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THE BACK SCATTERING CROSS SECTION OF A CONE-SPHERE
by
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SUMMARY
The metallic cone-sphere is the prototype for many low cross section
shapes and has received an increasing amount of attention in recent years. I
spite of the simplicity of its mathematical form, it is still one for which no
exact solution of the boundary-value problem is available, and to calculate the
cross section we must rely on approximate methods with such refinements and
extensions as experimental data démands. We here present some new data for
both the back scattered and surface ficlds at nose~on incidence and deduce therefrom

a modification to the accepted theory sufficient to explain the results.
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INTRODUCTION

The design of shapes to have a low back scattering cross section for
some range of aspect angles is a problem of continued interest in scattering
theory. To remove the possibility of any specular reflection at these aspects,
the chosen shape is often a pointed body of revolution, smoothly terminated at
the rear to minimize the contribution from any ring singularity there, and a
typical example of this configuration is the cone—sbhgre (or 'carrot') in which
the first derivatives of the surface profile are matched at the join. Although
it has not been demonstrated that this is in any sense an optimum as regards
its cross sectional behavior at nose-on aspects, it does at least have the
advantage of a relatively simple mathematical form, but even so it is still a
skape for which no exact solution of the boundary-value problem is available.

In consequence, to calculate the scattering cross section it is necessary to

rely on approximate methods such as phy#ical optics, areeping wave theory,

etc., with the accuracy of the predictions jxfdged by comparison with experimental
data.

The first reported meiusurement of a c}one—sphere was by Slettenl who
employed this shape to simulate a semi-infinite cone, but it was not until 1960
that a reasonably complete set of data was published. Using a Doppler system
operating at a wavelength of 3.22 cm, Gent et a12 measured the nose-on cross
éectiqn of 50 cone-spheres with vertex angle 30° and base radii a spapning the
range 1.00< a/A < 2.125, and frqm an analysis of the resulté the magnitudesl
of the contributing cémponents were deduced. Addit~iona1 data for cone-spheres
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of the same angle was later obtained by Kennaugh and Moffatt and Moffatt™ who



measured six models of different sizes with a variable frequency X-band

system to give 39 cross section values in the range 1 {ka <7, where k =21r/ A.
When these were compared with the predictions of physical optics, the geometrical
theory of diffraction5 and the 'impulse approximation' methods, the superiority
of this last approach was clearly apparent, but a systematic discrepancy

between theory and experiment still remained. This was pointed out by Blore7,
who measured cone-spheres of angles 15, 30, 40, 60 and 750 to produce the

most comprehensive body of data yet available for his shape. For each cone
angle the cross section was determined for as many as 100 values of ka

ranging from (about) 0.3 up to 7.5 using five large sets of models and a
combination of X and Ka—band frequencies. At the lower end of the interval

the results are in good agreement with the modified Rayleigh formula p1‘0po§ed
by Siege18, and this in turn matches in remarkably well with the impulse
approximation curve. For ka greater than (about) 2, however, the curve lies two
or more db below the measured peak values of the cross section and as much

as 7db below the minima, with sox‘ﬁe evidence of a displacement in the position

of the latter. Though the overall agreement is, nevertheless, quite gratifying,
an understanding of the nature of the discrepancy is important for its own sake
as well as for the effect that it may have on estimates of the scattering cross
sections of other and rﬁore general shapes, and a study was therefore under-

taken to discover its origin. It is the purpose of this paper to detail the

investigation.



2. Basic Theory

It is appropriate to begin with a review of the basic theory as it applies to
the calculation of the nose-on cross section for values of the base radius greater
than a wavelength or so.

Consider a perfectly conducting cone-sphere of semi-vertex angle « and
base radius a illuminated by a plane wave at nose-on incidence. In terms of
a Cartesian coordinate system (x, y, z) whose origin is at the center of the
spherical cap, the axis of the cone is taken as the z axis, and since there is
no loss of generality in choosing the electric vector to lie in the x direction,
we write

i A -ikz
=Xe

E
where a time factor e-mt has been assumed and suppressed. From symmetry

the back scattered field has the same polarization as the incident field and

hence, in the far zone, we can define a scattering amplitude S by the equation

S Aeikr
Eoex kr S
from which it follows that
) ).2 2
o= l S‘ . (1)

If the physical optics approximation is applied, the determination of
the scattered field is reduced to quadratures, and the résulting expression for
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The sources of the individual terms can be identified by the phase factors.
Thus, the first term is associated with the tip, the second with the cone-sphere
join and the third with the shadow boundary. The cross section attributable

to the tip is therefore

A4 (3)
Otip 167 PP @

and this is in general agreement with the result obtained from the exact solution
9
for scattering by a semi-infinite cone . The cross section of the join is

similarly

Kz
%join ~ 167 ¢ * (4)
which has the same wavelength dependence as the tip contribution, but a much

greater magnitude. Thus, for example, when a= 15°

o =1.026x10° %2
tip ,

whereas

o, =2.286x 107 22,
join

and though there is as yet no exact analysis to support the formula, it is
believed to give a valid estimate of the return from the join when the first
derivatives of the surface profile are matched. Since the surface in the
neighborhood of the join is entirely irf the dlluminated region, the curr‘er;t

distribution on which (4) is bzsed should not be seriously in error for

ka cos a> > 1.
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For the shadow boundary contribution the physical optics answer is
spurious and arises because of the current discontinuity introduced by this
approximation independently of the presence of the cone. From an analysis
of the field scattered by a sphere it is found that the return from the
boundary is produced by creeping waves, which are launched in the vicinity
of this point and arrive at the receiver only after having traversed the rear of
the body. Since the separation (in wavelengths) between the cone-sphere
join and the shadow boundary increases with increasing frequency, it seems
reasonable that this contribution should be determinable by reference to the
sphere alone, and in place of the third term in equation (2) we now havelO
o g B i3
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where

B=1,01879. .. and Ai(-B)=0.53565. . .
This is a more complete expression for the major creeping wave component
than is usually employed, and is accurate to about one percent for ka » 5.
At still lower frequencies, however, even (5) becomes inadequate owing
to the increased importance of the higher order waves, and no simple
formula is then available'. .Neve,rtl;eless, numerical values can be obtained
by subt;'actmg the specular return for a ‘sphere (Loganll) from the complete

scattering amplitude computed from the Mie series. This has been done
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by Gent et al for selected values of ka and, implicitly, by Kennaugh
6
and Moffatt .
If this new prescription for cone-sphere scattering is busicually correct,
certain conclu~ion< follow immediately. Since the creeping wave is exponentially
attenuate d with increasing ka, it contributes nothing to the high frequency hnit,

and hence

\

i 2 -2ika cosec @, -2ika sin ¢

Sf—-z tan® o e -sec” oe |

for sufficiently large ka. The first term is also negligible in conparison with
the second, so that finally

-2ika si
2 4 o ika sin (6)

i
S~4 sec

and this is reasonably consistent with data for the largest ka at which
measurements have been made.

In most cases, however, the intermediate values of ka are of more practical
interest. The creeping wave now gives a significant L'-)I)il'llﬁlllllllll annd if we

again neglect the tip return, the scattering amplitude can be aritlen as

i 2 ‘Zika Sina/
==sec” a e - +S -
4 C

(7)
The cross svetion which then results is identical to that obtained by Kennaugh and
3 )
Moffatt using the impulse approxim:uiion technique, but differs from the formula
5 .
originally proposed by Keller through the inclusion of a return from the cone-

sphere join, the neglect of the tip Qontributioh, and the use of 4 more complete

expression for the creeping wave cotnponent.



3. Experiment

From a consideration of equation (5) it is seen that the phase difference
between the two terms on the right hand side of (7) is essentially a linear
function of ka for ka>> 1, and by comparison the amplitude of Sc is
slowly varying. The nose-on cross section will therefore oscillate as a
function of ka in a manner which is almost sinusoidal in any small interval,
and in practice the oscillations are significant from the edge of the Rayleigh
region up to ka = 100 or more. Under these circumstances it is obvious that
for a valid check on equation (7) the cross section should be measured at a
series of closely spaced values of ka sufficient to embrace one or more periods
of the oscillations, and by comparison isolated determinations are of relatively
little worth.

To get such data,either a or A (or both) must be varied. The first
method automatically implies a large group of modéls each slightly different
in size from the others, and this is the technique by which most of the more
comprehensive sets of data have been obtained so far. There is, however, a
disadvantage associated with it. If the cone and sphere portions of the model are
incorrectly mated, the scattering from the join may be profoundly disturbed.
Thus, for example, a ridge at this point equivalent to an angular difference 6
between the tangents to the cone and the sphere would increase the first
term of (7) by a factor ¢

1+2ika cos o tan 6§ (8)

approximately, as follows by a straightforward application of physical
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optics, and the second term of (8) may easily dominate through its
ka factor. The ne . ulv vl i of the join is certainly one of the most critical
regions for a cone-sphere, and care is necessary to ensure accurate
modeling here. Not unnaturally, the probability of imperfectionsincrease »
with the number of models employed, and many of the irregularities apparent
in the data of Gent et al2 may be due to such imperfections amongst their
50 models.

The difficulty can be overcome, at least in part, by using one carefully
constructed model and achieving the variation in ka by shifting frequencies,
and this is the procedure that we adopted. The first model had a=12 1, °
and a = 4,519 cm, and was made from rolled aluminum stock machined to a
high degree of surface finish. For convenience, attention was. directed at
X-band frequencies and within the range 7.98 to 10.97 Gc a total of 17 individual
frequencies were employed. All'were generated from a’stabilized oscillator of
continuously varying frequency or from phase-locked oscillators. At each one
a pattern was recorded shdwing the back scattered return out to the specula.r
flash or beyond, followed by a minimum of 10 (and on average 25) separate
measurements of the nose-on cross section / 22, Every effort lhwas made to
get the highest possible accuracy and to have the measuréments truly independent.
The means and standard deviations'were then c:ilculut’ed, and on the assumption
that the errors are random, the means should be accurate to about 0.3db. The
data is plotted as a function of ka in Flg 1. Similar results have also been

obtained for a cone-sphere of semi vertex angle 71/20 and base radius 5.613 cm.



The expected sinusoidal oscillation is clearly in evidence, but to determine
the full extent of the agreement between the theoretical values and the measured
data, it is necessary to compute S using equation (7). This in turn requires
the calculation of Sc from equation (5), and for the required range of ka

it is found that Sc can be written as
Sc =(0.5026 - 0.01467 ka) exp {ivr (1.0256 ka - 0.95410) } . (9)

Note that this is purely a numcrical representation based on the values compuite d
from (5), and though accurate over the above range, it has no physical
significance per se. Nevertheless, it is convenient inasmuch as it allows us to
derive an explicit theoretical expression for 0/ A? and from equations (1), (7)

and (9) with @=12 ¥2° we have

A ¥ p)
%‘ = 0.02190 | (1.916 - 0. 05593 ka) +exp {iﬂ’(l.45410—1. 16335 ka)}

X (10)

The corresponding curve is shown dashed in Fig, 1.

The predicted locations of the appropriate maxima and minimum are
ka = 8.127, 9.846 and ka =8.986. These are in excellent agreement with the
data and certainly there is no indication of the displacement reported by Blore7.
There is, however, a notable amplitude discrepancy, and the theoretical curve
lies almost uniformly below the measured points. Since the maxima and
minima are both too low, it would appear that the larger of the two terms in (7)
should be increased, implying12 an enhancement of the creeping wave contribution,

and to seé whether this alone would be sufffcient, *an expression of the form
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x% = 002190 [A(1. 916-0. 05593 ka) + B exp{i1r(l.45410-l. 16335 ka)} (11)

was postulated. The factors A and B apply to the first and second terms respectively
in (7), and when (11) was fitted to the data using the method of least squares,

the best fit was obtained with A=1.3 and B=0.9. Such a modification to (10)

is sufficient to reproduce even the small decrease in the amplitudes of the
successive measured maxima, and the closeness of the fit strongly suggests
that there is some mechanism operating whereby the amplitude of the creeping
wave is increased over and above the value that it would have for a sphere of the
same size. An increase of between 2 and 3db would remove most of the
discrepancy evident in Fig. 1, and by comparison the slight reduction in the join
contribution produced by-the least squares analysis is not felt to be signifi.cant.
The value of B is strongly influenced by the measured data near to the minimum
in the cross sectian curve,-and this is whereé the experimental point$ are most
likely to be in error.

4, Creeping Wave Enhancement

An increase in the far field contribution of a creeping wave almost
necessarily implies an enhancement of its yalué on the surface, and since the
A . ' -
measured creeping wave arnpiitude on the a'Ll rf:sce of a sphere is in excellent
agree;nent with the theoretical e;q)réssfon, it follows that the addition of a conical
nose must in some way increase the excitation of the wave.

In an attempt to explain this phenromenon, two possible mechanisms' ‘

have been investigated. The first of these is associated with the cone-sphere

-1 -



join alone and is independent of the rest of the cone except insofar as it

would not exist were the cone not there, At the join the first derivative of

the surface profile is continuous, but it still constitutes a singularity (albeit

a weak one) by virtue of the discontinuity in the second and higher derivatives.
It is therefore possible that it could increase the field intensity in the vicinity
of the shadow boundary either through its radiated field or, equivalently, by
the excitation of a creeping wave which is in phase with that generated by the
sphere itself. Although there is no canonical problem whose solution is known
and bears on the matter, it would appear that the situation can be modeled by
a sphere with a semi-active ring slot at a position corresponding to the cone-
sphere join. In the slot either or both of the tangential components of the
electric field are specified as constant muliiples of the incident field values,
with the constant factors determined by comparison of the radiated field of the
slot with the back scattered field of the cone-sphere join. A consideration of
the surface field within the shadow then leads to an estimate of the extent to
which the creeping waves are increased by the presence of the singularity.
The increase, however, is far below the level deduced from the far field data
for the cone-sphere, and it r‘nust there'forg be concluded that the join is not

’ N

primarily responsible for the observed enhancement.
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From the failure of this first mechanism it would appear that the

cone sides are not a negligible factor in the creeping wave enhancement, but
to discover the precise role that they do play it is necessary to examine the
currents on the surface of a sphere. These can be .hiaingil directly from the
standard Mie solution, and in terms of spherical polar ingles 6 and ¢, the

components of the current vector J are

= - )

Iq Ycos¢T2(6) (12)

J¢ =Ysin¢Tl (6) (13)

, 13
where Y is the intrinsic admittance of free space and
Pl(cos())
1 S ' +1 2n#%l 1 :
T (6) ="—, (-i)® - — L _8_ P (cosG)
1 ka %;—f n(n+1) §;l(ka) sinf ¢ (ka)
(14)
Pl(cose)
n

T,(6)= -—Z( ot ol g1 gP (cos §) -

n(n+l) §’ (ka) o6 ¢ (ka) sin 6

where
(1)
¢ (ka) kah (ka)

and the primes denote differentiation with resf)ect to ka.

On the shadowed portio_n'(@) 7{/,2) of the sphere, Tl(6) and T2(9) can

be represented as sums of creeping waves, with Tl(9) cunsisting mainly of

'Hwaves' whose mugnctie vector is normal to the surface and T2(9) composed
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similarly of 'E waves.' Since the latter attenuate less then the H waves,
TZ(O) is the major current component throughout most of the shadow region.
On the illuminated side, however, an optics contribution is present, and this
is dominant at points well forward of the shadow boundary. Thus14, for

ka 0083 6>>1

i sin29
=+, .. (16)

2kacos 6

Tl(O) =-2cos6 e-lka cos 6

. 2
T(9)=-2 ¢ 20080, L8, (17

2ka cos36

and by comparison any residual creeping wave effects are negligible. Note that
the first term in each of (16) and (17) is identical to the physical optics prediction.

In the region intermediate to that for wimich (16) and (17) are appropriate
and the shadow boundary, no simple expressions for Tl(G) and T2(9) are
available, and these must now be calculated using either the series expansions
shown in (14) and (15) or the integral representations derived by Loganls. From
such calculations it is found that for ka greater than (about) 3, ' T 1 | and ' T2 ,

decrease more or less uniformly as 6 increases from zero to 7/ 2. The rate

for T, is more rapid than for T_, but even with the latter the quantity

1 2

T _(0)
2 (18)
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is appreciably greater than unity for o small and ka > 3 (approx.) but
less than some large number dependent on @ To illustrate this behavior,
|T2(O)| and l T2(‘77 ¥, ° )' have been computed for 0g<kagll using equation (15),

and the results are shown in Fig. 2. As ka increases from zero,

T2(0)‘ in-
creases from 1.5 to a maximum value 2.42 at ka =0.94, and subsequently
oscillates with a rapidly decreasing amplitude about the value 2 indicated by
equation (17). It is within two percent of this value for all ka>4.3. |T2(77 1/20)|
also starts with the value 1.5 at ka =0, but increases more slowly to a
maximum of 2.02 at ka=1.6, and thereafter oscillates about a lower level
which is almost constant out to the largest ka computed.. Ultimately,
|T2(77 1/20)] tends to the s“gme ‘l'imif z;s ]"Té(O)] ; iits,approach; however, is
extremely §10w, and even when ka = lbd it 'Stﬂl differs from 2 by dpproximately
10 percent. For most c’one—.sp.I;eTe applicutions, therefore, the values of %' are
sufficiently different from unity to be pruciic 1lly significant, in spite of the
fact that y'—>1 as ka—.>oo: for all > 0. |

Let us noW consider the suri"ace field on the vonical portion of the cone-
sphere. It would be convenient were we able to estimate this using the rigorous
solution for (vector) scatlering by a semi-infinite cone, but the ¢ mplicition of the
exact expression is such that numerical values are not yet available. It is
therefore necessary to resort to upprozimate methbds of which i)h):sica-l optics
is most appropriate, and from thié we have for the component o'f current in ;;he

direction of the generators

, -ikz
J=2Ycosf e
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This is basically a irhvelling wave. Its phaée is precisely that of the incident 'l
field, and consequently the wave reaches the join with a phase which is almost
the same as the sphere current wou'ld have had-if the sphere:had been complete.
Since the join is inefficient as a means of launching waves, it seéms reasonable
to suppose that it will also reflect little of the travelling wave energy and,

finding u guod match, the wave then flows over the join. Hence, just on the

£

sphere side

4

’ —l 03 a
JezYcosﬁ 2e ika sin ,

equivalent to an amplification of the original sphere current by a factor

-a, of course, the current decreases at a rate typical of the

v = . (19)

Beyond 6 =

ST

sphere alone, but the ampliﬁcatif)n through the factor v leads to a corresponding
increase in the creeping wave contributions to Both the surface and far fields.

With this modification to the theory the expression for the scattering
amplitude of the cene-sphere becomes

2 -2ika sin a
+

S== sec’ ae (20)

[N [N

c
(cf equation 7), and to show how th® scattering cross section is affected, we.
shall again consider the example of a 25o cone -sphere.

Numerical values for + can be obtained from equation (19) either by
direct computation of Tz(;i - O> using (15) or by representation of T2<’zl- 9 in

terms of the functions -



®
n
g (x) =ﬁ-:-=f t"ei“:t,—m (21)
-
tabulated by mls. In the present case the first approach is more convenient
and since ¥ = 4' for ka> 5-5, we have from Fig. 2
vy==1.189
for 7.5  ka € 10. 5, based on a straight line fit to the values plotted there. The
new formula for the cross section is thegefore
% = 0, 02190 | (2,\?78 - 0. 06649 ka)+ exp {ix (1.45410-1.16335 ka)}l :
' (22)
(cf equation 10) and the corresponding curve is shown in Fig. 1. The raising of
the theoretical curve has certainly removed much of the disagreement with the
data, but even this enhancement of the creeping wave is not sufficient to remove
all of the discrepancy.
5. Discussion
The creeping wave enhancement is a direct consequence of the difference

between the true and optics values of the sphere current J_ at the position of the

]
join, and it may therefore seem illogical to apply the physical optics approxi-
mation to the cone and not, to the sphere. Unfortunately, there is no definite
criterion to indicate when physical optics can be used with confidence, and
nany cases are known in thch the approximation gives good results even for
small values of the radius of curvature. "Nevertheless, the typical requirement

is that all radii be darge in comparison with the wavelength. Since the radius

of curvature of the eone is mfmme il the direction of the current flow, the
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expectation was that the accuracy of the approximation would be greater for
the cone than the sphere, in spite of the smaller transverse radius of the
former, but to verify this belief it is necessary to measure the surface field
directly.

A number of such measurements have been carried out using a probe
technique, and a description of the experimental equipment has been given
by Seniorle. For convenience and accuracy of operation, the frequencies
have been confined to the L and S-band ranges, and even the highest S-band
frequency then requires a model of larger physical size to achieve a ka value
comparable to those in the far field experiment. Of the models which were
available, the only one for which ka was in the range 7.5 to 10.5 was a 30°
cone-sphere with base radiué 10. 094cm, Ia.nd in Fig. 3 the measured amplitudes
of the longitudinal current in the plane of the incident electric vector are
presented for this cgse. The horizontal scale is the distance along the surface
(in cm) measured from the center of the back of the sphere. The tip of the
cone is to the right, and the locations of the cone~sphere join and the shadow
boundary are indicated. Calibration was with respect to the incident field
intensity in the plane of the support pedestal, and the frequency was 3. 714 G¢
corresponding to ka =7,905, Data similar to the above, but for a frequency
3. 066Gc, is given in Senior16

Starting at the tip the current amélitude increases rapidly over a

distance of A/2 or so, and then more slowly for a further 1.5 wavelengths.
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The slight oscillation visible there may be due to a small backward-travelling
wave, but this damps out in the first 2A, by which time the amplitude is
within 0.2 db of the value predicted by physical optics. It remains relatively
constaat up to the cone-sphere join with no evidence of any reflection from
this point. Immediately beyond, however, the amplitude decreases rapidly
following the trend expected of a sphere current, and to confirm this fact the
cone-sphere was replaced by a sphere of the same size as the cap, and the
measurements repeated for this shape. The results are also shown in Fig. 3,
and though the incident field strength was again determined, the relative values
of the currents on the two bodies are independent of the calibration. At the
front of the sphere the measured amplitude is almost precisely the physical
optics value, but in a distance of no more than A/ 2 the amplitude has begun
to fall and decreases steadily thereafter. At the position corresponding to the
join it is 2.2 db below the value found with the cone-sphere, and averages
some 2 db below throughout the shadow region. For the sphere itself the
measured values in the illuminated region decrease somewhat more rapidly
than the values computed from equation (15), and most of this is believed due to
a lack of uniformity16 in the incident field illumination. In the shadow the
agreement with theory is excellent.

Based on the differences between the measured sphere and cone-sphere
. cyrrents at the join, the shadow boundary and the back of the sphere, £he
creeping wave enhancement is found to be 2.3 db, compared with the 1#3 db
obtained from equati"tm (.19). Even wilen a1’1 ;ll.qwagce is 1Anade. for the irregularity

of the illuminating field, the discrepancy is still greater than any intrinsic error
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in the :neasurements, and suggests an increase in the creeping wave amplitude
over and above that provided by the theoretical expression for . Additional
surface field measurements are necessary to confirm this effect, but in the
meantime we note that an increase in v of 1 db is almost precisely that required
to achieve complete agreement between the predicted and measured scattering
data for a 25° cone-sphere (see Fig. 1).

On the other hand, it is not obvious in what way the theory should now
be refined. The surface field data supports the physical optics approximation
to the current on the portions of the cone sides near the join, and this in turn
gives added confidencq in the theoretical expression for the jqin contribution
shown in (4). The data also confirms the existence of a creeping wave
enhancement, and leaves little doubt that the theore;ical picture of a travelling
wave ﬂpwing over the join is basically correcf. Indeed, the theoretical values
of v obtained from equatiqn (19) have been used to predict the nose-on cross
section of a 30° cone-sphere for the full range of ka covered by the experimental
data of Kennaugh and Mof.fattB, and to within the accuracy that the measured
values can be read from their graph, the agreement v;/ith theory is almost perfect.
In this respect, the cone-sphere seems akin to. a ﬁat;—backed cone ‘in that an

L

_essdntially high-frequency approach is adequate for the calculation of the nose-on
cross section down to the edge of the Rayleighr'regio‘x;. The fact ‘.that ’y is an
oscillatory funcﬁon of ka then oifers an explanation for the markedly different

maximum-to-minimum ratiop of the measured cross sections (Blore ) as the

T .
cone angle ¢« is varied.
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lasends of Figures

Fig. 1. Nose-om backseettering oross section of a 25° ocone -sphere with
base radius 4.519om. The numerals indicate the number of
measured valuss whese means and standard deviations are
shown. Original theory---(equation 7); modified theory ——(equation 22).

Fig. 2. 'rz(o) and Tz('rr%’) computed from equation (17).

Fig. 3. Measured current amplitudes for a 30° cone-sphere ( © ) and
corresponding sphere ( e ) at 3. 714 Ge.
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FIG. 1. Nosc-on Tl i ring Cross Section of a 25¥ Cone-Sphere with Base
Radius 4, 519cm, The pumerals inlicute the number of measured values whose
means and Gunlure deviations are shown, Original theory — — (Eq. 7);

Modifed theory — f(eq. 20)
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