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field quantities at the cylinder surtace and the inhomogeneous sheath-uniform
plasma interface, An outline for the procedure used in obtaining a numerical
solution to the boundary value problem is given. A second approach to the prob-
lem involves replacing the actual ivhomogeneous sheath by a free-space layer,
which is called the vacuum sheath. The bouadary value problem associated with
this model is also set up and an analytic solution for the various fields is given.

Extensive numerical results for the surface currents are presented, The
vacuum sheath results are given for arhitrary angle of incidence while the inhom-
ogeneous sheath results are restricted to normal wave incidence, It is shown
that the surface currents for EK wave incidence are oxponentially attenuated
by the vacuum -t ath, with the attenuction increasing as the angle of incidence
measured from the cylinder axis becomes smaller. Further it is found that the
EK wave is not as ecfficient in producing surface currents as the EM wave, even
when the sheath attenuation is not taken into account. It is also found that the
sheath and plasma compressibility have little effect on the currents due to the
EM wave for cylinders with radii small compared with 'the EM wavelength, Fin-
ally, the results of the inhomogenecous sheath and vacuum sheath models are
found to be in ~ubstintial agreement for normal incidence,

We can corclude from the results of this study that: 1) the y1.-m 1 compres-
sibility and sheath can be neglected v.hen considering the currents excited by EM
waves on a plasma-immersed cylinder of small radius compared with the EM
wavelength; 2) the sheath appears to quite effectively screen the EK wave from
the cylinder; 3) it appears that since the EK wave is less € (Tic il that the EM
wave in exciting surface currents on the cylinder, it would be difficult to detect
the EK wave in a background of EM radiation, by a measurement of the surface

currents which it produces.
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CHAPTER I
INTRODUCTICN

The Aynamic response of a plasmia to high frequency electric fields has
received considerable attention in recent years. By plasma we mean a partially
ionized gas that on the average is electrically neutral. The analysis of the plasma
may procecd from the Boltzmann equation and Maxwell's equations together with
appropriate boundary conditions and sources. The ultimate solution involves find-
ing the electric and magnetic fields in the pli-m 1 as well as the distribution [inc-
tions for the various plusmu species. Becuause of the great mathematical difficulty,
this is selcom possible. Instead, the problem is converted to one involving only
mac roscopic variables by taking velocity moments of the Boltzmann equation. In
many pi*ietical problems it is physically reasonable to neglect all moments higher
than second order in velocity. This means we introduce as new macroscopic

%

variable< the scalar number density, the vector velocity, and the tensor pressure
for each plasma specie-. The moment equations obtained are nonlinear in these
variables. They are linearized by requiring the time varying perturbations of
these variables to be snuddl compared with the static parts. Under certain condi-
tions the tensor pressure reduces to sculur pv --ure. The perturbed pressure is
reluated by an equation of state to the perturbed number density. The problem at
this point is one of finding the perturbed number density and velocity of each specie;
in addition to the electric and mugneti-: fields.

Studying the plasma equations thus obtained one observes that for a uniform

plasma free of stutic magnetic fields the electric field can be decomposed inl+ a

Ve e e e T Lo FP e m e e ma
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solenoidal and an irrotational part which can be shown independently to satisfy
difterent vector wave equations.  The totel {ime-varying magnetic field is then
related to the solenoidal electric field and together they form an electromagnetic
(EM) w e The irrotational time varying electric field is associated with the

pe turbed chuarge density accumulation (space charge). These two quantities form
a wave that his been referred to as the plasma wave, electro-uacoustic wave, and
elcetrokinetic (EK)* wave. We will use the 1= - term. Inthe EM wave the energy
is shared between the solenoidal electric field and the mugnetic field. In the EK
wave the energy is shared between the time varying irrotutional electric field ard
the ordered kinetic energy of the charged particles.

In the study of plus=nii, one frequently [inds that to a reasonable approximi-
tion the plesma under consideration may be divided into uniform plasma regions
connected by nonuniform plasma transitions. Or we may find a uniform plasma
terminuted via a nonuniform plasma (the sheath) into either dielectric, conductor,
or {ree sp.ce. In the nonuniform plasma transition regions the EM :ind EK waves
are couplec due to the static electron density vuiiition. This means that an EK
wave (for ¢xample) propagating into such a region in addition to reflections will
suffer a loss of energy into the EM wave and vice versa. A similar energy con-
version belween the two waves uccurs at sharp transition regions such as the
boundary between plasma sheuth and dielectric (or metal). This is due to the
boundary conditions on the tangential electric and magnetic fields and the ordered

electron velocity at the interface. The two waves will be significantly coupled

*This name was suggested by G. Hok (1959).



even in uniform plasma if the lineari-ation requirement on the velocity moment
equation is relured. The same thing s true if an external static nugnetic field
is prescnt We are excluding the Lt two forms of coupling from this discussion,
The energy conversion between the waves is of interest in upplicutions as
diverse as astrophysics and radiation or reception by plasma-immersed antennas.
Some of the radio emissions from stellur hodies »~ - Too espliined on this
basis. The effect of the wave conversion on transmission and reception properties
of the plusma-imbedded antennu is of considerable impnu tance. The latter is our
field of interest. Before we present our problem in detail, it is of vulue to review
briefly some of the pertinent work that hus been done in this general area. For
an orcerly discussion it is convenient to arrarge the papers dealing with the con-
version problem into two categories: the scattering problem and the radiation
problem. Since in our area of interest the high frequency response of plasme:.
presumes a linvwedye of the static pl tsma sheath solution, the work on this topic
will be reviewed.

1.1 Review of Previous Work

1. 1. 1 The Scalterine Problem

A discussion of the scattering problem can be carried out conveniently
accordirg to the geometry of the transition region. A further clus=sificution of
this problem can be made of the 1..-i- of whether or not the thickness of the
transiticn region is taken to be small compared with the pertinent wavelengths
so that it may be considered as an .hrupt discontinuity of the plusmi properties.

When the transition region is assumed thin, the problem is one of considering



propagarion in a uniform plsma together with appropriate boundary ¢omdifion s

at the discontinuity. The use of ~uch a representation is an upprosimution since
a real plasma cannot =upport abrupt chinges in its properties, such as those
which occur at the walls confining a li boratory plusma for example. without a

vor responcing transition region where the plasma properties change in some
continuous mwimer.  The validity of such an approximation would be dependent in
part on the wavelength of the waves incident on such a transition region compzred
with its hickness. The coupling between the EM and EK waves due to the non-
uniformity is thus neglected with this upproach. When the transition region is
thick the problem requires consideration of the wave propagation in both the uni-
form plasma and the nonuniform ‘i vi-itivm region, together with appropriate
houndary conditions. This latter prokblem is obviously much more complex than
the former. The boundary conditions which are taken to apply at an .bitiry
boundary are the usual ones from elccl.umagnatic theory for the tangential electric
and magnetic I 1ds. In addition, conditions analogous to those encountered in
wcoustics are usually employed for the pressure and velocity, that is, continuity
of electron pressure and normal electrron velocity across a permeuble boundary,
or vitnishing of normal electron velocity at a rigid bounduary. There is no
unanimity regarding the latter boundary condition however, and the use of a
different boundary condition will be noted.

1.1.1a Plane Boundary

Thin Trar sition Region. 1In the first general treutment of EM and EK wave

propagition in a plasma, Field (1956) considered the conversion of EK plane waves



1o EM plane waves at a sharpplusma - vacuurr interfuce. Field's formulation
began w.thout taking into «ccount the static « leclric field which is present in
regions of electron density variation in the plasi, so his discussion of this as-
pect of the prohlem is not correct. His requirement that the normal electron
velocity vanish at the interface was also incorect in not allowing for the possi-
bility of a surfuce charge. However, Field's work was significant in that his
treatment cstablished the basic approach followed later by other investigators in
Jdeeomposing plane waves in uniform plasma into EM and EK components.

A problem similar to that considered by Field was investigated by Kritz and
Mintzer (1960), the difference being thit their problem involved a sharp plasma-
plitsm v boundary. They took the normal electron velocity across the interface to
be continuous. Analytical expressions for the trunsmitted and reflected electrie
fields for arbitrary angles of incidence were obtained. Some numerical results
showing the reflection and transmission coefficients of the EK wave for an incident
EM wave and the reflection and transmission coefficients of the EM wave for an
incident EK wave as a function of the angle of incidence are presented. The ratio
of the electron density on the two sides of the interface was taken to be 2. The
results show that the EM waves are more efficiently converted to EK waves than
are EK waves converted to EM waves. It is interesting that the EK wave excites
propagat -ng EM waves for only a small angulars interval around normal incidence.
Otherwise, EM surface waves, decay ng exponentially normal to the surface,
are produced, due to the large difference in the prop.agation constants of the EM

and EK waves.



Tidman (1960) found the conversion efficiency of EK to EM energy for the
case of a plune EK wave at normul incidence on a plasma-plasma discontinuity.
A scalor form was used for the static pressure while the dynamic pressure we.s
tuken to be a tensor. His boundary conlition on the normal electron velocity was
different from that of Kritz and Mintze1 in that the total current (displacement plus
conduction) was taken to be continuous across the interface. A numerical result
for the conversion efficiency was obtained for one particular discontinuity where
the static electron density changes by a factor of 2 at the interfice.

Cohen (1962a) obtained expressions for the reflection coefficients of EK and
EM waves incident on a plasma-metal interface. In formulating the boundary
condition on the normal electron velocity, he introduced a hilinear admittance
relation between the velocity and the perturbed electron density and electric field.
The reflection cuefticients which are given involve these admittances but no explicit
forra is given for them, nor is there any discussion of a possible theoretical method
for obta .ning them.

Tidman and Boyd (1962) extended Tidman's (1960) earlier work on the
plax mua-plasma interface. They used the same boundary conditions as those
previously used by Tidman except for his continuity « nlition on the dynamic
pressure. An integration through the thin transition region was performed on the
electron equation of motion, which gave the discontinuity in the dynamic pi - <ure
in terms of the ~tutic electric field in the transition region. Expressions for the
trau-mi-~ivn and reflection coefficients for an EK wave incident at an arbitrary

angle on such a boundary are obtainec



Fedorchenko (1962) examined the reflection of EK and EM waves from a
plusmu-dielectric interface, ussuming elastic reflection of the eletrons from the
boundary. The transmission coefficient of the EK wave due to an EM wave inzi-
dent on such a discontinuity from the dielectric sid- is found as a function of the
angle of incidence for various ratios of the plasma frequency to the radio frequency.
These results are plotted ¢ phiv (1ly and indicate transmission coefficients on the
order of 10 to 50 times gredater than those obtained by Kritz and Mintzer for the
plasma-plasma interfuce.

Thick Transition Region. Tidman (1960) also investiguted the EM radiation
produced by an EK wave propagating through a transition region thick compared
with the EK wavelength. He calculated the conversion ¢[liciency of EK to EM
energy as a function of the rutio of the length of the static €l «(ivm density varii-
tion to the EK wavelength  He was able to show that the conversion efficiency
becomes exponentially small for EK wavelengths less than a certain scale length
of the electron density variation.

1.1.1b. Spherical Boundury

Thin Transition Region. Cohen (1962a) examined the scattering character-
istics of a plasma bubble of constant stutic electron density which is different from
that of the surrounding plasmua. Formulas were obtained for the scattering co-
efficients of such a bubble when illumiu ] by incident EK and EM radiation,
As¥uning the bubble dimensions are much less than the EK wavelength. The re-
sults show that the cross section for scattering into the EK wave are on the order

;03
of (Vg/ VI_) greater than the corresponding EM scattering cross sections, where



\r is the electiron rms velocity and v, is the velocity of light in free space.

The scattering of plane EK and KM waves by a spherically shaped discon-
tHnuity ia plasma Jdensity was treated by Yildiz (1963). He considered the situation
where the sphere and the surrounding medium were plasmus of different static
electron density, and also where the static electron density of either was zero.
Expressions for the scattered fields and scaltering cross section are obtained

Thick Transition Region  The problem of the scattering of plane EK waves
by spherically shaped blobs of small amplitude fluctuations in plasma density was
imertigded by Tidman and Weiss (1961)  The EM energy radiated was determined
tor the case where the electron density variation is Gaussian, decreasing from the
center of the blob. It was found that the scuttered energy is exponentially dependent
-n the squire of the ratio of the electron density scale length to the EK wavel:ngth,
decreasing as the ratio becomes lirger.

1.1.2 The Radi.tion Problem

Tl rudiation problem may be conveniertly discussed according to the kind
of source involved  In physical problems, the 1. lition source almost always
consists of a physical structure or body which is connected by a transmission line
to the generator. The generator impresses voltage across parts of the rudiuting
body and produces current on it. These induced sources produce fields for which
« solution is desired. For mathematical convenience in many cases a problem is
solved by ignoring the body, and finding the radiation from an i dent distribu-

tion of isolated sources. Thus, for exuample, if the far-zone fields of a thin linear



dipole antenaa are desired, one may solve the corresponding problem for a fila-
mentary current source A solution of the radiation from a body is difficult zince
- ppropriate boundary conditions must he satisfied on the surface of the body. The
followin;; discussion of the radiation problem is divided therefore into two paits:
the first dcals with radiution from isolited sources and the second with radiation
from hodics

1.1.2a Raciation from Isolated Sources

Cchen (1962u) considered the fields due to various kinds of surface distribu-
tion of sources in a uniform plasma. IHis analysis was limited to sources distributed
uniformly over a plane surface infinite in extent, with plasma on both sides.

In another paper the fields due to an oscill:iling current filament in a uniform
plasma were found by Cohen (1962b). 1is analysis showed that the EM field is maxi-
mum in a plune normal to the filament while the EK field is maximum along the
filament axis. The radiution resistence of the current filament was found to he
dominated by the effect of the EK wave  Unfortunately, no definite conclusior can
be reached about the behavior of an actual linear dipole in a plasma since the
sheath efect and the houndiiry cunditions which must be satisfied on the real antenna
are not taken into account by the current filament analysis.

Hessel et al (1962) found both types of fields excited within a uniform plasma
half-space due to a magnetic line current source located in free space parallel to
the plasinu-free space interface. In unother paper Hessel and Shmoys (1962)
considered the excitation of EM and EK waves by a short oscillating current fila-

ment in & uniform plasma. Like Cohen (1962b), they conclude that most of the



radiated vower is in the form of EK waves.

1.1.2b Radiation fron® Bodies

In the same paper in which he ex: nined the radiation from an oscillating
current filament in a plasma, Cohen (1962b) also set up the problem for radiation
from a wire dipele anfenna. He obtuined two linear integral equations for the
radiated lields, but made no attempt to solve them.

Hessel and Shmoys (1962) also corsidered the fields due to a prescribed
cnrrent distr ibution on the surface of a rigid sphere. They obtained some
expressions for 11w -+ fields and compared them with the results of the short
current filament

Wait (1964a, b) solved for the fields produced by a slotted sphericul antenna
immer sod in a uniform plasma He considered two cases, one when the plasma

xtends to the surfice of the sphere, and the other when the sphere is scparuted
from the plasma by a dielectric layer. The lutierr model is an attempt to account
for the sheath. No numerical results are given, but expressions for the impedance
and rudialed power are obtiiined. He co  ludes that the EK waves will be
excited by such un antenna.

1.1.3 The Static Shieith Problem

Before the dynamic plausma behavior can be theoretically analyzed insofar
as wave propugarion is concerned, a knowledge of the static plasma description
is required. Th:s is not a problem where the plasma can be reasonably taken to
be uniform, as in regions far from perturbing iafluences such as confining walls,

or bodies immersed in the pl (~m.  In the regions close to such perturhing
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influences, the plusma is not uniform. however. Such regions are referred to as
the plusma sheath. A great deal of effort has been devoted to finding the static
plisiocbebavior in such sheaths  Included below are some of the more pertinent
analyses which have been made of the static sheuth problem.

A solution to the static plasma skeath problem involves finding the electron
and ion nuraber « n~itics and the potentiul as a function of the space coordinutes
in the sheath. The ion and electron number densities are related to the potential
via Poisson's equation. Expressions for these number densities are obtained
by appropriately integrating their respective velocity distribution functions over
the velocity. Upon putting these expressions (which are functions of the potential)
into Puixson's equation | and integrating subject to the appropriate boundury con-
ditions, a swolution for the potentiul is obtained. It is apparent that in order to
carry out the procedure outlined, the clectron and ion velocity distribution
functions must be known. It is usual to (~sumc the electrons have a Maxwellian
velocity distrilutton function, but the ions on the other hand may be taken to
p+ « .- some other di~fribution. The choice used depends to a large extent on
the particular problem under consideration, as will be discussed in the following.
Various other simplifying assumptions may ulso be made, such as taking the
sheuth to be sharply defined from the uniform plasma and ignoring collisions in
the sheath. It should be observed that since the random electron velocities are
much greater than the random ion velocities in the same plasma, due to their
difference in mass, the sheath electric field about an insulated boundary will he

such as to attract the ions and repel the electrons. This sheath is thus a region



where the ion density exceeds the electron density.

Tonks and Langmuir (192%) analyzed the low pressure <discharge for plane,
cylindrical and spherical geometries. They assumed a Maxwellian distribution
function for the electron velocities. Ion generation was also taken into accourt,
assuming the ions to be generuated at rest, so th.t their velocities depended only
on the potential difference through which they .11 after generation. Ion collisions
were ignored. Poisson's equation was then used together with knowledge of the
ion wnd electron velocity distribution function to obtain an integral equation for
the potentiil, which was culled the complete plasma-sheath cquation  This equa-
tion exhibits a dependence on the kind of mode] wussumed for the ion generation.

It was simplified by wssuming that the ion and electron densities are equal to a
high degree of accuracy (Tonks and Langmuir called this the plasnit equation) and
it was solved for two ion-generation models. A solufion to the simiplified equation
is good for the body of the plismu, but it is not, of course, adequate for the sheath
region where the densities of the ions and electrons may be very different. Tonks
and Langmuir tried to remedy this by matching an approximate sheath solution

to the plasma solution. This was only partially successful in that the sheath
potential drop is correctly obtained but the potential profile is not ;ccurate.

Other investigations of various ispects of the sheath problem to improve
on the works of Tonks and Langmuir have been carried out by Allen et al (1957),
Harri~on and Thompson (1959), Auer (1961) and Caruso and C.avaliere (1962)
among others. Solutions of the sheath problera, such as these, have character-

istically been restricted to special cases or subject to limiting approximations
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due to the corplexity of the plusma sheuth equation. Recently, however, with
the avuilubility of high speed computers, curale numerical analyses, valid
throughout the plusmau, have been carried out. Numerical solutions to the plasma
sheath equation huve been given for plane geometry by Self (1963) and for cylin-
drical geometry by Parker (1964), using cssentivlly the analysis of Tonks and
Langmuir.  Curves for (i sheath potential and charge density are given for
various ~i.cs of the dischurge and ion generation models.

A somewhat different approach from that of Tonks and Langmuir has been
followed by Bernstein and Rabinowitz (1959). They analyzed the problem of
cylindrical and sphericul probes in a plasma on the basis that in the absence of
collisions, the general solution of Boltzmann's equation for a puarticle distribution
function is an arbitrary function of the constunts of the motion. The constants of
the motion which they used are the energy and magnitude of the angular momentum
The electron velocity distribution function was assumed to be Maxwellian while &
mono-energetic velocity di=tribution function was used for the ions. After inte-
grating the distribution functions over the constiants of the motion to get the re-
spective particle number densities, a numerical solution of Poisson's equation
was obtained for the potential. The ¢ssentiul difference between the analysis
of Bernstein and Rabinowitz and that of Tonks and Langmuir is that the former
consider the problem of a prébe placed in an infinite plasma medium (the
exterior problem) while the latter investigated the plasma confined by walls of a
given geometry (the interior problem). (An earlier paper by Mott-Smith and

Langmuir (1962) developed the theory of probes in a plasma, but did not discuss



“he poteatic viriation 1 the sheath.) The exterior problem is fundamentally
litferen from the interior problem (besides the obvious difference in geometry)
1 the wotion of the particles which are attracted to the boundary. In the
cxterior problem only those ions with the proper combination of velocity and
ngular momentum will strike the prebe, while in the interior problem, all icns
vill eventunlly reach the boundary. This requires a somewhat more elaborate
treatment to calculate the ion number density in the exterior problem. An addi-
‘tonal lifference between the two developments is that Bernstein and Rabinowitz
dd not allow for ion zeneration. Finally, both anilyses neglect the exist ncc

f a net clectron current to the boundery. This is an approximation whose
validity is reasonable for boundary potentiils equal to or less than the potential
an insuliated body would assume when immersed in the plusma.

An extention of the work of Bernstein and Rabinowitz has been carried out
ecently oy La Frambois (1964). He also considers the probes of spherical and
eylindrical geometry but takes the ion velocity distribution function to be
Maxwellian raiher than mono-energetic, as did Bernstein and Rabinowitz. Lam
(.964) has also analyzed the cylindrical and spherical probes following Bernstein
and Rabinowitz for the asymptotic limit of a very large probe radius to Debye-
length ratio.

Wasserstrom et al (1964) also treated the case of a spherical probe in a
plasma e method was to assume hlaxwellian velocity distribution for both
tye ions and electrons. These distribution functions were divided into two parts

i1 velocity space according to whether or not the particle velocity vectors in



physical  voe were directed along a straight line intersecting the sphere. The
tovo parts of the distribution functions were tal en to be different unknown functions
f the radius variable. The problem was then to find these unknown radial
‘unctions for both the ions und electrons by using the zeroth and first order
velocity moments of the Boltzmuann equaations, the results of which could be sed
with Poizson's equation to find the potential. The effect of collisions was

taken into account in this .nalysis.

..1.4 Experimental Work

In addition to the theoretical studies which have been made concerning wave
propagatior in a plusma, a considerable amount of ¢xperimental work has been
performed in this arei. Some of the more pertinent published results, particularly
those dealing with the excitation and detection & EK waves, are discussed below.

The first comprehensive experimentdl imvestigation into the subject of plasma
oscillations is that of Tonks and Langmuir (1'."h). The purpose of their experi-
ment was to find the electron plusma  ~cillations which Dittmer (1926) had
cuggested were responsible for randomnising the velocity of mono-energetic
electron beams when interacting with a plasma. Arrangements for detecting plasma
oscillations were made by connecting a crystal detector and galvanometer be-
tween two electrodes in the plasma. The oscillation frequency was determined by
measuring the wavelength or a pair of Lecher wires. O« illulivms were found
in the 1ange of 1 to 1000 Mc in a spherically staped mercury plasma. A theo-
retical expression which was obtained, relating the oscillation frequency to the

electron density, was found to satisfactorily account for the oscillutions of fre-
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querncey greates than 1.5 Mce. (The expression which was derived intorJuced the
cleciron pasma [requeney. ) Oscillations of frequency less than 1.5 Mc were
atiributed to the tons.  .An expression for the ion oscillation frequency was also
obiamec  ond “he existence of ion sound waves was postulated, but none were
found.

Morrill inc Webb (1939) also made a careful study of the interaction of
direct carient electron heams with a plasma. They used a movable thin wire
probe for measuring the electron velocity distribution function. The same piobe
was also u-ed, in conjunction with a Lecher wire system, to measure the fre-
quency of plasma oscillations.  The results showed that the beam electrons
were scittered in narrow, well-defined regions, und that oscillations at or near
the elecron plasma frequency also occurred in these regions. No such oscilla-
tions were found outside these scattering regions. It was concluded that since
he osciltions occur only where the beam electrons undergo scattering, the
eam electrons are the source of energy for exciting the oscillations.

A imilar experiment was performed by Wehner (1951) . He also found that
axcillations occur at the plasma frequency when the beam electrons undergo
scattering.  Wlen the discharge conditions were such that no abrupt scattering of
the bean electrons occurred, no oscilliations were detectable. By correlating the
probe measure nents with visual observation, Wehner was able to conclude that
the scattoring took place in a thin layer at the edge of the ion sheath which
currounded the beam control grid. Wehner < ~ted that it is reasonable to

J.elieve that the excitation of plasma oscillations by an electron beum is always



assocliated withthe layers near a plasma boundary, i.e., near the edge of an
ion sheath.

Further evidence to support Wehner's results was obtained by Looney and
Brown (1955). Their experiment differed from that of Merrill and Webb and
Wehner mentioned above in one importunt respect: whereas the former utilized
only one cathode to form the discharge and to provide the electrons for exciting
plasmi oscillations, Looney and Brown used separate cathodes for each function
so that the exciting beam and the plism. could be independently controlled. A
movable wire probe, which was capacitatively coupled to a superheterodyne
receiver, was used to detect the presence of plasma oscillations. It was found
that « tn lir g wave patterns in plasma oscillations were set up in the region be-
tween the exciting beam electrodes. The oscillations occuried near the electron
plasma frequency. The presence of sheaths on the exciting beam electrodes wus
found to he v+« -~ 1y for the excitation of the oscillations. By varying the
exciting beam electrode sheath thickness, it was observed that the standng wave
pattern always adjusted so as to keep @ node of the pattern near the visible sheath
edge. A calculition of the phase velocity of {he standing wave components indicated
that the oscillations are not EM in origin. The authors suggest that it is a longi-
tudinal pressure wave (EK wave) set up in the plasma electrons by the exciting
electron beam.

An experiment was performed by Gabor et al (1955) in order to clarify the
plusma oscillation question, particularly as related to the shezth., The experiment

was motivated by a desire to account for Maxwellian electron velocity distributions



m a plasmi even when its <iimientions are many times less than the electron mean
free path length. It was suspected by the uthors that the explunution of this
~henomenon would be found to be as=oweiaded with plasma oscillations. Contrary
0 the previously mentioned experinieats where an electron beam was used to
»xcite oscillations in a plasma, an electron heam was utilized by Cabor to serve
ts a prebe or detector. A direct current eleciron beam of 1 to 20 KV energy
was collimated and arranged to puss perpendicularly through the edge of the
cylindrical mercury plusmu, and the deflection of the heam was observed by
+uiious arrangements. It was found thit when the beum was passed through the
plisma outside the sheath region, it suffered little deflection. When, howeve:,
1t was pissed through the sheath region near the wall, the beam was deflected in
A1 direction perpendicular to the wall at frequencies on the order of 120 Mc. 1t
was also determined from the experimental data that the static sheath potentizl
was nearly parabolic and hence the reflection time for all electrons is the same.
The authors thus conclude that electrons which reflect from the sheath can gain
or lose ¢nergy depending on their phase relation tothe sheath oscillations at the
time of ¢ntry. The energy which could be gaired in this way could be on the order
of several electron volts, thus providing an explanation for the existance of high
temperature Maxwellian electron velocity distributions in such plusmas. It is
relevant to note that the electron plasma frequency outside the sheath region was
found to be about 500 Mc. No consideration was given to the possibility that the
electron e um may have excited the oscillations.

Suhsequent experiments which involved probing the static plasma sheath with



an electron beam were reported by Gierke et al (1961) and Harp and Kino (19€3).
\oevidence ol oscillations within the sheath, as reported by Gubur et al, was
found.  Harp and Kino also performed the electron beam probing experiment
then he sheath was -uhject to an rf electric field directed normally to the
sheath, Their moa=1ements on the electric field variation in the sheath wei2
townd to be in good agreement with a theory developed by Pavkovich and Kino
(1065). formulated from the collisionless B-vl(/tunn « i i,

Another aspect of pliusma  which has recvived considerable uttention is the
cattering of plane electromagnetic waves by a cylindrical plusma column. Tonks
(1951) showed that a bounded plusma would oscillate at a single frequency pro-
porticnul to the plusma frequency, with the proportionality constant determined
by the size and shape of the discharge, the nature of the mode of oscillation, and
‘he diclectric constant of the material surrounding the plasma. This result was
btained by regarding the plasma as a uniform dielectric with a dielectric constant
R E'o (1—-‘.024@2 ) where wp and w are the electron plasma frequency and the rucio
requency respectively.  Subsequent experiment.l results obtained by Romell
.951) and Dattner (1957, 1963) have shown that there is a series of resonances in
the scattering cross section of a plasraa column, rather than the single resonance
precicted by Tonks. These additional resonunces could not be explained success-
fully uaing a dielectric theory of cold plasma.

Gould (1959) attemptend to account for them by taking into account the random

Feemal motions of electrons in a uniform hot slasma i and allowing for

radial EK wave motion based on a scalar electron pressure. His theoretical



xpoession tor the resonance frequencies showed that the resonunees would be
more closely spaced, by ubout an order of magnitude, than those measured ex-
serimentallv. In a recent paper, Parker et al (1964) have extended Gould's
ceatment to the case where the plasma column electron density varies in the
adial direction. The model for the noauniformity of the electron density was
hased on Parker's (1964) results which were nwentioned previously. The analysis
nroceeded o the linearized scroth and first order velocity moments of the
collisionless Boltzman equation and the Maxwell's equations, together with a
scalur eectron pre - -, The quasi-static appronimation was invoked for the
EM field (this means the electric field is represented by the gradient of a potential)
and a fourth order differential equation obtained for the potential. This equation
was colved subject to the boundary conition that the radial electron current
vanish at the eylindrical plasma boundary. The resonance spectrum for exci-
tation of the radial waves in the cylindric.d plasma column by multipole devices
(e.g., a split cylinder capacitor) was then calculuted. The frequency spectrum
was founc to depend on the square of the ratio of the plasma column radius to the
1oot-mean-square electron Debye length. Experiments were performed using
dipole and cuadrupole excitation de\'iqers: rather than performing the free space
pline war e scatiering experiment, since the desired multipole mode of the cylin-
drical column can be preferentially ex.ited bv the former arrangement.,, whereas
the latter experiment does not have this advantage. Good .igtvemont was obtained

between the experimental and theoreticul spectra. This is a significant result
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nthat i proviaes a reasonably conclusive demonstration for the coupling of

CM oand EK weves at a plasmi discontinuity as well as in the inhomogeneous
plasma itselt. The existence of the rudial EK wave is, however, only indirectly
ohserved through the agreement in the results, and is not independently established
by other experimental = servations which would be ‘losirable. It is also obvious
thuat any theoreticul treatment intended to .ceount for experimental observitions

of a laboratory plasma must take into consideration the nonuniform electron lensity
of such o plusma.  Thus Gould's (1959) original treutment of a uniform plasma
column was not (hle to explain experimental observations thit were successfully
recounted Tor hy the Parker et al (1964) treatrnent of the nonuniform column.

1.2 Problems Remuining To Be Solved

Up to this point, the general subject of wave propagation in a plasma has
ceen cunsidered, and a rather extensive survey of previous work on this topic
s been given. It should now be apparent which areas have been the more ¢.m-
“letely investigated and also where the major unsolved problems lie. We
summarize briefly then the previous contributions, particularly as related to the
tield of ple-ma-immersed antennas, which is of primary interest to us.

O the theoretical side, the plusinu-plasma interface scattering jiroblem
has been solved fora variety of boundary mocels and boundary conditions for
plane .n 1 spherical bounduries. Tidmuan and Boyd (1962) and Tidmun and Weiss
+1861) hive probably given the most c.ueful treatment of the problem in the
houndary conditions and boundary models used. Problems of this type are of

nterest primarily to astrophysicists. Solutions to the electrodynumic plasma



sl eath problem vwhen the boundary is a solid material such as a dielectric or

m til have been confined to the case of a plane boundary where even then the

pl wstma sheath is neglected, except for the cylindrical plisma column. The
isolated scurce problem has been cousidered for various types of current
svurces ina uniform plasma with the indication that more power can be radiated
ar EK waves than as EM waves from filument currents. The radiation from a
body Ties beeen confined to a consideration of the spherical untenna with the sheath
be ing neglected or replaced by a layer of uniform permittivity.

On the experimental side, the capability of exciting and possibly also Qf
de tecting plasma oscillations (which are upparently EK waves) by means of direct
current el cltron beams has been demonstrated. The experimental results of
various authors are in general agreement that it is the sheath region which is
inportant in providing an excitation nmiechanism for electron beams to produce
such oscillutions.  There is experiment il evidence that thin wire probes can also
be used to detect plasma oscillations excited by electron heams. Indirect experi-
mental evidence has been obtained which indicates that EK waves can be excited
in a cylindrical plasma column by EM waves.

Thus, apart from the cylindrical plasma column, no solution has been
obtained for cither the scattering problem or radiation problem which includes
the effect of the nonuniform plasma sheath at the boundary between the plasma
ani the scattering or radiating body. No solid theoretical understanding of wave
propagation in a plasma can be achievec until the sheuth effect is taken into

account, [ the indications are, from the results of the study on the plasma column
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resonances as well as other experinie ntal evidence, that the nonuniform sheath

region may be the most important single factor in these problems. There are &

ntmber of areas that one might consider investizating then in an effort to clurify
th- sheath influence on wave propagation in a plasma. The -c.lto v ing character-
istics of plane, cylindrical and sphericil body-plasma boundaries are of par-
ticular interest. These are boundary shapes which are readily handled and
which are commonly encountered in dealing with liboratory-generated plasmas.
The radiation from sphericil and cylindrical dipole antennas is another problem
arca whicl is of great interest, particularly since the results of isolited source
studies indicite that more power can be radiated in the EK wave than in the EM
wave. Both of these are problem areas where theoretical work in connection
with carefully performed experiments could make important contributions to the
stute of our present knowledge.

There is an arlditional problem aret which is a potentially rewarding one
on both a theoretical and experimental basis, and which encompasses aspects of
both the scattering and radiation problems. It is the subject of the specific
excitation and, more importantly perhaps, the detection of EK waves. All of the
theoretrical considerations devoted to plasma wave propagition to the present
time have ultimately been concerned primarily with EM Wéves, either with the
amount of 'M radiation converted from EK waves at some plasma transition
region, or il {h.» perturbing influence of the EK wave on the radiation character-
istics of an antenna structure or source distribution which should be essentially

a source of EM waves. No consideration has been given to the topic of plasma-
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mmnersed antennas {rom the viewpoint of detecting EK waves. An analysis
should be curriec out to determine if it is possible to detect with an antenna the
oresence of EK waves in a plasma.  This is particulurly important if any experi-
ments are to be performed in this area, for the purpose of testing the theory.
Presently, the exist of the EK wave can only be inferred indirectly, as, for
cxample, from its theorceticul effect on the impedance characteristics of an
antenie, or the resonance of the cylindrical plasma column. It would be more
desirable to uchieve this end directly by some appropriate detecticn device.

=.3 Prcblem To Be Investigited

The problem is to devise and :wulyze promising schemes that may allow
the detection of EK waves by a plasmu~immersed antenna. Ideally, a device
th.at would meusure the divergence of the electric field at radio frequencies is
required. For example, the unalog for measuring the curl of the electric field is
.. small loop antenna. In addition, it should be a passive device that does not
unduly cisturb either the static or the dynamic plasma behavior. Finally, it
should be uhle to accomplish its task in a strong backgroung of EM radiation. A
Langmuir probe such as a thin wire suggests itself as one possibility. Thin wire
probes have indeed been successfully used in previous experiments to detect plasma
oscillat'ons and to measure static electron deansities. However, the oscillat:ons
which were observed by using such prcbes were the result of high energy beams
driving the pli:mua into oscillations. Whether or not such a probe could detect
EK wave oscillations of such small amplitude that the linearized theory applies

would hive to be carefully investigated. A capacitor with grid-like wire meshes



¢ prates might also be considered as a possibly useful device for this upplica-
ion,  Lhis would have the drawback that in order to determine the cuapucitance,
vidch wou d he a function of the charge between the plates, a voltage would hive

‘0 he wpplied across the plites, with 4 resulting disturbing influence on the

alis e Another method which was previously employed for detecting plasma
vscillatims utili..ed the electron beam. Unfortunately, the probing beam could

Also at e same time excite oscillations.

The jestion arises now about what other measurement conceivably may be
made on the EK wave, if a direct meussurement of the divergence of its electric
tield does not appear practical. If it is recalled that an EK wave which is
scattered from a plasmua discontinuity may have some of its energy converted
into EM radiation, we are provided with one possible mechanism for such a
measurement,  While the incident EK wave has no magnetic field, the ceatten
EM wave does possess a magnetic field and so there will be surface currents
induced on a conducting scattering obstacle. 1f these surface currents could be
measured und their wavelengths ascertained, then, because EK and EM waves at
he same {1 cequency have wavelengths which differ on the order of the ratio of the
selocity of light in a vacuum to the pla.sma electron thermal velocity, an incident
EK wave may, theoretic=i-at least, be detected even in the presence of EM
aciation  The problem would be to determine whether from theoretical considera-
Hovs sach induced current measurements could be carried out on a practical
ligis. A cylindrical geometry appears to be an .ttractive one from both a theo-

retical and experimental standpoint. On the theoretical side, a formulation of such



preobiom tor e evlind-ieal geometry is relatively straightforward, and static

heath stucies devoted Lo this geometry are uvailable.  An experimental measure-

ieat of sucfaer currents induced by iawident waves on a hollow metal cylinder
onld he mide by terminating transmission lines, which run inside the cylinder,

1toslots cut apptopriately on the eylinder surfi.ce. The specific problem studii-d theo-
retically ir this investigation is the excitation by incident plane EK and EM waves

1 surfuce currents on an infinitely long, metallic circular cylinder immersed in

tplasm, inorder to determine the practicality of making surface current

wasurenents for the purpose of detecting the EK wave.

The remuinder of this thesis is divided into two main sections. In the
toltowing. Chapter II. the theoretical formulation of the problem is given.

Chapier I presents the results of the numerical analysis and contains a discussion

' their significance.  The main feature of this study and conclusions reached
Com it cre given in Chapter IV, Several appendices follow which contain detailed

wilyses of various aspects of the problem which are not necessary for an under-
standing of the main part of the thesis. The rationalized meter-kilogram-second

iGiorgi) system is used throughout, unless othsrwise indicated.



CHAPTER 1II
FORMULATION

2.1 The Bodio i Equation

One starting point in the treatment of an assembly of various kinds of
charged and unchiirged particles such as is found in a partially ionized gas or
plasma, is the Bdtzmann equation. This equation accounts for the force effects
of both confact collisions hetween particles as well as the macroscopic forces
due to electric, magnetic and gravituaticnal fields. Other formulutions, such
as the Fokker-Planck equation, have I+« n developed in order to overcome some
difficulties in accounting for force effects which are not contact collisions but
rather long-range Coulomb collisions in highly ionized gases. A typical labora-
tory plasma however, in which experi i uts might be performed to check on the
results of the following development, will he only slightly ionized, so that the
Boltzma:: equation approach, which is used here, is a reasonable one.

A completely general treatment of the N-component plasma would now

involve N eguations of the form

(2.1)

where fj = fj(g, u, t) is the distribution function of the jth component, which
gives the density of particles in ordinary space per unit volume of velocity spzce
at space point r, velocity u and time t. mj is the mass of the jth species, EJ is
the force acting on it, and Vr and VV are gradient operators in physical space

and velocity space. The N-equations which result may be coupled through the

27
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collision term und the force term. A solution of the problem would reyuire
linding the N distribution functions appcuring in the N-equations. Once the
distributior functions have been obtained, all the macroscopic physical ohsery -
ubles of interest such as density, velocity, pressure, etc. could be generated
from moments of the distribution funciions, This is a foriid .. problem and
one whiclh can seldom be solved, even when simplifying assumptions are em-
ploved. The usual approach is to employ a linearity condition, i.e., the time-
varying components of the variables arc assumed to be small compared to their
~tutic parts. Such phenomenon as I w1 damping can be developed following
this unilvsis, which is called the kinetic theorv approach.

When the problem under consideration involves in addition, electric and
nagnetic Jiclds in the plasma, there is required in addition to the system of

cquations in (2. 1) the Maxwell eguations

(2.2a)

(2.2h)

T (2.2¢)

where E inc¢ H are the electric and magnetic fields in the plasma. M, and EO
are the permeability and permittivity of free space. The complexity of the
problem is increased still further then, and it is obvious that the kinetic theory

treatment is unworkable for all but the simplest problems.
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An alternative approach to the solution of (2.1) and (2.2) is the hydro-
dwmamrre treatment. This involves taking velocity moments over the distri-
huticn tunctions to generate an infinit: set of monn nt equations in which the
rincroscopic variables of nunber density, velocity, pressure, etc. are the
unknovns. A solution to the problem requires finding the variution in time and
space of these quantities for all the plasma components. It is usual to invoke
linearity when using the hydrodynuniz approach also. There is no essential
philosophical difference between an exact solution obtained from the kinetic
approcch and that obtuined from the hydrodynamic approach, since a knowledge
of the cistribution functions me:uns that all the macroscopic variihles can be
found. I, on the other hind, all the infinite set of mucroscopic variables is
known, the distribution function can be constructed. There is, however, a
areal practical difference between the two methods when one considers the com-
plexity of the muthematics which is encountered, even in solving a problem
where muny simplifying assumptions can be made. Oster (1960) points out {hut
in order to avoid excessively complicated mathematics in the kinetic theory
appreach, it is necessury to make such assumptions that it is more reasonable
to use the hydrodynumic equations. The hydrodynamic approach is the one to
be used here.

Before further developing the formulation, it is appropriate to discuss
the assumptions which will be made about the plasma. The plasma will be con-
sidered to he of infinite extent and of uniform temperature throughout, and to
consist of electrons, positive ions ana neutral particles. The electrons and the

ions ar. taken to have the same number densities on the average so that when
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the plasma is uniform, it is electrically neutrel. Collisions of the electrons

-~ ith ions and neutrals are ignored, in so far as their effect on colleclive plasma
oscillations is concerned. This seems justifiable since the electron collision
frequency in a typical laboratory plasing may be a factor of 100 or so less than
the clectron plasma frequency. Electron collisions are important however, to

the production of a Muxwellian electron velocity distiibution which will be used
here. This also seems justifiuble, in that Maxwellian electron velocity distri-
Jiuations have been found in laboratory plasmas, even when the electron mean

free path is longer than the plasma dimensions. The way in which this distri-
hution is produced in such a plasma is referred to as Langmuir's paradox and

has heen discussed by Gabor (1955). Tinully, the plasma is tuken to be quiescent,
i.e., no charge is being created or destroyed. This assumption primarily affects
the static plasma hehavior in sheath regions, and simplifics a discussion of that
part of the problem.

2,2 Developiment of the Macroscopic Equations

The proce-dure to be followed now is to generate macroscropic plasma
variables by taking velocity moments of the col isionless Boltzman equations

for the ions and electrons, which are

=T (2.3)

T (2. 4)



[ and o ave the eleetron and ion digtribution funetions, u and u are the elec-
i —e =
tron and on velocities, and m and m, are their respective masses. The force
e i

terms are

(2.5a)
(2.5b)

where -e is the electron charge, and E is the electric field in the plasma. With
this choice for the force term, the subsequent discussion is limited to the case
where _roevitutionul and magnetic forces in the plasma may be neglected in com-
parison with the electric forces. This is justified in a plasmi which is not hot
cnough for relativistic effects to become important, In addition, no external
iagnetie field is considered to be present.

Tl first four moimnents over the distribution function produce, in Cartes-

ian coordinates,

particle density: (2. 6a)
particle current: - (2. 6b)
pressure: _ (2. 6¢c)

heat flux: Vo : (2. 8d)



The rondom veloeity 1S

An infintte number of coupled moment equations, which contain only the
macrescopic plasma variables such as given by (2. 6) may be generated from
(2.5) e (20 B, If it were necessary to deal with this entire set of equations,
there would he no inherent advantage of the hydrodynamic approach over the
bnetic treatment. However, it is physically meaningful in many practical
preblems, te terminate the infinite sct of mement equations by taking the nth
order veloeity moment ot the distribution function to be zero.

The point at which the moment equations can be terminated is discussed
bv Parker et al. (1964). When considering tne propagation of longitudinal waves
in u plusma, it un be shown that retaining the higher order velocity moments
when generating the moment equations is equivalent to including the higher terms
. , . , 2,
in *he expansion of (radio frequency/ clectron plasma frequency)” in terms of
(thermal specd/wave spced)‘“ in the dispersion relation for longitudinal waves
propugating in a plasma.  Parker et al. conclude that moments up to the pres-
sure tensor and possibly the heat flux tensor are required, but none of the higher
moments than these will contribute sufficiently to the accuracy of the results to
warrant being used.

Acceptling as reasonable the termination of the moment equations with the
heat flux rensor, the problem has Leen ~implificd a great deal hut is unfortunately

sill very difficult. If no further sim)lificaticns were possible, one would be re-

quired to deal with an equivalent 19th order differential equation. The choice
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P2 vade now e also set the heat flux tensor cqual to zero, an approximation
vhier s oresuently uscd see tor exanple Tidman and Bovd (1962), Parker et
al. (1934, Kritz and Mintzer (1960) .

T s recuces the order of the difterential eyuation to 10th order, and
implies that the eleetron and ion velozity distribntions are isotropic Rose and
Clark (19ol) p. 119 . A {inal assumptumn, consistent with setting the heat
flux tensor el to zero, and which reduces the differential eijuation to 8th order,
is that of replacing the pressure tensor by @ scalar. The view which is thus
tuken here is that the electrons behave as a continuous fluid and the effect of all
the clectron interactions is represent.d by a scalar pressure term.

The use of a secalar pressure is exact for a uniform plasma. In the pres-
ence o1 a plasma inhomegeneity, which is to be considered shortly, it is an approxi-
raation.  The representation of the electron hehavior in the plasma by an iso-
trepie scalar pressure is one which his Leen widely used  Cohen (1962a), Fedor-
chenko (1662). Field (1955), Parker et al. (1364), Kritz and Mintzer (1960) .
Good agreement betveen theoretical and experimental results has been obtained
by Parker et al. (1Y04), where the theoretical results were based upon the use
of a scular el trom pressure. Hence the indicatiuns are (haf this is not an un-
reason: ble appre imodion,

Th:> mment equations which are to be used then are obtuined from the

zeroth and first order velocity moments of (2. 3) and (2. 4) und are

(2. 7a)



34

(2.7h)

(2. 8a)

(2.8b)

where he subscript e and 1 denote quantities associated with electrons and ions

respectively.,  The Maxwell equations can now be written

- i (2.9a)

(2.9b)

(2.9¢)

(2.9d)

This set of equations is completed by an equution of state which relates the pres-
sare to the number densities of the charged particles. The non-time varying or

static pressure PO, from the assumption of Maxwellian velocity distributiuns, is

= - (2.10)

where kois Boltzmun's constant and T is the temperature. It should be noted

that this is the first use to be made of the Mexwcllian velocity distribution.



All of the development to {follow rests on this - ~uwnption. For the dynamic

pressure variations Pl it follows that
- (2.11)

where for one dimensional, adiabhatic pressure variations, v = 3, (Cohen, 1955).
The temperature for a Maxwelliun distribution of velocities is given in terms of
the root-mean-square (rms) velocit, v, as
r (2.12)

The set of Egs. (2.7) to (2.12) constitutes the starting point from which
all of the developments to follow are derived. They contain within them the com-
plete statie and dynamic plasma description with which this treatment is con-
cerned, subject to the approximations and usswinptions which have been pointed
out above. These assumptions are again: that the plasma is non-relativistic,
of uniform terperature throughout, infinite in extent, and only slightly ionized;
the harged particles are electrons .u«l positive ions hining Maxwellian velocity
distributions; they suffer no collisions and their behavior can be represented by
a sculur pressure. The use of these assumptions on the physical nature of the
plasma has been discussed above and no further mention will be made of them
selow in the subsceyuent theoretical development. There are however, some
simplifving approsimations which are basically mathematical in nature to be

‘ntroduced in the following.
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0o

.3 Linear! fin of the Macroscopic Equations

While a great simplification has been effected in going from the Boltzmann
equations to the system of Egs. (2.7) to (2.12), so that the problem is much more
manuge uble, it is to be noted thut these equations exhibit still a nujor difficulty.
That is, of course, the fact that some of these Egs., (2.7), (2.8) and (2.9c) are
non-linear, thus posing a still very complex mathematical problem. This diffi-
culty may be side-stepped by the artifice of linearization, a very commonly used
technique in hydrodynamics. This linearization is accomplished by assuming
that variations of the plasma variables from equilibrium are small enough that
products of these variations can be neglected. The reasonableness of this as-
sumption is dependent upon whether or not the effects produced by perturbing in-
fluences which satisfy the linearity requirements are large enough to be seen ex-
perimentally. In other words, there is no doubt that linearization can be velid,
but the question is, are perturbing influences which do produce meusurable effects
small enough so that a linearized theory applies. This cannot be .t~ w1l until
some theoretical answers are ohtained. The indications are, however, that good
success can be obtained with a linearized theory, which is to be employed here,
as shown by the results of Parker et. al. (1964) and Pavkovich and Kino (1954).

Before the linearized equations are written, one further observation is
made. Since the ratio of the mass of the positive ion to the electron may vary
from about 1800 in a hydrogen plasma to 360, 000 in a mercury plasma, ther the

ion plasma frequency may be from 1/45 to 1/600 that of the electrons. This
means that in the radio frequency range to be considered here, where the electron

plasma frequency is always less than the radio frequency, that the ions will



37

contribute negligibly to collective plasm oscillations. Thus for practical pur-
poses the ion motion can be neglected in so far as the time varying hehavior of
the plasnia is concerned.

The linearization of (2.7) to (2.12) is now accomplished by the following

substitutions ;

(2.13a)

(2.13b)

- (2.13¢)

(2.139)

(2.13e)

(2. 13f)

The subscript o denotes a quantity which does not change with time (these will
stubscyuently be referred to as static guantitics) and the subscript 1 denotes a
time-varying quantity (this will be referred to as a dynamic term). With these

substitution, Egs. (2.7) to (2.12) can be written

. (2.14a)

: c { N (2- 14b)
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of ecuations differs considerably from the incorrect approach used by Field (1955)
where the stotic electron velocity and electric field terms were neglected.
It also differs from the formulation used by Parker et. al. (1964) becuuse of

their neglect of the static electron velocity. The reason for the appearance of
static velocity terms will hecome upparent in the following discussion. A static
magnetic field term was included in (2. 14) for generality; it will be shown to

be zero below.

An observofion of the linearized equations shows that eight of them con-
tain only static quantities, whereas the six remaining equations may contain both
dynamic and static terms, exhibiting the influence of the static plasma character-
istics onits dynamicbehavior. Thus it is necessary that an understanding of the
static behavior of the plasma be reached before its dynamic response can be in-
vestigated quantitatively. It is for this reuson that in the following section, the
static plasma characteristics are investigated for the particular geometry with
which the remainder of this study will be concerned.

2.4 The Static Plasma Sheuth

As was mentioned in the introduction, the purpose of this study is to in-
vestigate the surface currents which are excited on an infinitely long plasma im-
mersed circular metallic c¢ylinder by plane electromagnetic (EM) and electro-
kinetic (EK) w.aves. The plasma surrounding such a cylinder is changed by its
presence, forming an inhomogeneous region called a sheath. Because of the

cylinder geometry, the plasma variation in the sheath is a function only of the

radius v iriable p. Figure 2.1 shows the cylinder in relation to the coordinate

system.
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The mechanism for the formation of the inhomogeneous sheath is *--- ~~ ="-~
fact that, since the electrons are lighter than the ions, they have a larger rms
velocity, even when they are both at the same temperature. In a typical labora-
tory plasma the electron temperature may exceed the ion temperature by a factor
of 10 to 100, thus, further increasing the velocity discrepancy. Due to this veloc-
ity difference, more clectrons (han ions tend to strike the cylinder per unit tirne.
If the cylinder is insulated, that is allowed to acquire a potential which is deter-
mined by the plasma parameters, as will be assumed here, it acquires an excess
of electrons which give the cylinder a negative potential. This negative potential
repels all but the fastest incoming electrons and it adjusts to the point where the
ion and electron currents to the cylinder are equal, ie. equilibrium is estab-
lished. This particular sheath is thus a region where there is an excess of posi-
tive ions.

The origin of the static ion and electron velocities, which for the cylin-
drical sheath have radial components only, is thus apparent. Note, however,
that there is no net current to the cylinder, and that since as shown by (2.14),
the static ion and electron flows are divergenceless, the static electron and ion
currents are then everywhere equal. As a result, there is no static magnetic
field in the sheath due to these currents, and 'Ho = 0.

This inhomogeneous sheath region extends to infinity on a theoretical
basis, since the static currents cannot go to zero, except at an infinite distance
from the cylinder, according to the plasmu model which is being used here. How-
ever, the contribution of the static currents to the plasma inhomogeneity decreases

on the order of 1/ radius as the distance from the cylinder increases, so that
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from a jnacticul viewpoint the plasma becomes homogeneous in a finite dis-
tance. In addition the collisions which occur between electrons and neutrals in
a real [Jlu~rm provide a source for «omtrilimting to the electrons and ions which
flow to the cylinder, thus further limiting the extent of the inhomogeneous region
around it. The picture of the sheath to be used here is that it is of finite extent,
the thickness of which is to be established below, and that the plasma outsice the
sheath can be taken as uniliieni tlieemgleni.  Figure 2.2 shows the sheath in re-
lation to the uniform plasma*uml the cylinder.

An unulysis of the plusma sheath for a planar geometry which was re-
cently carried out by Self (1964) and in which the generation of electrons was

taken into account, indicates that the electron and ion densities are within 5 per

cent of each other at a distance of 10 to 20 electron Debye lengths (Di) from the
bounding plane wall. (We note that D)2 = \ Ver is the electron rms

velocity.) In another analysis by LaF:ambois (1964) for spherical and cylindrical

geometrics, but in which 7e/lectron generatioﬁ was not inéluded, the sheath thick-
ness defined by the same criterion was also found to be on the order of 10 elec-
tron Debye lengths. The electron Debye length for a typical laboratory plasma
with an electron temperature of 104 OK and a plasma frequency of 700 Mc is
8.851 x 10_3 cm, so that the sheath thickness is on the order of 1 mm, It is
thus very much less than the vavelength of EM waves near the plasma frequency

but may be twice the EK wavelength in thickness, as will be verified below.

The fact that there is a static component of electron and ion velocity in-
dicates that the electron and ion velocity distribution functions are not exactly

Maxwellian. The departure from a Maxwellian distribution is dependent upon

“3r 0 dntepriace o ¢ = g will be referced to in
= e Te
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the distance from the cylinder. At distances from the cylinder greater than - =
electron mean free path:(MFP), the velocity distribution for the electrons will
be Maxwellian with a superimposed radial drift velocity di:e to the static
velocity. At distances less than the electron MFP, the electron di=tribution
function will become truncated due to a deficit of fast electrons in the outward
direction. This deficit is brought about by the recombination of the electrons
and ions which reach the cylinder. Immediutely at the cylinder wall, there
will be a minimum in the number of outward travelling electrons. The ion
velocity distribution becomes almost entirely one-sided as the cylinder is
approached since the ions are attracted by the cylinder. It is observed then
that the static radial velocities are real drift velocities at large distances from
the cylinder. As the observation point is brought closer to the cylinder, the
static velocity is primarily caused by the deficit of electrons and ions with
outward radially directed velocities.

A qualitative picture of the sheath region has been developed, as a
region where there is an excess of positive ions, extending roughly 10 to 20
electron Debye lengths from the cylinder and where the electron and ion
velocity distribution functions may differ from Maxwellian. A rigorous
quantitative analysis of the sheath requires finding the solution of the Boltzmann
equations for the ions and electrons together with Pogsiscon's equation. Thig ic
a very complex problem. The usual method is to find expressions for the
number densities of the ions and electrons in terms of the potential by integrating

the Boltzmam equation. The resulting expressions are then put into Poisson's



equution, from which the potentia’ can be found. The complexity of the
equation to be solved for the potential varies widely depending upon the
rigor of the treatment. In a report by Chen et. al. (1963) a closed form
solution for the potential is obtained for a planar geometry ussuming Max-
welliun velocity distributions and equul temperatures for both the ions and
electrons. On the other hand, La Frambois (1964) when considering spher-
ical and cylindrical probes, had to treat a system of non-linear integral
equations in using the orbital analysis of Berstein and Rubinowitz (1959).

In our case, the static she.ith solution could be obtained from equa-
tions (2.14). The purpose of this study is, however, to examine the
dynamic sheath behavior while the static sheath description serves only as
a me.ns to that end. Since there are more rigorous static unulyses such
as that of LaFrambois available in the literature, it is preferable to use
some of theirresultshere. Some of the static sheath parameters can be
varied when performing the dynamic analysis so that the results which are
obtained can rea~imuably be expected to contuin those closest to physical
reality. At the same time they will exhibit the sensitivity of the dynamic
sheath behavior to the static parameters.

An examination of the theoretical results presented by LaFrambois
(1964), and Self (1964), and the experimental findings of Gabor et. al. (1935),
Gierke et. al. (1961) and Harp and Kino (1962) shows that the static poten-

tial variation in the sheath may be closely represented by
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(2. 16)

where . is the potential at the bounding wall, s is the sheath radius,

¢ the cylinder radius, and p is the radial co-ordinate. M is an adjustahle
parameter, the best fit value of M for the experimental results quoted

being about 2and for the theoretical results about 4. Expression (2. 16)

is, of course, only an approximation since the potential cannot generally

be solved for in a closed form. It does, however, give a reasonably accurate
fit for the potential variation in the sheath in a form comenient for numerical
caleulations,

The cylinder potential C will be calculated from
o o | (2.17)

This form is due to Self (1964) for the planar geometry. An expression due
to Chen et. al. (1961), derived for planar geometry, but with assumptions
very different from those used by Self yields nearly identical numerical
results. Unfortunately, no similar closed form has been found in the litera-
ture for the wall potential in the cylindrical geometry. However, values

for obtained from (2. 17) and some graphical results given by
LaFrambois (1964) for a cylindrical probe 20 electron Debye lengths in

diameter, are in agreement to within 10 percent where LaFrambois graphs

may be .couraicly read. In addition, Parker et. al. (1964) obtained some



numerical values for the wall potential of a cylindrical envelope enclosing
a plasma which agree with (2. 17) to within 10 percent for envelopes more
than a few electron Debye lengths in diameter. Further, their i« -nli~ show
the wall potential to be relatively insensitive to the envelope diameter. The
evidence indicates that the wall potential is almost independent of cross-
sectional geometry so long as the dimensions of the probe or envelope suf-
ficivntly exceed the Debye length, the situation in which we shall be interested,
thus justifying the use of (2.17). | . will be treated as an adjustable
parameter through varying m, S0 that the effect of a reasonable variation
in its magnitude can be observed.

Once the sheath potential varialiim is known, then it can be observed
from equation (2. 14) that all the other static sheuth parameters can be

derived on the basis of the known sheath potential. There is thus obtainecd

- (2.18z)

v
s}

e, (2. 18b)

A}
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B o - ,* o “_{C (2180)

(2.184)

Y

-~ 3 (2.18d)

.- (2.18e)



where is the electron and ion density in the uniform plasma, or
and ir are the election and ion rms  velocities and I is the electron
and ion particle flux density in the sheath.

This is an awkward set of equations to hundle, being transcendental
in nature. In addition, it does not provide an accurate piclure of the ion
density and velocity near the cylinder since the use of a scal ar pressure
for the attracted particles (the ions in this case) hecomes increasingly less
valid as the attracting surface is approached. Some conclusions about
the sheath purameters can be reached from it however. First of all, the
electron density can be seen to decrease in the sheath as was previously

surmised, since the cylinder potential is negutive. A natural question whica

arises is whether this decrease is due primarily to either - or

2

" eo

or whether both together have relatively the same influence. Now we ctserve

. [SIRTAY . - . .
from ecuetion (7,1F7) thet v i i.wercelr ~roo-riiconal to the rro-
-t
. ) B
dvew of ~nd N, .. Then inee voth ng, #nC decreasge in rarpitrde
ac tre cyilnder is armrenched, we oo ononclvde that v

must be correspondingly increased with decreasing radius. Thus

should have its largest value at the cylinder's cylinder surface. If all the

incident electrons are ahsorbed at the e Tind r surface, then ‘,/eofv '\_/er/Z

there. But from (2. 17), the cylinder potential ;?c is such that <

i~

~ RN

varies between 3 and 6, depending upon the ion mass, so that
i R decreases approximately

as . when crossing the sheath away
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from the ¢ylinder, which is a faster variation than that of - o then

everywhere in the sheath. Consequently
the Boltzm=iz> distribution S . appears to be a good
approximation for the electron density variation in the sheath. This con-
clusion is virified by the more detailed analysis of Appendix A.

When the ions are considered, the potential and velocity are seen
to have opposing effgcts on the density variation in the sheath, the poleniial
tending to increase it and the velocity to decrease it. Consequently, nothiny
further can be concluded about the ion density variation in the sheath unless a
specific numerical case is considered.

While it seems that it may be a good upprosimation to thus neglect
the static electron velocity in analyzing the static sheath problem, this may
not be justifiable when the Jdyn.umic behavior of the sheath is concerned, since
the dynamic response is coupled to the static variations.  The ion vuriation
in the static sheath is of course not coupled to the dynamic behavior by reason
of the large mass of the ions in comparison with the electron mass. In
order to give fuller considerution to the static sheath variation, especially
from the viewpoint of determining the static electron velocity effect on the
dynamic hehavior, a semi-quantitative analysis of the static sheath, dealing

with those variables related to the electrons only, is carried out in Appendix A.

The electron number density, and velocity are obtained there by integrating
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a truncated Maxwellian electron velocity distribution, the truncation point
being determined by the deficit in outward travelling fast electrons. Ex-
pression (2. 18b) is also employed to get the static electron density. As a
further check, the method of Bernstein and Rabinowitz (1959) is also used to
get the electron number density and velocity.

Figures Al to A4 show the electron number density and velocity in
the ~hcuth for some typical plasma parameter values, obtained as outlined
in Appendix A. As can be seen from these results, the use of the Boltzman
distribution for the stutic electron density variation in the sheath departs
from the other analyses which take loss of elecirons to the cylinder into
account by less than 5 percent over 85 percent of the sheath. The maximum
discrepancy between the various upprouches occurs at the cylinder, but the
difference is no more than 50 percent. Since the variation between the most
rigorous analysis, following Bernstein and Rabinowitz, the semi-quantilative
analysis of Appendix A, the expression given by (2. 18b), and finally the
simplest approach which yields the Boltzmem distribution is negligible over
almost all of the sheath, the tentative conclusion reached above, that it is
reasonable to use the Boltzm=n distribution for the static electron density
variation is justified. This is, of course, equivalent to neglecting the loss
of electrons to the cylinder, or in other words, regarding the static electron
velocity as being equal to zero. Self (1963) arrived at a similar conclusion

in analyzing the sheath.



Still unanswered at this point is the guestion of whether the static
electron velocity can be neglected in relation to the dynamic sheath response.
This cannot be resolved until some further consideration is given to the dynamic
problem. The results of Appendix A for the static electron velocity are used
in Appendix B, i iln  with some results to be obtained in section (2.5) to
answer this question.

In summary, the static éheath description is based on a representa-
tion of the sheath potential by equation (2.16). This potential variation is
then used to calculate the static electron density according to equation (2. 13b)
in which the flow of electrons to the « yTiinl » is neglected. The static electric
field is then obtained from the negative gradient of the potential. All of the
quantities are functions of the radius variable only, due to the axial and
azimuthal symmetry of the sheath.

2.5 The Dynamic Sheath Equations

The equations which contain the description of the dynamic sheith
behavior are given by (2. 15) and are rewritten here with an harmonic et

time dependence, as

(2.19a)

(2.19b)



(2.19¢)

= (2.194d)

T (2. 19e)

(2.19f)

In order to simplify the notation, and since no ambiguity can now
arise, the subscript e is omitted from the quantities dealing with the
electrons and the 1 is omitted from the dynamic terms. Equation (2.19a)
is the continuity equation for the dynamic component of electron motion, and
(2.19Db) is the force equation, while (2.19c) to (2. 19f) are the usual Maxwell
equations. Equations (2.19) ¢xhibit an explicit dependence upon the static
sheath variables which, as will be shown below, couple the magnetic field
and the dynamic electron density in the sheath.

2.5.1 Uniform Plasma Equations

When the plasma is homogeneous, then these equations take the

simpler form

S ' (2. 20a)



(2.2t¢)

(2.204)
(2.20e)

Following Field (1955), the total electric field can be broken up into

two parts, one part denoted by EE having zero divergence and the other part

EP , whose curl is zero. Then the set of equations (2. 20). exhibits two

independently propagating waves, the first having electric field EE

corresponding to the usual electromagnetic (EM) wave, and the other with

electric field Ep being the electrokinetic (EK) wave. The results of this

-cpaeation of the total electric field are summarized by the following equations:

(2.21a)

(2.21h)

SAREN

(2. 21c)

i

(2.21d)

(o

(2. 21¢)
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from which ' (2.22a)

(2.22b)

where - Lo - === (2.23a)

(
(|

(2.23c)

o

c - (2.234)

(2.232)

Ty

(2.23f)

and . is the velocity of light in free space. The wave equations (2. 22)

can alter natively be written as
S o (2.24a)
v 7 , (2. 24b)

This form for the wave equations is more instructive than the first since it em-

phasizes the independence of the magnetic field and the dynamicelectron density
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when EM and EK waves propagate in a uniform plasma medium. These arz

quantities which belong separately to either of the two waves, while each

wave possesses an electric field. Equation (2.21) to (2. 24) thus serve to

descr:he wave propagation in the uniform medium outside the sheath region.
It should be pointed out that the frequency interval in which the EK

wave can propagate unattenuated is limited to .

For ‘ S becomes imaginary so that the

waves is exponentially attcnuat.d, and for  ~. . T - , the ==
re = subject to Landav damping. The EM on the other hand is unattenuated

so long as . _ . When both waves together are con-

sidered then we require that

2.5.2 Elimination of the Static Electron Velocity from Dynamic
Sheath Equation

We leave this aspect of the problem now and return to the more com.-
plex question of the non-uniform medium, as described by the set of equations
(2.19). Since a great simplification would be accomplished if the static elec-
tron velocity terms were not present in cquations (2. 19), it is appropriate to
consider here whether the magnitude of these terms is such that they might
reasonably be neglected in the analysis. A st ightforward way of determining
the relative importance of these terms is to compare them in magnitude with
the other terms in the equation which involve the same dynamic variables.

This has the advantage that the dynamic part of these terms
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may be factored out, so that the explicit dynamic solution, which is not of
course available at this point, is not required. It is thus of interest to

compare the ratio of
(2.25a)

(2.25b)

and

(2.25¢)

-~ - / o~

All of these ratios involve radial components only.
Now the dynamic electron density cancels in (2. 25a) so that we can

obtain the ratio

e (2. 26)

which involves static quantities only the magnitudes of which are given in Ap-
pendix A. In order to similarly factor the dynamic electron velocity from
(2.25b), and obtain an expression in the static variables only, the radial deriva-
txreof ) must be approximated in terms of . itself. For plane wave prop-

agation in a homogeneous medium, =t =n zrcle 6 with res-ech to. the z =rig

P S o S T NPT , e N T o
oL SR L R R S -~ T Te
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where K is the »»roe--iinr crerzunnt ol Tl iore yave, It
seems reasonable in the present case to replace the -7, ters 1v {0,

by L . , sothat =n vorer hounc on thie rotin coan o be e reroed

e (2.27¢)

!
[
O

The requirement on Rl’ R2 and R3 in order that termsin . can
be dropped from (2. 19) is that they be much less than unity. This is discussed
in detail in Appendix B, where it is shown that R1 and R2 are less than 0.1 over
85 percent of the sheath, and irat it is a reasonable pprosinmation to drop
terms in from equation (2. 19b). It follows as a result, that the terms
in . can be dropped from (2. 19a) and (2. 19e) with the same degree of
approximation as for equation (2.19b), =*rce Ay
It should be noted here that the approximations which have been made
by omitting the static election velocity altogether from both the static and
dynamic analyses are based on the ussuniption that the cylinder is insulated
and drawing no net current from the plasma. When this assumption is not met,

as for example when the cylinder potential is altered by connection to an

external source of emf, the argument above may no longer hold. In particular
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when the cylinder potential is ruised to the plasma potential, there is no sheath,
but there is a radi:.l static electron velocity. This velocity provides the only
coupling mechunism between the EM and EK waves in this case and thus cannot
readily be dropped from equations (2. 19). It follows that the relative contribu-
tions of the stutic electric field anc stutic electron density gradient may be
comparable at some cylinder potential, so that all the coupling mechanism:
must then be considered. At the same time, the static sheath picture becomes
more complic.led with a variable cylinder potential. The problem of a
potential positive with respect to the insulated cylinder potential is not con-

sidered in this study. The dynamic equations can now be written

(2.28a)

- ' (2.28b)

(2.28¢c)

(2.284)

- (2.28e)

while the static sheath variables are simply

(2 . 29(1.)



(2.29b)

- (2.29¢)

This is the final form of the equations which are the basis of the development
to follow. No further simplifications or wupproxinmutions will be made in them.
Note that one of the simplifying effects of dropping the static electron velocity
terms from (2. 19) has been to reduce the order of the set of differential
equations. The reason for this is that equations (2.19a) and (2. 19d) are
redundant, either equation together with (2. 19e) serving to derive the other.
As a result, either of these two equations are used with the remaining three
to form a complete and .. m~istont set of ditferentiul equations for the dynariic
sheath behavior. Since a derivative of ~ appears only in (2.19a) it is
natural to use the other of the two redundant equations, so that . becomes

a dependent parameter which is determined by the other dependent variables
H, E and :.. If on the other hand, terms in the static electron velocity are
retained in the equations, then a derivative of the dynamic velocity appears in
(2.19b) as well, so that is then a dependent variable of the differential
equations.

2.5.3 Ordered Power Flow in Sheath

A generalization of Poynting's theorem can be obtained from (2. 28)

in the usual way. We take E- the conjugute of (2.28e) and I_Jm- (2.28¢) and
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upon subtriicting obtain

Equation (2. 28b) can be used to r -~ < the term in , and then upon
using (2. 28a) to evaluate we get
(2.31)
) oo - - Y
where

the factor of J/Z of needed to represent averaging with respect to time. Field
(1955) obtained a similar expression without the - term. In a uniform
plasma, the terms on the left are the average power flow densitics in the EM
and EK waves respectively, while the first four terms on the right hand side ax tne
tic zverzee magnetic and electric energy densities in the EM wave andl
the kinctic and potential energies in the EK wave. The last term is rather
interesting and is considered here in greater detail.

A volume integral of (2.31) 1ead§ to a Poynting's theorem for the

plasma as

(2.32)
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where WH’ WE, WK and WP are real quantities which represent the time
average magnetic, electric, kinetic and potential energy, stored in the vclume
of integration. The real part of the left hand side gives the average power
flow across the clused surface bounding the integration volume and the
imaginary purt is proportional to the difference between the energy stored

in the form of magnetic and kinetic energy compared with that in electric .ind
potential energy, within the volume. In a lossless, passive medium, the real
part of the surface integral is zero. Since the last term in (2. 32) which in-
volves 'Eo can apparently be complex, there is the possibility then that the
sheath may be lossy. We define loss to mean a net decrease in the ordered
energy content of the plasma, varying with the frequency of the incident wave.
Gain is defined as negative loss. Now ny is a current flow in the sheath due
to charge accumulation, and depending upon the direction of this current flow
with respect to _P_JO , there can be a gain of energy or loss of energy by the
wave in the sheath. This can be accounted for in another way by observing
that in the static Caée, the sheath electrons have a potential energy due to the
negative sheath potential. In the pr¢scncee of the dynamic electron motion, the
total electron energy with respect to the static energy, may be increased or
decreased, depending upon the Ti~pl.u¢ i nt of the electron from its static

position by the wave. If we rewrite the term in question as
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(2.33)

where - \ ,and x 1is the electron uisplacene nt from
equilibrium this viewpoint becomes clear.

Thus the term in (2.°¢ ) which shows the effect of the stutic sheath
on the “Jynamic electron motion in the sheath can wccount for both a reactive
energy storage as well as a gain or loss of power in the sheath. Whether or
not there is a net gain or loss due to this effect can be determined from the
integrution of the real part of either the right or left hand side of (2. 32).

2.5.4 The Coupled Wave Equations

The <veomposition of the electric field into solenoidal and irrotational
parts us was done for the homogeneous plasma medium is not meaningful here,
in terms of separuting the EK and EM waves. This is illustrated by using

(2.28h) a1d (2. 28e) to obtain an equation for the electric field =~ , which is

I (2.34)

If as before, we attempt to use

(2.35a)

it is upparent that there now is no simple relationship between : P and '
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and hetween 'EE and H, due to the }_EO term and the spatial variation of €,
A somewhat more reasonable way to attempt decomposing the total electric

field muiy be using

(2. 35b)

(2.35¢2)

since an EM wave alone propagating in a medium with a variable dielectric
constant, satisfies (2.35b) rather than (2. 35a). There is thus obtained from

(2.35)

(2.36u)

[Q)

j" - k T (2. 36b)

which does succeed in giving }_:'J_E in terms of H and EP in terms of n. However

now

o
|
i
}

(2. 36¢)

S o

which shows that ]_EP is not irrotational, thus coupling to the magnetic field.
It is of interest however, to obtain wave equations involving the

magnetic field and dynamic electron density, as was done for the homogenenus
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medium. This is most simply done by successively taking the curl and

divergence of (2. 34), and with the new variables

B - (2.37a)

(2. 37b)

there is obtained

E (2. 384)

(2. 38Db)

These equations clearly exhibit the coupling between the magnetic field and
the dynamic electron density due to the sheath inhomogeniety. This is in
contrast to the case in the uniform plasma where the magnetic field and
dynamic electron density satisfy independent wave equations and are quantities
a==vcialed with only the EM and EK waves respectively. Equations (2. 38)
reduce to (2.24) when the plasma is uniform, since then P and Eo become

Zero.
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2.5.5  Specification of the Inhomogeneous Sheuath Buundury Value Problem

Since analytical solutions cannot be obtained to equations

PR

, so that resort must be made to numericd computations, it is

[

prefe:.ble to deal with the first order ditferential equations. For this reason,

we veturn to (2. 28) which are rearranged as follows

(2.39)

=T~ L (2. 39b)

(2.392)

. (2. 394)

A separation of the angular dependence of these variables for the
non-uniform plasma follows from the requirement for single valued solutions
as . varies in increments of 2 radians, in the same way as
for the uniform plasma. The variation may be deduced by dividing

the sheath region into a number of cylindrical homogeneous shells whose
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proyerties represent an average over that section of the inhomogeneous shzath

which they repluce. The resultant wave quantities must be periodic in the
direction within each shell due to the boundary conditicrns applied

at each shell interface, with the periodicity determined by the incident wave.

As the thickness of the shells is taken to be zero in the limit, the

variation is seen to be constant through the inhomogeneous sheath. Thus with

the azimuthal separation variable or mode number m, which is an integer,

and the direction wave number, there is obtained
(2. 40a)
In
z = 9 N/ (2.40b)
~ 4
(2.40c)
' (2. 40d)
The summation is understood to be from "= to Iz ,and

is summed over the 3 cylindrical co-ordinates / and
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Upon introducing (2.40) into (2. 39) and utilizing the orthogonality
of the equation with respect to , there is obtained the following set

of differentic] equations

(2. 41b)

o (2. 41c)

- S , . (2. 41d)
(2. 4le)

- . - (2. 41f)

where the prime indicates differentiation with respect to p. It should be noted
that no derivatives of - or appear in these equations. - is

given by
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(2. 41g)

and ' is obtained from

L (2. 41h)

-~ (2. 41i)

- .M (2. 415)

The dynamic sheath behavior is thus specified by a system of 6 first
order ordinary differential cquations. Before a solution of this system of
equations is undertaken, some further consideration must be given to the
equations which describe the waves propuguting in the uniform plasma, since
the waves which are incident on the sheath from the uniform plasma serve as
a source for the excitation of the dynamic sheath variation. Now a plane
electromagnetic wave of arbitrary polarization, when referred to the plane of
incidence in a particular co-ordinate system, can be broken up into two waves
of specific polarization, the transverse magnetic (h) and transverse electric

(e) waves. In the case of the cylindrical co-ordinate system, the plane of
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incidence is taken to be the plane formed by the -  axis of the co-ordinate
system and the propagation vector of the incident plane wave. The h and e
waves are those waves for which the magnetic and electric vectors respectively,
are perpendicular to the plane of incidence.

An equally valid criterion which can be used for specifying the polar-
ization is on the basis of the components of the fields. The h wave has no

component of magnetic field andthe e wave hasno .  component of

electric field. The fields scattered from the cylindrical sheath can thus also
be specified as to their state of polurization as transverse magnetic or
transverse electric modes on the basis of a - component of electric or
magnetic field. (The scattered fields when mentioned specifically will be
referred to as modes since they are functions of the mode number m, and
this serves to distinguish them from the incident waves.) We will thus use
h and e to refer to the state of polarization of both the incident EM waves
and scatlered EM modes. The incident EK wave and scattered EK mode will be
indicated by p

As a result of there being three kinds of waves or modes propa-
gating in the uniform plusma, three wave equations are required for that
region. Two of the kind given by (2. 24a) are required for the EM fields,
one each for the h and e polarizations, and the other as given by (2. 2!ib)
for the EK wave. It can be seen then, that the complete mathematical
description of the dynamic response of the homogeneous plasma and inhomo-

geneous sheath involves solving a twelfth order system of linear differential



equations, six first order equations for the sheath as given in (2. 41) and

three second order wave equations as given by (2.24). There are then twelve
constants of integration to be “Ictcermined by the bhoundury conditions. However,
one constant of integration fi'on each of the wave equations for the homogeneous
medium will be associated with the incicent waves and is therefore an adjustable
parameter. This leaves nine constants of integrution to be determined, and tus
al=2r  boundary conditions are required.

The boundury conditions to be imposed at the interface between the
sheath and uniform plasma, assuming no discontinuity in the static plasma
vuriables in crossing the interface, are the usual ones from electromagnetic:
and acoustics, which can be derived from (2.28). They are:continuily of the
tungential electric and magnetic fields, and continuity of the normal dynamic
electron velocity and dynamic electron density. The other three boundary
conditions are specified at the cylinder surface, Since the cylinder is
taken to be infinitely conducting, then the and components of the electric
field are zero there.

The final boundary condition must involve in some way, the hydro-
dynamic aspects of the electron flow. The usual approach is to assume elas-
tic retleclion of the incident electrons from the metal surface, so that the normal
component of the dynamic electron velocity is set equal to zero. Cohen (1962)
discusses this boundary condition in some detail, and concludes that a more

realistic way of accounting for the effect of the boundary would be to use
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(2.42)

YA and YB are called bi-linear admittance relations between the velocity,
and the electric field and electron pressure. Cohen does not justify this
boundury condition except on heuristic grounds, nor suggest any theoretical
way for calculating Y, and Y. There is however, from ordinary ucoustic
theory, some justification for the term in Yp since the surface effect in
acoustics is represented by a surface admittance which relates the normal
velocity to the pressure, as in (2.42). A rigid, impenetrable boundary in
dacousties is represented by zero surface admittance, while a completely
porous boundary has an infinite value of surface admittance. It would seem
to be reasonable then to include these two extremes by using as the last
boundary condition at the cylinder surface, either zero velocity or zero-
pressure, corresponding to Yp equal to zero or infinity respectively, with Yo
equal to zero. Due to the lengthy numerical calculations which will be re-
quired to solve (2.41), it does not seem practical to perform a parametric
study on the effects of using other vulues of Y A and YB.

The nine boundary ..mdilivnis to be used are written below, with the

subscripts 1 and 2 used to denote field quantities in the inhomogeneous sheath

and uniform plasma respectively. At the sheath interface (p = s ):



i (2.43a)

(2.43b)

(2.43¢2)

- (2.434)

and at the cylinder (p = c¢):

(2.43€¢)

(2.43f)

This set of boundary « vnlitions completes the specifications of the problem.

We wish to find the »olution to equations (2. 41) which apply to the inhomogeneous
sheath, und of (2.24) which upply to the uniform plasma, subject to the boundary
conditions (2.43). The boundary conditions (2.43a) to (2. 43d) serve as the link

between the solutions for the two regions.
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Before proceeding to the numerical solutions of (2.41), we first
write the analytic solutions for the uniform plusma. It is well known
(Stratton (1941) p. 393) that solutions to the vector wave equation can be
generated from solutions to the scalar wave equation by the method of poten-
tials. This is due to the fact that, in cylindrical co-ordinates, the
component of the vector wave equation is identicul to the scalar wave equation.

The three possible vector solutions are given by

(2.44'&.)
(2. 44h)
(2.44c¢)
where s o and . are solutions to
(2. 44¢)
) for T; and .. - for T .

The ¢lecliric and magnetic fields, in terms of the potentials, are given by
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- o B . (2. 45)
- = (2.46a)
o (@.asb)

s BT (2.47a)

ST (2.47b)

" is the radial direction separation constant, related to S and - by

(2. 48a)

e

- (2.48b)
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where is the direction separation constant, given by
(2.49)
. -
is the angle of incidence measured from the --- axis, and -, is
the propag.lion constant of the incident plane wave. n is the plane wave
impedance for the EM wave, given by
~ - = (250)

with the free space impedance.
The potential of the incident plane wave solution of (2.44d) may be

expressed in terms of an infinite series of Bessel functions, as

(2. 51a)

where . 1, o and Aare subscripted according to the kind of incident
plane wave, and  is obtaned from (2.49). The plane wave is taken to be
incicent on the cylinder from the direction . The scattered fields have

as their potential

RS (2. 51b)
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. S . " .
where again and A have ~ubscripts corrospor cing to the kind of scattered

mode. Am _ is the Fourier scattering .« It 11 where the second subscript

denotes ‘he kind of incident wave and the thiird the type of ~cuttered mode.

Hfl) is the Hankel function of the second kind, given by

with J]m and Nm the Bessel and Neumann functions.

Note that and ° _ vary in the ratio of %, - so that

A_and A_ are quite different in value. It should be observed that X_ becomes

imaginary when an EK wave is incident at an angle such that

i . . . . . ’ Fvs
or when 6 is different from normal incidence by approximately \/_,
I A

i

rudians. When this occurs the Hankel function of ~ccound kind with argument
AEp becomes a modified Bessel function. The negative imaginary root for

AE is required so that the fields do not grow as the radial argument increases

to infinity, since the medium is pussive. Therefore =~ 7> 2 is replaced by

-

[; =, which decreases exponentially with radius for large

Arguments.  This does not occur for EM wave incidence.
Upon uxing (2.41), (2.43) and (2.51), and eliminating the Fourier

scattering coefficients, the boundary conditions at the sheath can be reducad to
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(2.52a)

] - S ) (2. 520)
1 ]

- s ‘3*‘.;L (2. 52¢)

(2.524)

f B I ‘ ‘ (2.52¢)

. ~v" B v%\§‘ ,@l (2.529)

In writing these equations, it is assumed that only one wave type is incident,
so that two of the three 1 must be zero.

The boundary conditiasat the cylinder may be written as

) (2.52¢g)
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(2.52h)

and
(2.52i)

or
e @)

Qm being zero is the condition that the dynamic electron pressure be zero at the
cylinder wall, while the equation (2.533" is the condition that the radial dynamic
electron velocity is zero at the cylinder. Only one of these two equations is

used. Now cylindrical functions of real argument satisfy

(2.53a)

and those of imuginary argument satisfy

(2.53h)

Then by using (2. 52) and (2. 53), it can be verified that for p and h wave

IR NIIRE
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(2.54a)
and

(2. 54b)
For e wave incidence there is obtained

(2.55)
and

(2. 55k)

The dynamic sheath problems has now been reduced to solving the
sixth order system of differential equations (2. 41) subject to the six boundary

conditions (2.52a) to (2. 52¢) and (2.52¢g) to (2.52j). It is interesting to observe
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that the houndary condition equations at the sheath edge do not involve both
EM and EK quantities together in the same « qualion, as a result of eliminating
the Fourier ccullering coefficients.

The numerical solution of a set of dilferential « qu tivns with boundary
conditions specified at two boundaries is discussed in detail in Appendix C.
The hasis problem is to obtain the starting values for the numerical integration.
This is done by setting, at one boundary, all but one of the modal variables ia
(2.47) equal to zero, the one rewm.ining being set equal to unity. The boundary
conditions are then used to find the values of the derivatives and other variables
which may be reluted to the non-zero input. A numerical integration through
the sheath is carried out which yields the output values of the variables and
their derivatives at the second boundary. This process is repeated with a new
input variable set equal to unity, as many times as there are boundary condi-
tion equations at the second boundary. A linear combination of the output values,
with a coeffirient corresponding to each input, is put into the boundary condi-
tion equations at the second boundary, to obtain a matrix, which upon inversion,
yields the coefficients of the linear combination. These are the desired starting
values for the final numerical integration, which when carried out will produce
a solution that satisfies the boundary conditions at both boundaries. The surface
currents are then obtained from the tangential components of the magnetic field

at the cylinder as

TN (2.56a)
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L (2.56h)

A subseript in place of the dash on the current symbol will indicate the kind
of incident wave.

An additional complication to the numerical solutiay of (2.41) is due
to the [act that these equations are complex. There are thus effectively
twelve veal equations, rather than six, to be solved. The computer time
required to carry out the numerical culculations involved can become pro-
hibitive, especially when the results are desired to be accurate to three or
four significart figures. This degree of accuracy is required since the final
results are obtained from summing the Fourier series, where the errors
involved in the individual terms in the series are additive.

An interesting feature of equations (2.41) and the boundary condition
equations (2.52) is that when - , corresponding to normal incidence, these
equations break up into two sets. The and components of the velocity
and electric field, and the z component of the magnetic field and the electron
pressute are in one set, with the : component of velocity and electric field
and the = and components of magnetic field in the other. In other words,
the ard  modes are coupled but independent of the  mode equations which
stand alone. The coupled . and mode equations consist then of four complex
differential equations and boundary «ulitinns, with the result that the

numerical computation time can be decreased by more than one half. Thera



is an adclitional feature in the fact that there are fewer terms in these
differential equations with a resultant decrease in the generation of errors.

For these reasons the numerical computations for the inhomogeneous
sheath are performed for the case of normal incidence only. It was felt that
the problem is an extremely difficult one even for the case of normal incidence
and that there would be an increased possibility of better understanding the
physics involved, since for a given wmount of computer time, more numerical
results could be obtained. There is, in addition as discussed in Appendix D),
a potentially significant experiment that could be carried out for the case of
normal incidonee, whereas the case of oblique incidence may not lend itseli
so easily to experimental invesligution. The results for the ivliomuoge neous
sheath solution are contained in Chupter II1.

2.6 The Vacuum Sheuth Model

It was pointed out above that analytic solutions can be obtained in
the homogeneous region outside the sheuth. A natural question to consider
now is whether the inhomogeneous sheath may be reasonably approvimaited
by replicing it with a homogeneous region with properties which may be
different from thcseof the external uniform plasma. In this way analytic
solutions could be obtained everywhere. The results obtained from this
model could serve as a measure of the relative importance of the inhomogeneous
sheath and the boundary conditions to the coupling of EM and EK waves, when
compared with the inhomogeneous sheath solutions. Also, the wnulytic solutions

are easily obtained for arbitrury angles of incidence, in contrast to the case
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for the inhomogeneous sheath. A comparison of the results obtained from
the ‘wo sheath models for normal incidence would serve as an indicution of
how nieaninglil are (he results obtained for oblique incidence from the homo-
seneous sheath model.

If the homogeneous shcuth region is taken to be a plasma with different
propercties than the external homogeneous plasma, then in the case of oblique inci-
dence, there will be nine boundary conditions to be satisfied, as was the case for
the inhomogeneous sheath. This results in the requirement that a 9 x 9 matrix
be inverted fo.r the solution of the Fourier coefficients of the various modes, a
task of such complexity that it would have to be carried out numerically. It is
felt that there is little loss of generality by using as a sheath model however,

a homogeneous region void of plasma, and having the electrical properties of
free spoce, which will be called the vacuum sheath. This reduces the number
of heurdary conditions from nine to seven, since the p mode will not be
transmitied thirough the vacuum sheath. As a result, the matrix inversion
becomes much more manageable, and can be easily curried out analytically,
so that the numerical computation become considerably less involved.

In the following discus~ion the fields scattered from the sheath-plasma
interface will be called scattered modes, those which pass through the sheath
to the cylinder are denoted as trunsmitted modes, and those scattered at the
cylinder wall are culled reflected modes. The latters S, T and R will be used

as superscripts on the Fourier coeffecients for the potentials from which the
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various field ruantities are derived to indicate them as the scattered, trans-
mitted o1 1 [lected modes. As before, the subscripts will indic . mode
number, the incident wave type and tlic mode type, in that order.

Six of the boundary conditions to be used are the same as those dis-
cussed for the inhomogeneous sheath. They are continuity of the tangential
electric and magnetic fields at the sheath edge, and vanishing of the tangential
electric field on the cylinder. The last boundary condition for the vacuum
sheath should be so chosen as to be consistent with the remaining two condi-
tions at the sheuth-plasmu interface which were used for the inhomogeneous
sheath. There are two possibilities then, corresponding to the continuity
of pressure and continuityof normal dynamic electron velocity. Since there
is no plasma within the vacuum sheath, these cunditions would lead to the
vanishing of either the electron pressure or normal electron velocity, at the
sheath edge, which are the same conditions mentioned previously for use at the
cylinder wall, in connection with the inhomogeneous sheath. The consistency
of the boundary conditinns used for the two sheuath models in thus maintained
when the vacuum sheath thickness is taken to be vanishingly small, so that
the sheathless case can also be studied with this formulation. The boundary
conditions may be stated then, with the sub scripts 1 and 2<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>