set_41	2019 Jul 2	2 20	3 29	samp_2110
7-29-19 WLE 2	LE16-WE8	D_flos	0.003999353	3.786874	99.7	89.97	0.000986593	41.7602	-83.3336	WE2	7/29/19	WE2	set_41	2019 Jul 2	2 20 9 21	0 30	samp_2113
7-29-19 WLE 4 7-29-19 WLE 8	LE16-WE8 LE16-WE8	D_flos	0.006031619	3.786874 3.786874	99.59 99.69	93.69 98.21	0.001343201	41.8261 41.8328	-83.1946 -83.3625	WE4 WE8	7/29/19	WE4 WE8	set_41 set_41	2019 Jul 2	9 21 9 21	0 30	samp_2114 samp_2115
7-29-19 WLE 12	LE16-WE8	D_flos	0.007113439	3.786874	99.63	90.53	0.001655178	41.7028	-83.2563	WE12	7/29/19	WE12	set_41	2019 Jul 2	9 21	0 30	samp_2116
8-19-19 WLE 2 9-3-19 WLE 12	LE16-WE8 LE16-WE8	D_flos D_flos	0.000366966	3.786874	99.52 99.62	78.57 55.05	0.000145455	41.7621 41.7034	-83.3303 -83.2558	WE2 WE12	9/3/19	WE2 WE12	set_41 set_41	2019 Aug 1 2019 Sep 3	9 23 24	1 33 6 36	samp_2117 samp_2138
7-6-20 WLE 2	LE16-WE8	D_flos	0.001248611	3.786874	99.66	82.61	0.000600822	41.7634 NA	-83.3307	WE2 WE8	7/6/20	WE2 WE8	set_41	2020 Jul 6	18	8 27	samp_2139
7-6-20 WLE 12	LE16-WE8	D_flos	0.000835268	3.786874	99.68	77.03	0.000423753	41.7035	-83.2552	WE12	7/6/20	WE12	set_41	2020 Jul 6	18	8 27	samp_2141
7-27-20 WLE 4 8-24-20 WLE 8	LE16-WE8 LE16-WE8	D_flos D_flos	0.000498846	3.786874 3.786874	99.39 98.51	50.78 79.81	0.000256603	NA 41.8342	NA -83.3604	WE4 WE8	7/27/20 8/24/20	WE4 WE8	set_41 set_41	2020 Jul 2 2020 Aug 2	7 20 4 23	9 30 7 34	samp_2144 samp_2153
TWTPSurge_080219	LE16-WE8	D_flos	0.000383046	3.786874	99.59	80.26	0.000185226	41.700044	-83.250217	NA	8/2/19	WE12	set_18	2019 Aug 2	21	4 31	samp_2214
LE14	LE16-WE8	D_flos	0.001809988	3.786874	99.58	94.55 55.63	9.52E-05	41.7026	-83.250217 -83.2547	WE12	9/7/21	WE12 WE12	set_18 set_35	2019 Aug 2 2021 Sep 7	25	4 31 60 36	samp_3935
LE2 8761-SBC-20	LE16-WE8	D_flos	0.000495575	3.786874	99.82 99.79	79.71 91.02	0.000292437	41.7032 NA	-83.254 NA	WE12 WE2	9/11/17 8/30/21	WE12 WE2	set_35	2017 Sep 1	1 25	4 37 2 35	samp_3937
8761-SRC-21	LE16-WE8	D_flos	0.000291294	3.786874	99.65	54.6	0.000156313	NA	NA	WE4	8/30/21	WE4	set_41	2021 Aug 3	0 24	2 35	samp_4350
8761-SRC-22 8761-SRC-23	LE16-WE8 LE16-WE8	D_flos D_flos	0.000522983 0.000891071	3.786874 3.786874	99.8 99.79	95.14 94.57	0.000292206	NA	NA NA	WE8 WE12	8/30/21 8/30/21	WE8 WE12	set_41 set_41	2021 Aug 3 2021 Aug 3	0 24 0 24	2 35 2 35	samp_4351 samp_4352
8761-SRC-33	LE16-WE8	D_flos	0.009035442	3.786874	99.87	99.17	0.005163363	NA	NA	WE2	7/18/22	WE2	set_41	2022 Jul 1	8 19	9 29	samp_4362
8761-SRC-35 8761-SRC-38	LE16-WE8	D_flos	0.007307129	3.786874	99.69	53.24	0.003682404	NA	NA	WE4	8/17/22	WE4	set_41 set_41	2022 Jul 1 2022 Aug 1	8 19 7 22	9 29 9 33	samp_4364 samp_4367
8761-SRC-39 8761-SRC-57	LE16-WE8	D_flos	0.000150626	3.786874	99.65	65.54 86.11	9.03E-05	NA	NA NA	WE8 WE2	8/17/22	WE8 WE2	set_41	2022 Aug 1	7 22	9 33	samp_4368
E2014-0106-100LTR	LE19-WE12	D_flos	0.000797091	4.238051	99.05	56.34	0.000177435	41.76472222	-83.335	WE2	9/29/14	WE2	set_17	2014 Sep 2	9 27	2 39	samp_15
E2014-0048-100LTR E20150030	LE19-WE12 LE19-WE12	D_flos D_flos	0.000718535	4.238051 4.238051	99.22 99.3	56.77 50.28	0.000106537	41.7025 41.7037	-83.26305556 -83.2553	WE12 WE12	8/4/14 8/10/15	WE12 WE12	set_17 set_35	2014 Aug 4 2015 Aug 1	21 0 22	6 31 2 32	samp_22 samp_448
E20190025	LE19-WE12	D_flos	0.010823969	4.238051	99.71	99.78	0.004570522	41.7624	-83.3306	WE2	8/5/19	WE2	set_35	2019 Aug 5	21	7 31	samp_462
E20190028	LE19-WE12	D_flos	0.007465809	4.238051	99.77	99.78	0.003358706	41.7615	-83.3309	WE2	8/12/19	WE2	set_35	2019 Aug 1	2 22	4 32	samp_464
E20190029 E20190037	LE19-WE12 LE19-WE12	D_flos D_flos	0.003531	4.238051 4.238051	99.74 99.72	99.65 87.49	0.001539679	41.7021 41.7606	-83.2551 -83.3326	WE12 WE2	8/12/19 9/3/19	WE12 WE2	set_35 set_35	2019 Aug 1 2019 Sep 3	2 22 24	4 32 6 36	samp_465 samp_467
E20190038	LE19-WE12	D_flos	0.002286958	4.238051	99.9	99.43 72.6	0.001691501	41.7034	-83.2558	WE12	9/3/19	WE12	set_35	2019 Sep 3	24	6 36	samp_468
E20200013	LE19-WE12	D_itos	0.00736591	4.238051	99.34	88.36	0.0016015	41.81916	-83.35921	WE8	7/6/20	WE8	set_35	2020 Jul 6	18	8 27	samp_470 samp_471
E20212010 LE8	LE19-WE12 LE19-WF12	D_flos	0.001565883	4.238051 4.238051	99.36 99.65	58.24 98.63	0.000231215	41.653433 41.7028	-83.177667 -83.2563	WE16-WSW WE12	8/3/21 7/29/19	WE16 WE12	set_35 set_35	2021 Aug 3	21 9 21	5 31 0 30	samp_499 samp_508
LE21	LE19-WE12	D_flos	0.000934808	4.238051	99.65	90.65	0.000340806	41.8261	-83.1946	WE4	7/29/19	WE4	set_35	2019 Jul 2	9 21	0 30	samp_512
SC53_50_Metagenome_2019	LE19-WE12 LE19-WE12	D_flos	0.000713845	4.238051	99.61	61.93	0.000482373	41.74046627	-63.3005 -83.29939226	NF	8/17/19	WE2	set_36 set_36	2019 Aug 2 2019 Aug 1	1 23 7 22	.5 34 19 33	samp_974 samp_980
Mirror_ST12_50_Metagenome_2019 Mirror_Nessie_50_Metagenome_2010	LE19-WE12 LE19-WE12	D_flos	0.00176153	4.238051	99.91 99.86	98.78 86.39	0.001316306	41.7025 41.734	-83.2547 -83.302	NF NF	8/27/19 8/27/19	WE12 WE2	set_36	2019 Aug 2	7 23	9 35 9 35	samp_1001 samp_1003
SC39_50_Metagenome_2019	LE19-WE12	D_flos	0.000343659	4.238051	99.61	55.8	0.000180281	41.73074728	-83.29734036	NF	8/21/19	WE2	set_36	2019 Aug 2	1 23	3 34	samp_1288
SC35_50_Metagenome_2019 SC11_50_Metagenome_2019	LE19-WE12 LE19-WE12	D_flos D_flos	0.00044425	4.238051 4.238051	99.72 99.81	68.55 84.23	0.000282242 0.000412851	41.73542874 41.74394092	-83.30516857 -83.13597092	NF NF	8/21/19 8/26/19	WE2 WE13	set_36 set_36	2019 Aug 2 2019 Aug 2	1 23 6 23	3 34 8 34	samp_1294 samp_1296
SC57_50_Metagenome_2019	LE19-WE12	D_flos	0.000556493	4.238051	99.53 99.65	54.23 72.95	0.000170006	41.74057002	-83.30542931	NF	8/16/19	WE2	set_36	2019 Aug 1	6 22	8 33	samp_1315
SC43_50_Metagenome_2019	LE19-WE12	D_flos	0.000793039	4.238051	99.53	64.24	0.000237357	41.80373272	-83.36106082	NF	8/20/19	WE8	set_36	2019 Aug 2	0 23	2 34 32 34	samp_1317
SC37_50_Metagenome_2019 SC39_50_Metagenome_2019	LE19-WE12 LE19-WE12	D_flos	0.002067918	4.238051	99.87 99.62	98.55 55.54	0.001421885	41.73539193 41.73074729	-83.29849188 -83.29734036	NF NF	8/21/19 8/21/19	WE2 WE2	set_36	2019 Aug 2	1 23	3 34	samp_1324 samp_1326
SC49_50_Metagenome_2019	LE19-WE12	D_flos	0.001574878	4.238051	99.69	92.53	0.000647925	41.73442755	-83.29631719	NF	8/17/19	WE2	set_36	2019 Aug 1	7 22	9 33	samp_1328
5V_663 7-22-19 WLE 2	LE19-WE12 LE19-WE12	D_flos D_flos	0.001406048	4.238051 4.238051	99.14 99.49	65.59 92.3	8.21E-05 0.000349044	41.7574 41.763	-83.3325 -83.3289	110 WE2	7/26/22 7/22/19	WE2 WE2	set_42 set_41	2022 Jul 2 2019 Jul 2	ы 20 2 20	17 30 13 29	samp_2016 samp_2109
7-22-19 WLE 4	LE19-WE12	D_flos	0.000394011	4.238051	99.31 99.81	63.27 91.11	0.000115563	41.8311	-83.195	WE4 WE8	7/22/19	WE4	set_41	2019 Jul 2	2 20	3 29	samp_2110
7-29-19 WLE 2	LE19-WE12	D_flos	0.003999353	4.238051	99.83	99.47	0.002284855	41.7602	-83.3336	WE2	7/29/19	WE2	set_41	2019 Jul 2	20 9 21	0 30	samp_2113
7-29-19 WLE 4 7-29-19 WLE 8	LE19-WE12 LE19-WF12	D_flos D_flos	0.006031619	4.238051 4.238051	99.78 99.66	99.75 99.84	0.003351556	41.8261 41.8328	-83.1946 -83.3625	WE4 WE8	7/29/19 7/29/19	WE4 WE8	set_41 set_41	2019 Jul 2 2019 Jul 2	9 21 9 21	0 30 0 30	samp_2114 samp_2115
7-29-19 WLE 12	LE19-WE12	D_flos	0.007113439	4.238051	99.78	99.54	0.003733102	41.7028	-83.2563	WE12	7/29/19	WE12	set_41	2019 Jul 2	9 21	0 30	samp_2116
8-19-19 WLE 2 8-28-19 WLE 2	LE19-WE12 LE19-WE12	D_flos D_flos	0.000366966	4.238051 4.238051	99.45 99.86	82.81 91.8	0.000117366 0.000698956	41.7621 NA	-83.3303 NA	WE2 WE2	8/19/19 8/28/19	WE2 WE2	set_41 set_41	2019 Aug 1 2019 Aug 2	9 23 8 24	51 33 40 35	samp_2117 samp_2131
8-28-19 WLE 12	LE19-WE12	D_flos	0.002972985	4.238051	99.86	95.82	0.00204478	41.7424	-83.138	WE12 WE2	8/28/19	WE12	set_41	2019 Aug 2	8 24	0 35	samp_2134
9-3-19 WLE 12	LE19-WE12 LE19-WE12	D_flos	0.0003446266	4.238051	99.86	97.15	0.004//2/85	41.7006	-03.3320 -83.2558	WE12	9/3/19	WE12	set_41	2019 Sep 3 2019 Sep 3	24	-0 36 16 36	samp_2135 samp_2138
7-6-20 WLE 2 7-6-20 WLE 8	LE19-WE12 LE19-WF12	D_flos	0.001248611	4.238051 4.238051	99.3 99.4	55.94 94.88	0.000244306	41.7634 NA	-83.3307 NA	WE2 WE8	7/6/20	WE2 WE8	set_41 set_41	2020 Jul 6	18	8 27 8 27	samp_2139 samp_2141
8-24-20 WLE 8	LE19-WE12	D_flos	0.001169967	4.238051	97.91	55.18	0.000413778	41.8342	-83.3604	WE8	8/24/20	WE8	set_41	2020 Aug 2	4 23	37 34	samp_2153
IWTPIntake_080219 8761-SRC-20	LE19-WE12 LE19-WE12	D_flos D_flos	0.001809966	4.238051 4.238051	99.75 99.37	99.61 50.73	0.000762711 5.65E-05	41.700044 NA	-83.250217 NA	NA WE2	8/2/19 8/30/21	WE12 WE2	set_18 set_41	2019 Aug 2 2021 Aug 3	21 0 24	4 31 2 35	samp_2215 samp_4349
8761-SRC-22	LE19-WE12	D_flos	0.000522983	4.238051	99.39	56.58	7.61E-05	NA	NA	WE8	8/30/21	WE8	set_41	2021 Aug 3	0 24	2 35	samp_4351
8761-SRC-33	LE19-WE12 LE19-WE12	D_flos	0.000891071	4.238051	99.41	79.1	0.000139997	NA	NA	WE12 WE2	7/18/22	WE2	set_41	2021 Aug 3 2022 Jul 1	u 24 8 19	⊷ 35 9 29	samp_4362
8761-SRC-35 8761-SRC-57	LE19-WE12 LE19-WF12	D_flos	0.007307129	4.238051 4.238051	99.37 99.28	83.86 62.38	0.001185585	NA	NA	WE8 WE2	7/18/22	WE8 WE2	set_41 set_41	2022 Jul 1 2022 Oct 2	8 19 4 20	9 29 7 43	samp_4364 samp_4384
E20200026	LE20-WE2-Aug	C_issa	0.000367634	4.344744	98.85	50.38	0.000192213	41.7622	-83.331167	WE2	7/28/20	WE2	set_35	2020 Jul 2	8 21	0 30	samp_473
E20200047 E20200051	LE20-WE2-Aug LE20-WE2-Aug	C_issa C_issa	0.001336614 0.000728399	4.344744 4.344744	99.25 98.94	97.33 86.3	0.000784902 0.000351232	41.76135 41.7174667	-83.33285 -83.424367	WE2 WE9	8/10/20 8/10/20	WE2 WE9	set_35 set_35	2020 Aug 1 2020 Aug 1	0 22 0 22	3 32 3 32	samp_477 samp_479
E20200052	LE20-WE2-Aug	C_issa	0.000808706	4.344744	99.01	85.19	0.000429133	41.702	-83.254333	WE12	8/10/20	WE12	set_35	2020 Aug 1	0 22	3 32	samp_480
E20200094	LE20-WE2-Aug	C_issa	0.00234427	4.344744	99.04	94.43	0.000729083	41.7054833	-63.32965 -83.254233	WE12	9/9/20	WE12	set_35	2020 Sep 9	25	i3 37	samp_481
SC17_50_Metagenome SC33_50_Metagenome	LE20-WE2-Aug	C_issa	0.000249467	4.344744 4.344744	98.51 98.49	53.48 60.43	0.000130075	41.85046938	-83.19494729 -83.19036052	NF	8/31/18 8/29/18	WE4 WE4	set_36	2018 Aug 3	1 24	3 35	samp_791 samp_861
SC50_50_Metagenome	LE20-WE2-Aug	C_issa	0.000247093	4.344744	98.41	51.61	0.000133252	41.82489782	-83.21184393	NF	8/24/18	WE4	set_36	2018 Aug 2	4 23	. 33 16 34	samp_001
o-24-20 WLE 2 8-24-20 WLE 8	LE20-WE2-Aug	C_issa	0.000447967	4.344744 4.344744	98.20 97.86	90.33	0.000233226	41.7618 41.8342	-83.3604	WE2 WE8	8/24/20 8/24/20	WE8	set_41 set_41	2020 Aug 2 2020 Aug 2	4 23 4 23	34 37 34	samp_2151 samp_2153

Table S2. (Page 4 of 5) Reads per kilobase million (RPKM) calculations and sample metadata used in Figure 4.

SampleName	mag	group	group_rpkm	mag_length_mb	id_ref_mag percent	mag_cover percent	rpkm	lat	lon	noaa_site	collection date	clustered_site	study_id	year	month	day	yday	week	sample_id GLAMR
8-31-20 WLE 2	LE20-WE2-Aug	C_issa	0.000560606	4.344744	98.38	51.95	0.000289555	NA	NA	WE2	8/31/20	WE2	set_41	2020	Aug	31	244	35	samp_2155
8-31-20 WLE 8	LE20-WE2-Aug	C_issa	0.000459211	4.344744	98.14	65.56	0.000234755	NA	NA	WE8	8/31/20	WE8	set_41	2020	Aug	31	244	35	samp_2157
8-31-20 WLE 12	LE20-WE2-Aug	C_issa	0.001040414	4.344744	98.11	83.04	0.000532351	NA	NA	WE12	8/31/20	WE12	set_41	2020	Aug	31	244	35	samp_2158
8761-SRC-7	LE20-WE2-Aug	C_issa	0.000801379	4.344744	98.65	93.09	0.000407065	NA	NA	WE2	9/9/20	WE2	set_41	2020	Sep	9	253	37	samp_4338
8761-SRC-10	LE20-WE2-Aug	C_issa	0.000324033	4.344744	98.25	73.61	0.000170138	NA	NA	WE12	9/9/20	WE12	set_41	2020	Sep	9	253	37	samp_4341
E20200026	LE20-WE2-Sep	C_issa	0.000367634	3.60207	99.28	52.42	0.00017542	41.7622	-83.331167	WE2	7/28/20	WE2	set_35	2020	Jul	28	210	30	samp_473
E20200047	LE20-WE2-Sep	C_issa	0.001336614	3.60207	99.28	93.43	0.000551712	41.76135	-83.33285	WE2	8/10/20	WE2	set_35	2020	Aug	10	223	32	samp_477
E20200051	LE20-WE2-Sep	C_issa	0.000728399	3.60207	99.16	88.95	0.000377167	41.7174667	-83.424367	WE9	8/10/20	WE9	set_35	2020	Aug	10	223	32	samp_479
E20200052	LE20-WE2-Sep	C_issa	0.000808706	3.60207	99.25	87.57	0.000379572	41.702	-83.254333	WE12	8/10/20	WE12	set_35	2020	Aug	10	223	32	samp_480
E20200089	LE20-WE2-Sep	C_issa	0.00234427	3.60207	99.26	99.37	0.001215193	41.7627833	-83.32965	WE2	9/9/20	WE2	set_35	2020	Sep	9	253	37	samp_481
E20200094	LE20-WE2-Sep	C_issa	0.001424058	3.60207	99.18	96.57	0.000694975	41.7054833	-83.254233	WE12	9/9/20	WE12	set_35	2020	Sep	9	253	37	samp_484
SC17_50_Metagenome	LE20-WE2-Sep	C_issa	0.000249467	3.60207	98.89	54.52	0.000119392	41.85046938	-83.19494729	NF	8/31/18	WE4	set_36	2018	Aug	31	243	35	samp_791
SC33_50_Metagenome	LE20-WE2-Sep	C_issa	0.000354827	3.60207	98.78	61.85	0.000169056	41.84968278	-83.19036052	NF	8/29/18	WE4	set_36	2018	Aug	29	241	35	samp_861
SC50_50_Metagenome	LE20-WE2-Sep	C_issa	0.000247093	3.60207	98.82	52.16	0.000113841	41.82489782	-83.21184393	NF	8/24/18	WE4	set_36	2018	Aug	24	236	34	samp_924
8-24-20 WLE 2	LE20-WE2-Sep	C_issa	0.000447967	3.60207	98.49	56.92	0.000214742	41.7618	-83.331	WE2	8/24/20	WE2	set_41	2020	Aug	24	237	34	samp_2151
8-24-20 WLE 8	LE20-WE2-Sep	C_issa	0.000582846	3.60207	98.16	92.47	0.000300457	41.8342	-83.3604	WE8	8/24/20	WE8	set_41	2020	Aug	24	237	34	samp_2153
8-31-20 WLE 2	LE20-WE2-Sep	C_issa	0.000560606	3.60207	98.67	53.45	0.000271052	NA	NA	WE2	8/31/20	WE2	set_41	2020	Aug	31	244	35	samp_2155
8-31-20 WLE 8	LE20-WE2-Sep	C_issa	0.000459211	3.60207	98.47	67.26	0.000224456	NA	NA	WE8	8/31/20	WE8	set_41	2020	Aug	31	244	35	samp_2157
8-31-20 WLE 12	LE20-WE2-Sep	C_issa	0.001040414	3.60207	98.26	85.64	0.000508062	NA	NA	WE12	8/31/20	WE12	set_41	2020	Aug	31	244	35	samp_2158
8761-SRC-7	LE20-WE2-Sep	C_issa	0.000801379	3.60207	98.86	95.43	0.000394314	NA	NA	WE2	9/9/20	WE2	set_41	2020	Sep	9	253	37	samp_4338
8761-SRC-10	LE20-WE2-Sep	C_issa	0.000324033	3.60207	98.57	76.06	0.000153895	NA	NA	WE12	9/9/20	WE12	set_41	2020	Sep	9	253	37	samp_4341

 Table S2. (Page 5 of 5) Reads per kilobase million (RPKM) calculations and sample metadata used in Figure 4.

mag	gtdbtk_species_classification	n gene contig	type sta	art stop strand	locus_tag	product	db_refs
LE16-WE8	Dolichospermumflosaquae	nifH samp_2059_2985	cds 1	432 1833 -	BHEOGE_16725	Nitrogenase (Molybdenum-iron) reductase and maturation protein NifH	S0:0001217, UniRef:UniRef50, ADA689R323, UniRef:UniRef90_W6FTP0
LE16-WE8	Dolichospermumflosaquae	ureA samp_2059_47461	cds	27 329 +	BHEOGE_08860	urease subunitgamma	COG:COG0831, COG:E, EC:3.5.1.5, GO:0009737, GO:0009039, GO:0016151, GO:0043419, SO:0001217, UniParc: UPI0007FBE488, UniRef:UniRef100_A0A1B7X098, UniRef:UniRef50_Q4KU06, UniRef:UniRef90_B2/T64
LE16-WE8	Dolichospermumflosaquae	ureB samp_2059_140083	cds 1	291 1596 -	BHEOGE_15265	urease subunit beta	COG:COG0832, COG:E, RefSeq:WP_190386701.1, SO:0001217, UniPar:: UPI00080196BD, UniRef:UniRef100_A0A1B7VZ77, UniRef:UniRef30_A1TSZ5, UniRef:UniRef90_K9ZNU6
LE17-WE12	Dolichospermum circinale	nifH samp_3937_1114353	cds	682 1122 +	CELJHL_14400	Nitrogenase ATPase subunit NifH/coenzyme F430 biosynthesis subunit CfbC	COG:COG1348, COG:HP, S0:0001217, UniRef:UniRef50_A0A1Z4UNY5, UniRef1UniRef90_A0A1Z4UNY5
LE17-WE12	Dolichospermum circinale	ureA samp_3937_676628	cds	112 414 -	CELJHL_09425	urease subunitgamma	COG:COG0831, COG:E, EC3.5.1.5, GO:0005737, GO:0009039, GO:0016151, GO:0043419, SO:0001217, UniParc:UPI0007FBE488, UniRef:UniRef100_A0A187X098, UniRef:UniRef50_Q4KJ06, UniRef:UniRef90_B2I764
LE17-WE12	Dolichospermum circinale	ureB samp_3937_256809	cds	650 955 -	CELJHL_03775	urease subunit beta	COG:COG0832, COG:E, RefSeq:WP_028090419.1, SO:0001217, UniPar::UPI00042296D1, UniRef:UniRef10_UPI00042296D1, UniRef:UniRef50_A1TSZ5, UniRef:UniRef90_K9ZNU6
LE17-WE2	Dolichospermum sp000312705	5 nifH samp_2073_20761	cds 2	087 2809 +	PHGANH_00510	Nitrogenase ATPase subunit NifH/coenzyme F430 biosynthesis subunit CfbC	COG:COG1348, COG:HP, KEGG:K02588, SO:0001217, UniRef:UniRef50, A0A076N8/7, UniRef:UniRef30, A0A5C0DS/6
LE17-WE2	Dolichospermum sp000312705	5 nifK samp_2073_767671	cds 15	733 17268 -	PHGANH_07990	nitrogenase molybdenum-iron protein subunit beta	COG:COG2710, COG:HP, SO:0001217, UniRef:UniRef50_P07329, UniRef:UniRef90_D2CN98
LE17-WE2	Dolichospermum sp000312705	5 ureA samp_2073_915305	cds	564 866 -	PHGANH_09445	urease subunitgamma	COG:COG0831, COG:E, EC3.5.1.5, GO:0005737, GO:0009039, GO:0016151, GO:0043419, SO:0001217, UniRef:UniRef50_Q4KU6, UniRef.UniRef90, B2IT64
LE17-WE2	Dolichospermum sp000312705	5 ureB samp_2073_58478	cds	233 538 +	PHGANH_01015	urease subunit beta	COG:COG0832, COG:E, SO:0001217, UniRef:UniRefS0_A1TS25, UniRef:UniRef90_K9ZNU6
LE17-WE2	Dolichospermum sp000312705	5 ureC samp_2073_58478	cds	582 2288 +	PHGANH_01020	urease subunital pha	COG:COG0804, COG:E, SO:0001217, UniRef:UniRef50, Q7V3V2, UniRef:UniRef50_A0A161Y2P7
LE19-WE12	Dolichospermum flos aquae	nifD samp_468_229199	cds 6	587 7981 +	FCOGFM_07390	nitrogenase molybdenum-iron protein alpha chain	COG:COG2710, COG:HP, SO:0001217, UniRef:UniRef50_P07328, UniRef:UniRef90_UPI001E49E6DE
LE19-WE12	Dolichospermumflosaquae	nifH samp_468_229199	cds 6	023 6424 +	FCOGFM_07385	5 Nitrogenase (Molybdenum-iron) reductase and maturation protein NifH	SO:0001217, UniRef:UniRef50, ADA689R323, UniRef.UniRef90_W6FTP0
LE19-WE12	Dolichospermum flosaquae	nifK samp_468_793005	cds 8	582 10117 -	FCOGFM_19175	5 nitrogenase molybdenum-iron protein subunit beta	COG:COG2710, COG:HP, RefSeq:WP_190387296.1, SO:0001217, UniParc:UP10008021008, UniRef:UniRef100_A0A1B7VZP7, UniRef:UniRef30_P07329, UniRef:UniRef30_D2CN98
LE19-WE12	Dolichospermum flos aquae	ureA samp_468_294592	cds 20	966 21268 -	FCOGFM_10075	5 urease subunitgamma	COG:COG0831, COG:E, EC3.5.1.5, GO:0005737, GO:0009039, GO:0016151, GO:0043419, SO:0001217, UniParc:UPI0007FBE4B8, UniRef:UniRef100_A0A1B7X098, UniRef:UniRef50_Q4KJ06, UniRef:UniRef90_B2IF64
LE19-WE12	Dolichospermum flos aquae	ureB samp_468_294592	cds 20	638 20943 -	FCOGFM_10070) urease subunit beta	COG:COG0832, COG:E, RefSeq:WP_190386701.1, SO:0001217, UniParc: UPI00080196BD, UniRef.UniRef100_A0A1B7VZ77, UniRef.UniRef30_A1TSZ5, UniRef.UniRef90_K9ZNU6
LE19-WE12	Dolichospermum flosaquae	ureC samp_468_294592	cds 18	880 20586 -	FCOGFM_10060	urease subunitalpha	COG:COG0804, COG:E, SO:0001217, UniRef:UniRefS0_Q7V3V2, UniRef:UniRef90_A0A161Y2P7
LE20-WE12	Dolichospermum circinale	nifD samp_4344_89087	cds 5	588 6514 +	AIOLHN_04875	Nitrogenase Mo-Fe protein NifD/ coenzyme F430 biosynthesis subunit CfbD	COG:COG2710, COG:HP, SO:0001217, UniParc:UPI000AFF0457, UniRef:UniRef100, A0A480AIX5, UniRef:UniRef50, A0A090A141, UniRefUniRef90_K92EH4
LE20-WE12	Dolichospermum circinale	nifH samp_4344_89087	cds 4	566 5456 +	AIOLHN_04870	nitrogenase iron protein	COG:COG1348, COG:HP, EC:1.18.6.1, G0:0005524, GO:0005399, GO:0016163, GO:0018697, GO:0048697, GO:0051539, KEGG:K02588, RefSerg:WP_028089570.1, SO:0001217, UniParc:UPI0004280ACB, UniRef:UniRef100, A0A480ACX4, UniRef:UniRef50, P22921, UniRef:UniRef90, P0A3S1
LE20-WE12	Dolichospermum circinale	nifK samp_4344_179825	cds	305 1840 +	AIOLHN_08975	nitrogenase molybdenum-iron protein subunit beta	COG:COG2710, COG:HP, S0:0001217, UniRef:UniRef50, P07329, UniRef:UniRef90, D2CN98
LE20-WE12	Dolichospermum circinale	ureA samp_4344_207048	cds 3	244 3546 +	AIOLHN_10135	urease subunit gamma	COG:COG0831, COG:E, EC3.5.1.5, GO:0005737, GO:0009039, GO:0016151, GO:0043419, RefSeq:WP_028090420.1, SO:0001217, UniParc: UPI0004144060, UniRef.UniRef100_UPI0004144060, UNIREf.UNIREf
LE20-WE12	Dolichospermum circinale	ureB samp_4344_117061	cds 1	204 1509 +	AIOLHN_06185	urease subunit beta	COG:CCOG0822, COG:E, RefSeq;WP, 190391792.1, SO:0001217, UniParc: UPI0016801939, UniRef:UniRef100_UPI0016801939, UniRef:UniRef50_K125, UniRef50_K125, UniRef50_K
LE20-WE12	Dolichospermum circinale	ureC samp_4344_61552	cds 5	296 7002 -	AIOLHN_03775	urease subunitalpha	COG:COG0804, COG:E, SO:0001217, UniRef:UniRefS0_Q7V3V2, UniRef:UniRef30_A0A161Y2P7
LE20-WE2-Aug	Cuspidothrixissatschenkoi	ureA samp_477_328402	cds	744 1046 +	FCGBEC_06260	urease subunit gamma	COG:COG0831, COG:E, EC:3.5.1.5, GO:0009737, GO:0009039, GO:0016151, GO:0043419, RefSeq:WP.104386384.1, SO:0001217, UniPart: UPI000CEA416C, UniRef:UniRef100, A0A2S6CYG2, UniRef:Uni
LE20-WE2-Aug	Cuspidothrixissatschenkoi	ureB samp_477_432475	cds	351 656 +	FCGBEC_07690	urease subunit beta	COG:COG0832, COG:E, SO:0001217, UniRef:UniRef:0, ATIS25, UniRef:UniRef:0, K92NU6
LE20-WE2-Aug	Cuspidothrixissatschenkoi	ureC samp 477 432475	cds	699 2405 +	FCGBEC 07695	urease subunital pha	COG:COG0804, COG:E, S0:0001217, UniRef:UniRef50 07V3V2, UniRef:UniRef50 A0A161Y2P7
LE20-WE2-Sep	Cuspidothrixissatschenkoi	ureA samp_481_103302	cds 4	655 4957 -	JAKCJJ_05045	urease subunit gamma	COG:CC00831, COG:E, EC3.5.1.5, GO:0005737, GO:0009039, GO:0016151, GO:0043419, RefSeq:WP_104386384.1, SO:0001217, UniParc: UP1000CEA416C, UniRetUniRef100, A0A2S6CYG2, UniRetUniRef50, Q4KU66, UniRetUniRef90, B2/I64
LE20-WE2-Sep	Cuspidothrixissatschenkoi	ureB samp_481_103302	cds 2	450 2755 -	JAKCJJ_05030	urease subunit beta	COG:COG0822, COG:E, RefSeq:WP_104386381.1, SO:0001217, UniParc: UPI000CEA6BBA, UniRefUniRef100, A0A2S6CYY5, UniRefUniRef30, A1TSZ5, UniRef10, A0A2S6CYY5, UniRef10, A0A2S6CYY5, UniRef10, A1TSZ5, UNIREf10, ATTSZ5, UNIR
LE20-WE2-Sec	Cuspidothrixissatschenkoi	ureC samp 481 103302	cds	701 2407 -	JAKCJJ 05020	urease subunital pha	COG:COG0804, COG:E, S0:0001217, UniRef:UniRef50 07V3V2, UniRef:UniRef50 A0A161Y2P7
LE20-WE8	Dolichospermum sp000312705	5 nifD samp 471 4997	cds	151 1545 -	INKDHH 04075	nitrogenase molybdenum-iron protein alpha chain	COG:COG2710. COG:HP.SO:0001217. UniParc:UPI000801E20D. UniRefU0i A0A187UYU8. UniRefUniRef50 P07328. UniRefUniRef30 A0A6H28UG4
LE20-WE8	Dolichospermum sp000312705	5 nifH samp 471 4997	cds 1	708 2109 -	INKDHH 04080	Nitrogenase (Molybdenum-iron) reductase and maturation protein NifH	S0:0001217. UniRer:UniRer50 A0A689R323. UniRerUniRef30 W6FIP0
LE20-WE8	Dolichospermum sp000312705	5 nifH samp 471 716301	cds 3	226 3663 -	INKDHH 18800	Nitrogenase ATPase subunit NifH/coenzyme F430 biosynthesis subunit CfbC	COG:COG1348. COG:HP. SO:0001217. UniRef:UniRefS0. A0A1Z4UNY5. UniRefUniRefS0. A0A6P12SO3
LE20-WE8	Dolichospermum sp000312705	5 nifK samp 471 100553	cds 5	475 7010 +	INKDHH 00435	nitrogenase molybdenum-iron protein subunit beta	COG:COG2710. COG:HP. S0:0001217. UniParc: UP10007FE4F28. UniRefUniRef100 A0A187UYS0. UniRefUniRef50 P07329. UniRefUniRef90 D2CN88
LE20-WE8	Dolichospermum sp000312705	5 ureA samp 471 293068	cds 7	701 8003 +	INKDHH 10965	urease subunitgamma	COG:CC00831.COG:E.EC.3.5.1.5.GC:0005737.GC:0009039.GC:0016151.GC:0043419.SC:0001217.UniPar::UPI0007FCEAF5.UniPet100 A0A187USE5.UniPet10niRef50 Q4KJ06.UniPet100 B2/164
LE20-WE8	Dolichospermum sp000312705	5 ureB samp 471 293068	cds 8	658 8963 +	INKDHH 10975	urease subunit beta	C0G:C0G9832.C0G:E.S0:001217.UniRetUniRet50 A1TSZ5.UniRet/UniRet90 K92NU6
LE20-WE8	Dolichospermum sp000312705	5 ureC samp 471 293068	cds 9	007 10713 +	INKDHH 10980	urease subunitalpha	S0:0001217. UniParc: UPI0008014104. UniRef Uni
LE21-ER30	Dolichospermumflosaguae	nifD samp 4305 756901	cds 3	621 5015 +	FKMMKH 13010	nitrogenase molybdenum-iron protein alpha chain	COG:COG2710. COG:HP. S0:0001217, UniRef:UniRefS0 P07328, UniRef:UniRefS0 UP1001E49E6DE
LE21-ER30	Dolichospermumflosaguae	nifH samp 4305 756901	cds 3	057 3458 +	FKMMKH 13005	Nitrogenase (Molybdenum-iron) reductase and maturation protein NifH	S0:0001217. UniRer:UniRer50 A0A689R323. UniRerUniRef30 W6FIP0
LE21-ER30	Dolichospermumflosaguae	nifK samp 4305 143453	cds 56	647 58182 -	FKMMKH 01615	nitrogenase molybdenum-iron protein subunit beta	COG:COG2710.COG:HP.SO:0001217.UniPar::UPI0008009EEB.UniPetUniPet100 A0A187X3U9.UniPetUniPet50 P07329.UniPetUniPet90 D2CN98
LE21-EB30	Dolichospermumflosaquae	ureA samp 4305 486248	cds 63	200 63502 -	EKMMKH 00855	5 urease subunit gamma	COG-COG0831_COG-E-EC:3.5.1.5_GC:00095737_GC:0009039_GC:0016151_GC:00423419_SC:0001217_UniPart: IPI0007ERE488_UniRefUniRef100_A0A187X098_UniRef10n_Bef50_O4K06_UniRef100_UniRef
LE21-ER30	Dolichospermumflosaguae	ureB samp 4305 486248	cds 62	872 63177 -	FKMMKH 00850) urease subunit beta	COG:COG0832.COG:E.SQ:0001217.UniReEUniReE50 B7X907.UniReE00 A0A124UIF0
LE21-ER30	Dolichospermumflosaguae	ureC samp 4305 486248	cds 61	114 62820 -	FKMMKH 00840) urease subunitalpha	COG:COG0804. COG:E.SO:0001217. UniParc:UPI0007FE5E31. UniRefUniRef100. A0A187VKE7. UniRefUniRef90. 07X3V2. UniRefUniRef90. A0A0S3TX2
LE21-WE12	Dolichospermum circinale	nifK samp 507 981320	cds 1	503 3038 -	FLNODI 11290	nitrogenase molybdenum-iron protein subunit beta	C0G:C0G2710.C0G:HP.SO:0001217.UniRefUniRef50 P07329.UniRefUniRef90 D2CN88
LE21-WE12	Dolichospermum circinale	ureA samp 507 468850	cds 14	369 14671 +	ELNODI 03475	urease subunit gamma	COG-COG0831_COG-E-EC:3.5.1.5.GC:0005737_GC:0009039_GC:0016151_GC:00423419_Re/Ser:WP 028090420.1_SC:0001217_UniPert:UPI0004144060_UniRefUniRef100_UPI0004144060_UniRef1_UniRef50_04KU6_UniRef100_RE/T64
LE21-WE12	Dolichospermum circinale	ureB samp 507 468850	cds 16	572 16877 +	ELNODI 03490	urease subunit beta	COG::COG0832 COG: E.RetSen/WP 190391792 1. SC:0001217 LiniPar: UPI0016801939 LiniRet100 UPI0016801939 LiniRet10inRet50 A17525 LiniRet1IniRet60 K97NII6
LE21-WE12	Dolichospermum circinale	ureC samp 507 468850	cds 16	843 18627 +	ELNODI 03495	urease subunital ha	COG-COG0804_COG-E SC/0001217_Uniter/Uniter/S0_07/33/2_Uniter/Uniter
LE22-WE12	Dolichospermum circinale	nifD samp 4380 175307	cds 9	160 10587 -	DPCBHP 09890	NifDelement site-specific recombinase	S0:0001217 UniRefUniRefS0 K7W5F0 UniRefUniRef80 K7W5F0
LE22-WE12	Dolichospermumcircinale	nifD samp 4380 175307	cds 11	291 12217 +	DPCBHP 09900	Nitrogenase Mo-Fe protein NifD/ coenzyme E430 biosynthesis subunit CfbD	COGCOCC2710 COG-HP SCh001217 LinPar: LIPIO004FE0457 LiniBet100 A04480AIX5 LiniBet1018e50 A0A090A141 LiniBet1018e50
LE22-WE12	Dolichospermumcircinale	nifH samp 4380 175307	cds 6	230 6670 +	DPCBHP 09865	Nitrogenase ATPase subunit NifH/coenzyme E430 biosynthesis subunit CfbC	COG:COG1348 COG:HP SO:0001217 LiniBe/LiniBe/S0 A0472LINY5 LiniBe/LiniBe/S0 A0472LINY5
LE22-WE12	Dolichospermumcircipale	nifH samp 4380 175307	cds 10	743 11159 +	DPCBHP 09895	Nitrogenase ATPase subunit NifH/coenzyme E430 biosynthesis subunit OfbC	COGCCOG1348 COG:HP SC/0001217 UniRefUniRef50 A0A6R98232 UniRefUniRef90 A0A125871
LE22-WE12	Dolichospermum circinale	nifK samp 4380 27589	cds 1	316 2851 +	DPCBHP 21475	nitrogenase molybdenum-iron protein subunit beta	COG-COG2710.COG:HP.SC0001217.UniRetGv P07329.UniRetGv P07329.UniRetGv D2CN88
LE22-WE12	Dolichospermum circinale	ureA samp 4380 38824	cds 8	413 8715 +	DPCBHP 14045	urease subunitearma	COG-COG0831 COG-E FC:3515 C0:0005737 C0:0009039 C0:0016151 C0:0043418 RefSerr/WP 0280904201 S0:0001217 UniPart-UP/0004144060 UniRef10i8ef00 UP/0004144060 UniRef10i8ef0 OdK/06 UniRef10i8ef0 R0164
LE22-WE12	Dolichospermumcircinale	ureB samp 4380 38824	cds 10	301 10606 +	DPCBHP 14060	urease subunitheta	COG-COG0822 COG-E RefSer/WP 028090419 1 \$C:0001217 LiniPart II/0004229801 LiniPart II/000429801 LiniPart II/000429801 LiniPart II/000429801 LiniPart II/000429801 LiniPart II/000429801 LiniPart II/000429800 LiniPart II/000429801 LiniPart II
LE22JWE12	Dolichospermum circinale	ureC same 4380 38824	cds 10	649 12355 +	DPCBHP 14065	unpase subunital hha	
	a						

Table S3. Urease and nif gene annotations from Bakta for all eleven representative MAGs.

query	gene	subject	percent_identity	length	mismatch	gapopen	query_start	query_end	subject_start	subject_end	evalue	bitscore	qcovs
samp_471_220425_trim	sxtPER	sxtPER_Aphanizomenon sp. NH-5_EU603710.1	99.43	1059	6	0	5899	6957	1	1059	0.00E+00	1923	15
samp_471_220425_trim	sxtC	sxtC_Aphanizomenon sp. NH-5_EU603710.1	99.65	285	1	0	5294	5578	1	285	1.33E-149	521	4
samp_471_220425_trim	sxtB	sxtB_Aphanizomenon sp. NH-5_EU603710.1	99.17	969	8	0	4239	5207	1	969	0.00E+00	1746	14
samp_471_220425_trim	sxtA	sxtA_Aphanizomenon sp. NH-5_EU603710.1	99.19	3705	30	0	529	4233	1	3705	0.00E+00	6676	53
samp_471_220425_trim	sxtE	sxtE_Aphanizomenon sp. NH-5_EU603710.1	99.45	363	2	0	1	363	1	363	0.00E+00	660	5
samp_471_266508_trim	sxtD	sxtD_Aphanizomenon sp. NH-5_EU603710.1	99.36	156	1	0	1	156	156	1	7.36E-78	283	2
samp_471_266508_trim	sxtP	sxtP_Aphanizomenon sp. NH-5_EU603710.1	99.52	1443	7	0	219	1661	1	1443	0.00E+00	2627	19
samp_471_266508_trim	sxtQ	sxtQ_Aphanizomenon sp. NH-5_EU603710.1	98.84	777	9	0	1686	2462	1	777	0.00E+00	1386	10
samp_471_266508_trim	sxtR	sxtR_Aphanizomenon sp. NH-5_EU603710.1	99.61	777	3	0	2473	3249	1	777	0.00E+00	1419	10
samp_471_266508_trim	sxtS	sxtS_Aphanizomenon sp. NH-5_EU603710.1	98.63	729	10	0	3993	4721	1	729	0.00E+00	1291	10
samp_471_266508_trim	sxtT	sxtT_Aphanizomenon sp. NH-5_EU603710.1	99.61	1020	4	0	4805	5824	1	1020	0.00E+00	1862	14
samp_471_266508_trim	sxtU	sxtU_Aphanizomenon sp. NH-5_EU603710.1	98.8	750	9	0	5973	6722	1	750	0.00E+00	1336	10
samp_471_266508_trim	sxtN	sxtN_Aphanizomenon sp. NH-5_EU603710.1	97.32	747	14	1	6775	7515	1	747	0.00E+00	1264	10
samp_471_36365_trim	sxtG	sxtG_Aphanizomenon sp. NH-5_EU603710.1	99.12	1134	10	0	6310	7443	1134	1	0.00E+00	2039	15
samp_471_36365_trim	sxtH	sxtH_Aphanizomenon sp. NH-5_EU603710.1	99.31	1020	7	0	5229	6248	1020	1	0.00E+00	1845	14
samp_471_36365_trim	sxtM	sxtM_Aphanizomenon sp. NH-5_EU603710.1	98.97	1458	15	0	3725	5182	1458	1	0.00E+00	2610	20
samp_471_36365_trim	sxtl	sxtl_Aphanizomenon sp. NH-5_EU603710.1	98.48	1839	28	0	1899	3737	1839	1	0.00E+00	3241	25
samp_471_36365_trim	sxtJ	sxtJ_Aphanizomenon sp. NH-5_EU603710.1	99.75	405	1	0	1453	1857	405	1	0.00E+00	743	5
samp_471_36365_trim	sxtK	sxtK_Aphanizomenon sp. NH-5_EU603710.1	99.39	165	1	0	1289	1453	165	1	7.24E-83	300	2
samp_471_36365_trim	sxtL	sxtL_Aphanizomenon sp. NH-5_EU603710.1	95.54	1278	57	0	1	1278	1278	1	0.00E+00	2045	17

Table S4. Blastn results from comparison between LE20-WE8 sxt genes and Aphanizomenon sp. NH-5 reference.