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I
PRELIMINARY DISCUSSION

1.1 Introduction

There have been several papers written in recent years on the subject
of moving media, most of which deal with lossless media. Nag and Sayled
(1956) applied Minkowski's theory of the electrodynamics of moving bodies
to the phenomenon of Cerenkov radiation, by considering the problem of a
static charge in a moving medium,. Sayled (1958) ' later extended this to the
two-medium problem of a charge imbedded in a channel of moving dielectric,
Wave-motion in moving media has been discussed by Collier and Tai (1964
and 1965), The more involved problem of harmonic current source has re-
ceived appreciable attention, notably from Compton and Taf (1964 and 1965),
Lee and Papas (1964 and 1965), Taf (1965a and 1965b), and Daly, Lee, and
Paﬁaﬂ (1965). Unlike the present work, the concern there.was with loss-"
less media.

The formulation of field problems involving charge and current distri-
.butions as sources in 8 moving, conducting medium is delicate, and raises
certain questions which have not been clearly settled up to now; Pyati (1966)
notes this in his thesis. One of the questions raised regards the formulation
of Ohm's law for moving media, for which two different forms exist in the
literature. Another concerns the relaxation phenomenon and itsvexpression
in moving media. In order to discuss the fields set up by charge distributions
moving in & medium it becories necessary to either set up an initial-value
ballistic problem, :vhere at a given instant of time the charges have a given
velocity, mass, and location, or to postulate impressed currents and charges
which maintain their velocity by some unspecified energy source, In order to
adequately treat the first problem one should consider the reaction forces and -
collisions and find the resulting velocity as a function of time, This is an ex-



tremely difficult approach to use. The second approach is used in
altered form in antenna problems and, in fact, most problems involving the
calculation of fields due to a particular source configuration, The second
method will be employed here, treating the sources as stationary, and im-
bedded in a uniformly moving medium, The medium is assumed to have
consﬁnt permeability, permittivity and conductivity,

In the first chapter Maxwell's equations for moving media are reviewed,
and castin dyadic form, ‘The second chapter is devoted to the formulation of
Ohm's law, with a discussion on the two apparently different forms which exist
in the literature, Chapter III treats the decomposlﬁon of charges and currents
into source and response terms, thus ;113k1ng it possible to rigorously approach
problems in which sources a1;e present, The relationship of the response
charges to the sources is derived. Finally, Chapter IV is devoted to the develop=
‘'ment of the vector and écalar potentials and their diffe-rential equations, Green'l
' functions are found in closed form, allowing the complete solution of field pro-

blems in moving, conducting media. Throughout the work, attention is focussed
“on two classes of problems: the first involves stationary charge distributions,
and the second treats harmonic, stationary current distributions, At no time

is any low- veloc‘lty apbro:'c,imation.used; that is, the results are valid for rel-
ativistic velocities, Furthermore, it is not necessai'y to 1imit the values of
conductivity to either low or high values,

1.2 Maxwell's Equations for Moving Media

‘For the sake of completeness we shall now develop the constitutive relations
for an isotropic, llnear medium in motion and introduce the dyadic symbolism
convenient to discussion of the theory. Minkowski's powerful theory will be
used throughout this work, as it provides an elegant framework for the dis~'
cussion of electrodynamics..

As is well known, Minkowski postulated as his starting point that Maxwell's
equations in their indefinite form are to be treated as physical laws, and aﬁ
such have the same form in any coordinate system in uniform motion relative
to the medium, in accord with the postulates of special relativity, The ter-

minology "indefinite" and ""definite" forms of Maxwell's equations was explained



by Tai (1964). Maxwell's equations in their indefinite form are:

vx E ---g-?: n, v+ D=p (m,

VxH = %?+3‘(m). v:.B=0 (IV) .

These along with the constitutive relations comprise the definite form,
Denoting the coordinate system of the medium by primes (i,e., that coordinate-

system with respect to which the medium is stationary), we remark again that
the above equations hold for primed quantities; in, additidn,' for linear, iso-
tropic media the following constitutive.relations hold:

B=pwH , DueE' . : (1.1)

The corresponding constitutive relations in any other system of reference which
is moving with respect to the medium are not as simple, To find them, it is
first necessary to know the relations between the field quantities of the two

‘reference frames,

In particular, let us choose for the unprimed system one which moves in

the negative z-direction with a constant velocity v. This we may do with no

" loss of generality, The medium then moves with velocity v in the positive

g-direction relative to the unprimed, or "stationary", system. The transfor-

mation of electric field, for example, is given by

'E';;:Eza(ﬁ-rv‘x‘ﬁ)z,ﬁ; =7(§+Vx§)x‘y,‘ (1.2a)

where v = (1 - ;2/02)‘1/2, and ¢ {is the speed of light in vacuo, The
development of the transformation of the field quantities is discussed by
Sommerfeld (1952), Section 34 ; the results will be usled here. The above
transformation relation may be written in dyadic symbolism as

B =% E+vxB) , (L)



where the elements of the dyadic 7 are given by the array

o O R
0 <X O

0
0
1 .

The other field quantities transform in a similar manner:

and
H =% @-3xD) . ' (1.3)
Substituting these relations into the constitutive relations above, we get
l')+—1-§Vxﬁ = ¢(E +V x B)
c ,
and

.1-3--;1-2VxE s W(H-¥xD) . | o (1.4)

_Combining these eliminates one field quantity, Thug eliminating B allows
D tobe expressedinterms of E and H, and eliminating D gives B

intermsof E and H (Taf, (1965b)):

=]

B'E'g'-ﬁ_“‘ﬁx )

and , : ' R . (1.5)



where

2 21! Yyt et
n .0"‘(.'“(/"0(0 .

and the elements of the dyadic a are given by

a -0::0
0 a O
o 0 1§
'where.
1 - g
8= 2.2 °
1-n8

In the stationary. system, then, D and E, B and H no longer are
related uniquely as in the case of stationary media, If, in addition, J

is a known independent function or is related to the field quantities in a
koown manner, the indefinite form of Maxwell's equations along with the}

. constitutive relations comprise the definite form of Maxwell's equations;



I
OHM'S LAW

2.1 The Forins of Ohm's Law

Ohm's Law for moving media appears in two different forms in the litera-
ture: one is isotropic, given by Weyl (1922), p. 195:

5:31) =y o'l-f*‘ . (2.1)

where the superscript "(1)" indicates the first form of '-fc' the conduction -

current density, o' denotes the rest-frame: conductivity,
and

"The other form is anisotropic and is the one most widely used in the literature
(see especially Sommerfeld (1952). p. 283, and Cullwick (1959) 'p. 92):

L]

I MR
g ¥e¥-E | - (@2

The difference between them,

!

_3?’ - 3‘02’ = o'yl - 7'2)Ez - o' aE, | C(2.3)

is of the order of 32 , and is negligible for velocities significantly less than
the speed of light ¢. It is important to know which, if ;
* either, is correct. Before we treat this question, it will be instructive to note
how each form arises. '



We first note the transformation relations between the current and charge
- densities, which arise from‘ mé Lorentz transformation of special relativity, and
relate quantities in two systems in uniform relative motion (see Appendix A,
Eq. (A.9)):

it w43 G - W) B F S L )
N o : _ (2.4)
|o = 7(p_-_v_-2_.[) p = fr(p"ry—';‘l)
‘ c . : ¢

where the elements of the dyadic v -1 are given by '

The crux of the difference - concerns the decomposition of current density
‘{nto convection and conduction terms, Convection current is associated with
free charge in motion, while cdnductlon is associated with electric fields in
conducting media, Both formulations of Ohm's law procede from the assump-
tion that ln the rest frame system of the medium (indicated by primed quantities)
the current is all conduction:

TeoE =T . (2.5)
Weyl, on the one hand, uses the relation J = v ?-1- (J' + p'V) to show
that

-
-

J = 7?-10 g'E'+ yp' ¥ = o 71-3*4- vo'V® , (2.6)

since the transformation of electric field is given ny (see Eq. (1.2))



B = %.E* , - (2.7)

Weyl then calls that part which depends explicitly on the conductivity "con-
duction current density’!, denoted by the subscript ¢, and the remaining part
" convection current density’, denoted by the subscript v:

=1)

- (1)
Yo I

=o' yE* , = yp'V . (2.8)
Sommerfeld, on the other hand, uses the transformation relation
J -17-1' ( - p¥) to show that '

L3

3-pv+-’§.3--p-e+-‘§/-'§-v.n*, ' (2.9

and calls the second term "conduction current density" :

=(2) - 1' = =, u* =(2) c T . :
P 7 77 E™, J,) =pV . | (2.10)
" | | - (1) . H2)
The difference between the two charge densities which appear, in Jv and Jv' ,
' . . S e (] .
p-vp' = vp' - yp't 'y = 2E & ‘c"rv 2!! ’ (2.11)
c c ‘

is called the "apparent charge density" and arises from the relativistic trans-
formations, In pre-zjelativistlc electrodynamics a moving charge resulted in
-a current, but a moving cur;‘ent did not give rise to a charge. In relativistic
electrodynamics this is not the case, but intuition is of little help in attaching
a physical significance to the apparent charge density. Depending on whether
it is assigned to the convection term or the conduction term, one.or the other
of the decompositions above is derived.

We shall show by elementary thermodynamical considerations that the
‘heat loss expression can be derived independently of the form of Ohm's law

7



used, and thus that either form is adequate, Further, the fields arising from

charge distributions can also be equally well formulated o either form. While'

Schlomka (1950) uses an electron-theoretic model to conclude that J 22) is

"correct", and Cullwick accepts his reasoning, we shall disagree with .. .:
his argument and conclude that the two forms are interchangeable, and :°

differ only in definitions of "convection" and "conduction' terms,

2.2 Formulation of Joule Heat
The rate at which heat is developed per unit volume s given in the rest
frame of the medium by

99 3. e [F]?, o L (212)

49 . o |3. %2 (2.13)

by use of Eq. (1.2),

A less direct method, but one which demonstrates the balance between
stored, radiated,. and ﬂeat energies, 18 given as follows: from Maxwell's |
¢quations in the rest-frame system of the medium, |

'v.va = _%% a1 , V'f'ﬁ|‘= p' (') ,

-

. _ —— ‘ _ , ,
V'xH'g%%+J‘;(III') , V. B =0 (IV") , “

assuming no convection current, noting the vector identity . i\,

v-Exf) BV xE -F.-vxHE , (2.14)

- = o =, 8D o
Jy* E' =E'-V' xH - E' %%-w- V" xE -V (Ex B)-E.

o

ot'’
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or
- = - = = D' = OoF
1e ' 8 a1 & ' ) « F'y —— « H'¢ ——
JE v @ xHE) - - B 5 (2.15)

Similarly, from the Pauli-Lorentz form of Maxwell's equations in the stationary
frame ( see Paull (1958), p. 101), |

;m DB | =
VxE = -3F (), VD =p (O,
vx f5* = —D-?-'+ 3532)(111;:’)‘ , VeB=0 (vp) ,
where | |
R ' . E
7Ly E :
c o
A*=H-vxD, : ' (2.16)
and
DA _ 34 - =y 1
C — . - :
5t " 3t T YWV A) - Vx FxA)
_‘ ex Y ry A v
=3 ¥ VA, for any vector A ,and constant v ,
we obtain
3-(3)_ B« -5 DD g uxE-v- E* x 7*) ,
c -Dt :
or
3(02).-E* l—‘V’(E*Xﬁ*)“E*'_I)_]t)' 'ﬁ*.}_)—?' . (2017)
In the expressions for 322)'. E* and 3‘;- E', the term on the left is related

to the Joule heat loss per unit time, and the terms on the right are related to
energy storage and radiation terms. The following relation holds for uniformly

moving systems:
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- = 9D' = 9B =% =4 =% DD =* DB
| IS ] ] '._+ '.——. . ¢ S—— ¢ .
v (E' x H') + E L H T -ylv (E"xH)+E Dt+n Dt]
(2.18)

This quantity is an invariant scalar; that is, among systems in uniform relative
motion, it has the same value, To show this relation, we first note that from

" Appendix A, Eq. (A.7),

- 9 -

- E (2.19)
c

v

V'-Z:_Y...
LA

and from (1, 3)

. (2. 20)

.Them . | .
. )]. (

oD
.90 . ==
B 5v ® t Dt
-
~tmd -
-— e 2
, o B* DB ¥ &* . D =%
T . 2 I - s XMoo
Since _
D ' DE' s DE
ve—(E xl-i*)-i"-—l-)-t—xﬁ + ¥+FE R-T
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% D % % D _ |

= H '—ﬁt-(VxE)-E -D—t-(va), (2.22)
the right hand terms of (2. 21) cancel, and the desired relation (2, 18) is obtained.
Comparing relations (2,15) and (2,18), the total minus the stored and radiated
energy densities is

J(:’- B* CE O, | (2.23)

or

=,12 o' = *y = o l *12 ﬂ
o'|E'I=77¥-.-7 - B% . o' |7 d,.(224)
which agrees with the direct result (2. 13) for the Joule heat rate per unit

volume,

We must, of course, consider the same volume in each system, so that
relative to the unprimed system the volume is moving, and in accordance with

the results of special relativity, appears shortened, i.e."
dv' = 'de‘ . ' ‘ (2.25)

¢

Borrowing on the results of relativistic thermo-dynamics (Mgller (1952). p. 107),
the heat developed per unit time transforms as follows:

4Q' = v2dq , - -  (2.26)

so that the rate of heat, per unit volume seen from the stationary system is given
by | '

o » | ,
49 % I?- E |2 Py ' - (2.27)
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or

L] (2. 28)

Thus the Joule heat loss per unit volume per unit time can be readily expressed

by either formulation of Ohm's law,

2,3 The Atomistic Model

| Schlomka (1550) uses an atomistic, or electron-theoretic model, much |
like one described by Pauli (1958), p. 106, as a basis for claiming that 322)
is the correct formulation of Ohm's law in moving media. His argufnent is
briefly the following: conduction current {8 composed of a flow of electrons
which travel on the average with some velocity u' relative to the medium,

{.e.,

.3'0 = 0 (2. 29)

where p; is the charge density of the electrons (p; < 0). By conservation
of charge . )

dq = pl dV' = p_dvV = p: av° , (2.30)

where the superscript zero indicates that frame of reference with respecttowhichthe
charge is at rest, i1.e, which has a velocity u' relative to the medium, Thus,
“using (2, 25) aﬂd noting that here the relative velocities are u and u' rather
thad v, = '

. -7 - L F-®7. ew

1

" The transformation of velocities is given by Mgller.(1852), p. 53. Inthe ‘dyadic notation,

they can be condensed to one vector equation:

I
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@' +v) (2.32)

'.
1+\JV

Now the conduction currenf in the unprimed system is given by the product
of the charge density pe and the relative veIocity of the electrons and the -

medium U=V as seen from the unprimed coordinate system, or

Jo=p,@-v , | S (2,33)

which by using the relations above, gives

=¥ - : : 4
'J-'l . cll'.'vo:-?-t-E.*t.j(CZ) 0 (2.34)

which is the expression used by Sommerfeld.

There are two considerations which cast some doubt on the generality

‘and validity of the reasoning. The first regards the concept of the relative

velocity of two bodies as seen by a third (moving) observer, This is an in-
tuitive carry-over fr<‘>m the Newtonian concept of addition of velocities, ~
This being so, it is doui)tiul whether such an argument can be used in a situation
where special relativity holds, to distinguish a second-order effect.

| The second objection involves the phenomenological qual}ty of Maxwell's and

Minkowski's equations, The model of a cloud of electrons each traveling with a

velocity u is an artificial ‘one, especially since the possibility of fast conduction

electrons is ignored Le. notions of Newtonian mechanics are again assumed. In

view of these objections and the fact that the Joule heat has a unique and consis-

~ tent expression in either formulation, the question is reduced to one of definition.

Schlomka asserts that new formulas would have to be derived in the first form-
ulation, a statement that is not born out by this work. In fact, it will prove more
convenient for our purposes to use the first form when discussing problems where

‘sources are present, This will be made clear in the next chapter,



I
SOURCE AND RESPONSE CHARGES AND CURRENTS

3.1 Decomposition of Charges and Currents

It 1s desirable to be able to treat problems that involve charge particles
which obtain their velocities through a medium by other than electrical means,
An example is the problem of a charged particle moving through a dielectric;
Nag and Sayied (1956) treat this by considering a stationary charge in a moving
dielectric, The charge is the source of the fields, and acts as a forcing function
in Maxwell's equations, In treating conducting media a peculiar problem arises,
that of the relaxation phenomenon: any charge placed in a conducting medium
" tends to disappear, If the charge is moving, the situation is more complicated.
Suppose there is a convection current J 'v caused by charges moving through

the rhedium in addition to the conduction: current;

' F s o E RY

Taking the divergence of (3,1) and uging the relations ¥'e D' = p' and
D' = € E' along with the equation of contipuity, . V'* J'+ 8p'/dt! = 0, we

get

‘_a—e.' 2: 1 R - '- —' '
5n v o P vied . _ (3.2)

-

'If we consider a constant charge moving along the z - axis with constant velocity u',

and attempt to idefitify this charge with the total charge, i.e.

where
p' = p'(z'-u't') = constant |,

substitution into (3.2) requires that p' = 0. Thus, we conclude that one cannot

15

Fd
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arbitrarily assume a given'éon\"ection current that is compatible with the re-
laxation condition. This leads us to separate the total charge density p' into a
source term p; and a response term p; , and identify the source term with the

moving charge:
! t 4+ o o t g
p --p8 pr andJ"’,- p.u‘.

_ then p; can be found by requiring that it be consistent with (3.2). Thus (3.2)

becomes
8p' : . o'
T 9 . el (gt et Y | o B . 2.:
. o' ' . :
'. = ? p s » (3.3)
since | ' Bp; (z' -u't') |
Ve (p'GY) = T ' = - IREERTIR Y
(ps“) wr Ve Tt T

Al

'Similarly if a current source such as an antenna is placed in a moving
medium and considered as an independent forcing function, the total current
in the primed system is comprised of conduction current and the source current

as seen from the rest frame of the medium:
3 = J 4+ o E ~(3.4)

The problem that p;esents itself is the expression of charge and current den-
sities in the unprimed system. |

In this work we shall usually define the stationary or unprimed system a8
that coordinate system which transforms the source to rest. At this point it is
not necessary to restrict consideration only to harmonic curreat sources, al-
though later discussions will have that limitation, There are two.classes of
problems that will be dealt with in this work: "static" charge sources and

P T TN
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harmonic current sources in conducting, moving media. We shall now discuss

the decomposition of currents and charges in the stationary system,

3.1.1 Case A: Charge Sources

First we will suspend the restriction that the stationary system be that with
respect to which the charges are at rest, in order to show the generality of the
formulation. Consider a set of charges moving through a conducting medium
with constant velocity u' relative to the medium, the motion being maintained
by an unspecified mechanical force. Suppose the medium moves with velocity
¥V = vI relative to the stationary coordinate frame, An observer in the sta-
tionary frame sees the charge moving'with velocity U, where & aand U’
are uniquely related. This relation involves the relativistic addition of velo-
cities, given by Eq. (2, 32): . '

--10 --lo by ]
oo X _(_\-1 v) , or il = 1__._!_“71'_.__‘-.’.).. . (3.5)
;.3 v A _
T2 2
c o

The source charge densities are related by

- -ll 2 = t - 9_ 2 = "
P \}1 (c Ps ul (c Pg ¢ (3.6)
where the double prime indicates that coordinate system which transforms the

-charge to rest.  This re'latic‘m follows from the principle of the invariance of
charge:

[ o]

= ] 1 1z Aft 1 .7
dqs psdy = p dv ps‘dV' | | (3.17)

and

. =4V, (3.8)
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(see Mgller (1952), p. 45), which combine to give the above relation of charge

densities.

As stated above, in the rest frame of the medium the total current consists
only of conduction current .'f:: = o' E' and convection current 3;’ = p‘sﬁ'

due to the motion of the source charge:

I' 2 o' Q' + o' B ' = gt 4+ pf - .
J Py U aE , p ot + o . (3.9)

In the stationary system, we add ps'ﬁ to the current density expression of
the Ohm's law discussion which consists of conduction current and convection
current due to the motion of the medium:
J = i+J + J = y [
J P B+JT I ., p Pyt b, (3.10)
It will now be shown that the quantity .'fc + jv does not explicitly depend
on Pt and the decomposition into conduction and convection {8 similar to
that previously discussed in Section 2.1,
The transformation law for current density is given by Eqi (A.8) of Appendix
A: '

T3 @00, . | (3.11)
so that .-
T +3 eT-pdeyd i 4 0T -0
o v Ps 7Y TP Pl
"p"y:y':-l"\-;' + 7ol$-1-§'+7p'v+.70';'p-ﬁ .
8 ] r . 8
_ T : (3.12)
Since E' = ¥+ E*, and using Eq. (3.5),
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- = =-1 - - =%
+ = p! (@ +V) - + ' + vy
J I, = P Y W +v) put Yo'E + 7p.¥

" ————-7§'1:(T+'v')_-'ﬁ +7c'f~3"'+'rp;. .

‘SHI'%‘) - 1 (3.13)

-

From Eq. (3.95), it 1s a matter of simple vector algebra to show that the fol-
lowing identity holds: '

. ' (3.14) '

Using this relation along with Eq. (3.5), and substituting them into 'Eq..(3.13), the
bracketed term vanishes, leaving

- - ' —* - -‘ Lo .
+ ' '
Jc J, =0 +E® + TRLY . . | (3.15)

N

Here as in the sourceless case, we are free to decompose the convection and

conduction terms in two ways:

"(1) - ] =% _(1) a '
. d o g 'YE » Jv Y pr v ]
-or )
- _ = . B |
3(2) - 0' z_'__z . E* , 5(2) = p ; . ) (3.16)
Cc Y v T

We will generally use the first form,

J = p‘ﬁ + o 'fﬁ* + ‘yp;v . ‘ (3.17)
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In the case where the charge is at rest in the stationary system,. ,
U =0, leaving

T =o' vyE* + 1LY . ' (3.18)

Similarly the response charge density Py is related to p; in & manner
similar to Eq. (2,11): '

- v ~ V-3 Rk
= - = L - LIS ' 4+ ! e— 4 ! -
P " PP, v(p ?—) Py =0 'rpr‘ 'rp‘_ 2 a'y 2 p,'
- ’7(1+ﬁ°‘7--"p—s +.o,7v E 4yl - (3.19)
pﬂ N 02 'ps' 2 7ps . . -.

Substituting Eqs. (3. 6) and (3.14).into (3.19) the bracketedtermvanlshea Thuswe

can write the charge density in the stationary frame as
' | v-E
= + s + '+ o'y . .
p =Py T Py Pg T TP r ¢ c2 (3.20)

Equations (3,18). and (3. 20) constitu‘te the desired current-charge expressions

" in the stationary system, Later on in Section 3. 2.1, the relationship between
the source and response terms will be derived. There it will be shown that

Y p;. satisfies a first-order partial differential equation, with 'p‘s as the forcing
function,

2.7.8,1,2 Case B: Current Sources

Instead of a convection current psﬁ there is here an {mpressed current
- density J 5 in this class of problems, having an associated charge Pg:

In the primed system the impressed current density moves, so that a con-
vection term appears in the transformation (Eq. (3.11)):

' = —-10 j - .
RS (ng oM | | (3.21))
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also, from the tianaformation law (Eq. (2.4)),

v-.'r's |
Py = Yoy - —5) . (3,22)
o |

| These quantities, being independent source quantities, do not depend on the

parameters of the medium, Equation (3,9) becomes
7oyl @ - p¥)+adE . (3.23)

Using the transformation relations, we have also

- 1 - - -1 = - -
FoaafteG-om =T td = yp ¥ - ve ¥ . (3.24)

Equating these two gxpfesaions ylelds the decompositit;n' of the second form

J =7 +p7+o’y'7~§*
, 8 'r v

3,01
8 v, ¢

or, equivalently, in the first form,

'--- -(1) 1) .- ' '-* ' : ‘
J Jg + Jv + Ji Js + 7prV+ Yo'E . (3. 25) |

'As before, the charge density decompositions are given by
V-E
= + ! ! Co
p p' ‘fr = ps + 7pr + vo cz . (8. 26)

The relationship of ‘Yp;. to pa;‘ is discussed in Section 3.2.2,
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3.2 Relationship of Response Charge Density to Source Charge and Current
Densities

In this section we shall develop the differential equations for the response
charge density 'yp' in terms of the s@rce terms in the unprimed system,
While the resultingexpression for 'yp involves only charge and qurrent terms, it
does not appear that this is the case for pr, since a term appears involving
the electric field intensity E. Thus the first form of Eq. (3.16), describing
the decomposition of current density, will be used here, There is an inherent
difficulty in assuming time-independence in the fﬁ'st case; this will be discussed
below, '

3.2.1 Case A: Charge Sources "

We know that the assumption of time-vlndependeAnce in the primed system
for a stationary c’hé.rge is inconsistent with the felaXation phenomenon, since the
latter dictates an exponential decay in time, It is not 80 cleaf irhat happens »
when the charge is moving. An expression will be derived for both the assump-
tion of time-independence in the unprimed system and for the general time-

: dependent case, ‘Naturally the assumption of time-independence greatly sim-
plifies Maxwell's equations, and the calculation of fields is more manageable.
The unprimed system here transforms the source charge to rest,

. A, Time-independent Solution . '

With the condition 3/0t = 0, Maxwell's equations for a conducting

medium moving with velocity ¥V becomse:

VxE=0(a), ,V-D= p(IIn),:Vx H=J(IIa), V*B=0, (Na).
| (

where -
D=¢ea-E + ﬁﬁ
B = ua c |- OxE ,
J -o(ﬁ+v‘x§)+7p;'v'i ,-

0-70' ,

e e e
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and
P -'p. + ‘yp;‘ + c!—'i-g . ' (3.27)
c

In order to exﬁress everything in terms of E and ﬁ, theterm E + ¥ x B

must be changed as follows: from the constitutive relation for B,
, /

TxBsu ¥x(8-0)-7x (AxE)

sy eV xH -OF -F)+ @- BT , (3.28)

where it is noted that V¥ x (}[z 2) = 0 and the well-known vector identity

ix(bx3d =b@-qs - (@b
‘hused. Thus

E+7xB = (1+vQ)E - QF-E)+ w'a¥xH ,
= ‘utav
S.‘ET+Ez+"aVXH
= 5. +ﬁ'a TxH , : (3.29)

where the subscripts T and z represent the transverse and longitudinal
components, respectively, and the identity 1 + Qv = a follows in a straight-

forward manner from the definitions (see Eq. (1.5)).
Expanding v D=p gives, from the constitutive relation for D,

V Bese V. T E+V.0xH = c'V't?"ﬁ-ﬁ'Vxﬁ,(;.”
' ' (3.30)

using the {dentity V * (a xb) =D VxT-F.Vxb and noting that

is a constant, Now
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Q*VxH=fl+J = oﬁ'(f-*?x'ﬁ)*"rp;vﬁ

!oa‘f-f-'rp;_vﬂ, (3.31)
or
VeD=eV-a-E - ﬁ-E-vﬂ‘yp;-pips'-*'yp;jcv.zE .
® (332

Againnoting that 1 + vQQ = a, and using the relat}on Q+ _Y2 = u'e'av ,
. e -
evV.F - E -ou'e'av+ E . ps + a'Yp; . (3.33) |
Similarly from (IIIa) if follows that V*J =0 » 8o’'that using the consti-
tutive relation for J in (3.27) and noting Eq. (3.29} above,

VeTsoV G E+op'aV-¥xH+ AAATRLE (3.34)

Similarly to Eq, (3.31),

-V GxE) V. VxEey Teov Eaviug . (339
~ so that (3. 34) becomes

oV T E - ozu'a'\'"f = -Fe V'yp; +ap'av2'yp; . (3.36)

- Comparison of Eqs. (3.32) and (3.36) eliminates all terms fuvolving E,
leaving the desired differential equation '

(."7"7+ .an; . -%p. . . (3.37).
€'y S : .

This has the form
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(—a-i- + tDu(E) = -U(R) , ~ (3.38)
where for cor;venienc;a we have substituted the auxiliary quantities

R = x%+ y§+ 22,

b = a/c"vzv ,

w® =g, | - | (3.39)

Uo(R) = apgfe'v,
and A A _ y
& , Y, and z are unitvectors.

This equation will now be solved by the method of Fourier transforms.
Let the Fourier transform in z of a function f {z) be defined by

1 ® ihz
F{t} = -2-;j e E f(z) du - (3.40)
-00
© 2 A 2
where it 18 assumed that g [t(z)]" dz 18 bounded,that is, f(z) is L
| - | )
integrable in (-, o). Then we know that the integral f F {f} dh con-
-0

verges to f(z) wherever f(z) is continuous (Morse and Feshbach (1853),
. p. 458), We first note that .

o S roo
1 ihz of 1 i{hz, . . ih the
2’I- e ﬂdz l‘-z-;e ‘--fl_lm -—;g e f(z)dz

- -mF{t}), e
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since f(fz) must vanish as z approaches infinity for f(z) in the class

Lz. Multiplylng Eq. (3.38) by e“"/zx and integrating from -0 to +o0
gives '
(b + DIF {u] = -F{U} ,
or
. AF {U } , |
‘ 0
vF {\l} = TSR - (3.42)

ihz

Taking the inverse transform by multiplying by e  and integrating over

h from -0 to o gives, at points where u(z) is continuous,

‘ (0 o) ,e:ith[Uo} . |
u(z) = -4 T dh . (3.43)

We now make use of a theorem related to the convolution integral, and described

in Morse and Feshbach (1953), p, 465, which states, for gl(z) and gz(z)
L2 integrable in (-0, ): ‘

1 @ (©) g (z-t)de >|i ® F F elhz dh (3.44)
27 83 &y {gl} {32} - '
=00 -

BT : - ® -ihz
Letting g, (z) = U (z) and gp(z) = - I ST

[ ]

dh,, we note that

~ that F{gz}- ﬁ-ﬂ}, and that

[0 4] .

o _
-ihz _ (.9 1 :
u(z) -I e F JUl Fig ldh = ——! g.(z-3)U (£)dS . (3.45)
- { <} { 2} 2x - 2 0
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In order to evaluate .g'z(z) we use the technique of contour integration,

Referring to Fig. 3-1, it is noted that for z <0, the exponential e-”"

(z <0)

"Large Semi-Circles
(|h|—> )

Origin
%

Vv

a

h =-1b
(Simple’

Pole) (z >0)

FIG. 3-1: CONTOURS IN THE h-PLANE FOR EVALUATING gz(z).

approaches zero uniformly in the upper half plane on the semi-circle as the
radius approaches infinity. Thus the contribution along the semi-circle con-
tour to the integral is negligible, and from the theory of residues, :-,

(e} e-ihz
gz(z) = -lJ —dh = -{ + 27i Z‘Residue =0,z2<0,

@ h +1ib
Semi-Circle
- ) (3.46)

since e-ihz has no finite poles, and (h + 1b)-1 has only one pole, not en-
closed by the contour. For 2z > 0, the contour can be closed in the lower
half-plane, Then the contribution to the integral along the infinite semi-circle
is again zero, and the residue at h = -ib is merélj “-bz. giving
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g,z) = -2”"”, >0 ., (3.47)

Thus, combining (3.46) and (3.47),
{m £<0 . |
g,(z) = _ ) , (3.48)
2 2re 0%, 4 >.o} .

80 that from Eq. (3.45)

. . .
u(z) = -[ e'b("”uomdr , , (3.49)
- ' .
or
o .
u(z) = -! e-bgvo(z-l)dt . (3.50)
0

‘Written in the original terminology we can now state that the differential
Eq. (3.37) has the solution . '

.

of
o @ c"rzv o
7p;(z) " .o e ps(z-t)dt . , (3.51)
) (o] )

In the important case where ps is a point charge at the origin,

[ o)

p, = a8 (7)) , (3.52)

where & (x) has the properties that §(x) = 0 for x# O,

b » b
I d(x)dx =1 for a < Q0K<b, ands f(x)6(x)dx = £(0) for a <0< b,
8 . . " Ja

7



Then here

0, £ <0

(AR .9z (3.53)

(4 ey v
- oy e ‘Y‘.' 6(x)é(y) , £>0

B. Time-dependent Solution

The more general case of time-dependent fields due to a source charge
distribution follows the same line of reasoning, but care must be taken in pro=-
perly defining the transient behavior of the source, We shall assume here that
no fields or sources exist before time - to' and that the source charge density

is constant after that; 1. e. the source charge density is a step function in time:

ps(R, t) = po(ﬁ) So(t-to) y 8,20, . (3.54)

. where So(t) is the unit step function, defined by

0, tXo |
S (t) { } . o (3. 55)
. 1, t>0 .

L]

It 18 not defined at the origin, but does not behave as &{(t) in that

A ¢ | |
Lim ] S (t) dt = 0, (3.686)
e>0 J-¢ ° - '

It is first necéssary to establish the partial differential equation for the
response charge; from the general form of Maxwell's equations we have



veD=p(m, VxH 2%’-+.T(m).

and

T = oE + 'yp;V' , ' ' (3.57)

where

v'
+ {
P * Py ’YPr+° p) .

We note here that only (II) and (IO)? are necesaary for flnding the relations
for p . The same s true in the time -independent case,

Expanding (II) gives

‘V-.ﬁ-c'v'ﬁ'ﬁ—ﬁ'Vxl-{'- p-ps+7p;‘+c!-:§§- . (3,58)
. ' e

Using (1), and noting that

ﬁ(% J)-e' +oQ E+Qv7p' .

1+ﬂv=a,

“and

Q+ - _vz_ (nza) K
<

°d<'

the following expression results:

(s ]

av-z--ﬁ-aﬁ-—?-ozu av E=Zp + Zavl . (3.59)
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Similarly, taking the divergence of (III) and combining with (II) gives the

continuity equation
v.j- ] --a-p—' » (3.60)
t
or
8p_ B7vp = o=
8 r__V , 6 OE
oV:& E+Ve ('rp ‘)-ou av* \7:&1'1---,at 5t o? T -
(3.61)
Noting that

Ve (vp¥) =V VYo,

(an2.°1) = ‘-2 »

: ple'v ()(ﬁc)l 2 .

‘Eq.- (3.61) can be written

= OE 2, - . 8 8 oafP .
o p'av: E T ( v+ T pr )7pr .

oV a-ﬁ-oﬂ"ﬁ-
' (3.62)

ON'Iq'

Subtracting (3. 59 from (3. 62) eliminates the field quantities, leaving the desired

differential equation
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0 0 o . 0 g
Gt tvar t 6'72) TPy (at Y e)Ps (3.63)

where it is noted that 1 - Bz = 1/‘Y‘-2. by definition, Comparison with Eq. (3,37)
shows that the time dependency has me rely introduced partial time derivations on
both sides. This has the form

’ ~ey
\"l\‘ 1

1 8 9 S e -1__3- S
(v Bt T Bz b) w(R,H), - (v st d)Uo(R._,t) , ) (3.64)
where the suxiliary quantities are given here by

b -o/c'.v'y.z >0 ,
d =o/eev >0 ,

u-'rp;. ’

Uo = p. . ‘ - (3.65’

We are interested in a restricted class of possible sources, namely those given
by (3.54). Thus we let |

R = R - . 68) .
Uo (R, t) u, (R) So (t to), t >0 , (3.66)
where So(t) is given by (3.55). We assume that the response charge is zero
forall t < to‘ and thus the initial conditions are

U (R, 0) =0 | o (3.67)
and | | ) "
u (R,0) = 0 (3.68)
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Since this is evidently an initial value problem, the technique of Laplace trans-
forms will be used in the time domafn, The Laplace transform of a function
f(t) is givenby L {f} , Wwhere

L{f}-J

® ,
e 2t ft)dt , (3.69)
0 .

and the integral is assumed to exist, Note that the derivative has the trans-

form ﬂ A S
Q0 [0 0]
L {g—f} ; L TR t + a{ e 2t1(t) dt
t ot )
0 . 0
= -£(0) + s L {t} - (3.0

In order that the integral in (3, 69) exist and (;3. 70) hol'd, it is sufficient that
f(t) be of}exponential order; i,e. for R‘e {s} > a, for some positive coh-
‘stant iao, ]e's't f(t)l <M forall t> 0, where M 1is a positive con-
stant independent of time, but which depends on a - ‘ :
With the source charge having the behavior in Eq. (3.66), and with initial
conditions (3,67) sad (3.68), Eq. (3.64) can be written |

1 0 0 - 1 9 - ’
<;3i+a—z+t>u(3, t) = -<_V _a_i-’.'d)éO(R)SO(t-tO) ’ t>0 » (3.71)

- .

As In the time-independent case, the Fourier integral technique wﬂlvbe used
here in the z - domatn. Multiplying Eq. (3.71) by elhz/m’f. and integrating
over all z ylelds . |

(-1h + -}a/at + 1) F {u} . -(—i— -5%4 9 F {uo} so(t-to) , (8.72)

where F {u} {s the Fourfer transform of u, given by Eq. (3.40).
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Taking the Laplace transform gives, noting (3,70) ,

(-;ih‘v+ l-‘+bv) L {F{u}} - (s+dv) F {uo} L {s(t - to)}

- -8t
-(s+dv)F{uo}e °
- (3.73)
8

since u, is independent of time; and since for ‘C a constant,

(0] , -8t . ‘
g et 0 dt P . , , (3.74)

t 8- . | .
(\

Equation (3.73) can be written

L{F:{u}} - dv)F{uJ_ o | 15

s(s -ihv +bv) °*

. The inverse Laplace transformation for a function f(t) is given by

+
9‘1 {fo

L Lt} - E?IT . L {f} o®tds = 100), 8> 8, (3.76)
' 1

for all points for which f(t) is continuous, This inverse operation performed
on (3,75) gives

[ )

a, +io s(t-t)

p{u}.;m b ° ° (s + dv) de (3.77).

271 s[s - (1h-b)v] *

al-ioo .



35

The contour of integration is shown in Fig. 3-2; for t <t o the contour can

el

FIG. 3-2: CONTOURS IN THE s-PLANE FOR EVALUATING F {u} .

be closed in the right-half plane where there are no poleq of the integrand. The
{ntegrand converges uniformly to zero along the semi-circle, so by Cauchy's
theorem, the integral vanishes, For t > to‘ the contour is closed in the left-
half plane, and the integrand converges uniformly to zero along the semi-circle.
Applying the theory of residues to (3,77), and noting that the contour encloses
poles at 8=0 and s=ih-b, )

F{u} =.--E" {uo} -‘Z(Residues)

(th-b)v(t-t ) ]

. o
‘- o B . dv__ e ({th-b+d)v
F {io) [(b-ih)v b - 1Bl

[ (ih - b) v(t-to) ]
el 1.]d-e (1h - b+ d)
tr{%} ' h + ib : (3.78)
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Let

(th-b)vit-t)
@) = -1 ® e'”‘z[d-e ® (th-b+ dldh . (3.79)
By o | h + 1b P

by inspection, the Fourier transform of gz(z) is

[ ~(h-b)vit-t) , ]
. o |d-e (th-b+d)
F {32} k b+ 1b —d (3.80)

The function gz(z) can be evaluated by the same method as was used in Eq.
(3.45) , by first splitting gz( z) iatotwo parts:i.e., let

gz(z) = gs(z)‘ + 34(z) '

whe_ré
. @ e-ihz
83(2) = -{d ) m‘dh '
and ‘
- bv(t-t) foo iBE-vErVE) |
2 (z) = le o e (lh -b+d) . (3.81)
By - h + 1b \

For ga(z), the contour can be closed above for z < 0., and below for z >0,

ylelding

By(e) = -2nd &8 () L O (.82)

Sim{larly for g 4(z), the contour can be closed above for £ <v (t - to) and
below for z > v(t-t o)' giving
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(e = 27d o 0% 8, [2 - bt - t)] | (3.83)

Only the pole'at h = -ib contributes to the integral.
Adding 83 and g 4 together, we obtain the following expression for

823
0, z<0.
82(2) = -Zxde-bz, 0Kz <vit-t) ’
‘ °
0, 'z>v(t-to)
or .
g,(z) = - 2rd o™P%5 (1) § (t-t - 2/v) | (3.84)
2 ' 0 (4 0 * )

Multiplying (3.78) by e ‘% and integrating h along the real axis ylelds

the inverse Fourier transform

a (ih - b) V(t - to)
ulz, t) -s F{u(} [‘”d'“h'b;‘i)fb ) dn. (3.85)
J - ‘

\

\J

We can again apply the theorem (38,44) by substituting u, for 8. and noting
(3.80). This gives

_ . |
u(z, t) = -1d[f‘ e-b(z-t)“ (!)d!} 8 (t-t) ,
z-vit-t) ° °
- °
or
vit-t ) '
u(z,t) = -1d ° e-br uo(z-t)dt ‘So(t-to) . (3.88)

0
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In the physical terminology, this is

v(t -.,to) A

- ce—

! = - .._g_. | ' "€l«Yv - -
'rpr(x. Y, %, t) v ||, e p’(x. y, z-%)d¢ so(t to) .
(3.87)

For a point charge, where. Py = q6 (x) 8 (y) 6(z) So(t), this becomes

gz

' 2
L €YV -
6L, == 6(x)8(y) 8,(2)8 (t - 2/v) 8 (1) . (3.88)

L

The z-dependent part of thisis plotted in Fig, 3-3, The response charge den-

= 29

‘Yp' ! =

4 €v. Source Charge at z =0
Exponential Decay Motion of Medium
it 4 Plf
Al » v
)
z=0 z=vt
z —>

FIG, 3-3: RESPONSE CHARGE DENSITY ALONG THE z-AXIS FOR
A POINT SOURCE CHARGE AT THE ORIGIN,

»

sity is zero everywhere except on part of the positive real z-axis, It

jumps at z = 0 to & value which depends on the conductivity and the velocity
or more accurately, on the relaxation time o'/e' and the velocity of the
medium, The step down at z =vt, which might be termed the response
charge '"front", travels with the velocity of the medium, and decays in ampli-
tude exponéntially with time. As t approaches infinity,
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0z

i 2
. ' 4
vo,—>-Z3 ssme TV 8, (3.89)

which is the samé as (3,53), Thus the time-dependent case reduces to the time=-
independent case as t approaches infinity, and we can speak of a steady-state
condition, .Iu this condition the source must have its velocity maintained by

some unspecified mechanical force, and its charge maintained by some electrical
energy source, ' |



3.2.2 Case B: Current Sources
A comparison of (3.18) and (3. 20) with (3.25) and (3. 26) shows that the

introduction of a current source merely adds the term :I' to the current

charge density expression. The relations (3. 58) gnd (3. 6fl) of Section 3.2.1
are modified as follows: into (3, 58) the term 3 , and to (3,60) the:
c T

term V- J , 18 added. Noting that the source charges and currents are

quantities 1ndependent of the system, they are related by the equatiou of con-

tinuity,
. ‘ aps . v . '
V. Js . TR . | (3.91)

and the final differential Eq. i3;63) i{s modified to
' V.3
0 8 o - ____ 8
<Bt t 5o ¥ 6'79. TPy, (P v . (3.92)

For harmonic current sources, P v p;, gnd :I"’ all have a time behavior

given by e-wt, 80 that'(3.92) becomes

T2 + 1 - W L (p + .v_j-.‘!. ) (3.93)
8z v \ a 'YP “ev g 2 . y
'Y c

This has the form

[-5— + b] u® = - U (R) , | | ._ - | (3.94)

[ o)

where the auxiliary variables are defined by

]
u el )
: v Iy
U, = (o/e'v) by + —5-)
| ¢
and

b = o/e"rzv - {wfv . - (3.95)
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Noting that the Eq. (3.94) has been encountered before in (3.38), we can
abply the results of the latter directly., The one difference is that here b
is complex rdthelr_ than real and positive, but since Re{b}> Q, it does
not affect the validity of using the former results, From (3.48), then, we

. have

z - .
u(z) = - I o Pz- 1) U %) dg | (3.86) "
...m v

which, written in the original variables, becomes

Z  Uu-ofevd) 3—;—5\
0 .

-

[p,© + B3] et .

' e S

YL (2) = - =5

o (3.97)

As an example, consider a thin wire antenna of length 214 oriented in the

x-direction, and 'having a triangular current distribution:

;. ; Io(l -1x|)
s X 1

6y)6(a), x| <t . - (3.98)

Then by the equation of continuity (3.91),

o 1 -

Pe " T0 V"%

o d(L-]x]) 3
Ty 6(y) 6(z) '_a'iLL" |x|< 2 ,
or '. .

I ' _ 1, -1 <x<0) C

Py ® ;—37 6(y) 8(z) - T . T (8.99)

_ oo l-1,, 0<x<! : '
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Then siace ¥ .Ts = 0, the response charge density can be written, from '

(3.97),
(iw - , :
or
o .,z
ol “"":,77 1, £ <x<0
VoLt Tear fWe T 8@ { } . (3.100)

1, O<XS‘

This example i8 indicated échematically in Fig. 3-4:

X f PB‘X)
\ |
Antenna N | |7p'1 >f (0<x<1)

A]

J (x)

(-1 <x<0)

. FIG, 3-4: CHARGES AND CURRENTS FOR A THIN-WIRE ANTENNA.

[ )

It can now be demonstrated why it was necessary to decompbse charges
as well as currents into source and response terms, For if, instead, we

had begun with the sourceless formulation of Sommerfeld,

-* i .
J = Pv:,,:i:_%;_l‘l. , | (2.9)
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and added an impressed current source '.f., and written

5.%.F

< |l

J ='38 + pV + o , (3.101)

the convection term pVv would become meaningless, if p is taken as the

total charge density, For as the conductivity ¢' vanishes, we would then get
J=J +p7 . ‘ (3.102)

But we know that a lossless medium, in motion or ndt, with a stationary charge

and current distribution, gives rise to no convection term, that s,

T3 . , - - (3.103)
and since in general, p # 0, this contradicts (3,102),
~ On the other hand, in the formulation:déf the present work, we have

Jei v ¥4ovE L o (3.104)

Now as the conductivity vanishes, 7p;_  vanishes by (3.97), and we are left
with o ‘ |
Ted

'

" as {8 required.



IV
VECTOR AND SCALAR POTENTIALS; DEVELOPMENT
OF THE GREEN'S FUNCTIONS
In this chapter we shall derive the vector and scalar potentials and the
differential equations they satisfy, for the two classes of problems of 1ﬂtereat
"tous. The Green's function approach will be used to find solutions to the
linear, lnhpmogeneous, partial differential equations, ‘In this approach the
forcing function is replaced by a point function, or 6 -function, in space, and
the solutfon to the resulting differential equation is called a Green's function,
The solutions to the differential equations for the vec'tor or scalar potentials
are then given by a sﬁperposition of Green's functions, The field quantities
then follow from the potentials,
' The class of problems involving charge sources gives rise to a complicated differ-
ential equation in the general time-dependent case, one not readily solved.
If steady-state behavior is assumed, that is, 8/8t = 0, the equation is
greatly simplified, and is amenable to solution, We shall derive the differ-
ential equations and present them in their entirety, and find the Green's
function solution in closed form for the steady-state case.
The harmonic current source class of problems is treated in a modified
way, i.e., the potentials are deﬁn;ad differently than usual. The modified
approach gives rise to simpler differential equations, Steady-state behavior
is again assumed, and Green's function solutions are found in closed form.,
The discussion is limited to consideration of unbounded media. Thus
"we are primarily interested iri the particular solutions to the differential
equations, There'ls thus a unique correspondence between the solutions and
their transforms; we will use the method of Hankel transforms in the cylin-
drical coordinate r = x% + y2)1/ 4
tudinal ‘coordinate 2. The solutions are valid for all values of conductivity

, and Fourier transforms in the longi~

o, and all velocities v,
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4,1 Static Charge Source Distributions
4,1,1 Differential Equétldns for the Potentials

For a linear, uniformly moving, conducting medium, Maxwell's equations

are given by
vxE=-2 0, vbeom,
Vxﬁ-.f+%-?(m) , VeB=o0@V) ,

where the constitutive relations are, using the definitions of Eq. (1.5)

B=ua.A-0xE ,

+ QxH , : ' (4.1)

ti

'-
s €'q

=]

and charge and current densities are decomposed as follows:

-

J=oE+VXxB) ¥ yp'V = 0@ =E+u'avxM+ -yp;__T "
r

Al

p=p + 7p;+.ov-2?: . (4.2)
c

Here we have used Eqs. (3.57) and (3.29). The quantity 7p; is determined
by the source density Py this was discussed in Section 3.2,1, In finding "
this relationship of responseto source, it should be noted that only (II) and
(III) of Maxwell's equations were used. In deriving the expressions for the
potentials, it is necessary touse (I) and (IV) as well,

For source charge problems, the vector potential A {s defined in the

usual manner, using (IV):

BevxX . - @)
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Note that this is only a partial definition, since A is not unique. Any other
vector potential A, which differs from A by the gradient of some scalar,.
would also satisfy this relation, From (1), '

~

| 9 ' 9A
Vxlﬁ---ﬁ-VxK--_Vx-s-t-..
or
Y O L |
E=-=5-90., (4.4)

where @ is some scalar'potential. .
We are free to choose A to be in the z-direction without losing gener-

ality. Thus cross-products of A with ¥V or § will vanish in the following
development, The equation V+ D = p has already been expanded in Eq. (3.59)

- = o a'ﬁ' p +a7p
V'ﬁ'E°ﬂ"a—"0M av. E. € . . (405)

This becomes, using (4.4),

i ("”) (e e (e

. (4.6)
From (4.1)
wil = 5.5+ LaxE
a
= 3-1- (V x A) --}-ﬁx<%%+Vb
=2vx&+ap ., @

where the elements of @ * are given simply by
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1/a 0 O
0 1/a 0
oo 1] .

Also, from (4.1),

D= e¢e@-E+QxH

. ¢ .Q.% -€3. ve + 'a"lﬁ"_ﬁx [V x (A + §¢)].. (4.8)

From Eq. (4.2), .

3-6(E+Vxﬁ7+ YOV . : | - (4.9)

Thus (III) becomes

W2
-_g[ +V¢' (VxK)] —i--c'&' V—2+ 1 ﬁx[Vx (A+§¢)]
ot .

t eV o (4.,10)
By choosing a gauge condition which is consistent with the well-known gauge con-
dition for stationary, conducting media, separate partial differential equations
may be obtained for A and ¢ . The development of the gauge condition 18
given in Appendlx A, "It can be written:

V-Z‘-a A-fb-—:--n ve- oya¢--—-Cn 9&'

| . (4.11)

L .
R T R A PRSI
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Substituting this into (4. 6) ylelds the differential equation for @:

' 2 2 2
' _ ~ ¢ 1 [ o“B°\ 0%
(v. g. V)¢-au'avo,v¢-zno V—-Q--—.
‘ ot 02 1-0232 atz

i |
8B ® o= + ]
< (Pg avpr)‘ .

To show this, we first note the following relation; which follows from (4,11):

,v-&"-( +v¢) VA+(VEV)¢ !

- 2¢
2 (Ve )g + ou' av--gé+ﬁ A Q"V—Q bu'a B
: ot 2 at - 3

QO

Using this relation in (4. 6), it can be seen that the terms 1nvolving the vector
potential A drop out, leaving (4.12),

Turning our attention now to (4 10), we ﬁrst draw upon a vector identity
noted by Tai (1965&) :

v (Fl wx @ P = 5 [(E N F) - (75 vF].

(4.14)
When F is the vector potential A, and it is noted that A is in the z-

direction only, the left hand side becomes '

[ o)

vx (87 (vx @) = vx@ L (vxE) = 1 Vx vx i,

and thus -

VxVx K %‘- [&: w)vwik)- (v 3 vi]. (4.15)

(4.12)

>at

13)
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When this 18 substituted into Eq. (4.10), and the terms are regrouped, we get ‘

2

(Ve3*V)A - (@ V)(V- K)--u'c'az-a—% - c:m‘az'-QA
ot t .

+a0x(Vx %‘-:‘-) + qu'az'f x (Vxx).
=g Vx Vx (‘§¢)+' op'azv¢+p'e'a2&-=° V%% -aQx(V x(ﬁ--g-g))
2 -
aC A (4.186)
The fifth term on the left can be written as follows:
. 3A | S - - o
aflx (Vx -a—t)BaV(ﬂ'A)-a(Q-V)A , (4.17)

where use is made of the véctdr identity

V(F*8) = Fx(VxG)+Gx (VxF)+(F: V)G+ (G- V)F, (4.18)

.

and it is ndted that derivatives of 5 are zero since ! 18 assumed constant,
Similarlj, the sixth term on the left becomes

au'azv x (VxA) = au'az V¥ . &) -‘ou'az(?- VA, (4.19)

-

and the third and fourth terms on the right combine to give

[ ]

u'('azg- v —88-2‘ -aflx (Vx(ﬁ%g))

n2

"2
c

2 e ! a a —I. -a
a @ Vs-%'-aVOQZ 3%) + al@ V)(ﬂ—a%)
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The transverse component, denoted by the subscript T, can be written

22 '
na 2 a )

al—; Tat 2 2 (4.21a)
¢ l‘ﬂﬁ

which follows from the definitions of Q and a, Simﬂarly the z-component
is merely that of the first term of (4, 20), or

22 2 - '
na o0 Q . _

Algo, the first term on the right of (4.16) can be re-written:

av x ¥ x({ig) = av ¥ + (7ig) - a V2EP)

= aV(.ﬁ “vg)- aﬁvz¢

= allx (Vx V§)+ all vy - aﬁ'V2¢

= a({- V)V¢-a§V2¢ , (4.22)

-

* ‘where use is made of the following vector identities, in addition to (4.18):

[ o]

Vxfo-vvq?-vzi", ' (4.23a)
Ve(Fy) =F-vy+ypv-F, O (4.230)
2 — =2 = o

VP(Fy) = FV {§ for F aconstant vector, (4. 23¢)

Vx(Vy =0, T (4.23d)
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and it is noted that derivatives of Q0 vanish, since Q 1s a constant vector,

The second term on the leftv‘of k4. 16) can be rewritten, using the gauge condition

of Eq. (4.11), This gives, for the transverse componeats,

] 2 DA 3¢
[(a U A)] ou'avV A- anv,r&t RV, o

- 2 2\
' 2 a n -8 a¢
+ OH'Q VT¢ + :2 ) v

. (4, 24a)
1-1 ﬁ2 T ot
For the z-component,
' oA oA . 0%
- .o o- B - ! - . :
['(a \21%8% A)]z optay o= - 1 o ¥ Q azz

2 2\ .2
og . 1 [n“-g"\ 0%
] —
towagrt 3 55 ) 3201 + (4240
¢ \l-nB

Using (4.17), (4.19), and (4.24), the transverse part of the left hand side of
(4.16) reduces' to

aQV —E+ouav¢+-—< >VT%2 (4. 25a)
-nB t -

Similarly the transverse part of the right side of (4.16) after using (4.21) and
(4. 22) becomes

80V —a-%‘f ou'a v ¢+ ( > . (4. 25b)

which is the same as (4. 25a)

. -Thus the transverse components cancel, and
we are left with only longitudinal compon_enta; This means that the vector
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differential equation reduces to a single scalar differential equation, an im-

portant result,

Summing up the longitudinal components on each side, we get

- 2 A 2 2 2
9A Q __Q z (n”-87) 82
. . ] — -
(Vv a°V)A - ou av = nazat 2 +—2
| 9z c ﬂ)
c2 5t2 | ot
) U BT
. A n 2
az(Q- V) allv'g + zop .‘~az+ ;-ia TR
2 .
- a-'y'p;v . ‘ (4.26)
T CesiTnon o L"; 32 2 ‘
- Examining those terms involving -—% and V¢, we note that
. 82 .
| 8 =2, 0% 2 X
Qa(ﬁ'V)—Q-aﬂV¢#Q—2--a§V ¢-ﬂ—2
. 0z . 322 T az2

= (V@ VG, (4.27)

Since the quantities are parallel vectors, we can drop the vector notation, After-
multiplication by {1, Eq. (4.6) becomes ” |

- 2 2
- « = = .B_.A_-- 2.a._é- t ..8_.A..
AR R e T 2 Mg
2—-2--0;4 avﬂ—l+ﬂ—'?+a-‘3-‘yp' - (4.28)

oz ot
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Using (4. 27) and (4. 28), Eq. (4. 26) becomes

2 ' 22 2

- : A 3"A 8A ([ n"a 2\ 5°A

. . - ' —— - - ' - — - —
(V& V)A -ou'av Bz 2{28z ot ou'a(a-vQ) 3t cz >at2

22 2 P
=-gu'a(l-a+ vﬂ)%% [—% :: -gﬁ)ﬁ 2 ; + Q2 aa i +ﬂ-;,'--(y‘av-%)a.-yp;l.
-n c

(4.29)
It can be seen from the definitions of 2 and € that the folbwing relations
hold: , . ‘ '

c ¢c 1-n8
and
“' av - % 1] .El_'. . .a_zv_ . . (4. 30)
. c ¢ Lo

so that (4. 29) becomes, finally,

. 2 2 N .2
. A 9°A .. 0A 1 -B"\9°A

(v a V)A - opav-a-—-ZQazat auaatv—i 575) ~3
¢ \I-nB/ ot

1 8y
= (%0, -'—5-”,;) : (4.31)

Written in scalar form, the corresponding expressioﬁ (4..12) for the scalar
potential § becomes



2 | 2 2\ .2
= 9 X ag 1 [ o°-p°\ 8%
. L] - ! —2- - ! -
(V-@: V)f -oulav g7 - 205 - ob'a gy -3\ "33 ) 3
‘ ‘ ‘ ¢ -n B/ ot
<=2 (o + avpl) (4.32)
E' 8 r L] [ ]

Comparison of (4. 31) and (4. 32) reveals that the two differential equations are
identical, éxcept for the source terms. .

Let ¢s be the solution to the differential eciuation when only the first
term appears on the right of (4.32), and ¢r the solution when only the

]

second term appears, Then
Gog, v 9, . .39

It Ks and Kr are similarly defined from Eq, (4.31); the particular solu-

tions are related by constant quantities:

A - -Tg

and L '

o . " (4.34)

From the transformation relations for A' and §' in the rest system of the

- medium (see Appendix A, Eq. (A.8)),

[ o)

- or

A Y(A-!-g) =v(-Qf + %‘r'%f‘r- 50,)
R c c c
A' = -7p'c'av¢‘ , . . ' (4.35)
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and thus A' depends only on the source term p, and not on the response

charge density p; . On the other hand,
' ' v2 .
e aG-vm Gy e gv vag-Se) L
or

AETURCET I

(4. 36)

It is also of interest to express the fields in terms of the scalar potentials;

from (4.3), (4.4), (4.7), and (4.8) we get

is:-vu‘;-_(v;ix’z‘)-«?‘zxwu--c!'?xvgtIr ,

E'-—a-r-v¢
o9 - o¢
s G —2 - SRS S8
5 . v¢s o2 ot v¢r !

- 1 -
nza e
= —3 (V¢r x V)
wac

and

Ol
| ]
]
m
]
m
o
g
-
Co*
t.l —
®
o]
>
q
V)
YY)
+
o] ]
h ~§
ol

!
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0 ¢
= ' ———— '-. -e—v— c——!- ! L]
€N € V¢s RTINS & vy
-0 x 7 x V¢r), . (4.37)

For this case it can be seen that for zero conductivity, . ¥ p; vanishes, and so
does ¢r and H. Thus for lossless moving media when A and ¢ have
the same boundary conditions, H =0, Inthis cdse we have a static configura-

tion in space, so the. result that E x H =0 18 tobe expected, since there is
no radiation at all., .

4,1,2 Green's Function Sblution

The system of vequations for the potentials given in equations (4. 31) and
(4. 32) is quite complicated, involving, as it does, three Variablés. It was seen
in Section 3, 2,1 that there is a steady-state behavior for the currents and
charges for large t which is found either by letting t approach infinity
or setting 8/0t =0 from the start, If the assumption 18 made that 8/ot =0,
the differential equations simplify to

(V'E-V)A-op'av-gé-l- -l-(st-a-!-z'rp')

]
oz € o r
and
] . - y | —8-2 2 - .l- ’
(Vea V)¢ ou'av 5= = (ps+ a'yp;) . (4.38)

[ o]

The Green's function method utilizes a function G (R lﬁo) which is the solu-
tion to a given differential equation whenthe source term is & point source in
space at ﬁo" that is, - G(ﬁl 'ﬁo) satisfies the equation

[(V- a.v) -'cu'av -a-?z—] G(ﬁl'ﬁo) = -4 (ﬁlﬁo')  (4.39)
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where R is the vector from the origin to the field pont, ﬁo is the vector
from the origin to the source point, and the derivatives operate on the field .
coordinates,” The symbol & (R ﬁo) denotes a quantity which vanishes for
R ¢ Eo' and has the property that

Lf(R)a(R]Ro) v = f(®)

where the volumé V ‘encloses the point ﬁo' In all of the problems in this
work we shall be dealing with unbounded media, so that for all fields, poten-
tials, and Green's functions, the boundary conditions will be the radiation con-
dition, nafnely that only functions which do not increase away from the source
are allowed; also, that for unbounded media, the homogeneous solutions vanish,
This means that no sources exist for the fields other than the given sources,
which are assumed to occupy a finite region,

It will now be shown that the vector and scalar potentials are related to

the Green's function in the following way:

AR) =- %, ‘ ‘ ‘ G(R|R ) [ﬁps(ﬁo) - 3;— 7p;(ﬁ°)] v,
' A/ o c ‘
o R

and

J® = 5 “‘v GR[R)[o,®) +avp,®)]av,, (.20
| A

[ )

where Vo indicates a volume enclosing the sources. To show this, we shall
define three-dimensional Fourier transforms and use the relation (3. 44), ex-

tended to three-di’mensiodé. Let the Fourier transform ¥ of a function
F(R) be defined as follows: l



% 3 (0 R
F(h) = (27) x‘ ‘ e FR)AR , , (4.41)
’ =00

. where dsRo = dxo dyodzo. Then if F(ﬁo) is class L2 in each variable
xo. yo, and zo for all real values of xo, yo. and zo. the inverse trans-

form is given by

m v .
F(R) = &” e"r"Rﬁ‘(ﬁ') ah o, (4.42)

where d°h =dh dh db. Taking the transform of both sides of (4,38a) and
(4.39) gives: : ‘

(b & b +towav - D)X =7 ,

and

o]
(B F B+ topav . DEER) = (a0 S & \ s @R e R o’

* -00

.

- g B R
=(27) e , : (4.43)

where J represents the term on the right of (4.38a), From these relations,

ih+ R

AE) =2n’e ° T(h)'c‘;’(ﬁrﬁo) . ' (4.44)

The three-dimensional version of {3.44) follows from Parseval'p theorem:

) ‘ o o |
& & &i‘ﬁ* d3h -(2:)'3 \ S\F(ﬁo) H* (ﬁo) dano ’ (4.45)

-0 -0 /



where the asterisk (*) indicates the complex conjugate; this is subject to the
* conditions stated above, Let F (ﬁo) =]J (Ro) sothat ¥(® = J(B).
Similarly, let

_ 4B (R+R) _ | .
'@ =e ° 'G'(i]no) . (4.46a)
Then |
| F- R+R)
Hm) = e -0 FGRR)
and
| % 4B @& -R-F)
H(R,) = er 1 ° 'é*<5|ﬁo)d3h' )
-m . B .
Qr -

¢

©r 4B ®+R -R) s
H¥()) = gue‘ . GE|R ) d'n
. o
' =00

¢

= GR+E - Rllﬁo) . | (4. 46b)

Noting that ‘H' (R ) = G(R|R ) end using (4.42), (4.44), (4.45) and
"(4.46) tofind A(R) ,

(D m - - -

| SRR 3 AR @®+R) |
AR = & & g_e R R ¥ &) 3 = (27) g ”e ° J(h)G(EIﬁo)d3h -
RRS 3 - |

- 3 ’
- [ v cmmpets, (.47

-0



which was to be proved. Substitution of the appropriate term for J ylelds
Eq. (4.40). Similar results hold for @(R). It should also be noted that this
discussion holds independently of the operator form; this will be useful later
on,

We turn our attention now to finding the Green's function that satisfies
Eq. (4.39), which in cylindrical components can be written:

}__?_r2<_3_+ iG-tr 'ava—q--é(ﬁﬁ )=-6(r-r°)6(z-zo)
r 8r © Oor 822 [ 52 o T .

(4.48)

The parameter "a'' can be either positive or negative, depending on the value
of npB; for low velocities nf <1, and a>0. For veloc‘ities which are
very high, nf8 > 1, and a < 0; in this case the velocity v = Bc of the .
medium is greater than the speed of light in the medium, c/n, and the
Cerenkov radiation condition is met., We shall treat both conditions in this
work, '

The method of solving the differential equations is straightforward: by
taking appropriate transforms, the differential equation can be transformed
into an algebraic expression like (4.43). The transformed.unknown can
then be expressed as a ratio of polynomials. Upon taking the inverse trans-
forms, the solution can be expressed as a multiple integral, If we are for-
tunate, the integrals may be reduced to a closed form, This will prove to
be the case in the present work. |

Case A, Low Velocitles: v < c/n, and a > 0. Here we let clr2 =g, and

b=gu' azv/ 2, and without loss of generality, we may choose I-io- 0 tem-
porarily., Then (4.48) becomes

19 3G .. 128% 2b08G_ _8(é - .
ror or T 2.2 "2 5z ‘ 2 : (4.49)
a Oz a 2rr a

The Hankel transform technique is well suited to this problem. Given a

1
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function f(r), the Hankel transform H{f} +18 defined by

© ,
H{f(r)}t j Jo(lr) f(r)rdr , (4. 50)
0 .
1 oo
for all functions f(r) of class L", t.e. such that |t(r)|dr 18 bounded.

From the well-known theory of Hankel transforms, qunction f(r) is re-
lated to its transform by

00 ' ’
£(r) 'go Jo(kr)l,i{f}«ld‘k . - (4.51)

It follows from the definition (4. 50) that

1 8 _of 2 '
H{;B?rm;} « -2%H {t} . | (4.52)

This can be shown as follows:

© 00 J (A\r)
. of of o
Jo(kr)ra—r- (! go rg; 9 3T dr
J (\r) © - -Jo(xr))
= 0+.frd 5 I’-l- Iof(r) —E;ra T rdr
- (4.53)

where it is noted that from the definition of the Bessel function that
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1 8 aJ ()\r)
;-a-; 8!‘ +KJ(XI‘)’0

4

and it is assumed that f(r) has a behavior such that:

Lim 3f . Lim _8f _
r—>0 3; fJo(ll‘) = r—>0 r oT 0o,

9J (\r)
Lim o Lim 2 Lim 2
+=>0 f(r)rT l.__mrf(r)(kr) _)orf()o
Lim 9t ' Lim V" .
r>0dr F 5ol " L0 f 0,

and

- 3J (\r) -
:‘_l:; rf(r) %r s rLizm "@‘ ﬁ' f(l‘) =0 , (4.54)

EE

e e o -

N N

Taking the Hankel transform of Eq. (4.49) gives

2 ' )
12--13-17+ Eg)n{c} . 6“’2 . | (4.55)
a. 0z

a 21 a

Further, taking the erier"transform in z gives

( - 2“’9 F{H{G}} -, (4. 56)
. 47 a :

F{H {G}} " ;/“22 5 - s

m-ib)? + a%2% + b
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. The roots of the denominator are at

- ,
h, ,=1b + 4\ oA+ b2 3 (4.58)
’ .

 one is in the upper half-plane, one in the lower for all A, The inverse Fourier

X (Simple
Poles)

’

FIG. 4-1:  CONTOURS IN THE h-PLANE FOR EVALUATING H {G} .

transform of (4,57) in h is given by

-ihz
e

| ©
1 dh
H {G}= 2 j—m G-5)B-b) ° (|4.59)

From the exponential it is evident that for z < 0 the contour can be closed in the
upper half plane, and for z > 0 closed in the lower half plane, and the theory
of residues applied. For z < 0, the residue is

L



bz zVazlz-t» b
e e

[
21 Va A +b

and for £>0, itis

br -zYfa’al4p?
(2] e
TN

Noting that the contour in the lower half-plane is couﬁterclockwiso, (4. 59) be-

comes ot
, | 2\o®A% + b
H'{G}- — (2r1)
4 21 02l2+ b2
| n/z 2.2
-lz[Ja"r" + b ‘
= -Zl—'- ebz i -, (4. 60)
0212 + b2

.

The inveréé‘ Hankel transform, from Eq. (4.51), gives the integral

3 .2, 2
bz (o - o|z|A° + b%/a
G- L-J 3 (xr) ® MAC D (46

4na
‘ 2+ bz/cz2
2 .2 .2 2
This can be solved by a change of variables: let £ =X" + b"/a"; then
€d& = xdX, and the positive real axis in A maps into the straight line
contour b/a < £ <00 in £, Then Eq. (4.61) can be written

| bz '
G = -4—-‘[/ e~elzlf; (rvg' -b/a§>de . (4.62)
. Jb ‘
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This is a tabulated Laplace transform given, for example, in Magnus and
Oberhettinger (1954), p. 132, Finally, the Green's function can be written

_b r2+ azz ‘ ‘
- ebz o av '
GRIO) = ira . | (4.63)
2 2 2
_ , Vr + ag :

Replacing R. by R - ﬁo and substituting for a and b gives

as

. . 1/2
] ]
a“—av(z-z) -2 _Y g
_I e 2 L 2 1
GR|R) = - v A - (4.64)
[ 41ra1/2 R1 |

~ | w , 2 2 ~
where Rl = \J(r - ro) + a(z - zo)- . This is the form desired. Note
that as o —> 0, this becomes simply

— ) 1
G(RIRQ) = m - (4. 65)

1

¢

Case B. High Velocities: v >c/u, and a<0, Herewelet a =-a and
define b as before, i.e. b =o' a2 v/2. Again letting I-{o = 0 Eq. (4.48)

now becomes
1 8 .06 1 9% 2b0G b() 6@
TwTer Sz 3z L 2 ° (4.56)
a 0z a 27r a

Taking the Fourier transform first this time gives
¥+ 2inb : | S(r) ,
--———-) F {G} = =3 . ' (4.67)

18 8 .
rarrar 2
a
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Taking the Hankel transform and using (4. 52) ylelds the algebraic expression '

[2_- _hz_+?21h_b] B {F {g}} - L ~ (4.68)

41ra

or .

{ {G} '1/4” o’ o - (4.69)

(h + 21hb>

The inverse Hankel transform of (4. 69), using Eq. (4.51) is then

(4.170)

Hlo} « - —

joo J (Ar))ldl

4r°a (h +21ht>
Now Jo()\r) = -;- ()(l ) + 3 (2)(1 ). If R(h) denotes a rational

function in A, then )

*

. .
j Hﬁ” Ar) ROD) Ad = j :,2)( TanraY (- N (-d3)
Jo 7 5 |

0
s - ] :)2)( 7 ) RAH AN
-0

[ o

0 .
- s s anrada (4.71)
. -0 " x

since

(1)

H?) (e“ zZ) = - Ho

_(z) ’
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from the qircuit relations for the Hankel functions. (See, for example,
Sommerfeld (1949), p. 315, (11)). Thus (4.70) can be written

(1)
H ' (Ar) Adx
F{G}- - 2 (4.72)

22 |- 2 ’
8r°a" )¢ ,2_(h_+21bb
a

where the contour C is given in Fig, 4-2, and the branch cut must not be
taken in the upper half-plane., (Otherwise, the circuit relation above could
not hold),

Large Semi-Circle

/\ | Al —> o
% QP\— > |a|

| Brancli Point
A= Az | ‘

(Simple Poles) | Branch Cut

FIG. 4-2 CONTOURS IN THE A-PLANE FOR EVALUATING F {G} .

It 18 well known that the asymptotic behavior of the Hankel function is given by

(1) ~>\' 2 ' AAr -in/4
Ho (Ar) T © e

for large amplitudes of A, and since r > 0, the contour can be closed in the

.- - . B R D
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upper half-plane, enclosing only the pole at Al = % V’l;z + 2ihb ., By the
theory of residues, (4.72) becomes

. HS)[%th_+ 2ihb| |
F{G}- - cori - T A

szaz

. -.—1—-5 HS) [% Vh2+ 21hb]' . (4.73)

8ra

The inverse Fourier transform in h gives

.

. ) ® ‘7 '
G ®l0) = - — 2] ihz HS’[% Vh2,+ 21hb | dh . (4.74)

e
8ra o o)

The argument of the Hankel function vanishes at h = 0 and h = -2ib, the
Hankel function itself behaves logarithmically at these points, so that these
points are branch points, and the branch cuts must extend to infinity, Thus
it 1s appropriate to choose the branch cut so that it lies along the negative
imaginary axis, as in Fig. 4-3, | |

(az <r)

(ar>r)

X Branch Points
——— B}'anch Cut

FIG, 4-3: CONTOURS IN THE h -PLANE FOR EVALUATING G (R10) .
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For large amplitudes of h, the integrand behaves as
_ r
exp [ih(z -;)] .

Thus for z < r/e, the contour can be closed in the upper-half plane, and
for z > r/e it can be closed in the lower half-plane,

For 2z < r/a the contour in the upper-half plane éncloses no poles and
encounters no branch cuts; furthermore, since the Hankel function behaves
logarithmically near fhe branch points, the integral around the branch pointé
points vanishes,leaving |

G(RI0) =0 for z<r/a . o | (4.75)

For z > r/a, the presence of the branch cut dictates that the imaginary axis

cannot be crossed, and since no poles are enclosed,

= . : (4.76)
C Cy
where the contours are indicated in Fig, 4-7.

It i8 necessdry to éxamine the argument of the Hankel function with some

care. Assuming the radical is taken as positive, the arguments of the radical

can be obtained for the contour C. in the following manner: for argh = -7/2,

1
P 2
arg [Y2Ab - %] A <2b

or h=-{A, where A=|n|,
arth +2ihb = argV(-i)zA2+ 2Ab
|
arg |-iyA" - 2Ab|, A> 2b
-]
0, A<2b o
" = [ ] R (4.77)

-7/2, A> 2b

~
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Similarly for argh=3#/2, or h=1 A,

arg vh2+ 2ihb

\J

6
arg iAz + 214.Ab

- ® arg 12 \/2Ab +12A2
argG2 VZAb - Az), A<2b

arg@ﬂAz i 2Ab|) A> 2%

T, A<2)

1 ' (4.178)

3n/2, A> 2

Comparing (4. 77) with (4.78), it can be seen that for A < 2%, the argument

of the radical along the left side of the contour C, differs from that along the

1
right by =, and for A > 2, this difference i8 27,

Thus for z > rjfa, (4.74) can be written

1

_ { -i2b 32b' -{o 13(.0
GRI0) -y ] ] & +& -&3
' . 8ma 0 0 -{2b i 2b

| -12b | ' ‘
= 12 {‘ e-ihz[ﬂg)(% V;2+ 2ibh) —_

: 8#0 0
i HS)(% e’ V;z+ 21bh>]dh
-i0 :
| +[ ' e-ithi(ol)(-r&Vhi‘k 21bh)— Hil)(%elz' V€2+ 2ibh)]dh}

-12b .
(4.79)
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Substituting u =1(h+1b) in the first integral and v =1i(h +1b) in the

second, this becomes

-bz b
G(RIO) - - ! e U z[Hf)l)(_;_YbZ _uZ} Hf)l)(% eim]’bz_“f)] du
-b

8ra

+[ Ve Hg)»(_ci_rg'\/vz_bf)_ﬂgl)(.%z ,’“sz-bi)dv }
b .
| ' (4.80)

From the circuit relations given, for example, in Sommerfeld, (1949) p. 314,

we have

(1)(6 z) = a2 (z)
-7
and

H(l) {27 ( ) (1)

@2 = 28P @-1w T s

which when substituted into (4. 80) gives

G (R]0) =; d'bzz S <%T>du + 4] e zJp{%—W)iv

8ra

(4.82)
| . Since Jo(-iz)=Jo(iz) = Io(z), where Io is the modified Bessel function,
this can be written

\(RIO)a-;r:-E; _[ o(am j o' " ("V;_Tdv .

(4.83)
The right-hand integral 1s a tabulated Laplace transform given, for example, in
Magnus and Oberhettinger (1954), p. 134:

Y1
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. (4.84)

R -bvzz-zz
o a
I- e-vzl (£ vvz-b )dv .2
o\a
b 2 2
vz -r'’/a

The finite integral of (4.83) {s more involved, First of all, we note that Jo
is an even function in u, so that

b rb )
1 -uz T 2 2 1 r 2 2
-z-f.be Jo (;;Vb -u )du | 3 N cosh(uz).!°<z b” -u )du

b ' r]f 7 7 b - rvi 3 '
=] coshugz J (—— b"-u )lu = cos(luzg) J (= Ub -u" )du
d 0 a ‘0 .o a’.

miz b T 2 2
. a -—2—JOJ_1/2(iuz) Jo P b -u Yu' du ,

and this becomes

. 2 ' 2 .
since J-1/2(z) VTE COSZ . Lgt u=bsinf: then Vb u bcqge,

2
iz [ b 1/2
2 J . J-1/2 (1_bzsin0) J0 <—a— cosO) sin 6 cos 0'd9

(4.85)
Now Sonine's second finite integral can be written (see Watson (1922), p. 376)

/2
I J” (zlslne) Jv (Z cos 0) sin” +1 ] cosv 1

[ Co
v 2 2
L Z/Ju+v+l<vz +zl)

. (4. 86)
b gt R ut)

0 deo




Thus by letting w=-1/2, v =0, 2, = ibz, Z =rb/a, (4.85)becomes

rizb (ibz) UI—Z_ n(i z -r/a)

: - 22 v:z-rzta

. sinh(bm) (4.87)
'sz -.r:z/.ﬂ'2 | |

Thus, using (4.83), (4.84), and (4.87), we find that

G(E|0) = - ot sinh@m) RN

21ra 2 2

-r/a

-bz cosh< Vz a -r)
=.'21ra
: Vz a -r

Letting R be replaced by Ro and noting the definitions of o and b, we

(4.88)

have the desired solution for the Green's function:

(0, ' [a[(z-zo)<(r-ro)
G(ﬁ,@éﬁ : o wzlalv -z ) ) |1/2 |
e - cosh - ou' a
- 1/2 } [ J ,|a|(z-z°)>(r 4ro)
\ 27|a| R,

(4.89)

. . > -
where R2 -'V(z - zo) [al - (r,-ro)z. The Cerenkov coune is defined by
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[a]l/z(z-zb) =r-r

or

(z-2 )= 7Vn232~ (r-r) . (4.90)

0 o ,

Cerenkov Cone or Shock Wave

Zero Fields Front:
[a‘(z -z )=r-r
o o

Point Ch . Motion of Medium

~ Fields Decrease
—_—

FIG. 4-4: CERENKOV CONE GEOMETRY FOR HIGH VELOCITIES,

In Fig, 4-4,

6 = cot 1(7 28 -1 2cos D— C (4.91)

nBB

[ o]

which for S small, while uf > 1, approaches the familiar shock wave

formula
6 ¥ st (1/0f) . | o  (4.92)

From the solution (4.89) it can be seen that as z - zo fncreases, 'thg solu-

tion decays exponentially, since the exponential dominates over the hyperbolic |

~
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cosine function of large values of z- z’o. For lossless media, this

_approaches the well-known result

0, z < rf|a] 1/2
G(ﬁ]fio) : | | | .
b o
27r[a| 2

4,1.3 Summary

(4.93)

Let us now summarize the results for static charge distributions, where

8/8t = 0: given a static source charge distribution Py (R ) 1o a moving

conducting medium, the fields are related to the vector and scalar potentials

by

B=vxA, E=-vyg

1
H'RVX(A+Q¢),

B« e vpe ;‘!,.aﬁ?[v,((xﬁu el ,

and the potentials are related to the sources by

K(ﬁ)n-%, I” " GER|R) ﬁps(ﬁo)-i'%"vp;(ﬁo)] v,
\' e
(o]

(O

- 1 .
e |- Iy, G(R[Ro) ps(ﬁo) tave®R)fdv (4.95)

(4.94)

L

where the volume Vo encloses the sources; the response charge is related to

the source charge density by-
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z ,
" R) = -2 | ° - - 7 :
Y Pr (RO) 'y I-m exp[ c"rzv (zo g)] Ps(roo !) d§ . (40 96)

and the Green's function is given by

u'a
2

v
o (z - zo) e- o 3 Rl

GRI|R) = 2
®|R, PR

or

o, Jajz-2 )<w-r ) ]

GRIR )= - u'lg]v ._ A . ‘. .
I () . ¢=3 (z zo) coﬂx(a-‘ﬂﬁﬂi'n) |
) — 2 2 |a|(z-zo)>(r-r°) )

21[&]1/2 R2 ‘

nf>1 ,
where

¢

. 2 2 2

R1 a (r-ro) + a(zs-zo)
2 2 - 2

R2 e |a|(z~z°) -(r-ro) ,

[ o)

4.2 Harmonic Current Source Distributions

4.2.1 Differential Equations for the Potentials

One way to approach the problem of harmonic current source distributions
would be to develop a differential equation of the form (4. 31) for current sources,
and make the substitution 8/0t = -iw, It turns out that there is another approach
~ which develops a Green's function equation that is considerably simpler, This

1
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development follows that of Tai (1965b) for lossless media, and involves the
introduction of a set of potentials differing from A and .

For harmonically oscillating fields, Maxwell's equations can be written,

where all quantities have the time dépendence e-wt.

VxE=iwB(h), V*D=p(lh),VxH=J -1wD (ITh), V* B =0 (IVh),
The cons.titutive relations are given. by
B=p' @- ﬁ-.ﬁx E ,
D=e¢ & E + ﬁxﬁ" ,

~ and

3-3’+7p;_3+0(3-E+u'a7x'ﬁ)','
where
. T-E |
= + U
P =P, ﬁpr+o 02 . -(4.98)

\

A ]

Substituting the constitutive relations into Maxwell's equations (I) - (IV) and
eliminating B and D, we get for (Ih) and (IITh) ,

'-'(V+ w'ﬁ) xE = jwpaH "

. .and

(V+ {wQ-op'a¥) x H = -1ue' @ E + f;-f—frp;'vf . (4. 99)

Let -
P=ou'av .
Equation (4. 99) can be simplified by introducing two auxiliary field vectors

'1":'1 and ﬁl defined as follows:
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'E"l - eiUQZﬁ ,
and .
A = Jluf-pz g (4.100)
Then
VxE=Vx (e-iwﬂzfl) e lwlleg §1+ V(e-wnz) ic"ﬁl
‘*‘e-w Q2 [Vx 1731 -{w8 x El] . (4.101)
Similarly

1Y« RS = |
VxH =e [VxH1 iwﬂ-xﬂlfﬁxﬁl] . (4.102

Substituting these relations into (4. 99) gives

vV x El = fwu' P2 R, '}-1'1 , (4.103a)
and
Vx ﬁl i(due'+0)e PLF. '151 + (5B+ 7p;7V)e(i'wn-p)%.
| B (4.103b)
By taking the divergence of the first relation (4, 103a),
Ve UxE =0 =tow Ve @8- H) (4.104)
so that we can part}auy define a vector potential Kl by
u'epz a- E’l = Vx (;--1-3.1) ,
or
o . pz=-1 =-1 < |
I H1 = e a ¢+ |[Vx(a " Al) . (4.105)

From Eq, (4.103), E

1 is then related by
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E, =107 - -7 (4.106)

where @ { 18 a scalar potential,

Substituting the potentials into the second relation (4.103b), we get
v x[e-p-z LR x(g.-1 . Kl)]]= u' (fwe' +o)e PZ (imﬂ1 -2 vg 1)

+u @+l ' eltumRE (4.107)

Using the vector identity

Vx(a) = ¢yVxE+t VY x @

’

Eq. (4. 107) can be written, after regrouping terms, as
B =1 2-
vV x Vx(a . -;-x vV x(a 'Xl) -kA1

= (lup'e -op)a- V¢1+u' (3s+vp;,i")ewm ’ (4.108)

where k2 = uzu'e' + fwou',
Similarly, using (Iih), another equation can be found:

VeD=€eV ' & E+V-(QxHA)=¢vV'a:-E -Q:VxH

—e'V- X (e inz-—) G- vy (-(wﬂ-p)zﬁ)

E 1
N2 9. FE -10T- )
1 1
T p”n [7xE, -¢od- is)xH]
. e-i‘ugz e(v-a El . i;‘lj

fwQ-plz= [ - » - -
(_ W ‘p)zn' l} P el 4+ o) B E1+e(twn p)z(Js'*‘Yp;V)]
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= Y !
ps +v_v7pr to 2
v C
Vi E - ' |
=p + yp' + o le-iwﬂz . (4.109)
8 r c2

Substituting the potentials through the relation (4.106), and grouping terms, we

obtain
v-Z-’vg& -9( X 4a) vg t1wv i ISCL7G AN
1 e\ 2 1 1" e\ 27 1
L] c c .
o [=. = WO
-=1Q°JF +(1+ '+ . 4,
| e'[ﬂ T raeva) v ps]e @0
Since 1+vQ=a, and lr§+9=u'c' av', thus can be written as
o _ _
'v-ﬂ-v¢ -P* Vg ={wV-A -iwp-A g5 +p + wp'] o Ui
1 1 1. 17 € s . Pr,
. (4.111)
Equations (4,108 and (4.111) are two coupled equations for Kl and ¢1. We

are free to further define the potentials by a gaugev condition, which we choose to

be= - -
V'K1-§'Kl=(iwe'-c)p'a2¢1 . (4.112)

[

We have immediately then, from (4.111),

vea- V¢1 -p- V¢1+k2a2 1=-$[{T-58+ps+ayp;]ewnz. (4.113)

Turning our attention to Eq. (4.108), it can be seen that (4. 14) can be applied
directly to the first term. Noting the vector identity

"I
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VEF) =8 x(vxF) + @ VF
for constant '€, the second term of (4.108) becomes

l N [ =-1 . A ] = l n e A - l n = -1 . A

a.p X IV x (@ AI) " vV(p Al) " p°Va A1 .
. : : (4.114)

Using (4. 14) and (4.114), Eq. (4.108) becomes '

(v.@a- V)K1 - (8- V)(V- Kl)+ avp- Kl)'-a R V)3 Z1+ kzale

=;(iuc'-o)u'g2§-V¢1-u‘a2(fs+7pi_i7)equ . (4.115)

By breaking the terms up into components it can be shown that

2v@E E)-a@ VNEF - K)=-G - NE+E-NGE-E) .

_ (4.116)
By substituting (4.116) and the gauge condition (4.112) into (4.115), we have,
finally,

.

(v 5 v - G VE, + kzale - -p'a’ T +vel YR g1
which involves no terms in ¢1 . Comparison with Eq. (4.113) shows that the
' vector' and scalar potentials satisfy the same differential equation, except for the soui'ce
terms, apd thus can be found from the same Green's function, ignoring the
homogeneous solutions, Furthermore, by comparing this expression with

(4,31), itis evident that this formulation is considerably simpler,

4.2.2 Green's Function Solution

From an jnspection of Eqs. (4.113) and (4. 117),‘ it is evident that the
appropriate Green's function for the problem satisfies the following differential
equation: -

(V-ﬁ*V)G-B‘VG+k2a~ZG = -6 [R|R) . . (4.118)
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It was remarked before that the discussion of Section 4.1, 2 does not depend
on the form of the operator, so that the results of that section . may be applied
directly to this case. Thus |

AR) = waz ‘ ‘VS G(ﬁlﬁo) [3-8 (ﬁo) + 5 7p; (ﬁo)]ewﬂz" d"o
0 .

and

_ 1 N S - _ iwﬂzo
#(R) = Py ‘G(RlRo) [Q . JB(RO) + pB(Ro) +'a 'yp; (Ro)]e dvo ,
(o] .
(4.119)

where V_ encloses the sources, and dV_ = d3R =dx_ dy dz_.
0 < . 0 0 0o "0 o

In cylindrical components, Eq. (4.118)

-5@; P st iz-z “p et kzaa GE|R) = - fﬁlﬁo) . (4.120)
As with the static charge distributiorx‘, there are two conditions which give rise
to differenf solutions: for low velocities such that v> ¢/n, and a>0, and
for high velocities such that v >c}n,' or a>0,

Case A. Low Velocitfes: Vv <§/n . Let 02 =a, and b =p/2. Again without

loss of generality we may take ﬁo =0 for the time being. Then E-q. (4.120)

can be written as

-

2 2 .
fo 8 9 « O 9 2 4 =1 08(r)6(z)
<r 3 ' 5F + azz 2b 52 + k a)G(RIO)- T . (4.121)

Taking the Hankel transform in r and the Fourier transform in 2z yields
the algebraic equation

aZof+n?- 21nb - k%t F {H {G}}= 1ar? ,  (4.122)
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or

1 1
F{H {G } - (4.123)
} 47r2 hz- 2ihb + kzaz-k204

Taking the inverse Fourier transform in h, we obtain the integral

H{G}=i_zf

It is necessary to carefully examine the location of the roots of the denominator

e 1Bz 4y

22.24 °

(04}
5 (4.124)
-0 h -2ihb+X o -k a

of the integrand. Expanded, the denominator is

224 2 4
: ‘ 2
(h-1b)% + 22a -“";" +b2-12“’—“—2‘-’— . (4.125)
c €'c
By inspection, the roots are given by
+ 7&202 w2n204 m.mzar41
h1’2=1bfib 1+ = - bz 5 -1 . (4.126)

c €'c
If the real part of the radical is greater than one, then there will be one root in
the upper-half plane, and one in the lower. We are thus interested in the range

of w for which this is true for all real A. The worst case is obviously for

A =0; thus we let X vanigh and consider the radical

272 2 z2
5 -1 s (4.127)
be €'c :

utiv= i-

IR
V)

where u and v are real., Substituting x = we€'/o, this simplifies to

iy = n—lﬁ\[u —21x)-(1-028) . (4.128)

We first note that at x =0, u =1, and at large values of Ix] ,



(1-2ix)
uf

utive

or

1
u~?173. >1 . ' (4.129)

This suggests that u has a minimum value for some value or values of x.
Thus let us set du/dx = 0 and take the derivative of (4.128) with respect to
x. Then we obtain '

dv _ 1, (1-2ix)(-21) - .'%H 21x)2-(1-n282;

o v ., (4.130)
VYo -20%- -0%h  Va+2u0? - -2
or
2 2 2.2
dv 2 1/(1-21::) [+ 21x° - (1-0%6%)  131)

dx o V[(l _21’()2_(1 -nsz)] [(1+21x)2-(1 -n232;.r

The denominator is real and non-negative, since it involves the product of a
quantity and its cbnjugate. In order for dv/dx to be real, it is necessary that

the imaginary part of the numerator be zero; i.e., that

Re {(1 -210? [a+210% - ¢ -nzﬁz)]} >0

»

and
Im{(l-ZTx)z[(HZix)z-(1-!12;92)]} -0 . (4.132)

The second conditions holds only if x =0, and this also satisfies the first con-
dition, Thus the minimum value of u 1is 1, and occurs at x =0, or W= 0,
and the roots of expression (4, 125) lie one in the upbef half plane, and one in the

lower, forall w> 0,
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Thus (4.124) can be evaluated by closing the contour in the upper half-plane

for z <0, and inthe 'lower half-plane for z > 0, =and applying the theory of

residues; then (4.124) becomes

-ih.z

1
e-
, T » 2<0
2r » (hl h2)
H{G}’ ) < ‘ »
47 -ih z
o 2
, 2>0
b-(h2 hl) ‘
or
4l 21
. -alzl )\z-k202+-b—-2
ebze a
H {G} = ; .
2!
47 Az-k202+l)-§
a

Taking the inverse Hankel transform of (4.133) results in the integral

2 22

-alz[ Y fk a+9-§

(4.133)

(4.134)

"This can be written in closed form by making use of Sommerfeld's formula,

given, for example, by Magnus and Oberhettinger, (1954), p. 34, It is first

' neceséary to examine the argument of the radical, First of all the quantity

,

k2‘1’2_ b - U2n202 +1 wan2a2 ) b2
2 .2 2 9.
a c €'c a

lies in the first orlsecond duadrant, for w> 0, and thus
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. ' ) 2 -
0 < arg \’kzaz - 22— < /2 . (4.135)

a
Also,. the quantity
o 222 2 2 2
l-kzaz+2—=l2- na_iwana+2_
2 2 2
a. c €ec « a
. Hes in the third or fourth quadrant, so that
: 2'
9 ) N
-n/2 < argx - kzar2 + b <0 . ) (4.136)
o ‘

Thus Sommerfeld's formula applies, and we get the exiaression

2

22 b 2 2
ka -— ¥Yaz +r
2 .
bz o a
G(R}|O) = . 4,137
(l) 4ra ( )
29 2
Z +r

Replacing R by f{'-ﬁo, and using the definitions of b and a, the final

solution ié obtainedy

. g “—'ée'-y(z - zo) eik'lal/2 R,
G(R[R) = I , (4.138)
1
where
R1 ;'Va(z -Izé)z +(r - ro)»21
and

- ; o 2.
Vk b%/a? 'V(Hi g -
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For frequencies in the range w < o/2 €', it is more appropriate to write

this in ascending form in w; noting (4.135), Eq. (4.138) can be written

i 1
i

e
G (R Rfo)=

2 (z-zo) ! a1/2 R1

(4.139)

where

. The Green's function does not increase indefinitely for large positive values
of z in spite of the presence of the term eb % o (4.137), .Consider the
numerator of the expression for large positive values of z; we have, approx-

imately, noting (4.135),

exp [(b -a % - kzv 2 )z] =exp[b (1 -‘Vl - 1(2cxf4/b2 z]. (4.140)

a
The radical is exactly (4.127), whose real part has a minimum value of unity
at w=0." Thus the exponential has an argument which is not positive, and does
not increase indefinitely for large z.
Note that as the conductivity o vanishes, the Green's function becomes

‘that for the lossless case, reported by Tai (1965a):

iical/le “
== “e ‘
G@R[R) Y 2R1 . | : . (4.141)

where here k =wp/c.
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Note also that if we let w =0 in (4,138), we get the static charge source
Green's function of (4, 64): ,
1/2
'a 'y
(z-z ) . 0 R1

72 :
R

'av

(4.142)

GRI[R) =
0
: 47a
(4.138) 18 probably the most useful Green's function obtained in this work,
since it can be readily applied to the problem of ah antenna in a moving, conducting

medium,

Case B, High Velocities: v >e¢/n, a.< 0, Let a2 = -a and b=-p/2. As

before, we may take ﬁo = 0. temporarily without loss of generality, Then
. Eq. (4.120) becomeés ' '

2 2
@ 8 8 23 g 2 4 =1qy o 0(r)6(z)
<r—a— Tar T3 Pk ‘*> GRO =37 . @14y

Taking the Hankel transform in r, followed by the Fourier transform in z,
yields the algebraic expression: .

. [

: 2 ¢ . .
0%’ -n" - 2th +ice’) Pl qolf « -5 (4.144)
o ' 4w

or

{G}} - . | (;1. 145)

(h +21bh A a -k a)
Taking the inverse Faurier transform in h gives the integral

@ : -ihz
e

1 . |
H{G} " =3 2 dzhz 74, ° - (4.146)
4 o (h"+ 2ibh-A"a -k'a)
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The roots of the denominator are given by

224 L
: + 22 wna o 2

B - - +,—-——- — ) -
h1,2 ib v. a 5 (1+iw€,) b

C
y
. ; ).22 2204 K
= b J1-2F L2 141 -Zy (4.147)
2 2 2 we'
b b e '

Since we anticipate a shock wave behavior as with static charge sources, we

- ask the question, for what range of w are both poles in the lower half plane,
or equivalently, .for what range of w 1s the real §alue of the radical less than
unity? It is evident that the worst k:asfe is for A = 0. Thus we want to examine

the expression

A w2n2 02. o N . |
- (1+i:)?)' (4.148)
bec

whilch is identical to (4.127). The discussion that followed (4.127) applies here
as well, with one modification: since now nf > 1, relations (4.29) now become?

u. '+ 1v;v w , .

np

or

'l ~-1- <1 (4 149).

u v .. . , | 2

and as before u=1 atx =0. Thus u is maximized rather than minimized, at
some finite value <;;‘ x; as in (4,132), this turns outtobe at x=0, or w=0.
Thus for positive w, the roots of h are both in the lower half-plane, rather
~ than one in each half-plane as in Fig, 4-5. ‘

For z < 0, the contour in (4.146) can be closed. in the upper half-plane,
and since it encloses no poles of the integrand of (4.146), '

H,{G}.*O,z<0:. . | 7 (4.150)



For z >0, the contour can be closed in the lower half-plane, and encloses .

both poles of the integrand. Thus by the theory of residues,

:ihlz -ihzz

.27 e e
H{G} i- —
4r? |y -y (hy-h)

(,.)znzar2 o bz“
sin{az A + lﬁ) - -;2

27ra
222 ﬂ
wna b
V"+_‘2_( 1_)-_
' a

. (4.151)

c

Taking the inverse 'Hankel transform in A givés the integral
‘ —7\
-bz o J (kr) sin GZVA + kza2 - b AdA
G (Rlo) = -

v 22 b_
o " (4.152)

This can be reduced into closed form by means of the Sonine- Gegenbauer fpr- ’
mula (see Watson (1922), p. 414), which states:

o _
J# () Ju Gz Ux2+"2) (12+kfaz)-v/2 At Ly
0

0, az<r

T

O’Z

for Rev > Repu > 1 a i, rreal and non-negative, If wesubstitute u =0, v.'-' 1/2,

and kf az = k2 02 -b /a , and use the well-known relations
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2
1/2 (z) V;—; sinZ ,
-1/2 (Z) \’ 7 Co8 z ,

then the Sonine - Gegenbauer formula becomes

1 jm Jo().r) sin Gz A2+'k202-i>2/a?)ldl

L o Vk+kq b/a

0, az<r‘

1 ' kll/2 01/2 cochlaszaz - rz)

= (azzz_r2)1]4 l(11/'.>011/2<a{2!‘2_1‘2)1[4 '

and

o, az <r

cos@al’az -T )
. az>r
Vaz-r

Thus the Green's function solution can be written, for z> 0,

-

bz (O, az<r
G(ﬁlo)--—— .

2ra.
o cos k a Var z -r
K Vaz -

, @zZ>Tr

(4.154)

~ -

(4.155))

- (4,158)

Using (4.150), replacing R by R - R , and using the definitions of b and

a, we have, ﬁnally,
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0, [all/z(z -z°)<(r-ro)\ ,
G(ﬁ]ﬁo) = $
__l.ﬂ'.ll (z -7 ) ’
e ? cos (klla[lﬂR ) 112
- 77, )| a] e - z)>(r-r )
2wla] 2 _ '
(4.157)
where ‘
' 3
R, = W a5 ) - -1 )
and

2 2
2 2,2 wn g o
ky V" b T g ¢ (g

For large conductivity o or low frequencies such that ¢ > 2w €', it is

more appropriate to write this in terms of an attenuation factor e, :

%
: 0, | |aj(z -z )<(r -r )
G(ﬁlﬁo) - . (] (o]
» “’ﬂgk(z“zo) 1/2
e . cosh (cr1 |a] Rz)
-— , 1/2 _ ,la](z-zo)>(r-r°)
v|a|”" R,
where : , (4.158)

.11{2 22 _ nv 200e'2 1)
a =~ b -k'a azt,ct( 5 )" - 3 2) .
. a v

For lossless media ¢ =0, and the Green's function reduces to:

— o, . | a 1/z(z -z ) < (r-ro) .
GR|R ) = ‘ ° (4.159)

/2. .. '
- *cf(kla‘ R2) ,, & 1/2 (z-2 ) > (r-r)
2r|a|1/2R ° o
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where here k = wn/c. This agrees with the result obtained by Tai (1965a),
Furthermore, if w is allowed to vanish, the Green's function becomes that for
static charge sources, Eq. (4.89):

0, '
G(ﬁlﬁo) - ) | .

4 ' (4.160)
While the hyperbolic cosine term in (4.158) fnvolves a rising exponential, the
decaying exponential term dominates. This can be seen by considering the

numerator of (4,158) for largé values of positive (z -zo):

exp |-b (1 - VI - k2a2/b2) (z-zo)] .

The radical is exactly (4.148), In the discussion of this quantity it was shown
that its real part is less than unity for all positive w. Thus for large values

of positive (z - zo), the solution decreases with fncreasing (z - zo).

4,2.3 Sumnia_:_'x ' ' .

Summarizing the results of Section 4. 2, we can say that for harmonically

va.rylng current sources, the fields are related to the potentials Kl and ¢1 ,
by | |

2]

= o TL R v

[ o]

o] |

Rt o ]

~lw Sz
=0

ee] ]

[(V-mﬁ) x (:._1° Xl) + 0x V¢1] ,
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and

= -dwQz YT L= _g =1 < ]
D =e [e lwa -a V¢1) + ot X (v x(@ AI))
(4.161)
where the time dependence -of all field and charge-current quantities is under-

stood tobe e Wt. The potentials are given by

iwﬂz '
A(R) = u'a ‘S G(RlR)[J (R)+V'yp (R)] V<>
A
and

B e . t
¢1(ﬁ) pr “‘v G(RIRO) [ﬁ Ja(Ro)+ ps(Ro) +ta 7pr(R°]e . °4v
. M o )
. (4.162)
where the volume Vo- encloses the sources, The response charge density is

related to the source currents and charges by

. ( -
2 ("’* "%(“‘9—’!)> v
0 € [ps®p0) -5 3, E 0] at

y "R )e - -L ‘
v pr(R,o‘) e'v S_m e 8 0 c2
o ' , (4.163)
and it is noted that fwp =V+.J, and ¥ *R -% .
8 8 © o o
-The Green's function necessary to find the potentials in (4, 162) 1s, for

v<c/n, or a>0:

u'av 1/2.
973 1 R
(-]
77,

GR[R) = 2 (4.164)

4ra

where

. 2 2'
R1 a(z zo) + (:-ro)

ky -‘sz - bz/t\2 .

and
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or for v >c/n, or a<0:

1/2,
. , 0, al 'z-z )< (r-1r))
G(ﬁlﬁo) - : l ] o 0 ,
' ' -o L1 (z-2) }
2 1
e ' cos (kllal /ZRZ) 1/2
- 72 8] z-2 )>(x-r )
27a| '“R,
| | (4.165)
- where




v
SUMMARY AND CONCLUSIONS

Two classes of problems have been solved in the area of moving, con-
ducting media: static and radiation fields of static charges, and radiation fields
of harmonic current sources. No limitation is put either on the range of con-
ductivities and frequencies, or on the velocities. For the limiting case of
vanishing conductivity, the solutions here reduce to already published solutions.

The results of the first class of problems find application to the fields of
" particle beams permeating matter, including the Cerenkov radiation effect. The
second class can be applied to antenna problems involving radiating elements in
a moving, conducting fluid, |

There are several areas and problems to which it would be interesting and
useful to extend the methods developed here. The two-dimensional counterpart
of both classes of problems can be readily solved, from the differential equa-
tions of the Green's functions. The fields of stationary currents as well as
- stationary chargeé could be developed. Boundary value problems are also of
interest, for eiample, the fields in a filled circular waveguide éxcited by char-
ges of high velocities. The application of the methods to the problem of a short
dipole in a. moving, coxfducting medium. is an important application on which the -
author {8 presently working. - |

o
i

g6 »
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APPENDIX A
TRANSFORMATION RELATIONS FOR THE POTENTIALS
AND THE GAUGE CONDITION
Minkowski's theory of the electrodynamics of moving bodies s based on
the covariant formulation of electromagnetism with respect to coordinate sys-
tems in uniform relative motion. This in turn is based on the Lorentz trans-
formation of coordinates, where in addition to the space coordinates x, y, and
z, time is considered as a fourth coordinate ict, where c¢ 1is the velocity
of light in vacuo, This and the following discussion are taken from Sommerfeld, .
"Electrodynamics", (1952) Section 27, If the primed system coordinates moves
with a velocity v in the posiéive z- di;'ection with respect to the unprimed sys-
tem, they are related under the Lorentz transformation by

x'=x, y'=y, i'=7(z-vt) .

o=yt ) (A1)
c

== In the dyadic symbolism, using the definition | ’
R -.k?:~+ yY + 22, ‘
for primed and unprimed systems, (A.1) can.be ﬁrritten as

Ry 5l (ﬁi?t)

and

b

t' = ‘Y(t - Y-.z—l}) D | (A.2)

C

These can be inverted straight forwardly to give

R=aFle @ + 7t

99
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and |

t = y(@t'+ V'ZR) (A.3)
C

The "del" operator V' with the time derivative 8/8t' can be shown to
follow a similar set of relations:

- ' (A.4)
C

(A.5)

Sometimes it is convenient to use what is sometimes called the total time
derivative, given by

- D

a -
-——-+ .
Dt st T V'V -

(A.6)
Then (A.4) and (A, 5) become

A

=M

v Dy
(V+ = 57

o
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and

2

Y57 - (A.7)

(o d

'_8__
at'

Four-vectors are quantities having four components which obey the Lorentz
transformation, and are thus said to transform like the coordinates., In the co-
variant formulat ion of electromégnetis m, there are two important four-x"ectors:
the four-potential (A, i@/c), and the four-current density (3, 1cp), where the
notation used here means that the vector corresponds to the space coordinate
R and the scalar correspohds.to the time coordinate, ict, Thus since the

components of these four-vectors transform as the coordinates, from (A. 2)

we have ) .
a7 @&-Sy) :
| ° ), | : ' (A.8)
g = v@-7-A) |
and
T eyl G-v0)
o : - (A.9)
ot ate- By |
C

In this theory, then, a moving current produces a charge, although for small

velocities it is negligible.

o Turning _6ur a"tte‘n.ﬁvoxi now to the gauge condition, we note that if the primed
‘ system is that coordinate system which transforms the medium to rest, then

the vector and scalar potentials in that system are related by the familiar gauge-

condition

. - 1 ' ‘ ' T.
V'-A'+u'€'%'g+o'u'¢"0 . ‘ (A.10)
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Noting that ¢ = v o', using (A.4), (A.5), and (A.8), we obtain
4-‘,. 2 =-1 V_f)_.-_f_g
V'« A 'Y('Y V+:§at) (A c)

- - _ 2 |
2 .’-1‘- ".8A [] ﬂ-B—ﬂ
.'7[V At — Et—'v,(cz) 2 at] ,

v
' c

2 ,
o9, (-+ v v)@-7- A)
o2 |

. | P
2:12 9A _Q
=y --2-[-)7 T (- V) (v A) + t+ \T‘V¢] ,
c .

and
G U g = oou (§-T- A .
Noting that V* (V@) =v*+ V@, and collecting terms, we get

— BA - - . -
?1'A rlB —z--(n -1)—-%—‘}--0“—V°A
c

2

TR CEE oL REL
c c Y '
- After dividing through by a-nz Bz) and noting that a = [72 (1 --n2 132)]-1

Q=v (n2 - 1)/(c2(>1 - nzﬁz)) , this can be written as

v-¥ 2 Q -aa—":-o'u'av A
2 2
-0 v-ouag- L L8] 2 (A.11)
ot
: ¢ (1-n"BY)

For A in the z-direction, the first term becomes V°* A, and (A 11) is
exactly Eq. (4.11) of the text,



